

RECEIVED

10:06 am, Aug 31, 2009

Alameda County
Environmental Health

July 13, 2009

Mr. Steve Plunkett Alameda County Environmental Health 1000 San Leandro Blvd., Suite 300 San Leandro, CA 94577

Subject: Second Quarter 2009 Groundwater Monitoring Report

Palace Garage

14336 Washington Avenue San Leandro, California ACEH Case No. RO0000208

SFRWQCB LUFT Case No. 01-1133

Dear Mr. Plunkett:

On behalf of Kerry & Associates, Closure Solutions, Incorporated (Closure Solutions) has prepared this *Second Quarter 2009 Groundwater Monitoring Report* (Report) for the Palace Garage facility (the Site), located at 14336 Washington Avenue, in San Leandro, California (Figure 1).

1.0 SITE BACKGROUND SUMMARY

A 550-gallon gasoline underground storage tank (UST) was removed from the site in 1991. Subsequent investigations included the installation of 3 monitoring wells and the drilling of 15 borings. Based on data obtained from the wells and borings, impacted unsaturated-zone soil is confined to the area of the former dispenser pad and UST. The primary groundwater flow direction is toward the southwest.

In December 2002, Professional Service Industries, Inc. (PSI) conducted a soil and groundwater investigation to evaluate the lateral extent of petroleum hydrocarbons in the soil and groundwater at the site. Borings B-16 and B-17 were advanced to between 20 and 24 feet below ground surface (bgs). Boring B-16 was converted into monitoring well MW-4. Concentration of total petroleum hydrocarbons as gasoline (TPHg) and gasoline related contaminants were detected only in soil from boring B-17 and groundwater from wells MW-1 and MW-2. The locations of the monitoring wells and soil borings are presented in Figure 2.

Closure Solutions conducted a Sensitive Receptor Survey to identify all water supply wells and sensitive receptors within a 2,000-foot radius of the Site. The closest water supply wells are two industrial wells approximately 450 feet northwest (up-gradient) of the Site. The closest domestic

well is approximately 1,500 feet southeast (cross-gradient) of the Site. The closest downgradient well is an irrigation well approximately 1,400 feet southwest of the Site. No surface water bodies were identified within a 2,000 foot radius of the Site. Results of the Sensitive Receptor Survey are presented in the *Sensitive Receptor Survey* report dated August 27, 2008.

Closure Solutions prepared and submitted a *Site Conceptual Model* (SCM) dated September 30, 2008 for the Site. The preparation of the SCM was requested by Alameda County Environmental Health (ACEH) in their letter dated September 2, 2008.

In an email dated June 12, 2009 Mr. Steve Plunkett with the ACEH approved the reduction of groundwater monitoring to a Semi-annual basis conducted in second and fourth quarters. Mr. Plunkett also approved the recommendation to eliminate the fuel oxygenates from the suite of laboratory analytes.

2.0 WORK PERFORMED AND WORK PROPOSED

Following is a summary of work performed this quarter and work proposed for next quarter:

WORK PERFORMED THIS QUARTER:

- 1. Performed quarterly groundwater monitoring event on June 19, 2009
- 2. Prepared and submitted Second Quarter 2009 Groundwater Monitoring Report

WORK PROPOSED FOR NEXT QUARTER:

1. No work proposed for the third quarter 2009.

3.0 DISCUSSION OF RECENT ACTIVITIES

Closure Solutions performed this quarter's groundwater monitoring and sampling event at the Site on June 19, 2009. Gauging, purging and sampling were conducted in accordance with Closure Solution's Standard Operating Procedures (included in Attachment A). The collected groundwater samples and a trip blank sample were submitted to Accutest Laboratories for laboratory analysis under Chain-of-Custody protocols. The samples were analyzed for TPHg and benzene, toluene, ethylbenzene and total xylenes (BTEX) by EPA Method 8260B.

Following is a summary of the current status of the environmental program at the site:

Current Phase of Project:	Monitoring					
Groundwater Monitoring & Sampling:	Semi-Annual: MW-1 through MW-4					
Is Free Product (FP) Present On-Site:	No					
Current Remediation Techniques:	Natural Attenuation					

Following is a summary of this quarter's field and analytical data:

Average Depth to Groundwater (in feet bgs):	15.07
Groundwater Elevation (in feet above mean sea level)	21.94 (MW-4) to 22.44 (MW-1)
Groundwater Gradient (direction):	Southwest
Groundwater Gradient (magnitude):	0.003 ft/ft
TPHg detected concentrations:	931 μg/L (MW-2) to 1,490 μg/L (MW-1)
Benzene detected concentrations:	60.1 μg/L (MW-2) to 85.8 μg/L (MW-1)
Toluene detected concentration:	13.4 μg/L (MW-1)
Ethyl-benzene detected concentrations:	30 μg/L (MW-2) to 164 μg/L (MW-1)
Xylenes detected concentrations:	3.1 μg/L (MW-2) to 310 μg/L (MW-1)
	· · · · · · · · · · · · · · · · · · ·

Laboratory procedures, chain of custody records, and the certified analytical reports are included as Attachment B. Groundwater elevation and analytical data are summarized on Tables 1 and 2.

Purge water generated during the monitoring and sampling event was disposed of at the licensed Rio Vista, California hazardous waste treatment facility operated by Instrat, Inc.

4.0 CONCLUSIONS AND RECOMMENDATIONS

In accordance with directive received by the ACWD Closure Solutions will continue the Site groundwater monitoring and sampling on a semi-annual basis during the second and fourth quarters.

We appreciate the opportunity to present this document and trust that it meets with your approval. If you have any questions or concerns, please contact Roger Hoffmore at (916) 983-5604 or at rhoffmore@closuresolutions.com.

Sincerely,

Closure Solutions, Inc.

Roger Hoffmore, P.G.

Senior Geologist

ATTACHMENTS:

Figure 1 Site Location Map

Figure 2 Groundwater Monitoring & Sampling Results – Groundwater

OFFMORS No.7660

Contour Map – June 19, 2009

Table 1 Groundwater Elevation and Analytical Data

Table 2 Fuel Oxygenate & Lead Scavenger Analytical Data

Attachment A Field Procedures and Field Data Sheets

Attachment B Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody

Records

cc: Mr. Jeff Kerry, Kerry & Associates

REFERENCE:
USGS 7.5 MIN QUAD MAP TITLED:SAN LEANDRO, CALIFORNIA DATED: 1959 REV: 1980

FIGURE 1 SITE LOCATION MAP

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

1243 Oak Knoll Drive • Concord California • 94521 Phone: (925) 429-5555 • Fax: (925) 459-5602

LEGEND:

◆ GROUNDWATER MONITORING WELL

SOIL BORING

WELL DESIGNATION
GROUNDWATER ELEVATION (FT ABOVE MSL)
TPHq AND BENZENE CONCENTRATIONS (µq/L)

NOT DETECTED AT OR ABOVE LABORATORY REPORTING LIMITS

D:\Client

GROUNDWATER ELEVATION CONTOURS (FEET ABOVE MEAN SEA LEVEL [MSL])

GROUNDWATER FLOW DIRECTION AND GRADIENT (FT/FT)

NOTES:

1. BASEMAP SOURCE: MORROW SURVEYING, 2/05/03

FIGURE 2

SECOND QUARTER 2009 GROUNDWATER MONITORING & SAMPLING RESULTS

GROUNDWATER CONTOUR MAP JUNE 19, 2009

PALACE GARAGE 14336 WASHINGTON AVENUE SAN LEANDRO, CALIFORNIA

CLOSURE SOLUTIONS, INC.

1243 Oak Knoll Drive • Concord California • 94521

Phone: (925) 429-5555 • Fax: (925) 459-5602

Table 1
Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (μg/L)	B (µg/L)	T (μg/L)	E (µg/L)	X (µg/L)	LAB
MW-1	12/31/2002	37.59	13.62	23.97	48,000	1,030	2,380	1,690	9,220	
	9/22/2006		13.33	24.26	44,000	870	2,200	720	9,700	
	12/21/2006		13.94	23.65	17,000	240	980	180	5,000	
	3/29/2007		13.71	23.88	2,000	30	85	23	550	
	9/27/2007		15.53	22.06	540	14	3.9	44	87	KIFF
	12/20/2007		15.69	21.90	280	4.3	1.3	15	37	KIFF
	2/21/2008		13.72	23.87	19,000	300	150	1,100	4,900	KIFF
	5/15/2008		14.60	22.99	7,200	140	50	370	2,040	KIFF
	8/7/2008		15.62	21.97	820	13	3.1	44	100	KIFF
	11/13/2008		16.14	21.45	670	10	2.1	31	110	KIFF
	6/19/2009		15.15	22.44	1,490	85.8	13.4	164	310	Accutes
MW-2	12/31/2002	37.12	13.38	23.74	1,670	1,030	11.00	23	16.4	
	9/22/2006		13.25	23.87	1,800	53	1.40	14	7.5	
	12/21/2006		13.89	23.23						
	3/29/2007		13.57	23.55	2,100	51	1.30		4.5	
	9/27/2007		15-37	21.75	1,600	58	0.99	12	3.7	KIFF
	12/20/2007		15.40	21.72	1,500	63	1.1	16	4.9	KIFF
	2/21/2008		13.60	23.52	710	23	ND<0.50	6.2	1.1	KIFF
	5/15/2008		14.47	22.65	1,600	84	1.4	28	9.8	KIFF
	8/7/2008		15.48	21.64	2,100	86	1.6	22	9.0	KIFF
	11/13/2008		15.99	21.13	2,300	46	1.1	15	4.5	KIFF
	6/19/2009		15.03	22.09	931	60.1	ND<2.0	30	3.1	Accutes

Table 1
Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	LAB
MW-3	12/31/2002	37.01	13.29	23.72	<50	<0.5	<0.5	<0.5	<1.0	
	9/22/2006		13.14	23.87	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006									
	3/29/2007		13.47	23.54	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.29	21.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	12/20/2007		15.30	21.71	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008									
	5/15/2008		14.35	22.66	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.39	21.62	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		15.90	21.11	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		14.94	22.07	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutes
MW-4	12/31/2002	37.09	13.45	23.64	<50	<0.5	<0.5	<0.5	<1.0	
	9/22/2006		13.40	23.69	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	12/21/2006		13.86	23.23	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	3/29/2007		13.69	23.40	< 50	< 0.5	< 0.5	< 0.5	<1.5	
	9/27/2007		15.48	21.61	ND<50	1.5	ND<0.50	0.71	0.74	KIFF
	12/20/2007		15.28	21.81	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	2/21/2008		13.56	23.53	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	5/15/2008		14.58	22.51	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	KIFF
	8/7/2008		15.57	21.52	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	11/13/2008		16.09	21.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	KIFF
	6/19/2009		15.15	21.94	ND<50	ND<1.0	ND<1.0	ND<1.0	ND<2.0	Accutes

Table 1 Groundwater Elevation and Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

		Well ID	Date Sampled	Casing Elevation (Feet MSL)	Depth To Water (Feet)	Groundwater Elevation (Feet)	TPHg (μg/L)	B (µg/L)	Τ (μg/L)	E (μg/L)	X (μg/L)	LAB
--	--	------------	-----------------	-----------------------------	-----------------------------	------------------------------------	----------------	-------------	-------------	-------------	-------------	-----

ABBREVIATIONS:

Total Petroleum Hydrocarbons as Gasoline
Benzene
Toluene
Ethylbenzene
Total xylenes
Micrograms per liter (parts per billion [ppb])
Not analyzed/measured/applicable
Not detected at or above specified laboratory reporting limit
Mean Sea Level
Accutest Laboratories, Santa Clara, Ca
Kiff Analytical LLC, Davis, Ca
Detection during latest sampling event

LIMITATIONS

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Table 2
Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	MTBE (μg/L)	TBA (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (µg/L)
MW-1	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006	3.9						
	3/29/2007	<1.0						
	9/27/2007	1.6	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/21/2007	1.5	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<7.0	ND<40	ND<7.0	ND<7.0	ND<7.0	ND<7.0	ND<7.0
	5/15/2008	ND<2.5	ND<15	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
	8/7/2008	1.0	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	1.1	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-2	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	1.10						
	9/27/2007	0.89	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	0.95	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	5/15/2008	ND<0.90	ND<5.0	ND<0.90	ND<0.90	ND<0.90	ND<0.90	ND<0.90
	8/7/2008	0.59	ND<5.0	ND<0.90	ND<0.90	ND<0.90		
	11/13/2008	0.53	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2
Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well ID	Date Sampled	MTBE (μg/L)	TBA (μg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)
MW-3	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006							
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008							
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
MW-4	12/31/2002	<0.5						
	9/22/2006	<1.0						
	12/21/2006	<1.0						
	3/29/2007	<1.0						
	9/27/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/20/2007	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	2/21/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	5/15/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	8/7/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		
	11/13/2008	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50		

Table 2 Fuel Oxygenate & Lead Scavenger Analytical Data

Palace Garage 14336 Washington Avenue San Leandro, California

Well	Date Sampled	MTBE	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB
ID		$(\mu g/L)$	(µg/L)	$(\mu g/L)$				

ABBREVIATIONS:

MTBE	Methyl Tertiary Butyl Ether
TBA	Tertiary Butyl Alcohol
DIPE	Diisopropyl Ether
ETBE	Ethyl Tertiary Butyl ether
TAME	Tertiary Amyl Methyl Ether
1,2-DCA	1,2-Dichloroethane
EDB	1,2-Dibromoethane
KIFF	Kiff Analytical LLC, Davis, Ca
Accutest	Accutest Laboratories, Santa Clara, Ca
μg/L	Micrograms per liter (parts per billion [ppb])
	Not analyzed/measured/applicable
ND<	Not detected at or above specified laboratory reporting limit
Bold	Detection during latest sampling event

LIMITATIONS

Background information, including but not limited to previous field measurements, analytical results, Site plans, and other data have been obtained from previous consultants, and/or third parties, in the preparation of this report. Closure Solutions has relied on this information as furnished. Closure Solutions is not responsible for, nor has it confirmed the accuracy of data collected or generated by others.

Attachment A

Field Procedures and Field Data Sheets

Standard Operating Procedures: Basic Gauge, Purge, and Sample.

Routine Water Level Measurements

- 1. Confirm that water or debris will not enter the well box upon removal of the well box lid.
- **2.** Remove the cover using the appropriate tools.
- **3.** Inspect the wellhead for deficiencies and document accordingly.
- **4.** Confirm that water or debris will not enter the well upon removal of the well cap.
- **5.** Unlock and remove the well cap lock (if applicable). If lock is not functional cut it off.
- **6.** Loosen and remove the well cap. CAUTION: DO NOT PLACE YOUR FACE OR HEAD DIRECTLY OVER WELLHEAD WHEN REMOVING THE WELL CAP. WELL CAP MAY BE UNDER PRESSURE AND/OR MAY RELEASE ACCUMULATED AND POTENTIALLY HARMFULL VAPORS.
- 7. Verify and identify survey point as written on S.O.W.

TOC: If survey point is listed as Top of Casing (TOC), look for the exact survey point in the form of a notch or mark on the top of the casing. If no mark is present, use the north side of the casing as the measuring point.

TOB: If survey point is listed as Top of Box (TOB), the measuring point will be established manually. Place the inverted well box lid halfway across the well box opening and directly over the casing. The lower edge of the inverted cover directly over the casing will be the measuring point.

- **8.** Put new Nitrile gloves on your hands.
- **9.** Slowly lower the decontaminated water level meter probe into the well until it signals contact with water with a tone and/or flashing a light.
- 10. Gently raise the probe tip slightly above the water and hold it there. Wait momentarily to see if the meter emits a tone, signaling rising water in the casing. Gently lower the probe tip slightly below the water. Wait momentarily to see if the meter stops emitting a tone, signaling dropping water in the casing. Continue process until water level stabilizes indicating that the well has equilibrated.
- 11. While holding the probe at first contact with water and the tape against the measuring point, note depth. Repeat twice to verify accuracy. Write down measurement on well gauging sheet under depth to water column.
- **12.** Recover probe, replace and tighten well cap, replace lock (if applicable), replace well box cover and tighten hardware (if applicable).

Purging With a Bailer (Teflon or Disposable)

- 1. Attach bailer cord or string to bailer. Leave other end attached to spool.
- **2.** Gently lower empty bailer into well until well bottom is reached.
- **3.** Cut cord from spool. Tie a loop at end cord.
- **4.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground.
- **5.** Pour contents into graduated 5-gallon bucket or other graduated receptacle.
- **6.** Repeat purging process.
- 7. Upon removal of first casing volume, fill clean parameter cup with purge water, empty the remainder of the purge water into the bucket, lower the bailer back into the

well and secure the cord on the Sampling Vehicle.

- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.
- 10. Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.

Purging With a Fixed Speed Electric Submersible Pump

- 1. Position thoroughly decontaminated pump over the top of the well.
- **2.** Gently unreel and lower the pump to the well bottom.
- **3.** Raise the pump to client specified location within screened interval. If no direction is given the pump inlet will be placed 5 feet above the bottom of the well.
- **4.** Secure the hose reel.
- **5.** Begin purging.
- **6.** Verify pump rate with flow meter or graduated 5-gallon bucket.
- 7. Upon removal of first casing volume, fill clean parameter cup with water.
- **8.** Use the water in the cup to collect and record parameter measurements.
- **9.** Continue purging until second casing volume is removed.
- **10.** Collect parameter measurements.
- 11. Continue purging until third casing volume is removed.
- **12.** Upon completion of purging, gently recover the pump and secure the reel.

Sampling with a Bailer (Teflon or Disposable)

- 1. Put new Latex or Nitrile gloves on your hands.
- 2. Determine required bottle set.
- **3.** Fill out sample labels completely and attach to bottles.
- **4.** Arrange bottles in filling order and loosen caps (see Determine Collection Order below).
- **5.** Attach bailer cord or string to bailer. Leave other end attached to spool.
- **6.** Gently lower empty bailer into well until water is reached.
- 7. As bailer fills, cut cord from spool and tie end of cord to hand.
- **8.** Gently raise full bailer out of well and clear of wellhead. Do not let the bailer or cord touch the ground. If a set of parameter measurements is required, go to step 9. If no additional measurements are required, go to step 11.
- **9.** Fill a clean parameter cup, empty the remainder contained in the bailer into the sink, lower the bailer back into the well and secure the cord on the sampling vehicle. Use the water in the cup to collect and record parameter measurements.
- **10.** Fill bailer again and carefully remove it from the well.
- 11. Slowly fill and cap sample bottles. Fill and cap volatile compounds first, then semivolatile, then inorganic (see following steps). Return to the well as needed for additional sample material.
- **12.** Fill 40-milliliter vials for volatile compounds as follows: Slowly pour water down the inside on the vial. Carefully pour the last drops creating a convex or positive meniscus on the surface. Gently screw the cap on eliminating any air space in the vial. Turn the vial over, tap several times and check for trapped bubbles. If bubbles are present, repeat the process.
- **13.** Fill 1 liter amber bottles for semi-volatile compounds as follows: Slowly pour water into the bottle. Leave approximately 1 inch of headspace in the bottle. Cap bottle.
- 14. Field filtering of inorganic samples using a disposable bailer is performed as follows:

Attach 0.45 micron filter to connector plug. Attach connector plug to bottom of full disposable bailer. Gravity feed water through the filter and into the sample bottle. If high turbidity level of water clogs filter, repeat process with new filter until bottle is filled. Leave headspace in the bottle. Cap bottle.

- 15. Bag samples and place in ice chest.
- **16.** Note sample collection details on well data sheet and Chain of Custody.

FIELD DATA SHEET-DEPTH TO WATER DATA

		S	ITE INFORM	ATION		
Palace Gara Project Name 14336 Washii Address	ge	6/19/09 Date San Leandro	Project Number	UTAWG.		
Water Level Equ X Electronic Ind Oil Water Inte Other (specify	rface Probe	City	Kevin Dolan 2Q09 - QMS Event	Look own ch	seessiindee W. 162	id worth)
y		DEF	TH TO WATE	R DATA	low has various	n I meseno
			DTW	Donth to SDU	SPH Thickness /	
DTW Order	Well ID	Time (24:00)	(toc)	Total Depit	SPH Thickness/	Notes (describe SPH):
3	MW-1	1345	15.15	23.40		mint A-man
4	MW-2	1343	15.03	23,64		
2	MW-3	1340	14.94	23.09		MWS 1-2-1-
	MW-4	1338	15,15	21,95		
			14		ZETR. 88	1 42WW
					2.00	
					Representation of the second	Lat WM
	12 (2)(2)	And Street, St	Vin tracting	n where		de mort
	and the section	N. Sementary				
25111	ni toe eledans uno	Name (weeps)				
	mi setta Lidadon	of the following				
					A STATE OF THE STA	
					Cla	osure Solutions INC

Project Na	me/No.:	Pa	lace Garage		Date:	June 19, 2009	200			
Sample No	o.:	MW-)								
Samplers	Name:	1.1	Kevin	Dolan						
Purge Equ		ımp	ic			Sample Equipment: Disposable Bailer Whaler # Bladder Pump Submersible Pump				
Analyses F		(circle all that a	pply):				Numb	er and Types of Bo	ttle Used:	
TPH-G	BTEX		1-1-3/					a's w/ hcl	taio occur	
Well Numb	Vater:	MW-1 15.15 23.40	TOC BGS or TOC			V	Vell Diameter:	with Casing V 2" = (0.16 G 4" = (0.65 G	allon/Feet)	
Height W-0	Column:	8,25	feet (well dep	th - depth	to water)			5" = (1.02 G		
Volume in		1,32	gallons (casir					6" = (1.47 G		
Gallons to	purge:	3,96	gallons (volu		3,			8" = (2.61 G	,	
Lab:						Transpo	rtation:	(2.01.0	anothr oot,	
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	pН	TDS (ppm)		Color - Fines	Micropurge Paramaters Stabilized	
1455	STAR	T -								
1457	115	P.5	0,970	270	6196	NAI	454;060	R, min		
1459	3	18,4	0,971	1,93	6,85	/	10; 1	1		
1501	4	18,4	0.963	2111		/	10: 1	V	0 943	
STOP!	Purse	complete	2							
- 20		-10								
			it for 80% we				ampling. ume recovery:			
		Galdalate			orginal well ve		unie recovery.			
N.	Orig	ginal Height of Water					23,40 = Depth	to water 16,18	376	
Time:	1st measured	depth to water,depth to water,depth to water,		ow TOC.	ole Well	Is well with	in 80% of original w	vell casing volume: Yes_ vell casing volume: Yes_ vell casing volume: Yes_	No No No	
Time:	15/0		Sample ID:	N	W-1		Depth:	15,23		
Comments:	18	light He	alon-	NO	Sheey					
Well Conditi	ion:	good-								
							Cloques Cali	tions INIO ONIO	-00	

Project Name/No.: Palace Garage - San Leandro, CA					Date:	June 19, 2009	_			
Sample No	o.:	MW-2								
Samplers			Kevin L	Dolan						
Purge Equ	Bailer: Disp 12 v. Pump Bladder Pu	mp	c				Sample Equipment: Disposable Bailer Whaler # Bladder Pump			
Anabasa	SS Monsoo				Sec.	Submersible Pump				
TPH-G	BTEX	circle all that a	pply):					er and Types of Bo	ottle Used:	
IFII-G	BIEX						3 V	oa's w/ hcl		
Well Numb	per:	MW-2		-		V	Vell Diameter:	with Casing \	/olume of:	
Depth to W	Vater:	15.03	TOC					2" = (0.16 G	allon/Feet)	
Well Depth	n: .	23,64	BGS or TOC					4" = (0.65 G	allon/Feet)	
Height W-0	Column:	8,61	feet (well dep	th - depth	to water)			5" = (1.02 G	allon/Feet)	
Volume in	Well:	1:38	gallons (casir	ng volume	X height)			6" = (1.47 G		
Gallons to	purge:	4,14	gallons (volur	me X 3)				8" = (2.61 G		
Lab:					-	Transpo	rtation:			
Time (24 hr.)	Volume Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity	: Color - Fines	Micropurge Paramaters Stabilized	
1515	STAR	T —								
1517	1,5	20.6	1103	1.04	7.13	NA /	816: HA	24, Many		
1519	3	19,0	103	1.56	7.18		47: M	ece, Min		
152	4.5	187	1.03	1.63	7,04	/	10: N	1 1		
STO	P', Purse					1		V		
3/										
		15								
		Wa Calculate	it for 80% we depth to wate	Il volume	recovery	prior to sa	ampling.			
			Calcu	late 80% of	orginal well vo	olume:				
	Orig	inal Height of Water	Column = 816	x 0.8 =	6188 -1	Well Depth)	23/64 = Dept	h to water 16,78		
Time:	1st measured d	depth to water,	feet belo	w TOC.	ple Well	Is well with	in 80% of original v	well casing volume: Yes well casing volume: Yes well casing volume: Yes	No	
Time:	1530		Sample ID:	l	110-2	2	Depth:	15.08		
Comments:	M	oderale H			Sheer					
	11	The state of the s								
Well Conditi	on:	goal-								
		J					01			

Project Na	me/No.:	Pa	lace Garage	- San Lea	ndro, CA		Date:	June 19, 2009			
Sample No	o.:	MW-3									
Samplers	Name:		Kevin	Dolan			M CC. ess.				
Purge Equ	Bailer: Dis 12 v. Pump Bladder Pu	mp	ic				Sample Equipment: Disposable Bailer Whaler # Bladder Pump				
Analyses	SS Monsoo	on # circle all that a	nnly):					Submersible Pump			
TPH-G	BTEX	circle all that a	ppiy).				Number and Types of Bottle Used 3 Voa's w/ hcl				
								a o wi noi			
Well Numb Depth to W Well Depth Height W-0 Volume in Gallons to Lab:	Vater: n: Column: Well:	MW-3 /494 23.07 3.15 1.36 3.92	TOC BGS or TOC feet (well dep gallons (casir gallons (volur	ng volume		Transpo	Well Diameter: _	with Casing V 2" = (0.16 Ga 4" = (0.65 Ga 5" = (1.02 Ga 6" = (1.47 Ga 8" = (2.61 Ga	allon/Feet) allon/Feet) allon/Feet) allon/Feet)		
	Volume	-	0 1				Tation:				
Time (24 hr.)	Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity:	Color - Fines	Micropurge Paramaters Stabilized		
1429	STAN	7 -									
1430	1.5	20,7	,750	3,10	6.84		999; Br	own, many	1		
1423	3	19,7	.662	2,50	6.73		358: cl	ear, min.			
1425	4	19.1	1658	3,11	6.74		68:	VW			
STOP:	Purge	Complet	C								
	1						, <u> </u>				
		3					V				
		Wa Calculate	it for 80% we	Il volume	recovery p	prior to sa	ampling. ume recovery:				
1	3.0		Calcu	ulate 80% of	orginal well vo	olume:		10 -			
Time:	1st measured of	depth to water,	feet belo	ow TOC. ow TOC. ow TOC.	ble Well	Is well with	nin 80% of original we	ell casing volume: Yes ell casing volume: Yes ell casing volume: Yes ell casing volume: Yes	No		
Time:	1435		Sample ID:	M	W-3		Depth: _	23.11			
Comments:	N	oden-1	No Sheel	7							
Well Conditi	ion: (pol									
							01				

Project Na	me/No.:	Pa	alace Garage -	San Lea	ndro, CA		Date:	June 19, 2009	4	
Sample No	0.:	MW-4								
Samplers	Name:		Kevin L	Dolan						
Purge Equ	Bailer: Dis 12 v. Pump Bladder Pu SS Monso	ump on #		Sample Equipment: Disposable Bailer Whaler # Bladder Pump Submersible Pump						
		(circle all that a	pply):				Number and Types of Bottle Used:			
TPH-G	BTEX							's w/ hcl		
Well Number:MW - $\sqrt{}$ Well Diameter: $\sqrt{}$ with Casing Volume to Water:Depth to Water:15.15TOC2" = (0.16 Gallow to 1.00									allon/Feet) allon/Feet) allon/Feet) allon/Feet)	
	Volume					Папэро	itation.			
Time (24 hr.)	Purged (Gallons)	Temperature (°C)	Conductivity (ms/cm)	D.O. (ppm)	рН	TDS (ppm)	Turbidity: C	Color - Fines	Micropurge Paramaters Stabilized	
1401	0125	19,4	0.878	1,93	7.03	NA/	909! HAZ	y, many		
1403	0,50	19.1	0.911	1,89	7,01			in, mod		
1405	0.85	18.6	0.916	1,73	7.00		311: 1	· A		
Stopi	Pune	comp les	e			/				
	0		-						7 = 1	
1 4		157								
		Wa Calculate	it for 80% we depth to wate	Il volume	recovery p	rior to sa	impling.			
	1)				orginal well vo		arrie recovery.			
	Orig	ginal Height of Water	Column = 68	x 0.8 =	5.44-N	Vell Depth)	21.95 = Depth to	water [6.5]		
Time:	1st measured	depth to water,depth to water,depth to water,	feet belo	w TOC. w TOC.	ole Well	Is well with	in 80% of original well	casing volume: Yes _ casing volume: Yes _ casing volume: Yes _	No	
Time:			Sample ID: _		MW-4		Depth:			
Comments:		10 0002-	NO She	een						
Well Conditi	on:	apal-								
vven Conditi	OH.	Joen								
							Closure Solutio	ns INC QMS F	DS	

Attachment B

Laboratory Procedures, Certified Analytical Reports and Chain-of-Custody Records

06/29/09

Technical Report for

Closure Solutions, Inc.

T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Accutest Job Number: C6246

Sampling Date: 06/19/09

Report to:

Closure Solutions, Inc. 1243 Oak Knoll Drive Concord, CA 94521

rchinn@closuresolutions.com; rhoffmore@closuresolutions.com; kdolan@closuresolutions.com; kwaldo@closuresolutions.com

ATTN: Roger Hoffmore

Total number of pages in report: 21

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Diane Theesen 408-588-0200

Certifications: CA (08258CA)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

ACCUTEST

ABORATORIES

Laurie Glantz-Murphy

Laboratory Director

Sections:

_

N

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	
2.1: C6246-1: MW-1	5
2.2: C6246-2: MW-2	6
2.3: C6246-3: MW-3	7
2.4: C6246-4: MW-4	8
2.5: C6246-5: QA/QC TB	9
Section 3: Misc. Forms	10
3.1: Chain of Custody	11
Section 4: GC/MS Volatiles - QC Data Summaries	13
4.1: Method Blank Summary	14
4.2: Blank Spike Summary	16
4.3: Matrix Spike/Matrix Spike Duplicate Summary	20

Sample Summary

Closure Solutions, Inc.

Job No:

C6246

T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
C6246-1	06/19/09	15:10 KD	06/23/09	AQ	Ground Water	MW-1
C6246-2	06/19/09	15:30 KD	06/23/09	AQ	Ground Water	MW-2
C6246-3	06/19/09	14:35 KD	06/23/09	AQ	Ground Water	MW-3
C6246-4	06/19/09	14:10 KD	06/23/09	AQ	Ground Water	MW-4
C6246-5	06/19/09	00:00 KD	06/23/09	AQ	Trip Blank Water	QA/QC TB

Sample Results

Report of Analysis

Report of Analysis

Page 1 of 1

Client Sample ID: MW-1

Lab Sample ID:C6246-1Date Sampled:06/19/09Matrix:AQ - Ground WaterDate Received:06/23/09Method:SW846 8260BPercent Solids:n/aProject:T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	M7360.D	5	06/25/09	XB	n/a	n/a	VM240
D 110							

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total) TPH-GRO (C6-C10)	85.8 13.4 164 310 1490	5.0 5.0 5.0 10 250	1.5 2.5 1.5 3.5 130	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	110% 104% 101%		60-13 60-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: MW-2 Lab Sample ID: C6246-2

Lab Sample ID:C6246-2Date Sampled:06/19/09Matrix:AQ - Ground WaterDate Received:06/23/09Method:SW846 8260BPercent Solids:n/aProject:T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	M7359.D	2	06/25/09	XB	n/a	n/a	VM240

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total) TPH-GRO (C6-C10)	60.1 ND 30.0 3.1 931	2.0 2.0 2.0 4.0 100	0.60 1.0 0.60 1.4 50	ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	111% 106% 101%		60-13 60-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

1

Report of Analysis

Page 1 of 1

Client Sample ID: MW-3

Lab Sample ID:C6246-3Date Sampled:06/19/09Matrix:AQ - Ground WaterDate Received:06/23/09Method:SW846 8260BPercent Solids:n/aProject:T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	M7352.D	1	06/25/09	XB	n/a	n/a	VM240

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total) TPH-GRO (C6-C10)	ND ND ND ND ND	1.0 1.0 1.0 2.0 50	0.30 0.50 0.30 0.70 25	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	108% 108% 98%		60-13 60-13	30%	

ND = Not detected MDL - Method Detection Limit <math>J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-4

 Lab Sample ID:
 C6246-4
 Date Sampled:
 06/19/09

 Matrix:
 AQ - Ground Water
 Date Received:
 06/23/09

 Method:
 SW846 8260B
 Percent Solids:
 n/a

 Project:
 T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	M7353.D	1	06/25/09	XB	n/a	n/a	VM240
D 110							

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total) TPH-GRO (C6-C10)	ND ND ND ND ND	1.0 1.0 1.0 2.0 50	0.30 0.50 0.30 0.70 25	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	109% 110% 98%		60-13 60-13	80%	

ND = Not detected MDL - Method Detection Limit J = Indicates Indicate Indicates Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

1

Report of Analysis

Page 1 of 1

Client Sample ID: QA/QC TB

Lab Sample ID:C6246-5Date Sampled:06/19/09Matrix:AQ - Trip Blank WaterDate Received:06/23/09Method:SW846 8260BPercent Solids:n/aProject:T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	M7319.D	1	06/24/09	XB	n/a	n/a	VM239
Pun #2							

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total) TPH-GRO (C6-C10) ^a	ND ND ND ND 34.7	1.0 1.0 1.0 2.0 50	0.30 0.50 0.30 0.70 25	ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	113% 91% 101%			30% 30%	

(a) Atypical pattern. Gasoline value due to chlorinated compound(s).

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	Northern	California
BAC	3GU1	est.

CHAIN OF CUSTODY

			3334 \	√ictor Cour	t, Santa	Clara,	CA	9505	4				FED-EX	Tracking	#				Bottle O	rder Cont	ro!#			
	accutest.		(408)	588-0200	FAX	<: (408)	588-	-0201					Accute	st Quote i					Accutes	t NC Job	: C	0	1.24	llo
	Laboratories				1 C	LOSC	MC	20	85	, ,														
	Client / Reporting Information			Proje	ct Infor	mation				alini.								Reque	sted A	nalysis				Matrix Codes
Company Na	CLOSUNE SOU TIONS		Project Na	me: ∉	ALA	15	O	AR	AG.	É			Jine	s Gas	, s		PPM.		0					WW- Water GW- Ground Water
Address	1243 OHL KNOU DR.		Street	143	36	MAS	Hin	iati	DN	A	We	195	is Gaso	TPH as Gas	+TICs	Other	t .	809	PID-FI					SW- Surface Water SO- Soil
City	NCORD CA GY	Zip S21	City	/% ·	I FIA			State (0	4	-			with/TPH as Gasoline	ġÝ	625 🛘	TPH-Extractable - Diesel - Motor Oil - Other ☐ With Silica Gel Cleanup ☐	RCRA-8[]	PCBs-8082 □	Gasoline by GC/PID-FID					Ol-Oil WP-Wipe
Project Cont			Project #	-1//	<u> </u>	13171			•					LEX/		el-Mo anup	CAM-170 LUFT-50	PCBs-	soline					LIQ - Non-aqueous Liquid
Phone #	916-963-5604	ar io e.g.	ERAND .	cppuo	(B)	Vesa	ses	 SEL	ıfz	, ns		อน	624	des B	PAHs only []	- Dies	17	0						AIR
Samplers's I	Name KEVIN DOLAN			chase Order									List	(Inclu	PAH	actable Silica G	CAM-	Pesticides-8081	BTEX-MtBE-TPH as					DW- Drinking Water (Perchlorate Only)
Accutest			Collection	on			Nun	nber	of pre	serv		ottles	₩ 를	etro	_	E K	is:	ide	W.					
Sample ID	Sample ID / Field Point / Point of Collection	Date ,	Time	Sampled by	Matrix	# of bottles	ξ	NaOH	HZSO4	NONE	NaHSO4	МЕОН	8260 Full List	8260	8270 🗆	H L	METALS:	Pesti	BTEX					LAB USE ONLY
	MW-1	6/M/g	1510	140	6W	3	3			L				X					<u></u>		-	- [
	MW-2	1	1530	- 1	1																-	2		
	Ww-3		1435		T	П	П			Τ	П			\prod							7	3		
	WW - 4	1	1410		2	V	V	7		Т	П			Π							-	Ψ		
—	QA/OCTB	4	710	V	wW	7	2	T	1	1	П			V	1							5		
	CEN705 +D				1,11					1			-		1									
		-					\Box	\top	\top	T	\Box	\top	1	1	T	1								
	Reco (14) VOA'S H	ec a	2-				П	\top	+	T		\top	1											
	W/11.10 Temp								T	Τ	П													
							П				П					1								15
	Turnaround Time (Business days)				Data De	liverable	Inforn	nation	85						V aria			Cor	nments /	Remarks				of Name
		oved By:/ Da	ıte:		nercial "A									10.		721L	I =	ويتسهسين	1	6	21.00		ء اد د	
Constitution of	10 Day (Workload dependent) 5 Day (Workload dependent)			X Comn	nercial "E	3	H							120	-331	7 11 5	y c	2107	·	100	10		7	tions, com
	3 Day (125% markup)													cc	603	u ts	to	. 12	-WHI	DO 6	<u>olc</u>	GONE	Sdu	trons, com
	2 Day (150% markup) 1 Day (200% markup)			Casania	or Geotra EDF GI		닉		Form)YZ													
	Same Day (300% markup)				EDF Lo	_				<u> </u>				-										
Emer	gency T/A data available VIA Lablink																							
	' Sample Custody n		ocumente	d below da	t time	sample	s cha	inge					courie	r delive										
Relinquis	shed by Sampler: My Ju	Date Time:	g/bes	Received By	1)11	die	Į,	0	Rel 2	linquis	hed By	r:			Date Ti	me;			Receive 2	d By:				
Relinquis	shed by:	Date Time:	:	Received By	1	7000			Rel	linquis	hed By	r:			Date Ti	me:			Receive	d By:				
3		Date Time:		3 Received By	7				4	stody	Coal #		Tánnro	oriata Rot	tle / Pros.	VIN	Head	dspace Y	4		On Ice Y	7 N		Cooler Temp.
Relinquis	snea by:	Late Ime:		Keceived By	•				- Cu	J.ouy			CPPIO					paec (

C6246: Chain of Custody

Page 1 of 2

Accutest Laboratories Northern California Sample Receiving Check List

⊋Are these regulatory (NPDES) samples? CWA	Yes (No)	Client Sample ID	pH Check	Other Comments/Issues
requested?	Yes (No)			
Was Client informed that hold time is 15 min?	Yes / No			
If yes, did Client consent to continue?	~			
Are sample within hold time?	Yes / No			
Are sample in danger of exceeding hold-time	Yes / No			
Existing Client? Yes / No Existing Project?	Yes / No			
If No: Is Report to info complete and legible, including;				
□ deliverable □ Name □ Address □ phone □ e-mail				
Is Bill to info complete and legible, including;				
□ PO# □ Credit card □ Contact □address □ phone □ e-mail				
Is Contact and/or Project Manager identified, including;				
□ phone □ e-mail				
□-Project name / number □ Special requirements?	(res / No			
Sample IDs / date & time of collection provided?	es / No			
☐ Is Matrix listed and correct?	€ / No			
□ Analyses listed we do or client has authorized a subcontract?	Yes / No			
Chain is signed and dated by both client and sample custodian?	res / No			
TAT requested available? Yes No Approved by				
Review Coolers:	0			
□ Were Coolers temperatures measured at ≤6°C? Cooler # Tem	ъ <u>ll·/</u> °с			
•If cooler is outside the ≤6°C; note down below the affected bottles in the				
 Note that ANC does NOT accept evidentiary samples. (We do not loc 	k refrigerators)			
Shipment Received Method Walk IN				
□ Custody Seals: Present: Yes / No If Yes; Unbroken:	Yes / No			
Review of Sample Bottles: If you answer no, explain to the side				
e-Chain matches bottle labels? (res No - Sample bottle intact?	(Yes / No			
ude there enough sample volume in proper bottle for requested analyses	? Yes / No			
Proper Preservatives? Yes / No Check pH on preserved samples				
625, 8270 and VOAs.				
்பூHeadspace-VOAs? Greater than 6mm in diameter Yes / No 人/ A List sample ID and affected container	-			

Job#: C <u>6246</u> Sample Control Rep. Initial: <u>ゴア</u>

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management

C6246: Chain of Custody

Page 2 of 2

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Job Number: C6246

1330-20-7 Xylene (total)

TPH-GRO (C6-C10)

C6246-5

Method Blank Summary

Account: CLOSCAC Closure Solutions, Inc.

Project: T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VM239-MB	M7317.D	1	06/24/09	XB	n/a	n/a	VM239

2.0

50

ug/l

ug/l

0.70

25

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.50	119/1

ND

ND

CAS No. **Surrogate Recoveries** Limits 1868-53-7 Dibromofluoromethane 115% 60-130% 2037-26-5 Toluene-D8 93% 60-130% 4-Bromofluorobenzene 460-00-4 100% 60-130%

Method Blank Summary

Job Number: C6246

Account: CLOSCAC Closure Solutions, Inc.

Project: T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VM240-MB	M7345.D	1	06/25/09	XB	n/a	n/a	VM240

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	60-130%
2037-26-5	Toluene-D8	108%	60-130%
460-00-4	4-Bromofluorobenzene	95%	60-130%

Blank Spike Summary Job Number: C6246

Account: CLOSCAC Closure Solutions, Inc.

Project: T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM239-BS	M7311.D	1	06/24/09	XB	n/a	n/a	VM239

The QC reported here applies to the following samples:

C6246-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	20	21.7	109	60-130
100-41-4	Ethylbenzene	20	18.7	94	60-130
108-88-3	Toluene	20	18.3	92	60-130
1330-20-7	Xylene (total)	60	56.5	94	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	109%	60-130%
2037-26-5	Toluene-D8	91%	60-130%
460-00-4	4-Bromofluorobenzene	105%	60-130%

Blank Spike Summary Job Number: C6246

Account: CLOSCAC Closure Solutions, Inc.

Project: T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample VM239-BS	File ID M7314.D	DF 33.3	Analyzed 06/24/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM239

The QC reported here applies to the following samples:

C6246-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP % Limi	
	TPH-GRO (C6-C10)	4160	4010	96	60-130
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	112% 91% 103%	60-	130% 130%	
400-00-4	4-Bromonuorobenzene	103%	60-	130%	

Blank Spike Summary Job Number: C6246

Account: CLOSCAC Closure Solutions, Inc.

T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA **Project:**

Sample VM240-BS	File ID M7341.D	DF 1	Analyzed 06/25/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM240

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	20	19.2	96	60-130
100-41-4	Ethylbenzene	20	20.0	100	60-130
108-88-3	Toluene	20	18.3	92	60-130
1330-20-7	Xylene (total)	60	59.3	99	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	104%	60-130%
2037-26-5	Toluene-D8	103%	60-130%
460-00-4	4-Bromofluorobenzene	99%	60-130%

Blank Spike Summary Job Number: C6246

Account: CLOSCAC Closure Solutions, Inc.

Project: T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM240-BS	M7344.D	1	06/25/09	XB	n/a	n/a VM240	

The QC reported here applies to the following samples:

CAS No.	AS No. Compound		BSP ug/l	BSP % Limit	
	TPH-GRO (C6-C10)	125	134	107	60-130
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
1868-53-7	Dibromofluoromethane	104%	60	130%	
2037-26-5	Toluene-D8	104%		130%	
460-00-4	4-Bromofluorobenzene	99%		130%	

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C6246

Account: CLOSCAC Closure Solutions, Inc.

Project: T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C6247-1MS	M7361.D	1	06/25/09	XB	n/a	n/a	VM240
C6247-1MSD	M7362.D	1	06/25/09	XB	n/a	n/a	VM240
C6247-1	M7354.D	1	06/25/09	XB	n/a	n/a	VM240

The QC reported here applies to the following samples: Method: EPA 624

CAS No.	Compound	C6247-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	20.0	100	19.4	97	3	60-130/25
100-41-4	Ethylbenzene	ND	20	20.1	101	18.7	94	7	60-130/25
108-88-3	Toluene	ND	20	18.6	93	17.8	89	4	60-130/25
1330-20-7	Xylene (total)	ND	60	58.5	98	54.4	91	7	60-130/25
CAS No.	Surrogate Recoveries	MS	MSD	C62	247-1	Limits			
1868-53-7	Dibromofluoromethane	105%	103%	110	%	60-1309	6		
2037-26-5	Toluene-D8	104%	102%	108	%	60-1309	6		
460-00-4	4-Bromofluorobenzene	103%	99%	97%	ó	60-1309	6		

Page 1 of 1

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C6246

Account: CLOSCAC Closure Solutions, Inc.

Project: T0600101043-Palace Garage, 14336 Washington Ave, San Leandro, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C6264-1MS	M7331.D	1	06/24/09	XB	n/a	n/a	VM239
C6264-1MSD	M7332.D	1	06/24/09	XB	n/a	n/a	VM239
C6264-1	M7323.D	1	06/24/09	XB	n/a	n/a	VM239

The QC reported here applies to the following samples:

C6246-5

CAS No.	Compound	C6264-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	22.9	115	22.2	111	3	60-130/25
100-41-4	Ethylbenzene	ND	20	19.0	95	18.6	93	2	60-130/25
108-88-3	Toluene	ND	20	17.3	87	17.1	86	1	60-130/25
1330-20-7	Xylene (total)	ND	60	56.1	94	54.7	91	3	60-130/25
	•								
CAS No.	Surrogate Recoveries	MS	MSD	C6	264-1	Limits			

CAS No.	Surrogate Recoveries	MS	MSD	C6264-1	Limits
1868-53-7	Dibromofluoromethane	119%	114%	119%	60-130%
2037-26-5	Toluene-D8	88%	89%	93%	60-130%
460-00-4	4-Bromofluorobenzene	109%	104%	102%	60-130%

