* Peport for Adjacent Property * Po-207 Treadwell&Rollo

14 October 2004 Project 1638.07

Mr. William Howard Berkeley Asphalt and Ready Mix Company 699 Virginia Street Berkeley, California 94701

Subject: Limited Environmental Site Characterization

> 7999 Athenour Way Sunol, California

Dear Mr. Howard:

This letter report presents the results of Treadwell & Rollo's limited environmental site characterization performed at the 7999 Athenour Way property in Sunol, California (Figure 1). The site is approximately 6.4 acres and currently operates as a concrete batch plant containing hoppers, conveyors, silos, a maintenance shop, storage areas, vehicle storage, and vehicle cleaning areas.

PREVIOUS ENVIRONMENTAL STUDIES

We have reviewed environmental reports entitled Environmental Baseline Documentation, Mission Valley Ready Mix Company, 7999 Athenour Way, Sunol, California dated 18 August 2004 prepared by The Denali Group of Pleasant Hill, California and parts of Executive Summary, Phase I Environmental Site Assessment, Mission Valley Ready Mix Company - Sunol Plant, 7999 Athenour Way, Sunol, CA dated 23 August 2004 prepared by Resource Management Associates, Inc. (RMA) of Forked River, New Jersey regarding the site history, current site use, and chemical handling.

Reportedly, Mission Valley Concrete has operated the concrete plant since 1990. Prior uses of the site have been part of a larger quarry operation from 1961 until approximately 1990. The site was used for agricultural purposes prior to 1961. The site maintains current environmental documentation for air, water, hazardous materials and management plans required by regulatory agencies.

In both environmental reports reviewed, no recognized environmental concerns were noted nor were additional investigations required but each stated that the area where independent contractor's store equipment should be cleaned up and the collection and disposal of orphaned chemical products and waste containers be performed.

Mr. William Howard Berkeley Asphalt and Ready Mix Company 14 October 2004 Page 2

Also, three former underground storage tanks (UST) (two 10,000-gallon diesel tanks and one 2,000-gallon gasoline tank) were removed from the nearby Mission Valley Rock site quarry site in May and June 1996. Petroleum hydrocarbon contamination has been detected in the groundwater and quarterly groundwater monitoring is on-going. The UST case is open and under the regulatory oversight of Alameda County Health Care Services - Environmental Health Services (ACHCS-EHS). A workplan was submitted to ACHCS-EHS on 19 May 2004 for the installation and sampling of additional groundwater monitoring wells. At this time, no other information was available in regards to the acceptance of the workplan by ACHCS-EHS.

SCOPE AND PURPOSE

Our work included collecting soil and/or groundwater samples from 10 exploratory borings, conducting chemical testing of selected samples, and evaluating the test results. The site is not currently under regulatory agency requirements to conduct soil or groundwater characterization. The purpose of the characterization work was to assess the presence of petroleum hydrocarbons, heavy metals and other potential contaminants in the soil and/or groundwater, if any.

SUBSURFACE INVESTIGATION

On 10 September 2004, ten exploratory borings (TR-1 through TR-10) were advanced to depths ranging from 5-1/2 to 20 feet below the ground surface (bgs) at locations shown on Figure 2. The borings were completed by Gregg Drilling of Martinez, California utilizing a truck mounted rig equipped with six-inch-diameter hollow stem augers. All soil samples were obtained using a California Modified split-barrel sampler with a 2.5-inch-outside diameter, 2.0-inch-inside diameter, lined with three stainless steel tubes.

After the sampler was driven, selected six-inch, stainless-steel lined sample cores were retained for chemical analyses. The sample ends were covered with Teflon®, sealed with plastic end caps, labeled and stored in an ice-cooled chest for delivery to the analytical laboratory. All samples were delivered under chain-of-custody control to McCampbell Laboratory, Inc., a California Department of Health Services certified analytical laboratory in Pacheco, California. Boring logs from this investigation are presented in Appendix A as Figures A-1 through A-10. The material encountered was classified according to the soil classification system described on Figure A-11.

Following the collection of soil samples from borings TR-1 and TR-10, grab groundwater samples were collected. After the soil sampling equipment was removed from the exploratory borings, a temporary well screen was placed into the open boring. Grab groundwater samples were collected using clean new disposable bailers. The groundwater samples were decanted into laboratory-prepared containers. The samples were labeled and placed in an ice-cooled chest for delivery to the analytical laboratory under chain-of-custody procedures.

Mr. William Howard Berkeley Asphalt and Ready Mix Company 14 October 2004 Page 3

SUBSURFACE CONDITIONS

Based on subsurface conditions encountered during this investigation, the site is underlain by sand and clay to the maximum depths explored. Groundwater stabilized in the borings at depths between approximately 13 and 15 feet below the ground surface (bgs).

ANALYTICAL TESTING

A total of thirty soil samples and two groundwater samples were submitted to McCampbell Analytical, Inc. Twenty of the soil samples and the two groundwater samples were analyzed for some or all of the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8021/8015;
- Methyl tert butyl ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 8021/8015;
- TPH as diesel (TPHd) by EPA Method 8015;
- TPH as motor oil (TPHmo) by EPA Method 8015;
- Total recoverable petroleum hydrocarbons (TRPH) by EPA Method 418.1;
- Volatile organic compounds (VOCs) by EPA Method 8260;
- Semi-volatile organic compounds (SVOCs) by EPA Method 8270;
- LUFT 5 metals by EPA Method 7000/6010;
- CAM 17 metals by EPA Method 7000/6010.

ANALYTICAL RESULTS

Soil

The soil analytical results are presented in Tables 1 and 2 and shown on Figures 3 and 4 and the certified laboratory report and chain-of-custody record is presented in Appendix B. No TPHg, MTBE, BTEX, VOCs, or SVOCs were detected at or above the method reporting limits in any of the soil samples analyzed, with the exception of toluene detected in soil sample TR-2-2.5 at a concentration of 12 micrograms per kilograms (μ g/kg). TPHd was detected in 12 of the 20 soil samples analyzed at concentrations ranging from 1.0 milligram per kilograms (μ g/kg) to

Mr. William Howard Berkeley Asphalt and Ready Mix Company 14 October 2004 Page 4

260 mg/kg. TPHmo was detected in 15 of the 20 soil samples analyzed at concentrations ranging from 5.5 mg/kg to 2,000 mg/kg, TRPH was detected in 17 of the 20 soil samples analyzed ranging from 6 mg/kg to 22,000 mg/kg.

Total lead was detected in all 18 samples analyzed at concentrations ranging from 6.7 mg/kg (TR-7 at 3 feet) to 280 mg/kg (TR-5 at 5 feet). The remaining metal concentrations appeared to be within normal¹ background ranges found in the western United States.

Groundwater

The groundwater analytical results are presented in Tables 3 and 4 and the certified laboratory report and chain-of-custody record is presented in Appendix B. No TPHg, MTBE, BTEX, VOCs, or SVOCs were detected at or above the method reporting limits in the groundwater samples analyzed. TPHd, TPHmo, and TRPH were detected in the groundwater sample collected from boring TR-10 only, at concentrations of 160 micrograms per liter (μ g/l), 560 μ g/l, and 6 μ g/l, respectively. The metal concentrations appeared to be within normal background ranges found in the western United States.

DISCUSSION

Currently, the site is occupied by a concrete ready mix plant and supporting structures. Exploratory borings indicate the site is underlain by sand, silts, and clay to maximum explored depth of 20 feet. Groundwater was encountered at depths between approximately 13 and 15 feet bgs.

There is no established State or Federal hazardous waste criteria for TPHd, TPHmo, or TRPH. The State of California Regional Water Quality Control Board (RWQCB) San Francisco Bay Region have established environmental screening levels (ESL) for certain constituents (2003). The RWQCB developed the ESLs to indicate contaminant concentrations below which no mitigative action will generally need to be taken to address risk to public health or the environment, or meet other regulatory standards. The ESLs are considered conservative and under most circumstances, and within limitations, the presence of a chemical in soil, soil gas, or groundwater at concentrations below the corresponding ESL can be assumed to not pose a significant, long-term (chronic) threat to human health and the environment.

For purposes of this report, we have used the values presented in Table B-2, "Shallow Soil Screening Levels (<3m bgs) Commercial/Industrial Land Use, (potentially impacted groundwater is not a current or potential drinking water resource)" for evaluation of soil results.

¹ "U.S.G.S. Professional Paper 1270, Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States," 1984.

Mr. William Howard Berkeley Asphalt and Ready Mix Company 14 October 2004 Page 5

The ESL for TPHd (TPH middle distillates) is 500 mg/kg and for motor oil and TRPH (TPH residual fuels) is 1,000 mg/kg. The TPHd concentrations were below the ESL while TPHmo exceeded the ESL in one soil sample (TR-9-5) at a concentration of 2,000 mg/kg and TRPH exceeded the ESL in eight of the soil samples at concentrations ranging from 1,300 mg/kg (TR-7-5) to 22,000 mg/kg (TR-9-5).

The groundwater analytical results indicate that minor petroleum contamination exists beneath the site. TPHd, TPHmo, and TRPH were detected in the groundwater sample collected from exploratory boring TR-10 at concentrations of 160 μ g/l, 560 μ g/l, and 6 μ g/l, respectively.

It is recommended that if construction is to occur at the site, the chemical concentration information be incorporated into a construction health and safety plan (HSP) so that proper worker health and safety procedures be implemented during future construction due to the levels of petroleum hydrocarbons detected at the site.

We appreciate the opportunity of being of service to you on this project. If you have any questions or require additional information, please call.

Sincerely yours,

TREADWELL & ROLLO, INC.

Peter J. Cusack Senior Scientist

16380702.PJC

Brian K. Moore, PE Senior Engineer

Approximate scale

Approximate location of boring by Treadwell & Rollo, Inc., September 2004

Analytical results are reprted in milligrams per kilograms (mg/kg)

TPHd = Total Petroleum Hydrocardons as Diesel TPHmo = Total Petroleum Hydrocardons as Motor Oil TRPH = Total Recoverable Petroleum Hydrocarbons <1.0 = Analyte was not detected above laboratory reporting limit

SITE PLAN WITH ANALYTICAL RESULTS AT DEPTH OF 2.5 - 3.0 FEET

Date 10/14/04 Project No. 1638.07 Figure 3

Treadwell&Rollo

Table 1 Soil Analytical Results for Petroleum Hydrocarbons Mission Valley Ready Mix Company Sunol, California

Sample ID	Sample Date	Sample Depth	TPHg	TPHd	TPHmo	TRPH	МТВЕ	Benzene	Toluene	Ethlybenzene	Xylenes	VOCs	SVOCs
TR-1-2.5	9/10/2004	2.5	<1.0	4	39	1,400	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-1-5.0	9/10/2004	5.0	<1.0	<1.0	<5.0	<10	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-2-2.5	9/10/2004	2.5	<1.0	<1.0	<5.0	<10	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	ND	ND
TR-2-5.0	9/10/2004	5.0	<1.0	6.5	88	1,400	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-3-2.5	9/10/2004	2.5	<1.0	<1.0	<5.0	16	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005	ND (1)	ND
TR-3-5.0	9/10/2004	5.0	<1.0	12	150	660	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-4-2.5	9/10/2004	2.5	<1.0	14	130	1,600	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	ND	ND
TR-4-5.0	9/10/2004	5.0	<1.0	20	220	3,500	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-5-2.5	9/10/2004	2.5	<1.0	< 1.0	< 5.0	12	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	ND	ND
TR-5-5.0	9/10/2004	5.0	<1.0	16	220	3,600	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-6-2.5	9/10/2004	2.5	<1.0	1.7	16	130	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-6-5.0	9/10/2004	5.0	<1.0	1	8.6	120	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	ND	
TR-7-3.0	9/10/2004	3.0	<1.0	< 1.0	< 5.0	<10	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-7-5.0	3/14/2004	5.0	<1.0	20	140	1,300	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	ND	
TR-8-2.5	9/10/2004	2.5	<1.0	<1.0	5.7	47	<0.05	< 0.005	< 0.005	< 0.005	< 0.005	ND	ND
TR-8-5.0	9/10/2004	5.0	<1.0	150	790	9,200	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-9-2.5	9/10/2004	2.5	<1.0	<1.0	5.5	25	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		ND
TR-9-5.0	9/10/2004	5.0	<1.0	260	2,000	22,000	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-10-2.5	9/10/2004	2.5	<1.0	35	200	40	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		
TR-10-5.0	9/10/2004	5.0	<1.0	<1.0	8	6	<0.05	< 0.005	< 0.005	< 0.005	< 0.005		

Notes:

All results are reported in milligrams per kilogram (mg/kg)

TPHg - Total Petroleum Hydrocarbons as Gasoline (C6-C12), EPA Method 8021/8015M

TPHd - Total Petroleum Hydrocarbons as Diesel (C10-C23), EPA Method 8015M

TPHmo - Total Petroleum Hydrocarbons as Motor Oil (C18+), EPA Method 8015M

TRPH - Total Recoverable Petroleum Hydrocarbons, EPA Method 418.1

MTBE - Methyl Tert Butyl Ether by EPA Method 8021

Benzene Toluene, Ethylbenzene, and Xylene by EPA Method 8021

VOCs - Volatile Organic Compounds, EPA 8260B

SVOCs - Semi Volatile Organic Compounds, EPA Method 8270

< 1.0 - Analyte was not detected above the laboratory reporting limit (1.0 mg/kg)

-- Not analyzed

ND - Not detected at or above the laboratory reporting limit

(1) Toluene was detected at a concentration of 12 micrograms per liter

Table 2 Soil Analytical Results for Total Metals Mission Valley Ready Mix Company Sunol, California

Sample ID	Date Collected	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
יוו	Conected	Беран	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TR-1-2.5	9/10/2004	2.5	-			**	3.7	61			100			56					88
TR-1-5.0	9/10/2004	5.0				**	ND	- 48			9.4			28					49
TR-3-2.5	9/10/2004	2.5					ND	52			9			30					50
TR-3-5.0	9/10/2004	5.0		-+			ND	49			78			49					72
TR-4-2.5	9/10/2004	2.5	ND	6.6	150	ND	ND	120	11	26	9 l	ND	ND	120	ND	ND	ND	47	73
TR-4-5.0	9/10/2004	5.0					ND	55			23			38					58
TR-5-2.5	9/10/2004	2.5			**		ND	43			7.7		1	22	1	*-			43
TR-5-5.0	9/10/2004	5.0					2	47			280	-		32					79
TR-6-2.5	9/10/2004	2.5	ND	ND	130	ND	ND	38	6.4	16	7.7	ND	ND	27	ND	ND	ND	31	38
TR-6-5.0	9/10/2004	5.0					1.6	51			25	1		32					71
TR-7-3.0	9/10/2004	3.0	••				ND	35			6.7			18					30
TR-7-5.0	9/10/2004	5.0	ND	8.6	100	ND	ND	40	5.4	9.9	39	ND	ND	22	ND	ND	ND	34	43
TR-8-2.5	9/10/2004	2.5	ND	ND	220	ND	ND	52	7.9	19	19	ND	ND	31	ND	ND	ND	46	61
TR-8-5.0	9/10/2004	5.0			-		ND	43			7.9			52					41
TR-9-2.5	9/10/2004	2.5	••				ND	34			21			24					66
TR-9-5.0	9/10/2004	5.0					ND	50			7.2			54					46
TR-10-2.5	9/10/2004	2.5	ND	ND	160	ND	ND	41	5.4	13	7.6	ND	ND	24	ND	ND	ND	32	39
TR-10-5.0	9/10/2004	5.0				**	ND	50			8.4			28					48

Notes:

mg/kg - milligrams per kilograms -- Not analyzed

ND - not detected at or above method reporting limit.

Table 3
Groundwater Analytical Results for Petroleum Hydrocarbons
Mission Valley Ready Mix Company
Sunol, California

Sample ID	Sample Date	TPHg	TPHd	TPHmo	TRPH	МТВЕ	Benzene	Toluene	Ethlybenzene	Xylenes	VOCs	SVOCs
TR-1-GW	9/10/2004	< 50	< 50	< 250	< 1.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	ND	
TR-10-GW	9/10/2004	< 50	160	560	6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		ND

Notes:

All results are reported in micrograms per Liter ($\mu g/L$)

TPHg - Total Petroleum Hydrocarbons as Gasoline (C6-C12), EPA Method 8021/8015M

TPHd - Total Petroleum Hydrocarbons as Diesel (C10-C23), EPA Method 8015M

TPHmo - Total Petroleum Hydrocarbons as Motor Oil (C18+), EPA Method 8015M

TRPH - Total Recoverable Petroleum Hydrocarbons, EPA Method 418.1

MTBE - Methyl Tert Butyl Ether by EPA Method 8021

Benzene Toluene, Ethylbenzene, and Xylene by EPA Method 8021

VOCs - Volatile Organic Compounds, EPA 8260B

SVOCs - Semi Volatile Organic Compounds, EPA Method 8270

< 1.0 - Analyte was not detected above the laboratory reporting limit (1.0 mg/kg)

-- Not analyzed

ND - Not detected at or above the laboratory reporting limit

Table 4 Groundwater Analytical Results for Total Metals Mission Valley Ready Mix Company Sunol, California

Sample ID	Date Collected	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
1.0	Conected	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
TR-1-GW	9/10/2004	< 0.005	0.063	4.3	0.0068	0.0093	0.74	0.26	0.39	0.15	0.006	< 0.005	1.1	< 0.005	0.0083	< 0.005	0.5	0.78

Notes:

mg/L - milligrams per Liter

APPENDIX A

Exploratory Boring Logs

Boring location: See Site Plan, Figure Date started: 9/10/04 Date star	PAGE 1 OF	oring TR-1	Log of B	LEY ROCK Ilifornia			MIS				DJECT:	PRC
Driving method: Direct Push Hammer type: Pneumatic		Logged by: M. Gibt			ıre 2	, Figւ	Plan	Site	See	า:	g location	Borin
Hammer type: Pneumatic P				Date finished: 9/10/04				-	/04	9/10	started:	Date
Sampler: Split Spoon SAMPLES Sample Samp							1	Pusl	irect	d: D	ng metho	Drillir
SAMPLES Sample			tic	Hammer type: Pneu				N/A				
MATERIAL DESCRIPTION					ſ							Sam
SANDY CLAY (CL) dark brown/gray with lighter brown mottling, soft, dry, no odor TR-1-2.5 TR-1-5 TR-1-7 TR-		TION	RIAL DESCRI	MA		alogy	(mdd) y	very es)				eet)
1— TR-1-1						Ē	70	Reco (inch	Cor	Sam		
TR-1-2-5 TR-1-5 TR-1		oft, dry, no odor	r brown mottling, s	dark brown/gray with lig					-		TR-1-1	1-
3- 4- 5- TR-1-5						CL			-		TR-1-2.5	2-
TR-1.5 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3-
5— TR-1.5 6— 7— 8— 9— 10— 11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—		•		CLAY (CL)							_	4-
6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-			, no odor	dark blackish gray, stiff,							TR-1-5	
7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-									_			
8— 9— 110— 111— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—												-
9— 10— 11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—												
110— 111— 112— 113— 114— 115— 116— 117— 118— 119— 220— 221— 222— 233— 244— 225— 226— 227— 228—												8-
11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—												9
12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—												10-
12- 13- 14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-		·										11-
14- 15- 16- 17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-						CL						12-
15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—					Δ							13-
16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—												14-
17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-												15-
17- 18- 19- 20- 21- 22- 23- 24- 25- 26- 27- 28-												16-
18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28—												
19— 20— 21— 22— 23— 24— 25— 26— 27— 28—					¥							
20 — 21 — 22 — 23 — 24 — 25 — 26 — 27 — 28 — 28 — 28 — 26 — 27 — 28 — 28					_							- 1
22— 23— 24— 25— 26— 27— 28—	A.,,											j
23— 24— 25— 26— 27— 28—												21-
24— 25— 26— 27— 28—												22-
25— 26— 27— 28—											•	23-
26— 27— 28—												24-
27— 28— 28— 28— 28— 28— 28— 28— 28— 28— 28												25-
28—												26-
								.				27-
29—												28-
												29-
30		·										
Boring terminated at 20 feet below ground surface. Boring backfilled with cement grout. Groundwater encountered at an initial depth of 18 feet	 & Rollo	Treadwe						grout.	ement	with co	g backfilled	Borin Borin

				Sun	ol, California	Log of L	Boring TR-2
Boring loc			Site P	lan, Figu			Logged by: M. Gibbons
Date star					Date finished: 9/10/04		_
Hammer				Hollow	Stem Auger Hammer type: Pne	umatia	
Sampler:			WA		nammer type. File	umanc	
	SAMPL		T	<u>≘</u> } ₅			···· · · · · · · · · · · · · · · · · ·
(feet)	nple Sample	ž į	very les)	OVM (ppm) LITHOLOGY	M	ATERIAL DESCRI	PTION
O Nun	nber Eg	Blow	Recovery (inches)	히			
1- TR.	2-1	-		CL	SANDY CLAY (CL) dark brown, soft, dry, n	o odor	
					CLAY (CL)		
- 1	2-2.5				dark gray/ black with br	own mottling, stiff, dry	y, no odor
3-				CL			
4— 	2-5						
37							
6-							
7-							
8-							
9-							
10-							
11-							
12-							
13-							
14			ļ				
15—							
16—							
17-			İ				
18							
19-							
20-							
21							
22							
23-							
24-							
25—							
26-							
27							
28-							
29-							
Boring tern	ninated at 5. kfilled with c	5 feet b	elow g	round surfa	ce.		Treadwell&
		-ruent f	11 151 17				

PRO	DJECT:				MIS		VALLEY ROCK I, California	Log of	Boring TR-3
Borir	ng locatio	n:	See	Site	Plan	, Figure	2		Logged by: M. Gibbons
Date	started:	9/10	0/04				Date finished: 9/10/04		
Drilli	ng metho	d: D)irect	Pusi	n, Ho	ollow St	tem Auger		
	mer weig			N/A			Hammer type: Pnet	umatic	
Sam	pler: Sp					· · · · · ·			
(feet)	Sample Number	Sample	Blow Count	Recovery (inches)	OVM (ppm)	LITHOLOGY	MA	ATERIAL DESC	RIPTION
	Nomber	Š	- 0	Re Fi	0	=	SAND (SP)		
1_	TR-3-1	in of the					light brown/gray, loose,	dry, no odor	
2	-		T 1			SP			
3-	TR-3-2.5	•					CLAY (CL)		
							dark gray/black, soft, dr	y, no odor	
4-	TR-3-5	£ 73 -				CL			
5-	-		<u> </u>						
6									
7									
8-									
9-									
10-									
11									
12-									
13-									
14—									
15—									
16—									
17-				İ					
18-									
9-				İ					
:0-						-			
1-									
22-									
:3-									
4-									
:5-									
26-									
7-				ļ					
8-				Ì					
ļ									
.9-									
0—↓ Borin	g terminated	lats f	feet h	elow r	iroun.	d surface			
Borin	g backfilled ndwater not	with ce	ement	grout.			•		Treadwell&Rollo

PRC	DJECT:				MIS	Sun	N VALLEY ROCK ol, California	Log of B	oring TR-4	PAGE 1 OF
Borin	ng location	n:	See	Site	Plan	ı, Figu	re 2		Logged by: M. Gib	bons
Date	started:	9/10)/04				Date finished: 9/10/04			
Drillir	ng metho	d: D)irect	Pust	n, Ho	ollow	Stem Auger			
	mer weig						Hammer type: Pneun	natic		
Samp	pler: Sp					,				
프 닭	SA	AMPL		T > -	(mdc	OGY	MA [*]	TERIAL DESCRIF	PTION	
DEPTH (feet)	Sample Number	Sample	Blow	Recovery (inches)	OVM (ppm)	LITHOLOGY				
1-	TR-4-1	•					CLAY (CL) dark gray/black, soft, dry,	, no odor		
2-	TR-4-2.5_		1 1							
3-						CL				
4-			_		İ					
	TR-4-4.5				ĺ					
5-	-		<u> </u>		ĺ	\vdash	<u> </u>			
6-					İ					
7-					l					
8-					l			•		
9-										
10-										
11-					1					
12-					l					
13-					l					
14-	1				l					
15—					l					
16-	İ				l					
17-	İ				l				•	
18-					l					
					l					
19— 20—										
21-										
22-	Í									
23	 				ĺ					
23 24					ĺ					
25—	 				l					
26-	 				l					
27—	l				l					
	l				l					
28	İ				l					
29-					l					
30_1	- tinete	٠-، د					<u> </u>		f	
Borin	ng terminate ng backfilled Indwater not	with co	ement	l grout.			3 8 .		Treadwe	ll&Rollo
بان اف	Howater no.	, el icoo	1111GIGG	1 Ourns	gum	īlių.				Figure:

PRO	OJECT:				MIS	SSION Sund	I VALLEY ROCK ol, California	Log of B	oring TR-5	PAGE 1 OF 1
Borir	ng locatio	n:	See	Site I	Plan	, Figu	re 2		Logged by: M. Gi	bbons
Date	started:	9/10	0/04				Date finished: 9/10/04			
Drilli	ng metho	d: [Direct	Pust	h, Ho	llow S	Stem Auger			
Ham	mer weig	ht/dr	op:	N/A			Hammer type: Pneum	natic		
Sam	pler: Sp				,					
DEPTH (feet)	Sample Number	Sample		Recovery (inches)	OVM (ppm)	LITHOLOGY	MAT	ERIAL DESCRIF	PTION	
1-	-	σ •	Ţ	eS :	0		SAND (SP) light brown/yellow, very lo	ose, dry, no odor		
2	TR-5-2.5					SP	OLAY (OL)			
3- 4-	•		_			CL	CLAY (CL) dark gray/black, soft to m	edium soft, dry, no o	dor	
5-	TR-5-5		-							•
6 7				:						
8- 9-										
10										
11— 12—										
13-										
14— 15—										
16— 17—										
18								•		
19										
21-	 									
22- 23-										
24-										
25-										-
26—										
27—										
28— 29—										
30—	lna te''	<u></u>	<u> </u>			4.6				
Bori	ing terminate ing backfilled undwater no	with a	cement	t grout.			ce.		Treadwo	ell&Rollo
								•	Project No.: 1638.07	Figure: A-5

Boring location	n: See	Site F	Plan, Figur	e 2	PAGE 1 Logged by: M. Gibbons
Date started:			: <u>-</u>	Date finished: 9/10/04	
Drilling metho	d: Direc	t Push	, Hollow S	item Auger	
Hammer weig	ht/drop:	N/A		Hammer type: Pneumatic	
Sampler: Sp	olit Spoon				
Ε ⊕ S.	AMPLES		(md	MATERIAL DESC	PIDTION
DEPTH (feet) Sample Number	Sample Blow Count	Recovery (inches)	OVM (ppm)	WATERIAL DESC	THE TOTAL
-	σ,	28 ≅	0 5	SANDY CLAY (SP)	·
1- TR-6-1	•			light brown with gray, dry, no odor	
2- TR-6-2.5			SP		
3-	<u> </u>				
4—				CLAY (CL) dark gray/black, stiff, dry, no odor	
5- TR-6-5			CL		
6-	 				
7-					
8-					
9-	[
10-					
11					
12-					
13-					**
14—					
15					
16—					
17—					
18—					
19—					
20—					
21-					
22-					
23—					
24—					
25—					
26-					
27—					
28					
29					
Boring terminated Boring backfilled	l at 5.5 feet	below an	ound surface		Treadwell&Roll

Boring location: See Site Plan, Figure 2 Date started: 9/10/04 Date finished: 9/10/04 Da	PRO	DJECT:				MIS		I VALLEY ROCK ol, California	Log of B	oring TR-7	PAGE 1 OF
Drilling method: Direct Push, Hollow Storn Auger Hammer weightfore; NA Hammer type: Pneumatic	Borin	ig location	on:	See	Site	Plan	, Figu	e 2		Logged by: M. Gib	bons
Hammer type: Pneumatic	Date	started:	9/10	0/04				Date finished: 9/10/04			
Sampler: Spill Spoon	Drillir	ng metho	od: [Direct	Pust	h, Ho	ollow S	tem Auger			
SAMPLES Sample S	Hami	mer weig	ght/dr	op:	N/A			Hammer type: Pneum	atic	·	·
MATERIAL DESCRIPTION Fig. 7-1	Sam								· · · · · · · · · · · · · · · · · · ·		
Treadwell Rolk CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mottling, stiff, dry, no order CLAY (CL) dark gray with brown yellow mot	DEPTH (feet)	Sample	1		covery	VM (ppm)	THOLOGY	MAT	ERIAL DESCRIF	TION	
Treadwell&Rolk Treadwell&Rolk Treadwell&Rolk Treadwell&Rolk	1				& C			CLAY (CL) dark gray with brown yello	w mottling, stiff, dry	, no odor	
5 - TR7.5	3-	1R-7-3									
6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 30 - 20 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 21 - 20 - 20	4-	•		┢							
7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	5-	TR-7-5	KKII)								
8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 30 - 20 - 20 - 20 - 20 - 20 - 20	6-	•		T			\Box				
9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	7-								•		
9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 29 - 29 - 29 - 29 - 29 - 29	8-	,									
10— 11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30	_										
11— 12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Froundwater not encountered during drilling.	_										
12— 13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encoundered during drilling. Treadwell&Rolk											
13— 14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30											
14— 15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Borng terminated at 5.5 feet below ground surface. Borng backfilled with cement grout. Groundwater not encountered during drilling.											
15— 16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk											
16— 17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during orilling. Treadwell&Rolk	14-										
17— 18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encoundered during drilling. Treadwell&Rolk Treadwell&Rolk	15-										
18— 19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk Groundwater not encountered during drilling.	16~										
19— 20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwafer not encountered during drilling. Treadwell&Rolk Groundwafer not encountered during drilling.	17-							•			
20— 21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwafer not encountered during drilling. Treadwell&Rolk Groundwafer not encountered during drilling.	18-				,						
21— 22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk Groundwater not encountered during drilling.	19-										
22— 23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk Groundwater not encountered during drilling.	20-										
23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cernent grout. Groundwater not encountered during drilling. Treadwell&Rolk	21-							-			
23— 24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk	22										
24— 25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk	-] :						•	
25— 26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk											
26— 27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk											
27— 28— 29— 30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk					:						
28—29—30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk											
29—30 Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk	27-										
Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk	28-										
Boring terminated at 5.5 feet below ground surface. Boring backfilled with cement grout. Groundwater not encountered during drilling. Treadwell&Rolk	29-										
Boring backfilled with cement grout. Groundwater not encountered during drilling. I readwell Holk			1								
Hilman Ria	Borin	g backfilled	d with c	ement	grout.			e.			

.

PRO	DJECT:				MIS		N VALLEY ROCK ol, California	Log of Be	oring TR-8	PAGE 1 OF
Borir	ng locatio	n:	See	Site	Plan	Figu	re 2		Logged by: M. Gi	bbons
Date	started:	9/10)/04	-			Date finished: 9/10/04			
					1, Ho	llow	Stem Auger			
	mer weig			N/A			Hammer type: Pneum	atic		
Sam	pler: Sp							- · · · · · · · · · · · · · · · · · · ·		
DEPTH (feet)	Sample Number	Sample		Recovery (inches)	OVM (ppm)	гшногосу	MAT	ERIAL DESCRIP	TION	
1-	TR-8-1			α)			SANDY CLAY (CL) light brown with dark brow	n/yellow mottling, so	oft, moist, no odor	
2-	TR-8-2.5		_			CL				
3-		2000000					•			
4	-		-				CLAY (CL)			
5-	TR-8-5		L			CL	dark gray/black, stiff, dry, r	o odor		
6										
7—										
8-										
9—										
10-										
11—										
12-										
13—										
14										
15—										
16—										
17										
18—		}								
19-										
20-										
21-										
22-	1									
23-										
24-										
25-										
26—										
27—										
28—								· ·		
29-							·			
Borii	ng terminate ng backfilled undwater no	l with c	ement	grout.			ce.			ell&Rollo
			•		J - / - /				Project No.: 1638.07	Figure:

Borir	ng locatio	n:	See	Site i	Plan	, Figure	2	Logged by: M. Gibbons
Date	started:	9/10)/04				Date finished: 9/10/04	
					n, Ho	ollow S	em Auger	
	mer weig		_	N/A			Hammer type: Pneumatic	
	pler: Sp	AMPL						
(feet)	Sample Number	Sample	Blow	Recovery (inches)	ОУМ (ррт)	ГШНОГОВУ	MATERIAL DESCR	RIPTION
1-	TR-9-1	•	and the second	_		CL	SANDY CLAY with Asphalt Mix (CL) black with light brown mottling, stiff, dry, no	odor
3-	TR-9-2.5					CL	CLAY with GRAVEL (CL) yellow brown with brown mottling, stiff, dry,	no odor
4-	TR-9-5	. (2)	-			CL	CLAY (CL)	
5-	-	HIATERA I	-				dark gray/black, stiff, dry, no odor	
6-					I			
7-								
8-						•		
9-								
10-								
11-				.				
2-								
13-								
4-				.				
5				.				
7-								
8- 9-								
20—				ĺ				
11-			.					
2								
3-			.			,		
4								
5								
6-								
7								
8-					1			
9								
ٰٰٔل								

	****							California ————————————————————————————————————		oring TR-1	PAGE 1 OF
	g locatio			Site	Plan	, Figu	ıre 2			Logged by: M. Gi	obons
	started:			Dural	<u> </u>			Date finished: 9/10/04		-	
	g metho ner weig				n			Hammer type: Pneum	natic	<u> </u>	
	ler: Sp			INA				Hammer type. Priedi	iauc		
		AMP			Ê	_ չ					
(feet)	Sample	Sample	ow unt	overy hes)	OVM (ppm)	гиногосу		MA	TERIAL DESCRIF	PHON	
<u> </u>	Number	San	± 8	Recovery (inches)	8	5					
1-								CLAY (CL) dark gray/black, stiff to ve	ry stiff, dry, no odor		
ا ۾	TR-10-1		T								
- 1	TR-10-2.5										
3-											
4	TR-10-5	500 9 400									
7			_								
6											
7											
8-											
9-											
10-						CL					
11-											
12											
13-											
14—							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
15							*				
16											
17—							_				
18							Ţ				•
19-											•
20-							<u> </u>				
21-											
22-											
23-											
24-											
25-											
26-						ĺ					
27—						ŀ					
28											
29											
30	tormic-t-	4 ~	0 fact	L		1 0	<u>.</u>				
Boring	g terminate g backfilled idwater end	with o	cement	grout.				eet		Treadwe	ollo R&Ik
and st	tabilized at	14.51	feet du	ring dri	illing.	 .				Project No.: 1638.07	Figure: A-

			UNIFIED SOIL CLASSIFICATION SYSTEM
		Symbols	Typical Names
200	_	GW	Well-graded gravels or gravel-sand mixtures, little or no fines
Soils > no.	Gravels (More than half of	GP	Poorty-graded gravets or gravet-sand mixtures, little or no fines
	coarse fraction >	GM	Silty gravels, gravel-sand-silt mixtures
ained of soi size	no. 4 sieve size)	GC	Clayey gravels, gravel-sand-clay mixtures
Coarse-Grair (more than half of sieve s	Sands	sw	Well-graded sands or gravelly sands, little or no fines
Coarse-Grained e than half of soil sieve size	(More than half of	SP	Poorly-graded sands or gravelly sands, little or no fines
Set	coarse fraction < no. 4 sieve size)	SM	Silty sands, sand-silt mixtures
Ĕ	110. 4 010 00 0120)	sc	Clayey sands, sand-clay mixtures
e) ji je		ML	Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts
Soils of soil s size)	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays
-Grained S than half c 200 sieve		OL	Organic silts and organic silt-clays of low plasticity
Co than		МН	Inorganic silts of high plasticity
Fine (more t	Silts and Clays LL = > 50	СН	Inorganic clays of high plasticity, fat clays
Œ E ⊽		ОН	Organic silts and clays of high plasticity
Highl	Highly Organic Solls		Peat and other highly organic soils

GRAIN SIZE CHART							
	Range of Grain Sizes						
Classification	U.S. Standard Sieve Size	Grain Size in Millimeters					
Boulders	Above 12"	Above 305					
Cobbles	12" to 3"	305 to 76.2					
Gravel coarse fine	3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 76.2 to 19.1 19.1 to 4.76					
Sand coarse medium fine	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.074 4.76 to 2.00 2.00 to 0.420 0.420 to 0.074					
Silt and Clay	Below No. 200	Below 0.074					

✓ Unstabilized groundwater level
 ✓ Stabilized groundwater level

SAMPLE DESIGNATIONS/SYMBOLS

AND THE STATE OF T	a 3.0-inch outside diameter and a 2.43-inch inside diameter. Darkened area indicates soil recovered
	Classification sample taken with Standard Penetration Test sampler
	Undisturbed sample taken with thin-walled tube
X	Disturbed sample
⊜	Sampling attempted with no recovery
	Core sample

Analytical laboratory sample

Sample taken with Direct Push sampler

SAMPLER TYPE

C Core barrel

CA California split-barrel sampler with 2.5-inch outside diameter and a 1.93-inch inside diameter

D&M Dames & Moore piston sampler using 2.5-inch outside diameter, thin-walled tube

 O Sterberg piston sampler using 3.0-inch outside diameter, thin-walled Shelby tube T Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube

S&H Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter

SPT Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and a 1.5-inch inside diameter

ST Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure

MISSION VALLEY ROCK

Sunol, California

CLASSIFICATION CHART

Treadwell&Rollo

Date 09/16/04 Project No. 1638.07

Figure A-11

APPENDIX B

Certified Analytical Reports and Chain-of-Custody Report

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Websile: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Reported: 09/15/04
San Trancisco, CA 54111	Client P.O.:	Date Completed: 09/15/04

WorkOrder: 0409158

September 15, 2004

Dear Peter:

Enclosed are:

- 1). the results of 22 analyzed samples from your #1638.07; Misson Valley Rock project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/14/04
544 Tuliolog, 621 94111	Client P.O.:	Date Analyzed: 09/14/04

Extraction	Gasol method: SW5030B	_	ge (C6-C12)	_	Irocarbons as methods: SW8021		ith BTEX and		Order: 0	3409158
Lab ID	Client ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% S
002A	TR-1-2.5	s	ND	ND	ND	ND	ND	ND	1	89.4
003A	TR-1-5	s	ND	ND	ND	ND	ND	ND	l	92.7
004C	TR-1-6W	w	ND,i	ND	ND	ND	ND	ND	ı	90.3
006A	TR-2-2.5	s	ND	ND	ND	ND	ND	ND	1	86.6
007A	TR-2-5	s	ND	ND	ND	ND	ND	ND	ı	88.7
009A	TR-3-2.5	s	ND	ND	ND	0.020	ND	ND	1	102
010A	TR-3-5	s	ND	ND	ND	ND	ND	ND	ı	94.5
012A	TR-4-2.5	s	ND	ND	ND	ND	ND	ND	1	96.2
013A	TR-4-5	s	ND	ND	ND	ND	ND	ND	1	90.2
015A	TR-5-2.5	s	ND	ND	ND	ND	ND	ND	1	97.8
016A	TR-5-5	s	ND	ND	ND	ND	ND	ND	1	104
018A	TR-6-2.5	S	ND	ND	ND	ND	ND	ND	1	94.2
019A	TR-6-5	s	ND	ND	ND	ND	ND	ND	1	86.3
021A	TR-7-3	s	ND	ND	ND	ND	ND	ND	1	104
022A	TR-7-5	S	NĐ	ND	ND	ND	ND	ND	1	97.4
024A	TR-8-2.5	s	ND	ND	ND	ND	ND	ND	1	94.6
	Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit		S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/K

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) results are reported by dry weight.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/14/04
Sair Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	method: SW5030B			Analytical	methods: SW8021	B/8015Cm		Work (Order: 0	409158
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% S
025A	TR-8-5	s	ND	ND	ND	ND	ND	ND	1	85.4
027A	TR-9-2.5	s	ND	ND	ND	ND	ND	ND	1	89.0
028A	TR-9-5	s	ND	ND	ND	ND	ND	ND	1	98.0
030A	TR-10-2.5	s	ND	ND	ND	ND	ND	ND	1	92.0
031A	TR-10-5	S	ND	ND	ND	מא	ND	ND	ı	94.0
032C	TR-10-6W	w	ND,i	ND	ND	ND	ND	ND	ı	90.8
										-
				,					-	
			<u></u>						 	
	Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5	1	μg/l
	ND means not detected at or above the reporting limit		1.0	0.05	0.005	0.005	0.005	0.005	1	mg/K

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) results are reported by dry weight.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04			
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04			
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04			
our Hundree, CH 94111	Client P.O.:	Date Analyzed: 09/13/04-09/15/04			

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW	3550C		Analytical methods: SW8015C		Work O	rder: 0409158
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0409158-002A	TR-1-2.5	s	4.4,g	39	2	101
0409158-003A	TR-1-5	s	ND	ND	1	106
0409158-004B	TR-1-6W	w	ND,i	ND	1	104
0409158-006A	TR-2-2.5	S	ND	ND	1	109
0409158-007A	TR-2-5	S	6.5,g	88	5	103
0409158-009A	TR-3-2.5	S	ND	ND	1	110
0409158-010A	TR-3-5	S	12,g,b	150	10	93.0
0409158-012A	TR-4-2.5	S	14,g,b	130	10	113
0409158-013A	TR-4-5	S	20,g	220	10	91.6
0409158-015A	TR-5-2.5	S	ND	ND	1	109
0409158-016A	TR-5-5	s	16,g	220	5	104
0409158-018A	TR-6-2.5	S	1.7,g	16	1	111
0409158-019A	TR-6-5	S	1.0,g	8.6	I.	105
0409158-021A	TR-7-3	S	ND	ND	1	104
0409158-022A	TR-7-5	S	20,g	140	10	89.0
0409158-024A	TR-8-2.5	S	ND,g	5.7	1	108
	mit for DF =1;	W	50	250	μ	g/L
	porting limit	S	1.0	5.0	mg	/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in cocluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Contact: Peter Cusack	Date Sampled: 09/10/04
55 Montgomery St., Suite 1300	Date Received: 09/13/04	
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04
	Client P.O.:	Date Analyzed: 09/13/04-09/15/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Samuel Control		3) and Oil (C18+	, -	ocarbons as Diesel and Moto		
xtraction method: SW			Analytical methods: SW8015C	I	Work Or	der: 040915
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0409158-025A	TR-8-5	S	150,g,b	790	50	87
0409158-027A	TR-9-2.5	S	ND,g	5.5	1	108
0409158-028A	TR-9-5	S	260,g,b	2000	200	117
0409158-030A	TR-10-2.5	S	35,g,b	200	10	89.5
0409158-031A	TR-10-5	s	ND,g	8.0	1	110
0409158-032B	TR-10-6W	w	160,b,g,i	560	1	114
						
	mit for DF =1;	W	50	250	μį	ı/L
	t detected at or eporting limit	S	1.0	5.0	mg	/Kg

ł	* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L,
I	and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04
	Client P.O.:	Date Analyzed: 09/13/04-09/14/04

Total Recoverable Hydrocarbons without Silica Gel Clean-Up by IR Spectrometry*

Analytical methods: E418.1 Work Order: , 0409158 Lab ID Client ID TRH Matrix DF % SS 0409158-002A TR-1-2.5 S 1400 10 115 0409158-003A TR-1-5 S ND ł 111 0409158-004A TR-1-6W W ND,i ł 109 0409158-006A TR-2-2.5 S ND 1 112 0409158-007A TR-2-5 S 1400 10 111 0409158-009A TR-3-2.5 S 16 1 112 0409158-010A TR-3-5 S 660 2 108 0409158-012A TR-4-2.5 S 1600 10 112 0409158-013A TR-4-5 3500 10 108 0409158-015A TR-5-2.5 S 12 j 109 0409158-016A TR-5-5 S 3600 10 96.0 0409158-018A TR-6-2.5 S 130 1 109 0409158-019A TR-6-5 S 120 1 109 0409158-021A TR-7-3 S ND 1 108 0409158-022A TR-7-5 S 1300 10 106 0409158-024A TR-8-2.5 S 47 1 109

Reporting Limit for DF =1; ND means not detected at or	W	1.0	mg/L
above the reporting limit	S	10	mg/Kg
		····	

^{*} water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor.

= surrogate diluted out of range.

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560

	Witcompoen Analytical, Inc.			Website: www.mccampbell.com E-mail: main@mccampbell.com					
Treadwell & Rollo 555 Montgomery St., Suite 1300			Client Project ID: #1638.07; N		Date Sampled:	umpled: 09/10/04			
555 Montgome	ry St., Suite 1300	Valley Rock		Date Received: 09/13/04					
San Francisco,	CA 94111	Client Con	ntact: Peter Cusa	ıck	Date Extracted:	09/13/04			
Sull Transisco,	CA 94111	Client P.C).:		Date Analyzed:	09/13/04-	09/14/	04	
Analytical methods:		ole Hydroca	arbons without	Silica Gel Clean-U	p by IR Spectro		rk Order:	040915	
Lab ID	Client ID	Matrix		TRH			DF	% SS	
0409158-025A	TR-8-5	S		9200			100	#	
0409158-027A	TR-9-2.5	S		25			1	108	
0409158-028A	TR-9-5	S		22,000			100	#	
0409158-030A	TR-10-2.5	S		4000			100	91.1	
0409158-031A	TR-10-5	S		40			l	108	
0409158-032A	TR-10-6W	w		6.0,i			1	110	
			-,	- AA					
					· • ·		V-V		
			~·						
							<u> </u>		
			3,14				_		
								<u></u>	
i		1				1			

ND means not detected at or S 10 mg/Kg above the reporting limit

W

* water samples are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in mg/wipe, product/oil/non-aqueous liquid samples in mg/L.

DF = dilution factor.

= surrogate diluted out of range.

Reporting Limit for DF =1;

g) sample extract repeatedly cleaned up with silica gel until constant IR result achieved; h) a lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment.

1.0

mg/L

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
55 Montgomery St., Suite 1300	Client Contact: Peter Cusack	Date Extracted: 09/13/04
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0409158

Extraction Method: SW3030B		Ana	ityticai Me	thod: SW8260B	Work	Order: 0	409158
Lab ID				0409158-006A			
Client ID				TR-2-2.5			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	50	Acrolein (Propenal)	ND	1.0	50
Acrylonitrile	ND	0.1	20	tert-Amyl methyl ether (TAME)	ND	1.0	5.0
Benzene	ND	1.0	5.0	Bromobenzene	ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0
Bromoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	20	t-Butyl alcohol (TBA)	ND	1.0	25
n-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	10
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0
2-Chlorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0	5.0
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0
Freon 113	ND	1.0	100	Hexachlorobutadiene	ND	1.0	5.0
Hexachloroethane	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0
Isopropylbenzene	ND	1.0	5.0	4-Isopropyl toluene	ND	1.0	5.0
Methanol	ND	1.0	2500	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND	1.0	5.0
Naphthalene	ND	1.0	5.0	Nitrobenzene	ND	1.0	100
n-Propyl benzene	ND	1.0	5.0	Styrene	ND	1.0	5.0
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	1,1,2,2-Tetrachloroethane	ND	1:0	5.0
Tetrachloroethene	ND	1.0	5.0	Toluene	ND	1.0	5.0
1,2,3-Trichlorobenzene	ND	0.1	5.0	1,2,4-Trichlorobenzene	ND	1.0	5.0
1,1,1-Trichloroethane	ND	1.0	5.0	1,1,2-Trichloroethane	ND	1.0	5.0
Trichloroethene	ND	1.0	5.0	Trichlorofluoromethane	ND	1.0	5.0
1,2,3-Trichloropropane	ND	1.0	5.0	1,2,4-Trimethylbenzene	ND	1.0	5.0
1,3,5-Trimethylbenzene	ND	1.0	5.0	Vinyl Chloride	ND	1.0	5.0
Xylenes	ND	1.0	5.0				<u> </u>
		Surr	ogate Re	coveries (%)		,,,	
%SS1:	110			%SS2:	99.9		
%SS3:	102	!			77.7		

%SS3:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com B-mail: main@mccampbell.com

Treadwell & Rollo	1 '	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
555 Montgomery St., Suite 1300	Client Contact: Peter Cusack	Date Extracted: 09/13/04
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0409158 Lab ID 0409158-009A Client ID TR-3-2.5 Matrix Soil Reporting teporting Compound Concentration * DF DF Compound Concentration * Acetone ND ND 1.0 50 Acrolein (Propenal) 1.0 50 Acrylonitrile 1.0 ND tert-Amyl methyl ether (TAME) 20 ND 1.0 5.0 Benzene ND 1.0 5.0 ND Bromobenzene 1.0 5.0 Bromochloromethane ND 1.0 5.0 Bromodichloromethane ND 1.0 5.0 Bromoform ND 1.0 5.0 Bromomethane ND 1.0 5.0 2-Butanone (MEK) ND 1.0 20 1.0 t-Butyl alcohol (TBA) ND 25 n-Butyl benzene ND 1.0 5.0 sec-Butyl benzene ND 1.0 5.0 tert-Butyl benzene ND 1.0 5.0 1.0 Carbon Disulfide ND 5.0 Carbon Tetrachloride ND 1.0 5.0 Chlorobenzene ND 1.0 5.0 Chloroethane ND 1.0 5.0 2-Chloroethyl Vinyl Ether ND 1.0 10 Chloroform ND 1.0 5.0 Chloromethane ND 1.0 5.0 2-Chlorotoluene ND 1.0 5.0 4-Chlorotoluene ND 1.0 5.0 Dibromochloromethane ND 1.0 5.0 1,2-Dibromo-3-chloropropane 5.0 ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 5.0 Dibromomethane ND 1.0 5.0 1,2-Dichlorobenzene ND 1.0 5.0 1,3-Dichlorobenzene 1.0 5.0 ND

1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0
Freon 113	ND	1.0	100	Hexachlorobutadiene	ND	1.0	5.0
Hexachloroethane	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0
Isopropylbenzene	ND	1.0	5.0	4-Isopropyl toluene	ND	1.0	5.0
Methanol	ND	1.0	2500	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

Dichlorodifluoromethane

1,2-Dichloroethane (1,2-DCA)

4-Methyl-2-pentanone (MIBK)

1,1,2,2-Tetrachloroethane

Nitrobenzene

Styrene

Toluene

%SS2:

1,2,3-Trichlorobenzene ND 1.0 5.0 1,2,4-Trichlorobenzene ND 1.0 5.0 1,1,1-Trichloroethane ND 1.0 5.0 1,1,2-Trichloroethane ND 1.0 5.0 Trichloroethene ND 1.0 5.0 Trichlorofluoromethane ND 1.0 5.0 1,2,3-Trichloropropane ND 1.0 5.0 1,2,4-Trimethylbenzene ND 1.0 5.0 1,3,5-Trimethylbenzene ND 1.0 5.0 ND Vinyl Chloride 1.0 5.0 Xylenes ND 1.0 5.0 Surrogate Recoveries (%)

%SS3: Comments

%SS1:

1,4-Dichlorobenzene

1,1-Dichloroethane

Methylene chloride

n-Propyl benzene

Tetrachloroethene

1,1,1,2-Tetrachloroethane

Naphthalene

ND

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

1.0

1.0

109

101

Angela Rydelius, Lab Manager

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

1.0

1.0

99.5

5.0

5.0

5.0

100

5.0

5.0

5.0

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
	Client Contact: Peter Cusack	Date Extracted: 09/13/04
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04

Can Trancisco, CA 94111	Client P.O.	<u>:</u>		Date A	nalyzed: 09/14/04		
Extraction Method: SW5030B	Volatile Organi			d GC/MS (Basic Target Li	st)*		
	1	An	alytical Me	thod: SW8260]3	Work	Order: 0	409158
Lab ID				0409158-012A			-
Client ID				TR-4-2.5			
Matrix			· · · · · · · · · · · · · · · · · · ·	Soil			
Compound	Concentration *	DF	Reporting	Compound	Concentration *	DF	Reporting
Acetone	ND	1.0	50	Acrolein (Propenal)	ND ND		Limit
Acrylonitrile	ND	1.0	20	tert-Amyl methyl ether (TAME)	ND	1.0	50
Benzene	ND	1.0	5.0	Bromobenzene	ND ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND ND	1.0	5.0
Bromoform	ND	$\frac{1.0}{1.0}$	5.0	Bromomethane	ND ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	20	t-Butyl alcohol (TBA)	ND ND	1.0	5.0
п-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene		1.0	25
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND ND	1.0	5.0
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	5.0
Chloroform	ND -	1.0	5.0	Chloromethane	ND	1.0	10
2-Chlorotoluene	ND	1.0			ND -	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	4-Chlorotoluene	ND ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	Dibromomethane	ND_	1.0	5.0
I,4-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0
I,1-Dichloroethane	ND		5.0	Dichlorodifluoromethane	ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
1,3-Dichloropropane	ND ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
trans-1,3-Dichloropropene	ND ND		5.0	cis-1,3-Dichloropropene	ND ND	1.0	5.0
Ethylbenzene	ND ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Freon 113	· — · — · — · — · — · — · — · — · — · —	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0
Hexachloroethane	ND	1.0	100	Hexachlorobutadiene	ND ND	1.0	5.0
Isopropylbenzene	ND	1.0	5.0	2-Hexanone	ND ND	1.0	5.0
Methanol	ND ND	1.0	5.0	4-Isopropyl toluene	ND	1.0	5.0
Methylene chloride	ND ND	1.0	2500	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0
Naphthalene	ND ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND ND	1.0	5.0
	ND ND	1.0	5.0	Nitrobenzene	ND ND	1.0	100
n-Propyl benzene	ND ND	1.0	5.0	Styrene	ND ND	1.0	5.0
1,1,1,2-Tetrachloroethane	ND ND	1.0	5.0	1,1,2,2-Tetrachloroethane	ND	1.0	5.0
Tetrachloroethene 1,2,3-Trichlorobenzene	ND	1.0	5.0	Toluene	ND	1.0	5.0
	ND ND	1.0	5.0	1,2,4-Trichlorobenzene	ND	1.0	5.0
1,1,1-Trichloroethane	ND ND	1.0	5.0	1,1,2-Trichloroethane	ND	1.0	5.0
Trichloroethene	ND ND	1.0	5.0	Trichlorofluoromethane	ND	1.0	5.0
1,2,3-Trichloropropane	ND	1.0	5.0	1,2,4-Trimethylbenzene	ND	1.0	5.0
1,3,5-Trimethylbenzene	ND ND	1.0	5.0	Vinyl Chloride	ND	1.0	5.0
Xylenes	ND	1.0	5.0				
		Surr	ogate Re	coveries (%)			
%SSI:	112			%SS2:	101		
0/001							

%SS3: Comments:

100

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04		
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04		
	Client Contact: Peter Cusack	Date Extracted: 09/13/04		
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04		

	Chent 1.0.	<u> </u>		Date Ana	ilyzed: 09/14/04			
Extraction Model J. CHICO20D	Volatile Organi			d GC/MS (Basic Target List)	*			
Extraction Method: SW5030B	т	Analytical Method: SW8260B Work Order: 0409158						
Lab ID				0409158-015A	· · · · · · · · · · · · · · · · · · ·			
Client ID				TR-5-2.5				
Matrix				Soil				
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acetone	ND	1.0	50	Acrolein (Propenal)	ND	1.0	50	
Acrylonitrile	ND	1.0	20	tert-Amyl methyl ether (TAME)	ND	1.0	5.0	
Benzene	ND	1.0	5.0	Bromobenzene	ND	1.0	5.0	
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0	
Bromoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0	
2-Butanone (MEK)	, ND	1.0	20	t-Butyl alcohol (TBA)	ND	1.0	25	
n-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0	
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0	
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0	
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	10	
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0	
2-Chlorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0	
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0	
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0	
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0	
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0	5.0	
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0	
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0	
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0	
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0	
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0	
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0	
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0	
Freon 113	ND	1.0	100	Hexachlorobutadiene	ND	1.0	5.0	
Hexachloroethane	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0	
Isopropylbenzene	ND	1.0	5.0	4-Isopropyl toluene	ND	1.0	5.0	
Methanol	ND	1.0	2500	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0	
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND ND	1.0	5.0	
Naphthalene	ND	1.0	5.0	Nitrobenzene	ND	1.0	100	
n-Propyl benzene	ND	1.0	5.0	Styrene	ND ND	1.0	5.0	
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	1,1,2,2-Tetrachloroethane	ND ND	1.0	5.0	
Tetrachloroethene	ND	1.0	5.0	Toluene	ND	1.0	5.0	
1,2,3-Trichlorobenzene	ND	1.0	5.0	1,2,4-Trichlorobenzene	ND	1.0	5.0	
1,1,1-Trichloroethane	ND	1.0	5.0	1,1,2-Trichloroethane	ND	1.0	5.0	
Trichloroethene	ND	1.0	5.0	Trichlorofluoromethane	ND	1.0	5.0	
1,2,3-Trichloropropane	ND	1.0	5.0	1,2,4-Trimethylbenzene	ND ND	1.0	5.0	
1,3,5-Trimethylbenzene	ND	1.0	5.0	Vinyl Chloride	ND	1.0	5.0	
Xylenes	ND	1.0	5.0	y	. 142	1.0	٠,٠٠	
				coveries (%)				
The Wallet			-9					

 Surrogate Recoveries (%)

 %SS1:
 113
 %SS2:
 99.1

 %SS3:
 101
 99.1

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04		
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04		
	Client Contact: Peter Cusack	Date Extracted: 09/13/04		
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04		

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B		_		thod: SW8260B		Order: 0	409158
Lab ID			All	0409158-019A			
Client ID				TR-6-5		· · · · ·	•
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	50	Acrolein (Propenal)	ND	1.0	50
Acrylonitrile	ND	1.0	20	tert-Amyl methyl ether (TAME)	ND	1.0	5.0
Benzene	ND	1.0	5.0	Bromobenzene	ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0
Bromoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	20	t-Butyl alcohol (TBA)	ND	1.0	25
n-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	10
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0
2-Chlorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND ND	1.0	5.0
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND ND	1.0	5.0
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND ND	1.0	_
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND		5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND ND	1.0	5.0
Ethylbenzene	ND ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)		1.0	5.0
Freon 113	ND	1.0	100	Hexachlorobutadiene	ND	1.0	5.0
Hexachloroethane	ND	1.0	5.0	2-Hexanone	ND ND	1.0	5.0
Isopropylbenzene	ND	1.0	5.0	4-Isopropyl toluene	ND	1.0	5.0
Methanol	ND	1.0	2500	Methyl-t-butyl ether (MTBE)		1.0	5.0
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND ND	1.0	5.0
Naphthalene	ND	1.0	5.0	Nitrobenzene	+	1.0	5.0
n-Propyl benzene	ND	1.0	5.0	Styrene	ND ND	1.0	100
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	f		1.0	5.0
Tetrachloroethene	ND ND	1.0	5.0	1,1,2,2-Tetrachloroethane Toluene	ND ND	1.0	5.0
1,2,3-Trichlorobenzene	ND ND	1.0	5.0		ND	1.0	5.0
1,1,1-Trichloroethane	ND ND	1.0	5.0	1,2,4-Trichlorobenzene	ND	1.0	5.0
Trichloroethene	ND ND	1.0		1,1,2-Trichloroethane	ND	1.0	5.0
1,2,3-Trichloropropane	ND ND		5.0	Trichlorofluoromethane	ND	1.0	5.0
1,3,5-Trimethylbenzene	ND ND	1.0	5.0	1,2,4-Trimethylbenzene	ND	1.0	5.0
Xylenes	ND ND		5.0	Vinyl Chloride	ND	1.0	5.0
28,103,03	ND	1.0	5.0	coveries (%)			
%SS1:	112	Suff	ogate Re	%SS2:			
%SS3:				70002.	97.8		
Comments:	101						

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04		
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04		
5 5 1 1 1 1 1 1 1 1 1 1	Client Contact: Peter Cusack	Date Extracted: 09/13/04		
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04		

	Cheft P.O.	i .		Date Ana	alyzed: 09/14/04		
Extraction Method: SW5030B	Volatile Organi			nd GC/MS (Basic Target List)			
		All	aiyiicai Mi	ethod: SW8260B	Work	Order: 04	109158
Lab ID		0409158-024A					
Client ID				TR-8-2.5	· ·		
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Сотроила	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	50	Acrolein (Propenal)	ND	1.0	50
Acrylonitrile	ND	1.0	20	tert-Amyl methyl ether (TAME)	ND	1.0	5.0
Benzene	ND ND	1.0	5.0	Bromobenzene	ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0
Bremoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	20	t-Butyl alcohol (TBA)	ND	1.0	25
n-Butyl bénzene	ND ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0
tert-Butyl benzene	ND ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0
Carbon Tetrachloride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	10
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0
2-Chlorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND	1.0	5.0	Dibromomethane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0	5.0
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0
Freon 113	ND	1.0	100	Hexachlorobutadiene	ND ND	1.0	5.0
Hexachloroethane	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0
Isopropylbenzene	ND	1.0	5.0	4-Isopropyl toluene	ND ND	1.0	5.0
Methanol	ND	1.0	2500	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND	1.0	5.0
Naphthalene	ND	1.0	5.0	Nitrobenzene	ND	1.0	100
n-Propyl benzene	ND	1.0	5.0	Styrene	ND ND	1.0	5.0
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	1,1,2,2-Tetrachloroethane	ND ND	1.0	5.0
Tetrachloroethene	ND	1.0	5.0	Toluene	ND	1.0	5.0
1,2,3-Trichlorobenzene	ND	1.0	5.0	1,2,4-Trichlorobenzene	ND ND	1.0	5.0
1,1,1-Trichloroethane	ND	1.0	5.0	1,1,2-Trichloroethane	ND	1.0	5.0
Trichloroethene	ND	1.0	5.0	Trichlorofluoromethane	ND ND		~ _
1,2,3-Trichloropropane	ND	1.0	5.0	1,2,4-Trimethylbenzene	ND ND	1.0	5.0
1,3,5-Trimethylbenzene	ND	1.0	5.0	Vinyl Chloride	ND		5.0
Xylenes	ND	1.0	5.0		1 ND	1.0	5.0
<u> </u>				coveries (%)			
%SS1:	113		-6	%SS2:	1.00		
%SS3:	101			70002.	100		
Comments:	101			<u></u>			

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
	Client Contact: Peter Cusack	Date Extracted: 09/13/04
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0409158

ļ	Estatotion Producti Bri 3030B		nuai	-	10d. 5W 8200B	WOI	A Older.	0409136
	Lab ID				0409158-025A			
	Client ID				TR-8-5			***
	Matrix				Soil			-
	Compound	Concentration *		Reporting	Compound	Concentration #	DE	Reporting

Matrix Soil							
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	50	Acrolein (Propenal)	ND	1.0	50
Acrylonitrile	NĐ	1.0	20	tert-Amyl methyl ether (TAME)	ND	1.0	5.0
Benzene	ND	1.0	5.0	Bromobenzene	ND	1.0	5.0
Bromochloromethane	ND	1.0	5.0	Bromodichloromethane	ND	1.0	5.0
Bromoform	ND	1.0	5.0	Bromomethane	ND	1.0	5.0
2-Butanone (MEK)	ND	1.0	20	t-Butyl alcohol (TBA)	ND	1.0	25
n-Butyl benzene	ND	1.0	5.0	sec-Butyl benzene	ND	1.0	5.0
tert-Butyl benzene	ND	1.0	5.0	Carbon Disulfide	ND	1.0	5.0
Carbon Tetrachtoride	ND	1.0	5.0	Chlorobenzene	ND	1.0	5.0
Chloroethane	ND	1.0	5.0	2-Chloroethyl Vinyl Ether	ND	1.0	10
Chloroform	ND	1.0	5.0	Chloromethane	ND	1.0	5.0
2-Chlorotoluene	ND	1.0	5.0	4-Chlorotoluene	ND	1.0	5.0
Dibromochloromethane	ND	1.0	5.0	1,2-Dibromo-3-chloropropane	ND	1.0	5.0
1,2-Dibromoethane (EDB)	ND .	1.0	5.0	Dibromomethane	ND	1.0	5.0
1,2-Dichlorobenzene	ND	1.0	5.0	1,3-Dichlorobenzene	ND	1.0	5.0
1,4-Dichlorobenzene	ND	1.0	5.0	Dichlorodifluoromethane	ND	1.0	5.0
1,1-Dichloroethane	ND	1.0	5.0	1,2-Dichloroethane (1,2-DCA)	ND	1.0	5.0
1,1-Dichloroethene	ND	1.0	5.0	cis-1,2-Dichloroethene	ND	1.0	5.0
trans-1,2-Dichloroethene	ND	1.0	5.0	1,2-Dichloropropane	ND	1.0	5.0
1,3-Dichloropropane	ND	1.0	5.0	2,2-Dichloropropane	ND	1.0	5.0
1,1-Dichloropropene	ND	1.0	5.0	cis-1,3-Dichloropropene	ND	1.0	5.0
trans-1,3-Dichloropropene	ND	1.0	5.0	Diisopropyl ether (DIPE)	ND	1.0	5.0
Ethylbenzene	ND	1.0	5.0	Ethyl tert-butyl ether (ETBE)	ND	1.0	5.0
Freon 113	ND	1.0	100	Hexachlorobutadiene	ND	1.0	5.0
Hexachloroethane	ND	1.0	5.0	2-Hexanone	ND	1.0	5.0
Isopropylbenzene	ND	1.0	5.0	4-Isopropyl toluene	ND	1.0	5.0
Methanol	ND	1.0	2500	Methyl-t-butyl ether (MTBE)	ND	1.0	5.0
Methylene chloride	ND	1.0	5.0	4-Methyl-2-pentanone (MIBK)	ND	1.0	5.0
Naphthalene	ND	1.0	5.0	Nitrobenzene	ND	1.0	100
n-Propyl benzene	ND	1.0	5.0	Styrene	ND	1.0	5.0
1,1,1,2-Tetrachloroethane	ND	1.0	5.0	1,1,2,2-Tetrachloroethane	ND	1.0	5.0
Tetrachloroethene	ND	1.0	5.0	Toluene	ND	1.0	5.0
1,2,3-Trichlorobenzene	ND	1.0	5.0	1,2,4-Trichlorobenzene	ND	1.0	5.0
1,1,1-Trichloroethane	ND	1.0	5.0	1,1,2-Trichloroethane	ND	1.0	5.0
Trichloroethene	ND	1.0	5.0	Trichlorofluoromethane	ND	1.0	5.0
1,2,3-Trichloropropane	ND	1.0	5.0	1,2,4-Trimethylbenzene	ND	1.0	5.0
1,3,5-Trimethylbenzene	ND	1.0	5.0	Vinyl Chloride	ND	1.0	5.0
Xylenes	ND	1.0	5.0	*			1
		Suri	•	coveries (%)	<u>.</u>	* 7. 7. 4. 4.	
4/001							

Comments:

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04		
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04		
	Client Contact: Peter Cusack	Date Extracted: 09/14/04		
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04		

San Francisco, CA 94111	Client P.O.: Da			Date Analyzed: 09/14/04			
Extraction Method: SW5030B	Volatile Organi	-		d GC/MS (Basic Target	,	Order: 04	409158
Lab ID				0409158-004D			
Client ID				TR-1-6W			
		—.·					
Matrix			Describes	Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAMI	E) ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND	1.0	0.5
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND	1.0	0.5
Ethylbenzene	ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5
Freon 113	ND	1.0	10	Hexachlorobutadiene	ND	1.0	0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone	ND	1.0	0.5
Isopropylbenzene	ND	1.0	0.5	4-lsopropyl toluene	ND	1.0	0.5
Methyl-t-butyl ether (MTBE)	ND	1.0	0.5	Methylene chloride	ND ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Naphthalene	ND	1.0	0.5
Nitrobenzene	ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane Toluene	ND	1.0	0.5	Tetrachloroethene	ND ND	1.0	0.5
	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,2,4-Trichlorobenzene 1,1,2-Trichloroethane	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
	ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
Trichlorofluoromethane 1,2,4-Trimethylbenzene	ND	1.0	0.5	1,2,3-Trichloropropane	ND	1.0	0.5
Vinyl Chloride	ND ND	1.0	0.5	1,3,5-Trimethylbenzene	ND ND	1.0	0.5
v myr Cmorace	ND ND	1.0	0.5	Xylenes	ND	0.1	0.5
0.701			ogate Re	coveries (%)			
%SS1:	113			%SS2:	96.3		

Surrogate Recoveries (%)									
%SS1:	113	%SS2:	96.3						
%SS3:	105								

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil / sludge / solid samples in µg/kg, wipe samples in µg/wipe, product / oil / non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
gy, c	Client Contact: Peter Cusack	Date Extracted: 09/14/04
San Francisco, CA 94111	Client P.O.:	Date Analyzed: 09/14/04

Extraction Method: SW5030B	Volatile Organic			d GC/MS (Basic Target List) thod: SW8260B		Order: 0	409158
Lab ID				0409158-032D	···	Officer. 0	407150
Client ID		TR-10-6W					
Matrix							
Matrix	1	-	16	Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	7.2	1.0	5.0	Acrolein (Propenal)	ND	1.0	5.0
Acrylonitrile	ND	1.0	2.0	tert-Amyl methyl ether (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene	ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethane	ND	1.0	0.5
Втотоform	ND	1.0	0.5	Bromomethane	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	5.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide	ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5
Chloroethane	ND	1.0	0.5	2-Chloroethyl Vinyl Ether	ND	1.0	1.0
Chloroform	ND	1.0	0.5	Chloromethane	ND	1.0	0.5
2-Chlorotoluene	ND	1.0	0.5	4-Chlorotoluene	ND	1.0	0.5
Dibromochloromethane	ND	1.0	0.5	1,2-Dibromo-3-chloropropane	ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND	1.0	0.5	Dibromomethane	ND	1.0	0.5
1,2-Dichlorobenzene	ND	1.0	0.5	1,3-Dichlorobenzene	ND ND	1.0	0.5
1,4-Dichlorobenzene	ND	1.0	0.5	Dichlorodifluoromethane	ND	1.0	0.5
1,1-Dichloroethane	ND	1.0	0.5	1,2-Dichloroethane (1,2-DCA)	ND ND	1.0	0.5
1,1-Dichloroethene	ND	1.0	0.5	cis-1,2-Dichloroethene	ND ND	1.0	0.5
trans-1,2-Dichloroethene	ND	1.0	0.5	1,2-Dichloropropane	ND ND	1.0	0.5
1,3-Dichloropropane	ND	1.0	0.5	2,2-Dichloropropane	ND ND	1.0	0.5
1,1-Dichloropropene	ND	1.0	0.5	cis-1,3-Dichloropropene	ND ND	1.0	
trans-1,3-Dichloropropene	ND	1.0	0.5	Diisopropyl ether (DIPE)	ND ND	1.0	0.5
Ethylbenzene	ND ND	1.0	0.5	Ethyl tert-butyl ether (ETBE)	ND ND	1.0	0.5
Freon 113	ND ND	1.0	10	Hexachlorobutadiene	ND ND		0.5
Hexachloroethane	ND	1.0	0.5	2-Hexanone		1.0	0.5
Isopropylbenzene	ND I	1.0	0.5	4-Isopropyl toluene	ND ND	1.0	0.5
Mcthyl-t-butyl ether (MTBE)	ND ND	1.0	0.5		ND	1.0	0.5
4-Methyl-2-pentanone (MIBK)	ND	1.0	0.5	Methylene chloride	ND	1.0	0.5
Nitrobenzene	ND ND			Naphthalene	ND	1.0	0.5
Styrene	ND ND	1.0	10	n-Propyl benzene	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND ND	1.0	0.5	1,1,1,2-Tetrachloroethane	ND	1.0	0.5
Toluene		1.0	0.5	Tetrachloroethene	ND	1.0	0.5
1,2,4-Trichtorobenzene	ND	1.0	0.5	1,2,3-Trichlorobenzene	ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	1,1,1-Trichloroethane	ND	1.0	0.5
Trichlorofluoromethane	ND ND	1.0	0.5	Trichloroethene	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND ND	1.0	0.5	1,2,3-Trichloropropane	ND ND	1.0	0.5
Vinyl Chloride	ND ND	1.0	0.5	1,3,5-Trimethylbenzene	ND	1.0	0.5
у шут Слюпае	ND	1.0	0.5	Xylenes	ND	1.0	0.5
0/001.			ogate Re	coveries (%)			
%SS1:	110			%SS2:	97.9		
%SS3:	111						
Comments: i	<u> </u>				<u></u>		

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil / sludge / solid samples in µg/kg, wipe samples in µg/wipe, product / oil / non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	,	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04
built fallerseo, Cri 74111	Client P.O.:	Date Analyzed: 09/13/04-09/14/04

Semi-Volatile Organics by GC/MS (Basic Target List)*

Extraction Method: SW3550C

Analytical Method: SW8270D

Work Order: 0409158

T 1 TE	· · · · · · · · · · · · · · · · · · ·			0.1001.50.004:			
Lab ID				0409158-006A			
Client ID				TR-2-2.5			
Matrix	1			Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33
Acetochlor	ND	1.0	0.33	Anthracene	ND	1.0	0.33
Benzidine	ND	1.0	1.6	Benzoic Acid	ND	1.0	1.6
Benzo(a)anthracene	ND	1.0	0.33	Benzo(b)fluoranthene	ND	1.0	0.33
Benzo(k)fluoranthene	ND	1.0	0.33	Benzo(g,h,i)perylene	ND	1.0	0.33
Benzo(a)pyrene	ND	1.0	0.33	Benzyl Alcohol	ND	1.0	0.66
Bis (2-chloroethoxy) Methane	ND	1.0	0.33	Bis (2-chloroethyl) Ether	ND	1.0	0.33
Bis (2-chloroisopropyl) Ether	ND	1.0	0.33	Bis (2-ethylhexyl) Adipate	ND	1.0	0.33
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33
1,2-Dichlorobenzene	ND	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND	1.0	0.33
Fluoranthene	ND	1.0	0.33	Fluorene	ND	1.0	0.33
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene	ND	1.0	0.33
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane	ND	1.0	0.33
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone	ND	1.0	0.33
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.33
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene	ND	1.0	0.33
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND	1.0	1.6
4-Nitroaniline	ND	1.0	1.6	Nitrobenzene	ND	1.0	1.6
2-Nitrophenol	ND	1.0	1.6	4-Nitrophenol	ND	1.0	0.33
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND	1.0	0.33
Pentachlorophenol	ND	1.0	1.6	Phenanthrene	ND	1.0	0.33
Phenol	ND	1.0	0.33	Pyrene	ND	1.0	0.33
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND	1.0	0.33
2,4,6-Trichlorophenol	ND	1.0	0.33				
		Suri	ogate Re	coveries (%)			
%SSI:	80.6	5		%SS2:	80.7	7	
%SS3:	89.1	t		%SS4:	81.1		
%SS5:	104			%SS6:	76.:		

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & RolloClient Project ID: #1638.07; Misson
Valley RockDate Sampled: 09/10/04555 Montgomery St., Suite 1300Date Received: 09/13/04San Francisco, CA 94111Client Contact: Peter CusackDate Extracted: 09/13/04Client P.O.:Date Analyzed: 09/13/04-09/14/04

Semi-Volatile Organics by GC/MS (Basic Target List)*

		All	aiyucai Me	thod: SW8270D	Work	Order: (0409158
Lab ID				0409158-012A			
Client ID				TR-4-2.5			
Matrix				Soil	· · · · · · · · · · · · · · · · · · ·		
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportin Limit
Acenaphthene	ND<1.3	4.0	0.33	Acenaphthylene	ND<1.3	4.0	0.33
Acetochlor	ND<1.3	4.0	0.33	Anthracene	ND<1.3	4.0	0.33
Benzidine	ND<6.4	4.0	1.6	Benzoie Acid	ND<6.4	4.0	1.6
Benzo(a)anthracene	ND<1.3	4.0	0.33	Benzo(b)fluoranthene	ND<1.3	4.0	0.33
Benzo(k)fluoranthene	ND<1.3	4.0	0.33	Benzo(g,h,i)perylene	ND<1.3	4.0	0.33
Benzo(a)pyrene	ND<1.3	4.0	0.33	Benzyl Alcohol	ND<2.6	4.0	0.66
Bis (2-chloroethoxy) Methane	ND<1.3	4.0	0.33	Bis (2-chloroethyl) Ether	ND<1.3	4.0	0.33
Bis (2-chloroisopropyl) Ether	ND<1.3	4.0	0.33	Bis (2-ethylhexyl) Adipate	ND<1.3	4.0	0.33
Bis (2-ethylhexyl) Phthalate	ND<1.3	4.0	0.33	4-Bromophenyl Phenyl Ether	ND<1.3	4.0	0.33
Butylbenzyl Phthalate	ND<1.3	4.0	0.33	4-Chloroaniline	ND<2.6	4.0	0.66
4-Chloro-3-methylphenol	ND<1.3	4.0	0.33	2-Chloronaphthalene	ND<1.3	4.0	0.33
2-Chlorophenol	ND<1.3	4.0	0.33	4-Chlorophenyl Phenyl Ether	ND<1.3	4.0	0.33
Chrysene	ND<1.3	4.0	0.33	Dibenzo(a,h)anthracene	ND<1.3	4.0	0.33
Dibenzofuran	ND<1.3	4.0	0.33	Di-n-butyl Phthalate	ND<1.3	4.0	0.33
1,2-Dichlorobenzene	ND<1.3	4.0	0.33	1,3-Dichlorobenzene	ND<1.3	4.0	0.33
1,4-Dichlorobenzene	ND<1.3	4.0	0.33	3,3-Dichlorobenzidine	ND<2.6	4.0	0.66
2,4-Dichlorophenol	ND<1.3	4.0	0.33	Diethyl Phthalate	ND<1.3	4.0	0.33
2,4-Dimethylphenol	ND<1.3	4.0	0.33	Dimethyl Phthalate	ND<1.3	4.0	0.33
4,6-Dinitro-2-methylphenol	ND<6.4	4.0	1.6	2,4-Dinitrophenol	ND<6.4	4.0	1.6
2,4-Dinitrotoluene	ND<1.3	4.0	0.33	2,6-Dinitrotoluene	ND<1.3	4.0	0.33
Di-n-octyl Phthalate	ND<1.3	4.0	0.33	1,2-Diphenylhydrazine	ND<1.3	4.0	0.33
Fluoranthene	ND<1.3	4.0	0.33	Fluorene	ND<1.3	4.0	0.33
Hexachlorobenzene	ND<1.3	4.0	0.33	Hexachlorobutadiene	ND<1.3	4.0	0.33
Hexachlorocyclopentadiene	ND<6.4	4.0	1.6	Hexachloroethane	ND<1.3	4.0	0.33
Indeno (1,2,3-cd) pyrene	ND<1.3	4.0	0.33	Isophorone	ND<1.3	4.0	0.33
2-Methylnaphthalene	ND<1.3	4.0	0.33	2-Methylphenol (o-Cresol)	ND<1.3	4.0	0.33
3 &/or 4-Methylphenol (m,p-Cresol)	ND<1.3	4.0	0.33	Naphthalene	ND<1.3	4.0	0.33
2-Nitroaniline	ND<6.4	4.0	1.6	3-Nitroaniline	ND<6.4	4.0	
4-Nitroaniline	ND<6.4	4.0	1.6	Nitrobenzene	ND<6.4	4.0	1.6
2-Nitrophenol	ND<6.4	4.0		4-Nitrophenol	ND<0.4 ND<1.3		1.6
N-Nitrosodiphenylamine	ND<1.3	4.0		N-Nitrosodi-n-propylamine	ND<1.3	4.0	0.33
Pentachlorophenol	ND<6.4	4.0	1.6	Phenanthrene	ND<1.3	4.0	0.33
Phenol	ND<1.3	4.0	0.33	Pyrene		4.0	0.33
1,2,4-Trichlorobenzene	ND<1.3	4.0	0.33	2,4,5-Trichlorophenol	ND<1.3	4.0	0.33
2,4,6-Trichlorophenol	ND<1.3	4.0	0.33	2,4,3-Themorophenor	ND<1.3	4.0	0.33
				coveries (%)			
%SS1:	88.3			%SS2:	87.5	_	_
%SS3:	99.9		-	%SS4:	88.5		
%SS5:	95.1	~ 		%SS6:	83.9		
Comments: j					63.9		

Comments: j

* water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

#) surrogate diluted out of range; &) low or no surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04
Dan Trancisco, CA 94111	Client P.O.:	Date Analyzed: 09/13/04-09/14/04

Semi-Volatile Organics by GC/MS (Basic Target List)*

Extraction Method: SW3550C

Analytical Method: SW8270D

Work Order: 0409158

Lab ID Client ID Matrix		·		0409158-015A					
Matrix		TR-5-2.5							
				Soil					
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportin Limit		
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33		
Acetochlor	ND	1.0	0.33	Anthracene	ND	1.0	0.33		
Benzidine	ND	1.0	1.6	Benzoic Acid	ND	1.0	1.6		
Benzo(a)anthracene	ND	1.0	0.33	Benzo(b)fluoranthene	ND	1.0	0.33		
Benzo(k)fluoranthene	ND	1.0	0.33	Benzo(g,h,i)perylene	ND	1.0	0.33		
Benzo(a)pyrene	ND	1.0	0.33	Benzyl Alcohol	ND	1.0	0.66		
Bis (2-chloroethoxy) Methane	ND	1.0	0.33	Bis (2-chloroethyl) Ether	ND	1.0	0.33		
Bis (2-chloroisopropyl) Ether	ND	1.0	0.33	Bis (2-ethylhexyl) Adipate	ND	1.0	0.33		
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33		
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66		
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33		
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33		
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33		
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33		
1,2-Dichlorobenzene	ND	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33		
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66		
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33		
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33		
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6		
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33		
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND	1.0	0.33		
Fluoranthene	ND	1.0	0.33	Fluorene	ND	1.0	0.33		
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene	ND	1.0	0.33		
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane	ND	1.0	0.33		
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone	ND	1.0	0.33		
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.33		
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene	ND	1.0	0.33		
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND	1.0	1.6		
4-Nitroaniline	ND	1.0	1.6	Nitrobenzene	ND	1.0	1.6		
2-Nitrophenol	ND	1.0	1.6	4-Nitrophenol	ND	1.0	0.33		
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND	1.0	0.33		
Pentachlorophenol	ND	1.0	1.6	Phenanthrene	ND	1.0	0.33		
Phenol	ND	1.0	0.33	Pyrene	ND	1.0	0.33		
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND	1.0	0.33		
2,4,6-Trichlorophenol	ND	1.0	0.33		, , , , , , , , , , , , , , , , , , ,				
		Surr	ogate Re	coveries (%)					
%SS1:	80.1		1	%SS2:	81.5	5			
%SS3:	91.7	,	·· · · · · · · · · · · · · · · · · · ·	%SS4:	81.0				
%SS5:	107			%SS6:	79.5				
Comments:		7.1.7							

^{*} water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or по surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04
,	Client P.O.:	Date Analyzed: 09/13/04-09/14/04

Semi-Volatile Organics by GC/MS (Basic Target List)*

Work Order: 0409158	Analytical Method: SW8270D	Extraction Method: SW3550C
	0409158-024A	Lab ID
· · · · · · · · · · · · · · · · · · ·	TR-8-2.5	Client ID
	Soil	Matrix

Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33
Acetochlor	ND	1.0	0.33	Anthracene	ND	1.0	0.33
Benzidine	ND	1.0	1.6	Benzoic Acid	ND	1.0	1.6
Beπzo(a)anthracene	ND	0.1	0.33	Benzo(b)fluoranthene	ND	1.0	0.33
Benzo(k)fluoranthene	ND	1.0	0.33	Benzo(g,h,i)perylene	ND	1.0	0.33
Benzo(a)pyrene	ND	1.0	0.33	Benzyl Alcohol	ND	1.0	0.66
Bis (2-chloroethoxy) Methane	ND	1.0	0.33	Bis (2-chloroethyl) Ether	ND	1.0	0.33
Bis (2-chloroisopropyl) Ether	ND	1.0	0.33	Bis (2-ethylhexyl) Adipate	ND	1.0	0.33
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33
1,2-Dichlorobenzene	ND	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND	1.0	0.33
Fluoranthene	ND	1.0	0.33	Fluorene	ND	1.0	0.33
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene	ND	1.0	0.33
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane	ND	1.0	0.33
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone	ND	1.0	0.33
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.33
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene	ND	1.0	0.33
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND	1.0	1.6
4-Nitroaniline	ND	1.0	1.6	Nitrobenzene	ND	1.0	1.6
2-Nitrophenol	ND	1.0	1.6	4-Nitrophenol	ND I	1.0	0.33
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND	1.0	0.33
Pentachlorophenol	ND	1.0	1.6	Phenanthrene	ND ND	1.0	0.33
Phenol	ND	1.0	0.33	Рутепе	ND	1.0	0.33
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND	1.0	0.33
2,4,6-Trichlorophenol	ND	1.0	0.33			1.0	0.55
		Surr	ogate Re	coveries (%)			
%SS1:	88.2			%SS2:	85.9)	
%553.	04.9			0/004		·	

 %SS1:
 88.2
 %SS2:
 85.9

 %SS3:
 94.8
 %SS4:
 87.2

 %SS5:
 94.7
 %SS6:
 76.1

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

^{*} water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson Valley Rock	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04
, , , , , , , , , , , , , , , , , , , ,	Client P.O.:	Date Analyzed: 09/13/04-09/14/04

Semi-Volatile Organics by GC/MS (Basic Target List)*

Extraction Method: SW3550C	Analytical Method: SW8270D	Work Order: 0409158
Lab ID	0400159 0274	

Lab ID	1	0409158-027A						
Client ID				TR-9-2.5				
Matrix		-		Soil				
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit	
Acenaphthene	ND	1.0	0.33	Acenaphthylene	ND	1.0	0.33	
Acetochlor	ND	1.0	0.33	Anthracene	ND	1.0	0.33	
Benzidine	ND	1.0	1.6	Benzoic Acid	ND	1.0	1.6	
Benzo(a)anthracene	ND	1.0	0.33	Benzo(b)fluoranthene	ND	1.0	0.33	
Benzo(k)fluoranthene	ND	1.0	0.33	Benzo(g,h,i)perylene	ND	1.0	0.33	
Benzo(a)pyrene	ND	1.0	0.33	Benzyl Alcohol	ND	1.0	0.66	
Bis (2-chloroethoxy) Methane	ND	1.0	0.33	Bis (2-chloroethyl) Ether	ND	1.0	0.33	
Bis (2-chloroisopropyl) Ether	ND	1.0	0.33	Bis (2-ethylhexyl) Adipate	ND	1.0	0.33	
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.33	4-Bromophenyl Phenyl Ether	ND	1.0	0.33	
Butylbenzyl Phthalate	ND	1.0	0.33	4-Chloroaniline	ND	1.0	0.66	
4-Chloro-3-methylphenol	ND	1.0	0.33	2-Chloronaphthalene	ND	1.0	0.33	
2-Chlorophenol	ND	1.0	0.33	4-Chlorophenyl Phenyl Ether	ND	1.0	0.33	
Chrysene	ND	1.0	0.33	Dibenzo(a,h)anthracene	ND	1.0	0.33	
Dibenzofuran	ND	1.0	0.33	Di-n-butyl Phthalate	ND	1.0	0.33	
1,2-Dichlorobenzene	ND	1.0	0.33	1,3-Dichlorobenzene	ND	1.0	0.33	
1,4-Dichlorobenzene	ND	1.0	0.33	3,3-Dichlorobenzidine	ND	1.0	0.66	
2,4-Dichlorophenol	ND	1.0	0.33	Diethyl Phthalate	ND	1.0	0.33	
2,4-Dimethylphenol	ND	1.0	0.33	Dimethyl Phthalate	ND	1.0	0.33	
4,6-Dinitro-2-methylphenol	ND	1.0	1.6	2,4-Dinitrophenol	ND	1.0	1.6	
2,4-Dinitrotoluene	ND	1.0	0.33	2,6-Dinitrotoluene	ND	1.0	0.33	
Di-n-octyl Phthalate	ND	1.0	0.33	1,2-Diphenylhydrazine	ND	1.0	0.33	
Fluoranthene	ND	1.0	0.33	Fluorene	ND	1.0	0.33	
Hexachlorobenzene	ND	1.0	0.33	Hexachlorobutadiene	ND	1.0	0.33	
Hexachlorocyclopentadiene	ND	1.0	1.6	Hexachloroethane	ND	1.0	0.33	
Indeno (1,2,3-cd) pyrene	ND	1.0	0.33	Isophorone	ND	1.0	0.33	
2-Methylnaphthalene	ND	1.0	0.33	2-Methylphenol (o-Cresol)	ND	1.0	0.33	
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.33	Naphthalene	ND	1.0	0.33	
2-Nitroaniline	ND	1.0	1.6	3-Nitroaniline	ND ND	1.0	1.6	
4-Nitroaniline	ND	1.0	1.6	Nitrobenzene	ND ND	1.0	1.6	
2-Nitrophenol	ND	1.0	1.6	4-Nitrophenol	ND ND	1.0	0.33	
N-Nitrosodiphenylamine	ND	1.0	0.33	N-Nitrosodi-n-propylamine	ND ND	1.0	0.33	
Pentachlorophenol	ND	1.0	1.6	Phenanthrene	ND	1.0	0.33	
Phenol	ND	1.0	0.33	Pyrene	ND	1.0	0.33	
1,2,4-Trichlorobenzene	ND	1.0	0.33	2,4,5-Trichlorophenol	ND ND	1.0	0.33	
2,4,6-Trichlorophenol	ND	1.0	0.33	2,4,5-1 Hemotophetor	וויי	1.0	0.33	
23.43.0 ************************************	4182			ecoveries (%)				
%SS1:	81.6		Okare 1	%SS2:	91.6			
%\$\$3:	70002.				81.9			
/0303.	89.6	<u> </u>		%SS4:	80.9	<u>, </u>		

	· · · · · · · · · · · · · · · · · · ·		
%SS1:	81.6	%SS2:	81.9
%SS3:	89.6	%SS4:	80.9
%SS5:	109	%SS6:	77.3

Comments:

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high

^{*} water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo Client Project ID: #1638.07; Misson Date Sampled: 09/10/04 Valley Rock Date Received: 09/13/04 555 Montgomery St., Suite 1300 Client Contact: Peter Cusack Date Extracted: 09/13/04 San Francisco, CA 94111 Client P.O: Date Analyzed: 09/14/04

Semi-Volatile Organics by GC/MS (Basic Target List)*

Extraction Method: SW3510C		An	aiyticai Me	thod: SW8270D	Work	Order: (0409158	
Lab ID				0409158-004E				
Client ID				TR-1-6W				
Matrix				Water				
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reportin Limit	
Acenaphthene	ND	1.0	10	Acenaphthylene	ND	1.0	10	
Acetochlor	ND	1.0	10	Anthracene	ND	1.0	10	
Benzidine	ND	1.0	50	Benzoic Acid	ND	1.0	50	
Benzo(a)anthracene	ND	1.0	10	Benzo(b)fluoranthene	ND	1.0	10	
Benzo(k)fluoranthene	ND	1.0	10	Benzo(g,h,i)perylene	ND	1.0	10	
Benzo(a)pyrene	ND	1.0	10	Benzyl Alcohol	ND	1.0	20	
Bis (2-chloroethoxy) Methane	ND	1.0	10	Bis (2-chloroethyl) Ether	ND	1.0	10	
Bis (2-chloroisopropyl) Ether	ND	1.0	10	Bis (2-ethylhexyl) Adipate	ND	1.0	10	
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl Ether	ND	1.0	10	
Butylbenzyl Phthalate	ND	0.1	10	4-Chloroaniline	ND	1.0	20	
4-Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene	ND	1.0	10	
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl Ether	ND	1.0	10	
Chrysene	ND	1.0	10	Dibenzo(a,h)anthracene	ND	1.0	10	
Dibenzofuran	ND	1.0	10	Di-n-butyl Phthalate	ND	1.0	10	
1,2-Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene	ND	1.0	10	
1,4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine	ND	1.0	20	
2,4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate	ND	1.0	10	
2,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate	ND	1.0	10	
4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol	ND	1.0	50	
2,4-Dinitrotoluene	ND	1.0	10	2.6-Dinitrotoluene	ND	1.0	10	
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine	ND ND	1.0	10	
Fluoranthene	ND	1.0	10	Fluorene	ND ND	1.0	10	
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene	ND	1.0	10	
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane	ND	1.0	10	
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone	ND	1.0	10	
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cresol)	ND ND	1.0	10	
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10	Naphthalene	ND	1.0	10	
2-Nitroaniline	ND	1.0	50	3-Nitroaniline	ND ND	1.0	50	
4-Nitroaniline	ND	1.0	50	Nitrobenzene	ND	1.0	50	
2-Nitrophenol	ND ND	1.0	50	4-Nitrophenol	ND	1.0	10	
N-Nitrosodiphenylamine	ND ND	1.0	10	N-Nitrosodi-n-propylamine	ND ND	1.0		
Pentachlorophenol	ND	1.0	50	Phenanthrene	ND ND		10	
Phenol	ND ND	1.0	10	Pyrene	ND ND	1.0	10	
1,2,4-Trichlorobenzene	ND ND	1.0	10	2,4,5-Trichlorophenol		1.0	10	
2,4,6-Trichlorophenol	ND ND	1.0	10	2,4,5-Trichlorophenoi	ND	1.0	10	
, ,	110			coveries (%)				
%SS1:	101	Juil	ogaic Re	<u> </u>	00.0			
%SS3:								
%SS5:	111			%SS6:	78.8			
Comments: i	111	*		70330.	90.6			

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit raised; benzoic acid found in LCS/LCSD samples. Benzoic acid found in the method blank at a detectable concentration but under the RL for this compound.

^{*} water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/nonaqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #1638.07; Misson	Date Sampled: 09/10/04
555 Montgomery St., Suite 1300	Valley Rock	Date Received: 09/13/04
San Francisco, CA 94111	Client Contact: Peter Cusack	Date Extracted: 09/13/04
	Client P.O.:	Date Analyzed: 09/14/04

Semi-Volatile Organics by GC/MS (Basic Target List)*

Extraction Method: SW3510C	Anabatical	Mathada CW	8270D		West 0-4 0400158
Extraction Method. 3W3310C	Anaiyucai	l Method: SW	82700		Work Order: 0409158

Extraction Method: SW3510C	Analytical Method: SW8270D Work Order: 04091						
Lab ID				0409158-032E			
Client ID				TR-10-6W		•	
Matrix				Water			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acenaphthene	ND	1.0	10	Acenaphthylene	ND	1.0	10
Acetochlor	ND	1.0	10	Anthracene	ND	1.0	10
Benzidine	ND	1.0	50	Benzoic Acid	ND	1.0	50
Benzo(a)anthracene	ND	1.0	10	Benzo(b)fluoranthene	ND	1.0	10
Benzo(k)fluoranthene	ND	1.0	10	Benzo(g,h,i)perylene	ND	1.0	10
Benzo(a)pyrene	ND	1.0	10	Benzyl Alcohol	ND	1.0	20
Bis (2-chloroethoxy) Methane	ND	1.0	10	Bis (2-chloroethyl) Ether	ND	1.0	10
Bis (2-chloroisopropyl) Ether	ND	1.0	10	Bis (2-ethylhexyl) Adipate	ND	1.0	10
Bis (2-ethylhexyl) Phthalate	ND	1.0	10	4-Bromophenyl Phenyl Ether	ND	1.0	10
Butylbenzyl Phthalate	ND	1.0	10	4-Chloroaniline	ND	1.0	20
4-Chloro-3-methylphenol	ND	1.0	10	2-Chloronaphthalene	ND	1.0	10
2-Chlorophenol	ND	1.0	10	4-Chlorophenyl Phenyl Ether	ND	1.0	10
Chrysene	ND	1.0	10	Dibenzo(a,h)anthracene	ND	1.0	10
Dibenzofuran	ND	1.0	10	Di-n-butyl Phthalate	ND	1.0	10
1,2-Dichlorobenzene	ND	1.0	10	1,3-Dichlorobenzene	ND	1.0	10
1.4-Dichlorobenzene	ND	1.0	10	3,3-Dichlorobenzidine	ND	1.0	20
2,4-Dichlorophenol	ND	1.0	10	Diethyl Phthalate	ND ND	1.0	10
2,4-Dimethylphenol	ND	1.0	10	Dimethyl Phthalate	ND	1.0	10
4,6-Dinitro-2-methylphenol	ND	1.0	50	2,4-Dinitrophenol	ND	1.0	50
2,4-Dinitrotoluene	ND	1.0	10	2.6-Dinitrotoluene	ND	1.0	10
Di-n-octyl Phthalate	ND	1.0	10	1,2-Diphenylhydrazine	ND	1.0	10
Fluoranthene	ND	1.0	10	Fluorene	ND	1.0	10
Hexachlorobenzene	ND	1.0	10	Hexachlorobutadiene	ND	1.0	10
Hexachlorocyclopentadiene	ND	1.0	50	Hexachloroethane	ND ND	1.0	10
Indeno (1,2,3-cd) pyrene	ND	1.0	10	Isophorone	ND ND	1.0	10
2-Methylnaphthalene	ND	1.0	10	2-Methylphenol (o-Cresol)	ND	1.0	10
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	10	Naphthalene	ND	1.0	10
2-Nitroaniline	ND	1.0	50	3-Nitroaniline	ND	1.0	50
4-Nitroaniline	ND	1.0	50	Nitrobenzene	ND ND	1.0	50
2-Nitrophenol	ND	1.0	50	4-Nitrophenol	ND	1.0	10
N-Nitrosodiphenylamine	ND	1.0	10	N-Nitrosodi-n-propylamine	ND ND	1.0	10
Pentachlorophenol	ND	1.0	50	Phenanthrene	ND	1.0	10
Phenol	ND	1.0	10	Ругепе	ND	1.0	10
1,2,4-Trichlorobenzene	ND	1.0	10	2,4,5-Trichlorophenol	ND ND	1.0	10
	2,4,6-Trichlorophenol ND 1.0 10						10
				ecoveries (%)			
%SS1:	85.3		-8 311	%SS2:	95	1	
%SS3:	85.3 %SS2: 85.4 112 %SS4: 93.2						
%SS5:	119						
Comments: i	117			1 70000-	, 04.	<u>' </u>	······································

Comments: i

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit raised; benzoic acid found in LCS/LCSD samples. Benzoic acid found in the method blank at a detectable concentration but under the RL for this compound.

^{*} water samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{#)} surrogate diluted out of range; &) low or no surrogate due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo Client Project ID: #1638.07; Misson Date Sampled: 09/10/04 Vailey Rock Date Received: 09/13/04 555 Montgomery St., Suite 1300 Client Contact: Peter Cusack Date Extracted: 09/13/04 San Francisco, CA 94111 Date Analyzed: 09/14/04 Client P.O.: CAM / CCR 17 Metals* Lab ID 0409158-012A 0409158-018A 0409158-022A 0409158-024A Reporting Limit for DF =1;

Client ID	TR-4-2.5	TR-6-2.5	TR-7-5	TR-8-2.5	above the re	not detected porting limit
Matrix	S	S	S	S	S	w
Extraction Type	TTLC	TTLC	TTLC	TTLC	mg/Kg	mg/L
Analytical Method: 6010C		Metals, Concentr			Work Ord	er: 0409158
Dilution Factor	1	1	1	1	1	1
Antimony	ND	ND	ND	ND	5.0	NA
Arsenic	6.6	ND	8.6	ND	5.0	NA
Barium	150	130	100	220	1.5	NA
Beryllium	ND	ND	ND	ND	1.5	NA
Cadmium	ND	ND	ND	ND	1.5	NA
Chromium	120	38	40	52	1.5	NA
Cobalt	11	6.4	5.4	7.9	1.5	NA
Соррег	26	16	9.9	19	1.5	NA
Lead	91	7.7	39	19	5.0	NA
Molybdenum	ND	ND	ND	ND	1.5	NA
Nickel	120	27	22	31	1.5	NA
Selenium	ND	ND	ND	ND	5.0	NA
Silver	ND	ND	ND	ND	1.5	NA
Thallium	ND	ND	ND	ND	5.0	NA
Vanadium	47	31	34	46	5.0	NA
Zinc	73	38	43	61	5.0	NA
%SS:	111	95.1	108	104		

	Cold Vapor Metals, Concentration*										
Analytical Method: SW7471B Extraction Method: SW7471B											
Dilution Factor	1	1	1	1	1	1					
Mercury	ND	ND	ND	ND	0.06	NA					
Comments											

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, filter samples in μg/filter.

means surrogate recovery outside of acceptance range due to matrix interference; & means surrogate diluted out of acceptance range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument; **special large volume digestion

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~1 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; k) results are reported by dry weight; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	4.19		weosite: w	ww.mccampoen.com E-mail: mail	i@niccampoeii.	com	
Date Received: 09/13/04 San Francisco, CA 94111 Date Contact: Peter Cusack Date Extracted: 09/13/04 Client Contact: Peter Cusack Date Extracted: 09/13/04 Client P.O.: Date Analyzed: 09/14/04 Date Analyzed: 09/14/04 Date Contact: Peter Cusack Date Analyzed: 09/14/04 Date Analyzed:	Treadwell & Rollo		638.07; Misson	Date Sampled: 09.	/10/04		
Client P.O.: Date Analyzed: 09/14/04	555 Montgomery St., Suite 1300	vaniey Rock		Date Received: 09	9/13/04		
Client P.O.: Date Analyzed: 09/14/04	San Francisco, CA 94111	Client Contact: Peter	Cusack	Date Extracted: 09/	/13/04		
Lab ID		Client P.O.:		Date Analyzed: 09/	/14/04		
Client ID		CAM /	CCR 17 Metals*		-	-	
Analytical Method: 6010C	Lab ID	0409158-030A	1				
S	Client ID	TR-10-2.5	1				
Analytical Method: 6010C Extraction Method: SW3050B Work Order:	Matrix	S		:		w	
Dilution Factor 1	Extraction Type	TTLC	:	The state of the s	mg/Kg	mg/L	
Dilution Factor 1		ICP Meta	ls, Concentration*				
Antimony ND 5.0 Arsenic ND 5,0 Barium 160 1.5 Beryllium ND 1.5 Cadmium ND 1.5 Chromium 41 1.5 Chromium 41 1.5 Copper 13 1.5 Lead 7.6 5.0 Molybdenum ND 1.5 Nickel 24 1.5 Selenium ND 5.0 Silver ND 1.5 Thallium ND 5.0 Vanadium 32 5.0 Zinc 39 5.0 %SS: 104 5.0 **Cold Vapor Metals, Concentration** **Extraction Method: SW7471B** **Extraction Method: SW7471B** **Dilution Factor** **D			Method: SW3050B			ler: 0409158	
Arsenic ND 5.0 Barium 160 1.5 Beryllium ND 1.5 Cadmium ND 1.5 Chromium 41 1 1.5 Cobalt 5.4 1.5 Copper 13 1.5 Lead 7.6 5.0 Molybdenum ND 1.5 Nickel 24 1.5 Selenium ND 1.5 Selenium ND 1.5 Selenium ND 1.5 Thallium ND 1.5 Thallium ND 1.5 Thallium ND 1.5 Thallium ND 1.5 Thallium ND 1.5 Thallium ND 1.5 Cold Vapor Metals, Concentration* Extraction Method: SW7471B Cold Vapor Metals, Concentration* Extraction Method: SW7471B					1	1	
Barium 160 1.5 Beryllium ND 1.5 Cadmium ND 1.5 Chromium 41 1.5 Cobatt 5.4 1.5 Copper 13 1.5 Lead 7.6 5.0 Molybdenum ND 1.5 Nickel 24 1.5 Selenium ND 5.0 Silver ND 1.5 Thallium ND 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 31 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 31 5.0 Vanadium 32 5.0 Vanadium 32 5.0 Vanadium 31 5.0 Vanadium 32 5.0 Vanadium 33 5.0 Vanadium 34 5.0 Vanadium 35 5.0 Vanadium 36 5.0 Vanadium 37 5.0 Vanadium 38 5.0 Vanadium 39 5.0 Vanadium 30 5.0 Vanadium 31 5.0 Vanadium 32 5.0 Vanadium 33 5.0 Vanadium 34 5.0 Vanadium 35 5.0 Vanadium 5.0 5					5.0	NA	
ND		···				NA	
Cadmium	· · · · · · · · · · · · · · · · · · ·				1.5	NA	
Chromium						NA	
Cobalt 5.4 1.5 Copper 13 1.5 Lead 7.6 5.0 Molybdenum ND 1.5 Nickel 24 1.5 Selenium ND 5.0 Silver ND 1.5 Thatlium ND 5.0 Vanadium 32 5.0 Zinc 39 5.0 %SS: 104 5.0 Cold Vapor Metals, Concentration* Extraction Method: SW7471B Dilution Factor I 1					1.5	NA	
Copper					1.5	NA NA	
Lead 7.6 5.0					1.5	NA	
Molybdenum					1.5	NA	
Nickel 24 1.5 Selenium ND 5.0 Silver ND 1.5 Thallium ND 5.0 Vanadium 32 5.0 Zinc 39 5.0 %SS: 104 5.0 **Cold Vapor Metals, Concentration* **Extraction Method: SW7471B **Dilution Factor** Dilution Factor* **Dilution Factor** 1 1		7.6			5.0	NA.	
Selenium		ND			1.5	NA	
Silver ND 1.5 Thatlium ND 5.0 Vanadium 32 5.0 Zinc 39 5.0 %SS: 104 Analytical Method: SW7471B Extraction Method: SW7471B 1 1 Management Ma		24			1.5	NA	
Thallium		ND			5.0	NA	
Vanadium 32 5.0 Zinc 39 5.0 %SS: 104 5.0 Cold Vapor Metals, Concentration* Extraction Method: SW7471B Dilution Factor Dilution Factor 1 1		ND			1.5	NA	
Zinc 39 5.0	Thallium	ND			5.0	NA	
%SS: 104 Cold Vapor Metals, Concentration* Analytical Method: SW7471B Extraction Method: SW7471B Dilution Factor 1 1 1	Vanadium	32			5.0	NA	
Cold Vapor Metals, Concentration* Analytical Method: SW7471B Extraction Method: SW7471B Dilution Factor 1 1 1	Zinc	39			5.0	NA	
Analytical Method: SW7471B Extraction Method: SW7471B Dilution Factor 1	%SS:	104					
Analytical Method: SW7471B Extraction Method: SW7471B Dilution Factor 1 1		Cold Vanor N	letals. Concentration*			· · · · · · · · · · · · · · · · · · ·	
	Analytical Method: SW7471B	_	•				
Mercury ND T 0.00	Dilution Factor	1			1	1	
0.06	Mercury	ND ND			0.06	NA	
*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SDLP extracts are reported in any lancification of the state of the sta							

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate recovery outside of acceptance range due to matrix interference; & means surrogate diluted out of acceptance range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument; **special large volume digestion

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid-Sb, As, Pb, Sc, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~1 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; k) results are reported by dry weight; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Treadwell & Rollo	Client Project ID: #16 Valley Rock	38.07; Misson	Date Sampled: 09/10/04				
555 Montgomery St., Suite 1300	vaney Rock		Date Received: 09/13/04				
San Francisco, CA 94111	Client Contact: Peter C	Cusack	Date Extracted: 09/13/04				
San Francisco, CA 94111	Client P.O.:		Date Analyzed: ()9/14/04-09/1	15/04		
	<u> </u>	CR 17 Metals*	···· k				
Lab ID	0409158-004F			Reporting Li	nit for DF =1;		
Client ID	TR-1-6W		1 200 200 100 100 100 100 100 100 100 10		not detected		
Matrix	W			S above the n	porting limit w		
Extraction Type	TTLC	:		mg/kg	mg/L		
	ICP Metals	, Concentration*					
Analytical Method: E200.7		thod: E200.7/E200.8		Work Ord	ler: 0409158		
Dilution Factor	1			1	1		
Barium	4.3			NA	0.005		
Beryllium	0.0068			NA	0.005		
Cadmium	0.0093			NA NA	0.005		
Chromium	0.74			NA	0.005		
Cobalt	0.26			NA	0.005		
Copper	0.39			NA	0.005		
Molybdenum	ND			NA	0.005		
Nickel	1,1			NA NA	0.005		
Silver	0.0083			NA	0.005		
Vanadium	0.50			NA	0.02		
Zinc	0.78			NA	0.02		
%SS:	108	-			0.02		
Analytical Method: E200.9	GFAA Metal Extraction Me	ls, Concentration* thod: E200.9					
Dilution Factor	1			1	1		
Antimony	ND	£		NA.	0.006		
Arsenic	0.063			NA NA	0.005		
Lead	0.15			NA NA	0.005		
Selenium	ND			NA.	0.005		
Thallium	ND			NA	0.005		
Analytical Method: E245,1	Cold Vapor Me Extraction Met	etals, Concentration*	•				
Dilution Factor	2	100. 121.1		1	1		
Мегсигу	0.0060			NA NA	0.0008		
Comments	1			11117	0.0000		

*water/product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate recovery outside of acceptance range due to matrix interference; & means surrogate diluted out of acceptance range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

Analytical Methods: EPA 6010C/200.7 for all elements except: 200.9 (water/liquid- Sb, As, Pb, Se, Tl); 245.1 (Hg); 7010 (sludge/soil/solid/oil/product/wipe/filter - As, Se, Tl); 7471B (Hg).

i) liquid sample that contains greater than ~1 vol. % sediment; this sediment is extracted with the liquid, in accordance with EPA methodologies and can significantly effect reported metal concentrations; j) reporting limit raised due to insufficient sample amount; k) results are reported by dry weight; y) estimated values due to low surrogate recovery; z) reporting limit raised due to matrix interference.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0409158

EPA Method: SW8021B/	EPA Method: SW8021B/8015Cm Extraction: SW5030B BatchID: 13076 Spiked Sample ID: 0409158-024A									
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	0.60	103	98.5	4.89	102	98.1	3.88	70	130
мтве	ND	0.10	91.7	96.6	5.13	100	101	0.412	70	130
Benzene	ND	0.10	108	112	3.48	103	99.7	3.67	70	130
Toluene	ND	0.10	86.2	88.1	2.14	81.6	86.7	5.99	70	130
Ethylbenzene	ND	0.10	105	108	2.45	102	95.6	6.29	70	130
Xylenes	ND	0.30	91	94.7	3.95	89.7	82	8.93	70	130
%SS:	94.6	0.10	108	111	3.59	105	105	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0409158

EPA Method: SW8021E	EPA Method: SW8021B/8015Cm Extraction: SW5030B BatchID: 13084 Spiked Sample ID: 0409170-016A									
Analyte Sa		Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	0.60	101	100	0.305	94.7	99.6	5.00	70	130
MTBE	ND	0.10	90.1	95.2	5.48	103	102	0.561	70	130
Benzene	ND	0.10	105	109	4.05	106	101	5.23	70	130
Toluene	ND	0.10	83.4	87.1	4.36	83.7	81.7	2.39	70	130
Ethylbenzene	ND	0.10	104	108	3.35	101	001	1.19	70	130
Xylenes	ND	0.30	90.3	94.7	4.68	86.3	86.3	0	70	130
%\$\$:	88.6	0.10	106	107	0.327	107	101	5.28	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.inccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0409158

EPA Method: SW8021B	/8015Cm E	Extraction:	SW5030E	3	Batch	ID: 13074	S	Spiked Samp	le ID: 04091	61-004A
Analyte	Sample	Spiked	MS*	M\$D*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	119	96.3	21.0	101	103	1.79	70	130
МТВЕ	ND	10	103	93.4	10.2	102	99.5	2.67	70	130
Benzene	ND	10	106	102	3.09	101	104	2.52	70	130
Toluene	מא	10	106	97	8.74	102	103	0.627	70	130
Ethylbenzene	ND	10	103	101	2.20	100	103	3.03	70	130
Xylenes	ND	30	90.7	89.7	1.11	86.3	90.7	4.90	70	130
%SS:	101	10	112	104	7.53	104	102	1.81	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS + MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0409158

EPA Method: SW80218	3/8015Cm E	Extraction:	SW50308	3	Batch	ID: 13092	S	piked Sampl	e ID: 0409	170-006A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Ассерtалс	e Criteria (%)
Allalyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Łow	High
TPH(btex) [£]	ND	60	84.4	81.9	2.96	92.4	91.9	0.490	70	130
MTBE	ND	10	95.1	93.6	1.62	80.3	82.3	2.46	70	130
Benzene	ND	10	87.7	86.4	1.54	91.5	91.8	0.328	70	130
Toluene	ND	10	88.9	87.6	1.49	101	102	0.391	70	130
Ethylbenzene	ND	. 10	90.8	89.3	1.59	109	110	0.677	70	130
Xylenes	ND	30	90.7	89.7	1.11	110	110	0	70	130
%\$\$:	101	10	95	95.7	0.761	98.9	97.7	1.17	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.inccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0409158

EPA Method: SW8015C	E	Extraction:	SW35100	2	Batch	ID: 13063	S	piked Samp	le ID: N/A	
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
, mary co	μg/L	μg/L	% Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	N/A	7500	N/A	N/A	N/A	110	109	1.39	70	130
%SS:	N/A	2500	N/A	N/A	N/A	118	116	1.34	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

110 2nd Avenue South, #D7. Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0409158

EPA Method: SW8015C	E	Extraction:	SW35500	>	Batch	ID: 13078	S	Spiked Sampl	le ID: 04091	58-024A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	ND	150	105	106	0.903	92	98.5	6.81	70	130
%SS:	108	50	104	105	0.840	102	105	3.13	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS Certification No. 1644

110 2nd Avenue South, #D7, Pacheco. CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0409158

EPA Method: SW8015C	E	Extraction:	SW35500	;	Batch	ID: 13083	S	ipiked Sampl	e ID: 04091	70-003A
Алаlyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Ассерtапсе	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	ND	150	114	114	0	114	106	7.20	70	130
%SS:	111	50	107	107	0	112	109	2.30	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E418.1

Matrix: S

WorkOrder: 0409158

EPA Method: E418.1	E	xtraction:	SW3550_	TRPH	Batch	ID: 13081	S	piked Sampl	e ID: 04091	58-003A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TRH	ND	20.8	99.5	105	5.18	111	104	5.82	70	130
%SS:	111	100	106	106	0	104	104	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR E418.1

Matrix: W

WorkOrder: 0409158

EPA Method: E418.1	E	extraction:	SW3510	3_TRPH	Batch	ID: 13051	S	ipiked Sampl	le ID: 04091	20-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
, manyte	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TRH	1100	2.37	NR	NR	NR	84.4	84.4	0	70	130
%SS:	#	100	#	#	#	99	102	2.99	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range.

QC SUMMARY REPORT FOR SW8260B

Matrix: S

WorkOrder: 0409158

EPA Method: SW8260B	E	Extraction:	SW50308	3	Batch	ID: 13069	S	ipiked Sampl	e ID: 04091-	44-001A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/Kg	µg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	50	83.6	83.8	0.263	88	87	1.12	70	130
Benzene	ND	50	108	111	2.65	111	108	2.56	70	130
t-Butyl alcohol (TBA)	ND	250	75.2	82.6	9,47	86.8	83.2	4.24	70	130
Chlorobenzene	ND	50	103	105	1.49	107	104	2.73	70	130
1.2-Dibromoethane (EDB)	ND	50	98.3	100	1.98	108	106	1.57	70	130
1.2-Dichloroethane (1.2-DCA)	ND	50	94.5	97.8	3.46	102	99.4	2.31	70	130
1.1-Dichloroethene	ND	50	115	119	3.33	101	99.8	1.27	70	130
Diisopropyl ether (DIPE)	ND	50	116	118	1.26	126	122	2.81	70	130
Ethyl tert-butyl ether (ETBE)	ND	50	93.7	96.9	3.33	103	101	2.01	70	130
Methanol	ND	12500	98.5	99.4	0.943	102	97.7	4.43	70	130
Methyl-t-butyl ether (MTBE)	ND	50	89.5	94.2	5.12	103	99.9	2.65	70	130
Toluene	ND	50	99.7	99.2	0.466	100	95.8	4.43	70	130
Trichloroethene	ND	50	105	108	2.80	107	103	3.06	70	130
%SS1:	89.3	50	100	100	0	98	99	0.961	70	130
%SS2:	109	50	96	94	1.91	93	94	1.99	70	130
%\$\$3:	95.2	50	95	96	0.313	92	92	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0409158

EPA Method: SW8260B	8	Extraction:	SW5030E	3	Batch	ID: 13091	S	piked Samp	le ID: 04091	70-006B
Analyte	Sample	Spiked	MS⁺	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	95.5	93.8	1.73	90.3	92	1.85	70	130
Benzene	ND	10	121	122	0.601	121	124	2.41	70	130
t-Butyl alcohol (TBA)	ND	50	91.8	84.8	7.93	89.5	90.5	1.04	70	130
Chlorobenzene	ND	10	105	104	1.77	104	108	3.12	70	130
1,2-Dibromoethane (EDB)	ND	10	105	103	1.52	107	112	4.23	70	130
1.2-Dichloroethane (1.2-DCA)	ND	10	115	114	0.248	112	117	3.86	70	130
1.1-Dichloroethene	ND	10	104	104	0	117	121	3.20	70	130
Diisopropyl ether (DIPE)	ND	10	126	125	0.730	121	124	1.67	70	130
Ethyl tert-butyl ether (ETBE)	ND	10	113	112	1.43	112	112	0	70	130
Methyl-t-butyl ether (MTBE)	NĐ	10	105	103	1.82	103	105	2.08	70	130
Toluene	ND	10	114	113	1.36	112	117	4.26	70	130
Trichloroethene	ND	10	86.4	86.7	0.367	92.7	95.9	3.35	70	130
%SS1:	105	10	98.1	97.8	0.281	102	102	0	70	130
%S\$2:	100	10	102	102	0	102	102	0	70	130
%SS3:	111	10	115	116	1.08	113	113	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS + MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0409158 mple ID: 0409143-001C

EPA Method: SW8260B	E	Extraction:	SW5030E	3	Batch	ID: 13064	S	piked Sampl	e ID: 04091	43-001C
Analyte	Sample	Spiked	,MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	90.8	91.7	1.01	85.9	87.7	2.09	70	130
Benzene	ND	10	117	116	1.37	114	116	1.33	70	130
t-Butyl alcohol (TBA)	ND	50	82.9	82.6	0.350	83.1	83	0.182	70	130
Chlorobenzene	ND	10	98.7	99,4	0.641	97.6	97.7	0.128	70	130
1.2-Dibromoethane (EDB)	ND	10	103	101	1.92	101	101	0	70	130
1.2-Dichloroethane (1.2-DCA)	1.24	10	98.8	94.2	4.25	107	110	2.27	70	130
1.1-Dichloroethene	ND	10	105	98.7	6.16	109	109	0	70	130
Diisopropyl ether (DIPE)	ND	10	120	120	0	116	117	1.06	70	130
Ethyl tert-butyl ether (ETBE)	ND .	10	109	107	1.55	105	106	0.816	70	130
Methyl-t-butyl ether (MTBE)	0.949	10	90.7	89.4	1.27	98.8	101	1.93	70	130
Toluene	ND	10	109	109	0	108	105	3.02	70	130
Trichloroethene	ND	10	87.2	82.9	5.07	88.6	87	1.83	70	130
%SS1:	#	10	100	97	2.61	101	102	1.64	70	130
%SS2:	97.9	10	102	102	0	103	103	0	70	130
%S\$3:	117	10	109	113	3.18	108	111	2.65	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR ≂ analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website; www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8270D

Matrix: S

WorkOrder: 0409158

EPA Method: SW8270D		Extraction:	SW35500	2	Batch	ID: 13079	S	piked Samp	le ID: 04091	57-002A
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
,	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Acenaphthene	ND	2	74.2	- 73.2	65.5	74.8	72.8	2.72	30	130
4-Chloro-3-methylphenol	ND	4	89.2	90.2	67.6	76.7	75.9	1.02	30	130
2-Chlorophenol	ND	4	81.1	82	67.7	77.4	79.1	2.11	30	130
1.4-Dichlorobenzene	ND	2	81.5	81.6	66.8	80.5	81.1	0.780	30	130
2.4-Dinitrotoluene	ND	2	76.4	76.1	66.3	71.5	71.7	0.251	30	130
4-Nitrophenol	ND	4	99	101	68.3	76.6	78.5	2.43	30	130
N-Nitrosodi-n-propylamine	ND	2	107	105	64.6	92	95	3.18	30	130
Pentachlorophenol	ND	4	77.1	77.5	200	70.8	70.3	0.730	30	130
Phenol	ND	4	80.4	81.1	67.4	86.1	87.7	1.85	30	130
Pyrene	ND	2	76	76.6	67.4	89.7	88	1.86	30	130
1.2.4-Trichlorobenzene	ND	2	91.9	92.4	67.2	78.5	79.1	0.685	30	130
%SS1:	84.8	200	85	86	67.7	78	80	2.06	30	130
%SS2:	81.7	200	86	87	67.6	81	83	1.56	30	130
%SS3:	91.6	200	95	95	0	87	87	0	30	130
%SS4:	93.2	200	96	95	66.0	81	80	0.189	30	130
%SS5:	88.0	200	104	105	67.6	81	81	0	30	130
%\$\$6;	80.6	200	83	83	0	79	76	3.54	30	130

All target compounds in the Method Blank of this extraction hatch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[&]amp; = low or no recovery of surrogate or target analytes due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8270D

Matrix: W

WorkOrder: 0409158

EPA Method: SW8270D	E	Extraction:	SW35100	>	Batch	ID: 13087	5	piked Sampl	e ID: N/A	
Analyte	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
r many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Acenaphthene	N/A	50	N/A	N/A	N/A	54	53.3	1.29	30	130
4-Chloro-3-methylphenol	N/A	100	N/A	N/A	N/A	61.4	63.5	3.41	30	130
2-Chlorophenol	N/A	100	N/A	N/A	N/A	51.3	53.7	4.58	30	130
1.4-Dichlorobenzene	N/A	50	N/A	N/A	N/A	53.8	53.8	0	30	130
2.4-Dinitrotoluene	N/A	50	N/A	N/A	N/A	47.7	49.5	3.74	30	130
4-Nitrophenol	N/A	100	N/A	N/A	N/A	52.9	55.6	4.97	30	130
N-Nitrosodi-n-propylamine	N/A	50	N/A	N/A	N/A	66	69.7	5.50	30	130
Pentachlorophenol	N/A	100	N/A	N/A	N/A	56.1	56.7	1.04	30	130
Phenol	N/A	100	N/A	N/A	N/A	56.7	58	2.21	30	130
Pyrene	N/A	50	N/A	N/A	N/A	79.6	78.8	1.09	30	130
1.2.4-Trichlorobenzene	N/A	50	N/A	N/A	N/A	57.8	58.8	1.54	30	130
%SSI:	N/A	5000	N/A	N/A	N/A	60	61	1.23	30	130
%SS2:	N/A	5000	N/A	N/A	N/A	66	62	6.79	30	130
%SS3:	N/A	5000	N/A	N/A	N/A	71	72	1.91	30	130
%\$\$4:	N/A	5000	N/A	N/A	N/A	68	68	0	30	130
%SS5:	N/A	5000	N/A	N/A	N/A	72	74	3.19	30	130
%SS6:	N/A	5000	N/A	N/A	N/A	76	75	1.44	30	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR CAM17

Matrix: S

WorkOrder: 0409158

Analyte	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (9
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
EPA Method: 6010C	· · · · · · · · · · · · · · · · · · ·	Extraction:	SW3050B		BatchID:	13080		Spiked Sam	ple ID: 040	9157-001
Antimony	ND	50	92.8	84.6	9.30	97.4	87.4	10.9	80	120
Arsenic	7.61	50	99.2	97.8	1.28	97.5	85.2	13.5	80	120
Barium	303.2	50	NR	NR	NR	102	94.2	7.95	80	120
Beryllium	ND	50	104	96.8	7.31	95.7	88.6	7.70	80	120
Cadmium	ND	50	103	95.5	7.90	102	93.2	9.21	80	120
Chromium	113	50	NR	NR	NR	106	98.2	8.07	80	120
Cobalt	30.5	50	80	79.5	0.391	98.9	91.4	7.88	80	120
Copper	53.1	50	NR	NR	NR	96.6	85	12.7	80	120
Lead	33.38	50	84.7	77.4	4.97	100	1.88	12.7	80	120
Molybdenum	ND	50	101	92.7	8.22	104	92.7	11.7	80	120
Nickel	145	50	NR	NR	NR	97.8	90.2	8.19	80	120
Selenium	ND	50	95.5	87.4	8.86	99	88.8	10.8	80	120
Silver	ND	. 5	114	101	12.5	109	105	3.59	80	120
C hallium	ND	50	106	95.3	10.2	98.2	83'.4	16.3	80	120
√anadium	98.45	50	- NR	NR	NR	92	85.4	7.44	80	120
Zinc	108.4	50	NR	NR	NR	99.5	85	15.7	80	120
%\$\$:	111	100	104	97	6.45	98.4	93.6	4.99	80	120
EPA Method: SW7471B	·	Extraction:	SW7471B		BatchID:	13045		Spiked Samp	ole ID: 0409	9130-001A
Mercury	0.161	0.25	74.3	130	33.5	99.5	103	3.01	80	120

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} Acceptance Criteria for MS / MSD is between 70% and 130%. MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR CAM17

Matrix: W

WorkOrder: 0409158

Analyte	Sample	Spiked	MS*	M\$D*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%
, maryes	mg/L	mg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
EPA Method: E200.7	(Extraction:	E200.7/E	200.8	BatchID:	13077	*	Spiked Sam	ple ID: 040	9073-001A
Barium	ium ND 1 84 85.9		85.9	2.24	98.8	99.4	0.615	80	120	
Beryllium	ND	1	94.6	94.8	0.253	103	103	0	80	120
Cadmium	ND	1	90	91.7	1.93	104	103	0.482	80	120
Chromium	ND	1	83.5	86	3.00	100	104	3.04	80	120
Cobalt	ND	1	80.5	82.1	1.94	96.2	97.9	1.71	80	120
Соррег	ND	1	84.7	86.8	2.44	97.8	98.2	0.388	80	120
Molybdenum	ND	1	88.5	88.8	0.406	94.1	94.8	0.731	80	120
Nickel	ND	1	80.7	80.6	0.136	97.3	98.7	1.45	80	120
Silver	ND	0.10	101	104	3.02	96.8	94	2.90	80	120
Vanadium	ND	1	86.5	88.2	1.95	98.8	100	1.56	80	120
Zinc	ND	1	97.8	101	2.94	97.5	102	4.05	80	120
%SS:	112	0.75	127	109	14.9	95	96	1.46	80	120
EPA Method: E200.9	E	xtraction:	E200.9		BatchID:	13089	•	Spiked Samp	ole ID: 0409	219-001D
Antimony	ND	0.010	115	108	6.74	112	105	6.52	80	120
Arsenic	0.005842	0.010	103	93.3	6.30	84.9	93.2	9.34	80	120
Lead	ND	0.010	126	120	4.58	108	101	9.01	80	120
Selenium	ND	0.010	80.9	79.1	2.27	91.6	92.2	0.734	80	120
Thallium	ND	0.010	110	108	1.47	108	110	1.38	80	120
EPA Méthod: E245.1	E	xtraction:	E245.1		BatchID;	13088		Spiked Samp	le ID: 0409	209-002D
Mercury	ND	0.0020	121	121	0	112	91.4	20.6	80	120

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soit matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} Acceptance Criteria for MS / MSD is between 70% and 130%. MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page I of I

WorkOrder: 0409158

ClientID: TWRF

Report to:

Peter Cusack

Treadwell & Rollo

555 Montgomery St., Suite 1300 San Francisco, CA 94111

TEL; FAX:

(415) 955-9040 (415) 955-9041

ProjectNo: #1638,07; Misson Valley Rock

PO:

Bill to:

Accounts Payable

Treadwell & Rollo

555 Montgomery St., Suite 1300

San Francisco, CA 94111

Requested TAT:

Date Printed:

2 days

Date Received: 9/13/04

9/13/04

																			. , ,,,,,,,	•	7/13	7104
											Requ	 Jeste	d Test	s (See	legend	d belo	ow)					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3		4	5		6	7	8	9	. :	10	11	12	13	14	1
0409158-002	TR-1-2.5	Sail	9/10/04 9:01:00 AM	I [п]	A		i	- <u></u>	·					:	A				· ·	· · · · · · ·		!
0409158-003	TR-1-5	Soil	9/10/04 9:04:00 AM		A			_	- †		+			1	A			A	A	-	:	-
0409158-004	TR-1-6W	Water	9/10/04 9:20:00 AM			A)		+ 1	=	F	 -				Α	Α	В	<u> </u>	
0409158-006	TR-2-2.5	Soil	9/10/04 9:53:00 AM		Α	- ins	Α			 A			1 Of Marketiness	.i			· ·	·		. В	·	!
0409158-007	TR-2-5	Soil	9/10/04 9:55:00 AM		Α	-								<u> </u>	A				A	<u> </u>		
0409158-009	TR-3-2.5	Sail	9/10/04 10:17:00		A	<u> </u>	Α	<u> </u>					_	 	A				A	 		
0409158-010	TR-3-5	Soil	9/10/04 10:20:00	H	— A	= 	· Percentus.	= .	<u> </u>		÷	. i.			A	i			- A	-	}	
0409158-012	TR-4-2.5	Soil	9/10/04 10:30:00		Α		A	!		A	+-			Α	T A		-	A	A	<u> </u>	-	
0409158-013	TR-4-5	Soil	9/10/04 10:33:00	l Fi	Α			<u> </u>	-			+		1				A	A	 	- ! -	+
0409158-015	TR-5-2.5	Soil	9/10/04 11:04:00		Α	·	Α			 A		•				s in E			A	i.		
0409158-016	TR-5-5	Soil	9/10/04 11:10:00	Ħ	Α										A			A A	A		+	<u></u> -
0409158-018	TR-6-2.5	Soil	9/10/04 11:20:00	Ħ	Α	-							··	А				<u> </u>	Α	-		
0409158-019	TR-6-5	Soil	9/10/04 11:24:00		A	4	Α								- ^		- 1		A			
0409158-021	TR-7-3	Soil	9/10/04 11:45:00	n†	A			*	-		:	:			Α			<u>A</u>	Α	<u> </u>		
0409158-022	TR-7-5	Soil	9/10/04 11:48:00	Ħ†	A	 					-			Α	. A	· · · · <u> </u>		A	A	•	÷	+

Test Legend:

1	418_S	:
6	8270D_W	
11	LUFT_S	

2	418_W
7	CAM17(T)_W
12	TPH(DMO)_S

3	8260B_S	
8	CAM17_S	
13	TPH(DMO)_W	

4	1	 82	60B	_w	
9	Ľ.	 G-M	вт	EX_	S
14		 *			

5	8270D_S
10	G-MBTEX_W
15	

Prepared by: Rosa Venegas

Comments:

48 hr TAT

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0409158

ClientID: TWRF

Report to:

Peter Cusack

Treadwell & Rollo

555 Montgomery St., Suite 1300 San Francisco, CA 94111 TEL:

(415) 955-9040

FAX:

(415) 955-9041

ProjectNo: #1638.07; Misson Valley Rock

PO:

Bill to:

Requested TAT:

2 days

Accounts Payable

Treadwell & Rollo

555 Montgomery St., Suite 1300

Date Received:

9/13/04

San Francisco, CA 94111

Date Printed:

9/13/04

Panala ID	A 0 . -										F	Reques	sted T	ests	(See	lege	nd b	elow))					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	: .	2	3	4	· · · · · · · ·	5	6	7	L	8	:	9	10	:	11	12	1	13	14 1
0409158-024	TR-8-2.5	Soil	9/10/04 12:20:00		Α	[Δ	1									:						
0409158-025	TR-8-5	Soil	9/10/04 12:24:00		A				 				-	-	A		A				<u> </u>			
0409158-027	TR-9-2.5	Soil	9/10/04 12:50:00	一一:	Α	···			+	÷	Δ		-	-			<u>Α</u>			A	: A	<u>i</u>		
0409158-028	TR-9-5	Soil	9/10/04 12:55:00		A				<u> </u>			!		:			A 			A	. A.			
0409158-030	TR-10-2.5	Soil	9/10/04 1:12:00 PM		A	+	_		_	- -					۸.	-	A 		<u> </u>	- <u>A</u>	<u> </u>			
0409158-031	TR-10-5	Soil	9/10/04 1:15:00 PM		A		+		 			I	+	+-	A		A ^				+ -			
0409158-032	TR-10-6W	Water	9/10/04 1:25:00 PM				Δ		<u> </u>				·· [·			10.000	Н		. I-ware	A	<u>.</u>			

Test Legend:

1	418_S
6	8270D_W
11	LUFT_S

2		418_W	
7)	CAM17(T)_W	
12	[TPH(DMO)_S	

3	8260B_\$
8	CAM17_S
13	TPH(DMO)_W

4	8260B_W					
9	G-MBTEX S					
: 14						

5	8270D_S	
: 10 :	G-MBTEX W	
17.7		
	to the same and the	

Prepared by: Rosa Venegas

Comments:

48 hr TAT

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

CHAIN OF CUSTODY RECORD

Environmental and Geotechnical Consultant			Suite 1300, San Francisco, CA 941		415-955-9041
			16, Orinda GA 94563 Ph: 925-253-		
Site Name: Mission Valley	Park Laur	14th Street, 3rd Floo	r, Oakland, CA 94612 Ph: 510-874	-4500 / Fax: 510-874-4507]	
Site Name: Mission Valley Job Number: 1638.07			Analysis Request	d	Turnaround
Project Manager\Contact: P. Cu:	sack	_	13. C13-9 1		Time
Samplers: M G bbm S					48 hour
Recorder (Signature Required): M. G. E		No. Containers	20017	clean-up	
Parties and the second	Matrix		四岁445	00	
Field Sample	Soil Soil Other	HCL Hrso ₄ HNO ₃ Ice Other	10000 H	Silica gel (Remarks
TR-1-1 9-10-04 856	X			M	
TR-1-2.5 9-10-04 901	X		M X X X		
TR-1-5 9-10-04 904	X				
TR-1-6W 9-10-04 920	1 X	$X \cup X \cup X$	X X X X X X X X X X X X X X X X X X X	4.40AS.	3 Ambus, Iplasto
TR-2-1 1-10-04 950	X L			l X	
Te-2-25 9-10-04 953	X		XXXXX		
TR-2-5 9-10-04 955	X		KKK		
Te-3-1 9-10-04 1014	[X]			l M	
TR-3-2.5 9-10-04 1017	X				
TR-3-5 9-10-04 1020	X				
TR-4-1 9-10-04 1028	X			I I X	
TR-4-2,5 9-10-04 1030	X	X	MXXXXX		
TR-4-5 9-10-04 1033	X		XXX		
TR-5-1 4-10-04 1100					
Relinquished by Signature)	Dala 3/12/	Time 745	Received by: (Signature)	$-\frac{09/13/64}{9}$	Time 115 45 pm
Relinquished by: (Signature)	Dafe /	Time	Received by: (Signature)	Date alistuf	Time 5:45m
Relinquished by: (Signature)	Date	Time	Received by Lab: (Signature)	Date	Time
Sent to Laboratory (Name): McCamp Laboratory Comments/Notes:	bell Analytical	lab.	Method of Shipment Lat	courier Fed Ex [urier (Co. Name)	Airborne UPS
White Conv.	Orlained				

White Copy - Original

Yellow Copy - Laboratory

Pink Copy - Field

COC Number: 002219

CHAIN OF CUSTODY RECORD

Page $\frac{2}{2}$ of $\frac{3}{2}$

Job Number: (638-0	7-		Analysis Requested	Programme Company	s Tulmarou
Samplers: M. 6, bbo			日本の自然の		Time
Recorder (Signature Required): M.	1 bbo n 5	No. Containers		dean-up	10111111
The control of the second of t	Mat		456747	9	
Field Sample Identification No. Date Tim	e Lab Sample No. S	Other HNO3 HNO3 Other	TO TO THE PARTY OF	Silica gel Hold	Remarks
TR 5-2.5 9-6-04 1104	<u> </u>	N. I	XXXXXX		VI COLUMN TO SERVICE S
TR-5-5 1-10-04 1119			MVIV NIV		
TR-6- 1-10-04 1118	- X -			X	
12-4-27 110-04			MAIN X	i.	
		 	XXXX X		
	- 	 		<u> </u>	
12-7-5 9-10-04 1145	5		XXX	- - -	
TR-8-1 9-10-04 17 18	1	 	₩ <u>₩₩</u>		
T2-8-25 9-10-04 122	! IN	- 		X	
T2-8-5 9-10-04 172	7			- - 	
TR-9-1 9-10-04 17-4	1 iA.1			- 	
TR-9-25 9-10-04 125	X			 	
TR-9 5 1-10-104 125	X			 	
Relinguished by (Signature)	Date 2/18/01	Time OS	Redeived by: (Signature)	Date 09/13/04	Time 2:45
Relinquished by: (Signature)	Oate /	Time	Received by: (\$ignature)	Date 0 13	Time
Relinquished by: (Signature)	Date	Time	Received by Lab: (Signature)	Date	Time

Pink Copy - Field

COC Number: UU 3 3 U 1

Treadwell&Rollo

CHAIN OF CUSTODY RECORD

Page 3 of 3

	Environmental and Geotechnical Consultant	555 Ma	ontgomery Street, Sui	ite 1300, San Francisco, CA 94111 Ph: 41	5-955-9040 / Fax: 415-955-9041
	Elimonia del Colore	2 Thea	itre Square, Suite 215	i, Orinda CA 94563 Ph: 925-253-4980 / Fa	x: 925-253-4985
	- A - S - S - S - S	501 14	Ith Street, 3rd Floor,	Oakland, CA 94612 Ph: 510-874-4500 / Fa	x: 510-8/4-450/
	Site Name: MISSION VAILA Job Number: (2807	1 ROCK	Ŀ		Tunacuid
	Job Number: (3807		<u> </u>	Analysis Requested	Time
	Project Manager\Contact: P Cusa	ed		200日本語	URhrs
	Samplers: M. 616075 Recorder (Signature Required): M. 6160	100	No. Containers	133735	
	W (albo	v ≀>Matrix	& Preservative	S S S S S S S S S S S S S S S S S S S	
i					
	Field Sample Date Time	Soil Soil Soil Soil Soil Soil Soil Soil	HSO HSO Other	250000000000000000000000000000000000000	면 Remarks
	Te-10-1 9-10-04 1210	X			X
	TR-10-25 9-10-04 1312	У			
	TR-10-5 9-1004 1215	У		AIXIX XI AIXIV	
450			$N \mid X \mid X$	XXXXX	
	100				
	Relipquished by: (Signature)	Date	Times 26	Received by: (Signature)	Date 01/13/04 Time 12:45 pm
_/	Relinquished by: (Signature)	Date	Time		Date Time
	Relinquished by: (Signature)	Date	Time	Received by Lab: (Signature)	Date Time
	1.0	1-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		Method of Shipment Lab courie	Fed Ex Airborne UPS
	Sent to Laboratory (Name): Macan Laboratory Comments/Notes:	DOWN THEITH	car Lab.	Hand Carried Private Courier (C	` []
					COC Number: 002220
	White Con	v - Original Yello	ow Copy - Laborator	ry Pink Copy - Field	COC Number: 002220