TANK PROTECT ENGINEERING of Northern California, Inc.

TRANSMITTAL FORM

		• • • • • • • • • • • • • • • • • • •		DATE	E: 12/11/97	_ PROJECT N	VO.: <u>384</u>					
					ose Euslandal	W						
TO:		Scott Seery	 	FROM: Frederick Moss								
	ACHCS			Tank Protect Engineering								
		Harbor Bay Park			2821 Whir		222					
•	Alame	eda, CA 94502-65	77		Union Cit	y, CA 94587-1	<u> </u>					
		ENDING YOU DWING ITEMS:	₫ ATTACHED .	□ UNDER SEI	PARATE COV	ER VIAM	ail					
		☐ LETTER(S) ☐ FIGURE(S)	□ PROF □ REPO	POSAL(S) PRT(S)		ABLE(S) ORKPLAN(S)						
COI	PIES	DATED		DI	ESCRIPTION							
	1	10/20/97	Stockpile Soil	1 Remediation and Exploratory Trenching Report, for								
			Mission Valley	Rock, 799 Athe	enour Way, Sun	no1, CA 94586						
REMA	ARKS:	· · · · · · · · · · · · · · · · · · ·										
· · · •			······				. ,					
	•											
						•						
				-								
	,		· 									
				•								
			•									
			H# 21 030 16									
	File	772	19119114	· · · · · ·								

STOCKPILE SOIL REMEDIATION AND EXPLORATORY TRENCHING REPORT

MISSION VALLEY ROCK 7997 ATHENOUR WAY SUNOL, CA 94586

10.20-97

Prepared For:
MORT CALVERT
MISSION VALLEY ROCK
799 ATHENOUR WAY
SUNOL, CA 94586

Submitted By:
TANK PROTECT ENGINEERING
Of Northern California, Inc.
2821 WHIPPLE ROAD
UNION CITY, CA 94587
(510) 429-8088

October 20, 1997

Project Number 384

The HE 31015 LANGUAGE THE STATE OF THE STATE

Grederick Moss

Frederick G. Moss Registered Civil Engineer

Jeff J. Farhoomand, M.S.

Principal Engineer

STOCKPILE SOIL REMEDIATION AND EXPLORATORY TRENCHING REPORT

MISSION VALLEY ROCK 799 ATHENOUR WAY SUNOL, CA 94586

Prepared For:
MR. MORT CALVERT
MISSION VALLEY ROCK
799 ATHENOUR WAY
SUNOL, CA 94586

October 20, 1997

This report has been prepared by the staff of Tank Protect Engineering of Northern California, Inc. under direction of an Engineer and/or Geologist whose seal(s) and/or signature(s) appear hereon.

The findings, recommendations, specifications or professional opinions are presented, within the limits prescribed by the client, after being prepared in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied.

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE HISTORY	1
2.1 Underground Storage Tank D-4	3
3.0 REMEDIATION OF STOCKPILED SOIL	
3.1 Method of Stockpile Soil Remediation	4
3.2 Stockpile Soil Sampling - 06/18/96 to 06/26/96	5
3.3 Stockpile Soil Sampling - 04/08/97	5
3.4 Verification Soil Sampling - 09/05/97	
3.5 Stockpile Soil Disposal	
4.0 EXPLORATORY TRENCHING	-
4.1 Field Operations	7
4.2 Analytical Results	8
5.0 CONCLUSIONS AND RECOMMENDATION	8
6.0 STUDY I IMITATIONS	Ç

FIGURES

- 1. SITE VICINITY MAP
- 2. SAMPLING PLAN VERIFICATION SOIL STOCKPILE
- 3. SITE PLAN TRENCH LOCATIONS

TABLE

1. SUMMARY OF SOIL ANALYTICAL RESULTS

APPENDICES

- A. ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY, LETTER DATED AUGUST 25, 1997
- B. TANK DISPOSAL DOCUMENTS
- C. SAMPLE HANDLING PROCEDURES
- D. CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

1.0 INTRODUCTION

The subject site is located at 799 Athenour Way in the town of Sunol in Alameda County, California (see Figure 1). The contact person for the site is Mr. Mort Calvert; telephone number (510) 862-2257.

The site is located in the Coast Range physiographic province of California. The site at an elevation of about 260 feet above MSL and has a southeasterly to northwesterly topographic gradient. Alameda Creek, a seasonal creek, runs through the property about 2000 feet east northeast of the former underground storage tank. Several large silt ponds are located on the property.

Tank Protect Engineering of Northern California, Inc. (TPE) was contracted by Mission Valley Rock (MVR) to remediate stockpiled soils generated from excavation activities and to conduct exploratory trenching for collection of soil samples. This report presents site history, documents soil stockpile sampling, documents exploratory trenching and presents analytical results of soil sampling.

2.0 SITE HISTORY

Tank Protect Engineering of Northern California, Inc. (TPE) was contracted by Mission Valley Rock (MVR) to remove two 10,000-gallon underground steel, diesel storage tanks and one 2,000-gallon underground steel, gasoline storage tank. Because of obvious hydrocarbon contamination, as evidenced by soil staining and odors from the excavation and the stockpiled soil, ACHCSA verbally authorized MVR to conduct overexcavation to investigate and remove additional contaminated soil.

With the verbal approval of the ACHCSA and MVR, TPE conducted overexcavation activities on June 26, 1996. TPE excavated about 177 cy of contaminated soil from the floor of the former diesel tanks and gasoline tank area. No horizontal excavation was conducted. Vertical excavation was conducted to an estimated maximum depth of about 15.5 feet.

Verification sampling was conducted under the supervision of a representative from the ACHCSA. Six discrete verification soil samples were collected from the excavation sidewalls and floor at depths of 9.0 to 13.5 feet. Sixteen discrete verification soil samples were collected from the stockpiled soil for laboratory compositing into 4 composite samples (SP1-A,B,C,D through SP5-A,B,C,D). The analytical results are included in Table 1.

Soil and groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHD), as gasoline (TPHG), benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl t-butyl ether (MTBE).

Chemical analysis of stockpiled soil detected TPHG at a concentrations of 160 part per million (ppm), 4.5 ppm, 49 ppm, 280 ppm and 47 ppm for SP-1 through SP-5, respectively. TPHD was detected in stockpile samples SP-1 through SP-5 at concentrations of 150 ppm, 90 ppm, 39 ppm, 16 ppm and 45 ppm, respectively. Some or all BTEX chemicals were detected (see Table 1). MTBE was nondetectable in all soil samples.

A "grab" groundwater sample (WS-1) was also collected from the excavation at a depth of 10 feet. Chemical analysis of "grab" groundwater sample (WS-1) detected TPHG and TPHD at concentrations of 12,000 parts per billion (ppb) and 1,200 ppb, respectively. All BTEX chemicals were detected and the results for MTBE were nondetectable.

Tank removal and subsequent soil sampling activities are documented in TPE's August 12, 1996 TANK CLOSURE REPORT, MISSION VALLEY ROCK, 799 ATHENOUR WAY, SUNOL, CA 94586.

Because soil and groundwater samples obtained during tank removal had detectable concentrations of hydrocarbons, the Alameda County Health Care Services Agency (ACHCSA) requested on October 28, 1996 that a environmental investigation be conducted to determine the lateral and vertical extent of soil and groundwater impact resulting from a release at the site.

In response to ACHCSA request, TPE prepared a December 4, 1996 WORKPLAN FOR SOIL BORING INVESTIGATION AND STOCKPILE SOIL REMEDIATION,

MISSION VALLEY ROCK, 799 ATHENOUR WAY, SUNOL, CA 94586 proposing a scope of work to delineate the vertical and horizontal extent of soil and groundwater hydrocarbon contamination.

On December 13, 1996 the ACHCSA in a letter titled <u>MISSION VALLEY ROCK</u>. <u>SUNOL FACILITY</u> approved the workplan with the following modifications: 1) add an additional boring (SB-6) at the south end of the former tank excavation; and 2) adjust the spatial placement of the remaining borings.

Following completion of the soil borings, TPE issued a <u>PRELIMINARY SITE ASSESSMENT</u>, <u>REPORT 799 ATHENOUR WAY</u>, <u>SUNOL</u>, <u>CA 94586</u>, dated March 13, 1997. Soil sample analytical results detected TPHD and TPHG in concentrations up to 2,500 ppm and 230 ppm, respectively. A grab water sample collected had detected TPHD and TPHG in concentrations up to 500,000 ppb and 400,000 ppb, respectively.

2.1 Underground Storage Tank D-4

site and disposed offsite. Soil samples were not collected during the removal operation. Alameda County Health Care Services Agency (ACHCSA) requested, in a letter dated August 25, 1997 (see Appendix A) that a environmental investigation be conducted to determine the subsurface soil conditions beneath this former UST.

On May 9, 1997 the ACHCSA issued a letter (see Appendix A) requesting information about a single 10,000 gallon diesel storage tank (D-4) that was located on the intersection of two haul roads near the crushing plant. (see Figure 2). This tank which was not in the same location as the tanks removed by TPE, was removed from the site by Sierra-West for disposal as scrap steel in April 1995, according to available records. Documents related to the disposal of this UST are provided in Appendix B. Questions regarding the disposal of UST D-4 should be directed to MVR.

On July 8, 1997 TPE prepared a <u>WORKPLAN FOR SUBSURFACE</u> INVESTIGATION AND SOIL SAMPLING, MISSION VALLEY ROCK, 799 ATHENOUR WAY, SUNOL, CA 94586 (workplan) to address the ACHCSA request for a soil sampling plan to determine if soils beneath this tank had been contaminated with fuel hydrocarbons. This report was approved with conditions, in a letter from the ACHCSA dated August 25, 1997.

Recent site activities are summarized below in detail.

3.0 REMEDIATION OF STOCKPILED SOIL

3.1 Method of Stockpile Soil Remediation

As a result of tank removal and overexcavation of soils, a total of about 472 cy of contaminated soils were remediated onsite. Stockpiled soils were remediated by aeration, nutrient addition and bioremediation.

Aeration of the soil was conducted by moving the soil between onsite treatment areas with a front-end loader and dumping the soil from the bucket of the loader while in an elevated position.

Bioremediation of the soil was accomplished by inoculating the soil with a "proprietary" bacterial culture formulated to destroy TPHD and TPHG chemicals. Nutrients were applied to the soil prior to inoculating with bacteria. The nutrients were applied with a spray machine while the soil was being aerated. Following application of nutrients the soils were again aerated, by turning with a front-end loader and spraying (inoculate) with the bacterial culture.

Remediation of stockpiled soil was conducted from June 1996 to September 1997 Remediation was conducted both following the initial sampling (June 18, 1997) and interim sampling (April 8, 1997) of the stockpiled soils. Heavy rains during January and February 1997 prevented completion of the remedial operation for several months. Remediation then continued from March 1997 to September 1997.

total yes?

3.2 Stockpile Soil Sampling - 06/18/96 to 06/26/96

After the excavated soils were placed on plastic sheeting, the stockpile was subdivided by a grid into 5 cells (SP1 through SP5). Stockpile soil samples SP-1 through SP-4 were collected on June 18, 1996, as discrete samples for laboratory compositing, such that 4 discrete samples were composited into 1 sample for stockpile characterization. Four discrete stockpile soil samples were collected for laboratory compositing as sample SP-5 on June 26, 1996. Stockpile soil samples SP5-A through SP5-D were collected from the soil stockpile generated by overexcavation activities conducted on June 26, 1996. All samples were collected from the stockpile directly into a brass tube driven by a slide-hammer corer at depths of about 2.0 to 3.0 feet below the stockpile's surface.

The ends of each tube was quickly covered with Teflon sheeting followed by an end-cap. Each tube was labeled to show site name, project number, date and time sampled, sample name and depth, and sampler name; sealed in individual plastic bags; and preserved in an iced-cooler for delivery to DHS certified Priority Environmental Labs in Milpitas, CA. Each sample was analyzed for TPHD, TPHG BTEX and MTBE (see Appendix C for sample handling procedures).

Results of chemical analyses detected TPHG in all 5 cells at concentrations ranging from 4.5 to 280 ppm and TPHD in all 5 cells ranging from 16 to 150 ppm. These laboratory results were provided in TPE's <u>TANK CLOSURE REPORT</u> (August 12, 1996), and are included in Table 1.

3.3 Stockpile Soil Sampling - 04/08/97

Soils were sampled again in April following several wet months. Four discrete samples were collected from each cell on April 8, 1997 for laboratory compositing into 1 sample for stockpile soil characterization. The stockpile was subdivided into 3 cells as described above (STK6 through STK8) and soils were sampled at a depth of 1.5 to 2.0 feet. Samples were collected and analyzed as described above.

Results of chemical analyses detected TPHG in all 3 cells at concentrations ranging from 1.0 to 2.1 ppm and THPD in all 3 cells ranging from 12 to 57 ppm. Benzene, ethylbenzene and xylenes were also detected. These laboratory results are included in Table 1. Laboratory reports and chain-of-custody documents are provided in Appendix D.

3.4 Verification Soil Sampling - 09/05/97

Between April and September 1997, the soils were again treated as described in Section 3.1. Warmer temperatures assisted the biological processes, evident by odor reduction. The stockpile was measured and subdivided into 7 cells (1 cell equivalent to 67 cy or less). Soils were sampled at depths ranging from 1.0 to 3.5 feet (VSP-1 through VSP-7) in brass tubes as described in Section 3.2. Each cell was then subdivided further into equal quadrants labeled A, B, C, and D (see Figure 2). A systematic random sampling plan was implemented by collecting discrete soil samples in numerical and alphabetical order from each cell. The first sample was selected from cell 1/quadrant A, the second from cell 2/quadrant B and so forth, until all cells were sampled. Samples were analyzed for TPHD and BTEX only.

Results of chemical analyses detected TPHD in all 7 cells at concentrations ranging from 9.2 to 76 ppm. These laboratory results are included in Table 1. Laboratory reports and chain-of-custody documents are provided in Appendix D.

3.5 Stockpile Soil Disposal

On September 10, 1997, Scott Seery of the ACHCSA met representatives from TPE and MVR at the site. Following his review of the laboratory results (VSP-1A through VSP-7C), Mr. Seery determined that onsite disposal, without rouse, was appropriate for the soil stockpile material.

Note: Agned to on. site "reuse" above grade; unterial could not be sold.

A location near the stockpile was selected for soil disposal. An existing berm, about 8-feet high was selected and MVR will use their equipment to place and grade soils against the berm. Since the berm is a permanent feature, these soils cannot be reused for aggregate products. The disposal location is shown on Figure 3.

4.0 EXPLORATORY TRENCHING

Following review of documents and aerial photographs to determine the location of UST D-4, a meeting was scheduled at the site, to evaluate methods for verification of soil conditions beneath the former tank. On June 25, 1997 a representative of ACHCSA (Scott Seery) met with TPE and MVR representatives at the site, to inspect the site conditions and to measure the distance from the UST to a storage barn (see Figure 3). No evidence of surface soil staining was found at the measured position where the former UST was located.

As described in the workplan, it was agreed that surface trenching to a depth of 3-feet would be the best approach to verify shallow soil contamination. Installation of two trenches was proposed by TPE to intersect the UST location.

4.1 Field Operations

The location of UST D-4 was marked and buried utility locations were verified by MVR personnel on September 10, 1997. TPE used a backhoe with 2-foot wide bucket to install two shallow trenches, approximately 8 feet apart, as shown on Figure 3. Each trench was dug to a depth of 3 feet and 4 soil samples were collected from the bucket at a depth of 3.5 feet.

A clean brass tube was pushed into the excavated soil, covered with Teflon sheets, and end caps, labeled and sealed in individual plastic bags. The samples were preserved in an iced-cooler for delivery to a DHS certified laboratory for analyses. Each sample was analyzed for TPHD, TPHG, BTEX and MTBE (see Appendix C for sample handling procedures).

The exposed trenches revealed mixed fill materials consisting of grey silty clay and brown sandy gravel. There was a distinct organic odor emanating from the clays, but no characteristic fuel staining was observed.

After the trenching and sampling was completed, the trench spoils were pushed back into the trench and compacted.

4.2 Analytical Results

Laboratory analyses did not detect TPHG, MTBE or BTEX compounds in any of the 4 soil samples (T1-A, T1-B, T2-A and T2-B). These laboratory results are included in Table 1. Laboratory reports and chain-of-custody documents are provided in Appendix D.

TPHD was detected in 3 of 4 soil samples ranging from 7.8 ppm to 280 ppm.

To verify that only diesel type compounds were present, sample T2-B was reanalyzed to remove organic (polar) compounds that resemble diesel. Following extraction of the soil sample, the extract was filtered through a silica-gel compound. This gel adsorbs the polar organic compounds (decomposed plant materials), leaving only non-polar compounds (diesel) to be quantified. Sample T2-B results for TPHD were reduced by this technique from 280 ppm to 58 ppm (see Table 1).

5.0 CONCLUSIONS AND RECOMMENDATION

Based up the remedial and exploratory work performed at the site, TPE concludes the following:

Bioremediation of the stockpiled soil reduced the concentrations of TPHG from 280 to 1.0 ppm and TPHD from 150 to 76 ppm, based upon statistical sampling of 472 cy of soil.

- Shallow trenches were dug in the former location of UST D-4 to collect soil samples. TPHG, BTEX and MTBE were not detected in any of the 4 soil samples collected.
- Low concentrations of TPHD were detected in 3 of 4 soil samples collected from the trenches. Soil sample T2-B had a TPHD concentration of 280 ppm.
- Silica-gel processing, to remove polar organic compounds, reduced an apparent TPHD concentration from 280 ppm to 58 ppm in soil sample T2-B. This indicates that only about 25% of the compounds detected by standard analytical methods were diesel type compounds.

TPE recommends that no further remediation be performed on excavated (stockpile) soils. These soils will be placed onsite adjacent to a permanent berm. Based upon the TPHD concentrations from the 4 soil samples collected in the exploratory trenches, TPE believes that residual TPHD concentrations are below 60 ppm. The source of the TPHD contamination cannot be determined. TPE recommends that no further soil sampling in the vicinity of UST D-4 is necessary.

6.0 STUDY LIMITATIONS

This report is based on subsurface exploration, laboratory analyses of soil and groundwater samples, and subsurface geologic correlations. The chemical analytical results for the samples are considered applicable to that borehole or location from which they were collected. The soils encountered are believed to be representative of the site; however, the soil may vary in character between observation points. The conclusions contained herein are based on the field observations, analytical data, and professional judgement which is in accordance with current standards of professional practice. Representations made of soil and groundwater conditions between sample locations are extrapolations based on professional opinions and judgements and accepted industry practice. Therefore, TPE cannot and will not provide guarantees, certifications, or warranties that the subject property is or is not free of all

contaminated soil or groundwater and such assessments are provided only in order that the client may make an informed decision.

The extent of testing and data collection directly affects the statistical confidence level of all work performed. As a practical matter, to reach or even approach a 100 percent statistical confidence level would be prohibitively expensive. Therefore, if a reassessment of the subject property becomes necessary in the future, TPE will not reassess the area at its own cost. No other warranty is expressed or implied.

The findings and conclusions of this report are valid as of the present time; however, the passing of time could change the conditions of the subsurface due to natural processes or the influence of man. Accordingly, the findings of this report may be invalidated, wholly or partly, by changes beyond TPE's control. Therefore, this report should not be relied upon after an extended period of time without being reviewed by a Civil Engineer or Registered Geologist.

NDTE: TOTAL VOLUME OF STOCKPILE 95 FT. X 2B FT. X 4.8 FT. = 12,768 CFT. 12,768 CFT./(27 CFT./CYD.) = 472 CYDS. 472 CYDS/7CELL = 67.5 CYDS/CELL 7 SAMPLES/472 CYDS = 1 SAMPLE/67.5 CYDS.

LEGEND

VSP-1A NAME AND LOCATION OF SOIL SAMPLE

TANK PROTECT ENGINEERING

SAMPLING PLAN:
VERIFICATION SOIL STOCKPILE (9/5/97)

MISSION VALLEY ROCK 799 ATHENOUR WAY SUNOL, CA 94586

DATE	10/17/97
FIGURE	2
FILE #	384-16N
DRAVN BY	VK
CHECKED BY	LNH

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS (ppm¹)

Sample ID Name	Date	Depth (Feet)	TPHG	TPHD	Benzene	Toluene	Ethyl- benzene	Xylenes	мтве
S-1	06/18/96	13.5-14.0	170	<1.0	0.065	0.075	0.14	0.23	< 0.005
S-2	06/18/96	13.0-13.5	<1.0	<1.0	<.0050	<.0050	<.0050	<.0050	< 0.005
S-3	06/18/96	12.5-13.0	16	<1.0	0.0061	0.0071	0.027	0.047	< 0.005
S-4	06/18/96	12.0-12.5	790	12	1.1	2.8	4.4	14	< 0.005
S-5	06/18/96	12.0-12.5	130	450	0.6	0.21	0.7	28	< 0.005
S-6	06/18/96	9.0-9.5	670	49	0.26	0.077	0.2	0.44	< 0.005
SP1-A,B,C,D	06/18/96	2.0-2.5	160	150	0.033	0.028	0.13	0.19	< 0.005
SP2-A,B,C,D	06/18/96	2.0-2.5	4.5	90	0.0096	< 0.005	0.014	0.058	< 0.005
SP3-A,B,C,D	06/18/96	2.0-2.5	49	39	0.021	0.023	0.12	0.13	< 0.005
SP4-A,B,C,D	06/18/96	2.0-2.5	280	16	0.53	0.019	2.1	3.3	< 0.005
SP5-A,B,C,D	06/26/96	2.0-2.5	47	45	0.35	0.13	0.53	1.6	< 0.005
SB-1	01/15/97	6.0-6.5	<1.0	56	< 0.005	< 0.005	< 0.005	< 0.005	0.062
SB-1	01/15/97	10.0-10.5	230	220	1.9	1.0	12	5.0	< 0.05
SB-2	01/15/97	6.0-6.5	<1.0	25	< 0.005	< 0.005	0.0072	< 0.005	< 0.05
SB-2	01/15/97	10.0-10.5	<1.0	42	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SB-3	01/15/97	6.0-6.5	<1.0	120	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SB-3	01/15/97	10.0-10.5	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SB-4	01/15/97	6.0-6.5	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SB-4	01/15/97	10.0-10.5	2.6	180	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SB-5	01/15/97	6.0-6.5	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05

TABLE 1
SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS (ppm¹)

Sample ID Name	Date	Depth (Feet)	TPHG	ТРНО	Benzene	Toluene	Ethyl- benzene	Xylenes	МТВЕ
SB-5	01/15/97	11.0-11.5	110	<1.0	0.55	0.50	0.69	0.38	< 0.05
SB-6	01/15/97	6.0-6.5	160	2,500	< 0.005	< 0.005	< 0.005	0.32	< 0.05
SB-6	01/15/97	10.0-10.5	5.4	160	< 0.005	< 0.005	< 0.005	<0.005	<0.005
STK6-A,B,C,D	04/08/97	1.5-2.0	2.1	57	9.9	< 0.005	8.5	32	< 0.005
STK7-A,B,C,D	04/08/97	1.5-2.0	1.5	37	5.6	< 0.005	5.1	22	< 0.005
STK8-A,B,C,D	04/08/97	1.5-2.0	1.0	12	9.6	< 0.005	5.7	19	< 0.005
VSP-1A	09/05/97	1.0-1.5	NA ²	46	< 0.005	< 0.005	< 0.005	< 0.005	NA
VSP-2B	09/05/97	2.0-2.5	NA	9.2	< 0.005	< 0.005	< 0.005	< 0.005	NA
VSP-3C	09/05/97	3.0-3.5	NA	43	< 0.005	< 0.005	< 0.005	< 0.005	NA
VSP-4D	09/05/97	1.0-1.5	NA	45	< 0.005	< 0.005	< 0.005	< 0.005	NA
VSP-5A	09/05/97	2.0-2.5	NA	76	< 0.005	< 0.005	< 0.005	< 0.005	NA
VSP-6B	09/05/97	3.0-3.5	NA	32	< 0.005	< 0.005	< 0.005	< 0.005	NA
VSP-7C	09/05/97	1.0-1.5	NA	43	< 0.005	< 0.005	< 0.005	< 0.005	NA
T1-A	09/10/97	3.5	<1.0	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	NA
Т1-В	09/10/97	3.5	<1.0	14	< 0.005	< 0.005	< 0.005	< 0.005	NA
T2-A	09/10/97	3.5	<1.0	7.8	< 0.005	< 0.005	< 0.005	< 0.005	NA
Т2-В	09/10/97	3.5	<1.0	280/58 ³	< 0.005	< 0.005	< 0.005	< 0.005	NA

¹ PARTS PER MILLION

² NOT ANALYZED

³ SAMPLE WAS PROCESSED TO REMOVE NON-DIESEL ORGANIC COMPOUNDS

APPENDIX A

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY, LETTER DATED AUGUST 25, 1997

APPENDIX B

TANK DISPOSAL DOCUMENTS

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

August 25, 1997

ENVIRONMENTAL HEALTH SERVICES

1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 (510) 337-9335 (FAX)

STID 2786

Mr. Robert A. Saia Mission Valley Rock Company P.O. Box 567 Sunol, CA 94586

RE: MISSION VALLEY ROCK COMPANY, 7999 ATHENOUR WAY, SUNOL -FORMER TANK LOCATION D-4

Dear Mr. Saia:

I have reviewed (1) a July 8, 1997 Tank Protect Engineering, Inc. (TPE) work plan for the assessment of former underground storage tank (UST) location D-4, (2) a photocopied set of air photos depicting the location of tank D-4 and surrounding site features. as submitted under TPE cover dated June 27, 1997, and (3) a 1992 revision to a site map showing the location of all former UST locations, including tank D-4.

The July 8, 1997 TPE work plan proposes the excavation of a minimum of two shallow exploratory trenches across the former UST site, and the collection of soil samples for subsequent laboratory analyses for the presence of diesel fuel constituents. Additional trenches will be excavated should field observations indicate such work is necessary to adequately evaluate the site.

The cited work plan has been accepted with the following conditions:

- 1) Appropriateness of trench locations shall be confirmed in the field by Mission Valley Rock personnel with knowledge of the exact location and orientation of tank D-4 on the day trenching is scheduled to commence; and,
- 2) Samples shall also be analyzed for fuel aromatic components (i.e., BTEX) in those soil samples in which the presence of diesel-range compounds are identified in initial laboratory tests.

Mr. Saia

RE: 7999 Athenour Way, Sunol

August 25, 1997 Page 2 of 2

Please call me at (510) 567-6783 when field work is scheduled to begin.

Sincerely

Scott O. Seery, CHMM

Hazardous Materials Specialist

Mee Ling Tung, Director cc:

Bob Chambers, Alameda County District Attorney's Office

Robert Weston, ACDEH

Jim Ferdinand, Alameda County Fire Department

Fred Moss, Tank Protect Engineering, Inc.

MISSION VALLEY/

ROCK COMPANY
ASPHALT COMPANY
READY MIX COMPANY

7000 ATHENOUR WAY SUNOL, CA 94586 (510) 862-2257

April 17, 1997

County of Alameda 1131 Harbor Bay Parkway Alameda, CA 94502

Attn: Scott Seery

Gentlemen:

Enclosed is documentation form Sierra-West Environmental pertaining to removal of one 10,000 gallon fuel storage tank. This tank was disposed of separately form three other tanks recently removed by Tank Protect Engineering, as reported to your office. It was not completely buried as the others were.

This should account for all underground storage tanks on which we have been paying annual fees, and are now removed. Our fuel is now stored entirely in contained, above ground tanks.

Very Truly Yours.
MISSION VALLEY ROCK CO.

R.L. Scifert

Accounting Manager

SIERRA-WEST ENVIRONMENTAL

Hazardous Waste Management Experts

April 4, 1995

Mission Valley 7999 Athenour Way Sunol, CA. 94586 Attn: Robert Saia

SUBJECT: TRIPLE RINSE & DISPOSE OF (1) 10,000 GAL. TANK.

LOCATION: 7999 ATHENOUR WAY. SUNOL, CA.

Contractor shall furnish labor, material and equipment necessary to perform the following:

Triple Ringe, Transport and Bispose of (1) 10,000 gal. tank.

TOTAL PRICE \$ 1,100.00

STIPULATIONS

- Owner to supply necessary permits for state, county and/or city.
- Owner to move tank near waste oil tank to pump liquid into owners storage tank, owner to dispose of all waste product.
- 3. Owner to provide crane for loading tank on truck.
- 4. Owner to supply water and air for tank rinsing.
- All piping, plugs and pump on top of tank to be removed before contractor arrives on job site.
- 6. Owner to empty tank prior to commencement of project.
- 7. Contractor is not responsible for any prior contamination.

EXTRAS: ANY EXTRAS NOT INCLUDED IN THE CONTRACT WILL BE BILLED ON A TIME AND MATERIAL BASIS AT OUR CURRENT LABOR RATES. ESTIMATES AVAILABLE UPON REQUEST.

ACCEPTED BY:

HISSION VALLEY AUTHORIZED SIGNER

TITLE: ACCTG MAR.

DATE: 4-20-95

SIERRA-WEST ENVIRONMENTAL
JOHN MENDRIN

PROJECT MANAGER

APRIL 4, 1995

INVOICE

- SIERRA-WEST ENVIRONMENTAL 2340 W. CLEVELAND #172 MADERA, CA 93637 (209) 661-0704

CLSTONERNO 95SWE008

INVOICENO. 955WE108-IN

SHIP (O:

MISSION VALLEY
7999 ATHENOUR WAY
SUNOL, CA. 94586
ATTN: ROBERT SAIA

Same

PLEKGRANE CROSKINUMBER	(TRUE)	SD HE	F. (1 B	SHIPAL	A
	4-4	-95		4-14-9	5
AVO/CEDATE	D TANK		231 ESP1 K202	ŲĻ	R ORDIR NUMBER
4-14-95	C.O.D.	1	J.M.	C9	55WE008
g xx.10	Ed State	HOUS.		CN LEAST	FOR NOTE:

Triple Rinse, Transport and Dispose of (1) 10,000 gal. tank.

\$1,100.00

TOTAL

\$1,100.00

BAC/BHAGAVE AIPA DUE (CL + 3(74)) ACCT. 47689

1,100,00

5/2/95

Sierra-West Environmental

**1,100.00

Sierra-West Environmental

Tank#1 removal

Sierra-West Environmental 04/04/95

Bill #Tank#I

5/2/95

1,100.00

MVR General Acct Tank#1 removal

1,100.00

Sierra-West Environmental 04/04/95

Bill #Tank#1

5/2/95

1,100.00

MVR General Acct Tank#1 removal

1,100.00

APPENDIX C

SAMPLE HANDLING PROCEDURES

APPENDIX C

SAMPLE HANDLING PROCEDURES

Soil and groundwater samples will be packaged carefully to avoid breakage or contamination and will be delivered to the laboratory in an iced-cooler. The following sample packaging requirements will be followed.

- . Sample bottle/sleeve lids will not be mixed. All sample lids will stay with the original containers and have custody seals affixed to them.
- . Samples will be secured in coolers to maintain custody, control temperature and prevent breakage during transportation to the laboratory.
- . A chain-of-custody form will be completed for all samples and accompany the sample cooler to the laboratory.
- . Ice, blue ice or dry ice (dry ice will be used for preserving soil samples collected for the Alameda County Water District) will be used to cool samples during transport to the laboratory.
- . Water samples will be cooled with crushed ice. In the Alameda County Water District, water samples will be buried in the crushed ice with a thermometer, and the laboratory will be requested to record thermometer temperature at the time of receipt.
- Lach sample will be identified by affixing a pressure sensitive, gummed label or standardized tag on the container(s). This label will contain the site identification, sample identification number, date and time of sample collection and the collector's initials.
- . Soil samples collected in brass tubes will be preserved by covering the ends with Teflon tape and capping with plastic end-caps. The tubes will

be labeled, sealed in quart size bags and placed in an iced-cooler for transport to the laboratory.

All groundwater sample containers will be precleaned and will be obtained from a State Department of Health Services certified analytical laboratory.

Sample Control/Chain-of-Custody: All field personnel will refer to this workplan to verify the methods to be employed during sample collection. All sample gathering activities will be recorded in the site file; all sample transfers will be documented in the chain-of-custody; samples will be identified with labels; all sample bottles will be custody-sealed. All information is to be recorded in waterproof ink. All TPE field personnel are personally responsible for sample collection and the care and custody of collected samples until the samples are transferred or properly dispatched.

The custody record will be completed by the field technician or professional who has been designated by the TPE project manager as being responsible for sample shipment to the appropriate laboratory. The custody record will include, among other things, the following information: site identification, name of person collecting the samples, date and time samples were collected, type of sampling conducted (composite/grab), location of sampling station, number and type of containers used and signature of the TPE person relinquishing samples to a non-TPE person with the date and time of transfer noted. The relinquishing individual will also put all the specific shipping data on the custody record.

Records will be maintained by a designated TPE field employee for each sample: site identification, sampling location, station number, date, time, sampler's name, designation of the sample as a grab or composite, notation of the type of sample (e.g., groundwater, soil boring, etc.), preservatives used, onsite measurement data and other observations or remarks.

APPENDIX D

CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

April 09, 1997

PEL # 9704015

TANK PROTECT ENGINEERING

Attn: Lee Huckins

Re: Three composited soil samples for Gasoline/BTEX with MTBE and

Diesel analyses.

Project name: Mission Valley Rock Project location: 799 Athenour Way

Project number: 38404897

Date sampled: Apr 08, 1997

Date extracted: Apr 08-09, 1997

Date submitted: Apr 08, 1997 Date analyzed: Apr 08-09, 1997

RESULTS:

SAMPLE I.D.	Gasoline	Diesel	Benzene	Toluene	Ethyl Benzene	Total Xylene	MTBE
	(mg/Kg)	(mg/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
STK6-A,B,C,D	2.1	57	9.9	N.D.	8.5	32	N.D.
STK7-A,B,C,D STK8-A,B,C,D	1.5 1.0	37 12	5.6 9.6	N.D.	5.1 5.7	22 19	N.D.
Blank	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Spiked Recovery	81.9%	91.2%	93.2%	89.6%	104.7%	100.8%	
Detection limit	1.0	1.0	5.0	5.0	5.0	5.0	5.0
Method of Analysis	5030 / 8015	3550 / 8015	8020	8020	8020	8020	8020

David Duong Laboratory Director

1764 Houret Court Milpitas, CA. 95035

Tel: 408-946-9636

Fax: 408-946-9663

(510) 429.8088 **=** (800) 523.8088 **=** Fax (510) 429.8089

LAB:	Vriority		
TURNAI	OUND:	<u> </u>	_

P.O. #: 1393

CHAIN OF CUSTODY

PAGE OF 2

PROJECT NO. 384048976 SAMPTER HAME, ADDRI LOS JULCH 2821 WHIPPLE ROAD, UN ID NO. DATE TIME	Mission Val TOP Ather ESS AND TELEPHO ION CITY, CA S	へのよう 14 の 429-8088	(1) TYPE OF CON- TAINER	E THE PLANT OF THE			 	
51x 4 4/8 1160	X	1.5-2.6	Brass				\prod	
STKD+B) 1100		1.5-2.6		X)	-	Ш	Ш	& Congrate into 1 4 sample
STRG-C Ilos	5 1	1.5-2.0		+	<u> </u>	11		
STK6-D IN	- X	1.5-2.0		凶	<u> </u>	\sqcup	11	
STAD-A 1115		1.5-2.6		V	火	Ш	$\downarrow\downarrow$)
5127-8 111	0 1	1.5-2.6		4	XX	Ш		Composite int 1 sample
SKIC 114	E X	15-20		X P				
510-D 111		1.5-2.0	1	K)	2 X			
				П		П	П	
Relinquished by: (Si Relinquished by: (Si	gnature) I	1	P. (Signa	ture)	Rel		hed by	: (Signature) Date / Time Received by : (Signature) : (Signature) Date / Time Received by : (Signature) Remarks

DATE	:	
------	---	--

(510) 429-8088 = (800) 523-8088 = Fax (510) 429-8089

LAB:	Vriority	
TURNA	ROUND:	

P.O. #: 1393

CHAIN OF CUSTODY

PAGE 7 OF 7

PROJECT	r No.		SI	TE NAME	LADDRESS			1	-	_	/ /	/ /		
ł					ey Bock			Į.	E	&//	\[\int_{\alpha}	/		<i>[. []]</i>
334040	2897	7	744	WHOM	Jur		(1)	3	5%	i/ &	15	/c /	y [3]	(*)
SAMPLER	SAMPLER NAME, ADDRESS AND THLEPHONE NUMBER				TYPE	.42	8/	Z-7	/.Y.	₹/8	y/3`	/// REMARKS		
i	ص (ьU	a och in	ĸ			OF	74	V/.	9/:	₹/\$	///	~	/ / / AMARICA
2821 UNIPP	LE ROA	D UNI	DI CITY	. CA 94:	587 (415) 4	29-8088	CON-	١,	/∵	/×	[4]	9/	7/_	
ID NO.			SOIL		SAMPLING I		TAINER	1 //	₹/.	\$/:	≯/ √	<i>\</i> ~	[9]	/ /
								<u>/^</u>	<u>/\$</u>	Æ	<u>/%/</u>	8/	7 (3) 3 (8)	
~	44	1				_	12	×	,	/			(1
57K8-A	7/R	IZO.	8		1,5-2,1	3	Brad	~				_	┦	(
STK8-B	4/3	120	く		7.5-20	>	Boass	メ	X	4		_	L	composited into I cample
STUB-C		1125	Z.		1.6.2.6		Brus	X	X	8	П	Т	Т	
21.40-0	118	11/24			15-26	·			_		⊢∔	_	-	
STU8-D	4/8	באוו	A.	1	1.5-2.0	5	Brows	ø	×	γ.	ll			Ĭ
D1110 -	, 0	-	1		71.			+-	┢	Н			Ť	
	!	i .	1		ł		l	l			1 1	- 1		·
			1	1	1			Î			П	7	1	
		<u> </u>	I		<u> </u>						Ш	1.		
			 		-						П	T	1	
					<u> </u>			L	L					<u></u>
					,									
Rehinquighe	d by	/Sign	ature	Dat	o / Time	Received by	; (Signa	ture	,	le l i	ngui	ahed	by	: (Signature) Date / Time Received by : (Signature)
1 11 / II	- O •			1			Sam		۱.					
DOWN TH	urei	149					7 7 7		1					
Relinquishe	d by :	(Sign	eturo)	Date	7 Time	Received by	7 : (Signa	ture	אן וי	ol i	nqui	hod	DV :	: (Signature) Date / Time Received by : (Signature)
				<u> </u>					1					
Relinquishe	d by:	(Signa	ature)	Dat		Received for L				Da	to /	Tim	0	Romarko
				14/81	9+14:31	[Signature]	PEL	' 			ı			
					<u> </u>		<u> </u>							<u></u>

DATE	٠	
DUIT	٠	

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

September 09, 1997

PEL # 9709011

TANK PROTECT ENGINEERING

Attn: Lee Huckins

Re: Seven soil samples for BTEX and Diesel analyses.

Project name: 799 Athenor Project number: 384090597

Date sampled: Sept. 05, 1997
Date extracted: Sept.08-09, 1997

Date submitted: Sept.08, 1997
Date analyzed: Sept.08-09, 1997

RESULTS:

SAMPLE I.D.	Diesel (mg/Kg)	Benzene (ug/Kg)	Toluene (ug/Kg)	Ethyl Benzene (ug/Kg)	Total Xylenes (ug/Kg)	
	(449/4/9/	(ug/kg)	(49/149/	(49/449/	(-9/9/	
VSP-1A	46	N.D.	N.D.	N.D.	N.D.	
VSP-2B	9.2	N.D.	N.D.	N.D.	N.D.	
VSP-3C	43	N.D.	N.D.	N.D.	N.D.	
VSP-4D	45	N.D.	N.D.	N.D.	N.D.	
VSP-5A	76	N.D.	N.D.	N.D.	N.D.	-
VSP-6B	32	N.D.	N.D.	N.D.	N.D.	
VSP-7C	43	N.D.	N.D.	N.D.	N.D.	
Blank	N.D.	N.D.	N.D.	N.D.	N.D.	
Spiked Recovery	82.1%	88.7%	90.5%	86.4%	93.9%	
Detection limit	1.0	5.0	5.0	5.0	5.0	
Method of Analysis	3550/ 8015	8020	8020	8020	8020	

David Duong Laboratory Director

1764 Houret Court Milpitas, CA. 95035 Tel: 408-946-9636 Fax: 408-946-9663

(510) 429 8088 m (800) 523 8088 m Fax (510) 429 8089

LAB:	Priorit	<u> </u>	
	DAINID -	7111	

TURNAROUND: 24 hour

P.O. #: 1437

PAGE ____ OF ____

CHAIN OF CUSTODY

3840 SAMPLES 2821 MMIP ID NO.	9059 R NAME.	ADDRES D. UNII	799 S AND 1	Athericans ins ca 945	ADDRESS NOT NUMBER 87 (415) 4 SAMPLING I	29-8088 OCATION	TY: COI TAI:	N-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					REMARKS
YSRIA	9/5	420	X		10-10		B_n	155	丛	<u> </u>	1	\perp		
VSP-218					Z10-Z	5			4	\prod	$\!\!\downarrow\!\!\!\downarrow$	1		
VSP-3C	9/5	1429			3.6-3	35			-	+	4	╀	╀	
ISP-4D	9/5	147t	-		7:0-1:		<u> </u>	-	+	╫	╂	+	╁┼	
SP-SA					20-2		+	-	H	H	╫	╁	╁╂	
15T-63	7/5	7437			370-3		+		\forall	╁┼	╫	+		
SR-7C	7/5	1139	V	<u> </u>	1.0-/3	<u> </u>	 		H	+	┧	+	1	
	 	<u> </u>	-				+		Н	╁	╁	+	H	
Rehinquie Knowk	upl	LVG			to / Time					1				by : (Signature) Date / Time Received by : (Signature) by : (Signature) Date / Time Received by : (Signature)
Relinquis					Tine 77 1/2 125	Received for	Laborat	ory by:		-		. / :		

DATE	:	<u> </u>	
	Ī		

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

September 11, 1997

PEL # 9709016

TANK PROTECT ENGINEERING

Attn: Fred Moss

Re: Four RUSH soil samples for Gasoline/BTEX with MTBE analyses.

Project name: Mission v/y Rock - Sunol.

Project number: 384091097

Date sampled: Sept. 10, 1997

Date extracted: Sept.10, 1997

Date submitted: Sept.10, 1997
Date analyzed: Sept.10, 1997

RESULTS:

SAMPLE	; Gasoline	MTBE	Benzene	Toluene	Ethyl Benzene	Total Xylenes	
I.D.	(mg/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	_
T1-A T1-B	N.D. N.D.	N.D.	N.D.	N.D.	N.D. N.D.	N.D. N.D.	
T2-A T2-B	N.D. N.D.	N.D. N.D.	N.D.	N.D. N.D.	N.D. N.D.	N.D. N.D.	
Blank	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Spiked Recovery	86.3%	an an an	88.7%	90.5%	86.4%	93.9%	
Detection limit	1.0	5.0	5.0	5.0	5.0	5.0	
Method of Analysis	5030/ 8015	8020	8020	8020	8020	8020	

David Duong Laboratory Director

Tel: 408-946-9636 Fax: 408-946-9663

[510] 429-8088 = [800] 523-8088 = Fax [510] 429-8089

LAB: Priority Env.
TURNAROUND: 24hr

P.O. #: 1439

CHAIN OF CUSTODY

PAGE _ _ OF _ _

PROJECT 36409 I SAMPLER 2821 WILPS ID NO.	LE ROA	ADDRES UNIT	M CITY	TE NAME I JOHN V SUMO PELEPHONE CA 945 VATER	ADDRESS /Y Rock I HUMBER DE 687 (415) 43 SAMPLING I	29-8088	(1) TYPE OF CON- TAINER	3						/// INTV # 27370
T1-A	4/10	1745	X				Brook		X	_		1	-	
T1-B	ંપ	1200	*				4	X	X		Ц	\perp	1	
		1230					и	٧	X		Ц]_	_	
T2-A T2-B	u	1300					u	×	X		Ш		_	
						,				<u> </u>				
	-		 	 				Τ	Γ		П		Т	
<u></u>			-	 				t	t	十	H	十	十	
ļ		_	 	 				十	t	十	††	†	†	
			├	 			╁┈┈	╁╴	╁	\vdash	╁╅	+	十	
Relinquishe Relinquishe Relinquishe	ad by	(Sign	ature)	9/1 Dat	0 14-00 0 / Time	Received b	oy: (Signa	tur	->	Rol i		hed	by	y: (Signature) Date / Time Received by: (Signature) y: (Signature) Date / Time Received by: (Signature) Remarks

DATE: 09/10/97

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical laboratory

Tel: 408-946-9636

October 14, 1997

PEL # 9709016

Fax: 408-946-9663

TANK PROTECT ENGINEERING

Attn: Fred Moss

Re: Four soil_samples for Diesel analyses. ___

Project name: Mission v/y Rock - Sunol. Project number: 384091097

Date sampled: Sept. 10, 1997 Date extracted: Sept.23&Oct 13, 97

Date submitted: Sept.10, 1997 Date analyzed: Sept.23&Oct 13,97

RESULTS:

SAMPLE I.D.	Diesel (mg/Kg)
T1-A	N.D.
T1-B	14
T2-A	7.8
T2-B	58
Blank	N.D.

8015

Spiked Recovery 86.8% Detection limit 1.0 Method of 3550 /

Analysis

Silica gel scrub?

David Duong Laboratory Director

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

September 11, 1997

PEL # 9709016

TANK PROTECT ENGINEERING

Attn: Fred Moss

Re: Four soil samples for Diesel analyses.

Project name: Mission v/y Rock - Sunol.

Project number: 384091097

Date sampled: Sept. 10, 1997
Date extracted: Sept.23-25, 97

Diesel

Date submitted: Sept.10, 1997 Date analyzed: Sept.23-25, 97

RESULTS:

SAMPLE

extraction win >

I.D.	(mg/Kg)
T1-A	N.D.
T1-B	14
T2-A	7.8
T2-B	280
Dlank	N D

Blank	N.D.

Spiked Recovery	86.8%
Detection limit	1.0

Method of 3550 / Analysis 8015

David Duong Laboratory Director

1764 Houret Court Milpitas, CA. 95035 Tel: 408-946-9636 Fax: 408-946-9663

-			1		,	0) 523 808	B 🖦 Fa	ax (510)								P.	0.	:-	43	3	2	4
TANK PROTECT ENGINEERING of North to a California 10. 201 Whitehas California 10. 201 Whitehas California 10. 201 Whitehas California 2023 6088 of from \$109, 470 8089 CHAIN OF CUSTODY PAGE OP 1 PAGE OP 1 PAGE OP 1 PEL # 9709016 2223 Simplify So. 10 80. MIN 1718 DOLL WITE SUMPLING DOLL 11 So. MIN 1718 DOLL WITE SUMPLING DOLL 12 Simplify So. 13 Simplify So. 14 So. 15 So. MIN 1718 DOLL WITE SUMPLING DOLL 16 So. MIN 1718 DOLL WITE SUMPLING DOLL 17 So. 18 So. 19 So. 10 So.																						
1-A	4/10	1145	×		• 1 4 1			Brand	ķ	X	XII	ſΤ	\prod								<u> </u>	_
1-B	'ч	200	×			:			X	X	XII			-		Pa 1	Mr.	Fled	Mous	1	; ; ;	$\frac{\cdot}{1}$
		140	X					u	¥	X	XIII		111		<u> </u>	<u> </u>	.		<u> </u>	10)	3:64	121
2-B	u	1300	*					u	×	X	X							<u> </u>	9147	<u>C.</u>		
		• ;	i							П			\prod					<u> </u>		1 1		1
										П			111							+ +		+
										H	#	+	╫╂	-				-		1 1	<u> </u>	<u> </u>
									H	+	##	+		+	!		 		1	! !	-	
·									H	+	╂┼╂	+	-				-	-		-		
Trea	M	logs		9/10	1/400				1]		De	to / T	AO	Robeivo	d by :	(Signati	ire)
-4-1-1-1-1-1	, T	Jignal	are)	Date	/ Tine	Received	by	(Signat	ure)	Pol:	ingui	bed b	v : (Signat	ure)	Da	20 / 72	20	locaivo	by : (Signatu	[0]
	heel • d	Signati	2700)			10	-1-1-		_	!			1							i	1 1	ı

William Committee Committe