# Hanson Sunol

Presentation to ACEH to Review
Site Conditions and Discuss Path Forward



# Objective

- Review site data.
- Clarify and obtain ACEH concurrence regarding site conditions and path forward.



# Outline

- Site History
- Site Conditions:
  - Sources
  - Site characterization
  - Plume stability
  - Potential receptors
- Conclusions and Recommendations



# Site History

- USTs removed in 1996
- Subsurface investigations from 1996 through 2007
- Routine groundwater monitoring since 1998
- AIS pilot test January-February 2008
- AIS operation in source area April 2009 present
- Ongoing AIS O&M and ground water monitoring quarterly in source area (10 wells) and semiannually plume wide (29 wells)



### Site Conditions

- 1. Primary sources have been removed.
- Pending confirmation, apparent source area of plumes (vicinity of MW-9) has been reduced to a point that it is no longer contributing significant mass to the plume
- 3. Site is adequately characterized
- 4. Dissolved plume is generally stable
- No sensitive receptors likely to be affected by existing or future anticipated plume



#### Site Conditions (cont'd)

# 1. Sources

- Former known USTs have been removed
- No data that alleged former UST beneath ASTs is a source
- Residual LNAPL, if present, appears to be immobile, and has responded to AIS operation



#### Sources





Site Conditions (cont'd)

# Alleged Former UST Beneath ASTs is not a Source

- Alleged former diesel UST was abandoned in place
- Data do not indicate source beneath ASTs
  - Low/ND TPH concentrations down/cross gradient
    - Groundwater from shallow wells (MW-11S and MW-3)
    - Soil from temporary soil boring (TB-3)
  - Relatively higher TPH concentrations:
    - upgradient (MW-2 and MW-6)
    - deeper (MW-11D)



Site Conditions (cont'd)

# Residual LNAPL, if present, appears immobile and has responded to AIS

- Historic evidence for residual LNAPL in the source area:
  - Sporadic odor/sheen observed during purging/sampling events
  - Measurable LNAPL detected in former well MW-2 (1999-2002)
  - Free phase observed during drilling (MW-9D)
- Field screening during drilling indicated hydrocarbons present (odor/sheen/PID) (MW-1, MW-2, MW-6, MW-7, MW-9, MW-11, and OXY-1)
- TPH concentrations now generally below levels that indicated communication with LNAPL (i.e., <15,000 ppb)</li>
- Air injection effective at reducing TPH concentrations
- Look for rebound after AIS shut down



# 2. Site is Adequately Characterized

- Good groundwater monitoring well coverage
- Long groundwater data record, since:
  - 1998 (3 wells)
  - 2005 (15 wells)
  - 2006 (26 wells)
- MIP/grab gw investigation characterized lateral/vertical plume extent (Feb-Mar 2007)
- ACEH concurred no additional investigation required (April 2007)



Site is Adequately Characterized (cont'd)

#### Site characterization discussion points

- Groundwater flow direction locally ESE to S:
  - Varied, likely influenced by mining activities (pits, dewatering, water storage, and silting)
  - Not consistent with presumed regional flow to NW
  - Historically not consistent between shallow, deep, and **Livermore Formation**
- Generally have vertically downward gradients
- Characterization S and SE of MW-11 based on gw samples
- Known source area (vicinity of MW-9) not co-located with USTs



# 3. Dissolved plume is stable

- Isoconcentration contour maps plus concentration vs. time plots for the four primary analytes (benzene, MTBE, TPHg, and TPHd) in three zones (shallow, deep, and Livermore Fm.) used for assessment.
- Long-term concentration trends are generally decreasing or stable.
- Note few increasing trends in current data (2008 to present):
  - MTBE (MW-2M, MW-2D, MW-3, MW-6D, MW-11D, MW-11LF)
- Strongly decreasing concentration trends in air injection treatment area.



# Historical



# Benzene in groundwater

- Present in only 3 wells (highest detected concentration 2.2 ug/L in Mar 2010).
- Strongly decreasing concentration trends in Deep Zone and Livermore Fm. wells where concentrations historically highest.



## MTBE in groundwater

- Present only in southern portion of site.
- Highest concentration in Livermore Fm. well (MW-11LF) concentration trend is stable.
- Slight increases in concentrations since 2008, but historic trend is decreasing/stable.



# TPHg in groundwater

Decreasing concentration trends in Deep Zone and Livermore
 Fm. wells where concentrations historically the highest.



## TPHd in groundwater

- Most widespread analyte.
- Lack of distinct concentration trends in most areas with historically highest concentrations.



# 4. No sensitive receptors

Potential sensitive receptors considered:

- Water wells (five wells with long screens [>100ft] located
   >1,000ft W and SW)
- Human health (outdoor work area with limited access)
- Alameda Creek (large distance allows for degradation during migration, contamination migration beneath creek, losing creek)
- SFPUC water storage plans (planning stage, large distance to proposed pits, degradation during migration, dilution in pits)
- Future aggregate mining (may require water and soil management plans)



# Receptors



### Conclusions

- Former known USTs have been removed.
- The Site has been sufficiently characterized.
- Active remediation in the source area has been effective at significantly reducing concentrations.
- Site-wide and with few exceptions, concentrations are generally decreasing or stable.
- There are no significant sensitive receptors that would be affected by the impacted groundwater.



## Recommendations

- Shut down the AIS.
- Conduct groundwater monitoring according to the existing program to monitor for potential rebound in the source area and to confirm the conceptual model presented above.
- Grant NFA if a period of groundwater monitoring after the termination of AIS confirms overall historical declining/stable trends in fuel constituent concentrations.

