

TAIT ENVIRONMENTAL MANAGEMENT, INC. Engineering • Environmental • Compliance

January 23, 2006

Mr. Jerry Wickham Hazardous Materials Specialist Alameda County Health Care Services Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

ENVIRONMENTAL TIENETT SERVICE

SUBJECT:

FOURTH QUARTER 2005

GROUNDWATER MONITORING AND SAMPLING REPORT

MISSION VALLEY ROCK COMPANY

7999 ATHENOUR WAY, SUNOL, CALIFORNIA

Dear Mr. Wickham,

Please find enclosed Tait Environmental Management's Fourth Quarter 2005 Groundwater Monitoring and Sampling Report on the above referenced site. If you have any questions, please don't hesitate to contact the undersigned at (714) 560-8200.

Sincerely,

TAIT ENVIRONMENTAL MANAGEMENT

Paul N. McCarter, PG, CHG, REA II

Senior Project Manager

Cc: Mr. Mort Calvert, Mission Valley Rock

Mr. Steve Zacks, Hanson Aggregates Mid-Pacific, Inc.

Alameda County

JAN 2 7 2006

M:\TEM\TEM 2006\Ctients-TEM\Mission Valley Rock Company\GW Monitoring 4th Qtr 2005\MVR 4th Qtr 2005 Cover.doc

Environmental Health

Fourth Quarter 2005 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared by: Tait Environmental Management, Inc.

January 23, 2006

January 23, 2006

Fourth Quarter 2005 Groundwater Monitoring and Sampling Report

Mission Valley Rock Company 7999 Athenour Way Sunol, California

Prepared for:

Mr. Mort Calvert Mission Valley Rock Company 7999 Athenour Way Sunol, California 94586

Prepared by:

Kevin D. Lambert Staff Scientist

Reviewed by:

PAUL N. ACCARTER

No.5243

Paul N. McCarter, PG, CHG, REAII

Senior Project Manager

Tait Environmental Management

701 North Parkcenter Drive Santa Ana, California 92705

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	OBJECTIVE AND SCOPE OF WORK
3.0	BACKGROUND
4.0	SITE HYDROGEOLOGY
5.0	GROUNDWATER MONITORING WELL PURGING AND SAMPLING
6.0	LABORATORY ANALYSES
7.0	SUMMARY OF ACTIVITIES AND FINDINGS
8.0	QUALITY ASSURANCE/QUALITY CONTROL4
9.0	LIMITATIONS
10.0	REFERENCES
10.0	
FIG	URES
1. 2. 3. 4. 5. 6.	Site Vicinity Map Site Plan Fourth Quarter 2005 Groundwater Contour Map (Deep Zone) 4 th Quarter 2005, TPH-G Concentrations in Groundwater (Shallow Zone) 4 th Quarter 2005, TPH-G Concentrations in Groundwater (Deep Zone) 4 th Quarter 2005, MTBE Concentrations in Groundwater (Shallow Zone) 4 th Quarter 2005, MTBE Concentrations in Groundwater (Deep Zone)
TAB	BLES
1. 2. 3	Well Construction Details and Groundwater Elevation Data Historical Groundwater Gauging Data Groundwater Analytical Results - Fourth Quarter 2005

APPENDICES

4.

Sampling Data Sheets Certificate of Disposal A.

Historical Groundwater Analytical Results

- B.
- C. Laboratory Report

Fourth Quarter 2005 Groundwater Monitoring and Sampling Report Mission Valley Rock Company Sunol, California

1.0 INTRODUCTION

This report summarizes the Fourth Quarter 2005 groundwater monitoring and sampling event conducted at the Mission Valley Rock Company (Site) located at 7999 Athenour Way in Sunol, California (Figure 1). The wells were sampled as part of the Fourth Quarter 2005 groundwater monitoring and sampling program.

2.0 OBJECTIVE AND SCOPE OF WORK

The objective of the proposed scope of work was to monitor and sample the existing groundwater monitoring wells at the Site.

The scope of work that Tait Environmental Management (TEM) developed to meet the objectives included the following tasks:

- Groundwater Monitoring & Sampling
- Laboratory Analyses
- Report Preparation
- Non-hazardous Waste Disposal

3.0 BACKGROUND

In May of 1996, Tank Protect Engineering (TPE) removed two diesel and one gasoline underground storage tanks (USTs). During June of 1998, three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed at the Site. Quarterly groundwater monitoring continued from January of 1999 through March of 2000 (TEM, 2000).

In June of 2000, TEM assumed the contract for environmental services at the Site. In December of 2002, eight soil borings (TB-1 through TB-8) were drilled and sampled at the Site using a direct-push rig. In January of 2005, eight additional soil borings were advanced at the Site using a hollow-stem auger drill rig. Six of the borings were converted to single-, double-, and triple-completion groundwater monitoring wells for a total of 12 wells. Groundwater monitoring well MW-2 was abandoned.

Quarterly groundwater monitoring and sampling have been conducted by TEM from the Fourth Quarter 2000 through the present.

4.0 SITE HYDROGEOLOGY

The Site is located within the Sunol Valley at an elevation of approximately 260 feet above mean sea level (USGS, 1989). The land surface at the Site has been disturbed by excavation activities; however, the natural surface slopes at a gradient of approximately 35 feet per mile toward San Antonio Creek to the east-northeast. San Antonio Creek flow is toward the northwest.

Drilling and sampling activities at the Site indicate that a clay layer is present below the surficial gravels to depths of 10 to 15 feet below ground surface (bgs), with the exception of the area at MW-2S/2M/2D, where the clay layer extends to a depth of 25 feet bgs (TEM, 2005). Soils below the clay layer to the maximum depth explored (30 feet bgs) consist primarily of gravelly sand and sandy gravel mixtures.

Based on the Fourth Quarter 2005 groundwater monitoring data, the depth to groundwater at the Site averaged 7.42 bgs. The apparent groundwater flow direction is to the southeast at a gradient of about 0.015 feet/foot (ft/ft). The flow direction is opposite to the regional northwestern groundwater flow direction in the Sunol Valley as reported by the Alameda County Health Care Services in their letter to Mission Valley Rock Company, dated November 3, 2005. The variation from the regional trend may reflect local conditions, and the groundwater levels at the site may be affected by excavation and pumping operations related to aggregate extraction at the Site.

5.0 GROUNDWATER MONITORING WELL PURGING AND SAMPLING

On December 12th, 2005, static groundwater levels were measured and recorded in the on-site groundwater monitoring wells using an electrical product/water interface meter. Water levels were measured from the top of the well casing (representing the wellhead survey point). Prior to use at each well, the meter was decontaminated with a mild detergent solution and two deionized water rinses. Groundwater gauging and elevation data for the Fourth Quarter 2005 event are summarized in Table 1. Historical groundwater elevation data are summarized in Table 2. Groundwater sampling data sheets are presented in Appendix A.

On December 12th and 13th, 2005, the groundwater monitoring wells were sampled using a WaTerra inertial pump as part of the Fourth Quarter 2005 groundwater monitoring and sampling event. Approximately 65 gallons of purged groundwater were pumped into five steel 55-gallon drums during the sampling event. Groundwater samples were collected from the discharge end of the pump at low-flow levels and transferred into laboratory-supplied containers. Care was taken to ensure that no headspace was allowed into the containers.

Integrated Waste Management of Milpitas, California provided pick-up services for the drummed purge water generated by the monitoring activities. The drums were transported and disposed as non-hazardous water at Seaport Refining & Environmental in Redwood City, California on January 20, 2005. The Certificate of Disposal is contained in Appendix B.

Groundwater samples were collected from 14 wells. They were labeled, placed into an ice-chilled cooler (4°C), and transported under chain-of-custody protocols to SunStar Laboratories,

Inc. (SunStar), a State-Certified laboratory for chemical analysis.

6.0 LABORATORY ANALYSES

The groundwater samples collected during the Fourth Quarter 2005 groundwater monitoring and sampling event were analyzed for:

- The diesel and gasoline fractions of Total Petroleum Hydrocarbons (TPH-d and TPH-g, respectively) using EPA Method No. 8015M.
- Volatile Organic Compounds (VOC's), including benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tertiary butyl ether (MTBE), and the other fuel oxygenates tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), di-isopropyl ether (DIPE), and ethyl tertiary-butyl ether (ETBE) using EPA Method No. 8260B.

Dissolved-phase TPH-g concentrations in the shallow groundwater zone are presented in Figure 4, and deep-zone TPH-g concentrations are contoured in Figure 5. A maximum benzene concentration of 640 micrograms per liter (μ g/L) was detected in MW-7D. A maximum shallow MTBE concentration of 190 μ g/L was detected in MW-6S, and dissolved-phase MTBE concentrations in shallow-zone wells are contoured in Figure 6. A maximum MTBE concentration in the deep-zone wells was 92 μ g/L in MW-6D. Deep-zone MTBE isoconcentration contours are presented in Figure 7.

Fourth Quarter 2005 groundwater analytical results are summarized in Table 3, and a copy of the laboratory analytical report is presented in Appendix C. Historical groundwater analytical results are summarized in Table 4.

7.0 SUMMARY OF ACTIVITIES AND FINDINGS

Based upon the data presented in this report, previous investigations, current regulatory guidelines, and the judgment of TEM, the following is a summary of activities and findings:

- Based on the depth to water measurements obtained by TEM, groundwater levels averaged 7.42 feet bgs. The groundwater flow direction is to the southeast at a gradient of approximately 0.015 ft/ft.
- Fourteen (14) groundwater samples were collected from the monitoring wells at the Site, and they were delivered to SunStar for analysis.
- A maximum TPH-d concentration of 150,000 µg/L was detected in well MW-7D.
- A maximum TPH-g concentration in groundwater of 1,300,000 μg/L was detected in well MW-7D.
- A maximum benzene concentration of 640 μg/L was detected in well MW-7D.

January 23, 2006 Fourth Quarter 2005 Groundwater Monitoring Report Mission Valley Rock, Sunol, California

A maximum MTBE concentration of 190 μg/L was detected in well MW-6S.

Based on groundwater sampling data, the BTEX concentrations were low except in well MW-7D, and fuel oxygenates other than MTBE were not detected above laboratory detection limits.

8.0 QUALITY ASSURANCE/QUALITY CONTROL

To increase the confidence levels in the data obtained and minimize the likelihood that judgments were made from potentially erroneous data, a quality assurance/quality control (QA/QC) program was implemented. QA refers to management of actions designed to maintain precision, accuracy, completeness, and representativeness of the data developed from the project. QC refers to accepted formal procedures and activities specifically designed for the purpose of collecting data that are intended to be reliable and consistent for the Site conditions.

The program includes formal procedures for drilling, sampling, well installation, decontamination, instrument calibration, documentation of activities and calculations, and peer review. Routine QC procedures were performed by the laboratory and included daily calibration of instruments, percent surrogate recoveries and analysis of matrix spikes and matrix spike duplicates. The laboratory reported the results to be within acceptable percent recoveries with no results exceeding the laboratory-established control limits.

9.0 LIMITATIONS

No investigation is considered thorough enough to exclude the presence of hazardous materials at a given site. Opinions and/or recommendations presented apply to Site conditions existing at the time of the performance of services and TEM is unable to report on or accurately predict events which may impact the Site following conduct of the described services, whether occurring naturally or caused by external forces. No responsibility is assumed by TEM for conditions it is not authorized to investigate, or conditions not generally recognized as environmentally unacceptable at the time services were performed. Services hereunder were performed in accordance with our agreement and understanding with, and solely for the use of, Mission Valley Rock. TEM is not responsible for the subsequent separation, detachment or partial use of this document. Any reliance on this report by a third party shall be at such party's sole risk.

January 23, 2006
Fourth Quarter 2005
Groundwater Monitoring Report
Mission Valley Rock, Sunol, California

10.0 REFERENCES

Alameda County Health Care Services, November 3, 2005, Fuel Leak Case No. RO0000207, Mission Valley Rock and Asphalt, 7999 Anthenour Way, CA.

Tait Environmental Management, July 28, 2000, Second Quarter Report, June 2000, Mission Valley Rock Company, 7999 Athenour Way, Sunol, California 94586.

Tait Environmental Management, April 1, 2005, Site Assessment and First Quarter 2005 Groundwater Monitoring and Sampling Report, Mission Valley Rock Company, 7999 Athenour Way, Sonul, California 94586.

U.S. Geological Survey (USGS), 1989, Fremont 7.5 Minute Topographic Quadrangle Map, 1:24,000.

M:\TEM\TEM 2006\Clients-TEM\Mission Valley Rock Company\GW Monitoring 4th Qtr 2005\MVR 4th Qtr Report 2005.doc

701 NORTH PARKCENTER DRIVE SANTA ANA, CA 92705 (714) 560-8200 (714) 560-8235 FAX

ENVIRONMENTAL MANAGEMENT, INC.

SITE VICINITY MAP MISSION VALLEY ROCK CO. 7999 ATHENOUR WAY SUNOL, CALIFORNIA

PROJECT NO. EM-5009

FIGURE 1

NOTES:

BASE MAP OBTAINED FROM TERRASERVER.COM, UNITED STATES GEOLOGICAL SURVEY (USGS), FREEMONT QUADRANGLE, ALAMEDA COUNTY, CALIFORNIA. PRINTED JULY 1, 1989.

Table 1 Well Construction Details and Groundwater Elevation Data Fourth Quarter 2005

Mission Valley Rock Company Sunol, California

Well ID	Casing Diameter (inches)	Depth to Water (feet below TOC)	Total Depth (feet below TOC)	Screened Interval (feet bgs)	Measuring Point Elevation (feet MSL)	Groundwater Elevation (feet MSL)
MW-1	2	6.44	17.50	5.0 - 20.0	258.68	252.24
MW-2S	2	7.38	8.35	3.0-8.0	258.84	251.46
MW-2M	2	7.78	18.75	14.0-19.0	258.99	251.21
MW-2D	2	7.85	29.60	25.0-30.0	258.91	251.06
MW-3	2	8.45	15.03	5.0-20.0	259.08	250.63
MW-4S	2	5.48	8.22	3.0-8.0	259.14	253.66
MW-4D	2	8.50	23.20	17.0-22.0	259.22	250.72
MW-5S	2	7.68	8.00	3.0-8.0	259.43	251.75
MW-5D	2	7.92	22.50	17.0-22.0	259.40	251.48
MW-6S	2	7.48	14.80	5.0-15.0	258.75	251.27
MW-6D	2	8.32	28.90	24.5-29.5	259.27	250.95
MW-7S	2	6.64	8.30	5.0-8.0	258.82	252.18
MW-7D	2	7.40	22.40	20.0-25.0	258.07	250.67
MW-8	2	6.67	15.10	5.0-15.0	258.84	252.17

Screened intervals are approximated. Screened interval in wells is lower than the measured total depth due to silting in the bottom of wells. The measurement point for the above wells is the north side of the top of casing.

Depth to water and total depth measurements taken by Tait Environmental Management, Inc. personnel on December 12, 2005. Total depth and depth to water measurements taken by Tait Environmental Management from designated measurement point.

Groundwater Elevation = Measurement Point Elevation - Depth to Water.

TOC = Top of Casing

bgs = Below Ground Surface

MSL = Mean Sea Level

Table 2 Historical Groundwater Gauging Data Mission Valley Rock Company Sunol, California

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
MW-1	256.51	06/01/98	1.32	255.19	ND
	200.01	01/01/99	2.28	254.23	ND
	l F	03/01/99	1.88	254.63	ND
	l F	06/01/99	3.35	253.16	ND
		09/01/99	3,66	252.85	ND
		12/01/99	2.94	253.57	ND ND
	1 -	03/01/00	2.72	253.79	Odor
	I -	06/01/00	4.01	252.50	Slight Ödor
		09/01/00	5.11	251.40	Slight Odor
		12/01/00	4.95	251.56	ND
		03/01/01	2.28	254.23	ND
		06/01/01	3.60	252.91	ND
		09/01/01	6.50	250.01	ND
		12/01/01	1.29	255.22	ND
		03/01/02	2.91	253.60	ND
	}	06/02/02	3.95	252.56	ND ND
	}	09/02/02	5.18	251.33	ND
		12/01/02	3.90	252.61	ND
		03/01/03	1.40	255.11	ND ND
		06/03/03	2.65	253.86	ND
		09/19/03	4.67	251.84	ND
	l asa as	12/03/03	4.60	251.91	ND NB
	258.68	01/17/05	3.41	255.27	ND
		05/04/05	1.20	257.48	ND
	l ⊩	08/12/05	4.52	254.16	ND
MALO	050.7	12/12/05	6.44	252.24	ND
MW-2	256.7	06/01/98	1.72	254.98	0.005
	l F	01/01/99	2.69	254.01	4.00
	l -	03/01/99	2.50	254.20	ND
	! ⊦	06/01/99 09/01/99	4.00 4.54	252.70	Sheen
]	12/01/99	3.85	252.16 252.85	0.50 0.13
	i F	03/01/00	3.20	253.50	0.03
	l F	06/01/00	4.62	252.08	0.02
	l	09/01/00	5.95	250.75	>0.02
	l ⊦	12/01/00	5.65	251.05	0.07
	l	03/01/01	3.21	253.49	0.10
	l	06/01/01	3.31	253.39	0.06
	l	09/01/01	7.08	249.62	0.34
		12/01/01	2.18	254.52	0.26
	!	03/01/02	3.40	253.30	0.90
	i	06/02/02	4.35	252.35	0.08
	l 1	09/02/02	5.54	251.16	ND
	j t	12/01/02	4.30	252.40	ND
	j h	03/01/03	1.78	254.92	ND
	j t	06/03/03	3.10	253.60	ND
	l l	09/19/03	5.02	251.68	ND
	l l	12/03/03	NM	NM	NM
	<u> </u>	01/05/05		Abandoned	.,
MW-2S	258.84	01/17/05	4.25	254.59	ND
	j l	05/04/05	1.98	256.86	ND
	j [08/12/05	5.46	253.38	ND
	<u> </u>	12/12/05	7.38	251.46	ND
MW-2M	258.99	01/17/05	4.68	254.16	ND
] [05/04/05	2.32	256.52	ND
] [08/12/05	5.77	253.07	ND
		12/12/05	7.78	251.21	ND
		04/47/05	A 75	254.09	ND
MW-2D	258.91	01/17/05	4.75		ND .
MW-2D	258.91	05/04/05	2.38	256.46	ND ND
MW-2D	258.91				

Table 2 Historical Groundwater Gauging Data Mission Valley Rock Company Sunol, California

	Top of				
Well	Casing	Data	Depth to Water	Groundwater Elevation	LPH Thickness
well	Elevation	Date	(feet below TOC)	(feet MSL)	(feet)
	(Feet)			·	, .
MW-3	256.72	06/01/98	2.66	254.06	ND
		01/01/99	4.47	252.25	Slight Odor
	1 [03/01/99	3.96	252.76	Sheen
	I	06/01/99	5.54	251.18	ND
		09/01/99	6.18	250.54	Sheen
	1 [12/01/99	5.52	251.20	Odor
	[03/01/00	4.61	252.11	Odor
		06/01/00	6.35	250.37	Very Slight Odd
		09/01/00	7.30	249.42	Very Slight Odo
	L	12/01/00	7.29	249.43	ND
	! <u>L</u>	03/01/01	4.73	251.99	ND
		06/01/01	NM	NM	NM
		09/01/01	7.89	248.83	ND
		12/01/01	3.77	252.95	ND
		03/01/02	5.12	251.60	ND
		06/02/02	6.52	250.20	ND ND
	 	09/02/02	7.28	249.44	ND
		12/01/02	6.40	250.32	ND
	1	03/03/03 06/03/03	4.01	252.71	ND ND
		09/19/03	5.13 5.13	251.59 251.59	ND ND
	1 F	12/03/03	7.20	249.52	ND ND
	259.08	01/17/05	5.81	253.27	ND ND
	239.00	05/04/05	3.50	255.58	ND ND
	1 F	08/12/05	6.01	253.07	ND
		12/12/05	8.45	250.63	ND ND
MW-4S	259.14	01/17/05	4.62	254.52	ND
	-33	05/04/05	3.73	255.41	ND
	1 1	08/12/05	3.45	255.69	ND
] h	12/12/05	5.48	253.66	ND
MW-4D	259.22	01/17/05	5.96	253.26	ND
	1 [05/04/05	3.93	255.29	ND
	1 [08/12/05	5.60	253.62	ND
		12/12/05	8.50	250.72	ND ND
MW-5S	259.43	01/17/05	4.57	254.86	ND
	1 L	05/04/05	2.50	256.93	ND
	1	08/12/05	5.30	254.13	ND
	<u> </u>	12/12/05	7.68	251.75	ND
MW-5D	259.40	01/17/05	5.15	254.25	ND
	1	05/04/05	2.75	256.65	ND
	-	08/12/05	5.60	253.80	ND
MM/ OO	050.75	12/12/05	7.92	251.48	ND ND
MW-6S	258.75	01/17/05	4.30	254.45	ND
	1 -	05/04/05	1.96	256.79	ND ND
	-	08/12/05	5.17	253.58	ND ND
MW-6D	259.27	12/12/05 01/17/05	7.48	251.27 254.10	ND ND
OD, ARIAI	208.21	05/04/05	5.17	254.10	
	-	08/12/05	2.80 6.30	250.47 252.97	ND ND
		12/12/05	8.32	250.95	ND ND
MW-7S	258.82	01/17/05	3.42	255.40	ND ND
70	200,02	05/04/05	1.44	257.38	ND
	F	08/12/05	4.80	254.02	ND ND
	-	12/12/05	6.64	252.18	ND
MW-7D	258.07	01/17/05	5.50	252.57	ND
, 10		05/04/05	1.45	256.62	ND ND
	-	08/12/05	4.70	253.37	ND
		12/12/05	7.40	250.67	ND
MW-8	258.84	01/17/05	3.45	255.39	ND
	1 F	05/04/05	1.25	257.59	ND

Table 2 Historical Groundwater Gauging Data

Mission Valley Rock Company Sunol, California

Well	Top of Casing Elevation (Feet)	Date	Depth to Water (feet below TOC)	Groundwater Elevation (feet MSL)	LPH Thickness (feet)
		08/12/05	4.92	253.92	ND
		12/12/05	6.67	252.17	ND

Depth to water and liquid phase hydrocarbon (LPH) thickness reported in feet below measurement point.

Groundwater elevations reported in feet above mean sea level (msl).

Adjusted groundwater elevation = Measurement Point Elevation - Depth to Water + (LPH Thickness x 0.75)

NM = Not Measured

ND = Not Detected

TOC = Top of Casing

MSL = Mean Sea Level

LPH = Liquid-Phase Hydrocarbon

Table 3 Groundwater Analytical Results Fourth Quarter 2005

Mission Valley Rock Company Sunol, California

Well	Date	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (ug/L)	TBA (ug/L)
MW-1	12/13/2005	ND<50	750	3.8	ND<0.50	4.2	ND<1.0	ND<1.0	ND<10
MW-2S	12/12/2005	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	26	ND<10
MW-2M	12/12/2005	ND<50	410	ND<0.50	ND<0.50	ND<0.50	ND<1.0	28	ND<10
MW-2D	12/12/2005	ND<50	200	ND<0.50	ND<0.50	ND<0.50	ND<1.0	39	ND<10
MW-3	12/13/2005	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	75	ND<10
MW-4S	12/12/2005	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<10
MW-4D	12/12/2005	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<10
MW-5S	12/12/2005	ND<50	ND<50	3.4	1.3	ND<0.50	ND<1.0	ND<1.0	ND<10
MW-5D	12/12/2005	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<10
MW-6S	12/12/2005	ND<50	1,000	ND<0.50	ND<0.50	1.4	ND<1.0	190	ND<10
MW-6D	12/12/2005	ND<50	240	ND<0.50	ND<0.50	ND<0.50	ND<1.0	92	ND<10
MW-7S	12/12/2005	ND<50	610	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<10
MW-7D	12/12/2005	150,000	1,300,000	640	3,100	21,000	54,800	ND<5.0	ND<500
MW-8	12/12/2005	830	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0	ND<10

Notes:

Analyses for Total Petroleum Hydrocarbons as Gasoline and Diesel (TPHg and TPHd, respectively) were performed using EPA Method No. 8015M.

Analyses for benzene, toluene, ethylbenzene, total xylenes, methyl-tert-butyl ether (MTBE), and Tert-butyl alcolhol (TBA) were performed using EPA Method No. 8260B.

Tert-amyl methyl ether (TAME), Di-isoproppyl ether (DIPE), and Ethyl tert-butyl ther (ETBE) were not detected above laboratory detection limits.

Total xylene concentrations were determined by adding m,p-xylene and o-xylene from laboratory report.

NM = Not Measured

mg/L = Milligrams per Liter

ug/L = Micrograms per Liter

ND = Non-detect at or above corresponding laboratory reporting limit.

Monitoring wells MW-1 and MW-3 were sampled on December 13, 2005.

Table 4 Historical Groundwater Analytical Results Mission Valley Rock Company Sunol, California

		TOUL	TOLL	D	T-1	CH. II.	V	LUTDE
Well	Date	TPHd (ug/L)	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
 	00/04/00		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	06/01/98 10/01/98	0.1	3,100	19	2.3	91	48	110
	12/01/98	0.1 350	2,300 ND<50	3.1 12	4.2 7.5	5.0 20	15 6.2	ND<0.50 ND<5.0
	03/01/99	190	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/01/99	210	1,800	1.2	0.9	1,5	4.6	ND<0.5
	09/01/99	62	180	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
	12/01/99	290	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
[03/01/00	86	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/01/00	70	450	2.1	ND<0.5	2.1	1.4	7.6
	09/01/00	ND<50	850	5.4	ND<0.50	9.4	2.6	9.8
MW-1	12/01/00	ND<1,000	370	5.3	ND<1.0	2.7	ND<3.0	55
	03/01/01	ND<1,000	700	ND<1.0	ND<1.0	1.4	ND<1.0	ND<1.0
	06/01/01 09/01/01	ND<1,000 ND<1,000	170 730	ND<1.0	ND<1.0	1,2 7.6	ND<1.0	ND<1.0
	12/01/01	1000	500	1.4 15	ND<1.0 ND<1.0	27	1.2 5.5	ND<1.0 ND<1.0
	03/02/02	12000	29000	50	ND<1.0	960	290	ND<25
	06/02/02	ND<1,000	1400	3.5	ND<1.0	42	7.9	ND<1.0
	09/02/02	1400	760	ND<1,0	ND<1.0	4.3	1.1	ND<1.0
	12/01/02	ND<1,000	1600	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
	03/01/03	ND<1,000	620	1.2	ND<1.0	12	ND<1.0	ND<1.0
[06/03/03	ND<1,000	0.61	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
	09/01/03	ND<1,000	1.2	ND<1.0	ND<1.0	6.4	ND<1.0	ND<1.0
	12/03/03	ND<1,000	0.49	ND<1.0	ND<1.0	3.0	ND<1.0	ND<1.0
	01/17/05 05/04/05	ND<50	63	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
	08/12/05	ND<50 ND<50	1200 410	ND<0.5 ND<0.5	ND<0.5 ND<0.5	8.5 2.4	1.2 ND<0.5	ND<1.0 ND<1.0
l	12/13/05	ND<50	750	3.8	ND<0.5	4.2	ND<0.0	ND<1.0
	06/01/98	12,000	2,500	0.68	ND<0.50	1.2	0.57	14
	10/01/98	4,300	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	12/01/98	38,000	ND<5,000	ND<50	ND<50	51	190	ND<500
	03/01/99	580	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/01/99	4,500	24,000	38	27	41	98	ND<0.5
	09/01/99	24,000	1,400	ND<0.50	ND<0.50	ND<0.50	ND<0.50	27
	12/01/99	2,300	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	03/01/00	620	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
	06/01/00 09/01/00	1,700 5,800	270 130	ND<0.5 ND<0.50	ND<0.5 ND<0.50	ND<0.5 ND<0.50	ND<0.5 0.94	17
l l	12/01/00	19,000	1700	ND<50	ND<50	ND<50	ND<150	ND<250
MW-2	03/01/01	610000	3300	ND<1.0	ND<1.0	ND<1.0	ND<1.0	9.0
	06/01/01	8800	1800	ND<1.0	ND<1.0			
[00/01/0	1 0000	1000			ND<1.0	ND<1.0	6.7
	09/01/01	530000	7000	ND<50	ND<50	ND<1.0 ND<50	ND<1.0 ND<50	ND<50
	09/01/01 12/01/01	530000 27000	7000 310		ND<50 ND<1.0	ND<50 ND<1.0	ND<50 ND<1.0	
	09/01/01 12/01/01 03/02/02	530000 27000 65000	7000 310 130	ND<50 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0	ND<50 62 30
	09/01/01 12/01/01 03/02/02 06/02/02	530000 27000 65000 130000	7000 310 130 460	ND<50 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02	530000 27000 65000 130000 480000	7000 310 130 460 290	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02	530000 27000 65000 130000 480000 61000	7000 310 130 460 290 1800	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03	530000 27000 65000 130000 480000 61000 5000	7000 310 130 460 290 1800 ND<100	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03	530000 27000 65000 130000 480000 61000 5000 8.1	7000 310 130 460 290 1800 ND<100 360	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03	530000 27000 65000 130000 480000 61000 5000	7000 310 130 460 290 1800 ND<100	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03	530000 27000 65000 130000 480000 61000 5000 8.1	7000 310 130 460 290 1800 ND<100 360	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20
MW-2S	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05	530000 27000 65000 130000 480000 61000 5000 8.1 85	7000 310 130 460 290 1800 ND<100 360 12	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15
MW-2S	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 01/17/05	530000 27000 65000 130000 480000 61000 5000 8.1 85	7000 310 130 460 290 1800 ND<100 360 12 730	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.50 ND<0.50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15
MW-2S	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 01/17/05 05/04/05	530000 27000 65000 130000 480000 61000 5000 8.1 85	7000 310 130 460 290 1800 ND<100 360 12 730 190	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.50 ND<0.50 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<5.0 ND<5.0	ND<50 62 30 24 16 10 14 20 15
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 01/17/05 05/04/05 08/12/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.50 ND<0.50 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.50 ND<0.50 ND<0.50 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<5.0 ND<5.0 ND<5.0	ND<50 62 30 24 16 10 14 20 15
MW-2S	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 08/12/05 01/17/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 01/17/05 01/17/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 08/12/05 01/17/05 05/04/05 05/04/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56
MW-2M	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 01/17/05 05/04/05 12/12/05 01/17/05 05/04/05 08/12/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28
	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 08/12/05 01/17/05 05/04/05 05/04/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<5.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 82.2 10.6 1.2 ND<1.0 71	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56
MW-2M	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 01/17/05 05/04/05 08/12/05 12/12/05 05/04/05 08/12/05 08/12/05 08/12/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50 ND<50 1800	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62
MW-2M	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 08/12/05 01/17/05 08/12/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50 ND<50 1800 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62 72
MW-2M	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 ND<50 ND<50 ND<50 1800 ND<50 ND<50 ND<50 1800 ND<50 ND<50 ND<50 1800 ND<50 ND<50 1800 ND<50 1800 ND<50 12,000	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250 ND<50 200 300	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<0.5	ND<50 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 82.2 10.6 1.2 ND<1.0 71 1.6 1.1 ND<1.0 ND<0.50	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62 72 51 39 150
MW-2M	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 ND<50 ND<50 ND<50 1800 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250 ND<50 300 ND<50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<0.5	ND<50 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 1.2 ND<1.0 71 1.6 1.1 ND<1.0 ND<0.50 ND<0.50	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62 72 51 39 150 ND<0.50
MW-2M	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 06/01/98 10/01/98	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 ND 50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250 ND<50 200 300 ND<50 ND<50 ND<100	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 71 1.6 1.1 ND<1.0 ND<0.50 ND<0.50 ND<0.50 ND<0.50	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62 72 51 39 150 ND<0.50
MW-2M	09/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 12/03/03 01/17/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 08/12/05 01/17/05 08/12/05 12/12/05 01/17/05 08/12/05 12/12/05 01/17/05 06/01/98 10/01/98 10/01/98 10/01/98	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250 ND<50 200 300 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 82.2 10.6 1.2 ND<1.0 71 1.6 1.1 ND<1.0 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62 72 51 39 150 ND<0.50 110 ND<0.5
MW-2M	09/01/01 12/01/01 03/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 01/17/05 05/04/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 08/12/05 12/12/05 01/17/05 08/12/05 12/12/05 06/01/98 10/01/98 03/01/99 06/01/99	530000 27000 65000 130000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 12,000 6400 5,600 150 620	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250 ND<50 200 300 ND<50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<5.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<	ND<50 ND<1.0 ND<0.5	ND<50 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<1.0 82.2 10.6 1.2 ND<1.0 71 1.6 1.1 ND<1.0 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.5	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62 72 51 39 150 ND<0.50 ND<0.55 ND<0.55
MW-2M	09/01/01 12/01/01 12/01/01 03/02/02 06/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 06/01/98 10/01/98 12/01/98 03/01/99 06/01/99	530000 27000 65000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 12,000 6400 5,600 150 620 1,500	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250 ND<50 200 300 ND<50 ND<50 ND<50 ND<50 200 300 ND<50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<	ND<50 ND<1.0 ND<0.5 ND<0.50 ND<0.50 ND<0.50 ND<0.50	ND<50 ND<1.0 ND<0.5	ND<50 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1.0 82.2 10.6 1.2 ND<1.0 71 1.6 1.1 ND<1.0 ND<0.50	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 62 72 51 39 150 ND<0.50 ND<0.5 89
MW-2M	09/01/01 12/01/01 03/02/02 09/02/02 12/01/02 03/01/03 06/17/03 09/19/03 12/03/03 01/17/05 05/04/05 01/17/05 05/04/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 05/04/05 08/12/05 12/12/05 01/17/05 08/12/05 12/12/05 01/17/05 08/12/05 12/12/05 06/01/98 10/01/98 03/01/99 06/01/99	530000 27000 65000 130000 130000 480000 61000 5000 8.1 85 1100 8200 6100 ND<50 4100 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 ND<50 12,000 6400 5,600 150 620	7000 310 130 460 290 1800 ND<100 360 12 730 190 120 ND<50 3300 610 460 410 1000 250 ND<50 200 300 ND<50	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5	ND<50 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<	ND<50 ND<1.0 ND<0.5	ND<50 ND<1.0 ND<0.5 ND<0.5 ND<0.5 ND<1.0 82.2 10.6 1.2 ND<1.0 71 1.6 1.1 ND<1.0 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.50 ND<0.5	ND<50 62 30 24 16 10 14 20 15 50 44 77 26 38 32 56 28 62 72 51 39 150 ND<0.50 ND<0.55 ND<0.55

Table 4 Historical Groundwater Analytical Results

Mission Valley Rock Company Sunol, California

		TPHd	TPHg	Panzona	Toluene	Ethylbenzene	Vidence	МТВЕ
Well	Date	(ug/L)	(ug/L)	Benzene (ug/L)	(ug/L)	(ug/L)	Xylenes (ug/L)	(ug/L)
	00/04/00			,				<u> </u>
	06/01/00	240	170	ND<0.5	0.52	ND<0.5	ND<0.5	100
	09/01/00	850	170	0.81	ND<0.50	ND<0.50	ND<0.50	68
	12/01/00	1600	230	ND<1.0	ND<1.0	ND<1.0	ND<3.0	80
	03/01/01	1100	140	ND<1.0	ND<1.0	ND<1.0	ND<1.0	83
	06/01/01 09/01/01	NS 3800	NS ND 2100	NS ND 4 0	NS ND-10	NS ND 10	NS ND 4 0	NS 4E
	12/01/01	3100	ND<100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	45
	03/02/02	1500	340 ND<100	1.4 ND<1.0	1.1 ND<1.0	10 ND<1.0	3.8 ND<1.0	45 50
	06/02/02	ND<1000	160	ND<1.0	ND<1.0	ND<1.0	ND<1.0	-
	09/02/02	ND<1000	ND<1000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	36 43
	12/01/02	ND<1000	ND<1000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	41
	03/01/03	ND<1000	ND<100	ND<2.5	ND<2.5	ND<2.5	ND<1.5	92
	06/03/03	1200.0	ND<100	ND<2.0	ND<2.0	ND<2.0	ND<2.0	93
	09/19/03	ND<1000	ND<100	ND<2.0	ND<2.0	ND<2.0	ND<2.0	65
	12/01/03	5700	190	ND<2.0	ND<2.0	ND<2.0	ND<2.0	56
	01/17/05	ND<50	590	ND<0.50	ND<0.50	ND<0.50	ND<0.50	47
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	190
	08/11/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	110
	12/13/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	75
MW-4S	01/17/05	ND<50	65	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
	08/12/05	ND<50	ND<50	ND<0.5	ND<0.5	2.2	5.8	ND<1.0
	12/12/05	ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-4D	01/17/05	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
	08/12/05	ND<50	410	ND<0.5	2.20	10.0	25.5	ND<1.0
	12/12/05	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0
MW-5\$	01/17/05	ND<50	ND<50	ND<0.50	4.5	ND<0.50	ND<0.50	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.50	ND<0.5	ND<0.50	ND<0.50	ND<1.0
	08/11/05	ND<50	ND<50	ND<0.50	ND<0.5	ND<0.50	ND<0.50	6
101/ -5	12/12/05	ND<50	ND<50	3.4	1.3	ND<0.50	ND<1.0	ND<1.0
MW-5D	01/17/05	ND<50	210	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
	05/04/05	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	10
	08/11/05	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	6
MW-6S	12/12/05	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<1.0
ININA-00	01/17/05 05/04/05	2800 ND<50	1600 750	6.1 ND<0.5	ND<0.50	3.6	2.3 ND -0.5	160
	08/12/05	1300	1100	ND<0.50	ND<0.5 ND<0.50	3.0 ND<0.50	ND<0.5 ND<0.50	160 410
	12/12/05	ND<50	1000	ND<0.50	ND<0.50	1.4	ND<1.0	190
MW-6D	01/17/05	2100	1200	10	ND<0.50	1.6	2.2	180
	05/04/05	ND<50	360	2	ND<0.50	ND<0.5	ND<0.5	360
	08/12/05	ND<50	480	2	ND<0.5	ND<0.5	ND<0.5	270
	12/12/05	ND<50	240	ND<0.50	ND<0.5	ND<0.5	ND<1.0	92
MW-7S	01/17/05	ND<50	12000	10	89	590	1670	ND<1.0
j	05/04/05	520	1600	ND<0.5	ND<0.5	31	18.4	1600
	08/12/05	ND<50	660	ND<0.5	ND<0.5	5.5	ND<0.5	ND<1.0
	12/12/05	ND<50	610	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0
MW-7D	01/17/05	ND<50	23000	350	1000	1800	5200	ND<1.0
[05/04/05				NS			
[08/12/05	37	83000	550	2200	4400	10600	ND<50
	12/12/05	150000	1300000	640	3100	21000	54800	ND<50
8-WM	01/17/05	ND<50	120	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
[05/04/05	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0
ļ	08/12/05	_ND<50	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0
	12/12/05	830	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<1.0

Concentrations reported in micrograms per Liter (ug/L)

MTBE ≈ Methyl-tert-Butyl Ether

ND = Not Detected at or above corresponding reporting limit

NS = Not Sampled

TPHd = Total Petroleum Hydrocarbons as Diesel

TPHd = Total Petroleum Hydrocarbons as Gasoline

NM: Not Measured

APPENDIX A
SAMPLING DATA SHEETS

Page <u>l</u> of <u>l</u>

			.4 . ~	- 3	(,0			 			. -	 				
Project N			Missio		ley K	anch			Date:		13/05					
Project N		4=	EM SO							red By:		KL				
Weil Iden			-WM			<u>, , , , , , , , , , , , , , , , , , , </u>			Weath		يسط	ly	3c	reen:		
Measurer	Ment .	POINT	escription	n: Te	1 + 2	Jorde			Pump	Intake	#I		T			
Depth LNAPI (ft-bm	L	Stati	epth to ic Water I (ft-bmp)	(ft	otal Dept t-bmp)	th Column Heig	mn ght		Thickne bmp)		One (1) Volume (_	Three Casi Volur (galic	ing mes	Above Screen Volume	Screen Volume
-			.44	1-4	50	11.0	Xφ				1.	7	5.	3	9	
								Field Equip	ment:	Solir	nst , (L	riba				
		—————	0.75	$\int_{0}^{\pi} 2$	4	6	P	Purge Meth	od:	-	t					
0.75 2	<u>:</u>	4 6	6 0.02	2 0.16	0.65	1.47	w	Nell Condit	ion:							
Time	Casinç	g / Screen	Volume Purged (gallons)	Flow F	Rate l	Water Level t-bmp)	Ph	Tempera (°C)	ature	Turbidity (NTU)		GUVITY	issolved Dxygen (mg/L)	ORP (mV)	Obs	ervations
1110		٥.	(,7			M/A 6	<u>۱</u> ۲:	le 16.	9 (ر ا	4.7	22 0	1.39		Dar	Kany
1115		2.0	3,4		j.	1/A 6	s :70	10 17.		748	4.				10	· //
1120	3	<u>, O</u>	5.1			1/1	o J		- 1	750		19 9	31		11	11
	-					·										
		<u> </u>												 		
									20/							
Purge Start Purge End Average Flow Total Gallons Volumes Purged Purged						Rec es Wate d De	ter Level at		er Level ampling (ft-bmp)	Collection		Sample Identificat		tion		
1105 1120 5.1 3.0						, <u>B</u>	5.65		4.68)	MW-1				
Notes:																

Page $\underline{1}$ of $\underline{\underline{1}}$

Project Name: Date: 12/05 Project No.: Prepared By: Well Identification: Weather: Clouds Screen: **Measurement Point Description:** Pump Intake: -TOC Water Three (3) Depth to Depth to Above **Well Total Depth** Column **LNAPL** Thickness One (1) Casing Casing Screen LNAPL **Static Water** Screen (ft-bmp) Height (ft-bmp) Volume (gallons) Volumes Volume (ft-bmp) Level (ft-bmp) Volume (ft) (gallons) 73B A.35 0.15 0.97 0.45 Gallons/Foot Solinst Field Equipment: Well Diameter (in) 2 0.75 6 **Purge Method:** 0.75 2 6 0.02 0.16 4 0.65 1.47 Well Condition: Volume Water Dissolved Flow Rate Temperature Turbidity Conductivity ORP Time Casing / Screen Purged Ρh Level Oxygen Observations (°C) (gpm) (NTU) (mV) (gallons) (ft-bmp) (mg/L)

Purge Start Time	Purge End Time	Average Flow (gpm)	Total Gallons Purged	Total Casing Volumes Purged	80% Recovery Water Level Depth	Water Level at Sampling Time (ft-bmp)	Sample Collection Time	Sample Identification
							1340	MW-25

Notes:

Due to insignificat volume, field parameters were not taken. Obtained sample with bailer after purging casing volume.

Page 1 of 1

Project N	lame:	WE	ssion V.	1/2	Roc	K			Date:		12	12	70		, 		<u>, </u>
Project N		E	M 500	993						ared B		<u> </u>					
Well Iden		tion:	MW ~	-2 M					Weat		-	lour		Sc	creen:		
Measurer	ment /	Point De	escription	n:	OC.	N.	orth		Pum	p Intak			^ +				
Depth (LNAPI (ft-bm)	PL	Static Level	pth to c Water (ft-bmp)	Well T	Γotal D ft-bmp	•	Wate Colum Heigh (ft)	nn ht	LNAPL Thicks (ft-bmp)				Casing (gallons)	Cas	ımes	Above Screen Volume	Screen Volume
			18	8	3:78	5	109	$\overline{\Box}$	-			1,6	3	3.	4		
Wall D	Well Diameter (in)				llons/F	Foot		Fie	eld Equipment:	So	linst	1	oriba		· · · · · · · · · · · · · · · · · · ·		
Ttell D	lame.	er (in)	0.75	2		4	6	Pur	rge Method:	****	,	1					
0.75 2	<u>,</u>	4 6	0.02	0.16	ز	0.65	1.47	We	ell Condition:								
Time	Casinç	g / Screen	Volume Purged (gallons)	Flow f		Wate Leve (ft-bm	ei P	Ph	Temperature (°C)	Turbid (NTU	ITELLY Conductivity O			Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1309	 	٥	1.8			NI	A 6.	.48	18.3	30	8	1.9	30	7,95		Clou	dy Gray
1313	2.		3.6				A b	.42	19.0	84			T	7.63		4	7 7 4
1317	3	.D	5.4			NI	A 6	.48	19.1	35		<u> </u>	84 -	7.83		v	1)
																	
Purge Stan Time	rt F			age Flow gpm)			Total C Volue Purg	ımes	g 80% Recovery Water Level Depth	at	ater Le Sampli ne (ft-br	ling	Sample Collection Time	on	San	mple Identificat	tion
1305	\	317			_3	9	3.0	0	9,97	Ę	3.23	3	1320	0	WW-	- 2 M	
Notes:								- \ ,,	-				<u>- · · · · · · · · · · · · · · · · · · ·</u>				

Page $\underline{\mathbf{1}}$ of $\underline{\mathbf{1}}$

Project N	lame:	Micc	sien Va	110 5					Date	. (17.	2/05					
Project N			<u> 5009</u>	11E 4 1	4,					pared E		KL				-	
Well Iden		tion:	MW - 3	20						ther:		ondy		Sc	reen:		
Measurer			 	-	γ,	Nost	1,			ıp Inta	المحراة ke:	ou a y				***	
Depth (LNAPI (ft-bm)	to L	De _l Stati	pth to c Water (ft-bmp)	Well	Total i	Depth	Water Colum Heigh (ft)	าก	LNAPL Thick	ness		One (1) Casi olume (galic	_	· -		Above Screen Volume	Screen Volume
			85	20	1.6	0	21,75	5				3.5		10.	5		
								eld Equipment	: S	olins	it, litorib	4					
<u> </u>	0.75 2 4 6 Purge Method:																
0.75 2		4 6	0.02	2 0.1	k	0.65	1.47	₩€	ell Condition:								
Time	Casing	g / Screen	Volume Purged (gallons)	1 (0)	/ Rate pm)	Wate Leve (ft-bm	el Pi	Ph Ph	Temperature (°C)	Turbic (NTI		Conductivity	o O	solved cygen ng/L)	ORP (mV)	Obs	ervations
1246	1	٥.	35			NI	A (c.3	39	18.5	790	19	1.85 8		26		Gra	a y
1249	2	.C	7.0			$\sqrt{N/I}$.44		799	19	1.82	8	34		11	11
1252	3	3.0	10.5			N	A 6.	46	: 19.0	790	• •	1.80	දි	73		į¢	11
						+											
Purge Start Purge End Average Flow Total Gallons Volumes Volumes Water									ai at	t San	npling Co	ample ollection Time		Sar	mple Identifica	ition	
1243	, 1	125	2		1	0.5	3.	,0	, [2.2	C	12	,20 1	255		Mw	-2D	
Notes:							. •			·							

Page ___ of/__

Project Name: Mission Valley neck 05 Date: 12 Project No.: EN 5009 6 Prepared By: Well Identification: MW-3 Weather: Screen: **Measurement Point Description:** 700 Pump Intake: Water Three (3) Depth to Depth to Above **Well Total Depth** Column **LNAPL Thickness** One (1) Casing Casing Screen LNAPL Static Water Screen (ft-bmp) Height Volume (gallons) (ft-bmp) **Volumes** Volume (ft-bmp) Level (ft-bmp) Volume (ft) (gallons) 6.58 B.45 3 15.03 **Gallons/Foot** Field Equipment: Solinst Heriba Well Diameter (in) 0.75 2 6 **Purge Method:** 0.75 2 4 6 0.02 0.16 0.65 1.47 Well Condition: Volume Water Dissolved Flow Rate Temperature Turbidity Conductivity ORP Time Casing / Screen Purged Level Ph Oxygen Observations (gpm) (°C) (NTU) (mS)(mV)(gallons) (ft-bmp) (mg/L) 1015 1.0 393 861 $\overline{\Sigma}$ 8.57 1020 2.0 (o.6) 388 8.51 3.0 3 1025 6.67 374 .. 1 80% Total Casing Water Level Sample Purge Start Purge End **Total Gallons** Average Flow Recovery Volumes at Sampling Collection Sample Identification Ťime Time Purged Water Level (gpm) Purged Time (ft-bmp) Time 1010 Depth 1025 3 9051 ()MW-3 1035 Notes:

Page <u>1</u> of

Project Na	ame:	Mis	Sion V		Rock			Date		<u></u>	- I - e-							
Project No		<u></u>	5009	21.Ext	KOUL				ared B	V	12/05	1-4						
Well Ident	tificat	ion:	DOO-1	- 45				Weat		Cloud	ا ا ،		een:					
Measurem	nent P	oint De			x N	when			p Intal		4							
Depth to LNAPL (ft-bmp)		Depth to Static Water Level (ft-bmp)		Well To	otal Depth -bmp)	Wate Colum Heigh (ft)	nn ht	LNAPL Thick (ft-bmp)		One (1) Volume (_	Three Casin Volum (gallo	ng nes	Above Screen Volume	Screen Volume			
		5 , '	18	8.22		2.7	5			0.	S	1.5						
Well Dia	ameto	er (in)		Gall	ons/Foot		Fiel	eld Equipment: Solinst Hariba										
			0.75	2	4	6	Pur	ge Method:										
0.75 2	4	6	0.02	0.16	0.65	1.47	Wel	II Condition:										
Time	Casing / Screen Volume Purged (gallons)			Flow R	[21	vel F	Ph	Temperature (°C)	Turbid (NTU		Ctivity (issolved Oxygen (mg/L)	ORP (mV)	Obs	ervations			
1004	1.0	0	0.5		M	A 6	82	Nob	18		3 B	3.50		Ch	and 4			
1006			1,0	<u> </u>	\\\\/		85	16.7	36	o II.		3.52		u	1			
HOOF	<u> </u>	_ C .	1.5		N'/		-83	16.4	114	11	.6	148		<u> </u>	"			
													<u></u>					
Purge Start I				age Flow gpm)	Total Gallons Purged	Volu	Casing Imes ged	Recovery Water Level Depth	, at	/ater Level Sampling ne (ft-bmp)	Sample Collectio Time		San	nple Identifica	tion			
100 1008 3,0						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	6.02		5.50	1010	>	M	W-4	S			
Notes:																		

Page 1 of 1

Project N	ame:	N	1,35	ion \	Valley	0.	ock.				Date:	12	112 0	5-				
Project N		EM		009		Pr.1/	~					ے ب :red By		/L.				
Well Iden			M	W ~	4D						Weath		Clou		Sc	reen:		
Measuren	nent	Point D	escri	iption:	10	<u>×</u> ,	Mark	_			Pump	Intake:		4 1				
Depth to LNAPL (ft-bmp)		Depth to Static Water Level (ft-bmp)			Well Total Depth (ft-bmp)			Wate Colur Heig (ft)	mn Jht		Thickness -bmp)		One (1) Volume (_	- 1	ing mes	Above Screen Volume	Screen Volume
·, 		8:	50°		23.20		14:	7	Safety.	,	2.3			6.	9		-	
Well Di	amei	er (in)			Gali	ions/Fo	oot	<u> </u>	Fi	ield Equip	ment;	Solin	st 1	zviba		<u> </u>		
	———			0.75	1 2		4	6	P	urge Meth	od:						·	
0.75 2		4 6	3	0.02	0.16	0	0.65	1.47	W	Vell Condit	ion:							
Time	Casing / Screen Purged Flow Rate		Wate Leve (ft-bm	rel Ph		Tempera (°C)	ature	Furbidity (NTU)	Condu	ctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations				
0936		0	+	.5			MI	A le.	.50). 18 م		7	8,9	50	7.95		Gray	Clouds
0942		0	-	. 6			NI		60		٥	99	8 65		7,77		u	/ 1
0948	3	٠٥	7.	.5			NII	A 6	58	18.4	1	20	8.69		7.80		¥	и
													1					
		-											 		<u> </u>			
	 _																	
Purge Start P		Purge End Ave		Average (gp		Total G Purg		Volu	Casir umes rged	Rec S Water	0% overy r Level epth	at Sar	r Level mpling (ft-bmp)	Sam Colle Tin	ction	Sa	mple Identificat	ion
0924 0948 7.5 3.0 1						. 11.	44	8	10	09:	5 S	M	N - 4D					
Notes:					<u> </u>				***************************************	,						***	<u>- </u>	

Page _ of _

Project Name: Mission Valley Rock Date: D12 05																				
Project N		· · · · · · ·	<u> </u>	<u>حم</u> ه ه ٠	009	54 —	~~C/E	·			Prepared By:									
Well Iden		tion					· ~						<i>(</i> 2)	K-						
Measure				<u>M v</u>	v -5		u 1 l	1			Weather: Claudy Screen: Pump Intake:									
.vicusu.c.		7011	It Des	Cription		OC.	Nay			-										
Depth to LNAPL (ft-bmp)		!	Depti tatic \ vel (fi	j		Well Total Depth (ft-bmp)			Water Column Height (ft)		LNAPL Thickness		One (1) Volume	Casing (gallons	´ !	ing mes	Above Screen Volume	Screen Volume		
			7.(-B	8.00			0.32					٥.ر	25	0.	15				
Well Diameter (in)					Ga	llons/	Foot		Fi	Field Equipment: Solinst										
		0.75	/ 2		4	6	P	Purge Method:												
0.75 2	2	4	6	0.02	0.10	3)	0.65	1.47	w	ell Condit	ion:									
Time	Time Casing / Screen Purge			Volume Purged gallons)	1	Flow Rate (gpm) Water Level (ft-bmp)		el P	h	Tempera (°C)		Turbidity (NTU)	Condu	ıctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations		
												-								
				<u> </u>					 -			 -								
															T					
Purge Start Purge End Average Flow Total Gallons Volumes Purged Purged								ng Rec Wate	ecovery at		er Level ampling (ft-bmp)	Sample Collection Time		Sample Identification						
			··· <u>·</u>											105			- 5 S			
Notes:	Due to insignificant volume, field parameters were not taken. Obtained sample with baiter after purging casing volume.																			

Page ⊥ of ⊥

Project N	lame:	W.	551010	Valle	<u> </u>	5 L	—		—		Date:		10 /10	1	-			
Project N		EW	500°	<u>varies</u> 0; [2,	- (<u>-8 (/ </u>						red By:		105				
Well Iden	tifica			1-50							Weath		Loud v	- La	Sc	creen:		
Measuren	ment l	Point De			toc	No	ساح					Intake						
Depth to LNAPL (ft-bmp)		Static	pth to c Water (ft-bmp)	Well 1	Well Total Depth (ft-bmp)			Water Colum Heigh (ft)	nn	LNAPL Thickness (ft-bmp)			One (1) Volume	_	' l	ing mes	Above Screen Volume	Screen Volume
·	- 7.42		2	22:50			14.58					2.	3	6.0	-		-	
Well Diameter (in) Gallons/Foot Field Equipment: Solinst Works																		
Well Di	iamet	er (in)	0.75	5 2		4	T	6	 	ırge Metho			<u> </u>					
0.75 2 4 6 0.02 0.16 0.65 1.47 Well Co										ell Conditio	on:							
Time	Casing	Casing / Screen Purged (gallons)			Flow Rate Level (gpm) (ft-bm		vel	el Ph		Temperat (°C)		Furbidity (NTU)	Condu	ictivity CM)	Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations
1030		1.0	2.3		NI		1	le.	.68	3 18.4	í	295	3.6	,3	8.05		Cle	udy
1035		20	4.6		N/		12	6.	.54			34	3.		8.30		u	7 7
1040	Ţ.	3.0	ا ا			N/	/A	1	54			23	3.0		8.27		ıı	"
	 							ļ										
	<u> </u>												_				 	
	 L																	
Purge Start Time			age Flow (gpm)			Total Cas Volume Purged		mes $$	S Recovery		at Sa	er Level ampling (ft-bmp)	Sam Collec Tim	tion	Sa	mple Identificat	lion	
1025	خ	१०५७	٠		(c	2.9		3.0	<u> </u>	(0)	.83	8	.40	los	-0	MW	-5D	
Notes:												<u> </u>	<u></u>	<u> </u>		, , -	الربية	

Page ___ of ___

Project Name: Mission Valley Rock Date: 95 Project No.: 5009 B Prepared By: Well Identification: MW-65 Weather: Screen: Measurement Point Description: Pump Intake: TOC. North Water Three (3) Depth to Depth to Above **Well Total Depth** Column **LNAPL Thickness** One (1) Casing LNAPL **Static Water** Casing Screen Screen (ft-bmp) Height (ft-bmp) Volume (gallons) **Volumes** (ft-bmp) Level (ft-bmp) Volume Volume (ft) (gallons) 14.80 7.32 36 Gallons/Foot **Field Equipment:** Solinst Well Diameter (in) 2 0.75 6 **Purge Method:** 0.75 2 6 0.02 0.16 0.65 1.47 Well Condition: Volume Water Dissolved Flow Rate Temperature Time Turbidity Conductivity Casing / Screen Purged ORP Level Ρh Oxygen (gpm) Observations (mS/cm) (°C) (NTU) (gallons) (mV)(ft-bmp) (mg/L) 10 1205 1,2 6.54 80 94 2.04 8.76 Gray 1210 2.0 6.52 18.9 185 7.07 2.67 ĸ 30 1215 3,6 8,98 15 フップ 80% Total Casing Water Level **Purge Start** Purge End Sample Average Flow **Total Gallons** Recovery Volumes Time at Sampling Time Collection Sample Identification (gpm) Purged Water Level Purged Time (ft-bmp) Time Depth ての 1215 3.0 1220 MW-65 Notes: Needs a locking cap.

ft-bmp = feet below measuring point

^{*}b://mytait/Forms Word .doc/TEM/Field Forms/Well Sampling Field Data Sheet.DOC

Page 1 of 1

Project N			W.	ssion	Ville	. 0	lock				Date:	Lan	T					
Project N				55100 1 500		4 -	CCAL_					ا <u>ک</u> red By:	,					
Well Iden		ation:	- T- F		2 1 13 2 - 60 C	<u></u>		-			Weath	<u>-</u> _			90	:reen:		
Measure				cription		TCC.	· Nor	سللر				Intake:	<u> </u>	ud y		reen.		
Depth to LNAPL (ft-bmp)		St		h to Water it-bmp)	Well T	Well Total Depth (ft-bmp)			er nn ht	LNAPL T		ess	One (1)	Casing (gallons)	Three Casi Volui (galie	ing mes	Above Screen Volume	Screen Volume
(q 			52	2	28.9			58					3	q.	9		
					Gal	llons/F	Foot		Fic	eld Equipn	nent:	Solin	ıst ı 📙	oriba		•		·
Well D	iame	:ter (i)	n)	0.75	2		4	6	+	urge Metho								
0.75 2	<u>:</u>	4	6	0.02	0.16	<u> </u>	0.65	1.47	We	ell Conditi	on:							
Time	Casir	SMU (SCIERO / PULDED I			Flow i		Wate Leve (ft-bm	vel Ph		Temperar (°C)	ture	Turbidity (NTU)			Dissolved Oxygen (mg/L)	ORP (mV)	Obs	ervations
1136		٥٠		3.3			h/c	A 6.	.68	3 19.1		7999	1.8	32	8.88		Duk Con	-
ાના		0.5		ما، ها			N/F	1/A 6.6		19.0					8 88		u	"
1146	~3	. <u>O</u>				N/A			64						8 78		\i	()
	ļ																	
<u> </u>	 				<u> </u>					_								
	-				 								 					
Purge Start P		Tim			ge Flow Total Gallons om) Purged		Total C Volur Purg	ımes		overy Level	at Sa	er Level Impling (ft-bmp)	Sample Collection Time	on	Sa	imple Identificat	tion	
1130	<u>)</u>	114	1146			10		3,	0	12.	.43	jo	250	1150	1150		M W -GD	
Notes:								<u> </u>					<u>. 76 :</u>			1		1,000
ı																		

TAIT Environmental Management, Inc

Prois	N	lame:				Fo.												
Proje				33.00 - 1	forth Git	100	/ <u>C</u>			Dat			12/	15/1	٥٢			
		tifica	EM	SOOF	<u> </u>						pared E		رد بـ ُ	•				
				MW-				<i>t</i> ,			ather:	Ć	المسا	<u>. ५</u>	S	creen:		
Meas	uren	nent	Point D	escriptio	<u>n:</u>	<u> </u>	Nor	<u>u</u>		Pui	mp Inta	ke:		•		<u> </u>		
Depth to LNAPL (ft-bmp)		Depth to Static Water Level (ft-bmp)		(1	Well Total Depth (ft-bmp)			er nn ht	1	PL Thickness (ft-bmp)		One (1) olume (_	g Cas s) Volu	ee (3) sing imes lons)	Above Screen Volume	Screen Volume	
	<u></u>		£0 (04	8	<u> දි , </u>			c			0.3				,9	4	
W.	ell Di	iame	ter (in)		Ga	llons/f	oot			eld Equipmen	t: So	olins	t 1 1/2	orik-				
	T			0.75	5 2		4	6	Pu	rge Method:								
0.75	2		4 6	6 0.02	2 0.1	6	0.65	1.47	We	eil Condition:								,
Tim	е	Casing / Screen Volume Purged (gallons)		Flow	Rate om)	Leve	Water Level (ft-bmp)		Temperature (°C)	Turbio (NTL		Condu	ctivity	Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations	
161			· 0	0.3			NA		4/5	12.8	439	•	1.9	3	10.18		Dank	(era y
161			٠C	0.4			N/A		44	16.6	435	- -	2.1	ריז	8.37		((1
161	8		3,0	0.9		~//		640		16.6	7990	- 1	7.8	- • ;	8.16		u	11
				<u> </u>				<u> </u>										
				-	-		 						[•.			245	
	_			ļ													*	
Purge Start Purge End Average Flow Total Gallons Volumes Time (gpm) Purged Purged								imes $\bar{\ }$		very Water Level Sample at Sampling Collection Level Time (# here)			ction	Sample Identification				
الو	15	1	1618	}		١.	D	3.	0	(0,9	(۔ پ	9	ıL.	25	₩. W.	-7CA	
Notes																		
2.																		

Groundwater Sampling Data Sheet

Page <u>l</u> of <u>l</u>

TAIT Environmental Management, Inc

Project N Project N Well Iden Measurer	lo.: ıtifica	モM ition:	50 M	00g W -	B'	Rock x, Ve	ntl.			Wea	e: pared l ither: ip Inta		(4	los xuely		icreen:		
Depth (LNAPI (ft-bm)	L	Der Static		ter		tal Depti bmp)	h C	Water olum Heigh (ft)	n	LNAPL Thicl (ft-bmp			•) Casin; (gallon	g Ca s) Vol	ee (3) sing umes lions)	Above Screen Volume	Screen Volume
		West of	,40)	~	2.4	>	15	~				2.	1		7.5		
Well Di	iame!	ter (in)			Galk	ons/Foot			Fiel	ld Equipment	: So	olins	# 1 t	or ibec				
				0.75	1 2	4	•	6	Pur	ge Method:							• • •	
0.75 2	,	4 6	i	0.02	0.16	0.65	1.4	.47	Wel	II Condition:						, - <u>-</u> -		
Time	Casinç	g / Screen	Volu Purg (galle	ged	Flow Ra (gpm)	ate L	Vater .evel -bmp)	PI	h	Temperature (°C)	Turbic (NT			uctivity	Dissolved Oxygen (mg/L)	ORP (mV)		ervations
1503		.0	2	.5		/	//A	6	,SS	18.0	43	7	.	86	8.79		6,	ra (
1506		2.0		.0			1/4	6.	81	14.7	799	9	<u> </u>	47	10.08			rk Gray
1509	<u></u>) - O	7.	.5			/A			Well	س)6	28	*	Dry				· · · · · · · · · · · · · · · · · · ·
Purge Start Time	t F	Purge End Time	d A	Averag (gp		Total Galio Purged		otal Ca Volun Purg	nes 👅	80% Recovery Water Leve Depth	at at	t Sam	Level npling t-bmp)	Colle	nple ection me	Sa	ample Identifica	ition
1500)	1500	ř			7.5		3/6	<u> </u>	10.4		Di	4	150	15	Mi	N-78	
Notes:					'					<u></u>				-				

Groundwater Sampling Data Sheet

Page ___ of ___

TAIT Environmental Management, Inc.

Project Na	ame:	3.M	Sian Va	II.	<u> </u>	L			Date		1					
Project No			5009B		<u> </u>	<u> </u>				ared By	ک ۱۲/۱ م می ا	35				
Well Ident			MW - &						Weat		Cloud	/	Sc	reen:		
Measurem					<u>.</u>	Nor H				p Intak	<u> </u>	-y		,100		
Depth to LNAPL (ft-bmp	to L	Dept Static	th to : Water (ft-bmp)	Well		l Depth	Wate Colum Heigh (ft)	nn ht	LNAPL Thick (ft-bmp)	ness	One (1)) Casing (gallons)	Three Cas Volu (galle	ing mes	Above Screen Volume	Screen Volume
		G. G		N.	5)(0) :-:	8 .45	3				3	3.	9	**************************************	of the latest section to the latest section
Well Di	iame	ier (in)		G:	alions	s/Foot	7	Fie	eld Equipment:	Sol	linst, I	4.76 A	v			
		_ ,	0.75	2	<u> </u>	4	6	Pu	ırge Method:							_
0.75 2		4 6	0.02	J.	16	0.65	1.47	We	ell Condition:							
Time	Casinç	g / Screen	Volume Purged (gallons)	1	v Rate	Wat Lev (ft-br	vel P mp)	Ph	Temperature (°C)	Turbidi (NTU)		petivity (Dissolved Oxygen (mg/L)	ORP (mV)	Obse	ervations
1549		Ù	1.3			N	a 6.1	88	164	410	2.8	17	8.59		(ngr	av
1553	_2	.0	2.6			1 1	-	87	, , , , , , , , , , , , , , , , , , , ,	416			8 33		ય	1 11
issi		0.0	3.4	<u> </u>		\\n\)	1A 6.	.81_	17.0	415			8.39		11	1,
 				-												
				-												
Purge Start Time	t f	Purge End Time		ige Flow ipm)		tal Gallons Purged	s Total C Volum Pung	mes		, at\$	ater Level Sampling se (ft-bmp)	Samp Collecti Time	tion	San	nple Identificat	tion
1545	,	1557			-	3,9	3,	Ø	8,3	6	1.3	1605	5	MW	~ B	
Notes:									-							

APPENDIX B

CERTIFICATE OF DISPOSAL

INTEGRATED WASTESTREAM MANAGEMENT, INC. 950 AMES AVENUE, MILPITAS, CA 95035 PHONE: 408.942.6955 FAX: 408.942.1499

CERTIFICATE OF DISPOSAL

Generator Name:

Mission Valley Rock

Address:

7999 Athenour Way

Sunol, CA 94586

Contact:

Mort Calvert, Mission Valley

Phone:

925-862-2257

Facility Name:

Mission Valley Rock

Address:

7999 Ahternour Way

Sunol, CA

Facility Contact:

Paul McCarter, TAIR ENVIRONMENTAL

Phone:

714-560-8200

IWM Job #: 95693-DW

Description of Waste: 5 Drums of

Non-Hazardous

Water

Removal Date: 01/20/06

Ticket #: SP200106-MISC

Transporter Information

Name:

IWM, Inc.

Address:

950 Ames Avenue

Milpitas, CA 95035

Phone:

(408) 942-8955

Disposal Facility Information

Name:

Seaport Refining & Environmental

Address:

675 Seaport Blvd

Redwood City, CA 94063

Phone:

(650) 364-1024

IWM, INC. CERTIFIES THAT THE ABOVE LISTED NON-HAZARDOUS WASTE WILL BE TREATED AND DISPOSED AT THE DESIGNATED FACILITY IN ACCORDANCE WITH APPLICABLE FEDERAL, STATE, AND LOCAL REGULATIONS.

William T. DeLon

William 2.

Oc For

Authorized Representative (Print Name and Signature)

01/20/06

Date

APPENDIX C

LABORATORY REPORT

SunStar Laboratories, Inc.

20 December 2005

Paul McCarter
Tait Environmental
701 N. Parkcenter Drive
Santa Ana, CA 92705

RE: Mission Valley Rock

Enclosed are the results of analyses for samples received by the laboratory on 12/14/05 10:20. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

John Shepler

Laboratory Director

John J. Lyhn-

Chain of **Custody Record**

SEVERN STIL Sun Star Laboratories
TRENT STIL (714) 505 4010
Severn Trent Laboratories, Inc.

STL-4124 (0901)																			
TAIT For Nint		Project M	аладе	~	u ∟		M	٠.	(A	RT	ER	乀	Date	2/12	105	Ch	nain of Custody N 216	
Address	Drive	Telephor	e Nun	_ '	Area Co			mber			~	<u>`</u>	Ô	Lab f	lumber	1	P	age	of _
City State Zip	Code 92:705	Site Con		<i>-</i>	~~		b Con					_	夜	Analysis (more spac					-
Project Name and Location (State)	12105	Carrier/M	/aybill	Numb	er						<u> </u>	֡֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟֝֟֟֝֟֟֝֟֟֝֟֝֟֝	3						
Contract/Purchase Order/Quote No.				Matri	ix			Cont				10	18160		(0)			Special i Condition	Instructions/ as of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aureous	Sed.	Soii	Unpres.		Prese		HOEN	- F	Polse lens	MISE		48				
Containers for each sample may be contained on one line)	12/13/05 11	30	$^{\frac{3}{4}}$	_	Š	3	ž	ŧ	Ĭ	الخ	ž Ž	-	+ + + -		01				
MW-2 S	100	340	>	_								X			οZ				
NW-2 M		320	У									X	X		o3			(2	0
WW-2D		255	_\{\}			\perp				\dashv	\downarrow				ol			S	<u>c)</u>
<u>MW-3</u>	12112142	0 35	Ý			_		\dashv	\perp	\dashv	1	X	_		οί		ļ		
<u>MW-45</u>		010	 			_			-	-	\perp	>	7.		06				
<u>MW-4D</u>		955							_	\dashv	+	Τ̈́			ञ				
<u>Mw-55</u>		055	\ \ \			+	\vdash	\dashv	-	\dashv			(X		03				
<u>MW -5D</u> MW -65		050	7	+			\dashv		_	-			X		09		-		
Nw - 60	12/12/05 1	120	- '			+	\vdash	-		-		X	· Y		10		+		
MW-79 MW-70	12/12/05	315 315	ž	<u>:</u>								$\frac{1}{3}$	X		13				
Possible Hazard Identification Non-Hazard Flammable Skin Irritant		Unknown	1 '	ole Dis	sposal To Clie	ant)iaaa					UXI	Mor		ee may be as		ed if samples are	retained
Turn Around Time Required		Sthei				ern.					(Speci	fy)	nive For		nns iong	jer (nan 1 mc	nun	, <u>, , , , , , , , , , , , , , , , , , </u>	
1. Relinquished By	ys 🗌 21 Days	Date			ne			eceiv				<u> </u>	/		*****			Date	Time
2. Relinquished By		Date		Tir	ne		2. A	21 eceiv	90 E	ly y		<u> </u>						12/13/05 Date	Time
3. Relinquished By		Date	-	Tir	ne		3. F	eceiv	ed B	ly							<u></u> 	Date	Time
Comments							1							-maau					

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1	T501487-01	Water	12/13/05 11:30	12/14/05 10:20
MW-2 S	T501487-02	Water	12/12/05 13:40	12/14/05 10:20
MW-2 M	T501487-03	Water	12/12/05 13:20	12/14/05 10:20
MW-2 D	T501487-04	Water	12/12/05 12:55	12/14/05 10:20
MW-3	T501487-05	Water	12/13/05 10:35	12/14/05 10:20
MW-4 S	T501487-06	Water	12/12/05 10:10	12/14/05 10:20
MW-4 D	T501487-07	Water	12/12/05 09:55	12/14/05 10:20
MW-5 S	T501487-08	Water	12/12/05 10:55	12/14/05 10:20
MW-5 D	T501487-09	Water	12/12/05 10:50	12/14/05 10:20
MW-6 S	T501487-10	Water	12/12/05 12:20	12/14/05 10:20
MW-6 D	T501487-11	Water	12/12/05 11:50	12/14/05 10:20
MW-7 S	T501487-12	Water	12/12/05 16:25	12/14/05 10:20
MW-7 D	T501487-13	Water	12/12/05 15:45	12/14/05 10:20
MW-8	T501487-14	Water	12/12/05 16:05	12/14/05 10:20

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-1 T501487-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	borato	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015m	1							
C6-C12 (GRO)	750	50	ug/l	1	5121420	12/14/05	12/15/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		95.2 %		135	н	n	"	n	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	3.8	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	n .	и	n	TT .	н	n	
Ethylbenzene	4.2	0.50	н	II .	n	n		и	
m,p-Xylene	ND	1.0	н	н	H	"	11	н	
o-Xylene	ND	0.50	#1	11	Ш	н	0	н	
Tert-amyl methyl ether	ND	2.0	**	0	n	n	II.	и	
Tert-butyl alcohol	ND	10	**	o o	11	H	II	11	
Di-isopropyl ether	ND	2.0	1+	11	n	U	н	n.	
Ethyl tert-butyl ether	ND	2.0	**	II	n	II .	n	п	
Methyl tert-butyl ether	ND	1.0	11	и	U	n,	n	n .	
Surrogate: Toluene-d8		108 %	87.6	-115	"	"	"	"	
Surrogate: 4-Bromofluorohenzene		104 %	80-	112	"	"	"	"	
Surrogate: Dibromofluoromethane		98.5 %	78.6	-122	"	n	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-2 S T501487-02 (Water)

			7-02 (**						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	iboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015m								
C6-C12 (GRO)	ND	50	ug/l	1	5121420	12/14/05	12/15/05	EPA 8015m	•
Surrogate: 4-Bromofluorobenzene		90.4 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarl	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	l	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	EPA Method 8260	В							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	_
Toluene	ND	0.50	*1	ш	n	u	II.	n	
Ethylbenzene	ND	0.50	71	и	11	U	н	n	
m,p-Xylene	ND	1.0	**	"	11	ø	11	11	
o-Xylene	ND	0.50	н	"	u	II	"	O	
Tert-amyl methyl ether	ND	2.0	tr	н	n	II	ır	п	
Tert-butyl alcohol	ND	10	11	п	n	и	11	н	
Di-isopropyl ether	ND	2.0	It	u	II	и	ц	μ	
Ethyl tert-butyl ether	ND	2.0		и	ĮI.	P	и	H	
Methyl tert-butyl ether	26	1.0	н	н	"		м	n	
Surrogate: Toluene-d8		104 %	87.6	-115	11	tt	II	п	
Surrogate: 4-Bromofluorobenzene		104 %	80-	112	"	"	и	и	
Surrogate: Dibromofluoromethane		101 %	78.6	-122	u	"	"	**	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Robbe

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-2 M T501487-03 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					•
Purgeable Petroleum Hydrocarbo	ns by EPA 8015n	n							
C6-C12 (GRO)	410	50	ug/l	1	5121420	12/14/05	12/15/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		91.0%		135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	**	II.	O .	μ	41	n	
Ethylbenzene	ND	0.50	17	n	н	В	и	н	
m,p-Xylene	ND	1.0	It.	el	п	rr	n	H	
o-Xylene	ND	0.50	11	n	*	н	н	H*	
Tert-amyl methyl ether	ND	2.0		31	н	и	0	11	
Tert-butyl alcohol	ND	10	"	σ	4	и	U	н	
Di-isopropyl ether	ND	2.0	*1	11	и	н	n	įt.	
Ethyl tert-butyl ether	ND	2.0	**	D	н	n	II	**	
Methyl tert-butyl ether	28	1.0	*1	н	11	н	II.	v	
Surrogate: Toluene-d8		105 %	87.6	-115	n	11	n n	"	
Surrogate: 4-Bromofluorobenzene		106 %	80-	112	"	"	"	"	
Surrogate: Dibromofluoromethane		95.5 %	78. 6	-122	,,	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Shill

701 N. Parkcenter Drive Santa Ana CA, 92705

Project: Mission Valley Rock

Project Number: EM25009A

Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-2 D T501487-04 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	borato	ries, Inc.					-
Purgeable Petroleum Hydrocarbo	ns by EPA 8015n	1							
C6-C12 (GRO)	200	50	ug/l	1	5121420	12/14/05	12/15/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		82.8 %	65-	135	"	""	,,	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	<u>"</u>	n	н	**	t)	n	
Ethylbenzene	ND	0.50	н	41	н	п	11	н	
m,p-Xylene	ND	1.0	11	v	н	н	D	п	
o-Xylene	ND	0.50	11	· ·	н	IJ	II	41	
Tert-amyl methyl ether	ND	2.0	**	D	"	11	H	11	
Tert-butyl alcohol	ND	10	**	n n	н	0	и	u	
Di-isopropyl ether	ND	2.0	**	и	9	v	n	o	
Ethyl tert-butyl ether	ND	2.0	14	н	41	n	"	II.	
Methyl tert-butyl ether	39	1.0	11	"	11	O.	h	H	
Surrogate: Toluene-d8		104 %	87.6	-115	n	n	"	"	
Surrogate: 4-Bromofluorobenzene		111%	80-	112	"	"	"	n	
Surrogate: Dibromofluoromethane		92.0 %	78.6	-122	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-3 T501487-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015 π	n							
C6-C12 (GRO)	ND	50	ug/l	1	5121420	12/14/05	12/16/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		102 %	65-	135	"	"	11	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	B							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	"	h	u	н	**	μ	
Ethylbenzene	ND	0.50	n	r	n	μ	п	"	
m,p-Xylene	ND	1.0	н	н	п	h	н	rr .	
o-Xylene	ND	0.50	17	н	м	rr	н	п	
Tert-amyl methyl ether	ND	2.0	11	#1	н	li	1J	4	
Tert-butyl alcohol	ND	10	R	и	n	-11	u	iq	
Di-isopropyl ether	ND	2.0	и	н	Ħ	"	u	n	
Ethyl tert-butyl ether	ND	2.0	,,	п	н	n	n	н	
Methyl tert-butyl ether	75	1.0	II .	II.	п	ч	o	o o	
Surrogate: Toluene-d8		104%	87.6	-115	n	н	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	80	112	"	"	"	"	
Surrogate: Dibromofluoromethane		94.0 %	<i>78.6</i> -	-122	"	11	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Sh.

701 N. Parkcenter Drive Santa Ana CA, 92705

Project: Mission Valley Rock

Project Number: EM25009A

Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-4 S T501487-06 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	borator	ries, Inc.				-	
Purgeable Petroleum Hydrocarboi	is by EPA 8015n	1							
C6-C12 (GRO)	ND	50	ug/l		5121420	12/14/05	12/16/05	EPA 8015m	
Swrogate: 4-Bromofluorobenzene		97.2 %	65-	135	n	"	n	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	11	н	b	*	U	п	
Ethylbenzene	ND	0.50		n	"	Ш	· ·	н	
m,p-Xylene	ND	1.0	н	11	n	"	D.	н	
o-Xylene	ND	0.50	н	U	н	#	D	н	
Tert-amyl methyl ether	ND	2.0	11	40	н	п	II .	п	
Tert-butyl alcohol	ND	10	**	11	**	н	II	11	
Di-isopropyl ether	ND	2.0	**	u	ч	н	in	o	
Ethyl tert-butyl ether	ND	2.0	tt	n	н	ŧ u	"	II.	
Methyl tert-butyl ether	ND	1.0	n	n	н	0	"	ır	
Surrogate: Toluene-d8	-	104 %	87.6	-115	"	n	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	80-	112	"	"	"	"	
Surrogate: Dibromofluoromethane		94.2 %	78.6	-122	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

701 N. Parkcenter Drive Santa Ana CA, 92705 Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter Reported: 12/20/05 10:26

MW-4 D T501487-07 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015n	n							
C6-C12 (GRO)	ND	50	ug/l	1	5121420	12/14/05	12/15/05	EPA 8015m	***
Surrogate: 4-Bromofluorobenzene		106 %	65-	135	ıı	"	"	и	
Extractable Petroleum Hydrocarboi	ns by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by EP	A Method 8260	B							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/16/05	EPA 8260B	
Toluene	ND	0.50	"	н	н	11	μ	n	
Ethylbenzene	ND	0.50	"	н	11	0	"	U	
m,p-Xylene	ND	1.0	**	"	U	11	"	o	
o-Xylene	ND	0.50	н	"	n	D	ħ	D.	
Tert-amyl methyl ether	ND	2.0	н	n	U	If	н	н	
Tert-butyl alcohol	ND	10	17	rr	n	II	11	н	
Di-isopropyl ether	ND	2.0	It .	н	H	и	и	ři.	
Ethyl tert-butyl ether	ND	2.0	и	н	н	**	II	IT	
Methyl tert-butyl ether	ND	1.0	II .	ч	,,	"	н	H	
Surrogate: Toluene-d8	-	103 %	87.6	-115	"	"	н	"	
Surrogate: 4-Bromofluorobenzene		102 %	80-	112	tt.	n	"	n	
Surrogate: Dibromofluoromethane		99.5 %	78.6	-122	n	#	u	и	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Shy han.

701 N. Parkcenter Drive Santa Ana CA, 92705 Project: Mission Valley Rock

Project Number: EM25009A

Project Number: EM25009A
Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-5 S T501487-08 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Not
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015n	1							
C6-C12 (GRO)	ND	50	ug/l	1	5121420	12/14/05	12/16/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		93.2 %		135	"		,,	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	3.4	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	1.3	0.50	11	**	u u	P	п	rr .	
Ethylbenzene	ND	0.50	17	н	11	þi	ч	n	
m,p-Xylene	ND	1.0	It	ď	n	"	ŧ	II	
o-Xylene	ND	0.50	II	"	н	n	п	11	
Tert-aniyl methyl ether	ND	2.0	II .	п	"	n	u	н	
Tert-butyl alcohol	ND	10	JI	n	"	П	a	и	
Di-isopropyl ether	ND	2.0	и	н	п	н	11	n	
Ethyl tert-butyl ether	ND	2.0	н	н	II	н	0	и	
Methyl tert-butyl ether	ND	1.0	11	n	11	н	u u	и	
Surrogate: Toluene-d8		104 %	87.6	5-115	"	"	п	"	•
Surrogate: 4-Bromofluorobenzene		101 %	80-	112	и	п	и	n	
Surrogate: Dibromofluoromethane		94.8 %	78.6	i-122	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Tait Environmental
701 N. Parkcenter Drive

Santa Ana CA, 92705

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-5 D T501487-09 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015m	1							
C6-C12 (GRO)	ND	50	ug/l	1	5121420	12/14/05	12/16/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		101 %	65-	135	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	l	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50)1	"	#	и	U	n	
Ethylbenzene	ND	0.50	+1	U	"	"	0	н	
m,p-Xylene	ND	1.0	"	P	и	h	O.	п	
o-Xylene	ND	0.50	11	11	н	H	ji .	11	
Tert-amyl methyl ether	ND	2.0	••	11	n	n	n n	а	
Tert-butyl alcohol	ND	10	"	10	н	D	н	u	
Di-isopropyl ether	ND	2.0	**	н	н	11	н	n.	
Ethyl tert-butyl ether	ND	2.0	11	н	a	D.	U	D	
Methyl tert-butyl ether	ND	1.0	н	n	н	U	"	U	
Surrogate: Toluene-d8		104 %	87.6	-115	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		102 %	80-	112	n	"	n	"	
Surrogate: Dibromofluoromethane		99.8 %	78.6	-122	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Sh

701 N. Parkcenter Drive Santa Ana CA, 92705

Project: Mission Valley Rock

Project Number: EM25009A

Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-6 S T501487-10 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	borato	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015n	1							
C6-C12 (GRO)	1000	50	ug/l	1	5121420	12/14/05	12/16/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		94.2 %	65-	135	и	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	<u> </u>
Volatile Organic Compounds by E	PA Method 8260	В	-						
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	"	n	н	v	II .	a	
Ethylbenzene	1.4	0.50	*1	п	ш	н	"	II.	
m,p-Xylene	ND	1.0	**	н	n	e	p	R	
o-Xylene	ND	0.50	н	n	U	IP.	*	p	
Tert-amyl methyl ether	ND	2.0	**	"	o	n n	rr	н	
Tert-butyl alcohol	ND	10	11	n	н	μ	11	*	
Di-isopropyl ether	ND	2.0	ti	Ŋ	'n	p	И	li	
Ethyl tert-butyl ether	ND	2.0	**	И	и	m .	n	IF	
Methyl tert-butyl ether	190	1.0	11	"	"	μ	"	4	
Surrogate: Toluene-d8		102 %	87.6	-115	II .	"	и	и	
Surrogate: 4-Bromofluorobenzene		104 %	80-	112	n	"	u	a	
Surrogate: Dibromofluoromethane		96.2 %	78.6	-122	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

701 N. Parkcenter Drive Santa Ana CA, 92705 Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-6 D T501487-11 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015m	1							
C6-C12 (GRO)	240	50	ug/l	1	5121420	12/14/05	12/16/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		89.6 %	65-	135	"	n	"	"	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	"	r	17	II	4	н	
Ethylbenzene	ND	0.50	**	Ħ	P	н	и	н	
m,p-Xylene	ND	0.1	#	ır	11	и	н	H	
o-Xylene	ND	0.50	17	н	ji	n	n	н	
Tert-amyl methyl ether	ND	2.0	rt .	н	н	"	п	IP.	
Tert-butyl alcohol	ND	10	**	И	н	11	Ħ	н	
Di-isopropyl ether	ND	2.0	11	н	n	rr	п	П	
Ethyl tert-butyl ether	ND	2.0	11	и	"	11	11	н	
Methyl tert-butyl ether	92	1.0	Iŧ	#1	"	"	н	N	
Surrogate: Toluene-d8		102 %	87.6	-115	"	"	,,	н	
Surrogate: 4-Bromofluorobenzene		104 %	80-	112	rr	rr	"	"	
Surrogate: Dibromofluoromethane		95.5 %	<i>78.6</i>	-122	"	"	"	u	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Shim

701 N. Parkcenter Drive Santa Ana CA, 92705

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

MW-7 S T501487-12 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	ıboratoı	ries, Inc.					
Purgeable Petroleum Hydrocarbons									
C6-C12 (GRO)	610	50	ug/l	1	5121420	12/14/05	12/16/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		101 %		135	"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015								
Diesel Range Hydrocarbons	ND	0.050	mg/l	1	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by EPA	A Method 8260	В	_					•	
Benzene	ND	0.50	ug/l	1	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	ND	0.50	"	n		n	п	a	
Ethylbenzene	ND	0.50	**	11	n	ш	þ	u	
m,p-Xylene	ND	1.0	"	h	h	U	н	II.	
o-Xylene	ND	0.50	71	II	li .	o o	n	n	
Tert-amyl methyl ether	ND	2.0	**	и	v	IP.	n	и	
Tert-butyl alcohol	ND	10	**	,,	e e	n	п	•	
Di-isopropyl ether	ND	2.0	+1	"	IP	и	**	'n	
Ethyl tert-butyl ether	ND	2.0	Ħ	rr	n	n	н	h	
Methyl tert-butyl ether	ND	1.0	17	н		h	4	ır	
Surrogate: Toluene-d8		101 %	87.6	-115	"	"	·	"	
Surrogate: 4-Bromofluorobenzene		109 %	80-	112	n	"	и	u	
Surrogate: Dibromofluoromethane		91.8 %	78.6	-122	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter Reported: 12/20/05 10:26

MW-7 D T501487-13 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbe	ons by EPA 8015m	1							
C6-C12 (GRO)	1300000	10000	ug/l	200	5121420	12/14/05	12/16/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		76.2 %	65-	135	"	"	ır	"	
Extractable Petroleum Hydrocar	bons by 8015								
Diesel Range Hydrocarbons	150	0.50	mg/l	10	5121419	12/14/05	12/16/05	EPA 8015m	
Volatile Organic Compounds by	EPA Method 8260	В							
Benzene	640	25	ug/l	50	5121421	12/14/05	12/17/05	EPA 8260B	
Toluene	3100	25	"	4	H	n	н	н	
Ethylbenzene	21000	25	11	n	"	"	п	n	
m,p-Xylene	46000	50	п	н	*	n	н	n	
o-Xylene	8800	25	11	н	Ħ	r	н	н	
Tert-amyl methyl ether	ND	100	11	n	"	11	U	n	
Tert-butyl alcohol	ND	500	п	н	н	"	v	li .	
Di-isopropyl ether	ND	100	п	н	r	"	97	ч	
Ethyl tert-butyl ether	ND	100	п	п	H	11	0	и	
Methyl tert-butyl ether	ND	50	"	н	H	**	0	п	
Surrogate: Toluene-d8		102 %	87.6	-115	"	"	и	"	
Surrogate: 4-Bromofluorobenzene		109 %	80-	112	H	***	u	"	
Surrogate: Dibromofluoromethane		92.0 %	78.6	-122	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Addin.

701 N. Parkcenter Drive Santa Ana CA, 92705 Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter Reported: 12/20/05 10:26

MW-8 T501487-14 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015m	l							
C6-C12 (GRO)	ND	50	ug/l	1	5121420	12/14/05	12/15/05	EPA 8015m	
Surrogate: 4-Bromofluorobenzene		94.6 %	65-	135	"	и	п	н	
Extractable Petroleum Hydrocarb	ons by 8015								
Diesel Range Hydrocarbons	0.83	0.050	mg/l	l l	5121419	12/14/05	12/16/05	EPA 8015m	D-02
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	0.50	ug/l	l	5121421	12/14/05	12/16/05	EPA 8260B	
Toluene	ND	0.50	11	II .	н	н	U	н	
Ethylbenzene	ND	0.50	"	11	П	и	.,	n .	
m,p-Xylene	NĐ	1.0	11	11	41	н	n	4I	
o-Xylene	ND	0.50	11	0	4	Ħ	P	U	
Tert-amyl methyl ether	ND	2.0	n	o	**	н	11	ti .	
Tert-butyl alcohol	ND	10	"	9	4	n	11	D.	
Di-isopropyl ether	ND	2.0	11	0	"	н	h	D.	
Ethyl tert-butyl ether	ND	2.0	11		я	n	11	D	
Methyl tert-butyl ether	ND	1.0	*1	U	ч	n	11	U	
Surrogate: Toluene-d8		102 %	87.6	i-115	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		104 %	80-	112	и	н	n	"	
Surrogate: Dibromofluoromethane		102 %	78.6	-122	"		"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

Purgeable Petroleum Hydrocarbons by EPA 8015m - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5121420 - EPA 5030 GC	···									
Blank (5121420-BLK1)		-		Prepared:	12/14/05	Analyzed:	12/15/05			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	47.6 ND	50	ug/l	50.0		95.2	65-135			
LCS (5121420-BS1)				Prepared:	12/14/05	Analyzed:	12/16/05			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	<i>41.3</i> 5990	50	ug/l	<i>50.0</i> 5500		82.6 109	<i>65-135</i> 75-125	- 70-1		× .
Matrix Spike (5121420-MS1)	So	urce: T50148	7-07	Prepared:	12/14/05	Analyzed:	12/16/05			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	46.7 5770	50	ug/l	<i>50.0</i> 5500	ND	93.4 105	<i>65-135</i> 65-135			
Matrix Spike Dup (5121420-MSD1)	So	urce: T50148	7-07	Prepared:	12/14/05	Analyzed:	12/16/05			
Surrogate: 4-Bromofluorobenzene C6-C12 (GRO)	55.6 5870	50	ug/l	<i>50,0</i> 5500	ND	111 107	<i>65-135</i> 65-135	1.72	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Style

Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

Extractable Petroleum Hydrocarbons by 8015 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5121419 - EPA 3510C GC		-								
Blank (5121419-BLK1)				Prepared:	12/14/05	Analyzed	: 12/16/05			
Diesel Range Hydrocarbons	ND	0.050	mg/l	··						
LCS (5121419-BS1)				Prepared:	12/14/05	Analyzed	: 12/16/05			
Diesel Range Hydrocarbons	21.8	0.050	mg/l	20.0		109	75-125			
Matrix Spike (5121419-MS1)	So	urce: T50148	7-14	Prepared;	12/14/05	Analyzed	: 12/16/05			
Diesel Range Hydrocarbons	21.7	0.050	mg/l	20.0	0.83	104	75-125			
Matrix Spike Dup (5121419-MSD1)	So	urce: T50148	7-14	Prepared:	12/14/05	Analyzed	: 12/16/05			
Diesel Range Hydrocarbons	21.9	0.050	mg/l	20.0	0.83	105	75-125	0.917	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John J. Soft

Tait Environmental 701 N. Parkcenter Drive

Project: Mission Valley Rock

Project Number: EM25009A

Reported: 12/20/05 10:26

Santa Ana CA, 92705

Project Manager: Paul McCarter

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5121421 - EPA 5030 GCMS		_							*	
Blank (5121421-BLK1)				Prepared:	12/14/05	Analyzed	d: 12/16/05			
Surrogate: Toluene-d8	41.0		ug/l	40.0		102	87.6-115			
Surrogate: 4-Bromofluorobenzene	39.6		"	40.0		99.0	80-112			
Surrogate: Dibromofluoromethane	38.8		и	40.0		97.0	78.6-122			
Benzene	ND	0.50	"							
Toluene	ND	0.50	N							
Ethylbenzene	ND	0.50	п							
m,p-Xylene	ND	1.0	н							
o-Xylene	ND	0.50	и							
Tert-amyl methyl ether	ND	2.0	a a							
Tert-butyl alcohol	ND	10	.,							
Di-isopropyl ether	ND	2.0	v							
Ethyl tert-butyl ether	ND	2.0	11							
Methyl tert-butyl ether	ND	1.0	11							
LCS (5121421-BS1)				Prepared:	12/14/05	Analyzec	d: 12/17/05			
Surrogate: Toluene-d8	41.4		ug/!	40.0		104	87.6-115		•	
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	80-112			
Surrogate: Dibromofluoromethane	36.0		"	40.0		90.0	78.6-122			
Benzene	119	0.50	н	100		119	75-125			
Toluene	114	0.50	К	100		114	75-125			
Matrix Spike (5121421-MS1)	So	urce: T50148	7-07	Prepared:	12/14/05	Analyzed	1: 12/17/05			
Surrogate: Toluene-d8	40.6		ug/l	40.0		102	87.6-115			
Surrogate: 4-Bromofluorobenzene	40.8		rr .	40.0		102	80-112			
Surrogate: Dibromofluoromethane	36.1		"	40.0		90.2	78.6-122			
Benzene	123	0.50	n	100	ND	123	75-125			
Toluene	120	0.50	ır	100	ND	120	75-125			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

701 N. Parkcenter Drive Santa Ana CA, 92705 Project: Mission Valley Rock

Project Number: EM25009A Project Manager: Paul McCarter **Reported:** 12/20/05 10:26

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5121421 - EPA 5030 GCMS		<u> </u>								
Matrix Spike Dup (5121421-MSD1)	Sour	rce: T50148	7-07	Prepared:	12/14/05	Analyzed	i: 12/17/05			
Surrogate: Toluene-d8	41.0		ug/l	40.0		102	87.6-115			
Surrogate: 4-Bromofluorobenzene	40.9		"	40.0		102	80-112			
Surrogate: Dibromofluoromethane	<i>37.2</i>		"	40.0		93.0	78.6-122			
Benzene	123	0.50	н	100	ND	123	75-125	0.00	20	
Toluene	120	0.50	4	100	ND	120	75-125	0.00	20	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: Mission Valley Rock

701 N. Parkcenter Drive Santa Ana CA, 92705

Project Number: EM25009A Project Manager: Paul McCarter

Reported: 12/20/05 10:26

Notes and Definitions

D-02 Hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

John Shepler, Laboratory Director

Page 20 of 20