

RECEIVED

1:16 pm, Apr 18, 2007

Alameda County
Environmental Health

5900 Hollis Street, Suite A, Emeryville, California 94608 Telephone: 510·420·0700 Facsimile: 510·420·9170 www.CRAworld.com

April 18, 2007

Mr. Jerry Wickham, P.G. Alameda County Environmental Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Site Assessment Report - Addendum

Chiu Property 800 Franklin Street, Oakland, California 94607 Fuel Leak Case No. RO0000196 CRA Project No. 581000

Dear Mr. Wickham:

On behalf of Mr. Tommy Chiu, Conestoga Rovers & Associates, Inc (CRA) presents this addendum to the February 23, 2007 *Site Assessment Report* (Report) for the referenced site. The addendum is in response to Alameda County Environmental Health's (ACEH) April 3, 2007 letter (Attachment A), Technical Comment #1 regarding the results of soil samples collected at soil vapor probes VP-1 and VP-2. It was also addressed in our April 12, 2007 *Response to April 3, 2007 ACEH Comment Letter* (Attachment A).

Unintentionally, we omitted the soil results from the February 23, 2007 *Site Assessment Report*. This addendum presents soil results for vapor probe boings VP-1 and VP-2, sampled November 17, 2006. Soil sampling procedures and results are summarized below. The site vicinity is presented on Figure 1. Boring locations are presented on Figure 2. Soil analytical results are presented in Table 3 and a copy of the analytical laboratory report are attached. Refer to the February 23, 2007 *Site Assessment Report* for Table 1 "Well Completion Data", Table 2 "Soil Vapor Analytical Data", the boring/soil vapor probe logs, and chain-of-custody record.

Soil Sampling Procedure: On November 17, 2006, during the installation of soil vapor probes VP-1 and VP-2, two soil samples were collected at approximately 5 feet below ground surface (ft bgs). A hand auger was used to advance the borings to 5 fbg and a slide hammer was driven into the soil from 5 to 5.5 fbg to collect a soil sample in a six-inch brass sleeve. A composite sample, W-1, was collected for waste disposal purposes.

Soil Analyses and Results: Soil samples collected from borings VP-1 and VP-2 were analyzed for total petroleum hydrocarbons as gasoline (TPHg), diesel (TPHd), and motor oil (TPHmo) by EPA Method 8015C; benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA Method 8021B; and 1,2-dichloroethane (1,2-DCA) and chloroform by EPA Method 8260B. Low

Equal Employment Opportunity Employer

Site Assessment Report - Addendum Chiu Property 800 Franklin Street, Oakland, California 94607 Fuel Leak Case No. RO0000196 April 18, 2007

levels of TPHd and TPHmo concentrations were detected in soil sample VP-1.5.5 at 4.0 and 6.9 milligrams per kilogram (mg/kg), respectively (Table 3). The TPHd result flagged significant oil range compounds. No other compounds were detected above laboratory reporting limits. Therefore, based on these results the upper 5.5 feet of soil at locations VP-1 and VP-2 has none to minimal soil impact.

CLOSING

If you have any questions or comments regarding this report, please call me at (510) 420-3313.

SSIONAL

JONAS No. 6392

OF CALIF

Sincerely,

Conestoga-Rovers & Associates, Inc.

Celina Hernandez

Senior Staff Geologist

Mark Jonas, P.G. Senior Project Manager

Figures:

1 - Vicinity Map

2 – Site Plan

Tables:

3 – Soil Analytical Data

Attachments:

A – Regulatory Correspondence

B – Analytical Laboratory Report

cc: Mr. Tommy Chiu, P.O. Box 28194, Oakland, California 94606

Conestoga-Rovers & Associates, Inc. (CRA) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

I:\IR\Chiu - Oakland\Reports\2007 Site Assessment Report\Site Assessment Addendum 4-18-07 Chiu 581000.dcc

Chiu Property

1/8

800 Franklin Street Oakland, California

SCALE: 1" = 1/4 MILE

Vicinity Map

Chiu Property

800 Franklin Street Oakland, California

Site Plan

Conestoga-Rovers & Associates, Inc.

Table 3. Soil Analytical Data - Chiu Property, 800 Franklin Street, Oakland, California

Sample ID	Date Sampled	Depth (ft)	TPHg (mg/kg)	TPHd (mg/kg)	TPHwo (mg/kg)	TPHmo (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	SVOCs (mg/kg)	VOCs (mg/kg)	Total Oil & Grease (mg/kg)	ТКРН	Total Lead (mg/kg)
Soil and Foundation Investigation by	Frank Lee & As	sociates -	- Soil Boring	s												
B-1-3	5/3/1988	3	-	-	-	-	ND<0.1	ND<0.1	ND<0.1	ND<0.1	-	-	ND	ND<30	ND<30	-
B-2-1	5/3/1988	1	ND<1.0 *	-	-	-	ND<0.05	ND<0.1	-	ND<0.1	-	-	ND	-	-	-
B-3-4	5/3/1988	4	ND<1.0 *	-	-	-	ND<0.05	ND<0.1	-	ND<0.1	-	-	ND	-	-	-
UST Removal by Robert J. Miller Com UST Excavation Compliance Samples		The Trave	erse Group, l	Inc.												
T1 - Gasoline Tank	June-89	-	ND<1.0	ND<6.3	ND<30		0.011	0,0036	ND<0,0025	0.006	-	(1)	ND	-	-	-
T2 - Gasoline Tank	June-89	_	5.0	ND<6.7	30		0.050	0.044	0.0036	0.023	-	(2)	ND	-	-	
T3 - Gasoline Tank	June-89		ND<1.0	ND<7.0	ND<30		0.0046	ND<0.0025	ND<0.0025	ND<0.0025	-	(3)	ND	-	-	-
T4 - Gasoline Tank	June-89	_	3,100	420	1,350		7.5	87	59	290	_	(4)	ND	-	- '	-
W1 - Waste Oil Tank	Јипе-89	_	270	430	4,000		ND<5.0	ND<5.0	ND<5.0	14		(5)	ND	-	-	•
W2A - Waste Oil Tank	June-89	_	2,300	170	50		ND<2.5	3	ND<2.5	12	-	(6)	ND	-	-	-
S1 - Solvent Tank	June-89	_	1.8	ND<6.0	ND<30		ND<0,0025	ND<0.0025	ND<0.0025	ND<0,0025	-	(7)	ND	-	-	-
S2 - Solvent Tank	June-89	_	62	106	ND<30		ND<1.0	ND<1.0	ND<1.0	ND<1.0	_	(8)	ND ·	-	_	-
SP1 - Spoils Pile "Contaminated"	June-89	_	184	240	900		ND<5.0	17	19	110	_	(9)	ND	_	-	-
SP2 - Spoils Pile "Clean"	June-89	_	ND<1.0	ND<6.7	ND<30		ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	ND	ND	-	-	_
SP3 - Spoils Pile "Clean"	June-89	-	120	40	150		ND<1.0	ND<1.0	ND<1.0	2.1	-	(10)	ND	-	-	-
Subsurface Investigation by Miller En Over-Excavation Confirmation Sampl	es							N.D.	VP.) ID						
EX1-A (fuel tank)	9/7/1989	15	ND	ND	ND		ND	ND	ND	ND	-	-	-	-	-	-
EX1-B (fuel tank)	9/7/1989	15	ND	ND	40		ND	ND	ND	ND	-	-	-	-	•	-
EX1-C (fuel tank)	9/7/1989	15	2.3	ND	80		ND	0.05	0.14	ND	-	•	-	-	-	-
EX2-A (waste oil and solvent tanks)	9/7/1989	15	10,000	250	400		50	210	270	54	-	-	-	-	-	• -
EX2-B (waste oil and solvent tanks)	9/7/1989	15	4.1	ND	ND		ND	ND	0.15	ND	-	-	-	-	-	-
Well Installation Soil Samples																
MW1-A	9/12-13/1989		ND	23		30	ND	ND	ИĎ	ND	-	-	-	30	-	•
MW1-B	9/12-13/1989	11	ND	ND		ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW1-C	9/12-13/1989	16	ND	ND		ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW1-D	9/12-13/1989	21	52	ND		ND	0.12	0.7	0.53	4.5	-	-	-	ND	-	-
MW1-E	9/12-13/1989	26	ND	ND		ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW2-A	9/12-13/1989	6	ND	ND		ND	ND	ND	ND	ND	-	-	-		-	-
MW2-B	9/12-13/1989	11	ND	ND		ND	ND	ND	ND	ND	-	-	-		-	-
MW2-C	9/12-13/1989	16	ND	ND		ND	ND	ND	ND	ND	-	-	-		-	-
MW2-D	9/12-13/1989	21	1,900	110		50	7.4	51	24	180	-	-	-	50	-	-
MW2-E	9/12-13/1989		7,800	170		30	52	220	77	400	-	-	-	30	-	-
			,													
MW3-A	9/12-13/1989	6	ND	ND		ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW3-B	9/12-13/1989		ND	25		ND	ND	ND	ND	ND	-	-	-	ND	-	-
MW3-C	9/12-13/1989		ND	ND		ND	ND	ND	ND	0.07	-	-	-	ND	-	-
		21	2,200	160		40	7.5	42.3	16	180			_	40		

Conestoga-Rovers & Associates, Inc.

Table 3. Soil Analytical Data - Chiu Property, 800 Franklin Street, Oakland, California

	Date	Depth	TPHg	TPHd	TPHwo	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ	SVOCs	VOCs	Total Oil & Grease		Total Lead
Sample ID	Sampled	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	TRPH	(mg/kg)
MW3-E	9/12-13/1989	26	24	ND		ND	0.6	1.1	0.17	1.4	-	-	-	ND	-	-
Additional Subsurface Investigation b	y Miller Enviro	nmental (Company													
B1-5	9/11/1991	5	ND<0.20	ND<5.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	-	ND	ND<20	-
B1-10	9/11/1991	10	ND<0.20	ND<5.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	-	ND	ND<20	-
B1-15	9/11/1991	15	ND<0.20	ND<5.0		-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	•	ND	ND<20	-
B1-20	9/11/1991	20	ND<0.20	ND<5.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	-	-	-	ND	ND<20	-
B1-25	9/11/1991	25	2,900	160	-	-	ND<25	60	ND<25	ND<25	-	-	-	ND	190	-
B2-5	10/2/1991	5	ND<1	ND<1		ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
B2-10	10/2/1991	10	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
B2-15	10/2/1991	15	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
B2-20	10/2/1991	20	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
B2-25	10/2/1991	25	120	83	-	ND<10	ND<0.0025	0.310	0.210	0.600	-	-	-	ND<50	-	-
MW4-5	10/2/1991	5	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	_	-
MW4-10	10/2/1991	10	ND<1	ND<1		ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
MW4-15	10/2/1991	15	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	-	-	ND<50		-
MW4-20	10/2/1991	20	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025		-	_	ND<50	-	-
MW4-25	10/2/1991	25	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0,0025	ND<0.0025	-	-	-	ND<50	-	-
MW5-5	10/3/1991	5	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025		_	-	ND<50	_	-
MW5-10	10/3/1991	10	ND<1	ND<1	-	ND<10	ND<0,0025	ND<0.0025	ND<0.0025	ND<0.0025		-		ND<50	-	-
MW5-15	10/3/1991	15	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	_	-	ND<50	-	-
MW5-20	10/3/1991	20	ND<1	ND<1	_	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	_	_	-	ND<50	_	-
MW5-25	10/3/1991	25	ND<1	ND<1	-	ND<10	ND<0.0025	ND<0.0025	ND<0.0025	ND<0.0025	-	-	-	ND<50	-	-
Additional Subsurface Investigation b	by Associated To	erra Cons	ultants Inc													
B6-1 (MW-6)	5/15/1997	5	ND<1.0	ND<1.0	_	_	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050		-	ND<50	-	_
B6-2 (MW-6)	5/15/1997	10	ND<1.0	9.1	-	_	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	- ا	-	ND<50	_	-
B6-3B (MW-6)	5/15/1997	15	ND<1.0	ND<1.0	_	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050) -	-	ND<50	_	-
B6-4B (MW-6)	5/15/1997	20	ND<1.0	ND<1.0	_		ND<0.0050	ND<0.0050	ND<0,0050	ND<0.0050	ND<0.0050) -	.	ND<50	-	-
B6-5B (MW-6)	5/15/1997	25	ND<1.0	ND<1.0	_		0.050	0.011	0.023	0.099	ND<0.0050) -	-	ND<50	-	~
B6-6B (MW-6)	5/15/1997	30	ND<1.0	ND<1.0	_	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	0.0050	•	-	ND<50	-	-
B6-11 (MW-6)	5/15/1997	35	ND<1.0	ND<1.0	-	-	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050) -	-	ND<50	•	-
Soil Vapor Borings by Cambria																
VP-1.5.5	11/17/2006	5.5	ND<1.0	4.0		6.9	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	-	chloroform & 1,2-DCA: ND<0.005		-	35
VP-2-5.5	11/17/2006	5.5	ND<1.0	ND<1.0		ND<5.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.05	-	chloroform & 1,2-DCA: ND<0.005		•	-

Conestoga-Rovers & Associates, Inc.

Table 3. Soil Analytical Data - Chiu Property, 800 Franklin Street, Oakland, California

														Total Oil		
	Date	Depth	TPHg	TPHd	TPHwo	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	SVOCs	VOCs	& Grease		Total Lead
Sample ID	Sampled	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	TRPH	(mg/kg)

Abbreviations and Analyses:

ND<0.5 = Not Detected (ND) above laboratory detection limit.

ft = Measured in feet

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015

TPHwo = Total petroleum hydrocarbons as waste oil by modified EPA Method 418.1/3550/SM503

TPHmo = Total petroleum hydrocarbons as motor boil by modified EPA Method 8015

Benzene, ethylbenzene, toluene and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8020 or 8021B

SVOCs = Semi-volatile organics by EPA Method 8270.

VOCs = Volatile organics by EPA Method 8240.

TRPH = Total Recoverable Petroleum Hydrocarbons by EPA Method 418.1

Total Lead by EPA Method 7420

mg/kg = Milligrams per kilogram

- = Not sampled, not analyzed, or not applicable

* = Analyzed for "low to medium boiling point hydrocarbons" by EPA Method 8015.

WO1 sampled on 1/17/1991 was also analyzed for Total Petroleum Fuel Hydrocarbons by EPA Method 8015 (ND<1.0 mg/kg).

WO1 sampled on 1/17/1991 was also analyzed for Halogenated Volatile Organics by EPA Method 8010 (all analytes were ND).

WO1 sampled on 1/17/1991 was also analyzed for Semi-Volatile Organics by EPA Method 8270. The following analytes were detected: benzo(a)pyrene at 0.10 mg/kg, fluoranthene at 0.11 mg/kg, and pyrene at

0.15 mg/kg (all other analytes were ND).

(1) = 0.20 mg/kg bis (2-ethylhexyl) phthalate. Other SVOCs were ND.

(2) = 0.24 mg/kg bis (2-ethylhexyl) phthalate. Other SVOCs were ND.

(3) = 0.42 mg/kg bis (2-ethylhexyl) phthalate. Other SVOCs were ND.

(4) = 28 mg/kg naphthalene; 23 mg/kg 2-methyl-naphthalene. Other SVOCs were ND.

(5) = 0.37 mg/kg bis (2-ethylhexyl) phthalate. Other SVOCs were ND.

(6) = 6.4 mg/kg naphthalene; 4.1 mg/kg 2-methyl-naphthalene. Other SVOCs were ND.

(7) = 0.50 mg/kg bis (2-ethylhexyl) phthalate. Other SVOCs were ND.

(7) = 0.50 mg/kg bis (2-ethylhexyl) phthalate. Other SVOCs were ND.

(8) = 2.4 mg/kg naphthalene; 1.9 mg/kg 2-methyl-naphthalene. Other SVOCs were ND.

(9) = 27 mg/kg naphthalene; 13 mg/kg 2-methyl-naphthalene. Other SVOCs were ND.

(10) = 1.6 mg/kg naphthalene; 2.0 mg/kg 2-methyl-naphthalene. Other SVOCs were ND.

ATTACHMENT A

Regulatory Correspondence

5900 Hollis Street, Suite A, Emeryville, California 94608 Telephone: 5104200700 Facsimile: 5104209170 www.CRAworld.com

April 12, 2007

Mr. Jerry Wickham, P.G. Alameda County Environmental Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Response to April 3, 2007 ACEH Comment Letter

Chiu Property 800 Franklin Street, Oakland, California 94607 Fuel Leak Case No. RO0000196 CRA Project No. 581000

Dear Mr. Wickham:

This letter is in response to Alameda County Environmental Health's (ACEH) April 3, 2007 letter (Attachment A) commenting on Cambria's February 23, 2007 *Site Assessment Report*. On April 2, 2007, Cambria Environmental Technology, Inc. (Cambria) was acquired by Conestoga Rovers & Associates, Inc (CRA). Therefore, CRA prepared this response letter for the site referenced on behalf of our client, Mr. Tommy Chiu.

RESPONSE TO ACEH'S APRIL 3, 2007 LETTER

ACEH reviewed Cambria's February 23, 2007 Site Assessment Report and made technical comments in their April 3, 2007 letter. ACEH addressed four issues and CRA's response is below:

Soil Samples: On November 17, 2006, two soil samples, VP-1 and VP-2, were collected at 5 feet below ground surface (ft bgs) and analyzed for total petroleum hydrocarbons as gasoline (TPHg), diesel (TPHd), and motor oil (TPHmo) by EPA Method 8015Cm; benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA Method 8021B; and 1,2-dichloroehtane (1,2-DCA) and chloroform by EPA Method 8260B. CRA will present these results under a separate cover in a Site Assessment Report-Addendum.

Volatile Organic Compounds (VOCs): In the July 24, 2006 Response to Agency Comments and Work Plan, Cambria responsed to ACEH's April 7, 2006 letter (Attachment A) regarding VOC analysis. Cambria listed potential contaminants of concern (COCs) as TPHg, TPHd, TPHmo, BTEX, MTBE, 1,2-DCA and chloroform. Cambria then stated that future samples should be analyzed for these constituents, specifically for soil and groundwater. This rececommendation did not include the full suite of VOCs. In the July 24, 2006 Work Plan, Cambria stated "The soil vapor samples will be analyzed for benzene using EPA Method 8260, TO-15, or TO-14A." ACEH approved this approach in the August 8, 2006 letter (Attachment A). Therefore, soil vapor sampling and analysis was completed as proposed and approved.

Equal Employment Opportunity Employer

Response to Comments Letter Chiu Property, 800 Franklin Street, Oakland, California Fuel Leak Case No. RO0000196 April 12, 2007

Please reconsider the need to drill another set of borings to collect and analyze soil vapor for a suite of VOCs. Photoionization detector (PID) measurements collected at 2 and 5 ft bgs, from VP-1 and VP-2, were all non-detect and benzene was not detected in both soil vapor samples. Based on these results, we do not consider it necessary to collected any additional soil vapor samples.

Soil Boring Log for MW-3A: Well MW-3A, replacing well MW-3, was installed on February 8, 2007. Cambria logged the lithology in the boring for MW-3A based on the soil cuttings encountered while drilling. Soil cuttings were screened using a PID. Our project file for thesite did not include the original boring and well construction log for well MW-3. MW-3 was originally installed in 1989 by Miller Environmental Company. Cambria produced a well destruction log for MW-3, assuming that litology in boring MW-3 is similar to boring MW-3A, since they are located within a few feet of each other.

Groundwater Monitoring: In the ACEH April 3, 2007 letter, ACEH requested that "groundwater samples are to be analyzed for TPH as gasoline, diesel, and motor oil by EPA Method 8015 and BTEX, MTBE, and chlorinated solvents by EPA Method 8260B." Groundwater samples have typically been analyzed for TPHg, BTEX, and MTBE using EPA Methods 8015C/8021B; TPHd and TPHmo with EPA Method 8015C with silica gel cleanup; and 1,2-DCE and chloroform by EPA Method 8260B. Several issues: 1) First quarter 2007 (first half 2007) groundwater samples were already collected on March 8, 2007. Samples were analyzed for the typical list of analytes and methods presented above. So, the First Half 2007 Groundwater Monitoring Report will present the result for our typical list analytes and methods. 2) We typically analyze BETX and MTBE using 8021B rather than 8260B. In the future, would you like us to present BTEX and MTBE using Method 8260B? 3) We currently analyze chlorinated solvents 1,2-DCE and chloroform, based on the list of potential COCs for the site. In the future, do you want us to analyze groundwater for the complete VOC list, using method 8260B?

Response to Comments Letter Chiu Property, 800 Franklin Street, Oakland, California Fuel Leak Case No. RO0000196 April 12, 2007

CLOSING

Thank you for your time and consideration of these issues. We look forward to your response. Currently we are on-hold for any additional soil vapor characterization pending you review and response to this correspondence. As always, it is a pleasure working with you and if you have any questions or comments regarding this letter, please call Celina Hernandez at 510/420-3313 or Mark Jonas at 510/420-3307.

Sincerely,

Conestoga-Rovers & Associates, Inc.

Celina Hernandez

Senior Staff Geologist

Mark Jonas, P.G.

cc:

Senior Project Manager

Attachments: A - Regulatory Correspondence

Mr. Tommy Chiu, P.O. Box 28194, Oakland, California 94606

\\Sfo-s1\shared\IR\Chiu - Oakland\Correspondence2007\Letter 412-07 Response to ACEH Comments Chiu 581000.doc

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

April 3, 2007

APR - 5 2007

Mr. Tommy Chiu P.O. Box 28194 Oakland, CA 94606 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Subject: Fuel Leak Case No. RO0000196 and Geotracker Global ID T0600100050, Bill Louie's Auto Service, 800 Franklin Street, Oakland, CA 94607

Dear Mr. Chiu:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site and the recently submitted report entitled, "Site Assessment Report," dated February 23, 2007, prepared on your behalf by Cambria Environmental Technology, Inc. The "Site Assessment Report," presents results from the installation and sampling of two soil vapor probes and rebuilding of monitoring well MW-3. Two soil vapor probes were installed outside the building at 800 Franklin Street on November 17, 2006. Benzene and tracer compounds were not detected in soil vapor samples collected from the two probes. Two additional proposed soil vapor probes were to be installed inside the building; however, installation of the probes inside the building was deferred until a later phase of investigation based on a recommendation by Cambria Environmental Technology, Inc. The "Site Assessment Report," dated February 23, 2007 recommends no further soil vapor investigation. However, the data collected to date are not sufficient to support this recommendation. Therefore, as discussed in the technical comments below, we request that you conduct additional soil vapor sampling and groundwater monitoring.

We request that you address the following technical comments, perform the proposed work, and send us the technical reports requested below.

TECHNICAL COMMENTS

1. Soil Samples. Soil samples were to have been collected for laboratory analysis from each of the soil vapor probe borings but do not appear to have been analyzed. As proposed in the document entitled, "Response to Agency Comments and Work Plan," dated July 24, 2006, soil samples were to have been collected from 5 feet bgs in each soil vapor probe boring. The purpose of the soil samples was to provide sampling results adjacent to the former UST excavations. Proposed analyses for the soil samples included TPHg, TPHd, TPHmo, BTEX, MTBE, 1,2-DCA, and chloroform. In reviewing the soil boring logs for VP-1 and VP-2, it appears that soil samples may have been collected from approximately 5 feet bgs in the borings but no analytical results are presented. Please collect and analyze soil samples from approximately 5 feet bgs at these locations or describe the rationale for not analyzing these soil samples in the Soil Vapor Sampling Report requested below.

- 2. Volatile Organic Compounds. Solvents were used and stored in USTs on the site. As previously discussed in our correspondence dated April 7, 2006, the lack of analytical data for volatile organic compounds (VOCs) is a data gap for the site. No VOCs other than benzene were analyzed in the soil vapor samples collected on November 17, 2006. Therefore, we request that you sample the soil vapor probes a second time and analyze the soil vapor samples for a full target list of VOCs that includes BTEX and chlorinated solvents using Method TO-15. Please present the results in the Soil Vapor Sampling Report requested below along with recommendations for installation of the second phase of soil vapor probes inside the building.
- 3. Soil Boring Log for Well MW-3A. A notation on the soil boring log for well MW-3 states, "Soil lithology based on soil cuttings from MW-3A and other soil boring logs." Please clarify the source of the information on the MW-3 soil boring log. The purpose of a soil boring log is to present a description of the soils encountered in a specific boring. Information from adjacent borings should not be entered on a boring log for well MW-3.
- 4. Groundwater Monitoring. Groundwater monitoring is to be conducted in all existing wells on a semi-annual basis. The groundwater samples are to be analyzed for TPH as gasoline, diesel, and motor oil by EPA Method 8015 and BTEX, MTBE, and chlorinated solvents by EPA Method 8260B. Please present results of the groundwater sampling in the semi-annual groundwater monitoring reports requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Jerry Wickham), according to the following schedule:

- May 15, 2007 Semi-Annual Monitoring Report for the First Quarter 2007
- July 18, 2007 Soil Vapor Sampling Report
- November 15, 2007 Semi-Annual Monitoring Report for the Third Quarter 2007

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Mr. Tommy Chiu April 3, 2007 Page 4

If you have any questions, please call me at (510) 567-6791.

Sincerely,

Jerry Wickham, P.G.

Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Mark Jonas

Cambria Environmental Technology, Inc.

5900 Hollis Street, Suite A Emeryville, CA 94608

Donna Drogos, ACEH Jerry Wickham, ACEH

File

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

ORIGINAL

DAVID J. KEARS, Agency Director

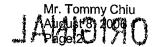
ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

August 8, 2006

AUG 10 "706

Mr. Tommy Chiu P.O. Box 28194 Oakland, CA 94606

Subject: Fuel Leak Case No. RO0000196, Bill Louie's Auto Service, 800 Franklin Street, Oakland, CA


Dear Mr. Chiu:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the above-referenced site and the document entitled, "Response to Agency Comments and Work Plan," dated July 24, 2006, prepared on your behalf by Cambria Environmental Technology, Inc. The "Response to Agency Comments and Work Plan," presents responses to technical comments in our April 11, 2006 correspondence and proposes a scope of work to rebuild monitoring well MW-3 and collect soil vapor samples at four sampling locations. We concur with the proposed scope of work provided that the technical comments below are addressed during the field investigation.

We request that you address the following technical comments, perform the proposed work, and send us the technical reports requested below.

TECHNICAL COMMENTS

- 1. Depth of Soil Vapor Samples. The depths at which soil vapor samples will be collected do not appear to be specified in the Work. We request that soil vapor samples be collected at a depth of approximately 4 feet bgs. The recommended depth may be adjusted in the field based on encountered conditions to intercept any significant coarse-grained layers that may be preferential pathways for soil vapors. Please present results of the soil vapor sampling in the Site Assessment Report requested below.
- 2. Laboratory Analyses of Soil Vapor Samples. The Work Plan proposes analyses of soil vapor samples by EPA Methods TO-15, TO-14A, or 8260. EPA Method 8260 is acceptable provided that a reporting limit of 85 micrograms per cubic meter can be achieved.
- 3. Hydraulic Gradient and Off-site Receptors. ACEH appreciates the research conducted on of-site receptors and the BART tube. Based on the information provided, nearby buildings and the BART tube do not appear to be receptors for groundwater from the site.
- 4. Groundwater Monitoring. Groundwater monitoring is to be conducted in all existing wells on a semi-annual basis. ACEH concurs with the proposed analyses. Please present results of the groundwater sampling in the semi-annual groundwater monitoring reports requested below.

TECHNICAL REPORT REQUEST

Please submit technical reports to Alameda County Environmental Health (Attention: Mr. Jerry Wickham), according to the following schedule:

- November 15, 2006 Quarterly Monitoring Report for the Third Quarter 2006
- December 15, 2006 Site Assessment Report

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program ftp site are provided on the attached "Electronic Report Upload (ftp) Instructions." Please do not submit reports as attachments to electronic mail.

Submission of reports to the Alameda County ftp site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) Geotracker website. Submission of reports to the Geotracker website does not fulfill the requirement to submit documents to the Alameda County ftp site. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitor wells, and other data to the Geotracker database over the Internet. Beginning July 1, 2005, electronic submittal of a complete copy of all necessary reports was required in Geotracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/cleanup/electronic reporting).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

If you have any questions, please call me at (510) 567-6791.

Sincerely,

Jerry Wickham, P.G.

Hazardous Materials Specialist

Enclosure: ACEH Electronic Report Upload (ftp) Instructions

cc: Matt Meyer

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A

Emeryville, CA 94608

Mark Jonas
Cambria Environmental Technology, Inc.
5900 Hollis Street, Suite A
Emeryville, CA 94608

Donna Drogos, ACEH Jerry Wickham, ACEH File

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: Jul, ..., 2005

REVISION DATE: May 31, 2006

PREVIOUS REVISIONS: October 31, 2005,

December 16, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

Effective January 31, 2006, the Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format.
 These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org

Ol

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of: ftp Site Coordinator.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name at acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by Report Upload. (e.g., Subject: RO1234 Report Upload)

ATTACHMENT B

Analytical Laboratory Report

Cambria Env. Technology	Client Project ID: #589-1000	Date Sampled: 11/17/06
5900 Hollis St, Suite A		Date Received: 11/20/06
Emeryville, CA 94608	Client Contact: Mark Jonas	Date Reported: 11/28/06
Emeryvine, err 54000	Client P.O.:	Date Completed: 11/28/06

WorkOrder: 0611419

November 28, 2006

Dear Mark:

Enclosed are:

- 1). the results of 3 analyzed samples from your #589-1000 project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

GETE

0611919

	eCAMPI osite: <u>www.mc</u> ophone: (877	1534 WIL PETTSBUI campbell	LOW PAS 8G, CA 94 . <u>com</u> Em 32	S RO. 565-17 ail: m	AD 01 (ain@) Fax:	neca (925	mpbe) 252	ll.com 2-9269				1]		OU	ND DF	TI }	MI	P D Che	F Eki	usi Usi 1	H Ex	24 cel	I HR U	4 V	© 8 H Vri≀	te () d "J"	72 H In (E Ing)W) is re	quired
Report To: 1/7/4	//Jones	>	3	ill To	: [\	M	L	JOB	۵S	<u> </u>							A	nal	sis	Req	uest			-			_	<u>O</u> I	ther	+c	omments
Company: Carn. 590 Hz Tele: (510) UZ Project #: SS	000 FA 115 St. 10-0700 1-1005 900 F	Men Sk 2 3 70,040	E	-Mai ax: (roiec	570 t Nan) 4° 10:	20-) (A) -91	16 10	374 >			(5108 + 1708	1/5/1/0 G/Clamp	hons (418.1).	21 (IIVOCs)	A (M2 / 8021)	stieldes)	EPA 608 / 8082 PCB's ONLY; Arodors / Congeners	udes)	Herbicids))Cs)	(c)cs)		00.87.60.107.6020)	6.87 6010 / 6020)	(6020)	000	DD Commencer	Sa fo an	iter imples r Metals ralysis: es / No
Sampler Signatur	e; (<u>/</u> 2)			4			-		Ι'n	VETI	IOD	- \$	7 (Vag	3	rocar	08/0	Y (EF	2	NO S	Pestin	ale C	10 (V)	(8)	6 (P.A	3/2	1/2	ξľ	M	1		
SAMPLE ID	LOCATION/ Field Point Name	SAMP Date	LING Time	#Containers /	Type Continuels	5	IATI = = =	92 E	PR	ESE	RVE	븨	BIEA & IPH as Gas	TPIT as Diesel (8015) C	Total Petroleum Hydrocarbons (418.1)	EPA 502, 2 / 601 / 80 10 / 8021 (ITVOCs)	MTBE /BTEX ONLY (EPA 602 / 8021)	EPA 505/608 / 8081 (CI Pesticides)	A 608 / 8082 PCB	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2.7 624.7 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAIIs / PNAS)	CAN 17 Metals (200.7 / 200.8 / 0010 / 5020)	LUFT'S Merals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 (6010 /)6920)	4007			
				#	Į ĉ	3	7	ଊ ୦	lΞ	Ξ		5	8	Ēļ,	: £	å	Ż	ŝ	ä		à	E .	2	Ž	ũ	3	3		Ø		
NP-1-5.5			1125		Huke		V		V			T)	XI;	Z													\mathbb{Z}	凶	<u> </u>		
NP-2-5-5		H.	1240		h)×		Ž.		Ŵ			K	Xľ	V.														×	<u> </u>		
NV-i		No.		m	1000		χ		K	7		17	V	V													M	VI.	Δ		
			1						17																			1			
						П																									
3008		İ																													
			t		İ																										
												Ī	Ì																		
								H	ı																						
Relinquished By: Relinquished By: 1	E		Time: (((() Time:	\ \c	ejved B SC(arved B	91/	<u>/</u>	4	1	(14		4	HE DE API	OP C AD SI CHLC PROP ESER	ACE IRIN/ RIAT	ABS VTEE E CC	ENT FIN I INTA		RS_				, common			CON	IME	NTS.	***************************************		
Relanguistice-ity:		Date:	Tide:	Rec	gived E	y/	/	and the second				7	* ***	werkelt.	ا جمھیس		OAS	О.	kG.	ME	TAL	s	OTI	ŒR							

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0611419

ClientID: CETE

₩ EDF

Fax

Bill to

✓ Email

HardCopy

ThirdParty

5 days

Report to:

Mark Jonas

Combrio Env.

Cambria Env. Technology 5900 Hollis St, Suite A Emeryville, CA 94608 Email: TEL:

PO:

mjonas@cambria-env.com

(510) 420-070

ProjectNo: #589-1000

FAX: (510) 420-917

Cambria Env. Technology 5900 Hollis St, Ste. A

Accounts Payable

Emeryville, CA 94608

Date Received: 11/20/2006

Requested TAT:

Date Printed: 11/20/2006

	. 10. 1															
								Req	uested	Tests	(See le	gend b	elow)			
Sample ID	ClientSamplD	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0611419-001	VP-1.5.5	Soil	11/17/2006		A	Α	Ā	A	А			Γ	<u> </u>	l		<u></u>
0611419-002	VP-2.5.5	Soil	11/17/2006		- A	Α			Α]
0611419-003	W-1	Soil	11/17/2006		Α	A	Α		A							

Test Legend:

1	8260B_S	2	
6		7	
11		12	

2	G-MBTEX_S
7	
12	

3	PB_S
8	

4	PREDF REPORT
9	

5	TPH(D)WSG_S
10	

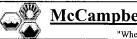
Prepared by: Nickole White

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Cambria Env. Technology	Client Project ID: #589-1000	Date Sampled: 11/17/06
5900 Hollis St, Suite A		Date Received: 11/20/06
Emeryville, CA 94608	Client Contact: Mark Jonas	Date Extracted: 11/20/06
Directly, value, CAX > 1000	Client P.O.:	Date Analyzed: 11/22/06-11/23/06

Diesel Range (C10-C23) & Oil Range (C18+) Extractable Hydrocarbons as Diesel & Motor Oil w/ Silica Gel Clean-Up*


Extraction method: SW3550C/3630C		Analytical me	thods: SW8015C	Work Order: 0611419		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0611419-001A	VP-1.5.5	S	4.0,g,b	6.9	1	90
0611419-002A	VP-2.5.5	S	ND	ND	1	94
0611419-003A	W-1	S	1.8,g	22	1	89
					!	
				·		

the state of the s				
Reporting Limit for DF =1;	W	NA	NA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; r) results are reported on a dry weight basis

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Cambria Env. Technology	Client Project ID: #589-1000	Date Sampled: 11/17/06
5900 Hollis St, Suite A		Date Received: 11/20/06
Emeryville, CA 94608	Client Contact: Mark Jonas	Date Extracted: 11/20/06
2	Client P.O.:	Date Analyzed 11/22/06-11/23/06

Diesel Range (C10-C23) Extractable Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW3550C/3630C		Analytic	Work Order: 0611419		
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0611419-001A	VP-1.5.5	S	4.0,g,b	1	90
0611419-002A	VP-2.5.5	S	ND	1	94
0611419-003A	W-1	s	1.8,g	1	89
	· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·		
					1
			4.4.4.6		

Reporting Limit for DF =1;	W	NA	NA
ND means not detected at or above the reporting limit	S	1.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; r) results are reported on a dry weight basis

Cambria Env. Technology

Client Project ID: #589-1000

Date Sampled: 11/17/06

Date Received: 11/20/06

Client Contact: Mark Jonas

Date Extracted: 11/20/06

Client P.O.:

Date Analyzed: 11/20/06-11/21/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction m	ethod: SW5030B		Analytical methods: SW8021B/8015Cm Work Order: 06					Work Order: 061		
Lab ID	Client ID	Matrix	TPH(g)	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	VP-1.5.5	S	ND	ND	ND	ND	ND	ND	1	91
002A	VP-2.5.5	S	ND	ND	ND	ND	ND	ND	1	91
003A	W-1	s	ND	ND	ND	ND	ND	ND	1	90
		-							 	

	124 11111-1111								 	
-	 									
	P. C.						<u> </u>			
Repor	ting Limit for DF =1;	w	NA	NA	NA	NA	NA	NA	1	ug/L

ND means not detected at or	S	1.0	0.05	0.005	0.005	0.005	0.005	1	mg/Kg
above the reporting limit * water and vapor samples and all TCLE	P & SPL	P extracts are re	ported in ug/L	 	samples in mg/	ko wine samnl	es in ug/wine.	<u> </u>	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

Cambria Env. Technology	Client Project ID: #589-1000	Date Sampled: 11/17/06
5900 Hollis St, Suite A		Date Received: 11/20/06
Emeryville, CA 94608	Client Contact: Mark Jonas	Date Extracted: 11/20/06
Emalyvine, CA 74000	Client P.O.:	Date Analyzed: 11/22/06

Volatile Organics by P&T and GC/MS*

Analytical methods: SW8260B Work Order: 0611419 Extraction method: SW5030B ,2-Dichloroethane (1,2-DCA % SS Matrix Chloroform Lab ID Client ID 0611419-001A VP-1.5.5 S ND ND 1 97 0611419-002A VP-2.5.5 S ND ND 1 98 ND 100 0611419-003A W-1 S ND

Reporting Limit for DF =1;	W	NA	NA NA	ug/L
ND means not detected at or above the reporting limit	S	0.005	0.005	mg/kg

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\text{wipe}$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

Cambria Env. Technology	Client Project ID: #589-1000	Date Sampled: 11/17/06
5900 Hollis St, Suite A		Date Received: 11/20/06
Emeryville, CA 94608	Client Contact: Mark Jonas	Date Extracted: 11/20/06
	Client P.O.:	Date Analyzed: 11/27/06

Lead by ICP*

			Lead by ICP	*		
Extraction method: SW30:		Analytical methods	6010C	Work Order: 0611419		
Lab ID	Client ID	Matrix	Extraction	Lead	DF	% SS
0611419-001A	VP-1.5.5	S	TTLC	35	1	109
0611419-003A	W-1	s	TTLC	210	1	109
	TTP36 & SL. 1					
	.					
						-
						-
			-			

Reporting Limit for DF =1;	W	TTLC	NA	μg/L
ND means not detected at or above the reporting limit	S	TTLC	5.0	mg/Kg
above the reporting innit	L.			

^{*}water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/soild samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

i) aqueous sample containing greater than ~1 vol. % sediment; for DISSOLVED metals, this sample has been preserved prior to filtration; for TTLC metals, a representative sediment-water mixture was digested; j) reporting limit raised due to insufficient sample amount; k) reporting limit raised due to matrix interference; m) estimated value due to low/high surrrogate recovery, caused by matrix interference; n) results are reported on a dry weight basis; p) see attached narrative.

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil

QC Matrix: Soil

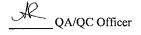
WorkOrder: 0611419

EPA Method 60	EPA Method 6010C				Extraction SW3050B				BatchID: 24861			Spiked Sample ID 0611340-027A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acce	eptanc	e Criteria (%)		
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	MS/MSD RPD LCS/LCSD				
Lead	10	50	94.8	94.8	0	10	103	96.6	6.29	75 - 125	20	80 - 120	20		
%SS:	105	250	105	105	0	250	108	106	1.69	70 - 130	20	70 - 130	20		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24861 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611419-001A	11/17/06 11:35 AM	A 11/20/06	11/27/06 6:46 PM	0611419-003A	11/17/06 12:45 PI	M 11/20/06	11/27/06 6:48 PM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds snike amount for soil matrix or exceeds 2x snike amount for water matrix or sample diluted due to high matrix or analyte.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

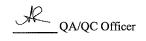
QC Matrix: Soil

WorkOrder: 0611419

EPA Method SW8260B	E	xtraction	SW503)B		Batchll	D: 24841	\$	piked San	nple ID	: 0611396-0	59a
Analyte	Sample	Spiked	. MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
Analyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	81	92.5	13.2	95.2	93.3	2.09	70 - 130	30	70 - 130	30
Benzene	ND	0.050	110	121	9.61	122	121	0.869	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	77.2	75.8	1.87	93.1	87.5	6.17	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	99.2	111	10.9	106	103	2.02	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	98	109	10.2	112	108	4.08	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	84.7	85.5	0.922	88.7	85.6	3.57	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	113	125	10.0	124	123	0.871	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	104	118	12.4	119	116	2.64	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	81	94.6	15.4	96.1	93.1	3.20	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	77.7	88.7	13.3	93.1	90.5	2.80	70 - 130	30	70 - 130	30
Toluene	ND	0.050	106	117	9.82	112	110	1.90	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	88.1	101	13.5	96.6	95.4	1.18	70 - 130	30	70 - 130	30
%SS1:	105	0.050	97	100	2.88	100	99	0.935	70 - 130	30	70 - 130	30
%SS2:	100	0.050	98	95	3.54	96	95	0.0327	70 - 130	30	70 - 130	30
%SS3:	. 99	0.050	92	92	0	92	93	1.56	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24841 SUMMARY


٠	Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
	0611419-001	1/17/06 11:35 AM	11/20/06	11/22/06 9:52 AM	0611419-002	1/17/06 12:40 PM	11/20/06	1/22/06 10:39 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR 6010C

W.O. Sample Matrix: Soil

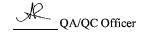
QC Matrix: Soil

WorkOrder: 0611419

EPA Method 6010C Extraction SW3050B					BatchID: 24861 Spiked Sample ID: 0611				0611340-0	27A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
riidiyio	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Lead	10	10	94.8	94.8	0	103	96.6	6.29	75 - 125	20	80 - 120	20
%SS:	105	250	105	105	0	108	106	1.69	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24861 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611419-001	1/17/06 11:35 AM	11/20/06	11/27/06 6:46 PM	0611419-003	1/17/06 12:45 PM	11/20/06	11/27/06 6:48 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil

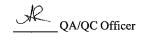
QC Matrix: Soil

WorkOrder: 0611419

EPA Method SW8260B	E	xtraction	SW503	В		Batchll	D: 24864		Spiked San	nple ID	: 0611419-0	03a
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
Malyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME	ND	0.050	83.3	87.8	5.25	84.7	91.8	7.98	70 - 130	30	70 - 130	30
Benzene	ND	0.050	110	115	4.33	100	116	14.9	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	86.5	85.4	1.26	85.5	87.4	2.27	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	101	103	1.66	85.8	103	18.5	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	106	107	1.29	98.8	108	8.93	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	87	80.3	8.01	87.5	84.8	3.12	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	109	116	6.72	97.5	119	19.8	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	105	111	5.71	100	115	14.0	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	83.6	88.3	5.48	89.6	92.6	3.24	70 - 130	30	`70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	81.2	85.7	5.45	81.3	89.6	9.65	70 - 130	30	70 - 130	30
Toluene	ND	0.050	105	108	2.78	87.7	107	19.6	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	88	90.5	2.83	79.7	96.6	19.2	70 - 130	30	70 - 130	30
%SS1:	96	0.050	95	97	2.23	104	101	2.73	70 - 130	30	70 - 130	30
%SS2:	103	0.050	95	95	0	94	94	0	70 - 130	30	70 - 130	30
%SS3:	100	0.050	92	91	0.473	91	92	0.491	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24864 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611419-003	1/17/06 12:45 PM	11/20/06	1/22/06 11:26 AM			•	

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil

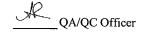
QC Matrix: Soil

WorkOrder: 0611419

EPA Method SW8021B/8	015Cm E	xtraction	SW503	0B		Batchli	D: 24838		Spiked San	npie ID	: 0611396-0)59A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LÇS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf	ND	0.60	112	114	1.67	112	107	4.86	70 - 130	30	70 - 130	30
MTBE	ND	0.10	93.2	99.9	6.95	93.3	95.4	2.25	70 - 130	30	70 - 130	30
Benzene	ND	0.10	107	105	1.49	97.1	99.1	2.02	70 - 130	30	70 - 130	30
Toluene	ND	0.10	97.5	95.8	1.78	88	90.6	2.87	70 - 130	30	70 - 130	30
Ethylbenzene	ND	0.10	110	105	4.73	96.8	96.5	0.307	70 - 130	30	70 - 130	30
Xylenes	ND	0.30	107	107	0	96.3	96	0.347	70 - 130	30	70 - 130	30
%SS:	96	0.10	94	101	7.18	95	84	12.3	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24838 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611419-001	1/17/06 11:35 AM	11/20/06	1/20/06 10:50 PM	0611419-002	1/17/06 12:40 PM	11/20/06	11/21/06 5:56 AM
0611419-003	1/17/06 12:45 PM	11/20/06	11/21/06 6:28 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Soil

QC Matrix: Soil

WorkOrder: 0611419

EPA Method SW8015C	E	xtraction	SW355	OC/36300	3	Batchil	D: 24863		Spiked San	nple ID	: 0611419-0	003A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	A	cceptan	ce Criteria (%)
Allalyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	1.8	20	112	113	0.287	99.6	100	0.557	70 - 130	30	70 - 130	30
%SS:	89	50	103	102	0.536	102	105	2.74	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 24863 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0611419-001	1/17/06 11:35 AM	11/20/06	11/23/06 1:35 AM	0611419-002	1/17/06 12:40 PM	11/20/06	11/23/06 1:35 AM
0611419-003	1/17/06 12:45 PM	11/20/06	1/22/06 12:21 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

