RECEIVED By dehloptoxic at 8:34 am, Oct 27, 2006

CAMBRIA

October 25, 2006

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

RE: Groundwater Monitoring Report - Third Quarter 2006

Chiu Property 800 Franklin Street, Oakland, California 94607 STID No. 37; Cambria Project No. 589-1000

Dear Mr. Wickham:

On behalf of Mr. Tommy Chiu, Cambria Environmental Technology, Inc (Cambria) is submitting the *Groundwater Monitoring Report – Third Quarter 2006*. Presented in the report are the third quarter 2006 activities and results, and activities anticipated to be completed by the end of first quarter 2007. The subject site is monitored on a semi-annual schedule during the first and third quarters.

If you have any questions or comments regarding this report, please call me at (510) 420-3307.

JONAS No. 6392

Sincerely,

cc:

Cambria Environmental Technology, Inc.

Mark Jonas, P.G.

Senior Project Manager

Enclosure: Groundwater Monitoring Report – Third Quarter 2006

Ms. Anny Chiu, P.O. Box 28194, Oakland, California 94606

GROUNDWATER MONITORING REPORT – THIRD QUARTER 2006

Chiu Property 800 Franklin Street Oakland, California STID No. 37 Cambria Project No. 589-1000

October 25, 2006

Prepared for:

Mr. Tommy Chiu P.O. Box 28194 Oakland, California 94606

Prepared by:

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Written by:

Glenn Reiss

Senior Staff Geologist

Cambria Environmental Technology, Inc. (Cambria) prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to Cambria from outside sources and/or in the public domain, and partially on information supplied by Cambria and its subcontractors. Cambria makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by Cambria. This document represents the best professional judgment of Cambria. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

GSIONAL

JONAS

No. 6392

OF CALIF

Mark Jonas, P

Senior Project Manager

GROUNDWATER MONITORING REPORT - THIRD QUARTER 2006

Chiu Property 800 Franklin Street Oakland, California STID No. 37 Cambria Project No. 589-1000

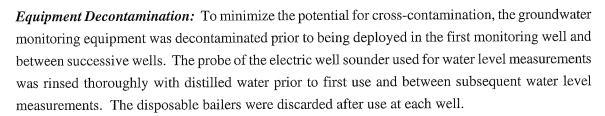
October 25, 2006

INTRODUCTION

This report describes the third quarter 2006 groundwater monitoring activities performed at 800 Franklin Street, Oakland, California (Figure 1). This groundwater monitoring event was conducted at the request of the Alameda County Department of Environmental Health (ACEH). This report presents a summary of third quarter 2006 activities, monitoring results, and activities anticipated to be completed by the end of first quarter 2007.

THIRD QUARTER 2006 ACTIVITIES

Monitoring Activities


On September 15, 2006, Muskan Environmental Sampling (MES) conducted quarterly groundwater monitoring activities at the site. MES measured groundwater levels and collected groundwater samples from monitoring wells MW-1, MW-2, MW-4, MW-5, and MW-6 (Figure 2). Well MW-3 was inaccessible and therefore could not be monitored. Copies of the field data sheets are included as Appendix A.

Water Level Measurements: Depth to groundwater measurements were recorded to the nearest 0.01 foot, relative to a previously established reference elevation. Measurements were collected using an electric, conductance-actuated well sounder. The groundwater elevation and depth data are presented in Table 1.

Groundwater Sampling: MES collected groundwater samples from wells MW-1, MW-2, MW-4, MW-5, and MW-6. Field activities associated with groundwater sampling included well purging, measuring groundwater parameters, sample collection, and equipment decontamination. See the field data sheets in Appendix A.

Prior to sampling, each monitoring well was purged. MES purged three well-casing volumes of groundwater from each monitoring well. Field measurements of pH, specific conductance, and temperature of purged groundwater were measured after the extraction of each successive casing volume. Well purging continued until consecutive pH, specific conductance, and temperature measurements appeared to stabilize. Field measurements, purge volumes, and sample collection data were recorded on field sampling data sheets, presented in Appendix A.

Groundwater samples were collected from each of the accessible wells using new disposable bailers. The samples were decanted from the bailers into 1-liter (L) amber glass containers and 40-milliliter (mL) glass volatile organic analysis (VOA) vials supplied by McCampbell Analytical, Inc. (McCampbell) of Pittsburg, California. Samples were labeled, placed in protective foam sleeves, stored on crushed, water-based ice at or below 4 degrees Celsius (°C) and transported under a chain-of-custody (COC) to the laboratory. The COC used for this monitoring event is provided in Appendix B.

Sample Analysis: Groundwater samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline (TPHg) by modified United States Environmental Protection Agency (EPA) Method SW8015C. Samples were also analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary-butyl ether (MTBE) by EPA Method SW8021B. In addition, groundwater samples were analyzed for TPH as diesel (TPHd) and as motor oil (TPHmo) by EPA Method SW8015C with silica gel cleanup, and chloroform and 1,2-dichloroethane (1,2-DCA) by EPA Method SW8260B. The analyses were performed by McCampbell. The laboratory analytical report is included in Appendix B. Groundwater analytical results are summarized on Figure 2 and presented in Table 1.

Monitoring Results

Groundwater Flow Direction and Gradient: Depth-to-water measurements collected on September 15, 2006 ranged from 21.16 to 22.46 feet below top of casing (TOC). Groundwater elevations were calculated by subtracting the depth-to-water measurements from the surveyed TOC elevations. The groundwater elevations were plotted on a site plan and contoured. Based on depth-to-water data collected during the site visit, groundwater appears to flow towards the northwest at a gradient of 0.009 feet/foot. Depth-to-water and groundwater elevation data for the site are summarized in Table 1 and presented on Figure 2.

Groundwater Analytical Results: During the third quarter 2006 TPHd, TPHmo, chloroform, and 1,2-DCA were added to the sampling protocol as contaminants of potential concern. Hydrocarbons were detected in the five wells sampled during the third quarter 2006, as follows:

- TPHg and BTEX were detected in the samples collected from wells MW-2 and MW-6. The maximum TPHg and BTEX concentrations were detected in well MW-2 at 43,000 micrograms per liter (μg/L), 1,600 μg/L, 4,400 μg/L, 1,100 μg/L, and 5,100 μg/L, respectively. The TPHg and BTEX concentrations detected in well MW-6 were 1,800 μg/L, 10 μg/L, 6.7 μg/L, 9.9 μg/L and 42 μg/L, respectively. The laboratory noted that unmodified or weakly modified gasoline is significant in samples collected from wells MW-2 and MW-6.
- No MTBE was detected above laboratory reporting limits in any of the wells.
- TPHd range hydrocarbons were detected in samples from wells MW-2 and MW-6 at concentrations of 3,100 μg/L and 480 μg/L, respectively. However, the laboratory noted that the TPH chromatogram suggested gasoline range compounds were significant in these samples.
- No TPHmo was detected above laboratory reporting limits in any of the wells.
- Chloroform was detected in all (MW 1, MW-2, MW-4, MW-5, and MW-6) of the five wells sampled during the third quarter 2006 event. The maximum chloroform concentration was detected in well MW-4 at 28 µg/L. All the detected chloroform concentrations were well below chloroform's Environmental Screening Level (ESL) for a potential drinking water resource, which is 70 µg/L.
- No 1,2-DCA was detected above laboratory reporting limits in any of the wells.

No other hydrocarbon concentrations were detected above laboratory reporting limits (Table 1, Appendix B).

Waste Disposal

On September 15, 2006, approximately 30 gallons of drummed purged groundwater from the third quarter 2006 monitoring event was transported for disposal by Evergreen Environmental Services to Evergreen Oil, Inc. in Newark, California. A copy of the Non-Hazardous Waste Manifest for disposal of purge water generated in the third quarter 2006 monitoring event will be provided in the *Groundwater Monitoring Report – First Quarter 2007*.

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

GeoTracker Submittals

Cambria uploaded relevant data to the GeoTracker database on behalf of Mr. Tommy Chiu. Cambria has uploaded third quarter 2006 groundwater depth data, analytical results, and this report to the State's GeoTracker database.

Approved Work Plan

In response to ACEH technical comments, Cambria submitted *Response to Agency Comments and Work Plan* (Work Plan), dated July 24, 2006. ACEH granted conditional approval of the Work Plan in an August 8, 2006 letter. The scope of approved work includes rebuilding inaccessible well MW-3, soil vapor sampling, and preparation of a report that will describe these activities and their results.

ANTICIPATED FIRST QUARTER 2007 ACTIVITIES

Monitoring Activities

As approved by ACDEH the subject site will be monitored semi-annually during first and third quarters. Cambria will measure water levels and collect groundwater samples from wells MW-1 through MW-6. Groundwater samples will be analyzed for TPHd and TPHmo with silica gel cleanup and TPHg by modified EPA Method SW8015C; BTEX and MTBE by EPA Method SW8021B; and chloroform and 1,2-DCA by EPA Method SW8260B. Cambria will prepare a groundwater monitoring report summarizing the monitoring activities and results.

ATTACHMENTS

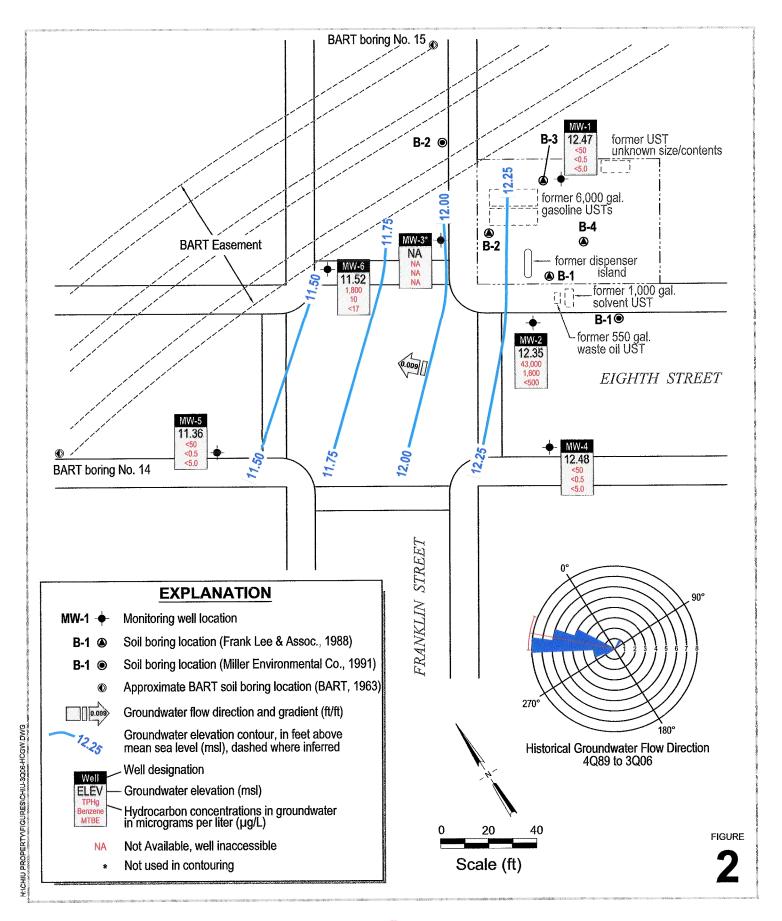
Figure 1 – Vicinity Map

Figure 2 – Groundwater Elevation Contour and Hydrocarbon Concentration Map

Table 1 – Groundwater Analytical and Elevation Data

Appendix A – Groundwater Monitoring Field Data Sheets

Appendix B – Laboratory Analytical Report


H:\Chiu - Oakland\QM & Disposal\2006\3q06\GMR 3Q06 Chiu 589-1000.doc

Chiu Property

800 Franklin Street Oakland, California

Vicinity Map

800 Franklin Street Oakland, California

Groundwater Elevation Contour and Hydrocarbon Concentration Map

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - Chiu Property, 800 Franklin Street, Oakland, California

Well ID	Date	Depth	Groundwater										
TOC Elevation	Sampled	to Water	Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Chloroform	1,2-DCA
(ft amsl)		(ft below TOC)	(feet amsl)	<u> </u>					ug/L				\rightarrow
	ESLs for	a potential drinking	water resource:	100	100	100	1.0	40	30	20	5.0	70	0.5
MW-1	10/12/1989†	22.87	10.55	ND			ND	ND	ND	ND		0.8	8.6
33.42	10/31/1991			630	960	1,700	3.2	ND<0.5	ND<0.5	130			9.8
34.89	10/21/1992	23.48	11.41	520			78	38	ND<0.5	120			
	2/25/1993	22.51	12.38	1,600			160	190	34	350			
	4/27/1993	22.36	12.53	380			5.2	ND<0.5	ND<0.5	74			
	10/7/1993		12.10	1,000			81	150	47	230			
33.98	3/28/1994		11.91	460			14	25	14	39			<u>-</u> -
	4/29/1994	40 Am	***										
	6/10/1994		11.66										
	7/8/1994		11.62										
	7/26/1994		11.48										
	8/25/1994		11.47										
	10/27/1994	22.51	11.47	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	1/6/1995		12.08										
	2/1/1995		12.79										
	3/29/1995		12.75										
	10/31/1995		12.48	1,400			15	38	49	510	19		
	5/21/1997		12.49	150			2.9	1.5	8.6	26	ND<5.0		
	8/10/2004	23.35	10.63	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/28/2004+			~-									
	12/21/2004	22.93	11.05	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/11/2005+												
	6/16/2005	20.68	13.30	ND<50			0.64	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/1/2005	20.74	13.24	ND<50			1.2	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	12/16/2005	20.95	13.03	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/10/2006	20.34	13.64	ND<50			0.60	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/15/2006	21.51	12.47	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	6.4	ND<0.5

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - Chiu Property, 800 Franklin Street, Oakland, California

Well ID	Date	Depth	Groundwater										
TOC Elevation	Sampled	to Water	Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Chloroform	1,2-DC
(ft amsl)		(ft below TOC)	(feet amsl)						μg/L				\rightarrow
	ESLs for	a potential drinking	water resource:	100	100	100	1.0	40	30	20	5.0	70	0.5
MW-2	10/12/1989 <i>†</i>	23.25	10.40	38,000		3,900	1,300	1,200	ND	4,700	***		
33.66	10/31/1991			10,000	1,500		1,800	1,200	270	960			170
	11/6/1991	24.02	9.64										
	10/21/1992	22.42	11.24	270,000			9,700	4,500	9,600	56,000			
	2/25/1993	21.50	12.16	49,000			4,300	11,000	1,300	9,100			
	4/27/1993	21.26	12.40	39,000			1,400	4,000	220	5,200			
	10/7/1993		12.04	50,000			2,700	8,100	940	7,800			
	3/28/1994		11.88	20,000			360	1,300	220	1,800			
	4/29/1994		11.87		′				00 to	***			
	6/10/1994		11.44										
	7/8/1994		11.42										
	7/26/1994		11.22										
	8/25/1994		11.01										
	10/27/1994	22.66	11.00	21,000			1,200	3,700	600	4,300			
	1/6/1995		11.66										
	2/1/1995		12.21										
	3/29/1995		12.66										
	10/31/1995		11.51	45,000			3,100	8,800	1,200	8,400	810		
	5/21/1997		12.65	18,000			1,400	4,200	680	3,600	370		
	8/10/2004	21.03	12.63	47,000 (a)			4,200	4,900	1,400	6,000	ND<500		
	9/28/2004	22.95	10.71										
	12/21/2004	20.91	12.75	13,000 (a)			500	310	34	1600	ND<100		
	3/11/2005	11.35	22.31	32,000 (a)			970	2,400	890	4,200	ND<1,000		
	6/16/2005	20.50	13.16	43,000 (a,i)			1,500	3,400	1,200	5,400	ND<1,200		
	9/1/2005	20.60	13.06	20,000 (a)			640	1,700	460	2,200	ND<200		
	12/16/2005	20.83	12.83	32,000 (a,i)			1,000	3,100	760	3,800	ND<500	7-	
	3/10/2006	20.05	13.61	20,000 (a)			460	1,900	440	2,400	ND<400		
	9/15/2006	21.31	12.35	43,000 (a)	3,100 (d)	ND<250	1,600	4,400	1,100	5,100	ND<500	16	ND<

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - Chiu Property, 800 Franklin Street, Oakland, California

Well ID	Date	Depth	Groundwater	TDYY-	20114	TDII	Damman	Talmari	E4h-ilh	Valores	MTDT	Chlanda	1.0 DC4
TOC Elevation (ft amsl)	Sampled	to Water (ft below TOC)	Elevation (feet amsl)	TPHg ←	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene µg/L ———	Xylenes	MTBE	Chloroform	1,2-DCA →
(It amsi)	ESI e for	a potential drinking	· '	100	100	100	1.0	40	μg/L 30	20	5.0	70	0.5
	LOLS IO	a potential thinking	water resource.	100	100	100	1.0	40	30	20	5.0	70	0.5
MW-3	10/12/1989†	24.02	10.21	87,000		4,500	3,200	8,800	ND	6,500			70.0
34.23	10/31/1991			310,000	25,000		9,300	25,000	5,600	27,000			58
	11/6/1991	23.52	10.71										
	10/21/1992	23.32	10.91	22,000			10,000	4,300	790	2,100			
	2/25/1993	22.51	11.72	29,000			8,400	5,400	1,300	3,300			
	4/27/1993	22.37	11.86	50,000			8,200	8,700	1,000	5,400			
	10/7/1993		14.19	1,700			3,100	3,700	400	1,700			
	3/28/1994		11.52	53,000			3,900	4,600	710	2,500			
	4/29/1994		11.34										
	6/10/1994		11.13										
	7/8/1994		11.09										
	7/26/1994		10.94										
	8/25/1994		10.80				~~						
	10/27/1994	23.56	10.67	8,500			2,700	2,700	490	2,000			
	1/6/1995		11.33										
	2/1/1995		11.79										
	3/29/1995		12.10										
	10/31/1995		11.23	19,000			4,400	4,600	720	2,900	410		
	5/21/1997		11.68	4,000			810	840	190	690	ND<100		
	9/28/2004				Well is damage	ed. Unabl	e to measure d	depth to wate	er or collect samp	ole.			
	12/21/2004				Well is damage	ed. Unabl	e to measure d	depth to wate	er or collect samp	ole.			
	3/11/2005				Well is damage	ed. Unabl	e to measure d	depth to wate	er or collect samp	ole.			
	6/16/2005				Well is damage	ed. Unabl	e to measure i	depth to wate	er or collect samp	ole.			
	9/1/2005				Well is damage	ed. Unabl	e to measure d	depth to wate	er or collect samp	ole.			
	12/16/2005				Well is damage	ed. Unabl	e to measure i	depth to wate	er or collect samp	ole.			
	3/10/2006				Well is damage	ed. Unabl	e to measure d	depth to wate	er or collect samp	ole.			
	9/15/2006				Well is damage	ed. Unabl	e to measure	depth to wat	er or collect sam	ple.			

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - Chiu Property, 800 Franklin Street, Oakland, California

Well ID	Date	Depth	Groundwater										
TOC Elevation	Sampled	to Water	Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Chloroform	1,2-DCA
(ft amsl)		(ft below TOC)	(feet amsl)	←					μg/L 		. ,		\rightarrow
	ESLs for	a potential drinking	water resource:	100	100	100	1.0	40	30	20	5.0	70	0.5
MW-4	10/31/1991			ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5		2.6	
33.64	11/6/1991	23.32	10.32										
	10/21/1992	22.10	11.54	410			3.1	29	6.8	47			
	2/25/1993	21.13	12.51	170			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	4/27/1993	20.74	12.90	100			ND<0.5	ND<0.5	ND<0.5	0.9			
	10/7/1993		12.52	240			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	3/28/1994		12.34	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	4/29/1994		11.33										
	6/10/1994		11.55										
	7/8/1994		11.54										
	7/26/1994		11.30										
	8/25/1994		11.09										***
	10/27/1994	22.69	10.95	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	1/6/1995		11.70										
	2/1/1995		12.34										
	3/29/1995		12.76										
	10/31/1995		11.61	80			ND<0.5	0.6	ND<0.5	1.0	ND<0.5		
	5/21/1997		12.08	ND<50			11	120	27	180	ND<5.0		
	9/28/2004	22.72	10.92	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	12/21/2004	20.65	12.99	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/11/2005	20.20	13.44	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	6/16/2005	20.38	13.26	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/1/2005	20.48	13.16	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	12/16/2005	20.78	12.86	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/10/2006	19.81	13.83	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/15/2006	21.16	12.48	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	28	ND<0.5

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons Chiu Property, 800 Franklin Street, Oakland, California

Well ID	Date	Depth	Groundwater										
TOC Elevation	Sampled	to Water	Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Chloroform	1,2-DCA
(ft amsl)		(ft below TOC)	(feet amsl)						μg/L 				→
	ESLs for	a potential drinking	water resource:	100	100	100	1.0	40	30	20	5.0	70	0.5
MW-5	10/31/1991			ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5		1.1	
33.51	11/6/1991	24.00	9.51	ND			ND	ND	ND	ND			
	10/21/1992	23.24	10.27	840			17	120	39	180			
33.56	2/25/1993	22.40	11.16	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	4/27/1993	22.15	11.41	260			53	19	1.2	2.4			
	10/7/1993		11.06	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	3/28/1994		10.95	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	4/29/1994		10.91										
	6/10/1994		10.68										
	7/8/1994		10.60										
	7/26/1994		10.45										
	8/25/1994		10.28										
	10/27/1994	23.50	10.06	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5			
	1/6/1995	-4	10.78										
	2/1/1995		11.25										
	3/29/1995		11.63										
	10/31/1995		10.64	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		
	5/21/1997		11.04	260			2.4	33	7.7	56	ND<5.0		
	9/28/2004	23.70	9.86	ND<50			ND<0.5	ND<0.5	ND<0.5	1.5	ND<5.0		
	12/21/2004	21.40	12.16	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/11/2005	21.40	12.16	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	6/16/2005	21.63	11.93	ND<50 (i)			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/1/2005	21.65	11.91	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	12/16/2005	21.94	11.62	ND<50 (i)			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/10/2006	21.11	12.45	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	9/15/2006	22.20	11.36	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0	10	ND<0.5

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - Chiu Property, 800 Franklin Street, Oakland, California

Well ID	Date	Depth	Groundwater									·	
TOC Elevation	Sampled	to Water	Elevation	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Chloroform	1,2-DCA
(ft amsl)		(ft below TOC)	(feet amsl)	←				į	ıg/L				
	ESLs for	a potential drinking	water resource:	100	100	100	1.0	40	30	20	5.0	70	0.5
MW-6	5/21/1997		11.26	760			2.5	1.7	ND<0.50	25	10		
33.98	9/28/2004	24.00	9.98	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	12/21/2004	21.61	12.37	ND<50			ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5.0		
	3/11/2005	21.60	12.38	340 (a)			1.9	2.6	0.68	0.61	ND<5.0		
	6/16/2005	21.81	12.17	1,300 (a)			58	8.3	6.1	4.0	ND<25		
	9/1/2005	21.82	12.16	1,900 (a)			150	19	18	76	ND<12		
	12/16/2005	22.03	11.95	3,600 (a,i)			560	63	33	230	ND<50		
	3/10/2006	21.46	12.52	2,200 (a)			240	10	20	87	ND<50		
	9/15/2006	22.46	11.52	1,800 (a)	480 (d)	ND<250	10	6.7	9.9	42	ND<17	3.2	ND<0.5

Abbreviations:

TOC Elevation = Top of well casing elevation measured in feet above mean sea level

amsl = Above mean sea level

μg/L = Micrograms per liter

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method SW8015C.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method SW8015C with silica gel cleanup.

TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method SW8015C with silica gel cleanup.

Benzene, toluene, ethylbenzene, and xylenes by EPA Method SW8021B.

MTBE = Methyl tertiary-butyl ether by EPA Method SW8021B.

Chloroform by EPA Method SW8260B.

1,2-DCA = 1,2-Dichloroethane by EPA Method SW8260B.

ND<5.0 = Not detected above detection limit.

-- = Not available, not analyzed, or does not apply

ESLs = Environmental Screening Levels from the San Francisco Bay Regional Water Quality Control Board's Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, Volume 1, Summary Tier 1 Lookup Tables, Interim Final February 2005.

- † = Groundwater elevation calculated using survey data from October 11, 1989. TOC elevations were 33.42 ft amsl for MW-1, 33.65 ft amsl for MW-2, and 34.23 ft amsl for MW-3.
- + = Unable to access well due to denial by current tenant or tenant business closed.

Data collected prior to August 10, 2004 is from previous consultant's reports

Notes:

- (a) = unmodified or weakly modified gasoline is significant
- (d) = gasoline range compounds are significant
- (i) = liquid sample that contains ~1 vol. % sediment

APPENDIX A

Groundwater Monitoring Field Data Sheets

WELL GAUGING SHEET

Client:	Cambria En	vironmental	Technology	Inc.		
Site Address:	800 Frankli	n Street, Oal	dand, CA			4
Date:	9/15/2006			Signature:		
					,,,	
Well ID	Time	Depth to SPH	Depth to Water	SPH Thickness	Depth to Bottom	Comments
						MW-2 sheen
MW-1	10:55		21.51		33.35	
MW-2	11:05		21.31		34.35	
MW-3			Inaccessable	;		
MW-4	10:35		21.16		33.62	
MW-5	10:50		22.20		34.59	
MW-6	11:00		22.46		32.81	

Date:		9/15/2006			s.			
Client:		Cambria Eı	nvironment	al Technol	ogy Inc.			
Site Addr		800 Frankl		·				
Well ID:		MW-1						
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			33.35	Fe=	mg/L		
Depth to V	Water:			21.51	ORP=	mV		
Water Col	umn Height	•		11.84	DO=	mg/L		
Gallons/ft	:			0.16				
1 Casing V	Volume (gal):		1.89	COMME	ENTS:		
	Volumes (ga			5.68				
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
11:20		18.5	7.06	429				
11:25	3.8	18.8	7.10	407				
11:30	5.7	18.9	7.14	410				
Sample			Sample				<u> </u>	
ID:	Sample Da	ite:	Time:	Containe	r Type	Preservative	Analytes TPHg,	Method 8015 with silica gel clean up,
MW-1	9/15/	/2006	11:35	40 ml VO amber	OA, 1 L	HCI, ICE	BTEX, MTBE, TPHd, TPHmo, 1,2	8021
							DCA, _Chloroform	
		, , , , , , , , , , , , , , , , , , ,					/	
						Signatu	re:	

Date:		9/15/2006			,				
Client:		Cambria E	nvironmen	tal Technol	logy Inc.				
Site Addr	ess:	800 Frankl	in Street, (Dakland, C	A				
Well ID:		MW-2							
Well Dian	neter:	2"							
Purging D	evice:	Disposable	Bailer		· · · · · · · · · · · · · · · · · · ·				
Sampling	Method:	Disposable	Bailer					····	
Total Wel	l Depth:			34.35	Fe=	m	g/L		
Depth to V	Water:			21.31	ORP=	m	V		
Water Col	umn Heigh	t:		13.04	DO=	m	g/L		
Gallons/ft	•			0.16					
1 Casing	Volume (gal	l):		2.09	СОММЕ	ENTS:			
3 Casing	Volumes (ga	al):		6.26	sheen, odd	or, turbid			
тіме:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND. (μS)					
1:15	2.1	18.9	6.84	538					
1:20	4.2	19.0	6.89	572					
1:25	6.3	19.1	6.87	540					
Sample			Sample						
ID: MW-2	Sample Da 9/15.	ate: /2006	1:30	Containe 40 ml VO amber		HCl, ICE			Method 8015 with silica gel clean up, 8021
								TPHmo, 1,2 DCA, Chloroform	
						Si	ignature		

Date:		9/15/2006						
Client:	(Cambria Er	vironment	al Technolo	ogy Inc.			
Site Addr	ess:	800 Frankl	in Street, C	akland, CA	4			
Well ID:		MW-3						
Well Dian	neter:	···						
Purging D	evice:							
Sampling	Method:							
Total Wel	1 Depth:				Fe=	mg/L		
Depth to V	Water:				ORP=	mV		
Water Col	lumn Height				DO=	mg/L		
Gallons/ft	•							
1 Casing	Volume (gal):		.,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	СОММЕ		- · · · ·	
3 Casing	Volumes (ga	1):			Inaccessat	ble		
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND. (μS)				
					-			
Sample		1	Sample		_	_		
ID:	Sample Da	ite:	Time:	Containe	r Type	Preservative	Analytes	Method
ļ			 	 			-	
					:			
			 	 			1	
							10	
						Signatur	e:	/

Date:		9/15/2006				,		
Client:		Cambria Er	vironment	al Technol	logy Inc.			
Site Addr	ess:	800 Frankl	in Street, C	Dakland, C	A			
Well ID:		MW-4						
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer					
Total Well	Depth:			33.62	Fe=	mg/L		
Depth to V	Vater:			21.16	ORP=	mV		
Water Col	umn Height	<u> </u>		12.46	DO=	mg/L		
Gallons/ft				0.16				
1 Casing \	Volume (gal	():		1.99	СОММЕ			
3 Casing \	Volumes (ga	al):		5.98	slightly tu	arbid		
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
11:45		19.3	7.19	581				
11:50	4.0	19.3	7.27	605				
11:55	6.0	19.5	7.21	611				
Sample ID:	Sample D	ate:	Sample Time:	Containe	er Type	Preservative	Analytes	Method
MW-4	-	/2006	12:00	40 ml VC amber		HCI, ICE	TPHg, BTEX, MTBE, TPHd, TPHmo, 1,2 DCA,	8015 with silica gel clean up, 8021
							Chloroform	
						Signat	ure:	

Date:		9/15/2006						,
Client:		Cambria Eı	vironmen	tal Technol	logy Inc.			
Site Addr	ess:	800 Frankl	in Street, C	Dakland, C	A			
Well ID:		MW-5						
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			34.59	Fe=	mg/L		
Depth to \	Water:			22.20	ORP=	mV		
Water Col	umn Height	:		12.39	DO=	mg/L		
Gallons/ft				0.16				
1 Casing	Volume (gal	():		1.98	СОММІ	ENTS:		
***	Volumes (ga			5.95				
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
12:15	2.0	19.1	7.28	460	1			
12:20	4.0	19.4	7.33	422				
12:25	5.9	19.6	7.31	439	_			
Sample			Sample		T	December	A moliton	Mothod
MW-5	9/15	/2006	12:30	Containe 40 ml VC amber		Preservative HC1, ICE	Analytes TPHg, BTEX, MTBE, TPHd, TPHmo, 1,2 DCA, Chloroform	8015 with silica gel clean up, 8021
						Signatu	re:	

Date:		9/15/2006									
Client:		Cambria E	nvironmen	tal Technol	ogy Inc.						
Site Addr	P88*	800 Frankl	······································								
Well ID:	V 15154	MW-6	<u> </u>	, , , , , , , , , , , , , , , , , , ,							
Well Dian	neter:	2"									
Purging D	evice:	Disposable	Bailer								
Sampling		Disposable	Bailer								
Total Wel	l Depth:			32.81	Fe=	mg/	L				
Depth to V	Water:			22.46	ORP=	mV		· · · · · · · · · · · · · · · · · · ·			
Water Col	umn Heigh	t:		10.35	DO=	mg/	L				
Gallons/ft	:			0.16							
1 Casing V	Volume (gal	l):		1.66	COMMENTS:						
3 Casing V	Volumes (ga	al):		4.97							
CASING VOLUME TEMP (Gal) (Celsius) pH			COND.								
12:45	1.7	19.9	6.98	622							
12:50	3.3	19.7	7.04	614							
12:55	5.0	19.3	7.01	610	1						
Sample			Sample								
ID:	Sample Da	ate:	Time:	Containe	r Type	Preservative		Method			
MW-6	1 1 1		40 ml VC amber	OA, 1 L	HCl, ICE	TPHg, BTEX, MTBE, TPHd, TPHmo, 1,2	8015 with silica gel clean up, 8021				
							DCA, Chloroform				
					,,,,	Sig	nature:				

APPENDIX B

Laboratory Analytical Report

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Cambria Env. Technology	Client Project ID: #589-1000; Chiu	Date Sampled: 09/15/06
5900 Hollis St, Suite A		Date Received: 09/15/06
Emeryville, CA 94608	Client Contact: Mark Jonas	Date Extracted 09/20/06-09/21/06
,	Client P.O.;	Date Analyzed: 09/20/06-09/21/06

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction m	nethod: SW5030B		Analy	tical methods: SV				Work Ord	er: 060	9315
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	w	ND	ND	ND	ND	ND	ND	1	93
002A	MW-2	W	43,000,a	ND<500	1600	4400	1100	5100	100	101
003A	MW-4	w	ND	ND	ND	ND	ND	ND	1	96
004A	MW-5	W	ND	ND	ND	ND	ND	ND	1	94
005A	MW-6	w	1800,a	ND<17	10	6.7	9.9	42	3.3	117
									ļ	
			······································							
Repo ND m	rting Limit for DF =1; neans not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
	ve the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Cambria Env. Technology	Client Project ID: #589-1000; Chiu	Date Sampled: 09/15/06
5900 Hollis St, Suite A		Date Received: 09/15/06
Emeryville, CA 94608	Client Contact: Mark Jonas	Date Extracted 09/15/06
Emicryvino, CA 94000	Client P.O.:	Date Analyzed: 09/22/06

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW351	0C/3630C	Analytical met	hods: SW8015C		Work Order: (609315
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0609315-001B	MW-1	w	ND	ND	1	82
0609315-002B	MW-2	w	3100,d	ND	1	87
0609315-003B	MW-4	w	ND	ND	1	107
0609315-004B	MW-5	w	ND	ND	1	112
0609315-005B	MW-6	W	480,d	ND	1	113
1						
Reportin	g Limit for DF =1;	w	50	250	μ	ıg/L
ND mean	is not detected at or	G	374	274		17.7

ND means not detected at or	w	30	230	μg/L
above the reporting limit	S	NA	NA	mg/Kg
		 		

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

^{#)} cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; &) low or no surrogate due to matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel (asphalt); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to matrix interference; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail; main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Cambria Env. Technology

Client Project ID: #589-1000; Chiu

Date Sampled: 09/15/06

Date Received: 09/15/06

Client Contact: Mark Jonas

Client P.O.:

Date Analyzed: 09/21/06

Volatile Organics by P&T and GC/MS*

Extraction Method: SW5030B Analytical Method: SW8260B Work Order: 0609315

DAUROHOH MCHIOG. DW3030D	71118	alytical Michiod. 5 11 020	OB		WOIR OIGH.	0007313				
Lab ID	0609315-001C	0609315-002C	0609315-003C	0609315-004C						
Client ID	MW-1	MW-2	MW-4	MW-5	Reporting Limit for					
Matrix	W	W	W	W	DF =1					
DF	1	20	1	1	S	W				
Compound		Concentration								
Chloroform	6.4	16	28	10	NA	0.5				
1,2-Dichloroethane (1,2-DCA)	ND	ND<10	ND	ND	NA	0.5				
	Surro	ogate Recoveries	s (%)							
%SS1:	118	112	119	119						
%SS2:	81	82	84	83						
%SS3:	96	100	102	100						
Comments										
	L	I	L	L						

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Cambria Env. Technology	С	Client Pr	oject ID: #589-	1000; Chiu	Date Sampled:	09/15/06		
5900 Hollis St, Suite A					Date Received:	09/15/06		
Emeryville, CA 94608	C	Client Co	ontact: Mark Jon	as	Date Extracted 09/21/06			
Emery vine, err y 1000	C	Client P.	O.;	09/21/06				
Extraction Method: SW5030B	Vol		rganics by P&T alytical Method: SW8260			Work Order:	0609315	
Lab ID	0609315	5-005C						
Client ID	MW	7- 6	·			Reporting		
Matrix		7		менендерин «Нин» « НОНРобо МНО вызначавающий обо		DF	=1	
DF	1	,			s	W		
Compound			Conce		ug/kg	μg/L		
Chloroform	3.2	2				NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND)				NA	0.5	
		Surro	gate Recoveries	(%)				
%SS1:	120	0						
%SS2:	83	3						
%SS3:	103	3						
Comments								

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative; q) reported in ppm

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0609315

EPA Method: SW8021B	/8015Cm E	xtraction	on: SW5030B BatchID: 23780				8	Spiked Sample ID: 0609319-001a				
Analyte	Sample	Spiked	ed MS MSD MS-MSD L			LCS	LCS LCSD LCS-		-LCSD Acceptance Criteria (%)			
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	97.3	116	17.9	106	99.7	6.49	70 - 130	30	70 - 130	30
МТВЕ	ND	10	114	109	4.34	108	105	3.41	70 - 130	30	70 - 130	30
Benzene	ND	10	92.6	89.7	3.24	108	104	3.27	70 - 130	- 30	70 - 130	30
Toluene	ND	10	87.7	82.9	5.67	116	112	3.24	70 130	30	70 - 130	30
Ethylbenzene	ND	10	95.2	90.1	5.50	112	109	2.42	70 - 130	30	70 - 130	30
Xylenes	ND	30	92	86.3	6.36	123	120	2.74	70 - 130	30	70 - 130	30
%SS:	100	10	92	91	0.915	98	97	1.54	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:


NONE

BATCH 23780 SUMMARY

Sampl	le ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
060931	15-001A	9/15/06 11:35 AM	9/20/06	9/20/06 9:48 PM	0609315-002A	9/15/06 1:30 PM	9/21/06	9/21/06 2:03 AM
060931	15-003A	9/15/06 12:00 PM	9/20/06	9/20/06 10:21 PM	0609315-004A	9/15/06 12:30 PM	9/20/06	9/20/06 10:54 PM
060931	15-005A	9/15/06 1:00 PM	9/21/06	9/21/06 5:06 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

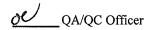
QC Matrix: Water

WorkOrder: 0609315

EPA Method: SW8015C	E	Extraction: SW3510C/3630C					D: 23730	S	Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CS-LCSD Acceptance			e Criteria (%)		
,	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(d)	N/A	1000	N/A	N/A	N/A	103	107	3.91	N/A	N/A	70 - 130	30		
%SS:	N/A	2500	N/A	N/A	N/A	107	109	1.51	N/A	N/A	70 - 130	30		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE


BATCH 23730 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609315-001B	9/15/06 11:35 AM	9/15/06	9/22/06 4:29 AM	0609315-002B	9/15/06 1:30 PM	9/15/06	9/22/06 5:37 AM
0609315-003B	9/15/06 12:00 PM	9/15/06	9/22/06 6:45 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

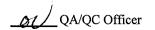
WorkOrder: 0609315

EPA Method: SW8015C	E	xtraction	: SW3510	OC/36300		Batchll	D: 23782	Spiked Sample ID: N/A										
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)									
,	μg/L	µg/L µg/L %		% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD						
TPH(d)	N/A	1000	N/A	N/A	N/A	90.7	88.7	2.30	N/A	N/A	70 - 130	30						
%SS:	N/A	2500	N/A	N/A	N/A	106	104	1.98	N/A	N/A	70 - 130	30						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23782 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609315-004B	9/15/06 12:30 PM	9/15/06	9/22/06 3:20 AM	0609315-005B	9/15/06 1:00 PM	9/15/06	9/22/06 2:11 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

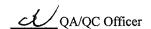
WorkOrder: 0609315

EPA Method: SW8260B	E	xtraction	SW503	0B		Batchli	D: 23759		Spiked Sam	ple ID:	0609288-0	01C					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)								
, wan, to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD					
tert-Amyl methyl ether (TAME)	ND	10	82.8	82.2	0.719	90.5	92.3	2.02	70 - 130	30	70 - 130	30					
Benzene	ND	10	107	105	1.66	112	115	2.65	70 - 130	30	70 - 130	30					
t-Butyl alcohol (TBA)	ND	50	102	118	14.4	110	111	0.452	70 - 130	30	70 - 130	30					
Chlorobenzene	ND	10	100	98.6	1.56	103	105	1.40	70 - 130	30	70 - 130	30					
1,2-Dibromoethane (EDB)	ND	10	84.2	87.6	3.96	90.3	91.1	0.857	70 - 130	30	70 - 130	30					
1,2-Dichloroethane (1,2-DCA)	ND	10	111	111	0	117	118	1.33	70 - 130	30	70 - 130	30					
1,1-Dichloroethene	ND	10	98.4	101	2.36	96.3	101	4.94	70 - 130	30	70 - 130	30					
Diisopropyl ether (DIPE)	ND	10	97.9	104	6.19	106	107	1.14	70 - 130	30	70 - 130	30					
Ethyl tert-butyl ether (ETBE)	ND	10	92.7	100	7.73	103	104	1.09	70 - 130	30	70 - 130	30					
Methyl-t-butyl ether (MTBE)	0.82	10	87.5	91.2	3.78	104	108	3.82	70 - 130	30	70 - 130	30					
Toluene	ND	10	92.4	97	4.89	96.1	95.9	0.117	70 - 130	30	70 - 130	30					
Trichloroethene	ND	10	81.2	83.2	2.38	88.3	89.4	1.30	70 - 130	30	70 - 130	30					
%SS1:	104	10	106	105	1.60	106	107	0.313	70 - 130	30	70 - 130	30					
%SS2:	100	10	100	105	5.09	100	98	2.04	70 - 130	. 30	70 - 130	30					
%SS3:	109	10	92	103	11.3	90	86	4.90	70 - 130	30	70 - 130	30					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 23759 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609315-001C	9/15/06 11:35 AM	9/21/06	9/21/06 6:22 PM	0609315-002C	9/15/06 1:30 PM	9/21/06	9/21/06 7:09 PM
0609315-003C	9/15/06 12:00 PM	9/21/06	9/21/06 7:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

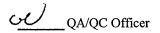
QC Matrix: Water

WorkOrder: 0609315

EPA Method: SW8260B	E	xtraction	SW503	0B		ple ID:	0609328-006A					
Analyte	Sample Spiked MS I				MS-MSD	LCS	LCSD	LCS-LCSD	. A	cceptan	ce Criteria (%	%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	112	106	5.28	77.2	73.1	5.55	70 - 130	30	70 - 130	30
Benzene	ND	10	105	98.4	5.90	106	105	0.837	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	108	105	2.94	110	109	1.46	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	102	96.5	5.11	97.5	97.4	0.165	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	98.2	91.8	6.81	81	78.9	2.66	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	127	127	0	108	118	8.53	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	117	112	4.64	105	104	0.816	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	126	117	7.54	96.5	91.1	5.76	70 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	121	113	7.19	94.9	88.1	7.42	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	124	117	5.61	94.8	92.5	2.52	70 130	30	70 - 130	30
Toluene	ND	10	97.1	85.5	12.8	90.8	85.1	6.43	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	99.6	93.6	6.21	84.8	79.5	6.49	70 - 130	30	70 - 130	30
%SS1:	100	10	100	101	0.186	111	110	0.264	70 - 130	30	70 - 130	30
%SS2:	114	10	103	96	6.18	99	95	4.26	70 - 130	30	70 - 130	30
%SS3:	106	10	111	107	3.75	94	83	12.7	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 23781 SUMMARY


Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0609315-004C	9/15/06 12:30 PM	9/21/06	9/21/06 8:44 PM	0609315-005C	9/15/06 1:00 PM	9/21/06	9/21/06 9:34 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0609315

ClientID: CETE

EDF: YES

Report to:

Mark Jonas

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

Email: TEL: mjonas@cambria-env.com

(510) 420-0700 F

FAX: (510) 420-9170

ProjectNo: #589-1000; Chiu

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A Emeryville, CA 94608 Date Received:
Date Printed:

Requested TAT:

09/15/2006

5 days

ted: 09/15/2006

					Requested Tests (See legend below)														
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3		4	5	6	7	8	9	10	11	12		
0609315-001	MW-1	Water	9/15/06 11:35:00		С	Α	Α		В								1		
0609315-002	MW-2	Water	9/15/06 1:30:00 PM	1 🗌	С	Α			В										
0609315-003	MW-4	Water	9/15/06 12:00:00		С	Α			В										
0609315-004	MW-5	Water	9/15/06 12:30:00		С	Α			В										
0609315-005	MW-6	Water	9/15/06 1:00:00 PN	1 🔲	С	Α			В										

Test Legend:

1 8260B_W	2 G-MBTEX_W	3 PREDF REPORT	4 TPH(DMO)WSG_W	5
6	7	8	9	10
11	12			

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

cete 0609315

McCAMPBELL ANALYTICAL, INC. 110 2 ⁸¹ AVENUE SOUTH, #D7											CHAIN OF CUSTODY RECORD																						
	-	110 2 ⁸⁰ A	VENUE 50 CO, CA 94	OUT!	1, #D7									Т	UR	N	AR	OU	NI) T	ΙM	E								1		ď	 .
Web	site: אַנְאָשָׁאָנָהָ	s extendes it	ggg Em	ail: r	nain@	mcc	ampl	ell.	com	•				 	N 873 - 873	.		30/4	7) ,	, ·			R	USH	[24 F	IR	4	18 HE	3.	72	HR 5DAY
	ie: (925) 791		<u></u>			Fax	: (92	<u>5) 7</u>	98-1	622	}			E	Jr r	ceq	nire	0()				·			····		··········						***************************************
Report To: Max	K Jones	<u>S</u>	I	3111 7	Γο: Cai	mbri	n Env	ironi	nenta	l Te	chn	olog	Σ		- 	3		 	A	nal	vsis	Re	que	st	T			1	 -	<u> </u>	thei	-	Comments
Company: Camb			ecunoto	gy_		•	·							ଜ		4	(H3				ners				ź				d				Filter
	5900 Hollis St. Ste A Emeryville, CA 94608 E-Mail:miones Roambringen													8015)	}	1	E/B				onge				E I				by 826 0				Samples
	Emeryville, CA 94608 E-Mail: mionas & Cambria-eni-U Tele: 5/0-420-3307 Fax: (510) 420-9170												COM	771		2 3	5520				13/6				E g	3			20				for Metals analysis:
Project #: 589	-1000	gyggenerius as der die en een der bestelde.			et Na				<u>λ</u>				~~~	* (602 / 8021	298	20	264	418.1	20	Ŷ	rocto		cides		AME				1	.			Yes/No
Project Location:	800 F	rankli	2 St.	(Daki	ax	id.	(F		******			******	95)	23	015)	D)) suc	Æ	ichde	E; Au	\$	erbi	न	E T		92		실		1		
Sampler Signatur	e: Muskan	Environn	iental St	mpl		八	-							S	EPA	8) !! (8	Great.	carb	802	Per	INC	sticid	GE	Š	ETB		S.	(eg	댐				
		SAMP	LING		2	-	MA	TRI	X	Pr	VE	THO ERV	D	(PH.	MTBE / BTEX ONLY (EPA 662 / 8621)	TPH as Diezel / Motor Oil (8015) 10, + 11 51 11 CA 9C	Total Petroleum Oil & Grease (I 664 / 5520 B/B&F)	Total Petraleum Hydracarbons (418.1)	EPA 502.21 601 (8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (Cl Perticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / B141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	KPA 5242 / 624 / 8269 (VOCs)	Fuel Additives (AITBE, EITBE, TAME, DIPE, TBA,	Š	VOCs and fire! additives by 8260	TFHg / BIEX (8015 / 8020)	Chloroform			l	
C. s. const Di Vin			<u> </u>	1 5	ji,	H		T		Ť		T		X & 3	0	1 Mg	D dua	E W	83.78	9887	Z Z	416	51 (4	24/8	SAF	3	T ac	8	3			l	
SAMPLE ID (Field Point Name)	LOCATION	1		Containers	Type Containers				, l			١		MIBE/BIEX	BIX	Here	trole	trot	316	909 A	188	1831	18 /	27.6	Hirv.	TPHg by 8915 M	A Fe	1	7	LI			
		Date	Time	8	2	Water	Sei!	ر ا	Other	H	HCL	HINO,	Other	BE	EK	Hass	Pe	P.	¥ 502	A 505	A 688	\$ 507	4.51	£ 4	1.34	出	S	1	ADOS			1	
				#	4		8	Z 5	5	10		H	ō	X	N I		Fo.	٥	ej	a a	EP.	EP	EP.	B)	¥		2	E	2			- 1	
MW-1		9-15-06	11:35	4	Voa	冰			T	X	Х			×		X			-			******	*****						X			\Box	13 ha 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-2			1: 30			П			1		T					\prod						********							П			\neg	
MULY			12:00	1		Π				Π	\sqcap					\prod						*********		******									~
MU-5			12:30			17		\top	1	I												·					-				1		
MN-6			1:00	1	X	T		7	1	f^{\dagger}	$ \uparrow $			\downarrow	,	×.									<u> </u>	1			来		\exists	1	(minter pro-
TB		×	7.00	Î	VOC-	仗		1	1-	丈	X	_		*		9			=	=					=		=	-			-	7	HOD
	.,	4			100	╁			1	۲	-			····		\dashv	$\neg \uparrow$	_	7												1	1	
,				<u> </u>		T		_	+	 -		-		~		+									-	 					_	-1	
				-				-	+	┢	-	-		~		\dashv				-					-	├─	<u> </u>					1	
		. 		-		-		+	-	┢	-	-				+										 	 				-	一	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-		+	+	├-		-		***********	-	+									-	-	-	-	\vdash		\dashv	\dashv	
		, ,	·	-		-	\dashv	\dashv	-	 - -	-	├		******		+										 		 		 		\dashv	<u></u>
and the state of t			··			-				├-	-					-						-			-	-	-		\vdash		\dashv	\dashv	
									-		ļ	-		·		+										-			\vdash		-	\dashv	
										_						_							L.			<u></u>	ļ.,		\vdash	-		_	
11									1		_	Ь			Ш		ICE/S	•			Ш	\mathcal{L}				<u>L_</u>		1	oxdot				
Relinguished By		Date:	Time:	Rec	eived B	Y	0	٩	8	Q	又	T					GOO HEA	D SP.	ACE.	ABS	ENT.	<u>`</u> Y		AT CC	PRO INTA	PRI	RS_	/	=				
1000				<u> </u>	<u>-</u>				A				_				DEC	HLO	RINA	TED	IN L		080	PF	LESE	RVE LS	DW	LA	5				
Relinquished 19:		Date:	Time:	Rec	eived B	31:							I				PRE	SER	VATI		•					L			1				
arakini na arawa												_																					