1828 IRIBUTE ROAD SUITE A SACRAMENTO, CA 95815 916-649-3570 800-395-3570 FAX:(916) 649-3819

February 9, 1998 NWE Project No. 050-000428

Mr. Barney Chan Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94302-6577

ENVIRONMENTAL ENGINEERING

Subject:

Submittal of Results Report - Soil and Groundwater

Assessment Loop

444 Hegenberger Road, Oakland, California

INDUSTRIAL HYGIENE Dear Mr. Chan:

CONSTRUCTION MANAGEMENT Dear Mr. Chair.

The report documents the results of investigative work, including a geophysical survey, collection of soil and groundwater samples, and subsurface exploration with a backhoe performed in July and October 1997. The work was performed in accordance with a work plan prepared by NWE for your review dated May 19, 1997, and modified after conversations with you.

Northwest Envirocon, Incorporated (NWE) has been authorized to submit the attached report on behalf of our client, McMorgan and Company (McMorgan).

LABORATORY SERVICES

MAINTENANCE FNGINFERING

> ASBESTOS SERVICES

Environmental training It is our understanding that, as part of a redevelopment plan for the area, McMorgan is close to finalizing the sale of the property adjacent to (east-northeast of) the subject site to a hotel company. This transaction will be the first step in redevelopment of the entire parcel, including that portion of the parcel in which the current investigation was conducted. Preliminary negotiations for sale of the subject site between McMorgan and the hotel company have already begun.

With receipt of the investigative results documented in the attached report, NWE and McMorgan anticipate additional assessment work will be necessary at the subject site. McMorgan is willing to proceed with investigative steps to determine the extent of petroleum constituents in soil and groundwater underlying the site. McMorgan looks forward to a coordinated effort involving the City of Oakland and Alameda County to insure that the required environmental work is accomplished efficiently as the potential sale and redevelopment of the property proceeds.

98 FEB 18 PH 2: 29

Mr. Barney Chan

NWE Project No. 05-000428 February 9, 1998 Page 2 of 2

I will call you at the end of next week to discuss this matter. Please contact me at your earliest convenience if you have any questions regarding the report.

Sincerely,

NORTHWEST ENVIROCON, INC.

Dale A. van Dam, R.G.

K- Flalligh FOR

Hydrogeologist

DAvD:davd

cc: Mr. Pat Murray, McMorgan & Company -

Mr. Jack Davis, The Voit Companies

SOIL AND GROUNDWATER ASSESSMENT

444 Hegenberger Road Oakland, California

,2/19/97

Project No. 050-000428

Prepared for:

Mr. Barney Chan Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94302-6577

Prepared By:

Northwest Envirocon, Incorporated 430 North Vineyard Avenue, Suite 101 Ontario, California 91764 (800) 395-3570

December 19, 1997

ENVIRONMENTAL LNG:NEERING

> INDUSTRIAL HYGIENE

CONSTRUCTION MANAGEMENT

> I ABORATORY SERVICES

MAIN ENANCE Engineering

ASBESTOS

ENVIRONMENTAL TRAIN NG Mr. Barney Chan Hazardous Materials Specialist Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94302-6577

Subject: Results

Results of Soil and Groundwater Assessment 444 Hegenberger Road, Oakland, California

Dear Mr. Chan:

Northwest Envirocon, Incorporated (NWE) has been authorized to perform a geophysical survey and a subsurface investigation at the subject site (Plates 1 and 2). This phase of investigation, consisting of a geophysical survey, collection of soil and groundwater samples, and subsurface exploration with a backhoe was performed in July and October 1997. The work was performed in accordance with a work plan prepared by NWE for your review dated May 19, 1997. After your comments were received, the work plan was modified verbally and approved by Alameda County in June 1997. This letter summarizes the results of the current phase of investigation at the subject site.

Summary of Results

Geophysical Survey

The westernmost corner of the site was previously occupied by a retail gasoline service station. Available records indicated that at least some underground storage tanks (USTs) had been removed from this portion of the property, but did not prove conclusively that all USTs (or other underground objects) had been removed. A previous geophysical survey had been performed at the subject Property, but at the time of the previous geophysical survey (coordinated by another consulting firm), a portion of the former gasoline service station, near the extreme western corner of the property, had been covered by a soil pile. This geophysical survey was intended to assess a limited portion of the subject Property for the presence or absence of additional USTs, clarifiers, or underground metal product distribution piping.

Zusts?

Mr. Barney Chan NWE Project 05-000428 December 19, 1997 Page 2 of 6

On July 24, 1997, Norcal Geophysical Consultants, Inc. (NORCAL) performed a geophysical survey at the subject Property. The surveyed area measured approximately 50 feet parallel to Hegenberger Loop and 50 feet parallel to Hegenberger Road (see Plate 2). NORCAL utilized a "magnetic gradiometer," ground penetrating radar (GPR), and a pipe and cable locator to perform the survey. NORCAL's analysis of the field data indicated the presence of three "anomalous areas." Copies of NORCAL's results letter and field data are On the basis of magnetometry, NORCAL included in Attachment A. characterized one of the anomalies, located near the southeast corner of the surveyed area as "indicative of a buried metal object of fairly significant size." The anomaly located in the northeast portion of the surveyed area was attributed to the proximity of a raised concrete pad. The third anomaly, located along near the north end of the western boundary of the surveyed area, was characterized as a "buried metal object" which could not be fully characterized because part of the object was outside the boundary of the surveyed area.

According to NORCAL, the GPR indicated the presence of metal debris in the shallow subsurface, "but no parabolic reflections indicative of an UST." The data generated by the cable locator correlated with anomalies identified by magnetometry and GPR.

Soil and Groundwater Sampling

Twelve soil borings were advanced at the subject Property during this phase of investigation. The soil borings are numbered SB-5 through SB-16 on Plate 3 (soil borings SB-1 through SB-4 were advanced during a previous phase of investigation). Soil borings were advanced to depths ranging from 10 to 12 feet below grade using a hollow-stem-auger drill rig. Soil borings SB-5 through SB-14 were advanced in the vicinity of or in the assumed down gradient direction from a former oil/water separator and a former waste oil tank (Plate 3). Soil samples were collected at vertical intervals of 3 feet from each soil boring using a California-modified split-spoon sampler. Groundwater samples were collected using Hydropunch® sampling methodologies. After collection of soil and groundwater samples, each soil boring was abandoned by filling completely with a mixture of cement and bentonite.

Soil encountered in each soil boring consisted of clay, sandy clay, and clayey sand. Groundwater was encountered in each boring at approximately 10 feet below grade. Soil boring logs describing subsurface conditions encountered are contained in Attachment B.

Mr. Barney Chan NWE Project 05-000428 December 19, 1997 Page 3 of 6

Collected soil samples were analyzed for methyl-tertiary-butyl ether (MTBE), benzene, toluene, ethylbenzene, total xylenes (BTEX), total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as diesel (TPHd), and oil and grease. Soil sample analytical results are compiled in Table 1.

Table 1 Soil Sample Analytical Results 444 Hegenberger Road, Oakland, California October 6, 7, 8, 1997 (all concentrations in milligrams per Kilogram - mg/Kg)

Soil Boring Number	Soil Sample Number	Depth (feet below grade)	мтве'	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TPHg ²	TPHd ³	Oil and Grease
SB-5	SB05-3	3	<0.050	<0.0050	<0.0050	<0.0050	<0.9050	<1.0	<2.04	<10
SB-6	SB06-3	3	<0.50	0.055	0.053	0.11	0.11	39	<254	61
SB-7 .	SB07-3	3	<0.050	0.015	J.011	<0.0050	<0.0050	1.3	<25*	130
SB-8	SB08-3	3	<2.5	1,1	<0.25	2.2	76	160	<304	20
SB-9	SB09-3	3	<0.050	0,017	<0.0050	<0.0050	0.015	1.1	-20'	120
SB-10	SB10-3	3	<0.50	4.7	<0.50	2.3	2.5	750	<1004	25
SB-11	SB11-3	3	<0.50	2,3	0,73	5.1	11	260	<1.5 ⁴	37
SB-12	SB12-3	3	<0.050	0.036	6,0070	<0.0050	0.925	1.2	<10⁴	42
SB-13	SB13-3	3	<0.50	13	0.85	5,8	4,2	930	<150	780
SB-14	SB14-3	3	<0.50	0.8	0.36	0.087	9.38	62	<10 ⁺	5)
SB-15	SB15-3 SB16-6	3 6	<0.050 <0.050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<1.0 <i.0< td=""><td><1.0 <1.0</td><td><10 <10</td></i.0<>	<1.0 <1.0	<10 <10
SB-16	SB16-3 SB16-6	3 6	<0.050 <0.050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<1.0 <0.0	<1.0 <2.0⁴	<10 i3

MTBE^t

Methyl-Tertiøry-Butyl Ether.

TPHe2

Cotal Petroleum Hydrocarbons as gasoline.

TPHd3

I otal Petroleum Hydrocarbons as diesel.

Increased reporting limit due to gasoline and/or oil range interference.

The soil sample analytical results indicate the presence of TPHg and/or oil and grease in every soil sample analyzed except those collected from soil boring SB-5 and SB-15. The soil sample collected from soil boring SB-16 at a depth of 3 feet below grade did not contain petroleum constituents; the soil sample collected from soil boring SB-16 at 6 feet below grade did not contain any petroleum constituents except oil and grease at a concentration of 13 milligrams per Kilogram (mg/Kg). TPHg at concentrations exceeding 100 mg/Kg were detected in soil samples collected from soil borings SB-8, SB-10, SB-11, and SB-13. Oil and grease was present at concentrations exceeding 100 mg/Kg in soil samples collected from soil borings SB-7, SB-9, and SB-13. One or more BTEX constituents were detected in soil samples collected from soil borings SB-5 through SB-14, but generally at concentrations less than 10 mg/Kg. The highest benzene concentrations were detected in soil samples collected from soil borings SB-13 (13 mg/Kg) and SB-10 (4.7 mg/Kg). Copies of certified soil sample analytical reports are contained in Attachment C.

Mr. Barney Chan NWE Project 05-000428 December 19, 1997 Page 4 of 6

Collected groundwater samples were analyzed for MTBE, BTEX, TPHg, TPHd, and total petroleum hydrocarbons as motor oil (TPHm). Groundwater samples collected from soil borings SB-5, SB-6, SB-8, and SB-9 were also analyzed for volatile organic compounds (VOCs) by U.S. EPA Method. Groundwater sample analytical results are compiled in Table 2.

Table 2
Groundwater Sample Analytical Results
444 Hegenberger Road, Oakland, California
October 6, 7, 8, 1997
(all concentrations in micrograms per Liter ⊀g/L)

Ground- water Sample Number	мтве'	Веплепе	Toluene	Ethyl- benzene	Total Xylenes	TPHg¹	TPHd³	TPHm⁴	VOCs ⁵
SB05-W	<5.0	4.5	1.1	<0.50	1.4	190	<50	<100	ND^6
SB06-W	<250	620	<50	800	<50	15,000	180	130	ND
SB07-W	<5.0	45	<5,0	210	<5.0	3,900	<100	<100°	NA"
SB08-W	<500	12,600	540	6,908	7,404	52,000	<2.70	360	NDe
SB09-W	<5.0	55	3,5	40	4.5	1,600	<1007	130	ND⁴
SB10-W	<5.0	280	15	400	120	5,400	<100 ⁷	110	NA ⁸
SB11-W	<198-	2,100	1 ,800	1,300	4,890	16,099	≪50	<103	NA.
SB12-W	<100	460	42	2,100	230	13,000	<700 ⁷	890	NA*
SB13-W	<250	3,200	67	180	1407	₩,000	≪350 ¹	440	, NA
SB14-W	<5.0	0.5	3.0	120	8.9	2,700	< 100 ⁷	170	NA ⁸
SB15-W	<5.0	<0.50	<0.50	<0.50	<0.50	<50	<50	<100	NA8
SB16-W	<5.0	<0.50	< 6.50	<0.50	<0.50	<50 .	<50	<100	NA ⁸

MTBE1 = Methyl-Tertiary-Butyl Ether.

TPHd' = Total Petroleum Hydrocarbons as gasoline.

TPHd' = Total Petroleum Hydrocarbons as diesel.

TPHm' = Total Petroleum Hydrocarbons as motor oil.

VOCs⁵ = Volatile Organic Compounds (other than benzene, toluene, ethylbenzene, and total xylenes) by EPA Method 624. ND⁶ = Not Detected at Method Detection Limit - see laboratory reports for respective compound detection limits.

<1007 = Increased reporting limit due to gasoline and/or oil range interference.

NA⁸ = Not analyzed.

Groundwater sample analytical results indicate petroleum constituents were detected in samples collected from every sampling location except soil borings SB-15 and SB-16, which were located in the assumed up gradient direction of the former service station. The highest benzene concentrations were reported in groundwater samples collected from soil boring locations SB-8 (12,000 micrograms per Liter - 1g/L), SB-11 (2,100 1g/L), and SB-13 (3,200 1g/L). The distribution of dissolved benzene in groundwater is illustrated in Plate 4.

Mr. Barney Chan NWE Project 05-000428 December 19, 1997 Page 5 of 6

TPHg concentrations were highest in groundwater samples collected from soil boring locations SB-6, SB-8, SB-11, SB-12, and SB-13 at concentrations of 15,000, 52,000, 16,000, 13,000, and 11,000 Mg/L, respectively. None of the groundwater samples analyzed contained detectable concentrations of VOCs was 8240 besides BTEX. Copies of certified groundwater sample analytical reports are contained in Attachment D.

Exploratory Trenching

On October 8, 1997, a backhoe was used to explore those areas indicated by the geophysical survey to be the potential locations of underground objects. The locations of the exploratory trenches are indicated on Plate 5. The trenches were excavated with a 3 foot wide backhoe bucket to depths of approximately 6 feet below grade. Except for small metal objects and a length of former underground product distribution piping, no underground metallic objects were found at the indicated trench locations. Each trench was backfilled completely after observations were recorded.

Summary and Recommendations

Soil sample analytical results indicate the presence of petroleum constituents in soil samples collected from above the current depth to groundwater at sampling locations located beneath and assumed down gradient of the former gasoline service station property. Soil samples collected at locations assumed up gradient of the former service station property generally did not contain petroleum constituents. TPHg concentrations in soil samples ranged from 1.1 to 930 mg/Kg; benzene concentrations ranged from 0.017 to 13 mg/Kg.

Current investigation results indicate the presence of dissolved benzene in each groundwater sample collected at a location assumed to be down gradient of former service station facilities at the subject site. The highest concentrations of dissolved benzene were contained in groundwater samples collected from locations in the assumed down gradient direction of the former waste oil tank (SB-8) and the former pump island area (SB-11 and SB-13). Groundwater samples collected in the assumed up gradient direction from the former service station (from soil boring locations SB-15 and SB-16) did not contain detectable concentrations of petroleum constituents. Groundwater samples collected at the assumed down gradient property boundary (soil borings SB-6, SB-10, and SB-13) also contained detectable concentrations of dissolved benzene (at concentrations of 620, 280, and 3,200 Mg/L, respectively). These results indicate that the distribution of dissolved petroleum constituents in groundwater extends offsite toward the west.

Mr. Barney Chan NWE Project 05-000428 December 19, 1997 Page 6 of 6

NWE recommends that access to off-site, down gradient property be acquired to advance soil borings for the purpose of collecting groundwater samples to determine the down gradient extent of groundwater containing petroleum constituents. NWE also recommends that groundwater monitoring wells be installed to allow repeatable monitoring of groundwater to determine the variability of groundwater elevations below the site, to determine the groundwater flow direction, and to assess the seasonal variation of petroleum constituent concentrations in groundwater.

Please contact me at your earliest convenience after review of this document. After verbal discussions with Alameda County, NWE will prepare a work plan outlining the proposed next phase of assessment at the subject Property.

Sincerely,

NORTHWEST ENVIROCON, INC.

K- Flelligh

Dale A. van Dam, R.G. Hydrogeologist

DAvD:davd

cc: Mr. Jack Davis, The Voit Companies

Mr. Pat Murray, McMorgan & Company

Attachments

ATTACHMENT A RESULTS OF GEOPHYSICAL SURVEY

July 25, 1997

Mr. Mark A. Isbell Northwest Envirocon, Inc. 1828 Tribute Road Suite A Sacramento, CA 95815

Re: Geophysical Survey, 444 Hegenberger Road, Oakland, CA

Dear Mark.

On July 24, 1997, Norcal Geophysical Consultants, Inc. (NORCAL) completed a geophysical survey to access the possible presence of underground storage tanks (USTs) at a former service station located at 444 Hegenberger Road, Oakland, California. NORCAL established a survey grid with 5-foot spacing in a 50 feet (north-south) by 50 feet (east-west) area defined by Northwest Envirocon, Inc.. This area was larger than the 35 feet by 35 feet area identified in our proposal to Northwest Envirocon, Inc., dated July 22, 1997. The grid area was relatively flat and covered with grass. Cyclone fencing bounded the grid area on the west and north sides at a distances greater than 20 feet. The ground was paved with asphalt concrete north of the grid, and reinforced concrete west and south of the grid area. Two raised concrete pads, resembling pump station foundations were located at the northeast corner of the grid area.

We used a Scintrex magnetic gradiometer, a Georics SIR 2 ground penetrating radar (GPR) and a Fisher M-Scope pipe and cable locator to survey the grid area. During the field survey, the magnetic data was stored in a data-logger and then transported to NORCAL's office for processing. The GPR survey consisted of west to east traverses along the west-east trending grid lines and selected perpendicular traverses in the north-south direction. The M-Scope was also used to survey the entire grid area along northing and easting lines.

On July 25, 1997, the magnetometer data was downloaded and processed to produce the attached draft vertical gradient contour map. The map shows the presence of three anomalous areas. The anomaly located in the southeast quadrant of the grid area, at grid coordinates 15 north, 40 east, is indicative of a buried metal object of fairly significant size. The anomaly located in the northeast corner of the grid area is likely due to the presence of the nearby raised concrete pad. The third anomaly, located along the north end of the west grid boundary, is indicative of a buried metal object however, it is not completely resolved because part of the object is outside of the surveyed area.

The locations of the GPR traverses are illustrated on the attached draft site map. The GPR records show reflection patterns indicative of metal debris present in the shallow subsurface soil and on the ground surface but no parabolic reflections indicative of a UST.

In general, the M-Scope survey identified the presence of metal objects in areas that correlate

Mr. Mark A. Isbeil July 25, 1997 Page Two

with the vertical magnetic gradient anomalies and in areas with metal debris identified with the GPR.

We appreciate the opportunity to assist you in your efforts. If you have questions or require additional information please let us know.

Sincerely,

Noscal Geophysical Consultants, Inc.

Michael Wright

Geologist and Geophysicist

Attachment: Draft Site Map, 1 Page

Draft Magnetometer Survey Map, 1 page

C: Dale van Dam, Northwest Envirocon, Inc.

Ken Blom, R.Gp., R.G., NORCAL

mw/nwcc0725.doc

Site Map 444 Hegenberger Road Raised Oakland, California BRAFT ·40 F S 40 30 20 10 Easting (feet) scale 1"= 10' Chain link fence

Ø 005

07/25/97

13:36

2707 762 5587

DRAFT

Vertical Gradient Contour Map (CI = 50 nT/m) Northwest Envirocon — 444 Hegenberger, Oakland

	Site Location	444 4	EGENBERGE	Boring # Boring # Bos Bos
	I .			
	I			
				DAVID COPP
				Boring Diameter 8"
			T-Sepa	Honor Stem
	Sampling Mel	ihod SL	EEVE	DIPECT POSH
	n/s		water depth	lo′ elev
. Legend F	reening Results Sample (ppm) #	# Blow Rec. Ct.	Uscs	Description of Material
			P.	eddish krown conta
	<u> </u>	 	State	ravels -dry
- -			1 1	s stains or odors
			1	
-	2,000 CB05-3	2 2 2		ack fine sandy clay
	- 5003- 5	3,6,5	1 11-	small gravels -dry edium hydrocarban oder
-				rkayay fine sandy
			al.	W down moist
>:	2,000 KB05-6	12.2	CL me	diem odor
-	\$805-M	د	H2	0 - ody
			W WZ	Ø
-	MAGIL		00	urk gray heavy
1 -	- JOHENNE		DH pl	estic clay "largame ter - staining but no
┤ ├ ┈				
	>	Project # 05 Drilling Contr Driller 2 d Start Drilling Metho Sampling Metho sampling Metho n/s Vell Legend Results (ppm) >2,000 \$805-3	Project # 05-428 Drilling Contractor Au Driller 2 (CHAR2 D) Start Finish Drilling Method Sampling Method Sampling Method Sampling Method Sampling Method Screening Results (ppm) Results (ppm) Results (ppm) >2,000 \$805-3 3,2,2 >2,000 \$805-0 1,2,2 \$805-03	Start Finish Drilling Method Sampling Method Sampling Method Sampling Method Screening Results (ppm) Pecc. Ct. USCS Provided Screening Results (ppm) Screening Results (ppm) Screening Results (ppm) Screening Results (ppm) Rec. Ct. USCS Rec. Screening Results (ppm) Screening Results (ppm) Rec. Ct. USCS Rec. Screening Results (ppm) Screening Results (ppm) Rec. Ct. USCS Rec. Screening Results (ppm) Screening Results (ppm) Screening Results (ppm) Rec. Ct. USCS Rec. Screening Results (ppm) Screening Results (ppm) Screening Results (ppm) Rec. Ct. USCS Rec. Screening Results (ppm) Screening Resu

	Site Loca	ation 44	4 1/2	EGENBEL	GER	Boring #	SB 06
		05-42			ł	Sheet) 10
	Drilling C	ontractor	Au	TERR	AIN	DRILLI	NE
	Driller	RICHA				DAVID	0099
	Start	F	inish	- · · · · · · · · · · · · · · · · · · ·	1	ng Diamete	8"
	Drilling M	ethod 7	are	PR OF	EH	ouous	STEM
	Sampling	Method	_	ut sf eeve	~ DI	Rea Pe	<u>5 ył</u>
	n/s		est.	water dep	oth Le	o'	elev
Depth Cas. Annu. Legend	reening Sa. Jesults Jopm)	mple # # Rec.	Blow Ct.	Uscs		escription of	
2				SC	coar:	Sh brancher Se sund dilung ams or	ravels or
3	723 58×	4_2			black	thre	sandy
5					med. - d	hydrocado Ty	
7 = 7	75 SBO	5-6		CL	Sandy	gray for clay.	moist
9	5800	,-w		\succeq	H20 1	has oda	×
11				04		gray he ic clay i ir - stain	
2 = -							000

					Site I	ocation	44	4 4	EGENBE	REER	Boring	SB07
										16/27		011
										RAIN		INC
					Drille					Logger -		1
					Start		F	inish	 -			ter &"
					Drillin	g Metho	ر ا	(OF)	Hours 2 PROF	حسم		AUGER
					Samp	ling Metl		58		200V	w/	
l					n/s				water de	pth (>'	elev
Depth	Cas.	Annu.	Well Legend	Scre	ening sults	Sample	#	Blow				
				(P	pm)	#	Rec.	CI.	Uscs		escription c	
1		-		<u> </u>					1	Coar	se clay	ex Sand
2								<u></u>	SC		taris	,
_			·								12145	ar odors
3 —										10104	- 6	
4				6	8	SB07-3		16	CL	~/Sm	-grav-	Sandy clay
5										med.		
	=		ļ							Dark	gray (ne
6			ŀ							Sand	Fela	y moist
7 ——				118	6	5807-6		5_	CL	* 5tr	ana o	dor
	1=11		}						N	black	heav.	y wet
8										clay	<u> </u>	
9 —	=											
10			}			307-W			}			dar in Hzz
J	= -								}-	**1 00C	nye o	on in Hzz
11			-						-			
2												
<u> </u>												

					Site l	ocalion	44	4 4	EGENBE	REER	Boring	SBOB #
					Proje	ct# 05	-42	8 D	ale / C	17/9		
					Drillin	g Contra	actor	Au	- TER	RAIN	DRILL	.126
					Drille					Logger -		
					Start		F	inish				ter &"
					Drillin	g Metho	ď		TOLLO	~ C	TEM	AUBER
					Samp	ling Metl	hod	SL	SALT	5P00	ico a	95.H
			·		n/s			est.	water de		0'	elev
Depth	Cas.	Annu.	Well Legend	Sc R	reening esulls ppm)	Sample #	# Rec.	Blow Ct.	Uscs	D	escription a	of Material
_	-	-								Reddi	zy-ptor	UN.
1					•					1 [A 1'	ex sand
2	++			-					ح	grave	ls.n	o odar
3 —												
4				1	041	508-3	 -	17		1	and l	
									CI	grave	lly cl	y -dry
5							 -			57	rang o	dar
6 —												
7 —				72	000	3808-6		5		dark	gray	lad a sixt
									OH	plast		x-moist
8			l							mode	rate	odar
9 —												
10-						008-W			V	H20	- made	rute odar
	=			<u>.</u>								
11			}									
5	$= \cdot $								-	-		
l		~ ~~										}

				Site	Location	44	4 11	EGENBE,	LEER BOI	ing # 5809
								ate 10	1	
				Drillin	ng Contra	ctor	Au	- TER	YAIN DE	SILLING
				Drille		104			ogger DAV	
				Start	- · - ·	F	inish		Boring Dia	ameler 🙇 🗥
				Drillin	g Method	1	915-7	K MEANING	> STEM	AUGER
				Samp	ling Meth	nod	SL	SPLIT EEVE	SPOON S-DAGE	-Pust
			T	n/s		, - · - · - ·		water de		elev
Depth	Cas.	Annu.	Well Legend	Screening Results (ppm)	Sample #	# Rec.	Blow Cl.	USCS	Descrip	tion of Material
2								SC	Reddish b	from coarse
3				610	5804-3		L(CL	black S. Wmed.g. Strong	andy clay ravels odar
8				34	5B39-10		5	off	darkigr plastic low o	ay heavy, clay
0			-		SB09-W			7	ns oderat.	e odar in Hzo
12										

				•	Site L	.ocalion	44	4 H	EGENBEI	LEER	Boring #	SBIO
									ate Lo)	i	Sheet	01 (
					Drillin	g Contra	ctor	Au	TERM	AIN	DRILL	ING
					Drille		CH.					Copp
					Start		· F	inish	2	Borin	ng Diamet	er 🔗''
					Drillin	g Method	<u>d</u>		Aorto	Æ		AUGER
					Samp	ling Meth	nod		SPUT EEVE	5 Poo		
	 .	1			n/s			est.	water de	pth ι	0'	elev
Depth	Cas.	Annu.	Well Legend	Sci R	reening esulls ppm)	Sample #	# Rec.	Blow Cl.	USCS	D	escription c	l Material
.										Redd	ish br	nun
1				ļ					SC	w/me	se cla digrave	yex sand
2 —										1	odar≤	
3 ——										, 1		
4				>2	,000	SB10-3		8		clay	1 8 m	ine sandy
5									CL	moist	, medic	moder
-									CL	black	Frandy Grave	clay
6				1,	171	COID I				dark	gray 1	reavy
7						5810-6		4	OH		c clay	- strong
8												
9	<u> </u>											
10						5B10-W				vn ode	rate ode	ar in H20
11												
12-												
' -												

				Site I	ocation	44	4 Hz	EGENBEL	EER	Boring	BRII	
								ale (o				
				Drillir	ng Contra	ctor	ALL	TERR	SAIN	DRIL	LINE	
				Drille						DAVIC		
				Start		F	inlsh				eter % "	-
				Drillin	g Method	<u> </u>		Horic	ru S	TEM	AUGER	1
Ī				Samp	ling Meth	10d		SPLIT		~ N		-
<u> </u>				n/s		<u> </u>	est.	water der	oth (0'	elev	
Depth	Cas.	Annu	Well Legend	Screening Results (ppm)	Sample #	# Rec.	Blow Cl.	uscs	D	escription	of Material	-
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					Redd	ishbr	awa	
1								6	Coar	3 W/n	ned a ravel]
2		<u></u>				-		50	no	o dor	5	-
3						<u> </u>						
4 —			· .	308	5511-3		10		Jark	gray	toblack	
_								CL	media	1 5-	ained	
5 —										rate o	dor-slighta	noi st
ь —— —					no sam	ite	de		dark	may	heavy	
7					at 0	۲			1-100	Ne cla	y w/ aradi	41°C
8	=							OH	moder	rate o	dar 7	
<u>-</u>				42	5611-8		4					i
	=							1		1		
0				· · · · · · · · · · · · · · · · · · ·				*	mode	rate In H	gasoline	
11												
2			ļ					<u> </u> -				
				· · · · · · · · · · · · · · · · · · ·							1	

1													
						Site	Location	44	4 4	EGENBO	ELGER	Boring :	SBIZ
						Proje	cl # 05	-42	8 0	ale \t	17/9	7 Sheet	1 10 /
						Drillir	ng Contra	actor	AU	TER	RAIN	DRILL	ING
						Drille		2101				DAVID	Copp
						Start			inish		1	ng Diamel	
						Drillin	g Metho		- 	toll	من ج	STEM	AUGER
							oling Meti			SPLI	T SPOR	N	
					ı	Samp	nitrig ivieti	100	SL	EEVE			∡ S+
	T			 	16	n/s	 	,	est.	water de	pth ι	0'	elev
Depth	Ca	35.	Апли.	Well Legend	SC P 	reening esults ppm)	Sample #	# Rec.	Blow Cl.	Uscs		escription o	l Malerial
i	-	+									12000	ich-br	on h
		+			-				 	SC	Coa	rse c	ayex san
5										حد	-/ n	ed. 31	
<u> </u>	\vdash	+										- 00	04 \
3											 		
4						16	5812-3		8		dark	grax t	oblack
	-	+								CL	fines	and'y	clay
5 —	Ī							-			med me	erate	rel 5
6	=										V	<u> </u>	odor
I , –†	E	++			a	39	5026		,				
,	=						31/12-0		5	14	Dark	STRY h.	moret
B	=	+-									mode	rate 2	dar
								 			·	<u> </u>	
	=									<u>.</u> i			
ρ	=	-		.							H20	has m	od.odar
1				ŀ									
	-												
2	1-	-											
11_	—								<u>-</u>			····	

				Si	ite L	ocation	44	4 Hz	EGENBE	LEER	Boring :	SB13	
									ale 10	1	Sheet		
				Di	rillin	g Contra	clor	Au	TER	RAIN	DRILL	126	1
					riller						DAVI O		-
				St	arl		F	inish		Borir	ng Diame	ler 🚓'	-
				Dr	illing	g Method	d ((esta	Hono	JU 578	A AU	BER	1
				Sa	amp	ling Metl		-	PLIT	5800	N = 1		-
	,			n/s	\$			est.	waler de			elev	-
Depth	Cas.	Annu.	Well Legend	Screen Resul (ppm	ing Is	Sample #	# Rec.	Blow Cl.	USCS		escription c	l Material	
										Redo	ish-br	ann	1
11				<u></u>						1 1	se são	cavels	6
5									SC		3000	`\	1
3													
4 —				1145	5	5813-3		10	^ .	dark.	avay me	edium-gra	
					/				CL	sandy	gravel	dy clay	nez
5	=										sheen ong o		
5					7								
7	<u>= </u>			143	3	5813-6		3	OH	dark	gray b	reavy	
8 —			ļ			-			,	plass	mode mode	rate odar	1
			}										
0			}		F	A13-4	<u></u>		工	H201	nas de	2 modera	- <u> </u>
11	<u>-</u>		}						F				
2			-										
 ,	L		<u>l</u>		i_								

Sile Location 444 HEGENBULER Boring # Project # 05-428 Date 12/77 Sheet of Of Drilling Contractor All TERRAIN DRILLING Drilling Contractor All TERRAIN DRILLING Drilling Method Logger DAVID Copp Start Finish Boring Diameter & Drilling Method Sherre Avo extension of Material Regard Sampling Method Sherre Poor Avo extension of Material Regard Sheeping Sample # Blow USCS Description of Material Reddish brown Clayer Sand Williams of Sherre Start Sheeping Sample Rec Ct. USCS Description of Material Reddish brown Clayer Sand Williams of Sherre Start Sherre Sheeping Sherre Sh										_		
Project # 05-428 Date 10-7 97 Sheet of 1 Drilling Contractor All TERRAIN DRILLING Driller PicHard Logger DAVID COPP Start Finish Boring Diameter 3." Drilling Method Sampling Method SLENE START POST N/S Screening Results Rec. Cl. USCS Description of Material Reddish pround clarger Sand of larger Sand							Site L	ocalion	44	4 H.	EGENBER	Boring # 5814
Driller PictureD Logger DAND COPP Start Finish Boring Diameter &" Drilling Method Sterrer Aug Ed. Sampling Method Sterrer Born Aug Ed. In/s est. water depth Lo' elev Depth Cas. Annu. Legend Results # Rec. Ct. USCS Description of Material Reddish brown clayer sand what have smaller and sand start and sand sand start and sand sand sand sand sand sand sand							ł					
Driller PictureD Logger DAND COPP Start Finish Boring Diameter &" Drilling Method Sterrer Aug Ed. Sampling Method Sterrer Born Aug Ed. In/s est. water depth Lo' elev Depth Cas. Annu. Legend Results # Rec. Ct. USCS Description of Material Reddish brown clayer sand what have smaller and sand start and sand sand start and sand sand sand sand sand sand sand	J						Drillin	g Contra	ctor	Au	TER	RAIN DRILLING
Start Finish Boring Diameter 2" Drilling Method Stere Ausel Sampling Method Stere Proof N/S est. water depth to elev Depth Cas. Annu. Well Receipts # Blow Ct. USCS Description of Material (Poph) 1							1	_				i i
Drilling Method Sampling Method Sampling Method Server Pront n/s est. waler depth Lo' elev Depth Cas. Annu. Well Legend Results (ppm) Results # Rec. Ct. USCS Description of Material Reddish brown Clayer Sand of Large gravels no odars 1 1 11 12 3 Aart gray medium-grave Sandy clay with Smeather day Plastic clay Plastic clay Machine day Machine day Plastic clay Machine day Plastic clay Machine day							Start				<u> </u>	
Depth Cas. Annu. Well Legend Results Sample # Rec. Ct. USCS Description of Material (Legend Results Smith Prawn) 1							Drillin	g Method	}	H	-01LD	STEM AUBER
Depth Cas. Annu. Well Legend Screening Results (ppm) # Rec. Ct. USCS Description of Material Reddish brown and Clayer Sand of Large gravels no oders 1						·	Samp	ling Meth	iod	SL		C
Depth Cas. Annu. Well Legend Screening Results # Rec. Cl. USCS Description of Material 1												
1 Clayer Sand Marge gravels 1 Clayer Sand Marge gravels 1 and clay with Sandy clay with Sm. arrivels Sm. arrivels Meddish brown Large gravels No odors 1 2 Dark gray medium grave Sm. arrivels Medium grave Sandy clay with Sandy clay Medium grave Sandy clay with Sandy clay Medium grave Sandy clay Medium grav	Depth	Cas	S.	Annu.		Sg	reening Results			Blow		
Clayer Sand W large gravels no oders 1125 5814-3 12 Clayer Sand W large gravels no oders Condy clay with Sm. grav heavy Plastic clay moderate oder 464-W 1tzo has moderate oder							(bbitt)	, n	1160.	<u> </u>	0303	
2 1,125 SB14-3 12 Dark gray medium grante 5 =	1				-	<u> </u>						clayey sand w/
3 1,125 SBH-3 12 Dark gray medium-grants Sandy clax with Sm. gray ls predomate 373 SBH-6 4 Dark gray heavy Plastic clay moderate odor 46HW 1tzo has moderate odor	_		+			-			<u> </u>		Sch	
273 5814-6 4 Dark gray medium-grande 373 5814-6 4 Dark gray heavy Plastic c (ny medium-grande The street of th												NO BOARS
Sandy clax with Sm. gray s medium sm. gray s medium b Jork gray heavy plastic clay moderate odor the standard odor	з ——	-	+							ļ		
Sandy clax with Sm. gray ls Imedian Plastic clay Moderate odor It 20 has moderate odor	4					Ι.	125	SB14-3		12-		À
Sm. gravils medanda 373 SBH-6 4 Dark gray heavy Plastic clay moderate oder 4504W 1+20 has moderate oder	-										01	
373 5814-6 4 dark gray heavy Plastic clay moderate odor 4614 W 1+20 has moderate oder	5		H									Sm. gravels
373 SBIM-6 4 Dark gray heavy Plastie clay moderate oder 4814-W 1tzo has moderate oder												
Blustie clay moderate odor SBHW 1+20 has moderate oder	<u> </u>	=								•		
36NW The substitute of the sub	7 —		H				373	SB14-6		4		dark gray heavy
36NW The Das moderate of der	.		††								MI	plastie clay
SBHW 1+20 has moderate of der		=									On	MO1012/2 8001
SBHW 1+20 has moderate of der) ——	+=	$\left \cdot \right $									
	-		H					Birm			\forall	1) -)
	0							, VIT			-	ITZO has moveral to bear
	11	- =	-									
	-	 - 	H									
	12								-		}	

				Site	Location	44	4 H	EGENBE	LEER	Boring #	SS15
					ject # 05				t 1) to)
				Drill	ling Contra	ector	Au	TER	SAIN	DRILL	ING
				Drill		_				DAVID	1
				Star	rt	F	inish		Borin	ng Diamet	er &''
				Drill	ing Method	d (700	<i>37 ي</i>	Edy A	tuger
				San	npling Met	hode"	5L	EEVE	5000 5 -21	DECEP.	254
 		 	 	n/s			est.	waler de _l	oth ι	0'	elev
Depth	Cas.	Annu.	Well Legend	Screenin Results (ppm)	g Sample #	# Rec.	Blow Cl.	Uscs	D	escription o	f Material
1									Reddi	ish bro	un clay.
2								SC		000	<u>\$</u>
3											
4				1.2	5815-3		10		Horas	y gray	sandy
5								CL	No	0000	-S
6											-
7	=			2	SB15-L		4		pla	y blac stice	lay
8											
9 —								off			
10					585-W			OH Z	No	odari.	n H20
11								}			
12-											
	= [

1												
					Site l	ocalion	44	4 4	EGENBE	LGER	Boring	5B16
									ale \c	!	7 Sheet	1 10)
					Drillir	g Contra	actor	Au	- TER	RAIN	DRILL	ING
					Drille				D			
				ĺ	Start			inish		Borir	ng Diame	ler a"
					Drillin	g Metho	d	lle to	HOLLO	≥ دیہ؟	STEM	AUGER
					Samp	ling Met			SPIT	SPOOT	PEEZR	ee d.
								waler de	. –	0'	elev	
Depth	Cas.	Annu.	Well Legend	Sci	reening esults	Sample		Blow				
			cogono	(ppm)	**	Rec.	Ct.	Uscs		escription of	
1 ——										1 1	ey san	1 /
2									SC	1 -2 -3	ravels	
											NDO	dar
3				ļ								
4				1	7.5.	5B16-3		9		27 C	sand	rayels
]				_	<u>. </u>	 			CL	12	600	en 5
5				 								
6	 					<u></u>				11	17	
7				21	0.7	5B16-6		6		Heav	y Ida	
	 - =		1								0000	
8									OH			
9	=-				 -				-			
10						5B16-W			779	- A -		
						-			2		o our	in Hzo
11 ———			_									
12									·			
		<u> </u>							_			

ATTACHMENT C

SOIL SAMPLE LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION,

Sample Log 17482 October 22, 1997

Dale van Dam Northwest Envirocon, Inc. 1828 Tribute Road, Suite A Sacramento, CA 95815

Subject:

26 Soil and 12 Water samples

Project Name:

444 Hegenberger

Project Number:

Location:

444 Hegenberger

Dear Mr. van Dam,

Chemical analysis on the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. USEPA protocols for sample storage and preservation were followed.

WEST Laboratory is certified by the State of California (# 1346). If you have any questions regarding procedures or results, please call me at 916-757-0920.

Sincerely,

Stewart Podolsky

Sample Log 17482 October 28, 1997

14 26 Soil and 12 Water samples Subject:

444 Hegenberger Project Name:

Project Number:

Location: 444 Hegenberger

Case Narrative

EPA 8240 Sample SB08-W

High 1,2-Dichloroethane-d4 surrogate recovery was due to the high level of gasoline in the sample.

Sample Log 17482

MTBE (Methyl-t-butyl ether) By EPA Method 8020/602

From: 444 Hegenberger

Sampled: 10/06/97, 10/08/97 Received: 10/08/97

Matrix : Soil

Date Analyzed	(MRL) mg/kg	Measured Value =g/kg
10/20/97	(.050)	<.050
10/20/97	(.50)	<.50
10/20/97	(.050)	<.050
10/18/97	(2.5)	<2.5
10/20/97	(.050)	<.050
10/20/97	(.50)	<.50
10/21/97	(.50)	<.50
10/20/97	(.050)	<.050
10/21/97	(.50)	<.50
10/20/97	(.50)	<.50
10/18/97	(.050)	<.050
10/18/97	(.050)	<.050
10/18/97	(.050)	<.050
10/18/97	(.050)	<.050
	Analyzed 10/20/97 10/20/97 10/20/97 10/18/97 10/20/97 10/21/97 10/21/97 10/21/97 10/20/97 10/18/97 10/18/97 10/18/97	Analyzed (MRL) mg/kg 10/20/97 (.050) 10/20/97 (.50) 10/20/97 (.050) 10/18/97 (.050) 10/20/97 (.50) 10/21/97 (.50) 10/20/97 (.50) 10/21/97 (.50) 10/21/97 (.50) 10/21/97 (.50) 10/18/97 (.050) 10/18/97 (.050) 10/18/97 (.050)

Approved By:

Stewart Podolsky Senior Chemist

Sample Log 17482

17482-01

Sample: SB05-3

From: 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:1 Run Log: 2165L

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene	(.0050)	<.0050
Toluene Ethylbenzene	(.0050) (.0050)	<.0050 <.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(1.0)	<1.0
Surrogate Recovery	?	99 %

Sample: SB06-3

From : 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:10

Dilution: 1:10 Run Log: 2165L

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.050) (.050) (.050) (.050) (10)	.055 .053 .11 .11
Surrogate Recovery	,	84 %

Sample: SB07-3

From: 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:1

Dilution: 1:1 Run Log: 2165L

Parameter	(MRL) mg/kg	Measured Value ∍g/kg
Benzene Toluene	(.0050)	.015
Ethylbenzene Total Xylenes	(.0050) (.0050) (.0050)	<.0050 <.0050
TPH as Gasoline	(1.0)	1.3
Surrogate Recovery	7	104 %

MISST LAVBORATIOS Y

Sample Log 17482

Sample: SB08-3

From: 444 Hegenberger

Sampled: 10/07/97

Dilution: 1:50 Run Log: 2165K

Parameter	(MRL) mg/kg	Measured Value mg/kg	
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.25) (.25) (.25) (.25) (50)	1.1 <.25 2.2 7.6 160	
Surrogate Recovery	•	*** Diluted	Out

Sample: SB09-3

From : 444 Hegenberger

Sampled: 10/07/97

Dilution: 1:1 Run Log: 2165L

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene (.0050) Toluene (.0050) Ethylbenzene (.0050) Total Xylenes (.0050) TPH as Gasoline (1.0)		.017 <.0050 <.0050 .015 1.1
Surrogate Recovery	7	103 %

Sample: SB10-3

From : 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:100

Matrix : Soil

Run Log : 2165M

Parameter	(MRL) mg/kg	Measured Value =g/kg	
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.50) (.50) (.50) (.50) (100)	4.7 <.50 2.8 2.5 750	
Surrogate Recovery	7	***	Diluted Out

Sample: SB11-3

From : 444 Hegenberger

Sampled: 10/07/97

Dilution: 1:50 Run Log: 2165M

Parameter	(MRL) mg/kg	Measured Value mg/1	eg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.25) (.25) (.25) (.25) (50)	2.3 .73 6.1 11 260	
Surrogate Recovery	•	***	Diluted Out

Sample: SB12-3

From : 444 Hegenberger

Sampled: 10/07/97 Dilution: 1:1

Dilution: 1:1 Run Log: 2165L

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.0050) (.0050) (.0050) (.0050) (1.0)	.036 .0070 <.0050 .025 1.2
Surrogate Recovery	<i>!</i>	103 %

Sample: SB13-3

From: 444 Hegenberger Sampled: 10/07/97 Dilution: 1:100 Run Log : 2165M

Parameter	(MRL) mg/kg	Measured Value =g/k	g
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.50) (.50) (.50) (.50) (100)	13 .85 5.8 4.2 930	
Surrogate Recovery	•	***	Diluted Out

MEST LAVRORRATIONS

Sample Log 17482

Sample: SB14-3

From : 444 Hegenberger

Sampled: 10/07/97

Dilution: 1:10 Run Log: 2165L

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.050) (.050) (.050) (.050) (10)	.81 .36 .087 .38 62
Surrogate Recovery	f	89 %

Sample: SB15-3

From: 444 Hegenberger

Sampled: 10/08/97 Dilution: 1:1

Dilution: 1:1 Run Log: 2165K

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene	(.0050)	<.0050
Toluene	(.0050)	<.0050
Ethylbenzene	(.0050)	<.0050
Total Xylenes	(.0050)	<.0050
TPH as Gasoline	(1.0)	<1.0
Surrogate Recovery	7	100 %

Sample: SB15-6

From : 444 Hegenberger

Sampled: 10/08/97 Dilution: 1:1

Dilution: 1:1 Run Log: 2165K

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.0050) (.0050) (.0050) (.0050) (1.0)	<.0050 <.0050 <.0050 <.0050 <1.0
Surrogate Recovery	7	101 %

Sample: SB16-3

From: 444 Hegenberger

Sampled: 10/08/97

Dilution: 1:1 Run Log: 2165K

Parameter	(MRL) mg/kg	Measured Value mg/kg
Benzene (.0050) Toluene (.0050) Ethylbenzene (.0050) Total Xylenes (.0050) TPH as Gasoline (1.0)		<.0050 <.0050 <.0050 <.0050 <1.0
Surrogate Recovery	<i>f</i>	101 %

Sample: SB16-6

From: 444 Hegenberger

Sampled: 10/08/97 Dilution: 1:1

Matrix : Soil

Run Log: 2165K

Parameter	(MRL) mg/kg	Measured Value =g/kg
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.0050) (.0050) (.0050) (.0050) (1.0)	<.0050 <.0050 <.0050 <.0050 <1.0
Surrogate Recovery	7	102 %

Sample: SB05-3

From : 444 Hegenberger

Sampled: 10/06/97

Extracted: 10/17/97 QC Batch : DS971004 Dilution : 1:1 Run Log : 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg	
TPH as Diesel TPH as Motor Oil	(2.0) (10)	<2.0 <10	

^{*} Increased reporting limit due to oil range interference.

Sample: SB06-3

From : 444 Hegenberger

Sampled : 10/06/97

Extracted: 10/17/97 QC Batch: DS971004 Dilution: 1:5 Run Log: 7388H

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(25) (10)	<25 * 61

* Increased reporting limit due to gasoline and oil range interference.

MEST LAVBORATION

Sample Log 17482 17482-05

Sample: SB07-3

From : 444 Hegenberger

Sampled: 10/06/97

Extracted: 10/17/97 QC Batch : DS971004 Dilution : 1:5 Run Log : 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel	(25)	<25
TPH as Motor Oil	(10)	130

^{*} Increased reporting limit due to oil range interference.

Sample: SB08-3

From : 444 Hegenberger

Sampled: $10/\bar{0}7/97$

Extracted: 10/17/97 QC Batch : DS971004 Dilution: 1:1 Run Log : 7388H

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(30) (10)	<30 * 20

* Increased reporting limit due to gasoline and oil range interference.

Date: 10-18-97 Time: 08:30:59
Column: 0.53mm ID X 15m Rtx-1 (Restek Corporation)

Sample: SB09-3

From : 444 Hegenberger

Sampled: 10/07/97

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel	(20)	<20
TPH as Motor Oil	(10)	120

^{*} Increased reporting limit due to oil range interference.

Sample: SB10-3

From : 444 Hegenberger

Sampled : 10/06/97Extracted: 10/17/97

QC Batch : DS971004 Dilution: 1:1 Run Log : 7388H

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(100) (10)	<100 * 25

* Increased reporting limit due to gasoline and oil range interference.

MEST LAVBORGITORY

Sample Log 17482 17482-13

Sample: SB11-3

From : 444 Hegenberger

Sampled : 10/07/97

Extracted: 10/17/97 QC Batch : DS971004 Dilution : 1:1 Run Log : 7388H

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(15) (10)	<15 * 37

* Increased reporting limit due to gasoline and oil range interference.

Sample: SB12-3

From : 444 Hegenberger

Sampled: 10/07/97

Extracted: 10/17/97 Dilution: 1:1

Matrix : Soil

QC Batch : DS971004

Run Log : 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(10) (10)	<10 42

^{*} Increased reporting limit due to oil range interference.

Sample: SB13-3

From : 444 Hegenberger

Sampled : 10/07/97

Matrix : Soil

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel	(150)	<150
TPH as Motor Oil	(50)	780

* Increased reporting limit due to oil range interference.

Sample: SB14-3

From : 444 Hegenberger

Sampled: 10/07/97 Extracted: 10/17/97

Extracted: 10/17/97 QC Batch: DS971004 Dilution: 1:1 Run Log: 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel	(10)	<10
TPH as Motor Oil	(10)	61

^{*} Increased reporting limit due to oil range interference.

Sample: SB15-3

From: 444 Hegenberger Sampled: 10/08/97

Extracted: 10/17/97 QC Batch : DS971004 Dilution: 1:1 Run Log : 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel	(1.0)	<1.0
TPH as Motor Oil	(10)	<10

Sample: SB15-6

From : 444 Hegenberger

Sampled: 10/08/97

Extracted: 10/17/97 Dilution: 1:1

Matrix : Soil

QC Batch : DS971004

Run Log : 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel	(1.0)	<1.0
TPH as Motor Oil	(10)	<10

⊋ 9 EPA Mod 8015

Date: 10-18-97 Time: 14:15:08 Column: 0.53mm ID X 15m Rtx-1 (Restek Corporation)

Stewart Podolsky Senior Chemist

Sample: SB16-3

From: 444 Hegenberger

Sampled: 10/08/97

Extracted: 10/17/97 Dilution: 1:1

Matrix : Soil

QC Batch : DS971004

Run Log : 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel	(1.0)	<1.0
TPH as Motor Oil	(10)	<10

Sample: SB16-6

From: 444 Hegenberger

Sampled : 10/08/97

Extracted: 10/17/97 QC Batch : DS971004 Dilution : 1:1 Run Log : 7388H

Parameter	(MRL) mg/kg	Measured Value mg/kg
TPH as Diesel TPH as Motor Oil	(2.0)	<2.0 *

^{*} Increased reporting limit due to oil range interference.

West Analyt 1046 Olive Drive, Suite 2	2, Davis,	CA 95	616			mple		ecei	Fa ivin	x#: g#:	91 91	6-7 6-7		-60 -46	91 08		(CH/	AIN	I-O	F-C	US	ST	OD	ΥF	₹E	CC	R	A	ND A	٩N	AL'	YSI	SR	EQ	UE	ST .
Project Manager: DALE VAN DAGE Company/Address: NORTHWEST ENVI Project Number: P.O.#:		F	² hon	e #:													•				,	٩N	AL`	YS:	IS I	RE	QL	JES	ST						TAT		For
DALE VAN DAT	4			9	16	0	6	19	? _	_ =	35	7	7 C	<u> </u>		\downarrow	<u>~</u>		,			_	_	_						,,-					 	1	Lab Use
Company/Address:	_	F	AX i	#:			_									ļ	Z									E.T.										C	NLY
MORTHWEST ENVI	ROCON	1 / 2	328	3_	Z	46	<u> 27</u>	E	re	<u>D.</u>	/	S 7	E.	A	<u> </u>	-	<u>E</u>		Ì						ТОТ	TAL	N	4							1		
Project Number: P.O.#:	i	r	210j e	CIN	ame) .											O'MBC						,												1.0	1	
Project Location:		S	Sampl	er Si	ignat	.re:											2802				17														Ž		~ _*
444 HEGENBEI									~	_				-		-	8	<u>3</u>	8015		ticide	s C				9.2)							_		our/1	9	
	Samp	4	1	Cor	ntai	ner	7			tho			R.	lat	rix	୍ଦିର	Sasolir	(M80	₹ 8		- Pes	ğ			蠹	21/23	Z								48		WEST Lab Number
0	Gamp	<u></u>	<u> </u>		/Amo	·	_ _	P	res	erv	ed		IV	ıaı		2/802	8	lese.	ğ	8010	8080	8080	8240	8270	Meta	107.4	5								Pe	-	WEST
Sample ID	DATE	TIME	ğ	SLEVE	1L GLASS	1L PLASTIC	1	¥ \	5	ָ ט	¥		WAIER	8		BTEK (602/8020)	BTEVTPH as Gasoline (802/8020/M8015) 17/6	TPH as Diesel (M8015)	TPH as Motor Oil (M8015)	EPA 601/8010	EPA.608/8080 - Pesticides	EPA 608/8080 - PCB's	EPA 62478240	EPA.625/8270	CAM - 17 Metals	LEAD(6010/7421/239.2)	20.00								12 hour / 24 hour / 48 hour / 1 week / 2/4eek		
6B05-3				V									,	1	_	y	V	V	7									-			†				~	174	182 01
B05-6])		7	1		1																1		02
5.606-3				5						1			[7		1/4	1	П	Π																17		٥z
~ -6				7												Й	7	1	1								Γ				7		1		1)	-	04
5607-3									Ī					7		7		7	11												1				17		05
u -6				\mathcal{I}										71		4	1	1	\prod														1		1		06
5BDB-3									1							4	1	5	17																\prod		07
~ - b				4										$T\Gamma$		9	17	7																	V		98
5,6,09-3								Ţ						$(\top$		h	Γ																				09
n -6				5										I		1	7	1	1																		10
05B10-3														\		H	1	(1																1		11
Relinquished by:	Date	Time				bevi				,								Re	em	arl	KS:	,															
MUNC	10/8	18:5	3		J	wy	<u>بر</u> _	Ű.,	J	'n	7																										
Relinquished by:	Date	Time		R	ecei	ived	by:	•		6				_																							
Relinquished by:	Date	Time "	ς	R	ece	ived	by	Lat	ora	ator	ry:			_				Bi	II T	o:																	

Project Manager:		F	hon	e #:		٠.									•				A 14	LIAI	VC	10 1	0 E	∩ ≀ !!	-07				For	,
															3)			Ar	VAL	_	ilo i	KE	ŲUŁ	EST			TAT	Lab)
Company/Address:		F	AX i	ř:											1/6							W,E	E.T. (N					ONL	
NWE														_	1		İ					TO	TAL	(V)			1,	1		-
Project Number: P.O	·集	F	'roje	ct Na	ime:										20VM80					,								2		
Project Location:		S	ampi	er Sig	natu	e: //		·							057800		ଜ		8									3	N	ž
	-1		Ž	1/1	/	1	_								Fine (6	015)	W801			ĝ			39.2)					No.	\$	Ž
	Samp	oling		Con Type/				Me Pre	etho serv			Ma	trix	Ş	88	er pws	50 5	2 å 2 §	בו בו	3 3	2 2	- Sept	75712	ጀ ≲				748	17482	WEST Lab Number
Sample ID		T	L.,				 -	П		$\neg \tau$	lik H			- (602/R	F	SP	s Mot			2000	25/82	17 K	6010	£				/24 k		¥
	DATE	TIME	δV	SLEEVE	1L GLASS	L PLASSIC	포	HNO3	띬	NONE	WATE	SOIL		ETE	BTEX/TPH as Gasoline (602/8020/M8015)	TPH as Diesel (M8015)	TPH as Motor Oil (M8015)	EPA 601/8010	EPA 608/8080 - PESKC	EPA 62408240	EPA 625/8270	CAM - 17 Metais	LEAD(6010/7421/239.2)	Cd, Cr, Pb, Zr, Ni				12 hour / 24 hour / 48 hour / 1 week / 2		ı
5B10-6				V	+'	-						V	/		V	V	1	\dagger	+	+	+				+	-		니	(74 82	12
5B11-3				1											1	П	\parallel		T									$ \zeta $		13
~ B				7								15			15													17		14
5,B,12-3												I			11.		I													15
~ -6				5								5			$\underline{\parallel}$													$ \rangle$		16
SB13-3															1															17
u -6				$\int \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $											\parallel		\int													18
SB14-3															}		Ш	1												14
a -6							<u> </u>										7													20
5B15-3				$\perp \parallel$											7															21
4-6				U							<u> </u>				\parallel	Ш												\prod		22
Relinquished by:	Date	Time		Re	cei	ed b	oy:									Re	ema	ırk	s:									,		
MILL	10/8	18:5	5		ho	クタ	7, 3	hu	7-	_																				
Relinquished by:	Date	Time		Re	cei	red t	y:		,					. .																
												54.															 	_		
Relinquished by:	Date	Time ^b	,	R	cei	ved l	hv I	abo	rato	ıω.					- 1	Ril	l To													

1046 Olive Drive, Suite	2, Davis,				Samp	ole F	Rece	eivir	ng#:	916	3-75	7-46	808	\perp				<u>-</u>													,i			_
Project Manager:		ĵ	Phon	e#:		٠									36				ΑN	IAL	YS	IS I	REC	וטב	EST	•				,	TĀT	ŧ	For Lab	
Company/Address:		ŀ	AX i	# ;											ME					T			E.T. (\Box								0	Jse NLY	<u>r</u>
Project Number: P.O.#	<u> </u>	ş	^o roje	ct Na	me:		_		_													-	TAL (2						;	2 Medits		1	
Project Location:		· · · · · · · · · · · · · · · · · · ·	Sampl	er Sig	nature				_	•					602/8020	ণি	1015)	richen	,	,	ا د د		(73								Y	S	74	Limber
	Samp	ling		Cont Type/			F	Me Pres	etho serv			Ма	trix	- \ (BCC0)	as Gasofin	sel (MBD:	tor Oil (N	240	380 - PCP.3	74.042	22	Aetais	17421123	Z,							10ur / 48 hz	ار ا	1+402	WEST Lab Number
Sample ID	DATE	TIME	VOA	SLEEVE	1L PLASTIC	SCOML	잪	HNO3	ICE	NONE	WATER	SOIL		BTEX (602/8020)	втехлен	TPH as Diesel (M80%)	TPH as Motor Oil (ME015)	EPA 608/8030 - Perfrides	EPA 608/8080 -	EPA 62478240	EPA 625/8270	CAM - 17 Metais	LEAD(6010/7421/232)	ઉ ક							12 hour / 24 hour / 48 hour / 1			3
B16-3				V								v	4		<i>Z</i>	7	Ź								-	-	<u> </u>				4	174		2.
B05-W			6	12				-	_	_	V			+	/	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	才	-	+	ν					+	+	╁		+	+	H			24 25
B06-W			3	-							1/					1	\prod			Ĭ											1		_	2(
5B07-W		<u> </u>	3	\rightarrow	2			_	-	_	-17	7	-	-	$ \rangle$		$\frac{1}{2}$	-			/	-			-	-	-			-		<u></u>		2
BOB-W.		 	3			2		-	1	+	+	+	+	+	17		(-	╁╌	V	-		$\left \cdot \right $	-	+	+	-	}-	 	+	H			28
B10-W			3			4					1/				15																			30
BII-W			3	-+	4_				_		15	4-		_			\parallel		1	-	<u> </u> _				_	_	1		 -	_				31
5B12-W			1			2		-	-		+	-	_	+-	1		,		╁.	ŀ		-		-	_	_	+				4			37
Relinquished by:	Date	l Time	17		ceive	<u>. </u>	LJ у :	k	l	. <u>.</u> ., .l		<u></u>			1	Re	ma	arks	 }:	1	!	1					l	<u> </u>		لسلم	لنا			
Relinquished by:	1 / / / / / / / Date	In oro)		/ cur ceive	$I^{}$.Jr	W.	γ	_					•		Sui	11	ج ا د	2	SI	30° 309 306	5-1 5-1	W -	> > a > ,	al Uh	! 421	VOA VOA VOA S	ة ا فع فع	11 +1	e h	icad. 11	5 9
Relinquished by:	Date	Time '	,	Re	ceive	ed b	y La	ibor		 ry:				, _		Bil	. To	 :														· , -		

Project Manager:			Phor	1e #:						-	,		-			Ø.				AN.		'SIS	Br	:OI)Ec	т					ارا	For
						_ <u></u> -										1/2		 	· ·	111						· ·					TAT	Lab Use
Company/Address:			FAX	#:											ŀ	1					:	[_]						N	ONLY
Project Number: P.O.:	# :		Proje	ect N	lame) ;	-								-	AM8015)														}	4 / 2 resolve	1
Project Location:		ا	Samp	ler S	Ignat	ure:		1					<u></u> -			BTEXTPH as Gasoline (602/8720/M8015)	15)	(5108)	ticides	9.8			16.0								🕏	- -
	Samp	oling				ner ount)			deth ese		<u>.</u>	М	lati	ix	8020)	s Gasoli	sel (M80	5 2	80 - Pes	80 - PC	9	2 1 2 1 2 1	742103	Z							our / 48 h	WEST Leb Number
Sample ID	DATE	TIME	VO VO	SLEEVE	1L GLASS	1L PLASTIC	Č		10E	NONE		WATER	<u></u>		BTEX (602/8020)	втехтрн 8	TPH as Diesel (M8015)	EPA 601/80	EPA 608/8080 - Pesticides	EPA 608/8080 - PCS's	EPA 624782	CAM - 17 Metals	LEAD/6010/7421/739 2)	Cd. Cr. Pb. Zn. Ni							12 hour / 24 hour / 48 hour / 1	WE
5B14-W	10-8		4		2		_	1				7	+	1		7	иl	1			+		+			+	+			-		
\$15-W	10-8		4		2							7				(SK															
SB16-W	N		4		2							1				\mathbb{K}	1/2															
		ļ	_				_ _	_	_ <u> </u>			_	_ _	_			_ _	_					1	_								
	<u> </u>	ļ	-				_	_ _	-	-	_	_ -	_ _	-	_		_	\perp	<u> </u> _		_		_	1				_				
<u></u>			┼			-	- -	- -	-	-	-		4	+	\vdash	-		-			-		+	-	-	-		 				
		<u> </u>	<u> </u>				+	+	-	-			- -	- -	-	-		- -	-		-	-	+	 	-		_	-	-		-	
		<u> </u>	-	-		\dashv	- -	- -	-	-		_	╁	╁	-		\dashv	+	-		\dashv	\dashv	-	-	$\left - \right $			 -		-	-	
			├-			-	+	- -		-	-	-	╁	-	\vdash		+	╫	-	\vdash			╁	╁	$\left - \right $	-	_	-		+	-	-
		<u> </u>	-			_	- -		+-	\vdash	\vdash	\dashv	╁				+	+-	 -	-	_	- -	╁	╁	$\left \cdot \right $	\dashv		-		+	\dashv	
Relinquished by:	Date 10/9	Time	<u>-</u> 3	R	ece In	ـــــــ ived ×رسر	by:	1	vy			l_	_		<u> </u>	F	₹er	nar	ks:	1	L			<u> </u>	<u> </u>		.1	1				l
Relinquished by:	Date	Timo		R	808	lved	by:								*	,	٠.															
Relinquished by:	Date	Time '	3	R	ece	ived	by	Lab	orat	ory:				•			Bill	To:														

ATTACHMENT D

GROUNDWATER SAMPLE LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION,

MTBE (Methyl-t-butyl ether) By EPA Method 8020/602

From: 444 Hegenberger

Sampled: 10/06/97, 10/08/97 Received: 10/08/97

Matrix : Water

SAMPLE		Date Analyzed	(MRL) ug/L	Measured Value mg/L
SB05-W		10/17/97	(5.0)	<5.0
SB06-W		10/17/97	(250)	<250
SB07-W		10/17/97	(5.0)	<5.0
SBO8-W		10/17/97	(500)	<500
SB09-W	·	10/17/97	(5.0)	<5.0
SB10-W		10/17/97	(5.0)	<5.0
SB11-W		10/17/97	(100)	<100
SB12-W		10/18/97	(100)	<100
SB13-W		10/18/97	(250)	<250
SB14-W		10/18/97	(5.0)	<5.0
SB15-W		10/18/97	(5.0)	<5.0
SB16-W		10/18/97	(5.0)	<5.0

Approved By:

Stewart Podolsky Senior Chemist

Sample: SB05-W

From: 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:1 Run Log: 4166Q

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.50) (.50) (.50) (.50) (50)	4.5 1.1 <.50 1.4 190
Surrogate Recovery	7	107 %

Sample: SB06-W

From : 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:100

Dilution: 1:100 Run Log: 4166R

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(50) (50) (50) (50) (5000)	620 <50 800 <50 15000
Surrogate Recovery	,	118 %

Sample: SB07-W

From: 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:10

Dilution: 1:10 Run Log: 4166R

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(5.0) (5.0) (5.0) (5.0) (500)	45 <5.0 210 <5.0 3900
Surrogate Recovery	7	115 %

Sample: SB08-W

From: 444 Hegenberger

Sampled: 10/08/97 Dilution: 1:200

Dilution: 1:200 Run Log: 4166R

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(100) (100) (100) (100) (10000)	12000 540 6000 7400 52000
Surrogate Recovery	,	117 %

Sample Log 17482

Sample: SB09-W

From: 444 Hegenberger

Sampled: 10/08/97 Dilution: 1:5

Dilution: 1:5 Run Log: 4166R

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(2.5) (2.5) (2.5) (2.5) (250)	55 3.5 40 4.5 1600
Surrogate Recovery	7	125 %

Sample: SB10-W

From: 444 Hegenberger

Sampled: 10/06/97 Dilution: 1:10

Dilution: 1:10 Run Log: 4166R

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(5.0) (5.0) (5.0) (5.0) (500)	280 15 400 120 5400
Surrogate Recovery		107 %

MEST LAVBORATIOSY

Sample Log 17482

Sample: SB11-W

From: 444 Hegenberger

Sampled: 10/07/97

Dilution: 1:50 Run Log: 4166R

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene	(25)	2100
Toluene	(25)	1800
Ethylbenzene	(25)	1300
Total Xylenes	(25)	4800
TPH as Gasoline	(2500)	16000
Surrogate Recovery	7	113 %

Sample: SB12-W

From: 444 Hegenberger

Sampled: 10/07/97 Dilution: 1:50

ilution: 1:50 Run Log: 4166R

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(25) (25) (25) (25) (2500)	460 42 2100 230 13000
Surrogate Recovery		117 %

Sample Log 17482

Sample: SB13-W

From : 444 Hegenberger

Sampled: 10/07/97

Dilution: 1:100 Run Log: 4166R

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene	(50) (50)	3200
Ethylbenzene Total Xylenes	(50) (50) (50)	67 180 100
TPH as Gasoline	(5000)	11000
Surrogate Recovery	•	115 %

Sample: SB14-W

From: 444 Hegenberger

Sampled: 10/08/97 Dilution: 1:5

Dilution: 1:5 Run Log: 4166R

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(2.5) (2.5) (2.5) (2.5) (250)	95 3.0 120 8.9 2700
Surrogate Recovery	7	109 %

Sample Log 17482

Sample: SB15-W

From: 444 Hegenberger

Sampled: 10/08/97

Dilution: 1:1 Run Log: 4166Q

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	(.50) (.50) (.50) (.50) (50)	<.50 <.50 <.50 <.50 <50
Surrogate Recovery	<i>!</i>	110 %

Sample Log 17482

Sample: SB16-W

From: 444 Hegenberger

Sampled: 10/08/97

Dilution: 1:1 Run Log: 4166Q

Parameter	(MRL) ug/L	Measured Value ug/L
Benzene Toluene Ethylbenzene	(.50) (.50) (.50)	<.50 <.50 <.50
Total Xylenes TPH as Gasoline	(.50) (50)	<.50 <50
Surrogate Recovery	7	110 %

Sample: SB05-W

From: 444 Hegenberger Sampled: 10/06/97

Extracted: 10/17/97 QC Batch : DW971001 Dilution: 1:1 Run Log : 7388H

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel	(50)	<50
TPH as Motor Oil	(100)	<100

Sample: SB06-W

From: 444 Hegenberger

Sampled: 10/06/97

Extracted: 10/17/97 QC Batch : DW971001 Dilution : 1:1 Run Log : 7388H

Parameter	(MRL) ug/L	Measured Value ug/1
TPH as Diesel TPH as Motor Oil	(50) (100)	180 130

Sample: SB07-W

From: 444 Hegenberger

Sampled: 10/06/97 Extracted: 10/17/97 Dilution: 1:1

Matrix : Water

QC Batch : DW971001

Run Log : 7388H

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel	(100)	<100 *
TPH as Motor Oil	(100)	<100

* Increased reporting limit due to gasoline range interference.

Sample: SB08-W

From : 444 Hegenberger

Sampled: 10/08/97

Extracted: 10/17/97 QC Batch : DW971001 Dilution : 1:1 Run Log : 7388H

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel	(200)	<200 *
TPH as Motor Oil	(100)	360

* Increased reporting limit due to gasoline and oil range interference.

Sample: SB09-W

From : 444 Hegenberger

Sampled: 10/08/97

Extracted: 10/17/97 QC Batch : DW971001 Dilution : 1:1 Run Log : 7388H

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L	
TPH as Diesel	(100) (100)	<100 * 130	

* Increased reporting limit due to gasoline and oil range interference.

Sample: SB10-W

From: 444 Hegenberger

Sampled : 10/06/97

Extracted: 10/17/97 QC Batch : DW971001 Dilution : 1:1 Run Log : 7388H

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel TPH as Motor Oil	(100) (100)	<100 * 110

* Increased reporting limit due to gasoline range interference.

Sample: SB11-W

From : 444 Hegenberger

Sampled: 10/07/97

Extracted: 10/17/97 Dilution: 1:1

Matrix : Water

QC Batch : DW971001

Run Log : 7388H

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel	(50)	<50
TPH as Motor Oil	(100)	<100

Sample: SB12-W

From : 444 Hegenberger

Sampled: 10/07/97 Extracted: 10/17/97

Dilution: 1:1

Matrix : Water

QC Batch : DW971001

Run Log : 7388H

Parameter	(MRL) ug/L	Measured Value ug/L		
TPH as Diesel TPH as Motor Oil	(700) (100)	<700 890		

* Increased reporting limit due to gasoline and oil range interference.

Sample: SB13-W

From : 444 Hegenberger

Sampled: $10/\overline{07/97}$

Extracted: 10/17/97 QC Batch : DW971001 Dilution : 1:1 Run Log : 7388H

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel	(350)	<350
TPH as Motor Oil	(100)	440

* Increased reporting limit due to gasoline and oil range interference.

Sample: SB14-W

From: 444 Hegenberger

Sampled: 10/08/97

Extracted: 10/17/97 QC Batch : DW971001 Dilution : 1:1 Run Log : 7388H

Matrix : Water

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel TPH as Motor Oil	(100) (100)	<100 110

* Increased reporting limit due to gasoilne and oil range interference.

Sample: SB15-W

From : 444 Hegenberger

Sampled: 10/08/97

Extracted: 10/17/97 Dilution: 1:1

Matrix : Water

QC Batch : DW971001

Run Log : 7388H

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel	(50)	<50
TPH as Motor Oil	(100)	<100

Sample: SB16-W

From: 444 Hegenberger

Sampled: 10/08/97 Extracted: 10/20/97 Dilution: 1:1

Matrix : Water

QC Batch : DW971002

Run Log : 7389A

Parameter	(MRL) ug/L	Measured Value ug/L
TPH as Diesel	(50)	<50
TPH as Motor Oil	(100)	<100

Date: 10-20-97 Time: 16:37:48
Column: 0.53mm ID X 15m Rtx-1 (Restek Corporation)

Stewart Podolsky Senior Chemist

Sample Name : SB05-W

Project Name

: 444 Hegenberger

Project Number :

Sample Date : 10/06/97 Date Analyzed : 10/20/97 Analysis Method : EPA 8240 Date Received: 10/08/97

Dilution : 1:1 Sample Matrix : Water

Lab Number : 17482-25

Chloromethane 10 <10	Parameter	MRL	Measured Conc.	Units
Vinyl Chloride 10 <10	· · · · · · · · · · · · · · · · · · ·			
Bromomethane 10 <10	Vinyl Chloride	10	<10	•
Chloroethane 10 <10	Bromomethane	10	<10	-
1,1-Dichloroethene 5.0 <5.0	Chloroethane	10	<10	
Carbon Disulfide 5.0 <5.0	Acetone	20	<20	ug/L
Methylene Chloride 5.0 <5.0	1,1-Dichloroethene	5.0	<5.0	ug/L
trans-1,2-Dichloroethene 5.0 <5.0	Carbon Disulfide	5.0	<5.0	ug/L
1,1-Dichloroethane 5.0 <5.0	Methylene Chloride	5.0	<5.0	ug/L
2-Butanone 20 <20	trans-1,2-Dichloroethene	5.0	<5.0	ug/L
cis-1,2-Dichloroethene 5.0 <5.0	1,1-Dichloroethane	5.0	<5.0	ug/L
Chloroform 5.0 <5.0	2-Butanone	20	<20	ug/L
1,1,1-Trichloroethane 5.0 <5.0	cis-1,2-Dichloroethene	5.0	<5.0	ug/L
1,2-Dichloroethane 5.0 <5.0	Chloroform	5.0	<5.0	ug/L
Benzene 5.0 <5.0	1,1,1-Trichloroethane	5.0	<5.0	ug/L
Carbon Tetrachloride 5.0 <5.0	1,2-Dichloroethane	5.0	<5.0	ug/L
Trichloroethene 5.0 <5.0	Benzene	5.0	<5.0	ug/L
1,2-Dichloropropane 5.0 <5.0	Carbon Tetrachloride	5.0	<5.0	ug/L
Bromodichloromethane 5.0 <5.0	Trichloroethene	5.0	<5.0	ug/L
4-Methyl-2-Pentanone 10 <10	1,2-Dichloropropane	5.0	<5.0	ug/L
cis-1,3-Dichloropropene 5.0 <5.0	Bromodichloromethane	5.0	<5.0	ug/L
trans-1,3-Dichloropropene 5.0 <5.0	4-Methyl-2-Pentanone	10	<10	ug/L
Toluene 5.0 <5.0	cis-1,3-Dichloropropene	5.0	<5.0	ug/L
1,1,2-Trichloroethane 5.0 <5.0	trans-1,3-Dichloropropene	5.0	<5.0	ug/L
2-Hexanone 10 <10	Toluene	5.0	<5.0	ug/L
Dibromochloromethane 5.0 <5.0	1,1,2-Trichloroethane	5.0	<5.0	ug/L
Tetrachloroethene 5.0 <5.0	2-Hexanone	10	<10	ug/L
1,2-Dibromoethane 5.0 <5.0	Dibromochloromethane	5.0	<5.0	ug/L
Chlorobenzene 5.0 <5.0	Tetrachloroethene	5.0	<5.0	ug/L
Ethylbenzene 5.0 <5.0	1,2-Dibromoethane	5.0	<5.0	ug/L
P-& M-Xylene 5.0 <5.0 ug/L	Chlorobenzene	5.0	<5.0	ug/L
-	Ethylbenzene	5.0	<5.0	ug/L
Styrene 5.0 <5.0 ug/L	P-& M-Xylene	5.0	<5.0	ug/L
	Styrene	5.0	<5.0	ug/L

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

E = Concentration exceeded calibration range.

Approved By:

Sample Log 17482 October 28, 1997

EPA 624

Sample Name : SB05-W

Project Name

: 444 Hegenberger

Project Number :

: 10/06/97

Sample Date Date Analyzed

: 10/20/97

Analysis Method: EPA 8240

Date Received: 10/08/97

Dilution

: 1:1

Sample Matrix : Water

Lab Number : 17482-25

Parameter	MRL	Measured Conc.	Units
O-Xylene	5.0	<5.0	ug/L
Bromoform	5.0	<5.0	ug/L
1,1,2,2-Tetrachloroethane	5.0	<5.0	ug/L
1,3-Dichlorobenzene	5.0	<5.0	ug/L
1,4-Dichlorobenzene	5.0	<5.0	ug/L
1,2-Dichlorobenzene	5.0	<5.0	ug/L
1,2-Dichloroethane - d4		101	% Recovery
Toluene-d8		105	% Recovery
4-Bromofluorobenzene		108	% Recovery

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

E = Concentration exceeded calibration range.

Approved By:

Sample Name : SB08-W

Project Name

: 444 Hegenberger

Project Number :

: 10/08/97

Sample Date Date Analyzed

: 10/20/97

Analysis Method : EPA 8240

Date Received: 10/08/97

Dilution

: 1:5

Sample Matrix : Water

Lab Number

: 17482-28

Parameter	MRL	Measured Conc.	Units	
Chloromethane	50	<50	ug/L	- \\ 7 - 1 -
Vinyl Chloride	50	<50	ug/L	
Bromomethane	50	<50	ug/L	
Chloroethane	50	<50	ug/L	
Acetone	100	<100	ug/L	
1,1-Dichloroethene	25	<25	ug/L	
Carbon Disulfide	25	<25	ug/L	
Methylene Chloride	25	<25	ug/L	
trans-1,2-Dichloroethene	25	<25	ug/L	
1,1-Dichloroethane	25	<25	ug/L	
2-Butanone	100	<100	ug/L	
cis-1,2-Dichloroethene	25	<25	ug/L	
Chloroform	25	<25	ug/L	
1,1,1-Trichloroethane	25	<25	ug/L	
1,2-Dichloroethane	25	<25	ug/L	
Benzene	25	2500 E	ug/L	
Carbon Tetrachloride	25	<25	ug/L	
Trichloroethene	25	<25	ug/L	
1,2-Dichloropropane	25	<25	ug/L	
Bromodichloromethane	25	<25	ug/L	
4-Methyl-2-Pentanone	50	<50	ug/L	
cis-1,3-Dichloropropene	25	<25	ug/L	
trans-1,3-Dichloropropene	25	<25	ug/L	
Toluene	25	510	ug/L	
1,1,2-Trichloroethane	25	<25	ug/L	
2-Hexanone	50	<50	ug/L	
Dibromochloromethane	25	<25	ug/L	
Tetrachloroethene	25	<25	ug/L	
1,2-Dibromoethane	25	<25	ug/L	11.400
Chlorobenzene	25	<25	ug/L	1600 2100
Ethylbenzene	25	1600 E	ug/L	2100
P-& M-Xylene	25	2100 E	ug/L	
Styrene	25	<25	ug/L	£ 4220 W 720

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

E = Concentration exceeded calibration range.

Approved By:

(8024)

Sample Log 17482 October 28, 1997

EPA 624

Sample Name : SB08-W

Project Name

: 444 Hegenberger

Project Number :

Sample Date Date Analyzed : 10/08/97

Analysis Method : EPA 8240

: 10/20/97

Date Received: 10/08/97

Dilution

: 1:5

Sample Matrix : Water

Lab Number

: 17482-28

Parameter	MRL	Measured Conc.	Units
O-Xylene	25	520	ug/L
Bromoform	25	<25	ug/L
1,1,2,2-Tetrachloroethane	25	<25	ug/L
1,3-Dichlorobenzene	25	<25	ug/L
1,4-Dichlorobenzene	25	<25	ug/L
1,2-Dichlorobenzene	25	<25	ug/L
1,2-Dichloroethane - d4		165	% Recovery
Toluene-d8		113	% Recovery
4-Bromofluorobenzene		111	% Recovery

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

E = Concentration exceeded calibration range.

Approved By:

Sample Name : SB08-W

Project Name : 44

: 444 Hegenberger

Project Number :

Sample Date : 10/08/97 Date Analyzed : 10/23/97 Analysis Method : EPA 8240 Date Received: 10/08/97

Dilution : 1:250 Sample Matrix : Water

Lab Number : 17482-28

Parameter MRL Conc. Chloromethane 2500 <2500 Vinyl Chloride 2500 <2500 Bromomethane 2500 <2500 Chloroethane 2500 <2500 Acetone 5000 <5000 1,1-Dichloroethene 1200 <1200 Carbon Disulfide 1200 <1200 Methylene Chloride 1200 <1200 trans-1,2-Dichloroethene 1200 <1200 1,1-Dichloroethane 1200 <1200 2-Butanone 5000 <5000 cis-1,2-Dichloroethene 1200 <1200 Chloroform 1200 <1200 1,1,1-Trichloroethane 1200 <1200 1,2-Dichloroethane 1200 <1200	Units ug/L ug/L ug/L ug/L ug/L ug/L	
Bromomethane 2500 <2500	ug/L ug/L ug/L	
Chloroethane 2500 <2500	ug/L ug/L	
Acetone 5000 <5000	ug/L	
1,1-Dichloroethene 1200 <1200	•	
Carbon Disulfide 1200 <1200	-3	
Methylene Chloride 1200 <1200	ug/L	
trans-1,2-Dichloroethene 1200 <1200	ug/L	
1,1-Dichloroethane 1200 <1200	ug/L	
2-Butanone 5000 <5000	ug/L	
cis-1,2-Dichloroethene 1200 <1200	ug/L	
Chloroform 1200 <1200	ug/L	
1,1,1-Trichloroethane 1200 <1200	ug/L	
1,2-Dichloroethane 1200 <1200	ug/L	
	ug/L	
_	ug/L	
Benzene 1200 13000	ug/L	
Carbon Tetrachloride 1200 <1200	ug/L	
Trichloroethene 1200 <1200	ug/L	
1,2-Dichloropropane 1200 <1200	ug/L	
Bromodichloromethane 1200 <1200	ug/L	
4-Methyl-2-Pentanone 2500 <2500	ug/L	
cis-1,3-Dichloropropene 1200 <1200	ug/L	
trans-1,3-Dichloropropene 1200 <1200	ug/L	
Toluene 1200 <1200	ug/L	
1,1,2-Trichloroethane 1200 <1200	ug/L	
2-Hexanone 2500 <2500	ug/L	
Dibromochloromethane 1200 <1200	ug/L	
Tetrachloroethene 1200 <1200	ug/L	
1,2-Dibromoethane 1200 <1200	ug/L	
Chlorobenzene 1200 <1200	ug/L	rain
Ethylbenzene 1200 5900	ug/L	5900 7100
P-& M-Xylene 1200 7100	ua/I	13000 W. 720
Styrene 1200 <1200	ug/L	

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

E = Concentration exceeded calibration range.

Approved By:

Sample Name : SB08-W

Project Name

: 444 Hegenberger

Project Number :

Sample Date : 10/08/97 Date Analyzed : 10/23/97 Analysis Method : EPA 8240 Date Received: 10/08/97

Dilution

: 1:250

Sample Matrix : Water

Lab Number : 17482-28

Parameter	MRL.	Measured Conc.	Units
O-Xylene	1200	<1200	ug/L
Bromoform	1200	<1200	ug/L
1,1,2,2-Tetrachloroethane	1200	<1200	ug/L
1,3-Dichlorobenzene	1200	<1200	ug/L
1,4-Dichlorobenzene	1200	<1200	ug/L
1,2-Dichlorobenzene	1200	<1200	ug/L
1,2-Dichloroethane - d4		104	% Recovery
Toluene-d8		106	% Recovery
4-Bromofluorobenzene		97	% Recovery

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

E = Concentration exceeded calibration range.

Approved By:

Sample Name : SB09-W

Project Name

: 444 Hegenberger

Project Number :

: 10/08/97

Sample Date Date Analyzed

: 10/20/97

Analysis Method : EPA 8240

Date Received: 10/08/97

Dilution

: 1:1

Sample Matrix : Water

Lab Number : 17482-29

<u>Parameter</u>	MRL	Measured Conc.	Units
Chloromethane	10	<10	ug/L
Vinyl Chloride	10	<10	ug/L
Bromomethane	10	<10	ug/L
Chloroethane	10	<10	ug/L
Acetone	20	<20	ug/L
1,1-Dichloroethene	5.0	<5.0	ug/L
Carbon Disulfide	5.0	<5.0	ug/L
Methylene Chloride	5.0	<5.0	ug/L
trans-1,2-Dichloroethene	5.0	<5.0	ug/L
1,1-Dichloroethane	5.0	<5.0	ug/L
2-Butanone	20	<20	ug/L
cis-1,2-Dichloroethene	5.0	<5.0	ug/L
Chloroform	5.0	<5.0	ug/L
1,1,1-Trichloroethane	5.0	<5.0	ug/L
1,2-Dichloroethane	5.0	<5.0	ug/L
Benzene	5.0	50	ug/L
Carbon Tetrachloride	5.0	<5.0	ug/L
Trichloroethene	5.0	<5.0	ug/L
1,2-Dichloropropane	5.0	<5.0	ug/L
Bromodichloromethane	5.0	<5.0	ug/L
4-Methyl-2-Pentanone	10	<10	ug/L
cis-1,3-Dichloropropene	5.0	<5.0	ug/L
trans-1,3-Dichloropropene	5.0	<5.0	ug/L
Toluene	5.0	<5.0	ug/L
1,1,2-Trichloroethane	5.0	<5.0	ug/L
2-Hexanone	10	<10	ug/L
Dibromochloromethane	5.0	<5.0	ug/L
Tetrachloroethene	5.0	<5.0	ug/L
1,2-Dibromoethane	5.0	<5.0	ug/L
Chlorobenzene	5.0	<5.0	ug/L
Ethylbenzene	5.0	35	ug/L
P-& M-Xylene	5.0	<5.0	ug/L
Styrene	5.0	<5.0	ug/L

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

Approved By:

John Medina

E = Concentration exceeded calibration range.

Sample Log 17482 October 28, 1997

EPA 624

Sample Name : SB09-W

Project Name

: 444 Hegenberger

Project Number :

Sample Date : 10/08/97

Date Analyzed

: 10/20/97

Analysis Method : EPA 8240

Date Received: 10/08/97

Dilution

: 1:1

Sample Matrix : Water

Lab Number

: 17482-29

Parameter	MRL	Measured Conc.	Units
O-Xylene	5.0	<5.0	ug/L
Bromoform	5.0	<5.0	ug/L
1,1,2,2-Tetrachloroethane	5.0	<5.0	ug/L
1,3-Dichlorobenzene	5.0	<5.0	ug/L
1,4-Dichlorobenzene	5.0	<5.0	ug/L
1,2-Dichlorobenzene	5.0	<5.0	ug/L
1,2-Dichloroethane - d4		107	% Recovery
Toluene-d8		110	% Recovery
4-Bromofluorobenzene		100	% Recovery

MRL = Method Reporting Limit Conc. = Concentration

B = Analyte was detected in Method Blank.

E = Concentration exceeded calibration range.

Approved By:

analytical Labs

Phone#: 916-757-0920 Fax#: 916-753-6091

CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

Sample Receiving#: 916-757-4608 Je Drive, Suite 2, Davis, CA 95616 Phone #: ⊿nager: For ANALYSIS REQUEST DALE VAN DAM 916 649-3570

Company/Address: FAX #:

NUXTHWEST ENVIRORN 1328 TRIBUTE R.D., STE. A

Project Number: P.O.#: Project Name: Lab Use ONLY TOTAL (V) BTEVTPH as Gasoline (802/8020/M8015) Sampler Signature: EPA 601/8010
EPA 608/8080 - Pesticides
EPA 608/8080 - PCB's
EPA 624/8240 Project Location: WEST Lab Number TPH: as Motor Oil (M8015) 12 haur / 24 hour / 48 hour / 1 LEAD(6010/7421/239.2) TP∺as Diesel (M8015) 444 HEGENBERGER EP.4.625/8270 CAW - 17 Metals Method Container BTEX (602/8020) Sampling Matrix Preserved (Type/Amount) Sample ID SLEEVE 1L GL4SS 1L PLASTIC WATER E E NS A ğ DATE TIME BUS-3 10-6 Received by: Remarks: Relinquished by; Time Date Received by: Relinquished by: Date Received by Laboratory: Elli To: Time 3 Relinquished by: Date

Project Manager:		F	hone	* ;										Lab															TAT	For Lab		
Company/Address:		F	AX I	 ! :										+	27/6	1		1	1			W.E.	T. (<u>a</u>				Τ	П	+	-	Use ONLY
NWE															\forall							TOTA	VL (1						şe j	\vdash	
Project Number: P.O.s	# :	F	roje	ct N	ame:										O/M801										į							
Project Location:			iampl	er Si	gnatur	e://									ne (802/802	15)	18015)	ticides	3,8				9.2)							our/1 wad		Number
	Samp	oling			itain /Amou		F		etho ser			Ma	trix	/B022)	as Gasolii	See (M80	So Cil	080 - Pes	080 PC	240	270	Metais	07421/23	≅ ≲						hour / 48 h		WEST Lab Number
Sample ID	DATE	TIME	VOA	SLEEVE	1L GLASS	2	모	HNO3	ICE	NONE	14/47	SOIL		BTEX (602/8023)	BTEXTPH as Gasoline (602/8020/M8015)	TPH as Diesel (M8015)	TPH as Motor Cii (M8015)	EPA 608/8	EPA 608/8080 - PCB's	EPA 62478240	EPA 625/8270	CAM - 17 Metais	LEAD(601	Cd, Cr, Pb, Zr, N						12 hour / 24 hour / 48 hour / 1 week / 2 w		
5B10-6	10-6		╂╼╼┼	V,	-						1	V		1		小	1	+-	 	 	-	7	7	+						V	<u> </u>	
-1311-3	10-7											\prod			1																<u> </u>	
	/			/								7			7	1	<u> </u>	-							-					$\frac{1}{2}$		
~ -6	\			[5			7					_		_			_	_				$\perp \rangle$		
5613-3		ļ 		-/	_		_	_		_		1/			}	$\!$	<u>}</u>	_		-		-	_	_ _	-	-			-	-	-	_
<u> </u>				#	-	-	-		_	_		1	<u> </u>	-	$\left \cdot \right $	\prod	/ -	+	+	-		\dashv	\dashv	\perp	+	-		-	$\left - \right $		-	
5B14-3	<u> </u>	-				-			\dashv	-	\dashv	+/	1	_	+	$+ \parallel \parallel$		- -	-	-		\dashv		- -	-	┼	-	-	$\left - \right $	-	-	-
5615-3	100	-		$-\!\!\!/\!\!\!/$		+-		-			-			-	5	$\left\{ \cdot \right\}$		╁╌	+	├-	-	\dashv	+	+	╁	-		+	H	17	-	-
	10-8			-				_			\dashv	1	H	\dagger		- - -	+	+	-	+-		-	\dashv	- -	-	-				$-\parallel$	-	-
Relinquished by:	Date	_i Time		_り R		ed t	 Э У :	I	L k	L			LL.		41-		ma	_L rks	 }:							<u> </u>			11		-1	
MILL	10/2	18:5	5.5	_			- -1 ,	ا امدہ	1.7.m	•				<u>}</u>														•				
Relinquished by:	Date	Time				ed t			7					•																		
Relinquished by:	Date	Time	١	R	ecei	ved l	oy La	abo	rato	ory:					+	Bill	To															

West Analy														91 .		(CHA	AIN	-01	-C	US	TC	D	/ R	EC	OF	RD /	AN[) A	VAL	.YSI	IS I	REC	ם טב	EST
Project Manager:		F	² hon	ie #;												36)			A	NA	\LY	'SI	s R	EC	QUE	EST	•					TAT	2	For Lab
Company/Address:		ŧ	AX:	#:												MIN	٦						- [W.E.	\Box									_ 	Use ONLY
Project Number: P.O.#	! :	F	^o roje	ect N	ame:			,	···			.,	· · · · · · · · · · · · · · · · · · ·		1	0/1/8015						-											44	7 1	ì
Project Location:			Samp	ler Si	gnatur	e: //										# (802/802	เก	3015)		fcides		25			\$2)		į						7	Maga Maga Maga Maga Maga Maga Maga Maga	umber
	Samp	ling			itain Amou				leth eser	od ved		١	Vati	гіх	78020)	as Gasok	esel (M80	otor Oil (2	010	080 - Pes	080 PC	240 /	270	Metals	077421723	Z, Z							4 87 7 200	104/40	WEST Lab Number
Sample ID	DATE	TIME	VOA	SLEEVE	1L GLASS	30041	· ·	HNO3	끙	NONE		WATER	SOIL		BTEX (602/8020)	BTEXTPH as Gasofre (802/8020/M8015)	TPH as Diesel (M80:5)	TPH as Motor Oil (ME015)	EPA 601/8010	EPA 608/8080 - Pestcides	EPA 608/8080 - PCP3	EPA 62478	EPA 625/8270	CAM - 17 Metals	LEAD(6010/7421/236.2)	Cd, Cr, Pb, Zn, Ni							42 hours (24 hours (48 hours)	17 1001 71	\$
5B.16-3	10-8			V									V	/		7	\	7										1						1	,
7 -6	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ <u>,</u>	'	_		-	-				_	7	_ -	_	7	,	13			_			_ -	_	-	_ -	_	-	<u> </u>		_	- -	4	
5B05-W	10-6	_	03		2	1	╁	+			- 1	Ÿ		-		V	/ ,	4			-	٧	_		4	_	_	- -	\downarrow	\sqcup		-	_	1	
5,60,6-14		· · · · · · · · · · · · · · · · · · ·			2 Z		 -	-	-		_	4	_	\dashv	-	4	-	-		_	_	_	-	-	_	4	_	_	- -	_		4	-	4	
5B07-W. 5B0B-W.		ļ	3				-	-	-		_	7		- -	-	7	1/	-		_	_	_	4	-	-	_			- -			_	_	#	
5B0B-W	10-8		8		2	2	-	-	┨—	\square	\dashv	\mathbb{H}		\perp			4	/-			4	✓		\dashv	\dashv	-	-		\perp	-		4	- -	+	
5B10-W	4	-	3		2				-	-		1		-	+		//	 }	_		_	_	_	-	_		- -	- -	-	 - -	-	-		1	
1610-W	10-6		3		_	4	-	-	-		_	4			+		$\not\parallel$	\Vdash	-			_		\dashv	-	-	+	+	+	+	\prod	\dashv	4	4	
5B11-W	10-7		3	1 1	2	\bot	\perp	\perp	1			ነ		_	-	\prod		/	\vdash		_	_	_	4	_	4	4	_	-	\vdash	$\vdash \vdash$	-	4	+	
5612-W			4	-	3	_	-	 	ļ			+	-	\bot	+	1	\not	Ļ	Ļ		4	_		_		_	-	- -	-	┼	-	-	-14	,	
5B13-W.		1	14				1	1_				ι](1		<u> </u>				_]		_			_ _		<u>L</u>					
Relinquished by:	Date	Time			eceiv		_										R	em	ar	ks:															
MUINC	1.5/47	1900)	Ψ.	يدأز	72	1/2	^4	fu	7		-			V																				
Relinquished by:	Date	Time I		R	eceiv	ed l	by:			•					`	7	<u>,</u>	•																	
Relinquished by:	Date	Time	 '\$	R	ecei	/ed	by l	abo	orat	огу:			•				Bi	II T	о:									<u> </u>	<u>.</u>						

•

Project Manager:		}	²hor	ne #:			-									K				AN,	ĄLY	/SI	S R	EC	UES	ST.					TAT	[For Lab
Company/Address:		F	AX	#:								•				N						. {	W.E.		\Box				T	П	r		Use ONLY
Project Number: P.O.#	÷	ŗ	°roj∈	ect N	ame	<u>:</u>		<u> </u>					<u> </u>			M8015)							TOTA		2						1		l
Project Location:		· · · · · · · · · · · · · · · · · · ·	Samp	ler Si	gnatu	ire:		1	_							BTEXTPH as Gasoline (602/8220/48015)	(8015)		ticides	o,s				9.2)								:	Number
	Samp	ling		Cor (Type					eth eser	od ved	1	М	atı	rix	(8020)	as Gasoli	tor Oil (k	210	380 - Pes	380 - PC	240	270	letals	17421/23	₹ S						407		WEST Lab Number
Sample ID	DATE	TIME	YOA	SLEEVE	1L GLASS	1L PLASTIC		HNO ₃	ICE	NONE		WATER	300		BTEX (602/8020)	BTEXTPH	TPH as Motor Oil (Man 5)	EPA 601/8010	EPA 608/8080 - Pesticides	EPA 608/8080 - PCB's	EPA 62478240	EPA 625/8270	CAM - 17 Metals	LEAD(6010/7421/239.2)	Cd, Cr, Pb, Zn, N						12 hour / 24 hour / 49 hour / 4		×
5B14-W	10-8		4	-	2						,	1				VI	V					1						\perp					
B15-W	10-8		4	,	2							1				(<	K																
SB16-W	1/1	ļ	4		2	_	_	<u> </u>			_	1	_	_		4	112						_	1			_	\bot	\perp	\coprod			
		<u> </u>	<u> </u>			-	-	-	_		_	_		 -		_ -	_	-				_	_	_	-		_	\perp	_	\sqcup	_ _	1	
		<u> </u>	-		-	\perp	+	-		_	_	-	- -		\sqcup	_ -	-	-				-		4	-			4	\dotplus	\dashv	_		
<u> </u>			_		\dashv	-	+	╁	ļ			+	+		$\left \cdot \right $	_	- -	-	_			\dashv	-	_	-	$\left - \right $	_	+	+	\dashv	_	\vdash	
- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			-		-			-	-		-	+	+	 	╂╢		╬	╁	_	_	\vdash	\dashv	\dashv	\dashv	- -		-	+	+	\vdash	+	┼╌	
					+	_	+	-	-					╁	$\left \cdot \right $	+	+	+			\vdash	\dashv	-	+		\vdash	+	+	+	++		╁	
		 	-		十		+	+			+	-	╁	-	H	-	- -	\dashv	-	-	\dashv		+	+		H		+	+	+	\dashv	+-	
			-		-	- -	-	+-	-		1		+		-	\dashv	+	+				\dashv	\dashv	+	+-	\square	+	+	十	\vdash	+	+-	
Relinquished by:	Date 10/9	Time	5	Re	ecei	ved	by:	The		<u>-</u>	1			_1	<u>.</u>	F	len	nar	ks:	! [.]		1	<u> i</u>	- 1		<u>} </u>				<u>.L.</u> L	l_	-l	
Relinquished by:	Date	Timo	-	Re	cel	ved	by:			· • • • • • • • • • • • • • • • • • • •					*																		
Relinquished by:	Date	Time '	<u> </u>	R	ecei	ved	by l	.abc	orato	ory:		-			••	E	``\ Bill 1	Го:															