ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

June 25, 2001

Mr. Mark Gomez City of Oakland Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612 ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

RE: Fuel Leak Site Case Closure (STID # 6400 / RO # 183) Preservation Park Residential Redevelopment 655 12th Street, Oakland, California 94612

Dear Mr. Gomez:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37 [h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health Services, Local Oversight Program is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

Site Investigation and Cleanup Summary:

Please be advised that the following conditions exist at the site:

- Four Thousand parts per million (ppm) Total Petroleum Hydrocarbon (TPH) as Gasoline; 1,800 ppm TPH diesel;
 82 ppm total oil and grease; 3.2 ppm benzene; 26 ppm toluene; 19 ppm ethylbenzene; 156 ppm xylene; 0.28 ppm chlorobenzene; 0.33 ppm 1,2 dichloroethane, and 598 ppm lead remain in the soil at the site.
- Ninety six thousand parts per billion (ppb) TPH gasoline; 3,100 ppb TPH diesel; 4,000 ppb benzene; 1,000 ppb toluene; 2,200 ppb ethyl benzene; 13,400 ppb xylene; 180 ppb 1,2 dichloroethane; 430 ppb lead remain in groundwater beneath the site.
- A long term risk management plan (RMP) dated June 1, 2001 was submitted for the site. City of Oakland and Preservation Park, LLC will implement the RMP.
- The subject site will be flagged by the Permit Tracking System (PTS).

If you have any questions, please contact me at (510) 567-6780. Thank you.

Sincerely,

Susan L. Hugo

Supervising Hazardous Materials Specialist

2. Hugo

Enclosures

1 Case Closure Letter

2 Case Closure Summary

Leroy Griffin, Oakland Fire Department, 1605 Martin Luther King Jr. Way, Oakland, CA 94612
 SH / files

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS. Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway Suite 250 Alameda. CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

REMEDIAL ACTION COMPLETION CERTIFICATION

June 25, 2001

Mr. Mark Gomez City of Oakland Environmental Services Division 250 Frank H. Ogawa Plaza, Suite 5301 Oakland, California 94612

RE: RO# 183 / STID# 6400

Preservation Park Residential Redevelopment 655 12th Street, Oakland, California 94612

Dear Mr. Gomez:

This letter confirms the completion of a site investigation and remedial action for the reported five underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tanks are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank site is in compliance with the requirements of subdivisions (a) and (b) of Section 25299.37 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.77 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

This notice is issued pursuant to subdivision (h) of Section 25299.37 of the Health and Safety Code.

Please contact our office if you have any questions regarding this matter.

Sincerely,

Mee Ling Tung, Director

c: Chuck Headlee, San Francisco Bay RWQCB
 Dave Deaner, SWRCB, UST Cleanup Fund Program (with enclosure)
 Leroy Griffin, Oakland Fire Services
 SH / file

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program

I. AGENCY INFORMATION

Date: June 20, 2001

Agency Name: Alameda County-HazMat

Address: 1131 Harbor Bay Parkway City/State/Zip: Alameda, CA 94502 Phone: (510) 567-6700

Responsible Staff Person: Susan L. Hugo

Title: Acting Supervisor, HMS

II. CASE INFORMATION

Site Facility Name: Preservation Park Residential Redevelopment Site Facility Address: 655 12th Street, Oakland, California 94612

RB LUSTIS Case No.: N/A

Local Case No./LOP Case No. 6704/RO# 183

SWEEPS No.: N/A

Responsible Parties:

URF Filing Date: NA

Addresses:

Phone Numbers:

City of Oakland Redevelopment Agency

Attn: Mark Gomez

250 Frank Ogawa Plaza, Suite 5301

(510) 238-7286

Tank No:

Size in gal.

Contents:

Closed in-place or removed?:

Date:

At least

Approximately

Either gasoline, diesel

Reportedly removed

Probably

Five tanks

500 -gallons

or waste oil

in 1971

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: UNKNOWN

Site characterization complete: YES

Date approved by oversight agency:

Monitoring wells installed YES (Temporary Wells)

Number: 3

Proper screened interval? YES (between 20 to 30 feet bgs)

Highest GW depth below ground surface: 24 feet

Flow direction: North to Northwest

Lowest depth: 29 feet

Most sensitive current use: Two to four story, 92-unit residential structure with first level parking garage below grade

Are drinking water wells affected? NO

Aquifer Name: UNKNOWN

Is surface water affected? UNKNOWN

Nearest affected SW name: NA Off-site beneficial use impacts (address / location): UNKNOWN

Report (s) on file? YES

Where is report (s) filed? Alameda County, 1131 Harbor Bay Parkway, Alameda, CA 94502

Treatment and Disposal of Affected Materials:

<u>Materials</u> Amount (Include Umts) Action (Treatment for Disposal w/ Destination) Date **Fank** 5-500 gallons UNKNOWN UNKNOWN Soil UNKNOWN UNKNOWN UNKNOWN Water UNKNOWN UNKNOWN UNKNOWN

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program Page 2 of 5

Maximum Documented Contaminant Concentrations - - Before and After Cleanup

Contaminant	Soil	(ppm)	Wat	er (ppb)
	Before*	After	Before**	After
TPH gasoline	4,000		96,000	
TPH diesel	1,800		3,100	
Total Oil & Grease	82		,	
Benzene	3.2		4.000	
Toluene	26		11,000	
Ethylbenzene	19		2,200	
Xylene	156		13,400	
MTBE	ND		ND	
Chlorobenzene	0.28			
1,2 dichloroethane	0.33		180	
Lead	598		430	

^{*} Soil samples collected in 1991 and 1998 (see Tables 1 and 2).

Comments (Depth of Remediation, etc.): See "Additional Comments" section.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the Regional Board Basin Plan? **UNKNOWN**

Does completed corrective action protect potential beneficial uses per the Regional Board Basin Plan? **UNKNOWN**

Does corrective action protect public health for current land use ? YES

Site management requirements: A revised long term risk management plan dated June 1, 2001 submitted for the site will be implemented.

Should corrective action be reviewed if land use changes ? YES

Monitoring wells Decommissioned: NO (will decommission upon closure of the site)

Number Decommissioned: NA

Number Retained THREE

List enforcement actions taken NONE

List enforcement actions rescinded. NA

٠,٠,٠

^{**} Grab water sample collected from TW-1 on 3/3/01 see Table 4.

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program Page 3 of \$

V. LOCAL AGENCY REPRESENTATIVE DATA

Name: Susan L. Hugo

Title: Supervising Hazardous Materials Specialist

fusur & Lingt Date:

Reviewed by:

Name: Ariu Levi

Title: Chief, Environmental Health Services

Signature:

Date: 6/22/01

VI. RWQCB NOTIFICATION

Date Submitted to RB: 6/25/01

RB Response: Car

RWQCB Staff Name: Chuck Headlee

Title: Engineering Geologist

Signature: (Quel Hersell Date: 6/25/01

VII. ADDITIONAL COMMENTS, DATA, ETC.

The subject site is located at 655 12th Street, along Martin Luther King Way, between 11th and 12th Streets in downtown Oakland, California. The site (approximately 150 feet by 200 feet) is vacant and is currently owned by Oakland Redevelopment Agency. Preservation Park, LLC plans to redevelop the site into 2 to 4-story, 92-unit residential structure with a parking structure extending on-half story below ground across the entire property

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program Page 4 of 5

In 1940, a gasoline service station was constructed at the site. It was reported that the service station had at least five 500-gallon capacity underground storage tanks (USTs). The service station was demolished in 1971 and the tanks were reportedly removed at that time.

Site assessment conducted by City of Oakland in 1991 concluded that Total Petroleum Hydrocarbon (TPH) as gasoline, TPH as diesel, oil & grease, 1,2—dichloroethane, chlorobenzene, and lead were present in soil at the site (see Table 1). Test borings indicate that the site is blanketed by a layer of fill about 5 feet thick. The fill consists predominantly of loose sands underlain by dense sands and silty and clayey sands of the Merritt sand formation. These soils extended up to 32 feet (depth explored). Groundwater water levels were measured at depths of about 24 to 29 feet below ground surface (bgs). No groundwater samples were collected during this phase of the investigation.

In 1998, a Phase II site assessment was conducted by U.S. Environmental Protection Agency (EPA) which included soil and groundwater sampling, data validation and completion of City of Oakland's Risk-Based Corrective Action (RBCA) eligibility checklists. Analytical results (see Table 2) showed that benzene, toluene and xylene found in soils at the site were above City of Oakland's risk-based screening levels (RBSLs) and site specific target levels (SSTLs). Benzene, ethylbenzene, toluene and xylene were detected in groundwater above the RBSLs and SSTLs.

On August 4, 2000, additional soil sampling from twelve test pits was conducted at the site. Soil samples were collected at depths ranging from 0 to 6 feet bgs. Results showed petroleum hydrocarbons at very low concentration and lead up to 220 parts per million (ppm) (see Table 3).

On February 28, 2001, the depth to groundwater was measures in three monitoring wells (W-1 to W-3) located adjacent to City-owned property, approximately 100 feet east of the site (see Figure 4). Depth to groundwater ranged from 25.5 to 26.5 feet. Groundwater flow direction at this site appeared to be towards north-northwest.

Further site investigation was conducted in March 2000 which included the installation of three temporary wells (TW1 through TW-3) Soil and groundwater samples collected from TW-1 near the former tank area showed petroleum hydrocarbon contaminations (see Table 4). Samples collected from two off-site wells (TW-2 and TW-3) implaced in the downgradient direction (based on historical data collected from an adjacent site, see Figure 4) showed very low to non-detect concentrations of petroleum hydrocarbons and volatile organic compounds (see Table 4).

A Tier 3 Risk-Based Corrective Action (RBCA) evaluation was conducted using historical data and included the results of the most recent sampling in March 2001 collected for the site. Result of the Tier 3 RBCA evaluation using site specific information indicate that soil and groundwater chemical concentrations do not pose a risk under the anticipated land use scenario.

A revised risk management plan (RMP) dated June 1, 2001 was submitted for the site which addressed the long term risk management requirements by Alameda County Department of Environmental Health as stated in a letter dated April 26, 2001

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program Page 5 of 5

This case appears to be a "Low Risk Soil and Groundwater Case" as described in the San Francisco Bay Regional Water Quality Control memorandum dated January 5, 1996 based on the following rationale:

- 1. The leak has been stopped and ongoing sources have been removed. The subject tanks were reportedly removed in 1971. The site is currently vacant and proposed to be developed for its anticipated use.
- The site has been adequately characterized. Site assessments were conducted in 1991, 1998 and 2001.
 Temporary wells were installed on and off-site. Residual contaminants do not appear to be migrating off-site.
- 3. Groundwater at the site is not used as drinking water source. There are no known municipal or residential water wells or surface water bodies that are expected to be impacted from the release at the site.
- 4. The site presents no significant risk to human health. Tier 3 Oakland RBCA evaluation was conducted at the site. Using site specific information, residual contamination in soil and groundwater do not pose a risk under the anticipated land use scenario.
- 5. The site presents no significant risk to the environment. No environmental receptors are expected to be impacted by the release at the site.
- 6. A long-term risk management plan have been submitted for the site. City of Oakland and Preservation Park, LLC will implement the RMP. The RMP includes the following:
 - a) The human health risk assessment will be evaluated if land use changes to a more conservative scenario i.e. day care center, school residential units with back yard scenario, etc. The site will be flagged by the Permit Tracking System.
 - b) Shallow groundwater will not be used at the site. Preservation Park, LLC will stipulate in the Covenants, Conditions and Restrictions (CC&Rs) that no water wells can be installed at the site and that no groundwater from the site can be used.
 - c) Health and safety plan for future construction workers such as utility workers who may be exposed to residual contaminants left at the site.

Table 1: Summary of Previous Results - 1991 SCI Soil Investigation Martin Luther King Jr. Way, Between 11th and 12th Street Oakland, California

					Oil and	•	
Sample ID	Depth	Units	TEH	TVH	Grease	Lead	Other Detections
16	21	mg/kg	ND	ND		_	
	26	mg/kg	ND	ND			
17	25	mg/kg	ND	ND	. –		,
	30	mg/kg	ND_	ND			·
S-1	1.0	mg/kg	7.6	ND	ND		
S-2	0.5	mg/kg			_	118	
S-4	0.5	mg/kg	ND		ND	-	
S-6	0.5	mg/kg	ND	_	ND		
S-8	0.5	mg/kg	ND	_	52		
S-10	0.5	mg/kg	ND	_	ND		
S-13	0.5	mg/kg	ND		82		

Notes:

TEH: Total Extractable Hydrocarbons as diesel TVHg: Total Volatile Hydrocarbons as gasoline

VOCs: Volatile Organic Compounds mg/kg: milligrams per kilogram

ug/l: micrograms per liter

Detected concentrations shown in bold

-: Sample not analyzed

Reference: Soil Contamination Assessment, dated June 17, 1991 by SCI

Table 1: Summary of Previous Results - 1991 SCI Soil Investigation Martin Luther King Jr. Way, Between 11th and 12th Street Oakland, California

Sample ID				 		Oil and		
4	Sample ID	Depth	Units	TEH	TVH ·		Lead	Other Detections
S.5	1	1.5	mg/kg		ND		31.0	
2 1 mg/kg ND 3 mg/kg ND 5 mg/kg ND ND ND ND ND 7 mg/kg ND ND ND ND ND 3 3 mg/kg 2,300 15.5 mg/kg 4,000 15.5 mg/kg ND 1,2-Dichloroethane (330 ug/kg) 4 24 mg/kg ND 16 26 mg/kg ND ND ND 17 3 mg/kg ND ND 18 2 mg/kg ND ND ND ND 21 mg/kg ND ND 22 mg/kg ND ND 363 Wet Lead (8,350 ug/f) 4 wg/kg ND 363 Net Lead (8,350 ug/f) 3 mg/kg ND 363 Net Lead (8,350 ug/f) 3 mg/kg ND 363 Net Lead (8,350 ug/f) 3 mg/kg ND 364 ND ND S8 ND 365 mg/kg ND S8 ND 365 mg/kg ND ND 37 mg/kg ND S8 ND 38 mg/kg ND S8 ND 39 mg/kg ND S8 ND 30 mg/kg ND S8 ND 30 mg/kg ND ND ND 31 11 16.5 mg/kg ND ND 31 mg/kg ND ND ND 32 mg/kg ND ND ND 33 ug/kg ND ND ND 34 ug/kg ND ND ND 35 mg/kg ND ND ND 36 ND ND ND 37 mg/kg ND ND ND 38 ND ND ND 39 ND ND ND 30 ND ND 30 ND ND 31 21 mg/kg ND ND ND		4	mg/kg	_	_		ND	
3		5.5	mg/kg				ND	
S	2	1	mg/kg				102	
7 mg/kg ND ND ND ND		3	mg/kg			_	ND	
3 3 mg/kg - 2,300		5	mg/kg			_	ND	
6.5 mg/kg	<u> </u>	7	mg/kg	ND	ND	ND	ND	
15.5 mg/kg ND 980 ND - 1,2-Dichloroethane (330 ug/kg)	3		mg/kg	_	2,300			
20.5 mg/kg ND 980 ND - 1,2-Dichloroethane (330 ug/kg)			mg/kg	_	51			
4			mg/kg		4,000			
mg/kg		20.5	mg/kg	ND_	980	ND		1,2-Dichloroethane (330 ug/kg)
6 26 mg/kg ND ND	4	24	mg/kg	-	ND	+		
27.5 mg/kg ND ND			mg/kg	<u></u>			~~	
7 3 mg/kg ND 5.5 mg/kg ND ND 26 mg/kg ND ND 8 2 mg/kg ND ND ND 4 mg/kg ND ND ND 5.5 mg/kg ND 5.5 mg/kg ND 9 1.5 mg/kg ND 7 mg/kg ND 58 ND 10 1 mg/kg ND 58 ND 5.5 mg/kg ND 58 ND 5.5 mg/kg ND 11 16.5 mg/kg 620 54 ND 11 16.5 mg/kg ND 12 20.5 mg/kg ND 12 20.5 mg/kg ND 13 21 mg/kg ND ND 26 mg/kg ND ND 13 21 mg/kg ND ND 26 mg/kg ND ND 13 21 mg/kg ND ND 26 mg/kg ND ND 14 24 mg/kg ND ND 15 19.5 mg/kg ND ND 16 mg/kg ND ND 17 mg/kg ND ND 18 24 mg/kg ND ND ND 19 19.5 mg/kg ND ND 10 ND 11 19.5 mg/kg ND ND ND 11 19.5 mg/kg ND ND ND ND	6	26	mg/kg	ND	ND			
5.5		27.5	mg/kg	ND	ND_			
5.5 mg/kg mg/kg ND ND	7	3	mg/kg				ND	
26 mg/kg ND ND - - 8 2 mg/kg ND - - 363 Wet Lead (8,350 ug/l) 4 mg/kg - - ND ND 5.5 mg/kg - - ND 9 1.5 mg/kg - - ND 7 mg/kg - - ND 10 1 mg/kg - - - ND 3 mg/kg ND - 58 ND 5.5 mg/kg ND - - ND 11 16.5 mg/kg 620 54 - - ND 20.5 mg/kg 1,800 2,000 - - - 12 20.5 mg/kg 1,300 650 - - Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND - - - - -		5.5	mg/kg			_		
8 2 mg/kg ND 363 Wet Lead (8,350 ug/l) 4 mg/kg ND 5.5 mg/kg ND 9 1.5 mg/kg ND 10 1 mg/kg 598 3 mg/kg ND 58 ND 5.5 mg/kg ND 11 16.5 mg/kg 620 54 20.5 mg/kg ND 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND 21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 13 21 mg/kg ND ND 26 mg/kg ND ND <t< td=""><td></td><td>21</td><td>mg/kg</td><td>ONGON</td><td>NĐ[(0</td><td></td><td></td><td></td></t<>		21	mg/kg	ONGON	NĐ[(0			
4		26	mg/kg	ND				
4 mg/kg	8	2	mg/kg	ND			363	Wet Lead (8.350 ug/l)
9 1.5 mg/kg ND 10 1 mg/kg 598 3 mg/kg ND - 58 ND 5.5 mg/kg ND 11 16.5 mg/kg 620 54 ND 20.5 mg/kg ND - 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND - 21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 26 mg/kg ND ND 27		4	ωg∕kg			_	ND	
7 mg/kg ND 10 1 mg/kg 598 3 mg/kg ND - 58 ND 5.5 mg/kg ND 11 16.5 mg/kg 620 54 ND 12 20.5 mg/kg - ND - ND - 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND ND - Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND Chlorobenzene (280 ug/kg) 13 21 mg/kg ND ND		5.5	mg/kg		<u></u>			
10	9	1.5	mg/kg				ND	
3 mg/kg ND 58 ND 5.5 mg/kg ND 11 16.5 mg/kg 620 54 20.5 mg/kg ND 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND 21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 26 mg/kg ND ND 26 mg/kg ND ND 26 mg/kg ND ND 14 24 mg/kg ND ND 15 19.5 mg/kg ND ND 15 19.5 mg/kg ND 15 19.5 mg/kg ND 17 19 19.5 mg/kg ND ND 18 19.5 mg/kg ND ND 19 19 19.5 mg/kg ND ND 19 19 19.5 mg/kg ND ND 10 19 19.5 mg/kg ND ND 11 19 19.5 mg/kg ND		7	mg/kg				ND	
5.5 mg/kg ND 11 16.5 mg/kg 620 54 20.5 mg/kg ND 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND 21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 26 mg/kg ND ND 27 mg/kg ND ND 28 mg/kg ND ND 29 mg/kg ND ND 20 mg/kg ND ND 20 mg/kg ND ND 21 mg/kg ND ND 22 mg/kg ND ND 23 mg/kg ND ND 24 mg/kg ND ND 25 mg/kg ND ND 26 mg/kg ND ND 27 mg/kg ND ND 28 mg/kg ND ND 29 mg/kg ND ND 20 mg/kg ND ND 20 mg/kg ND ND 21 mg/kg ND ND 22 mg/kg ND ND 23 mg/kg ND ND 24 mg/kg ND ND 25 mg/kg ND ND 26 mg/kg ND ND 27 mg/kg ND ND 28 mg/kg ND ND 29 mg/kg ND ND 20 mg/kg ND ND 21 mg/kg	10	1	mg/kg				598	
5.5 mg/kg ND 11 16.5 mg/kg 620 54 20.5 mg/kg ND 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND 21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 26 mg/kg ND ND 27 mg/kg ND ND 28 mg/kg ND ND 29 mg/kg ND ND 20 mg/kg ND ND 20 mg/kg ND ND 21 mg/kg ND ND 22 mg/kg ND ND 23 mg/kg ND ND 24 mg/kg ND ND 25 mg/kg ND ND 26 mg/kg ND ND 27 mg/kg ND ND 28 mg/kg ND ND 29 mg/kg ND ND 20 mg/kg ND ND 20 mg/kg ND ND 21 mg/kg ND ND 22 mg/kg ND ND 23 mg/kg ND ND 24 mg/kg ND ND 25 mg/kg ND ND 26 mg/kg ND ND 27 mg/kg ND ND 28 mg/kg ND ND 29 mg/kg ND ND 20 mg/kg ND ND 21 mg/kg		3	_	ND		58		
20.5 mg/kg ND 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND - 21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 26 mg/kg ND ND 14 24 mg/kg ND ND 26 mg/kg ND ND 15 19.5 mg/kg - ND ND 15 19.5 mg/kg - ND - ND 17 ND 18 ND								
20.5 mg/kg ND 21 mg/kg 1,800 2,000 12 20.5 mg/kg ND - 21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 26 mg/kg ND ND 14 24 mg/kg ND ND 26 mg/kg ND ND 15 19.5 mg/kg - ND ND 15 19.5 mg/kg - ND - ND 17 ND 18 ND	11	16.5	mg/kg	620	54			+
21 mg/kg 1,800 2,000 — 12 20.5 mg/kg - - ND — 21 mg/kg 1,300 650 — — Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND — — 26 mg/kg ND ND — — 13 21 mg/kg ND ND — — 26 mg/kg ND ND — — 14 24 mg/kg ND ND — — 15 19.5 mg/kg — ND — ND				_*		ND		
21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND		21		1,800	2,000		_	•
21 mg/kg 1,300 650 Chlorobenzene (280 ug/kg) 22.5 mg/kg ND ND 26 mg/kg ND ND 13 21 mg/kg ND ND 26 mg/kg ND ND 14 24 mg/kg ND ND 26 mg/kg ND ND 15 19.5 mg/kg ND	12	20.5	mg/kg	-		ND		
22.5 mg/kg ND ND		21		1,300	650			Chlorobenzene (280 ug/kg)
26 mg/kg ND ND		22.5				_		
26 mg/kg ND ND				ND				
26 mg/kg ND ND	13	21	mg/kg	ND	ND			All the state of t
26 mg/kg ND ND 15 19.5 mg/kg ND						-		
26 mg/kg ND ND 15 19.5 mg/kg ND	14	24	mg/kg	ND	ND			
		26		ND		***		
	15	19.5	mg/kg	_		ND		
		20	mg/kg	ND	ND			1,2-Dichloroethane (52 ug/kg)

-.)

Table 2: Summary of Previous Results - 1998 Tetra Tech Investigation Martin Luther King Jr. Way, Between 11th and 12th Street Oakland, California

			TPH	TPH			Ethyl			
Boring 1D	Depth	Units	Extractables	Purgeables	Benzene	Toluene	benzene	Xylenes	Lead	Detectable VOCs
oil Samples					•	•				
SB1	9.5	mg/kg	480.0	1,000:0	9.021	0.096	2.9	12.8	6.6	
	16.5	mg/kg	53.0	38.0	ND	0.03	0.12	1.0	27.4	
	23.5	mg/kg	1,400.0	1,800.0	3.2	26.0	19.0	156.0	4.9	
SB2	9.5	mg/kg	ND	ND	ND	ND	ND	ND	2.9	
	16.5	mg/kg	ND	ND	ND	ND	0.01	9.03	78.6	
	23.5	mg/kg	4.6	190.0	23.5	24.0	14.0	89.0	2.3	
SB3	9.0	mg/kg	ND	ND	ND	ND	ND	ND	2.4	
	16.0	mg/kg	ND	ND	ND	ND	ND	ND	2.3	
	23.5	mg/kg	ND	ND	ND	ND	ND	ND	9.88	
rab Groundwa	ter Samples									
SB1		mg/L	17.0	33.0	0.35	1.8	0.64	ND	0.43	· · · · · · · · · · · · · · · · · · ·
SB2		mg/L	0.09	6.11	0.82	0.026	0.0031	0 .02	0.18	1,2,4-Trimethylbenzene (0.0056 mg/L) 1,2-Dichlorethane (0.0014 mg/L), 1,3,5-Trimethylbenzene (0.0017 mg/L) and Napthalene (0.0014 mg/L)
SB3		mg/L	ND	ND	NĐ	ND	NĐ.	ND	9,94	

Notes:
TPH: Total Petroleum Hydrocarbons
VOCs: Volatile Organic Compounds
mg/kg: milligrams per kilogram
mg/l: milligrams per liter
-: Sample not analayzed
ND: Not Detected
Detected concentrations shown in bold

Reference: Final Phase II - Environmental Site Assessment Report, dated June 23, 2000 by Tetra Tech EM, Inc.

Table 3: Results for Test Pit Samples Martin Luther King Jr. Way, Between 11th and 12th Street Oakland, California

					_		Ethyl			WET	TCLP
Sample ID	Units	TEHd *	TEHo *	TVHg	Benzene	Toluene	benzene	Xylenes	Lead	Lead	Lead
TP-1@0.0	mg/kg				-		-		160		
TP- 1@2.0	mg/kg	-		_	_	-		_	3.1	_	
TP- 1@5.0	mg/kg	<u> <1</u>	<u><5</u>	. <0.97	<4.9	<4.9	<4.9	<4.9	3.6		
TP-2@0.0	mg/kg					-	_	-	20		
TP-2@2.0	mg/kg	<1	<5	< 0.97	<4.9	<4.9	<4.9	<4.9	1.6		_
TP-2@5.0	mg/kg						_		2.1		_
TP-3@0.0	mg/kg								160		
TP-3@3.0	mg/kg		_		_	_			1.8.		_
TP-3@6.0	mg/kg	<.99	<5	< 0.95	<4.8	<4.8	<4.8	<4.8	7.0	_	_
TP-4@0.0	mg/kg								170		
TP- 4@2.5	mg/kg	6.3	46	- <0.97	<4.9	<4.9	- <4.9	<4.9	86		′—
TP-4@6.0	mg/kg	_		-0.57	_	~~.	_	-	91		-
TP - 5@0.0	mg/kg		 -5	-0.02				, –	110	_	-
TP-5@2.0 TP-5@6.0	mg/kg	< i	<5	<0.93	<4.7	<4.7	<4.7	<4.7	4.5	_	-
	mg/kg								2.4		
TP-6@0.0	mg/kg		_	-	_	_	·	_	190	_	_
TP-6@2.5	mg/kg				_				1.9	_	-
TP-6@6.0	mg/kg	<u> </u>	<5	<0.92	<4.6	<4.6	<4.6	<4.6	2.0		
TP-7@0.0	mg/kg			_		-	_		220	_	
TP-7@2.0	mg/kg	<1	<5	< 0.93	<4.7	<4.7	<4.7	<4.7	2.1	_	-
TP-7@6.0	mg/kg					~			2.5		<u>_</u>
TP-8@0.0	mg/kg				_				220		
TP-8@2.5	mg/kg	4.6	36	<0.95	<4.8	<4.8	<4.8	<4.8	180	_	-
TP-8@6.0	mg/kg								1.7		
TP-9@0.0	mg/kg	_							220		
TP-9@2.0	mg/kg			_	_	~	_		1.4	_	_
TP-9@5.0	mg/kg	<1	<5	< 0.95	<4.8	<4.8	<4.8	<4.8	1.3	_	_
TP-10@0.0	mg/kg								150		
TP-10@2.0	mg/kg	- <1	<5	<0.94	- <4.7	<4.7	- <4.7	<4.7	1.9	_	
TP-10@5.0	mg/kg	-	_		_		_	_	2.2	_	
TP-11@0.0											
TP-11@0.0	mg/kg mg/kg		_	_	_	~	_	_	200 15	_	-
TP-11@5.0	mg/kg	 <1	 <5	<0.97	- <4.9	- <4.9	- <4.9	- <4.9	15 1.9	_	_
				-0.27							
TP- 12@0.0	mg/kg	-			_	~	_		72		
TP - 12@2.0 TP- 12@5.0	mg/kg	6.6	81	<0.94	<4.7	<4.7	<4.7	<4.7	110	_	·
	mg/kg								19		
COMP-1	mg/l	_	-		***	-	_			3.6	-
COMP-2	mg/l_									7.7	
01.41.05						<u> </u>					
Q1 though Q5	mg/l										<0.5

Notes:

Soil samples collected on August 4, 2000

Detected concentrations shown in bold TEHd. Total Extractable Hydrocarbons as diesel TEHo: Total Extractable Hydrocarbons as motor oil TVHg. Total Volatile Hydrocarbons as gasoline

*. Using silica gel cleanup

WET Waste Extraction Test

ICLP Toxic Characteristic Leachability Procedure

mg/kg· milligrams per kilogram mg/L milligrams per liter

- Sample not analyzed

< Not detected at or above the laboratory reporting limit

COMP - 1 is a composite of TP-4@6', TH-8@6', and TP-12@5'

COMP - 2 is a composite of TP-4@2 5', TH-8@2 5', and TP-12@2'

Table 4: Results for Monitoring Well Locations Martin Luther King Jr. Way, Between 11th and 12th Street Oakland, California

Sample ID T	Volatile Organic Compounds**													
	Date	Units	TEHd *	TVHg	Benzene	Toluene	Ethyl Benzene	Xylenes	Propyl benzene	1,3,5- Trimethyl benzene	1,2,4- Trimethyl benzene	n-Butyl benzene	Napthalene	1,2- Dichloroethane
Soil Sample:		·		·····										
TW-1@18 5	03/03/01	mg/ kg	170	680	<500	2,500	1,600	11,000	1,500	4,400	14,000	1,800	2,900	<500
Grab Groundw	vater Samples:		······································											
TW-I	03/03/01	ug/I	3,100	96,000	4,000	11,000	2,200	13,400	<500	1,200	3,800	<500	<500	<500
IW-2	03/03/01	u <i>g/</i> 1	<50	120	<5.0	5.1	<5.0	10	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0
TW-3	03/03/01	ug/1	<50	70	< 5.0	<5:0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	180

Notes:

Detected concentrations shown in bold
TEHd Total Extractable Hydrocarbons as diesel

TVHg Total Volatile Hydrocarbons as gasoline

^{*} Using silica gel cleanup

^{** =} only the detected VOC analytes are listed mg/kg milligrams per kilogram ug/l micrograms per liter

< Not detected at or above the laboratory reporting limit

NOTE:

JOBDOCS

THIS VICINITY MAP IS BASED ON A THOMAS GUIDE MAP FOR SAN FRANCISCO, ALAMEDA AND CONTRA COSTA COUNTIES, CALIFORNIA, MAP 649, YEAR 2000

VICINITY MAP

12TH STREET AND MARTIN LUTHER KING JR. WAY OAKLAND, CALIFORNIA

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

DRAWN BY DATE PLATE
CFY 3/8/01

JOB NUMBER FILE NUMBER
272.054 A272.054.03

MARTIN LUTHER KING JR. WAY

11TH STREET

LEGEND:

APPROXIMATE LOCATION OF MONITORING WELL

APPROXIMATE LOCATION OF TEST PIT **EXCAVATED ON 8/4/00**

FENCE

APPROXIMATE LOCATION OF PREVIOUS

APPROXIMATE LOCATION OF FORMER **TANKS**

SAMPLE LOCATIONS

12TH STREET AND MARTIN LUTHER KING JR. WAY OAKLAND, CALIFORNIA

DATE DRAWN BY 08/21/00 **CFY** FILE NUMBER JOB NUMBER A272.054.02 272.054

Sheet 1 of 1 Project Name & Location: 12th Street and Martin Luther King Jr. Way Ground Surface Elevation: Oakland, California Elevation Datum: **Drilling Coordinates:** Start: Date Time not surveyed Finish: Date Time Drilling Company & Driller. 3/2/01 14:00 3/2/01 Precision, Terry McAdoo 17:00 Drilling Fluid: Rig Type & Drilling Method: Hole Diameter. Mobile B-4500 / Hollow Stem Auger None 8 inches Sampler A) Modified California (3" O.D., 2.5" I.D.) Logged By: Type(s): ¥ GWL During Drilling JTW Sampling A) 140 lb hammer with 30" drop (Rope and Cathead) Backfill Method: Method(s): Date: Completed as Well 3/2/01 Blows/12 inches Interval inches SOIL DESCRIPTIONS Sampler Type WELL CONSTRUCTION Depth (feet) Pressure OVM (ppm) Blows/6 or Pressu GROUP NAME (GROUP SYMBOL) Sample I Graphic Log Flush Mounted color, consistency/density, Well Cover moisture condition, other descriptions (Local Name or Material Type) Locking A Well Cap SILTY SAND (SM) Dark brown, medium dense, moist with trace of brick 26 fragments, ash, poorly graded, fine grained 5 0 27 50/3° Wet, perched water? 77/9" POORLY GRADED SAND (SP) Yellowish-brown, very dense Neat Cement 10 Seai 0 48 50/3° Α 98/9" POORLY GRADED SAND WITH CLAY (SP) 15 Mottled light grayish-brown and yellowish-brown, very dense, moist 1200 Α 69 50/3" strong hydrocarbon odor 119/9 POORLY GRADED SAND (SP) 2500 Α 81 50/1 Dark yellowish-brown, very dense, moist, fine to medium grained, Bentonite Pellet 131/7 very strong hydrocarbon odor Seal 20 2300 85 50/.5" Α 133/6.5 POORLY GRADED SAND (SP) Light olive-brown, very dense, wet, fine grained, mild hydrocarbon 888 25 94 50/1 ∇ 144/7 Lonestar #3 pack 2-inch x 12 74 50/2" 0.020-inch 124/7 slotted screen Color change to light brownish-yellow at 29 0' 30 146 Α Bottom of bonng at 31 feet below ground surface Bottom Cap at 31 feet

35

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

12th Street and Martin Luther King Jr Way Oakland, California JOB NUMBER

DATE

272 054

TW-1

BORING

3/01

GEO-ENV GDT

GP.

054

								· · · · · · · · · · · · · · · · · · ·			She	<u>et 1</u>	of 1
Proje	ct Na	me &	Location				nd Martin Luther F	King Jr. Way	y Ground Surface Elevation:				
-				0	aklar	nd, Cali	fornia		Elevation Datum:				,
Drillin	ng Co	ordina	ates:	ot surv	reven				Start: Date	Time	Finish:	Date	Time
Drilli	ng Co	mpan	y & Dril	ller:					3/2/01	10:45		3/2/01	00:00
Ria 1	vne -	& Drilli	ing Met		recis	ion, Tei	rry McAdoo		Drilling Fluid:		Hole D	Diamete	r.
				<u> </u>			00 / Hollow Stem	Auger	None		8 incl	nes	
Sam Type		A) Mo	odified (Califoi	mia (3" O.D.	, 2.5" I.D.)		Logged By: JTW		¥ GWI	L During	Drilling
			140 lb l	namm	er wi	th 30" c	Irop (Rope and C	athead)	Backfill Method:			Dat	
Meth	od(s)): 		,					Completed as	Well		3/2/	01
t)	ed/	hes	ches		erval			SOIL DESCR	RIPTIONS		WELL	CONS	TRUCTION
Depth (feet)	Sampler Type	Blows/6 inches or Pressure	Blows/12 inches	OVM (ppm)	Sample Interval	Graphic Log	color, consisten	ion, other descripti	-				Flush Mounted Well Cover Locking Well Cap
0 - -							ASPHALTIC CONC CONCRETE SLAB POORLY GRADED	RETE 6 - INCHES T 4 - INCHES THICK					THE COP
-						N	(SP-SC)		OORLY GRADED SAND				
5 -	А	28 37 50/3"		0		. [/]	Dark yellowish-brov fine to medium grai	vn and olive-brown, ve ned	ery dense, moist,				
<u>-</u>		50/3"	87/9"			\cdot							
_								SAND WITH SILT (S	SP) fine to medium grained				-Neat Cement
10 -	A	38		0			Don't your morn and	, тыў выша, пріоц	to the ording Reguled				Seal
-		38 50/2"	88/8"										
_							POORLY GRADE	SAND WITH CLAY ((SP)				
- 15 -				0			Light olive-brown, v	rery dense, moist, fine	to medium grained				
- 13	A	27 50/4"	77/10"	ັ									
- -													Bentonite Pellet
_							POORLY GRADED	SAND (SP)					Seal
20 -	А	34 50/3*	84/9"	0			Light olive-brown, v	very dense, moist, fine	to medium grained				
_													
-										⊽			
25 -	Α	81/6	81/6"	0			No odor or staining	observed for cuttings	on auger	-			-Lonestar #3 _pack
								3-	-				2-inch x 0.020-inch
-										,			slotted screen
30 -				0									
_	Α	47 50/1"	97/7"				Bottom of boring a	it 31 feet below ground	d surface				-Bottom Cap at
-													31 feet
-													
35 -	To Was							12th St	reet and Martin I	uther Kin	a Ir Ma	V	RODING
V	1	1	uhsu	rfac	e f	onsul	tants, Inc.	12th Street and Martin Luther Kir Oakland, California					
M							tal Engineers	JOB NUMBER 272 054	MBER				│ TW-2
								212 004			্য	01	

10G OF BORING 272-054 GPJ GEO-ENV GDT 3/21/01

272-054 GPJ GEO-ENV GDT 3/14/01

Subsurface Consultants JOB NUMBER

12TH ST. & MARTIN LUTHER KING JR. WAY

272.021

DATE 4/5/91

APPROVED JUB

Subsurface Consultants

12TH ST. & MARTIN LUTHER KING JR. WAY

JOB NUMBER 272.021

DATE 4/5/91 APPROVED TVB **A-2**

er

1G

Subsurface Consultants

12TH ST. & MARTIN LUTHER KING JR. WAY

JOB NUMBER 272.021

DATE 5/23/91 APPROVED JUB A-6

Subsurface Consultants

12TH ST. & MARTIN LUTHER KING JR. HAY
OB NUMBER DATE APPROVE

JOB NUMBER 272.021

5/23/91

APPROVED JVB A-7

LOG OF TEST BORING 8

LOG OF TEST BORING 9

Subsurface Consultants

12TH ST. & MARTIN LUTHER KING JR. HAY

JOB NUMBER 272.021

5/23/91

APPROVED:

A=8

JOB NUMBER

272.021

DATE

5/23/91

APPROVED

JVB

LOG OF TEST BORING 11

Subsurface Consultants

12TH ST. & MARTIN LUTHER KING JR. WAY

JOB NUMBER 272.021

DATE 5/23/91 APPROVED JVB

Subsurface Consultants

12TH ST. & MARTIN LUTHER KING JR. WAY

JOB NUMBER 272.021

DATE 5/23/91 APPROVED JVB A-11

LOG OF TEST BORING 13 EQUIPMENT 8" Hollow Stem Auger DENSITY (PCF) OV/M (ppm) DEPTH (FT) DATE DRILLED 5/14/91 LABORATORY TESTS ELEVATION * DARK BROWN SILTY SAND (SM) loose to medium dense, moist (fill) 31 BROWN SILTY SAND (SM) medium dense to dense, moist RED BROWN CLAYEY SAND (SC) dense, moist 10. 67 color change to brown 73 15 103 BROWN GRAY SILTY SAND (SM/SP) dense, moist 3150 20 39 47 25 74 GROUNDWATER LEVEL DURING DRILLING 192 cecrease in silt content 30-80 Boring backfilled with cement grout 35

Subsurface Consultants JOB NUMBER

12TH ST. & MARTIN LUTHER KING JR. WAY

272.021

DATE 5/23/91 APPROVED JUL

LOG OF TEST BORING 14 EQUIPMENT 8" Hollow Stem Auger DENSITY DENSITY (PCF) OVM (ppm) , DEPTH (FT) DATE DRILLED 5/14/91 LABORATORY TESTS ELEVATION * DARK BROWN SILTY SAND (SM) loose, moist (fill) BROWN SILTY SAND (SM) medium dense, moist RED BROWN CLAYEY SAND (SC) dense, moist 10-47 decrease in clay content 51 15 56 BROWN SILTY SAND (SM/SP) dense, moist 20 300 48 hydrocarbon odor color change to gray-brown 2000 44 25-64

GROUNDWATER LEVEL DURING DRILLING

decrease in silt content

Boring backfilled with cement grout

Subsurface Consultants

12TH ST. & MARTIN LUTHER KING JR. WAY

JOB NUMBER 272.021

500

200

120

T.

30

35-

61

73

DATE 5/23/91 APPROVED.

A-13

Subsurface Consultants

JOB NUMBER 272.021

DATE 5/23/91 APPROVED JVB

Subsurface Consultants JOB NUMBER

12TH ST. & MARTIN LUTHER KING JR. WAY

272.021

5/23/91

APPROVED

LOG OF TEST BORING 17

Subsurface Consultants JOB NUMBER

12TH ST. & MARTIN LUTHER KING JR. WAY

272.021 DATE 5/23/91

APPROVED JVB

A-16

