ALAMEDA COUNTY HEALTH CARE SERVICES

COLLEEN CHAWLA, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

April 11, 2018

Stop-N-Save, Inc.

c/o: Sean Kapoor (Sent via e-mail to: kapoorsean@yahoo.com) c/o: Frank Adamson (Sent via e-mail to: fwa@kapoorent.com) 461 S. Milpitas Blvd., Suite #1

Milpitas, CA 95035

Subject:

Case Closure for Fuel Leak Case RO0000179 and GeoTracker Global ID T0600183405,

Stop N Save, 20570 Stanton Avenue, Castro Valley, CA 94546

Dear Ladies and Gentlemen:

This letter transmits the enclosed Remedial Action Completion Certificate and Case Closure Summary for the subject leaking underground fuel tank case. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. This Remedial Action Completion Certificate and the case closure summary can also be viewed on the State Water Resources Control Board's GeoTracker website (http://geotracker.waterboards.ca.gov) and the Alameda County Environmental Health website (http://www.acgov.org/aceh/index.htm).

This site is closed with residual contamination that limit future land use to the current commercial land use as an active gasoline service station. Land use restrictions are described in the attached Case Closure Summary.

If you have any questions, please call the Caseworker, Karel Detterman, at (510) 567-6708. Thank you.

Sincerely,

Dilan Roe, P.E.

Chief, Land Water Division

Enclosures:

1. Remedial Action Completion Certification

2. Case Closure Summary

cc with enclosure:

Jag Kapoor, Stop-N-Save, Inc., 461 S. Milpitas Blvd., Suite #1, Milpitas, CA 95035 (Sent via e-mail to: jagkapoor@gmail.com)

Drew Van Allen, Environmental Compliance Group, LLC, 270 Vintage Drive, Turlock, CA 95382, (Sent via E-mail to: ecg.ust@gmail.com)

Dilan Roe, ACDEH (Sent via e-mail to: dilan.roe@acgov.org)

Karel Detterman, ACDEH (Sent via e-mail to: karel.detterman@acgov.org)

Paresh Khatri, ACDEH (Sent via e-mail to: paresh.khatri@acgov.org)

Case Electronic File, GeoTracker

AGENCY

COLLEEN CHAWLA, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

REMEDIAL ACTION COMPLETION CERTIFICATION

April 11, 2018

Stop-N-Save, Inc.

c/o: Sean Kapoor (Sent via e-mail to: kapoorsean@yahoo.com) c/o: Frank Adamson (Sent via e-mail to: fwa@kapoorent.com)

461 S. Milpitas Blvd., Suite #1

Milpitas, CA 95035

Subject:

Case Closure for Fuel Leak Case RO0000179 and GeoTracker Global ID T0600183405,

Stop N Save, 20570 Stanton Avenue, Castro Valley, CA 94546

Dear Responsible Parties:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Ronald Browder

Brouxe

Director

I. CASE INFORMATION

A. Facility/Site Address (Case Name & Address)

Project Name	Address
Stop N Save	20570 Stanton Avenue, Castro Valley, CA 94546

B. Case Identification Numbers

Cleanup Oversight Agency	Case/ID No
Alameda County Local Oversight Program (LOP) - Lead Agency	R00000179
San Francisco Bay RWQCB (Region 2)	N/A
State Water Board GeoTracker Global ID	T0600183405

C. Lead Agency Information

Agency Name:	Agency Address:	Agency Phone:
Alameda County Department of Environmental Health (ACDEH)	1131 Harbor Bay Parkway, Alameda, CA 94502-6577	(510) 567-6700
Case Worker:	LOP Supervisor:	Land Water Division Chief:
Karel Detterman, PG 5628	Paresh Khatri	Dilan Roe, PE C73703

D. Assessor Parcel Numbers (APNs)

Former	84A-181-59-2
Current	84A-181-59-4

E. Alternate Addresses

N/A

II. RESPONSIBLE PARTY INFORMATION

Responsible Party(s):	Address:
Stop-N-Save, Inc.	461 S. Milpitas Blvd., Suite #1
c/o: Sean Kapoor	Milpitas, CA 95035
Stop-N-Save, Inc.	461 S. Milpitas Blvd., Suite #1
c/o: Frank Adamson	Milpitas, CA 95035

III. HISTORIC LAND USE & OPERATIONS

Land Use	Description
Commercial Fueling Station	This fuel leak case was opened to evaluate petroleum hydrocarbon releases at the site from underground storage tank (UST) systems associated with historic use as a commercial gasoline station.
Other Land Uses	Other uses of the site have not been identified or evaluated.

IV. OTHER ASSOCIATED CLEANUP SITE IDENTIFICATION NUMBERS

Case Type	Lead Oversight Agency	Site ID	Potential Contaminants of Concern	Status (Open/Closed)
LUST ¹	N/A	N/A	N/A	N/A
SCP	N/A	N/A	N/A	N/A
DTSC	N/A	N/A	N/A	N/A
EPA	N/A	N/A	N/A	N/A
Post-Closure	N/A	N/A	N/A	N/A

¹ Refer to the California Environmental Protection Agency (Cal EPA) State Water Resources Control Boards GeoTracker database for case information: https://geotracker.waterboards.ca.gov/profile_report?global_id=T0600183405

V. CASE SUMMARY

A. Reason Case Opened

UST Cleanup Site Case No. RO0000179 was opened in 2000 by ACDEH to evaluate potential impacts to human health and the environment from a gasoline fuel spill from an UST system fuel release at the site.

B. UST System Release Type

UST System Component	Size / Quantity	Material Stored	Status	URF Filing Date:
UST	10,000-gallon	Gasoline	Removed	2/24/2000
UST	10,000-gallon	Gasoline	Removed	2/24/2000

V. CASE SUMMARY (CONTINUED)

C. UST System Potential Contaminants of Concern (PCOCs1)

Material Required Stored Groundwate			Analytes Sampled in Media & Identified PCOC (Sampled; PCOC)					PCOCs	
			S ¹	GW ²	SW ³	SV ⁴	SS ⁵	IA ⁶	OA ⁷
Gasoline	TPHd	Sampled							
		PCOC							
	TPHmo	Sampled							
		PCOC						П	
	BTEX	Sampled	×	×					<u> </u>
		PCOC	\boxtimes	×					
	MTBE	Sampled	\boxtimes	×					
Naphthalene	PCOC	\boxtimes	×						
	Naphthalene	Sampled	×	×					
		PCOC		×					_ _ _

D. Site Investigations

Six groundwater monitoring wells (STMW-1 through STMW-3 and MW-4 through MW-6); and seven soil borings (B-4, SB-5 through SB-10) were installed and thirteen UST removal soil samples (confirmation samples) were taken to characterize groundwater and soil contamination at the subject site. Monitoring and sampling events occurred on a semiannual basis between 2000 and 2015.

E. Remediation

In February 2000, two 10,000 gallon single-walled steel underground storage tanks (USTs) used for gasoline storage and associated dispensers, were removed from the northwest corner of the site. In July 2000, over excavation of the UST pit occurred and approximately 500 cubic yards of contaminated soil was disposed of at a landfill.

F. Groundwater Monitoring Well Status

No. of Monitoring Wells (MW) Installed: 6	No. of MWs Lost: N/A
No. of MWs Destroyed: 6	No. of MWs Retained: N/A

¹ Soil

² Ground water

³ Surface Water

⁴ Soil Vapor

⁵ Sub Surface

⁶ Indoor Air

⁷ Outdoor Air

V. CASE SUMMARY (CONTINUED)

G. Vapor Probe Status

No. of Vapor Probes (VP) Installed: 0	No. of VPs Lost: N/A
No. of VPs Destroyed: 0	No. of VPs Retained: N/A

H. Case Closure

This fuel leak case has been evaluated for closure consistent with the State Water Resource Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP). The case meets all the general and media-specific criteria of the LTCP with the exception of media-specific criteria of direct contact to outdoor air. ACDEH has made the determination that there is low potential for direct contact exposure because the entire site is paved. Additionally, at the time of closure the site is a commercial fueling facility and therefore has health and safety and management protocols for conducting subsurface work in areas of potential residual contamination.

Based on the information in the case file, and with the provision that the information provided to ACDEH is accurate and representative of site conditions, this case has been closed. A 60-day public notification period was completed on 3/1/2017.

VI. LAND USE AT TIME OF CLOUSRE

Land Use	Description
On-Site	The subject property (APN 84A-181-59-4) is located at 20570 Stanton Avenue in a mixed commercial/residential area of Castro Valley, at the southeast corner of the intersection of Stanton Avenue and San Carlos Avenue. Commercial: Gasoline Service Station & Convenience Store
	At the time of closure the land use at the site was an operating gasoline service station (Stop N Save). There are no known plans to redevelop the site in the near future.
Off-Site	At the time of closure, the subject property was surrounded to the south and east by residences, to the north by San Carlos Avenue, and on the west by Stanton Avenue. During case closure evaluation no potential off-site contamination was identified. However, should redevelopment of adjacent off-site properties occur, ACDEH recommends evaluating the redevelopment site for potential chemicals of concern identified at the this fuel leak site.

VII. ADMINISTRATIVE, INSTITUTIONAL & ENGINEERING CONTROLS

A.	Engi	neerina	Controls	S
		ncernig	COLLINI	3

Not Applicable	Not	Ap	plica	ble
----------------	-----	----	-------	-----

B. Administrative Controls

- Site Management Requirements: Due to historic land use at the site and residual petroleum hydrocarbon subsurface contamination, the site has been closed with the following site management requirements:
 - a. Existing Site Improvements Repair & Maintenance Activities: Any repair or maintenance activity of existing site improvements in areas of residual contamination requires planning and implementation of appropriate health and safety procedures prior to and during excavation activities. These activities include repair or maintenance of existing foundations, utility lines, hardscape, landscaping or other work occurring beneath the grade level of the existing finished surface. Activities covered under this category do not include modifications or redevelopment activities described below.

Each contractor shall be responsible for the safety of its employees and site visitors and must adhere to a site-specific health and safety plan prepared for the work in accordance with California Occupational Safety and Health Administration requirements and use properly trained personnel in accordance with California Code of Regulations, Title 29, Part 1910.120 Hazardous Waste Operations and Emergency Response (HAZWOPER) standards.

Please note that the site management requirements associated with this case are specific to petroleum hydrocarbon contamination related to historic releases from UST systems and do not address other site contamination that may be in the subsurface from historic land use at and in the vicinity of the site.

- b. Existing Site Improvements Modifications. Prior to permitting of any proposed modifications to the existing site improvements that include modifications to the foundation, subsurface utilities and/or hardscape or subsurface work, the property owner and the local building and planning authority with permitting jurisdiction at the site must notify ACDEH as required by Government Code Section 65850.2.2. ACDEH will re-evaluate the site relative to the proposed modifications to assess risk to human health under the proposed changes.
- c. Site Redevelopment. Prior to permitting of any proposed site redevelopment including a change in land use to residential, or other conservative land use, the property owner and the local building and planning authority with permitting jurisdiction at the site must notify ACDEH as required by Government Code Section 65850.2.2. ACDEH will re-evaluate the site relative to the proposed redevelopment to assess risk to human health under the proposed land use scenario from subsurface contamination associated all recognized environmental concerns at the site.
- 2) Environmental Due Diligence. ACDEH recommends that during the environmental due diligence process (initiated as part of activities including, but not limited to, property transactions, bank refinancing, and redevelopment) that parcels in the vicinity of the site be evaluated for risk from and exposure to potential chemicals of concern identified at this site.

C. Institutional Controls

Not Applicable

VIII. LOCAL AGENCY SIGNATURES

Dilan Roe, PE C73703	Title: Chief, Land Water Division
Signature:	Date: APKIL 11, 2018
Paresh Khatri	LOP Supervisor
Signature: MM Lik	Date: APRIC 11,2018
Karel Detterman, PG 5628	Title: Senior Hazardous Materials Specialist
Signature: Karel Dette	Date: April 11, 2018

This Case Closure Summary along with the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. Additional information on the case can be viewed in the online case file. Case files can be viewed over the Internet on the Alameda County Department of Environmental Health (ACDEH) website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Both databases should be reviewed to obtain a complete history.

Attachments:

Attachment 1- Historic, Current & Future Land Use Information (3 pages)

Attachment 2 - Responsible Party Information (8 pages)

Attachment 3 - Case Closure Public Notification Information (2 pages)

Attachment 4 - Geotracker LTCP Evaluation Checklist (1 page)

Attachment 5 – LTCP Media Specific Evaluation - Groundwater (2 pages)

Attachment 6 - LTCP Media Specific Evaluation - Vapor Intrusion (2 pages)

Attachment 7 - LTCP Media Specific Evaluation - Direct Contact (1 page)

Attachment 8 – Figures with Sampling Locations (3 pages)

Attachment 9 - Boring Logs (19 pages)

Attachment 10 - Groundwater Data (19 pages)

Attachment 11 - Soil Data (8 pages)

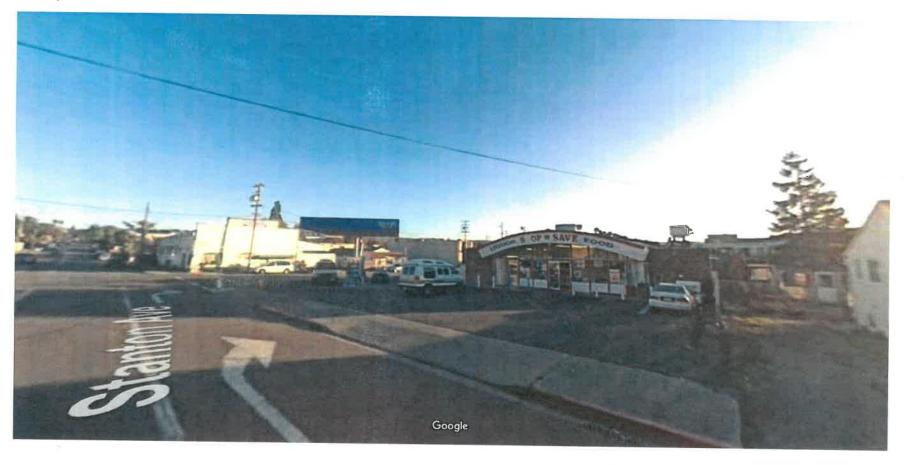
Attachment 12 - Sensitive Receptor Data (6 pages)

Gorgle Maps 20570 Stanton Ave

20570 Stanton Ave Castro Valley, CA 94546

Imagery ©2018 Google, Map data ©2018 Google 20 ft

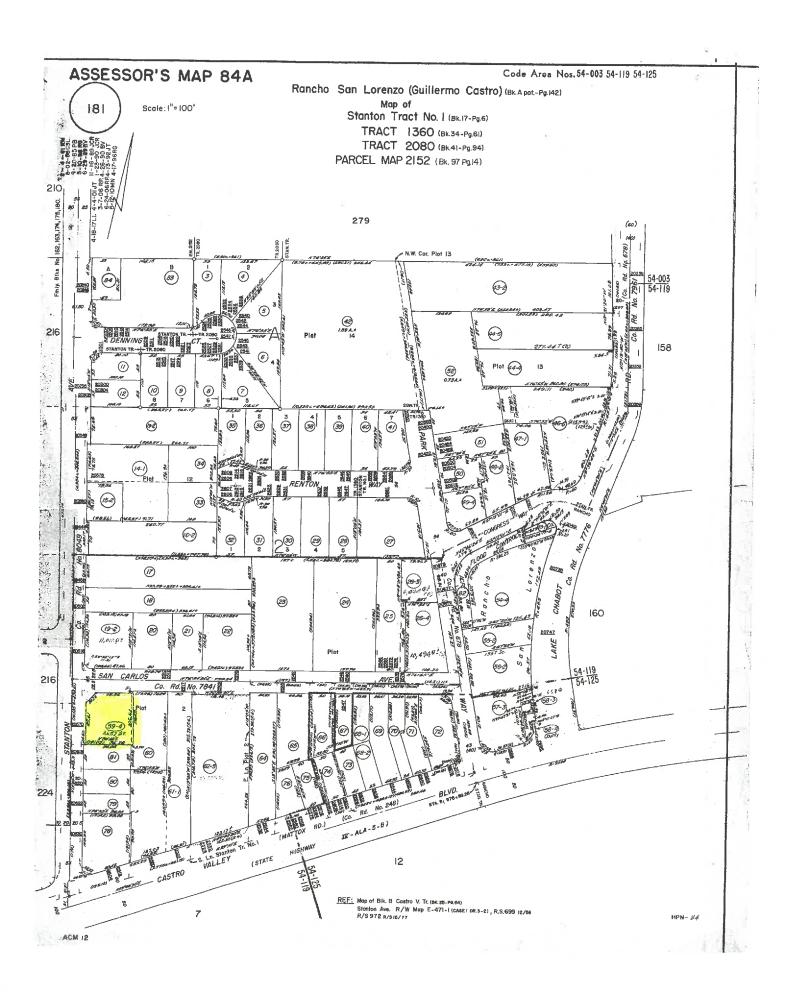
Google Maps 20569 Stanton Ave

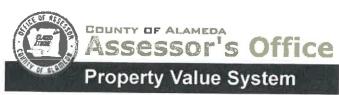

Image capture: Oct 2017 © 2018 Google

Castro Valley, California

Google, Inc.

Street View - Oct 2017


Google Maps 20569 Stanton Ave



Castro Valley, California Google, Inc.

Street View - Oct 2007

Image capture: Oct 2007 © 2018 Google

Help

New Query

History Value Transfer | Glossary Map

Parcel Number:84A-181-59-4 Inactive:N Lien Date:01/01/2017 Owner:STOP N SAVE INC Property Address: 20570 STANTON AVE, CASTRO VALLEY, CA 94546-5230

Parcel History

Mailing Name

Historical Mailing Address

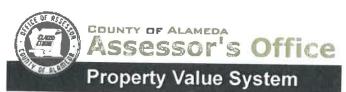
Document Document Date Number

Value Parcel Use

From Count **Trans Tax**

STOP N SAVE INC

List Owners


25064 VIKING ST , HAYWARD, 04/27/1988 1988-99563 CA 94545-2704

2 3100

All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the Assessor's knowledge of each property. Caution is advised for use other than its intended purpose.

> The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later. Click here for more information regarding supported browsers.

> > Copyright © 2001 Alameda County

Help

New Query

History | Value | Transfer | Map | Glossary

Parcel Number:84A-181-59-2 Inactive:Y Lien Date:01/01/2017 Owner:STOP N SAVE INC Property Address: 20570 STANTON AVE, CASTRO VALLEY, CA 94546-5230

Parcel History

Mailing Name		Historical Mailing Address	Document Date	Document Number	Parcel Count	
STOP N SAVE INC	<u>List</u> <u>Owners</u>	PO BOX 51129 , SAN JOSE, CA 95151-5129	04/27/1988	1988-99563	<u>2</u>	3100
TRIOND	<u>List</u> <u>Owners</u>	391 CASTLE CREST RD , WALNUT CREEK, CA 94595	08/30/1985	1985- 175421	1	3100
KAY MARVIN J & LOIS N	<u>List</u> Owners	6365 COLISEUM WAY , OAKLAND, CA 94621-3719	06/19/1973	1973-83060	1	3100
SAWYER GEORGE T	<u>List</u> <u>Owners</u>	20570 STANTON AVE , CASTRO VALLEY, CA 94546- 5230	07/22/1966	AY-88581	1	3100

All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the Assessor's knowledge of each property. Caution is advised for use other than its intended purpose.

The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later.

Click <u>here</u> for more information regarding supported browsers.

Copyright © 2001 Alameda County

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway Alameda, CA 94502-6577

March 10, 2016

Stop-N-Save, Inc. c/o: Sean Kapoor c/o: Frank Adamson 461 S. Milpitas Blvd., Suite #1 Milpitas, CA 95035

Subject:

Notice of Responsibility, Fuel Leak Case RO0000179 and GeoTracker Global ID T0600183405, Stop N Save, 20570 Stanton Ave., Castro Valley, CA 94546

Dear Responsible Parties:

In a Notice of Responsibility (NOR) dated July 27, 2000, Stop & Save, care of Sean Kapoor, was notified that the above referenced site had been placed in the Local Oversight Program and that Stop & Save had been named as a Responsible Party for the fuel leak case. Passage of time necessitates an update to the NOR as defined under 23 C.C.R Sec. 2720. Please see Attachment A – Responsible Parties Data Sheet, which identifies all Responsible Parties and provides background on the unauthorized release and Responsible Party Identification.

Should you have any questions, please contact me at (510) 567-6708 or send me an e-mail message at karel.detterman@acgov.org.

Sincerely,

CC:

DN: cn=Karel Detterman, o, ou, email=kareLdetterman@acgov.org, c≃US Date: 2016.03.09 16:54:21 -08'00'

Digitally signed by Karel Detterman

Karel Detterman, P.G.

Hazardous Materials Specialist

Enclosures: Notice of Responsibility (NOR)

Attachment A - Responsible Parties Data Sheet

Dilan Roe, ACEH (sent via electronic mail to: dilan.roe@acgov.org)

Karel Detterman, ACEH (sent via electronic mail to: karel.detterman@acgov.org)

Case Electronic File, GeoTracker

ALAMEDA COUNTY **HEALTH CARE SERVICES AGENCY**

REBECCA GEBHART, Acting Agency

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #: 7009 2820 0001 4359 5951

March 10, 2016

NOTICE OF RESPONSIBILITY

Site Name & Address:

STOP N SAVE

20570 STANTON AVE

CASTRO VALLEY, CA 94546

Local ID:

RO0000179

Related ID:

4097

RWOCR ID:

NA

Global ID:

T0600183405

Responsible Party:

STOP N SAVE, INC. C/O: SEAN KAPOOR

C/O: FRANK ADAMSON

461 S. MILPITAS BLVD., SUITE 1

MILPITAS CA 95035

Date First Reported:

2/24/2000

Substance:

8006619 Gasoline-Automotive (motor gasoline and

additives), leaded & unleaded

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: No

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified STOP N SAVE, INC. as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker KAREL DETTERMAN at this office at (510) 567-6708 if you have questions regarding your site.

RONALD BROWDER, Acting Director

Contract Project Director

Update

Reason: UPDATE

Action:

Date:

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

March 10. 2016

Site Name & Address:

STOP N SAVE 20570 STANTON AVE CASTRO VALLEY, CA 94546 Local ID:

RO0000179

Related ID:

4097

RWQCB ID:

NA

Global ID:

T0600183405

All Responsible Parties

RP has been named a Primary RP - STOP N SAVE, INC.
C/O: SEAN KAPOOR and FRANK ADAMSON
461 S. MILPITAS BLVD., SUITE 1 | MILPITAS, CA 95035 | Phone (408) 874-8600

Responsible Party Identification Background

Alameda County Environmental Health (ACEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- 1. "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

ATTACHMENT A = RESPONSIBLE PARTIES DATA SHEET (Continued)

March 10, 2016

Responsible Party Identification

Existence of Unauthorized Release

A site assessment conducted initially in conjunction with the excavation and removal of two underground storage tanks (USTs) in February 2000 revealed maximum soil stockpile concentrations of 1,100 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPH-g), 4.2 mg/kg benzene, 22 mg/kg toluene, 12 mg/kg ethylbenzene, 110 mg/kg xylenes, and 12 mg/kg of MTBE. Maximum groundwater concentrations detected during the initial groundwater monitoring event, conducted in October 2000, were 60,000 micrograms per liter (ug/L) TPH-g, <2,500 ug/L benzene, and 69,000 ug/L MTBE. These concentrations indicate an unauthorized release has occurred from the underground storage tank system at this site.

Responsible Party Identification

The property was acquired by Stop-N-Save, Inc. in April 1988. Stop-N-Save, Inc. is a responsible party because they own or operate an underground storage tank used for the storage of any hazardous substance (Definition 1), owned the property where an unauthorized release occurred (Definition 3), and had or have control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance (Definition 4).

ALAMEDA COUNTY HEALTH CARE SERVICES

120179

SENT 8-1-2005

DAVID J. KEARS, Agency Director

Certified Mail # 07/27/2000

Notice of Responsibility

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

StID#: 4097 Stop N' Save 20570 Stanton Ave. Castro Valley , CA 94546

SITE

Date First Reported 02/24/2000 Substance: Gasoline Funding (Federal or State): F Multiple RPs?: N

Sean Kapoor Stop & Save 25064 Viking Street Hayward, Ca 94545

Responsible Party (RP) Property Owner

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has(have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified 25297.15, this agency has identified Sean Kapoor as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency within 20 calendar days of receipt of this notice which identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 227-4349 or telephone (916) 227-4408.

Pursuant to section 25299.37(c)(7) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact Amir Gholami, Hazardous Materials Specialist at this office at (510) 567-6700 for further information about the site designation process.

Ariu Levil Chief

_Date: 7/3/4

Please Circle One Add Delete Change

Reason:

Contract Project Director

cc: Lori Casias, SWRCB

Amir Gholami, Hazardous Materials Specialist

Report: Reimb97 5/99

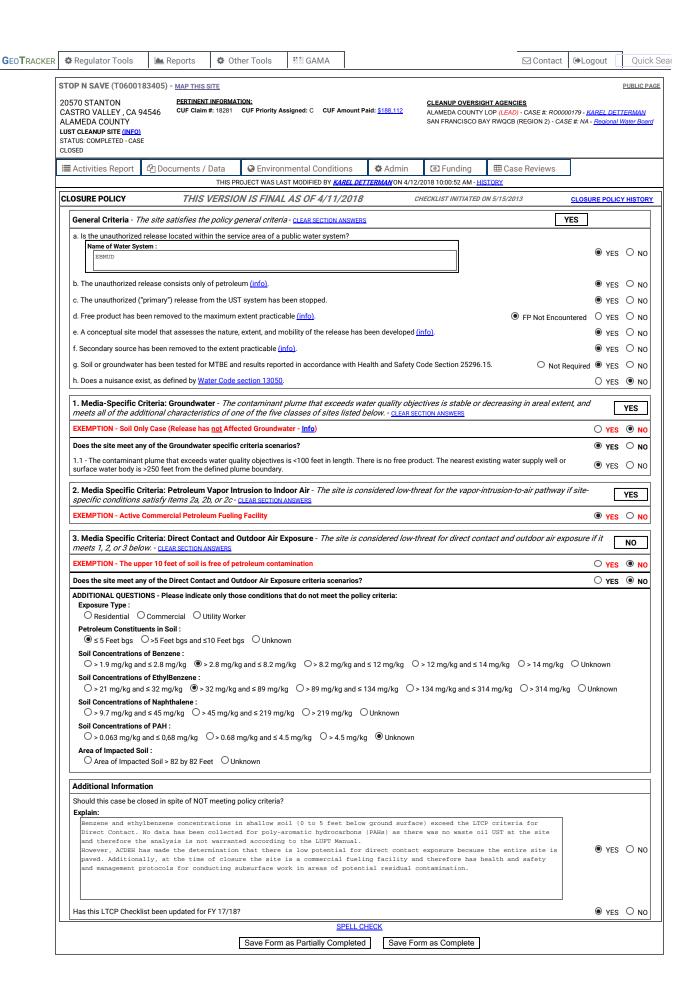
ALAMEDA COUNTY HEALTH CARE SERVICE AGENCY REBECCA GEBHART, Interim Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

INVITATION TO COMMENT - POTENTIAL CASE CLOSURE

Stop N Save 20570 Stanton Avenue, Castro Valley, CA 94546 Fuel Leak Case RO0000179 GeoTracker Global ID T0600183405

December 31, 2016


The above referenced site is a fuel leak case that is under the regulatory oversight of the Alameda County Environmental Health (ACDEH) Local Oversight Program for the investigation and cleanup of a release of petroleum hydrocarbons from an underground storage tank system. Site investigation and cleanup activities have been completed and the site has been evaluated in accordance with the State Water Resources Control Board Low-Threat Closure Policy. The site appears to meet all of the criteria in the Low-Threat Closure Policy. Therefore, ACDEH is considering closure of the fuel leak case. Due to the residual contamination on site, the site would be closed with site management requirements that require further evaluation if the site is to be redeveloped in the future.

The public is invited to review and comment on the potential closure of the fuel leak case. This notice is being sent to the current occupants and landowners of the site and adjacent properties and other known interested parties. This notice is being sent to the current occupants and landowners of adjacent properties and known interested parties for this site. The public is invited to review and comment on the potential closure of the case. The entire case file can be viewed over the Internet on the ACDEH website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Please send written comments to Karel Detterman at ACDEH, 1131 Harbor Bay Parkway, Alameda, CA 94502; all comments will be forwarded to the responsible parties. Comments received by March 1, 2017 will be considered and responded to prior to a final determination on the proposed case closure.

If you have comments or questions regarding this site, please contact the ACDEH caseworker, Karel Detterman at 510-567-6708 or by email at karel.detterman@acqov.org. Please refer to ACDEH case RO0000179 in any correspondence.

Sort_APN Purcel, 2 684A018101902 84A-181 084A018101902 84A-181 084A018102000 84A-181 084A018102000 84A-181 084A018102100 84A-181 084A018102100 84A-181 084A018102200 84A-181 084A018102200 84A-181 084A018102300 84A-181 084A018102300 84A-181 084A018105904 84A-181 084A018105904 84A-181 084A018105905 84A-181 084A018105905 84A-181 084A018105905 84A-181 084A018105906 84A-181 084A018105905 84A-181 084A018105906 84A-181 084A018105906 84A-181 084A018105906 84A-181 084A018105906 84A-181 084A018105906 84A-181 084A018105906 84A-181 084A018105908 84A-181 084A018105908 84A-181 084A018105908 84A-181 084A018105908 84A-181 084A018105908 84A-181 084A018105909 84A-284 084A021802800 84A-284 084A022400104 84A-224	9-2 OHIO HOLDINGS LLC 9-2 OCUPANT 10 OHIO HOLDINGS LLC 11 OCUPANT 12 JENKINS ANITA TR 12 OCUPANT 13 KASLIN DAVID J & SUSAN R TRS 14 OCUPANT 15 COCUPANT 16 COCUPANT 17 COCUPANT 18 CASLIN DAVID J & SUSAN R TRS 19 OCUPANT 19 OLORGE CHRIS T 10 LORGE CHRIS T 10 LORGE RAYMOND C & JAMES D CO TRUSTEES 10 RAPS CASTRO VALLEY LLC 12 2008 B & D PROPERTIES LLC 14 COCUPANT 15 HANSON WINIFRED TR ETAL 16 KOSLOSKY JOHN J & MORGAN CHRISTINE M TRS 17 OCCUPANT 18 OCCUPANT 19 OCCUPANT 19 OCCUPANT 20 OC	StreetAddress 1414 EAST SHORE DR 20516 STANTON AVE 1414 EAST SHORE DR 2510 SAN CARLOS AVE 1414 EAST SHORE DR 2510 SAN CARLOS AVE 17990 KINGSTON WAY 2536 SAN CARLOS AVE 17990 KINGSTON WAY 2536 SAN CARLOS AVE 16991 BEREILY CT 2542 SAN CARLOS AVE 25054 VIKING ST 20570 STANTON AVE 2511 SAN CARLOS AVE 2522 CASTRO VALLEY BILVD 27170 PALOMARES RD 2544 CASTRO VALLEY BILVD 27176 HANSEN RD 20513 STANTON AVE 2775 HANSEN RD 20513 STANTON AVE 29328 MARBELLA TERREZA 20565 STANTON AVE 20613 STANTON AVE 20613 STANTON AVE	Unit	City ALAMEDA CA CASTRO VALLEY CA ALAMEDA CA CASTRO VALLEY CA ALAMEDA CA CASTRO VALLEY CA	Zip 94501 94546 94501 94546 94501 94546 94546 94546 94548 94548 94545 94546 94546 94546 94546 94548 94546 94546 94546 94546 94546 94546	Zip_4 3116 3116 3116 1129 1009 2704 5422 5408 6408 9729 5232 5524 4633 5231	
	EAST BAY MUNICIPAL UTILITY DISTRICT INDUSTRIAL DISCHARGE ALAMEDA COUNTY PUBLIC WORKS AGENCY CLEAN WATER PROC ALAMEDA COUNTY COMMUNITY DEVELOPMENT AGENCY PLANNIN ALAMEDA COUNTY DEPT OF ENVIRONMENTAL HEALTH CUPA	SEC P.O. BOX 24055	SUITE 1400 MS 702 ROOM 111	OAKLAND CA OAKLAND CA HAYWARD CA HAYWARD CA	94612 94623 94544 94544	1055 1215	CHERIE MCCAULOU CMCCAULOU@WATERBOARDS,CA.GOV CHANDRA JOHANNE: cichanne@ebmud.com KWABLAH ATTIOGBE SANDRA RIVERA SUSAN HUGO SUSAN.HUGO@ACGOV.ORG

STOP N SAVE Page 1 of 1

Attachment 5: LTCP Media Specific Evaluation-Groundwater

	LTCP GROUND	OWATER SPE	CIFIC CRITE	RIA - PETRO	LEUM				
Closure Scenario									
Site has not affected groundwater; _X_ Scenario 1; Scenario 2; Scenario 3; Scenario 4; Scenario 5; This case should be closed in spite of not meeting the groundwater specific media criteria									
	Evaluatio	n Criteria: Sh	nading indicate	es criteria met					
Site Specific Data Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5									
Plume Length	< 52 feet	<100 feet	<250 feet	<1,000 feet	<1,000 feet				
Free Product	No free product	No free product	No free product	Removed to maximum extent practicable	No free product				
Plume Stable or Decreasing	Stable or decreasing	Stable or decreasing	Stable or decreasing	Stable or decreasing for minimum of 5 years	Stable or decreasing	The site does not meet scenarios 1 through 4; however, a determination			
Distance to Nearest Water Supply Well (from plume boundary)	Downgradient: 1,540 feet Cross-Gradient: 1,100 feet Upgradient: 1,250 feet	>250 feet	>1,000 feet	>1,000 feet	>1,000 feet	been made that under current and reasonably expected future scenarios, the contaminant plume poses a			
Distance to Nearest Surface Water Body (from plume boundary)	Concrete Channelized Chabot Creek 750 feet Downgradient	>250 feet	>1,000 feet	>1,000 feet	>1,000 feet	low threat to human health and safety and to the environment and water quality			
Benzene Concentrations (µg/l) Historic Max: <2,500 Current Max: <5.0		No criteria	<3,000	<1,000	<1,000	objectives will be achieved within a reasonable time			
MTBE Concentrations (µg/I)	Historic Max: 89,000 Current Max: 410	No criteria	<1,000	<1,000	<1,000	frame.			
Property Owner Willing to Accept a Land Use Restriction	Not applicable	Not applicable	Not applicable	Yes	Not applicable				

Attachment 5: LTCP Media Specific Evaluation-Groundwater

	Analysis
Plume Length	The length of the petroleum hydrocarbon plume is defined by the groundwater monitoring well network.
Free Product	Not observed at site.
Plume Stability	Sixteen years of groundwater monitoring data indicates the dissolved phase groundwater plume concentrations are decreasing and stable.
Water Supply Wells	A search of the Alameda County Public Works Agency (ACPWA), Department of Water Resources (DWR) and the GeoTracker Groundwater Ambient Monitoring Assessment (GAMA) databases was conducted and indicated that the closest water supply wells or irrigation wells is located at a distance of 1,100 feet from the plume boundary.
Surface Water Bodies	Chabot Creek, a concrete channelized creek, is located approximately 750 feet downgradient and east, but is not considered a surface water body because it is channelized.

Attachment 6: LTCP Media Specific Evaluation-Vapor Intrusion

LTCP VAPOR SPECIFIC CRITERIA - PETROLEUM Closure Scenario Exemption: X Active fueling station exempt from vapor specific criteria; Active as of date: 4/11/2018 __ Scenario 1; __ Scenario 2; __ Scenario 3a; __ Scenario 3b; __ Scenario 4a without bioattenuation zone; Scenario 4b with bioattenuation zone; __ Site specific risk assessment demonstrates human health is protected; __ Exposure controlled through use of mitigation measures or institutional controls; __ Case closed in spite of not meeting the vapor specific media criteria Evaluation Criteria: Shading indicates criteria met. Scenario | Scenario Scenario Scenario Scenario Scenario Scenario Site Specific Data 1 2 3A **3B** 3C 4a 4b Unweathered **LNAPL** LNAPL No No No No No LNAPL No LNAPL LNAPL in gw in soil **LNAPL LNAPL** criteria criteria Thickness of Bioattenuation <5 feet ≥30 feet ≥30 feet ≥5 feet ≥10 feet ≥5 feet Νo ≥ 5 feet Zone Beneath criteria Foundation Depth to Shallowest 3.9 feet ≥30 feet ≥30 feet ≥5 feet ≥10 feet ≥ 5 feet ≥ 5 feet ≥ 5 feet Groundwater Total TPHg & No data in TPHd in Soil in <100 <100 <100 <100 <100 No <100 the 0 to 3.9 Bioattenuation mg/kg mg/kg mg/kg mg/kg mg/kg criteria mg/kg foot interval Zone Maximum Current ≥100 and Benzene No No <1,000 No No < 0.5 µg/L <100 µg/L <1,000 Concentration in criteria criteria µg/L criteria criteria µg/L Groundwater No Oxygen Data in No oxygen ≥4% at Not analyzed No No oxygen No Bioattenuation data or ≥4% bottom of per LTCP criteria criteria data or criteria Zone <4% zone <4% Soil Vapor Depth Not analyzed No No No No Beneath No criteria 5 feet 5 feet per LTCP criteria criteria criteria criteria Foundation Res: Benzene Res: Not analyzed No No No No < 85; < 85K; Concentrations No criteria per LTCP criteria criteria criteria criteria Com: Com: $(\mu g/m^3)$ < 280 < 280K Res: Res: Ethylbenzene Not analyzed No No No No < 1,100; < 1,100K; Concentrations No criteria per LTCP criteria criteria criteria criteria Com: Com: $(\mu g/m^3)$ < 3,600 < 3,600K Res: Res: Naphthalene Not analyzed No No No No < 93; < 93K; Concentrations

 $(\mu g/m^3)$

per LTCP

criteria

criteria

criteria

criteria

Com:

< 310

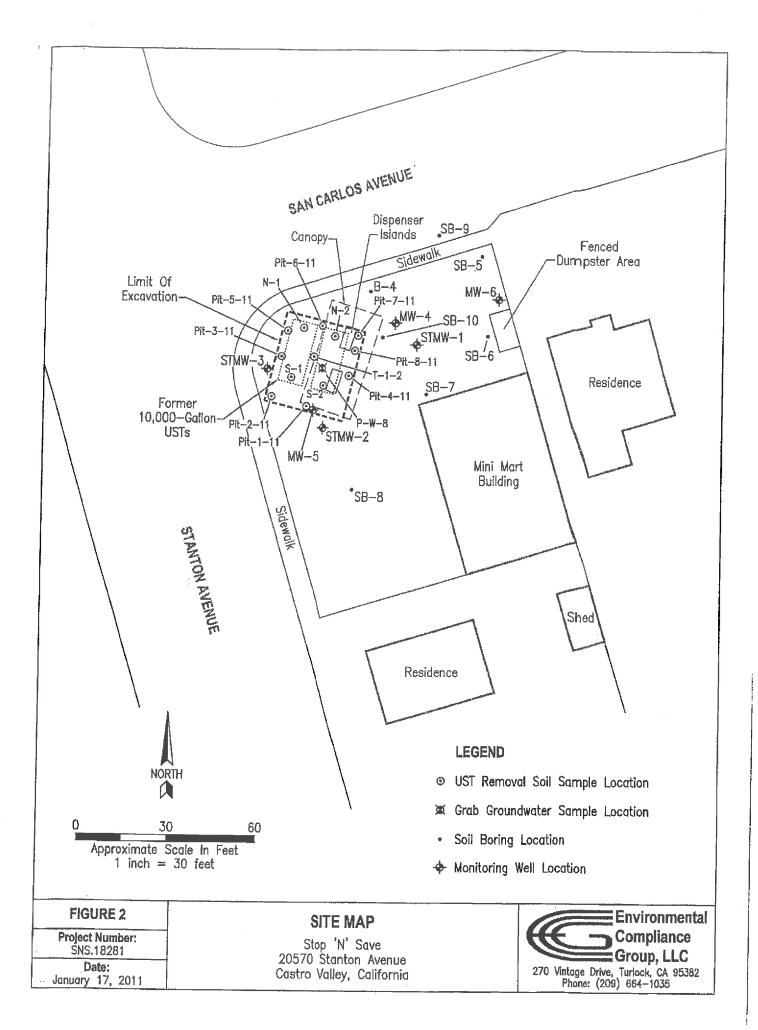
No criteria

Com:

< 310K

Attachment 6: LTCP Media Specific Evaluation-Vapor Intrusion

LTCP VAPOR SPECIFIC CRITERIA PETROLEUM (cont.)							
Vapor Intrusion to Indoor Air Analysis							
Onsite	The site is an active fueling station and therefore is exempt from vapor specific criteria per the LTCP.						
Offsite	Due to the low concentrations of volatile organic compounds in groundwater, ACDEH has made the determination that there is low potential for vapor intrusion to indoor air to off-site adjacent properties.						


Attachment 7 - Direct Contact Evaluation and Data

LTCP DIRECT CONTACT AND OUTDOOR AIR EXPOSURE MEDIA SPECIFIC CRITERIA

Closure Scenario

__ Exemption (no petroleum hydrocarbons in upper 10 feet), __ Maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1 below, __ Site-specific risk assessment, X A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health, _ A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health as a result of controlling exposure through the use of mitigation measures or through the use of institutional controls, __ This case should be closed in spite of not meeting the direct contact and outdoor air specific media criteria

controls, This case should be closed in spite of not meeting the direct contact and outdoor air specific media criteria.							
	Evaluation C	riteria: Shading	indicate LTCP cri	teria. Bold text	indicates criteria	met.	
Are maximum o	concentrations le	ss than those in	Table 1 below?	No			
		Resi	dential	Commerc	Utility Worker		
	tituent	0 to 5 feet bgs (mg/kg)	to outdoor air bgs to outdoo (5 to 10 feet (mg/kg) (5 to 10 f		Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 10 feet bgs (mg/kg)	
Site Maximum	Benzene	0.093	7.2	0.093	7.2	7.2	
LTCP Criteria	Benzene	≤1.9	≤2.8	≤8.2	≤12	≤14	
Site Maximum	Ethylbenzene	0.038	49	0.038	49	49	
LTCP Criteria	Ethylbenzene	≤21	≤32	≤89	≤134	≤314	
Site Maximum	Naphthalene	<0.25	2	<0.25	2	2	
LTCP Criteria	Naphthalene	≤9.7	≤9.7	≤45	≤45	≤219	
Site Maximum	PAHs						
LTCP Criteria	PAHs	≤0.063	NA	≤0.68	NA	≤4.5	
		Direct Cor	ntact and Outdoo	or Air Analysis	3		
0		surface) excee poly-aromatic l therefore the a	d the LTCP criter nydrocarbons (PA nalysis is not warr	ia for Direct C AHs) as there anted according	ontact. No data h was no waste oil ng to the LUFT Ma		
Ons	site	the site is a	re because the e commercial fuelin	ntire site is par g facility and	ved. Additionally, therefore has he	ow potential for direct at the time of closure ealth and safety and s of potential residual	
Offsite Petroleum hydrocarbon soil impacts were not encountered in soil samples colle from an off-site soil boring or soil borings located on-site near the property line.					samples collected property line.		

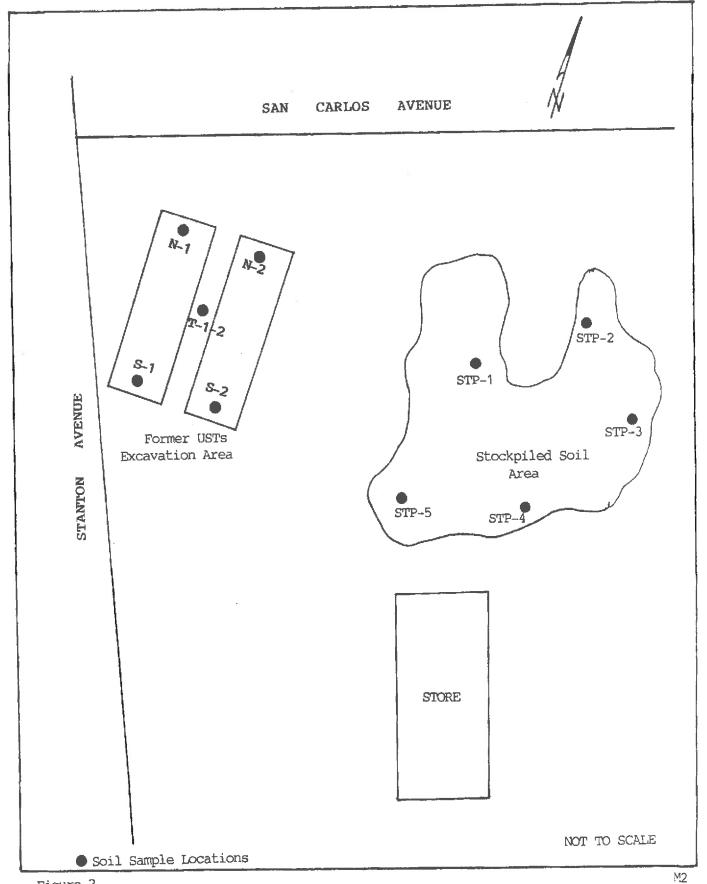


Figure 2

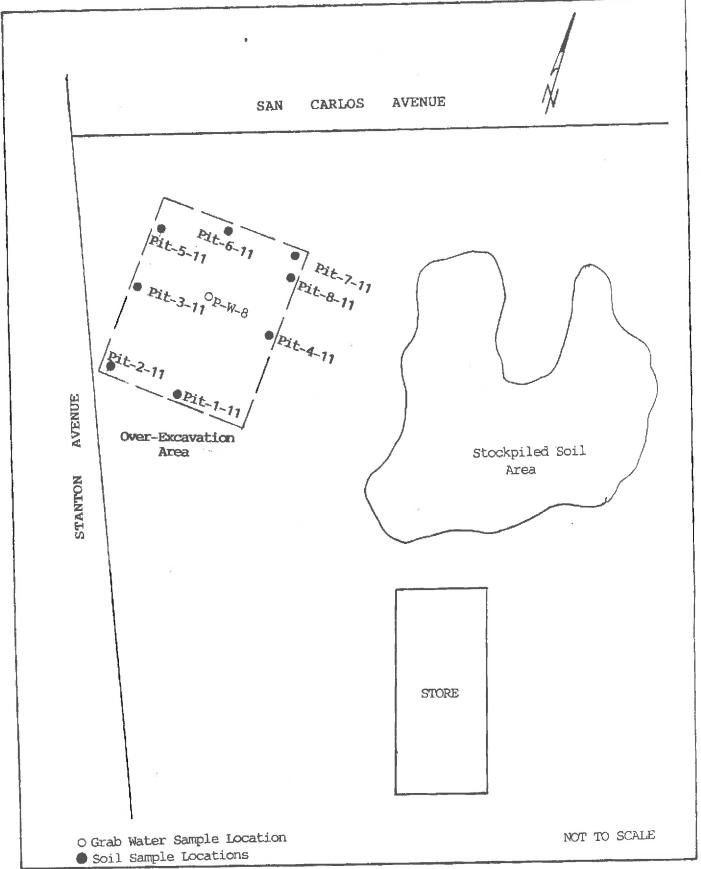
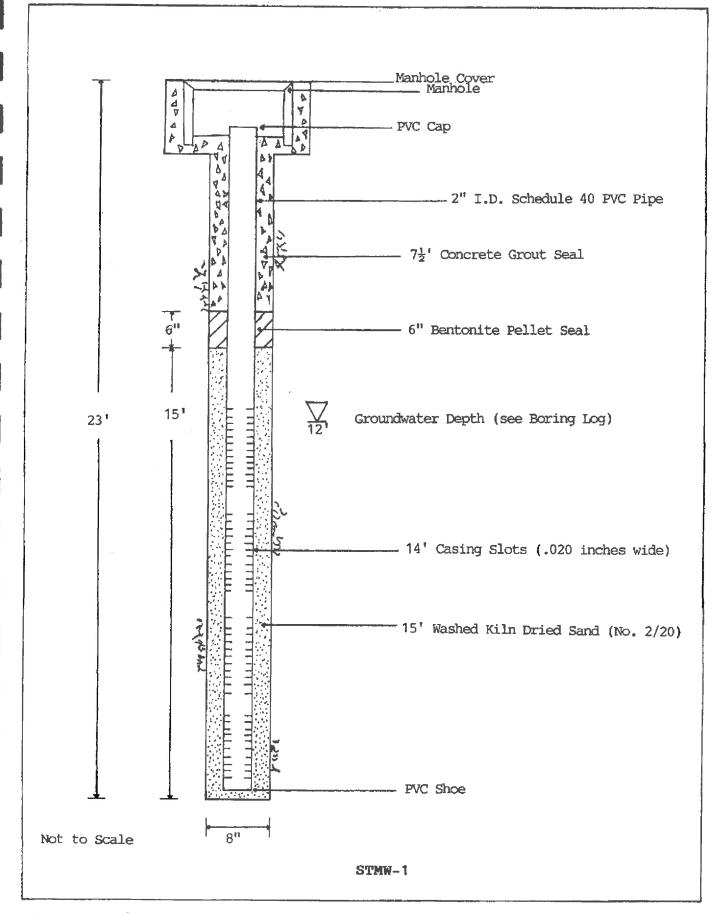



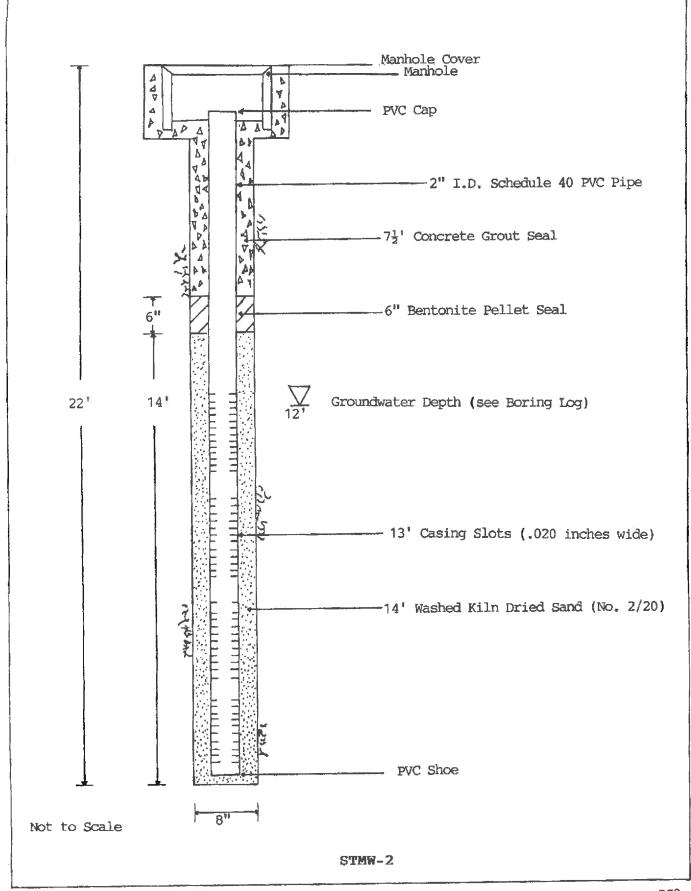
Figure 2

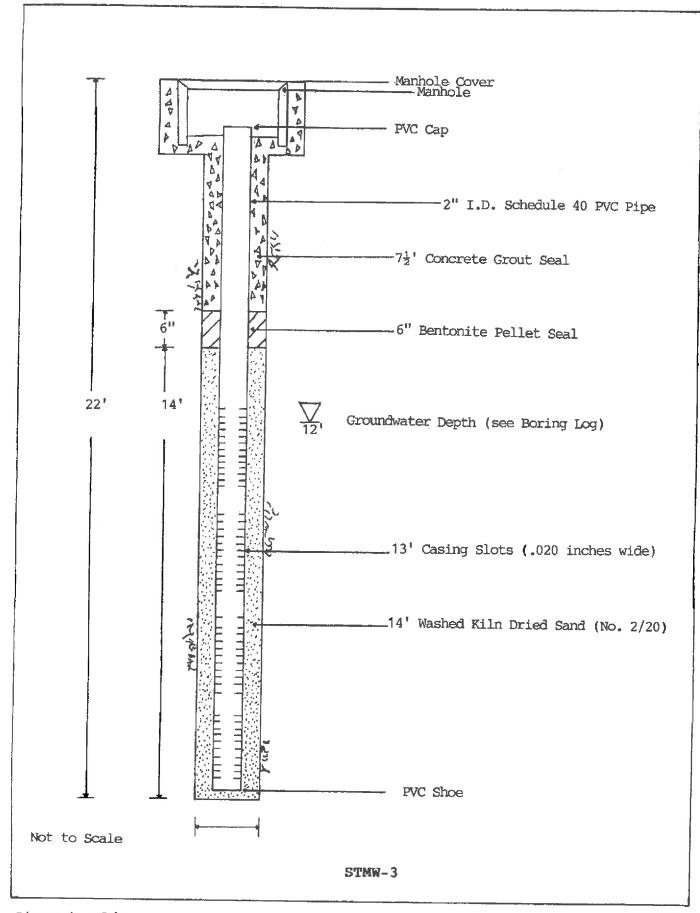
ATTACHMENT 9

Lo	gged	ey: Fra	nk Hamedi		Exploratory Boring Log	. 8 6	Boring No. STMW_1					
Ď.	le Dril	9/2	0/2000		Approx. Elevation		Boring Diameter					
Dri	lling 1	lethod				Sampling Method	8-inch					
-	!	M	obile dri	ll rig	B-40L							
Depth, Ft.	Sample No	Field Test for Total Ionization	Penetration Resistance Blows/6"	Unified Soft Classification	DESC	RIPTION						
1 2 3				CT	2-inch asphalt, clay (baserock). Dark brown silty Light brown silt Petroleum odor.		sandy gravel with some ff. iff.					
5 -1	1-5			CL CL		ravely sandy silty clay (weatherize rock).						
7 - 8 9 10 - 11 12 13 14 15 15	1-10			CL	at.	y clay with few s	small pea gravel.					
16				CL	Dark brown silty clay, stiff.							
Bem	arks					я						

- ` L	09900	By. 9/2	20/2000		Exploratory Boring Log		Boring No. STMW-1
D	ate Dr	Illed. 9/2	20/2000		Approx. Elevation		Boring Diameter
Di	rilling	Method			Sampling Method		8-inch
		Mol	oile drill	l rig B-			
Depth, Ft.	Sample No	Field Test for Total Ionization	Penetration Resistance Blows/Ft.	Unified Soll Classification			
-						RIPTION	
17				CIL	Dark brown silt	y clay, stiff.	
18							
19			-	ĺ			
20					,		
21							
22.							
23					Boring terminate	d at 23 feet.	
24							
25							
26							
27							
28							William to the control of the contro
29-		-					
30							
31-			f				
32	-						
Réma	ırkı						

Piezometer Schematic


PS1


. Lo	gged E	y Fra	nk Hamed:	i	Exploratory Boring Log		Boring No. STMW-2				
Da	te Drill		/2000		Approx, Elevation		Boring Diameter 8-inch				
Dri	Iling M	elhod				Sampling Method					
-		Mobi	le drill	rig B-	40L						
Depth. F1.	Eield Test for Total Ionization Penatrallon Resistance Blows/Fi.										
å	San	Fiel for Ioni	Res	C C							
-					Dark brown silt	RIPTION					
17				CL	Delk Diowii Siic	y clay, sciii.					
18											
19											
20 .											
21.											
22.					Boring terminat	ced at 22 feet.					
23.											
24											
25.											
26 -											
27											
28											
29-											
30											
31-											
32.											
Rs	Remarks										

§ Lo		e _{y:} Fra	nk Hamedi		Exploratory Boring Log							
Ö	10 Dri	Had:	1/2000		Approx. Elevation		Boring No. STMW-2 Boring Diameter 8-inch					
Dr.	illing J	dethog				Sempling Method						
-	_	Moh	oile drill	rig B-	40L	OL COMPANY MANAGE						
Depth, Ft.	Sample No	Field Test for Total Ionization	Penetration Resistance Blows/6"	Unified Soff Classification;	DESC	RIPTION						
1 2				CL	2-inch asphalt		andy gravel with some					
3 4					Light brown silt Petroleum odor.	y clay, damp, stif	f,					
5 /2	2-5			CL								
7 -			31	CL CL	Light brown grave	aly sandy clay (wea	atherize rock).					
9 10 2	-10			CT 1	Light brown silty	clay with some sm	all pea gravel.					
12					∑ First ground	water encountered a	at 12 feet.					
14				CT I	Dark brown silty	clay, stiff.						
16												
Bemar	Remarks											

-	\$9ed	110	nk Hamedi		Exploratory Boring Log		Boring No. SIMW-3
Da	te Drii	led: 9/2	1/2000		Approx. Elevation		Boring Diameter 8-inch
Dril	liing M	lethod				Sampling Method	0-IIICII
		Mob:	ile drill	rig B-	40L		
Depth, Ft.	Sample No	Field Test for Total Ionization	Penetration Resissance Stows/6"	Unitied Soil Classification:			
						RIPTION	
				CL.	2-inch asphalt, clay (baserock). Dark brown silty	6-inch greenish clay, damp, st	sandy gravel with some
					Light brown silt	y clay, damp, st	riff.
-3	3-5			CL			
					Petroleum odor.		
				CL	Light brown grave	ely sandy clay ((weatherize rock).
.0.3	3-10			CL	Light brown silty	y clay with some	small pea gravel.
2-					✓ First ground	water encountere	d at 12 feet.
41				CL	Dark brown silty	clay, stiff.	
6							
Rema	rks				8		

	02200	By Fra	ank Hamed:		Esstantia	2 2	
D	ale Dr	lled			Exploratory Boring Log		Boring No. STMW-3
-		9/2	21/2000		Approx, Elevation		Soring Diameter 8-inch
Di	rilling	Method	17			Sampling Method	
-	-	CLOIM.	ile drill	rig B-	40L		
Oapth, Ft.	Z	Test tion	ution ince /Ft.	Soft			
0.00	Sample No	Field Test for Total Ionization	Penetration Resistance Blows/Ft.	Unified Soil Classification			
	"	1 2 2 3	F.F.	בֿ כֿ			
	-			- CT		RIPTION	
17				CL	Dark brown silty	clay, stiff.	
					*		
18							
19			}	}			
20	ĺ		-	ŀ			P. Carlotte
21			}				
		1	1				*
22.					Boring terminated	at 22 foot	
23						. ac 22 teet.	
23							
24							
25		}					
26							
				İ			
27	1						
28							}
29	Ì						
30							The state of the s
J V 1							3
31			1				
, ,				-			
32							
Remar	ks					-	
32				-			

Piezometer Schematic

PS3

File No. 2-00-706-ST

<u> </u>	gged !	110	nk Hamed	i	Exploratory Boring Log Approx. Elevation		Boring No. B-4
Drit	iling M	letnod	le drill	rig B-	40L	Sampling Method	Boring Diameter 8-inch
Depth, Ft.	Sample No	Field Test for Total Ionization	Penetration Resistance Blows/6"	Unified Soil Classification:		RIPTION	
				Œ		6-inch greenish	sandy gravel with some
					Light brown silt	y clay, damp, st	iff.
4	-5			CL	Petroleum odor. Light brown grav	ely sandy clay (weatherize rock).
.04.	-10			CL	Light brown silty	y clay with some	small pea gravel.
2-					V First ground	water encountere	d at 12 feet.
4 5 6				- 1	Dark brown silty Boring terminated		
Rema	rks			ļ			

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue

Castro Valley, California

Date Drilled: 11/11/10
Drilling Company: RSI Drilling
Drilled By: Artemio Villagus
Drilling Method: Direct Push
Sampling Method: Continuous Sampler

Depth Drilled: 10 Feet Depth To Groundwater \$\square\$ Initial:

▼ Static:

				יוקוי	•			
Sample Number Blow Count	PID Reading In ppm	Sample Interval	Soil Description	USCS Classification	Graphic Representation	Depth In Feet	Boring Construction	Comments
	1 1 1 1	3	grained sand and gravel, subangular sand and gravel, loose, damp, no odor.	ML		1 1 2 3 4 4 5 5 6 7 7 8 8 9 9 10 10 11 1 12 12 13 13 14 14 15 15 16 16 16 17 7 18 8 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10		— 3-inch Borehole Grouted To Surface Grade Native Soil Page 1 of 1

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California Date Drilled: 11/11/10
Drilling Company: RSI Drilling
Drilled By: Artemio Villagus
Drilling Method: Direct Push
Sampling Method: Continuous Sampler

Depth Drilled: 10 Feet Depth To Groundwater ☑ Initial: ☑ Static:

Sample Number Blow Count PID Reading In ppm Sample Interval	Soil Description	USCS Classification Graphic Representation	Boring Construction	Comments ,
0.5 4 0.5 4 5.0 8 9 1,150 10	SANDY CLAY with GRAVEL, dark gray, fine to medium grained sand, medium grained gravel, angular sand and gravel, slight plasticity, moderately dense, moderately stiff, damp, slight odor. SANDY SILT with trace CLAY, moderately yellowish brown, fine grained sand, angular sand, slight plasticity, moderately dense, soft, damp, slight odor. Strong odor. Total depth = 10 feet.	ML ML		—— 3-inch Borehole Grouted To Surface Grade —— Native Soil
13 — 14 — 15 — 16 — 17 — 18 — 20 — 21 — 22 — 23 — 24 — 25 — 26 — 27 — 28 — 29 —		13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	5	
		30		Page 1 of 1

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

Date Drilled: 11/11/10
Drilling Company: RSI Drilling
Drilled By: Artemio Villagus
Drilling Method: Direct Push
Sampling Method: Continuous Sampler

Depth Drilled: 10 Feet Depth To Groundwater ☑ Initial;

¥ Static:

<u> </u>		_		outilpaing method, continuous of				•	_
Sample Number	Blow Count	PID Reading In ppm	Sample Interval	Soil Description	USCS Classification	Graphic Representation	Depth In Feet	Boring Construction	Comments
		1 1 1 2 2	3 — 4 — 5 — 7 — 7 — 3 — 7 — 7 — 7 — 7 — 7 — 7 — 7	SILTY SANDY CLAY with GRAVEL, moderate yellowish brown, medium grained sand and gravel, subangular sand, angular gravel, slight plasticity, dense, stiff, damp, moderate odor. SILTY SAND, moderate yellowish brown, moderately graded, fine grained sand, angular sand, loose, dry, slight odor. Total depth = 10 feet.	CL		1 2 3 4 5 5 6 6 7 7 8 8 9 9 110 111 112 113 114 115 116 116 115 116 115 116 115 116 115 116 116		3-inch Borehole Grouted To Surface Grade Native Soil Page 1 of 1

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

11/11/10 Date Drilled: Drilling Company: RSI Drilling Drilled By: Artemio Villagus Direct Push Drilling Method:

Depth Drilled: 10 Feet Depth To Groundwater 고 Initial: ▼ Static:

Sampling Method: Continuous Sampler PID Reading In ppm USCS Classification Sample Number Sample Interval In Feet Graphic Representation Blow Count Soil Boring Comments Depth | Description Construction CL SILTY SANDY CLAY, dark gray, fine grained sand, angular sand, slight plasticity, soft, damp, slight odor. 0 3-inch Borehole Grouted To Surface Grade SANDY SILT, moderate yellowish brown, fine grained sand, angular sand, dense, damp, no odor. Native Soil 0 Total depth = 10 feet. 15 18 19 20 20 21 21 22 22 23 23 24 25 25 26 26 27 27 28 28 Page 1 of 1

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California Date Drilled: 11/11/10
Drilling Company: RSI Drilling
Drilled By: Artemio Villagus
Drilling Method: Direct Push
Sampling Method: Continuous Sampler

Depth Drilled: 20 Feet
Depth To Groundwater

☑ Initial:
☑ Static:

_									
Sample Mimbor	Blow Count		Sample Interval	Soil Socription Socription	Topic constitution	Graphic Representation	Depth In Feet	Boring Construction	Comments
		2 2 2 2 2		SILTY CLAY, dark gray, organic cdor, low plasticity, moderately stiff, damp, slight odor. SANDY GRAVELLY CLAY, light gray, well graded, subrounded sand, coarse grained gravel, very angular gravel, slight plasticity, soft, damp, no odor. SANDY SILT, moderate yellowish brown, well graded, fine grained sand, angular sand, moderately dense, dry, no odor. SILT with GRAVEL and SAND, light gray, poorly graded, fine grained sand, medium grained gravel, angular sand and gravel, dense, damp, no odor. Total depth = 20 feet.		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8		Native Soit 3-inch Borehole Grouted To Surface Grade

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California Date Drilled: 11/11/10
Drilling Company: RSI Drilling
Drilled By: Artemio Villagus
Drilling Method: Direct Push
Sampling Method: Continuous

Depth Drilled: 25 Feet
Depth To Groundwater

✓ Initial:

✓ Static:

Solid Description Soli										
well graded, medium grained sand, angular sand and gravel, moderately dense, damp, no odor. Native Soil Moderate to strong odor. SANDY SILT, moderately yellowish brown, well graded, fine grained sand, angular sand, moderately dense, damp, slight odor. SANDY CLAYEY SILT, moderate yellowish brown with gray gray mottling, well graded, fine grained sand, angular sand, slight plasticity, dense, saft, dry, slight odor. SILT with GRAVEL and SAND, light gray, fine grained sand and gravel, angular sand and gravel, angular sand and gravel. SILT with GRAVEL and SAND, light gray, fine grained sand and gravel, angular sand and gravel. SILT, light gray. Total depth = 25 feet.	Sample Mumber	Blow Count	PID Reading In ppm	Sample Interval		USCS Classification	Graphic Representation	Depth In Feet	Boring Construction	Comments
28 29 29 30 Page 1 of 1			785 52 4.0 0	3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 12 20 21 12 22 23 24 25 25 26 27 28	Moderate to strong odor. SANDY SILT, moderately yellowish brown, well graded, fine grained sand, angular sand, moderately dense, damp, slight odor. SANDY CLAYEY SILT, moderate yellowish brown with gray mottling, well graded, fine grained sand, angular sand, slight plasticity, dense, soft, dry, slight odor. SILT with GRAVEL and SAND, light gray, fine grained sand and gravel, angular sand and gravel.			115		3—inch Borehole Grouted To Surface Grade

Well Number: MW-4

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California Date Drilled: 11/11/10
Drilling Company: RSI Drilling
Drilled By: Artemio Villagus
Drilling Method: Hollow—Stem Auger
Sampling Method: Continuous Sampler

Depth Drilled: 15 Feet Depth To Groundwater

☑ Initial: **▼** Static:

				Softpling Melliod, Contillious Sa	whie	,1			
Sample Number	Blow Count	PID Reading In ppm	Sample interval	Soil Description	USCS Classification	Graphic Representation	Depth in Feet	Well Construction	Comments
		77.4	5 6 7 7 8 9 10 11 12 13 14 15 16	SILTY SANDY CLAY, dark gray, organic odor, fine grained sand, angular sand, low plasticity, moderately dense, soft, damp, slight odor. SANDY SILT, moderate yellowish brown, fine grained sand, angular sand, dense, dry, moderate odor. GRAVELLY SANDY SILT, slight odor. Refusal. Cemented SILT with SAND and GRAVEL, probed to 15 feet, fine grained sand, very fine grained gravel, very dense, dry, no odor. Total depth = 15 feet.	ML		1		Grout Bentonite Seal 2-Inch Sch 40 PVC Flush Thread Casing #3 Monterey Sand 2-Inch Sch 40 PVC 0.020-Inch Slotted Screen

Well Number: MW-5

Project Number: SNS.18281

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California Drilled: 11/11/10
Drilling Company: RSI Drilling
Drilled By: Artemia (m)
Drilling (m)

Drilled By: Artemic Villagus
Drilling Method: Hollow—Stem Auger
Sampling Method: Continuous Sampler

Depth Drilled: 15 Feet Depth To Groundwater

고 Initial: **▼** Static:

				Sampling Method: Continuous San	nple	r			
Sample Number	Blow Count	PID Reading In ppm	Sample Interval	Soil Description	USCS Classification	Graphic Representation	Depth In Feet	Well Construction	Comments
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	SILTY SANDY CLAY, dark gray, well graded, fine grained sand, angular sand, slight plasticity, moderately stiff, damp, no odor. SANDY SILT with GRAVEL, moderate yellowish brown, well graded, fine grained sand, medium grained gravel, subangular sand, angular gravel, moderately dense, damp, no odor. Moderate odor. No recovery — cemented.	CL		1		

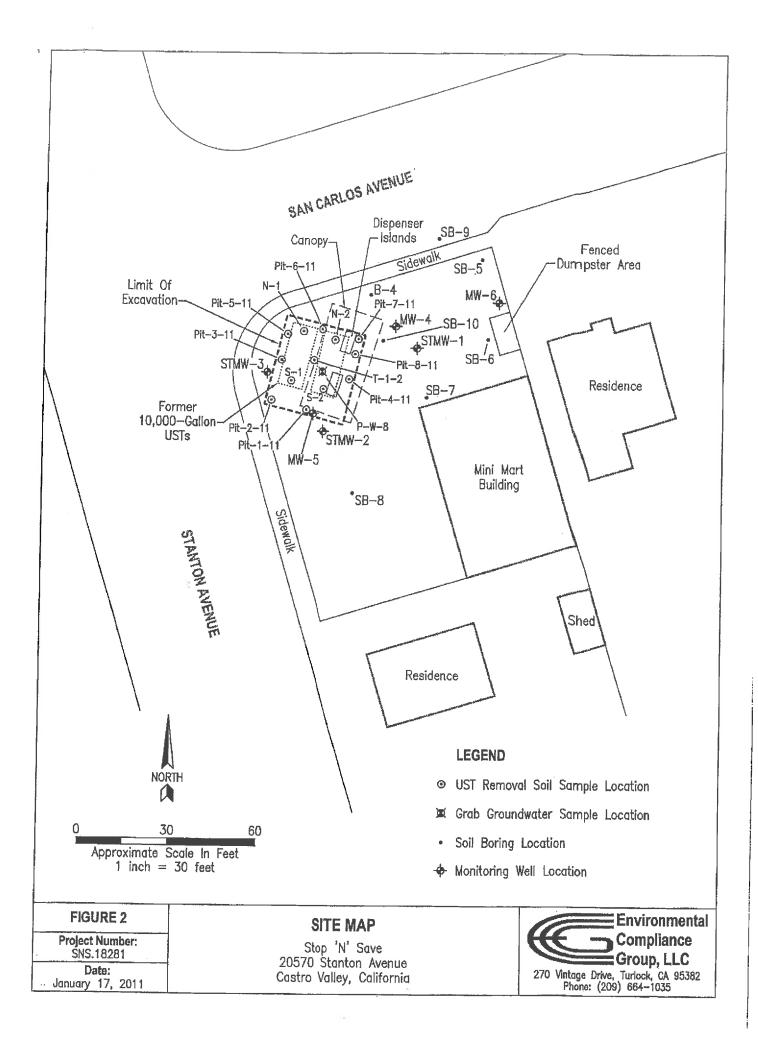
Well Number: MW-6

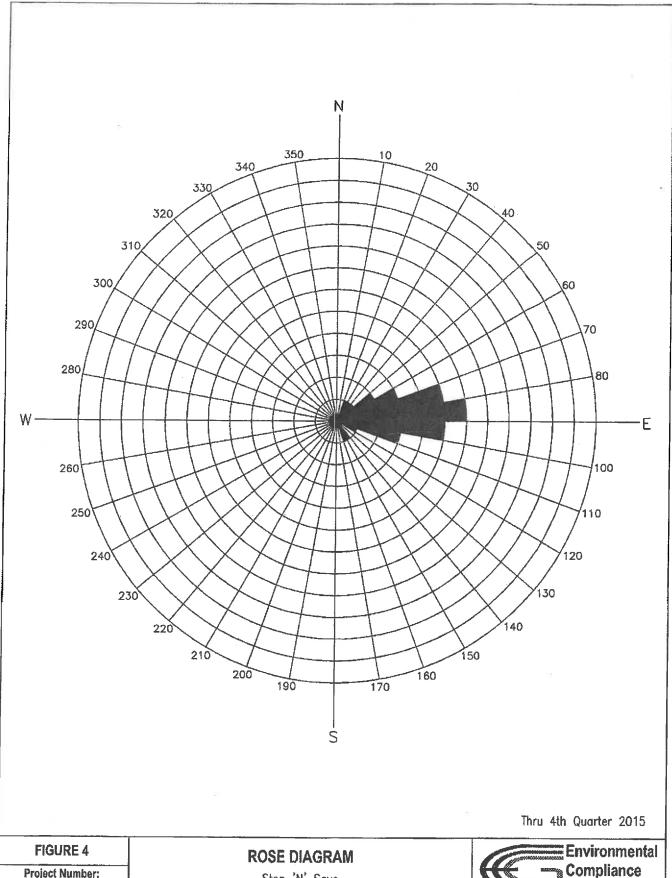
Project Number: SNS.18281

Environmental Compliance Group, LLC

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

Drilling Company: RSI Drilling Drilled By: Artemia Villing Drilling Villing Vi

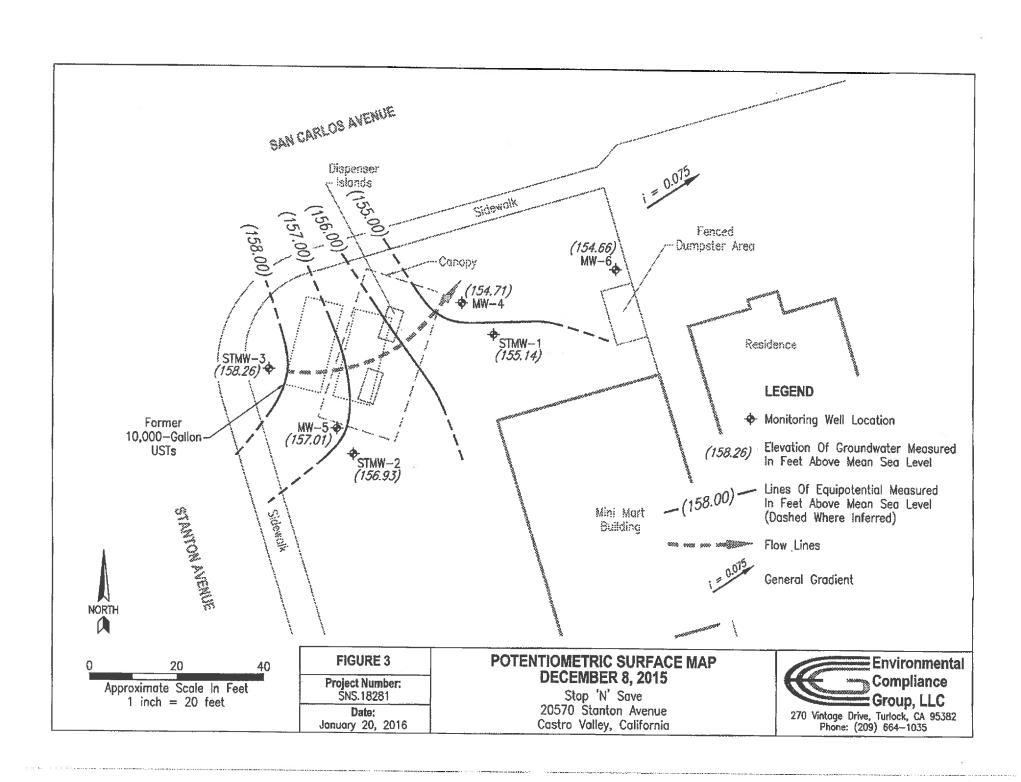

Drilled By: Artemio Villagus
Drilling Method: Hollow—Stem Auger
Sampling Method: Continuous Sampler

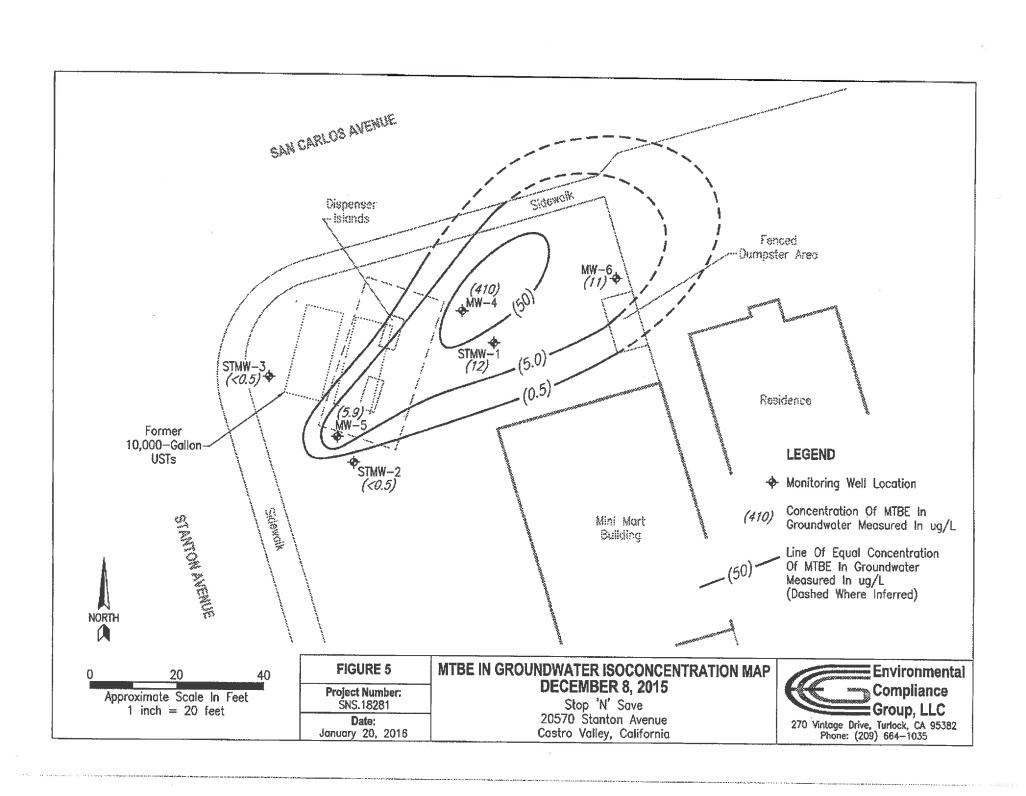

Depth Drilled: 15 Feet Depth To Groundwater \(\siz\) Initial:

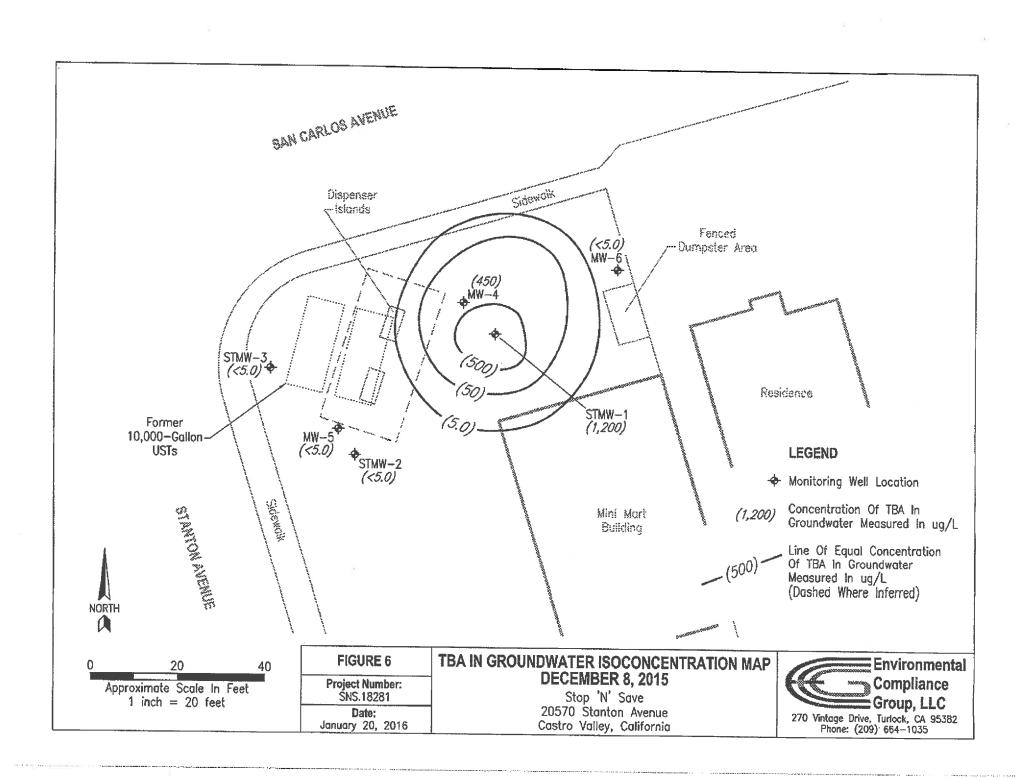
▼ Static:

Sumpling woulder Sumpler										
Sample Number Blow Count	PID Reading in ppm	Sample Interval	Soil Description	USCS Classification	Graphic Representation	Depth In Feet	Well Construction	Comments		
	1 1 1 1 1 1	7 8 9 0 0 11 2 2 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SILTY SANDY CLAY, dark gray, well graded, fine grained sand, angular sand, fine grained sand, angular sand, moderately graded, fine grained sand, angular sand, moderately dense, dry, slight odor. SANDY SILT, moderate yellowish brown. Cemented — no recovery. Total depth = 15 feet.	SW		1 2 3 4 5 5 6 6 7 7 10 11 11 11 11 11 11 11 11 11 11 11 11		Bentonite Seal 2-Inch Sch 40 PVC Flush Thread Casing 43 Monterey Sand 2-Inch Sch 40 PVC 0.020-Inch Slotted Screen		

ATTACHMENT 10






Project Number: SNS.18281

Date: Jonuary 20, 2016 Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

Table 1 Well Construction Details

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well ID	Date Installed	TOC Elevation (ft ams!)	Total Depth (ft bgs)	Casing Diameter (inches)	Casing Material	Screen/ Filter	Screen Interval (ft bgs)
Monitoring	Wells						
STMW-1	October	163.76	23	2	PVC	0.020/#3	9-23
STMW-2	2000	164.94	22	2	PVÇ ·	0.020/#3	9-22
STMW-3		165.48	22	2	PVC	0.020/#3	9-22
MW-4	November	163.94	13	2	PVC	0.020/#3	5-13
MW-5	2010	165.31	15	2	PVC	0.020/#3	5-15
MW-6		163.19	15	2	PVC	0.020/#3	5-15

Notes:

TOC - denotes top-of-casing

ft - denotes feet

amsi - denotes above mean sea level

bgs - denotes below ground surface

- denotes no data

pvc - denotes polyvinyl chloride

Table 3a Grab Groundwater Sample Results TPH and BTEX

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Sample ID	Date Measured	Sample Depth (ft bgs)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
UST Pit Sar	nples						
P-W-8	July 2000	11	110	2.6	0.83	0.95	1.7
Soil Boring	Samples					!	
SB-7	November	10	790	6.3	2.1	5.7	19
SB-9	2010	20	<50	<0.5	<0.5	<0.5	<1.0

Notes:

TPHg - denotes total petroleum hydrocarbons as gasoline

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

* - denotes approximate depth based on tank diameter and sample notes

Table 3b Grab Groundwater Sample Results Oxygenates and Lead Scavengers

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Sample ID	Date Measured	Sample Depth (ft bgs)	DIPE (ug/L)	ETBE (ug/L)	MTBE (ug/L)	TAME (ug/L)	TBA (ug/L)	1,2-DCA	EDB
UST Pit San	nples					1-0/-/	(48/1)	(ug/L)	(ug/L)
P-W-8	July 2000	11	_		470		I		
Soil Boring	Samples				130				
5B-7	Mousehan	10	40 F						
SB-9	November		<0.5	<0.5	4.0	<0.5	14	<0.5	<0.5
9-9	2010	20	<0.5	<0.5	<0.5	<0.5	<5.0		
						10.5	\3.0	<0.5	<0.5

Notes:

ug/L - denotes micrograms per liter

<- denotes less than the detection limit

DCA - denotes dichloroethane

EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

* - denotes approximate depth based on tank diameter and sample notes

DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

TABLE 2 GROUNDWAFER MONITORING DATA (feet) AND ANALYTICAL RESULTS (mg/L)

Date	Well No./ Elevation	Depth of Well	Depth to Perf.	Depth to Water	GW Elev.	Well Observation	ТРН	VOC's (EPA 8260B)
10/04/00	\$11.4W-1 (97.93)	23	14	8.34	89.59	No sheen Light petroleum odor	60	Methyl-tert-butyl Ether 69
[SEX BOARD	STMW-2 (99.04)	. 22	13	8.22	90.82	No sheen or odor	0.069	Methyl-tert-butyl Ether 0.066
	STMW-3 (99.60)	22	13	8.42	91.18	No sheen or odor	ND<0.05	None Detected<0.0005

TPHg - Total Petroleum Hydrocarbons as gasoline GW Elev. - Groundwater Elevation ND - Not Detected (Below Laboratory Detection Limit) VOC's - Volatile Organic Compounds Perf. - Perforation

Table 4a Monitoring Well Data Water Level, TPH, and BTEX Stop N Save Inc.

20570 Stanton Avenue Castro Valley, California

Well ID (TOC)	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsi)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
STMW-1	10/4/2000	8.34	155.42	60,000	<2,500	<2,500	<2,500	<2,500
163.76	1/4/2001	7.86	155.90	71,000	<2,500	<2,500	<2,500	<5,000
	3/16/2004	5.70	158.06	260	52	64	7.9	27
	7/5/2004	4.82	158.94	2,100	17	240	2.6	12
	12/28/2004	6.82	156.94	310	89	90	11	43
	3/24/2005	5,63	158.13	630	43	140	16	110
	7/20/2005	5.75	158.01	330	12	22	<2.5	9.3
	9/15/2005	7.44	156.32	15,000	<100	<100	<100	<100
	12/12/2005	5.32	158.44	130	4.4	7.5	<1.0	3
	3/16/2006	3.90	159.86	<50	0.9	3.3	<0.5	<0.5
	6/22/2006	7.12	156.64	130	4.4	54	<1.0	7.1
	9/21/2006	7.78	155.98	880	110	32	18	110
1	12/18/2006	9.12	154.64	240	7:5	130	1.4	7.6
	3/22/2007	6.82	156.94	190	17	13	2.9	14
	6/29/2007	9.86	153.90	2,700	340	45	52	310
į	9/28/2007	6.88	156.88	1,000	85	2.5	11	72
į	12/20/2007	7.81	155.95	690	92	<5.0	<5.0	36
	3/27/2008	7.37	156.39	160	36	0.92	<0.50	5.1
Į	6/6/2008	7.98	155.78	170	44	<5.0	<5.0	<15
	8/14/2008	8.50	155.26	<1,000	24	<10	<10	<20
	12/30/2008	7.85	155.91	<100	2.6	<1.0	<1.0	<2.0
	3/6/2009	7.48	156.28	57	<5.0	<5.0	<5.0	<15
	6/12/2009	7.92	155.84	70	<5.0	<5.0	<5.0	<15
	12/1/2009	8.20	155.56	<50	<5.0	<5.0	<5.0	<15
	9/20/2010	8.44	155:32	<500	<5.0	<5.0	<5.0	<10
L	11/30/2010	7.71	156.05	<500	<5.0	<5.0	<5.0	<10
_	3/8/2011	7.26	156.50	<500	<5.0	14	<5.0	<10
L	9/23/2011	8.60	155.16	<250	<2.5	<2.5	<2.5	<5.0
	3/30/2012	7.31	156.45	<250	<2.5	<2.5	<2.5	<5.0
	8/24/2012	8.60	155.16	<50	<2.5	<2.5	<2.5	<5.0
L	3/22/2013	8.10	155.66	<50	<0.5	<0.5	<0.5	<1.0
L	9/24/2013	8.78	154.98	<50	<0.5	<0.5	<0.5	<1.0
	3/28/2014	7.92	155.84	70	<2.5	<2.5	<2.5	<5.0
	9/23/2014	9.05	154.71	<50	<1.0	<1.0	<1.0	<2.0
	6/10/2015	8.48	155.28	<250	<50	<50	<50	<100
	12/8/2015	8.62	155.14	<50	<5.0	<5.0	<5.0	<50

Table 4a Monitoring Well Data Water Level, TPH, and BTEX

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well	Date Measured	Depth to Groundwater	Groundwater Elevation	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes
(TOC)		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
STMW-2	10/4/2000	8.22	156.72	69	<5.0	<5.0	<5.0	<5.0
164.94	1/4/2001	6.70	158.24	110	<5.0	<5.0	<5.0	<5.0
	3/16/2004	6.08	158.86	1,100	<10	<10	<10	<20
	7/5/2004	6.86	158.08	1,800	<10	<10	<10	<20
	12/28/2004	6.22	158.72	1,000	<13	<13	<13	<13
	3/24/2005	5.12	159.82	760	<5.0	<5.0	<5.0	<5.0
	7/20/2005	5.66	159.28	64	<1.0	<1.0	<1.0	<1.0
	9/15/2005	6.14	158.80	53	<1.0	<1.0	<1.0	<1.0
	12/12/2005	6.68	158.26	<50	2.2	<0.5	0.6	<0.5
	3/16/2006	5.54	159.40	<50	<0.5	<0.5	<0.5	<0.5
	6/22/2006	6.02	158.92	<50	<0.5	<0.5	<0.5	<0.5
	9/21/2006	6.94	158.00	<50	<0.5	<0.5	<0.5	<0.5
	12/18/2006	6.46	158.48	<50	<0.5	<0.5	<0.5	<0.5
20	3/22/2007	6.16	158.78	<50	<0.5	<0.5	<0.5	<0.5
į	6/29/2007	9.06	155.88	<50	<0.5	<0.5	<0.5	<0.5
	9/28/2007	7.63	157.31	<50	<0.5	<0.5	<0.5	<1.0
	12/20/2007	7.43	157.51	<50	<0.5	<0.5	<0.5	<1,0
	3/27/2008	6.16	158.78	<50	<0.50	<0.50	<0.50	<1.5
	6/6/2008	7.09	157.85	<50	<0.50	<0.50	<0.50	<1.5
	8/14/2008	7.85	157.09	<50	<0.5	<0.5	<0.5	<1.0
	12/30/2008	7.52	157.42	<50	<0.5	<0.5	<0.5	<1.0
	3/6/2009	6.90	158.04	<50	<0.50	<0.50	<0.50	<1.5
	6/12/2009	6.65	158.29	<50	<0.50	<0.50	<0.50	<1.5
	12/1/2009	7.43	157.51	<50	<0.50	<0.50	<0.50	<1.5
	9/20/2010	7.58	157.36	<50	<0.50	<0.50	<0.50	<1.0
	11/30/2010	6.94	158.00	<50	<0.50	<0.50	<0.50	<1.0
	3/8/2011	6.00	158.94	<50	<0.50	<0.50	<0.50	<1.0
	9/23/2011	7.68	157.26	<50	<0.50	<0.50	<0.50	<1.0
	3/30/2012	5.99	158.95	<50	<0.50	<0.50	<0.50	<1.0
	8/24/2012	7.75	157.19	<50	<0.50	<0.50	<0.50	<1.0
	3/22/2013	7.14	157.80	<50	<0.5	<0.5	<0.5	<1.0
	9/24/2013	8.16	156.78	<50	<0.5	<0.5	<0.5	<1.0
	3/28/2014	7.76	157.18	<50	<0.5	<0.5	<0.5	<1.0
	9/23/2014	8.31	156.63	<50	<0.5	<0.5	<0.5	<1.0
L	6/10/2015	7.88	157.06	<50	<0.5	<0.5	<0.5	<1.0
	12/8/2015	8.01	156.93	<50	<0.5	<0.5	<0.5	<1.0

Table 4a Monitoring Well Data Water Level, TPH, and BTEX

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well ID (TOC)	Date Measured	Depth to Groundwater (ft bgs)	Groundwater Elevation (ft amsl)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Total Xylenes (ug/L)
				(-6/-/	1 (-8/-/	[(ug/ L)	(ug/ c/	(ug/L)
STMW-3	10/4/2000	8.42	157.06	<50	<5.0	<5.0	<5.0	<5.0
165.48	1/4/2001	6.16	159.32	<50	<5.0	<5.0	<5.0	<5.0
	3/16/2004	7.18	158.30	<50	<0.5	<0.5	<0.5	<1.0
	7/5/2004	6.27	159.21	<25	<0.5	<0.5	<0.5	<1.0
	12/28/2004	5.64	159.84	<25	<0.5	<0.5	<0.5	<0.5
	3/24/2005	5.12	160.36	<25	<0.5	<0.5	<0.5	<0.5
	7/20/2005	5.50	159.98	<50	<0.5	<0.5	<0,5	<0.5
	9/15/2005	5.56	159.92	<50	<0.5	<0.5	<0.5	<0.5
	12/12/2005	6.26	159.22	<50	<0.5	<0.5	<0.5	<0.5
7	3/16/2006	5.14	160.34	<50	<0.5	<0.5	<0.5	<0.5
	6/22/2006	5.92	159.56	<50	<0.5	<0.5	<0.5	<0.5
	9/21/2006	6.14	159.34	<50	<0.5	<0.5	<0.5	<0.5
	12/18/2006	5.50	159.98	<50	<0.5	<0.5	<0.5	<0.5
	3/22/2007	5.88	159.60	<50	<0.5	<0.5	<0.5	<0.5
	6/29/2007	8.82	156.66	<50	<0.5	<0.5	<0.5	<0.5
	9/28/2007	8.14	157.34	<50	<0.5	<0.5	<0.5	<1.0
	12/20/2007	6.56	158.92	<50	<0.5	<0.5	<0.5	<1.0
	3/27/2008	6.21	159.27	<50	<0.50	<0.50	<0.50	<1.5
	6/6/2008	6.84	158.64	<50	<0.50	<0.50	<0.50	<1.5
	8/14/2008	7.34	158.14	<50	<0.5	<0.5	<0.5	<1.0
-	12/30/2008	6.45	159.03	<50	<0.5	<0.5	<0.5	<1.0
L	3/6/2009	5.06	160.42	<50	<0.50	<0.50	<0.50	<1.5
	6/12/2009	6.54	158.94	<50	<0.50	<0.50	<0.50	<1.5
-	12/1/2009	6.79	158.69	<50	<0.50	<0.50	<0.50	<1.5
1	9/20/2010	7.14	158.34	<50	<0.50	<0.50	<0.50	<1.0
-	11/30/2010	6.20	159.28	<50	<0.50	<0.50	<0.50	<1.0
-	3/8/2011	5.61	159.87	<50	<0.50	<0.50	<0.50	<1.0
	9/23/2011	7.34	158.14	<50	<0.50	<0.50	<0.50	<1.0
_	3/30/2012	5.32	160.16	<50	<0.50	<0.50	<0.50	<1.0
	8/24/2012	7.41	158.07	<50	<0.50	<0.50	<0.50	<1.0
	3/22/2013	6.67	158.81	<50	<0.5	<0.5	<0.5	<1.0
Ļ	9/24/2013	7.47	158.01	<50	<0.5	<0.5	<0.5	<1.0
	3/28/2014	5.41	160.07	<50	<0.5	<0.5	<0.5	<1.0
_	9/23/2014	7.75	157.73	<50	<0.5	<0.5	<0.5	<1.0
	6/10/2015	6.98	158.50	<50	<0.5	<0.5	<0.5	<1.0
	12/8/2015	7.22	158.26	<50	<0.5	<0.5	<0.5	<1.0

Table 4a
Monitoring Well Data
Water Level, TPH, and BTEX
Stop N Save Inc.
20570 Stanton Avenue
Castro Valley, California

Well	Date	Depth to	Groundwater				Ethyl-	Total
(TOC)	Measured	Groundwater	Elevation	TPHg	Benzene	Toluene	benzene	Xylenes
(100)		(ft bgs)	(ft amsl)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-4	11/30/2010	8.18	155.76	2,700	56	30	46	430
163.94	3/8/2011	7.23	156.71	1,900	350	25	29	140
	9/23/2011	8.46	155.48	<1,000	120	<10	22	<20
	3/30/2012	9.27	154.67	<1,200	26	<12	<12	<25
	8/24/2012	10.58	153.36	330	<10	<10	<10	<20
	3/22/2013	7.95	155.99	290	16	<5.0	<5.0	<10
	9/24/2013	10.10	153.84	390	<5.0	<5.0	<5.0	<10
	3/28/2014	7.72	156.22	280	6.1	<5.0	6.1	<10
	9/23/2014	8.40	155.54	<50	<2.0	<2.0	<2.0	<4.0
	6/10/2015	7.77	156.17	150	<50	· <50	<50	<100
	12/8/2015	9.23	154.71	<50	<1.0	<1.0	<1.0	<2.0
MW-5	11/30/2010	7.68	157.63	200	1.8	<0.50	2.1	4.1
165.31	3/8/2011	6.24	159.07	130	8.8	<0.50	6.7	<1.0
	9/23/2011	7.71	157.60	160	6.7	<0.50	8.4	1.5
	3/30/2012	6.59	158.72	120	7.8	<0.50	6.9	<1.0
	8/24/2012	7.90	157.41	58	3.9	<0.50	4.8	<1.0
	3/22/2013	7.35	157.96	95	1.7	<0.5	1.5	<1.0
	9/24/2013	8.41	156.90	<50	<0.5	<0.5	<0.5	<1.0
	3/28/2014	7.46	157.85	<50	<0.5	<0.5	<0.5	<1.0
	9/23/2014	8.48	156.83	<50	<0.5	<0.5	<0.5	<1.0
i	6/10/2015	7.61	157.70	<50	<0.5	<0.5	<0.5	<1.0
	12/8/2015	8.30	157.01	<50	<0.5	<0.5	<0.5	<1.0
MW-6	11/30/2010	7.70	155.49	<50	<0.50	<0.50	<0.50	<1.0
163.19	3/8/2011	7.09	156.10	<50	<0.50	<0.50	<0.50	<1.0
	9/23/2011	8.60	154.59	<50	<0.50	<0.50	<0.50	<1.0
	3/30/2012	7.35	155.84	<50	<0.50	<0.50	<0.50	<1.0
	8/24/2012	8.72	154.47	<50	<0.50	<0.50	<0.50	<1.0
	3/22/2013	8.05	155.14	<50	<0.5	<0.5	<0.5	<1.0
	9/24/2013	8.82	154.37	<50	<0.5	<0.5	<0.5	<1.0
	3/28/2014	7.90	155.29	<50	<0.5	<0.5	<0.5	<1.0
	9/23/2014	9.15	154.04	<50	<0.5	<0.5	<0.5	<1.0
-	6/10/2015	8.22	154.97	<50	<0,5	<0.5	<0.5	<1.0
	12/8/2015	8.53	154.66	<50	<0.5	<0.5	<0.5	<1.0

Notes:

Table 4a Monitoring Well Data Water Level, TPH, and BTEX Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

TPHg - denotes total petroleum hydrocarbons as gasoline

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well	Date							
ID	Measured	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
STMW-1	10/4/2000			69,000		<10,000		
97.93	1/4/2001		_	89,000	===			***
	3/16/2004	***		39		<20,000 <10		
	7/5/2004			520	427			****
	12/28/2004			32	1	<50		
	3/24/2005			20		<20 <20	***	
	7/20/2005			310	1		***	
i	9/15/2005			13,000		<50		
Ì	12/12/2005				***	2,500	***	
	3/16/2005			170		100		
	6/22/2006			70		<10		A-1-
	9/21/2006					<20		
ŀ	12/18/2006		-	1,600		2,300		
ŀ	3/22/2007			130		180		
ŀ	6/29/2007			360		170	r ree	
ŀ	9/28/2007		-5.5	3,100		2,200		
}	12/20/2007	<2.5 <5.0	<2.5	1,000	<2.5	5,300	<2.5	<2.5
ŀ	3/27/2008		<5.0	1,200	<5.0	15,000	<5.0	<5.0
-		<1.0	<1.0	590	<1.0	4,900	<1.0	<1.0
-	6/6/2008	<10	<10	1,000	<10	5,700	<10	<10
-	8/14/2008	<10	<10	450	<10	10,000	<10	<10
ŀ	12/30/2008	<1.0	<1.0	84	<1.0	7,700	<1.0	<1.0
-	3/6/2009	<10	<10	340	<10	5,400	<10	<10
-	6/12/2009	<10	<10	170	<10	5,000	<10	<10
-	12/1/2009	<10	<10	42	<10	5,600	<10	<10
	9/20/2010	<5.0	<5.0	51	<5.0	8,100	<5.0	<5.0
ŀ	11/30/2010	<5.0	<5.0	42	<5.0	4,100	<5.0	<5.0
-	3/8/2011	<5.0	<5.0	66	<5.0	3,800	<5.0	<5.0
-	9/23/2011	<2.5	<2.5	30	<2.5	4,800	<2.5	<2.5
-	3/30/2012	<2.5	<2.5	40	<2.5	4,700	<2.5	<2.5
-	8/24/2012	<2.5	<2.5	33	<2.5	5,500	<2.5	<2.5
-	3/22/2013	<0.5	<0,5	23	<0.5	2,500	<0.5	<0.5
-	9/24/2013	<0.5	<0.5	270	21	56	16	<0.5
-	3/28/2014	<2.5	<2.5	37	<2.5	2,400	<2.5	<2.5
<u> </u>	9/23/2014	<1.0	<1.0	17	<1.0	1,500	<1.0	<10
	6/10/2015	<50	<50	69	<50	2,800	<50	<50
	12/8/2015	<5.0	<5.0	12	<5.0	1,200	<5.0	<5.0

Page 1 of 5 SNS.18281

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well	Date					T		
ID	Measured	DIPE (ug/L)	ETBE (ug/L)	MTBE (ug/L)	TAME (ug/L)	TBA (ug/L)	1,2-DCA (ug/L)	EDB (ug/L)
STMW-2	10/4/2000			66		<20	404	A25
99.04	1/4/2001		***	120		<20	M above	
	3/16/2004		***	1,700		<200		
	7/5/2004		444	1,800		<200		***
	12/28/2004	7777		1,400	===	<250		
	3/24/2005	***	***	930		180		
	7/20/2005	***		43		920		
ļ	9/15/2005			88		130		
	12/12/2005			23	400	22		
	3/16/2005	***		34		150		
Į.	6/22/2006		_	12		200		
	9/21/2006			16		41		
	12/18/2006			15		71		
	3/22/2007			15		71		
	6/29/2007			14		<10		
	9/28/2007	<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5
	12/20/2007	<0.5	<0.5	6.2	<0.5	54	<0.5	<0.5
	3/27/2008	<1.0	<1.0	14	<1.0	<12	<1.0	<1.0
	6/6/2008	<1.0	<1.0	5.6	<1.0	<12	<1.0	<1.0
L	8/14/2008	<0.5	<0.5	2.0	<0.5	<5.0	<0.5	<0.5
	12/30/2008	<0.5	<0.5	8.6	<0.5	<5.0	<0.5	<0.5
	3/6/2009	<1.0	<1.0	3.0	<1.0	<12	<1.0	<1.0
	6/12/2009	<1.0	<1.0	3.8	<1.0	<12	<1.0	<1.0
L	12/1/2009	<1.0	<1.0	5.4	<1.0	<12	<1.0	<1.0
	9/20/2010	<0.5	<0.5	4.2	<0.5	<5.0	<0.5	<0.5
	11/30/2010	<0.5	<0.5	2.2	<0.5	<5.0	<0.5	<0.5
	3/8/2011	<0.5	<0.5	1.5	<0.5	<5.0	<0.5	<0.5
L	9/23/2011	<0.5	<0.5	3.0	<0.5	<5.0	<0.5	<0.5
	3/30/2012	<0.5	<0.5	1.7	<0.5	<5.0	<0.5	<0.5
L	8/24/2012	<0.5	<0.5	2.4	<0.5	7.5	<0.5	<0.5
	3/22/2013	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	9/24/2013	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	3/28/2014	<0.5	<0.5	0.6	<0.5	54	<0.5	<0.5
	9/23/2014	<0.5	<0.5	1.4	<0.5	<5.0	<0.5	<0.5
	6/10/2015	<0.5	<0.5	2.2	<0.5	<5.0	<0.5	<0.5
	12/8/2015	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well	Date							
ID	Measured	DIPE	ETBE	MTBE	TAME	ТВА	1,2-DCA	EDB
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
STMW-3	10/4/2000	***		<5.0		<20		
99.60	1/4/2001			<5.0		<20		
	3/16/2004	***		2.8				
	7/5/2004	***		2.5		<10		
	12/28/2004	***		2.0		<10		
	3/24/2005			1.4		<10		
	7/20/2005				7	<10		***
	9/15/2005			1.5		<10		
	12/12/2005					<10		
	3/16/2005		***	<1.0		<10		
ŀ	6/22/2006		•••	<1.0		<10		
ŀ	9/21/2006		***	<1.0		<10		
ŀ	12/18/2006			<1.0		<10		
ŀ	3/22/2007	***	***	<1.0	***	<10		
			***	<1.0		<10		
-	6/29/2007			<1.0		<10		
}	9/28/2007	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	12/20/2007	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
<u> </u>	3/27/2008	<1.0	<1.0	<1.0	<1.0	<12	<1.0	<1.0
-	6/6/2008	<1.0	<1.0	<1.0	<1.0	<12	<1.0	<1.0
-	8/14/2008	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
-	12/30/2008	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
-	3/6/2009	<1.0	<1.0	<1.0	<1.0	<12	<1.0	<1.0
-	6/12/2009	<1.0	<1.0	<1.0	<1.0	<12	<1.0	<1.0
	12/1/2009	<1.0	<1.0	<1.0	<1.0	<12	<1.0	<1.0
-	9/20/2010	<0.5	<0.5	0.6	<0.5	<5.0	<0.5	<0.5
-	11/30/2010	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
-	3/8/2011	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
L	9/23/2011	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
-	3/30/2012	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
-	8/24/2012	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
-	3/22/2013	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	9/24/2013	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
-	3/28/2014	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
_	9/23/2014	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
_	6/10/2015	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	12/8/2015	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well	Date		3		<u> </u>			
ID	Measured	DIPE (ug/L)	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-4	11/30/2010	<2.5	<2.5	510	<2.5	510	<2.5	<2.5
	3/8/2011	<10	<10	1,800	<10	1,200	<10	<10
	9/23/2011	<10	<10	3,100	<10	2,400	<10	<10
ļ	3/30/2012	<12	<12	2,100	<12	3,200	<12	<12
	8/24/2012	<10	<10	1,500	<10	2,900	<10	<10
	3/22/2013	<5.0	<5.0	690	<5.0	2,800	<5.0	<5.0
ļ	9/24/2013	<5.0	<5.0	720	<5.0	3,300	<5.0	<5.0
	3/28/2014	<5.0	<5.0	610	<5.0	3,000	<5.0	<5.0
	9/23/2014	<2.0	<2.0	200	<2.0	1,300	<2.0	<20
	6/10/2015	<50	<50	210	<50	1,200	<50	<50
	12/8/2015	<1.0	<1.0	410	<1.0	450	<1.0	<1.0
,								
MW-5	11/30/2010	<0.5	<0.5	62	<0.5	26	<0.5	<0.5
	. 3/8/2011	<0.5	<0.5	53	<0.5	14	<0.5	<0.5
	9/23/2011	<0.5	<0.5	50	<0.5	17	<0.5	<0.5
	3/30/2012	<0.5	<0.5	35	<0.5	13	<0.5	<0.5
	8/24/2012	<0.5	<0.5	26	<0.5	7.4	<0.5	<0.5
	3/22/2013	<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5
	9/24/2013	<0.5	<0.5	21	<0.5	<5.0	<0.5	<0.5
	3/28/2014	<0.5	<0.5	8.6	<0.5	<5.0	<0.5	<0.5
	9/23/2014	<0.5	<0.5	8.4	<0.5	<5.0	<0.5	<0.5
	6/10/2015	<0.5	<0.5	8.9	<0.5	<5.0	<0.5	<0.5
	12/8/2015	<0.5	<0.5	5.9	<0.5	<5.0	<0.5	<0.5
MW-6	11/30/2010	<0.5	<0.5	75	<0.5	<5.0	<0.5	<0.5
	3/8/2011	<0.5	<0.5	64	<0.5	<5.0	<0.5	<0.5
	9/23/2011	<0.5	<0.5	44	<0.5	<5.0	<0.5	<0.5
	9/23/2011	<0.5	<0.5	22	<0.5	<5.0	<0.5	<0.5
	8/24/2012	<0.5	<0.5	33	<0.5	<5.0	<0.5	<0.5
	3/22/2013	<0.5	<0.5	18	<0.5	<5.0	<0.5	′ <0.5
	9/24/2013	<0.5	<0.5	24	<0.5	<5.0	<0.5	<0.5
	3/28/2014	<0.5	<0.5	29	<0.5	<5.0	<0.5	<0.5
	9/23/2014	<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5
	6/10/2015	<0.5	<0.5	18	<0.5	<5.0	<0.5	<0.5
	12/8/2015	<0.5	<0.5	11	<0.5	<5.0	<0.5	<0.5

Notes:

ug/L - denotes micrograms per liter

< - denotes less than the detection limit

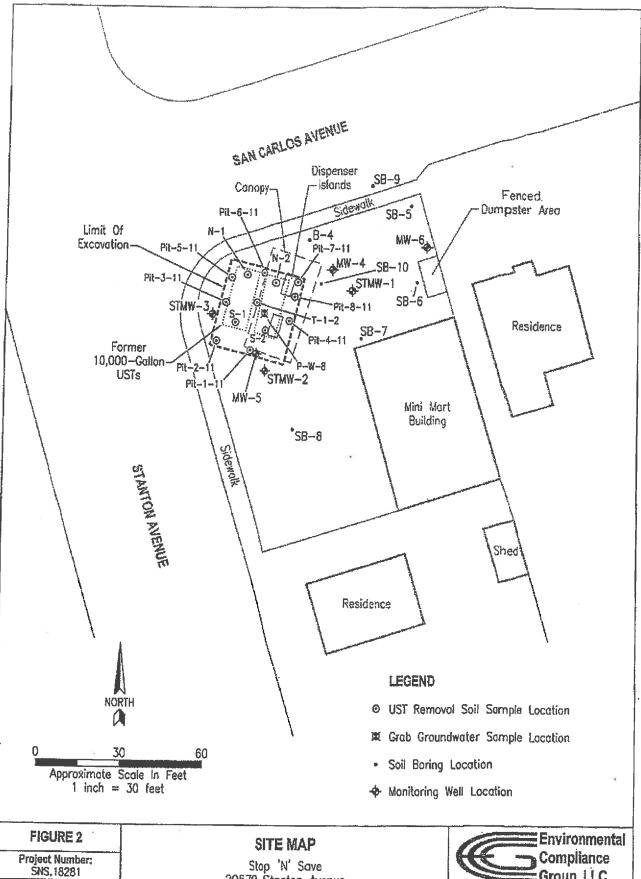
DIPE - denotes di-isopropyl ether

ETBE - denotes ethyl tertlary butyl ether

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Well	Date							
ID	Measured	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)

DCA - denotes dichloroethane


EDB - denotes ethylene dibromide

MTBE - denotes methyl tertiary butyl ether

TAME - denotes tertiary amyl ether

TBA - denotes tertiary butyl alcohol

ATTACHMENT 11

Date:

January 17, 2011

20570 Stanton Avenue Castro Valley, California

TABLE 1 SUMMARY OF STOCKPILED SOIL SAMPLES ANALYTICAL RESULTS PRIOR TO BIO-TREATMENT IN MILLIGRAM PER KILOGRAM (mg/Kg)

Date	Sample No.	TPHg		Т	E	Х		Total Lead
2/24/00	STP-1	1,100	4.2	22	12	110	12	6.4
	STP-2	470	0.31	2	2.9	29	ND <0.0005	11
	STP-3	160	ND <0.0005	0.33	0.61	6.7	ND <0.0005	ND<5
	STP-4	13	0.035	0.042	0.07	0.44	ND <0.0005	ND<5
	STP-5	18	0.014	0.063	0.14	1	ND <0.0005	ND<5

TPHg - Total Petroleum Hydrocarbons as gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Total Xylenes

MTBE - Methyl Tertiary Butyl Ether

ND - Not Detected (Below Laboratory Detection Limit)

TABLE 2 SUMMARY OF STOCKPILE SOIL SAMPLES ANALYTICAL RESULTS AFTER BIO-TREATMENT IN MILLIGRAM PER KILOGRAM

Date	Sample No.	ТРНд		Т	E	X		Total Lead
6/26/00	STP-1,2,3,4	ND<1	ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	12
	STP-5,6,7,8	ND<1	ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	6.1
	STP-9,10,11,12	ND<1	ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	ND <0.0005	8.5

TPHg - Total Petroleum Hydrocarbons as gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Total Xylenes

MTBE - Methyl Tertiary Butyl Ether

ND - Not Detected (Below Laboratory Detection Limit)

TABLE 1 SUMMARY OF SOIL SAMPLES ANALYTICAL RESULTS IN MILLIGRAM PER KILOGRAM (mg/Kg)

Date	Sample No.	Depth (feet)	Traig	EPA 82060B (VOC's)	Concentration for EPA 8260
9/20/2000	1-5	5	18	1,2,4-Trimethylbenzene	0.48
9/20/2000	[Methyl-tert-butyl Ether	1.5
				Xylenes, Total	1.1
	1-10	10	76	1,2,4-Trimethylbenzene	5:8 1.7
	1.10			1,3,5-Trimethylbenzene	1.7
				Methyl-tert-butyl Ether	1.6
				Naphthalene	2
				Xylenes, Total	7.7
9/21/2000	2-5	5	ND<1	None Detected	<0.0005
3/21/2000	2-10	10	ND<1	1,2,4-Trimethylbenzene	0.0095
	3-5	5	1.3	None Detected	<0.0005
	3-10	10	ND<1	None Detected	<0.0005
9/22/2000	4-5	5	ND<10	Methyl-tert-butyl Ether	0.3
9/22/2000	4-5			tert-Butanol	0.5
	4-10	10	ND<1	1,2,4-Trimethylbenzene	0.02
] ==10			Benzene	0,02
				Methyl-tert-butyl Ether	0.16

TPHg - Total Petroleum Hydrocarbons as gasoline EPA 8260B (VOC's) - Volatile Organic Compounds

Table 2a Historical Soil Analytical Data TPH and BTEX

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

	Sample					Ethyl-	Total
	Depth	Collection	TPHg	Benzene	Toluene	benzene	Xylenes
Sample ID	(feet)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Near Surface	e Samples						1 10 01
N-1	10*		5.6	0.07	0.26	0.15	0.98
N-2	10*	February	11	0.068	0.26	0.13	1.1
S-1	10*	2000	<1.0	<0.005	<0.005	<0.005	0.012
S-2	10*	2000	1.2	<0.005	<0.005	0.006	0.037
T-1-2	10*		71	0.22	0.47	0.49	3.7
Pit-1-11	11		91	0.38	0.35	1.6	8.4
Pit-2-11	11]	<1.0	<0.005	<0.005	<0.005	<0.005
Pit-3-11	11]	<1.0	<0.005	0.005	<0.005	0.038
Pit-4-11	11	July 2000	<1.0	<0.005	<0.005	<0.005	<0.005
Pit-5-11	11	July 2000	130	0.14	0.26	1.1	8.5
Pit-6-11	:-7-11 11		8.2	0.077	0.13	0.08	0.76
Pit-7-11			220	0.58	1.3	1.8	24
t-8-11 11			1,000	5.7	3.9	14	25
Soil Boring							
3-4	5	September	<1.0	<0.10	<0.10	<0.10	<0.10
3-4	10	2000	<1.0	0.02	<0.02	<0.02	<0.02
B-5-4	4		<1.0	<0.005	<0.005	<0.005	<0.005
B-5-8	8		<1.0	<0.005	<0.005	<0.005	<0.005
B-6-4	4	[2.6	0.093	<0.005	0.020	0.047
B-6-10	10	[24	<0.025	<0.025	0.17	0.50
B-7-8	8		<1.0	<0.005	<0.005	<0.005	<0.005
B-7-10	10	[<1.0	<0.005	<0.005	<0.005	<0.005
B-8 ₇ 4	4	November -	<1.0	<0.005	<0.005	<0.005	<0.005
B-8-10	10	2010	<1.0	<0.005	<0.005	<0.005	<0.005
B-9-4	4	2010	<1.0	<0.005	<0.005	<0.005	<0.005
B-9 - 12	12		<1.0	<0.005	<0.005	<0.005	<0.005
B-10-4	4		<1.0	<0.005	<0.005	<0.005	<0.005
3-10-8	8		150	<0.10	<0.10	0.70	4.9
3-10-12	12	Γ	<1.0	<0.005	<0.005	<0.005	<0.005
3-10-20	20		<1.0	<0.005	<0.005	<0.005	<0.005
3-10-25	25		<1.0	<0.005	<0.005	<0.005	<0.005

Table 2a Historical Soll Analytical Data TPH and BTEX

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Sample ID	Sample Depth (feet)	Collection Date	TPHg (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)
Monitoring W	/ells				3 01 01	(8/8/	(1118/148)
STMW-1	5		18	<0.25	<0.25	<0.25	1.1
STMW-1	10		76	<1.0	<1.0	<1.0	7.7
STMW-2	5	September	<1.0	<0.005	<0.005	<0.005	<0.005
STMW-2	10	2000	<1.0	<0.005	<0.005	<0.005	<0.005
STMW-3	5		1.3	<0.005	<0.005	<0.005	<0.005
STMW-3	10		<1.0	<0.005	<0.005	<0.005	<0.005
MW-4-4	4		8.3	0.038	<0.025	0.038	0.43
MW-4-8	8		4,300	7.2	76	49	440
MW-4-12	12	ſ	<1.0	<0.005	<0.005	<0.005	<0.005
MW-5-4	4	November -	<1.0	<0.005	<0.005	<0.005	<0.005
ИW-5-8	8		60	<0.050	<0.050	0.26	<0.10
/W-5-12	12	2010	<1.0	<0.005	<0.005	<0.005	<0.005
ЛW-6-4	4	r	<1.0	<0.005	<0.005	<0.005	<0.005
/IW-6-8	8	· [<1.0	<0.005	<0.005	<0.005	
1W-6-12	12		<1.0	<0.005	<0.005	<0.005	<0.005 <0.005
							.0.00.0

Notes:

TPHg - denotes total petroleum hydrocarbons as gasoline

mg/kg - denotes milligrams per kilogram

- < denotes less than the detection limit
- * denotes approximate depth based on tank diameter and sample notes

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

	Sample		T		T	7			
	Depth	Collection	DIPE	ETBE	MTBE	TAME	ТВА	1200	
Boring ID	(feet)	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg))	1,2-DCA	EDB
Near Surface	Soil Sample	es		10101	(1116/116/	/mg/kg/	(mg/kg)	(mg/kg)	(mg/k
N-1	10*		- merina		0.74	1	T	T	
N-2	10*	T			3.8				
S-1	10*	February			0.18	TOPE		0.6-10	
5-2	10*	2000			0.11	Mining			
Г-1-2	10*	7		7	1.2	****			
Pit-1-11	11		****		<0.005				
it-2-11	11	7			<0.005				
it-3-11	11	1			0.094		Bang .		
it-4-11	11	1							700
it-5-11	11	July 2000			<0.005				
it-6-11	11	1	****		<0.005	~==			
t-7-11	11	1			0.42				
it-8-11	11	1			<0.005				
oil Borings					16				~
-4	5	September	< 0.005	<0.005	<0.005	.0.007			
-4	10	2000	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	< 0.005
3-5-4	4		<0.005	<0.005		<0.005	<0.050	<0.005	<0.005
3-5-8	8	ŀ	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
-6-4	4		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
-6-10	10	-	<0.005		<0.005	<0.005	<0.050	<0.005	<0.005
-7-8	8	-	<0.025	<0.025	0.046	<0.025	<0.25	<0.025	<0.025
-7-10	10	<u> </u>	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
-8-4	4		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
-8-10	10	November -	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
9-4	4	2010	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
9-12	12		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	< 0.005
10-4	4	<u> -</u>	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
10-8	8	-	<0.10	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
10-12	12	-	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10	<0.10
10-20	20	<u> </u> -		<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
10-25	25		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
	27		<0.005	<0.005	<0.005	< 0.005	<0.050	< 0.005	<0.005

Table 2b Historical Soil Analytical Data Oxygenates and Lead Scavengers

Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Boring ID Monitoring W	Sample Depth (feet) /ells	Collection Date	DIPE (mg/kg)	ETBE (mg/kg)	MTBE (mg/kg)	TAME (mg/kg)	TBA (mg/kg)	1,2-DCA (mg/kg)	EDB (mg/kg)
STMW-1	5		<0.25	<0.25	1.5	<0.25		1	
STMW-1	10		<1.0	<1.0	1.6		<1.0	<0.25	<0.25
STMW-2	5	September		<0.005		<1.0	<4.0	<1.0	<1.0
STMW-2	10	2000	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
STMW-3	5]	<0.005		<0.005	<0.005	<0.050	< 0.005	<0.005
TMW-3	10	1		<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
VW-4-4	4		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
MW-4-8	8		<0.025	<0.025	2.1	< 0.025	1.3	<0.025	<0.025
/W-4-12	12		<4.0	<4.0	<4.0	<4.0	<40	<4.0	<4.0
1W-5-4	4	}	<0.005	<0.005	<0.005	< 0.005	<0.050	<0.005	<0.005
1W-5-8	8	November	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
1W-5-12	12	2010	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050	<0.050
1W-6-4		1	<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	
IW-6-8	4	Ĺ	<0.005	<0.005	<0.005	<0.005	<0.050		<0.005
	8	L	<0.005	< 0.005	<0.005	<0.005	<0.050	<0.005	<0.005
W-6-12	12		<0.005	<0.005	<0.005	<0.005	<0.050	<0.005	<0.005
						10,003	~0.050	<0.005	<0.005

Notes:

mg/kg - denotes milligrams per kilogram

-- - denotes not analyzed

< - denotes less than the detection limit

MTBE - denotes methyl tertlary butyl ether

1,2-DCA - denotes 1,2-dichloroethane

DIPE -

denotes di-Isopropyl ether

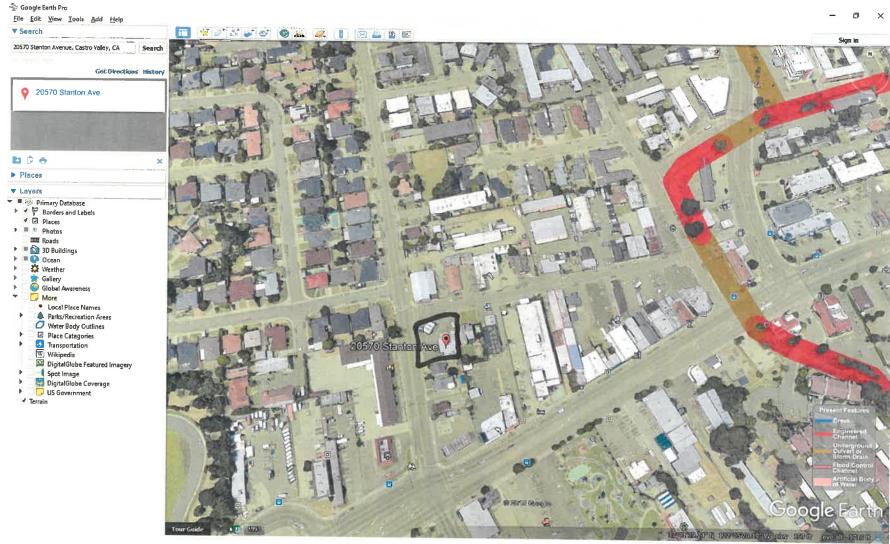
ETBE -

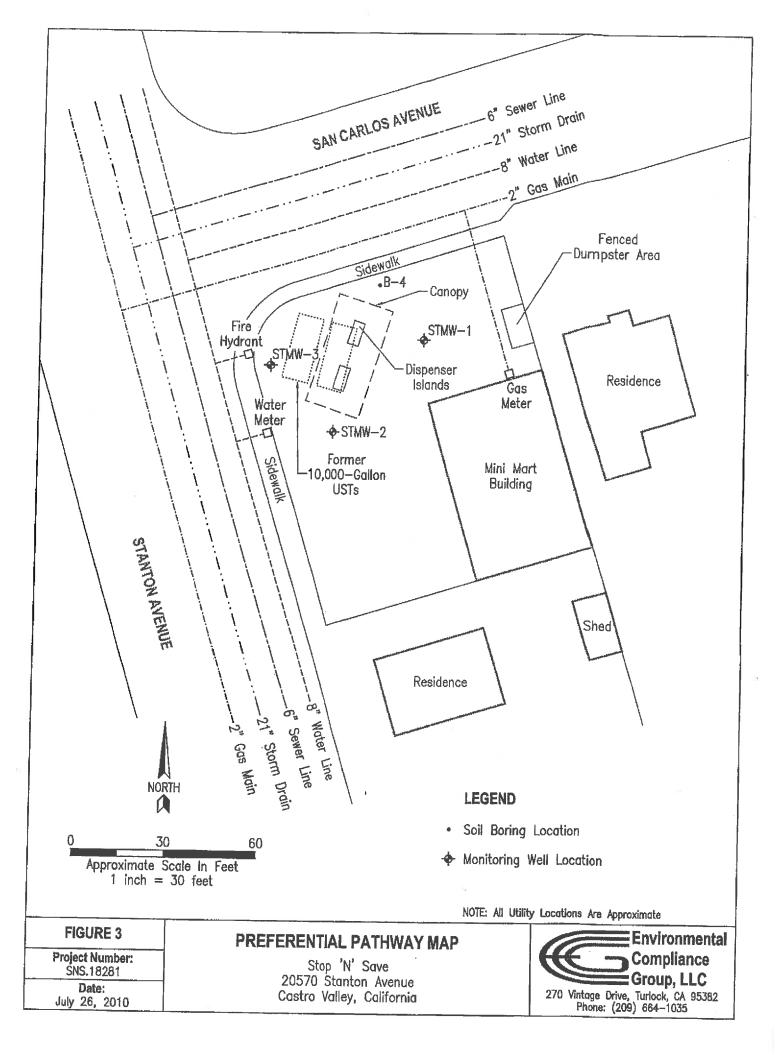
denotes ethyl tertiary butyl ether

TAME -

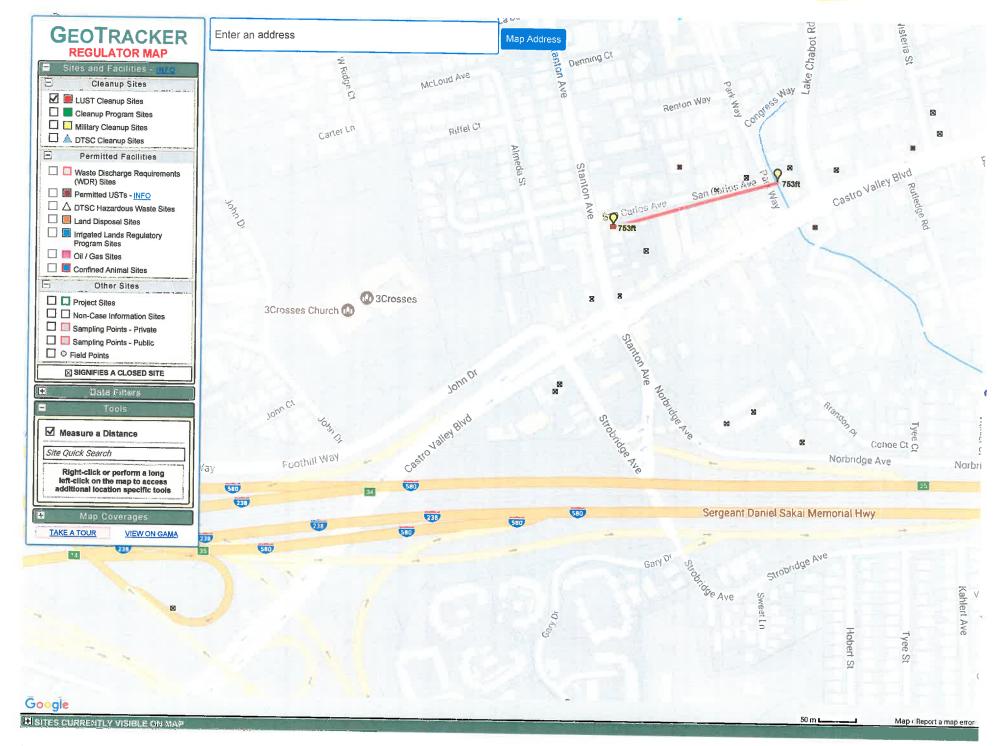
denotes tertiary amyl ether

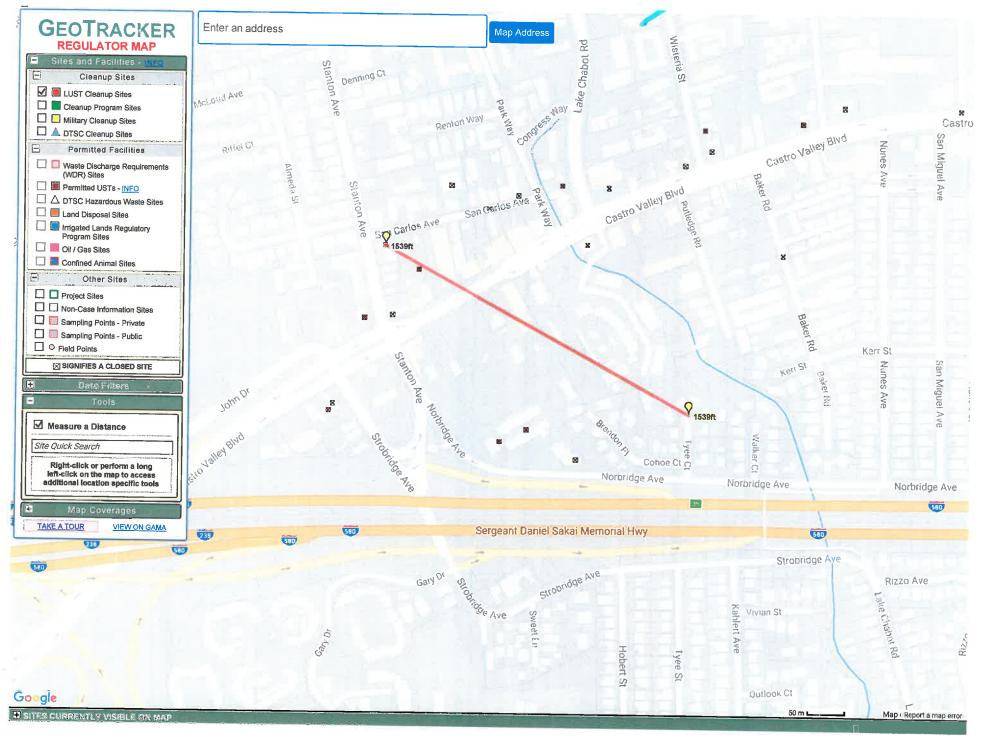
TBA -

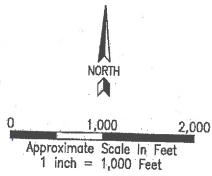

denotes tertiary butyl alcohol


EDB -

denotes ethyl dibromide


ATTACHMENT 12





Map data @2018 Google Imagery @2018 , CNES / Airbus, DigitalGlobe, L 200 ft L iurvey, USDA F; Report a map error

FIGURE 8

Project Number: SNS.18281

Date: January 28, 2011

SENSITIVE RECEPTOR LOCATION MAP

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

Table 5 Sensitive Receptor Survey Data Stop N Save Inc. 20570 Stanton Avenue Castro Valley, California

Figure ID	Weil Owner	Well Location Description on DWR Log	Well Type	Total Depth (feet bgs.)	Screen Interval (feet bgs.)	Seal Inteval (feet bgs.)	Installation Date	Distance/ Direction (feet)	Notes:
1-5	Unocal	2445 Castro Valley Boulevard, Castro Valley	Monitoring	25.5	8-25.5	0-6	1990	900/SW	Unable to Locate
6	Clark's Woodworking	2620 Norbridge Avenue, Castro Valley	Monitoring	52.5	None	0-52.5	Unknown	900/S	Unable to Locate
7	Anthony Varni	2691 Castro Valley Boulevard, Castro Valley	Test Hole	205	None	0-205	6/10/05	800/E	Unable to Locate
8-17	Thrifty Oil	2504 Castro Valley Boulevard, Castro Valley	Monitoring	15-20	5-20	0-4	1988-1991	450/S	Unable to Locate
18	Castro Valley Autohaus	'20697 Parkway, Castro Valley	Monitoring	11.5	5.5-11.5	0-4.5	1991	600/E	Unable to Locate
19-26	Shell Oil	2724 Castro Valley Boulevard, Castro Valley	Monitoring	15-25	5-25	0-4	1990-1993	1000/E	
27	Eden Township Hospital	Castro Valley	Cooling System Return	60	None	Unknown	1952	1300/NE	Unable to Locate
28	Eden Township Hospital	Castro Valley	Domestic	250	None	Unknown	1952	1300/NE	Unable to Locate
29	Eden Township Hospital	Castro Valley	Test Well	150	100-110 132-140	Unknown	1953	1300/NE	Unable to Locate Unable to Locate

OWR - denotes Department of Water Resources

--- denotes no data avaliable

bgs - denotes below ground surface

Figure 1 - Approximate Well Locations - ARCO #4977 - 2770 Castro Valley Blvd., Castro Valley, CA Barlow Dr Badding-Rd Garleen Dr Mabel Ave Mabel-Ave -Lenard Dr Stanton Ave Somersel Ave Berdina Rd Miguel Ave Lorena Ave Stevens Nordell Ave Jamison-Way -167th Ave Stanton-Hill Rd Village D ARCO #4497 Castro Valley Blvd lunes Castro Valley 20570 Stanton > Cato RO0000179 Regent Way Norbridge Ave Kerr-St MacAlthur Ewy Norbridge Ave 36B Morb Arthur H Breed Fwy Breed Fwy Arthu Gary Dr Lob Vegas Ave Vegas Ave Merion 9 Watson-St Star Ave Orange A Codello Hayward Farley-St Bedford C Reading Ave 185 Vestal St 0.6

Copyright © and (P) 1988–2010 Microsoft Corporation and/or its suppliers. All rights reserved, http://www.microsoft.com/streets/
Certain mapping and direction data © 2010 NAVTEQ. All rights reserved. The Data for areas of Canada includes information taken with permission from Canadian authorities, including: © Her Majesty the Queen in Right of Canada, © Queen's Printer for Ontario. NAVTEQ and NAVTEQ ON BOARD are trademarks of NAVTEQ. © 2010 Tele Atlas North America, Inc. All rights reserved. Tele Atlas and Tele Atlas North America are trademarks of Tele Atlas, Inc. © 2010 by Applied Geographic Systems. All

Table 1 - Wells Located Within 0.5-Mile Radius

ARCO Station No. 4977 2770 Castro Valley Boulevard Castro Valley, California

Map ID No.	Approximate Distance from Site	Well Type	Installation Date	Screen Interval
1	1,050 ft. S	dom	Jul-53	no perforations
2	1,000 ft. NW	dom	Jul-52	no perforations
2	1,000 ft. NW	unk	Sep-52	no perforations
3	1,650 ft. NNE	dom	Feb-53	31-51 ft.

Abbreviations:

ft = feet

N = North

S = South

E = East

W = West

dom = domestic well

irr = irrigation well

mun = municipal well

pub = public well

unk = unknown