Clusto.

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program

AGENCY INFORMATION

Date: August 12, 1999

Agency name: Alameda County-HazMat

Address: 1131 Harbor Bay Pkwy

City/State/Zip: Alameda, CA 94502

Phone: (510) 567-6700

Responsible staff person: Amir K. Gholami

Title: Hazardous Materials Spec.

II. CASE INFORMATION

Site facility name:

Partch Property

Site facility address: 2856 Helen Street, Oakland, California 94608

RB LUSTIS Case No: N/A

Local Case No./LOP Case No.: STID #170

URF filing date:

SWEEPS No: N/A

Responsible Parties:

Addresses:

Phone Numbers:

Mr. W. Taylor Partch

2051 San Jose Av., Alameda CA 94501

(510) 521-0926

Tank Size in	Contents:	Closed in-place	<u>Date:</u>
<u>No: gal.:</u> 1 (S) 1,000	Gasoline	<u>or removed?:</u> Removed	8/6/96
2 (N) 1,000	Gasoline	Removed	8/6/96

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: Unknown Site characterization complete? YES Date approved by oversight agency:

Monitoring Wells installed? No but 5 soil borings were advanced to collect grab groundwater samples

Monitoring Wells Number: NA Proper screened interval? NA

Highest GW depth below ground surface: Encountered at about 16 ft and stabilized at 5.9ft in boring S-1

Flow direction: Assumed North-Northwest Most sensitive current use: Commercial

Are drinking water wells affected? No

Aquifer name:

Is surface water affected? NO

Nearest affected SW name:NA

Off-site beneficial use impacts (addresses/locations): NA

Report(s) on file? YES Where is report(s) filed? Alameda County

1131 Harbor Bay Pkwy

Oakland Fire Dept and 1605 MLK Jr Dr

Alameda, CA 94502

Oakland, CA 94612

Treatment and Disposal of Affected Material:

<u>Material</u>	Amount (include units)	Action (Treatment or Disposal w/destination)	<u>Date</u>
Tank Soil Groundwater Barrels	2 Tanks 28 cubic yards NA NA	Disposed at Richmond by Erickson Disposed at Forward Inc. Landfill, Manteca, CA	8/6/96 8/20/99

Maximum Documented		entrations B	Sefore and After C	leanup
Contaminant	Soil (ppm) 1 Before	2 After	Water (ppb) 3 <u>Before</u>	4 After
TPH (Gas) TPH (Diesel)	290 NA	<1.0	< 50 NA	<50
Benzene Toluene Ethylbenzene Xylenes	6.5 17 20 110	<0.005 <0.005 <0.005 <0.005	< 0.5 < 0.5 < 0.5 < 0.5	<0.5 <0.5 <0.5 <0.5
Oil & Grease Heavy metals Lead	NA NA 78	39	NA NA <50 Total	430 Dissolved

- 1-Soil samples from south tank excavation in 8/6/96
- 3-Grab groundwater samples from tank excavation in 5/24/99.
- 2- Soil samples from soil boring advanced in 8/12/96.
- 4-Grab groundwater samples from soil borings advanced in 5/24/99.

Comments (Depth of Remediation, etc.):

The two 1,000 gallon gasoline tanks were last used in 1978 and were removed in 1996. No petroleum hydrocarbons were detected in the 1996 grab groundwater sample from the southern UST excavation, and none were detected in the five recent groundwater samples. No TPHg, BTEX, or MTBE were detected in soil and groundwater from five borings in the vicinity of the former tanks. Approximately 5 cubic yards of soil were overexcavated from the southern tank pit and disposed of at a class III landfill.

IV. CLOSURE

Does completed corrective action protect existing beneficial uses per the

Regional Board Basin Plan?

Does completed corrective action protect potential beneficial uses per the

Regional Board Basin Plan? NA

Does corrective action protect public health for current land use? Yes

Site management requirements: Site safety plan is required if excavation is proposed in the vicinity of the

former UST.

Should corrective action be reviewed if land use changes? Yes

Monitoring wells Decommissioned: NA

Number Decommissioned: NA

Number Retained: NA

List enforcement actions taken: NA List enforcement actions rescinded: NA

LOCAL AGENCY REPRESENTATIVE DATA

Name: Amir K. Gholami

Title: Haz Mat Specialist

Signature: \

Date: 8/26/1999

Reviewed by

Name: Eva Chu

Title: Haz Mat Specialist

Signature: 0人ご

Date: 8/26/1999

Name: Thomas Peacock

Title: Supervisor

8-30-99

RWQCB NOTIFICATION

Date Submitted to RB:

RB Response:

RWOCB Staff Name: Chuck Headlee

Title: AEG

Signature:

Date:

VII. ADDITIONAL COMMENTS, DATA, ETC.

The site was a former mechanical contractor facility. In August 1996 two USTs (1-10K tank north of building, and 1-10K tank south of building), which stored gasoline, were removed from the site. Groundwater was encountered in the southern tank excavation. Soil in this pit was stained and emitted a strong odor. Two soil samples were collected from the sidewall at about 8 ft bgs. A grab groundwater sample was also collected. The analytical results identified TPH-g and BTEX at the southern UST excavation at maximum concentrations of 290, 6.5, 17, 1.5 and 7.6 ppm respectively. However, no TPH-g or BTEX were detected in the grab groundwater samples.

The north tank excavation identified trace petroleum hydrocarbons in soil at 8 feet depth with a maximum TPH-g concentrations of 0.49ppm.

Additional subsurface investigations were conducted in May 1999 to further delineate the extent and severity of soil and groundwater contamination at the site. Five soil borings were advanced up to 24 feet depth. All

samples, soil and grab groundwater, were field-screened for the presence of contaminants. Select samples were submitted for laboratory analysis. No TPH-g, BTEX, or MTBE were identified in soil or groundwater samples.

The soil borings revealed presence of clayey silts through the entire explored depth of 24 feet. Ground water was encountered at 9 feet (S-2sample) to 16.8 feet (N-1sample), and stabilized from 5.9 feet (S-1) to 10.4feet (N-1).

In summary, case closure is recommended because:

- the leak and ongoing sources have been removed;
- 2. the site has been adequately characterized;
- 3. the dissolved plume is not migrating;
- 4. no water wells, surface water, or other sensitive receptors are likely to be impacted
- 5. the site presents no significant risk to human health or the environment. even though the dissolved lead is 430ppb in groundwater and the EPA established PRG level is 4.0ppb for "tab water". The absence of elevated lead levels in soil suggests that the dissolved lead may be due to a regional problem or it may be naturally occuring (and not due to the fuel release). Shallow groundwater at the site is not a source of drinking water.

W.T. Partch

2862 Helen Street Oakland, California

Vicinity Map

CAMBRIA

W.T. Partch

2862 Helen Street Oakland, California

Geoprobe Boring Locations

CAMBRIA

Table 1. Soil Sample Analytical Data - 2856 Helen Street, Oakland California 94608

						Toluene	Ethylbenzene	Xylenes	TTLC Lead
Date	Sample ID	Sample	ТРНg	MTBE	Benzene	specutrations reported	in milligrams per kilogram)		
Date	3401110 12	Depth (ft)			(All C				
	_							0.7	4.7
Southern forme	er tank location, E	ast end			2.4	12.0	0.2	0.1	
8/6/96	#1	8.0	200			< 0.005	< 0.005	< 0.005	5.2
	S-2, 5-6	5.0	< 1.0	< 0.05	< 0.005	₹ 0.003		< 0.005	39
5/24/99	S-2, 5-0			< 0.05	< 0.005	< 0.005	< 0.005		
5/24/99	S-2, 7-8	7.0	< 1.0	Q 0.03					4.8
		West and				17.0	1.5	7.6	4.8
	er tank location, #2	8.0	290		6.5		0.00	0.61	11
8/6/96	# 2		10		0.14	0.88	0.29		4.5
8/6/96	#6	Stockpile Composite	10		2 225	< 0.005	< 0.005	. < 0.005	
5/24/99	S-1, 5-6	5.0	< 1.0	< 0.05	< 0.005		< 0.005	< 0.005	4.0
3124199		•••	< 1.0	< 0.05	< 0.005	< 0.005	2 0.003	0.005	19
5/24/99	S-1, 10-11	10.0			< 0.005	< 0.005	< 0.005	< 0.005	
5/24/99	S-1, 19-20	19.0	< 1.0	< 0.05	0.003				
							20	110	32
	ner tank location,	North end 8.0	0.43		< 0.1	< 0.1		< 0.005	9.0
8/6/96	#3	8.0		.0.05	< 0.005	< 0.005	< 0.005	₹ 0.005	- 1
5/24/99	N-1, 5-6	5.0	< 1.0	< 0.05		< 0.005	< 0.005	< 0.005	5.4
	0.10	9.0	< 1.0	< 0.05	< 0.005	< 0.003			
5/24/99	N-1, 9-10	7.0						< 0.1	5.1
Northern for	mer tank location	, South end			< 0.1	< 0.1	< 0.1		. eta)
8/6/96	#4	0.8	0.49			0.59	< 0.1	0.3	- P
	#5	Stockpile Composite	6.0		< 0.1		0.005	< 0.005	4.0
8/6/96	#3			< 0.05	< 0.005	< 0.005	< 0.005		
5/24/99	N-2, 7-8	7.0	< 1.0	20.03					5.6
						< 0.005	< 0.005	< 0.005	0.0
	corner of property N-3, 7-8	7.0	< 1.0	< 0.05	< 0.005		0.005	< 0.005	6.6
5/24/99	14-3, 1-0	7	.10	< 0.05	< 0.005	< 0,005	< 0.005		
5/24/99	N-3, 23-24	23.0	< 1.0	~ 0.03					

Abbreviations and Notes:

--- = Not Analyzed TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

MTBE (Methyl tert-butyl ether) and BTEX by EPA Method 8020.

TTLC lead by EPA Method 6010 or 7420.

<x = Below detection limit of x milligrams per kilogram

Table 2. Groundwater Analytical Data - 2856 Helen Street, Oakland California 94608

		TOLL.	MTRE	Benzene	Toluene	Ethylbenzene	Xylenes	Lcan ···
Date	Depth to Water (ft)	1 PHg	MILDI		oncentrations in	μg/L (ppb)		
0/12/06	Surface of open pit	< 50		< 0.1	< 0.1	< 0.1	< 0.1	< 50 total
			< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	46 dissolved
5/24/99	5.9			~0.5	< 0.5	< 0.5	< 0.5	430-dissolved
5/24/99	7.2	< 50				-05	< 0.5	71 dissolved
5/24/99	10.4	< 50	< 5.0	< 0.5	< 0.5			210 dissolved
5/24/99	9.2	< 50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	
5/24/99	9.0	< 50	< 5.0	< 0.5	< 0.5	< 0.5	< 0.5	120 dissolve
	8/12/96 5/24/99 5/24/99 5/24/99	(ft) 8/12/96 Surface of open pit 5/24/99 5.9 5/24/99 7.2 5/24/99 10.4 5/24/99 9.2	(ft) 8/12/96 Surface of open pit < 50 5/24/99 5.9 < 50 5/24/99 7.2 < 50 5/24/99 10.4 < 50 5/24/99 9.2 < 50	Solution September Septe	Date Depth to water (ft) All c 8/12/96 Surface of open pit < 50	Date Depth to Water (ft) TPHg MTBL All concentrations in 8/12/96 Surface of open pit < 50	Date Depth to Water (ft) TPHg MTBP Helizate All concentrations in μg/L (ppb) 8/12/96 Surface of open pit < 50	Date Depth to Water (ft) TPHg MTBE Benzene All concentrations in μg/L (ppb) 8/12/96 Surface of open pit < 50

Abbreviations and Notes:

--- = Not Analyzed

TPHg = Total Petroleum Hydrocarbons as gasoline by modified EPA Method 8015

MTBE = Methyl Tertiary Butyl Ether by EPA Method 8020

BTEX by EPA Method 8020

Total Lead by EPA Method 7420

Dissolved Lead by EPA Method 239.2

ppb = parts per billion equivalent to micrograms per liter

< x = Below detection limit of x micrograms per liter

Cli Ad	ent: dress:	Par- 283	to 4	Yele.	n 57, Onkland	S	F	5-	-(M۷	V -			
Pro Ge	oject N ologi s	lumber t <i>F</i>	14	3-13		on: Sourh To	obe.	1857 E	50 10 X		ate: ime:		124 45	1/9	9	
	nterval	v Cnt.	st.	38.	Soil Type	·					ercer	ntages	3		liity	
Depth (ft)	Sample Interva	Time/Blow Cnt	Well Const.	USC Class.	and Comments	Color	Pen. Resist	Moisture	Odor	Clay	Silt	Sand	Gravel	Plasiticity	Permeability	
	1/			FM	Black silty Fill	B/4	5017				20		60		High	
X	$ \Lambda $			MH	Clayey 5: H	Blat	Fran	Carjo	31.3,4	20	80			Mess	Low	
5_X				MM	C15:	Bro-n wif gray										
A		:				graen										
102		<u></u>		mH	Cls.	4317		/	NO	15	80	Fre		ne)	mol	
-	,)															
15					first maker at 16	4817	Sof	Morso	1							
\ \\ \{					+)rs# 2007 == 01		Atom	نا نا	,						Low	
20	Δ			-				-		-				***************************************	-	-
-	<u>-</u>			•												
-	-					11/										
25	- -				First mater of Stabilized as	+ 5.9										
						-		,								
30	L Ţ				M20 sample	co lect	ted f	100								
	- -				Male growter	Julce	200	₫								
3	<u>.</u> –															
							Tach		<u> </u>		1			<u> </u>	1	

Cambria Environmental Technology, Inc.

Client: Address:	78	56	1/2/	n St., Oakl	and	1	B-		,		<u>-</u>	M۷				
Project N -Geologis	Number:	193	-15 De	21-3 Boring Drilling	Location: 5- Method: 6-						ate: ime:			1/9	7	
iterval				Soil Type			sist.			Р	ercen	tages		>	ility	
Depth (ft) Sample Interval	Time/Blow Cnt.	Well Const.	USC Class.	and Commer	nts he	Color	Pen. Resist	Moisture	Odor	Clay	S	Sand	Gravel	Plasiticity	Permeability	
			بموسر) الرااد		5	3/K B/K	506+ fim	047	5/3/4 NO	1º 30	10	40c	40	NED	Hzi.	
<u> </u>													. ,			
1 5 ∑ √			nel	clsi silvsandula	<u> </u>	+Bin 1green	soft	Me Ten		اندا	30	30	30	no	عام ا	
*			ML	11. 164	ndrsad				į	10					Hal	+
10 <u>2</u> \			mH			Bin/ grey	firm	dap		15	80	-5 +	N A COLOR	(ر جامام	2	
			PATI	(3"grave/ 50 or 14.	1	• /										
15			 													
-					1 -	4 6	, ,									
20_ _				FIRST V SABII	172)	ns t	2									
				HD 51		110	رعسط إ	fr								
25_	:			HOS1	sle.						:					
				Holes	(معارد/	n?	4 2		7.							
30_				10125												
35_																
L		<u>-</u>	· 	— Cambria	Environ	menta	1 lech	nolog	gy, Ir	ic.						

Client: Address	: 28	-56	Hel	len St., Oaklanu	<u>′ </u>		N	*			M۱	N -			
Project I Geologis	Number	· 14.	3 - 1	152/-3 Boring Location:	North	mote,	NOTAS V 110 r	n gensi nex		Date: Time:		24. 34)	19.9		
ıterval	v Cnt.	St.	SS.	Soil Type		St.			F	Percer	ntage	s	_	jį.	
Depth (ft) Sample Interval	Time/Blow Cnt	Well Const.	USC Class.	and Comments	Color	Pen. Resist.	Moisture	Odor	Clay	Silt	Sand	Gravel	Plasiticity	Permeability	
-				5,1+-15+5			7	NO		70	15 FM	15	NO	Mad	
菜			my	clsi apsoil	BIK	50 F4	dry	100	30	70			(دو وم	Lon	
$\left \begin{array}{c} \overline{\lambda} \\ \overline{\lambda} \end{array}\right $				Clsi Bronn =/3/ack	Bra	Firm	co-p		Total best proper						
				motries					}						
X		·													
15						,							and the second s		
207	;			Gray Vloranoe and Slack mattle			moi		30	80			adar anderstytel state of Mode		
\\ _\X				015.			dam								
25 <u> </u>				First maler of	+ 10.	6-8 4 F	F+ +						-		
				Mosniphe col	lecte) 34	وروا	47			,				
30_				remp. well	sere	400	14.	2			-				
- 35_				Shallited a 1/20 surple col temp. well: screen rem hole 5 outed	-1	cem	2007								
- -															

Cambria Environmental Technology, Inc.

	erit: / dress:	1313	-24)			<u>~</u>	₽- /		-			M۷	۷-			
		umber:			27-3 Boring Loca Drilling Met	ation: 🎶 hod: 💪	20,00	ude,	vest Vic	side onex	T	Date: Time:			1 /a D	9	
	iterval	v Cnt.	***	So	Soil Type			ist.	·		F	Percer	ntages	3	_	llity	
Depth (ft)	Sample Interval	Time/Blow Cnt.	Well Const.	USC Class.	and Comments		Color	Pen. Resist.	Moisture	Odor	Clay	Silt	Sand	Gravel	Plasiticity	Permeability	
-				MT			Ben	from	214	ND		70	15	15	ND	Men	
- V	Λ			mil	olsi masail	. 1	314	50F+	م _ا د شالم		30	70			i .	الما الما	
5 <u>X</u>				ML	Olsi HASAIT	B	roy/ Brn				30	70	10		m ≃U	n or	
X	4									and the same of th						er ere ere e	
102	_//\			Miri	Brown -1 Black	2 8	1.3/K	fim	,		30	70		 - - -			
-	-																
152	\forall					·											
	<u> </u>				C12 -/ Sazz	1	2007	64-		2	15	20	15		10-1	His	
20	$\sqrt{\frac{1}{2}}$			ml	3//==// 3/		7-0/J				5	70	25				
7	2/			MH	Clsi	6	124/ 31 n	firm	dans		30	70			May	100	
25	- - -				First mater Stabilize Mad Sample Governd wh		19	Fr 2 Ft par	7.13	s)e							
	<u>-</u> '						!					-					
1			-		 Cambria En 	vironm	nental	Tech	nolog	zy, In	ic.			<u></u>			_

Client: 121364 Address: 2856 1/4/405+, Onting SB N-3 MW-	
Project Number: 193-1521-3 Boring Location: Now corner of 5. +0 Date: 5/24/99 Geologist: Engineer Pur Drilling Method: Geoprobe, Vironex Time: 13D	
Sample Interval Sample Interva	Permeability
- V C/S) +279 50 1 Soft dry NO 15 80 5 1 Soft dry NO 15 80 5 1	
ml clsi Gray maryland Gray from darp 10 80 5 5 med 1	24
SAND + Oranel	noe
10X Seams	font
15. /\ 15. /\ 20 80 Low	
printed to the printe	4 - 3-1 4 - 4
Grey forange	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20
25	
Cambria Environmental Technology, Inc.	

July 14, 1999

Mr. Amir Gholami Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Risk Management Plan

2856 Helen Street
Oakland, California 94608
Cambria Project #193-1521-1

STID: 170

Dear Mr. Gholami:

On behalf of W. Taylor Partch and Ms. Elizabeth McCune, Cambria Environmental Technology, Inc., (Cambria) is submitting this Risk Management Plan (RMP) for the site referenced above (Figure 1). The RMP was requested by Mr. Gholami of the Alameda County Department of Environmental Health (ACDEH) during his July 8, 1999 telephone conversations with Paul Waite of Cambria.

SITE BACKGROUND

Site background information, investigation methods and all analytical results have been submitted by Cambria in previous reports to the ACDEH. All sampling locations are shown on the attached figures and historical analytical results are summarized on the attached tables.

On August 6, 1996, two 1,000-gallon underground storage tanks (USTs) were removed from the site by Bamer Construction of Castro Valley, California. The USTs were used for gasoline only and were last used in 1978. Soil and groundwater tests have shown that the site meets the California Regional Water Quality Control Board - San Francisco Bay Region (RWQCB) guidelines for low-risk soil cases for the following reasons:

- The leak has stopped and the hydrocarbon source has been removed;
- The site is adequately characterized;
- No water wells or other sensitive receptors are likely to be impacted;
- No groundwater impact currently exists and no contaminants are found at levels above established MCLs or other applicable water quality objectives;
- The site presents no significant risk to human health; and,
- The site presents no significant risk to the environment.

Oakland, CA Sonoma, CA Portland, OR Scattle, WA

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

RISK MANAGEMENT PLAN

The Alameda County Department of Environmental Health requested that this Risk Management Plan be prepared for the property at 2856 Helen Street, Oakland, California, which was the subject of soil and groundwater investigations completed in July 1999.

Notice of change in land use for this property should be sent to:

- 2. Petroleum hydrocarbons were not detected in soil and groundwater samples collected in 1999. However, due to the detection of petroleum hydrocarbons in soils at 8 ft depth in 1996, construction workers who may handle soils during future construction activities should take appropriate precautions. A health and safety plan should be prepared that requires Level D protection for all workers as per Occupational Health and Safety Administration (OSHA) rules (29 CFR 1910.120). Level D protection should include appropriate gloves, work clothes, boots, and hard hats, if required.
- 3. If soils are excavated during construction activities, a soil management plan governing sampling of those soils to determine disposal or reuse options should be developed and submitted to the ACDEH. If it becomes necessary to evacuate any groundwater during construction activities, such groundwater should be stored in temporary containers and analyzed for disposal options.
- 4. Although no petroleum hydrocarbons have been detected in groundwater, the shallow groundwater beneath the property should not be used for any purpose, unless analyzed and treated, if necessary. If water is proposed for use, appropriate notice should be given to the ACDEH.

CONCLUSIONS

As stated in Cambria's *Preliminary Risk Assessment* for this site, no petroleum hydrocarbons have been detected in groundwater or vadose zone soils at the site. The detection limits used during analysis, as shown on Tables 1 and 2, are below the ASTM 1527 Tier 1 look-up tables for all risk categories. Therefore, the risk results are below any selected target risk levels set forth for the site, and current site conditions do not pose a significant risk to human or environmental receptors in the area.

Thank you for your continued assistance with this project. If you require any additional information, please contact Cambria at (510) 420-0700.

Sincerely,

Cambria Environmental Technology, Inc.

& Childell

Bob Clark-Riddell, P.B. Principal Engineer

H:\MISC\Partch\RMP0799.wpd

Figures:

1 - Site Location Map

2 - Soil and Groundwater Sampling Locations

Tables:

1 - Soil Analytical Data

2 - Groundwater Analytical Data

cc:

W. Taylor Partch, 2051 San Jose Avenue, Alameda, California 94501

Elizabeth McCune, 20068 Summerridge Drive, Castro Valley, California 94552 Chuck Headlee, RWQCB, 1515 Clay Street, Suite 1400, Oakland, California 94612