RECEIVED

8:47 am, Oct 05, 2010

Alameda County
Environmental Health

Mr. Paresh Khatri Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Foothill Mini Mart, 6600 Foothill Boulevard, Oakland, California (ACEHS Case No. RO0000175)

Dear Mr. Khatri:

Stratus Environmental, Inc. (Stratus) has recently prepared a *Quarterly Monitoring Report* – *Third Quarter 2010* on my behalf. The report was prepared in regards to Alameda County Fuel Leak Case No. RO0000175, located at 6600 Foothill Boulevard, Oakland, California.

I have reviewed a copy of this report, sent to me by representatives of Stratus, and "I declare, under penalty of perjury, that the information and or/recommendations contained in the attached document or report is true and correct to the best of my knowledge."

Sincerely,

Ravi Sekhon

0.8200h

September 30, 2010 Project No. 2087-6600-01

Mr. Paresh Khatri Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Groundwater Monitoring Report, Third Quarter 2010, for Foothill Mini Mart, located at 6600 Foothill Boulevard, Oakland, California (ACEHS Case No. RO0000175)

Dear Mr. Khatri:

Stratus Environmental, Inc. (Stratus) is submitting the attached report, on behalf of Mr. Ravi Sekhon, to document the findings of a groundwater monitoring and sampling event conducted during the third quarter 2010 at the Foothill Mini Mart, located at 6600 Foothill Boulevard, Oakland, California (Figure 1). This report has been prepared in compliance with Alameda County Environmental Health Services (ACEHS) requirements for underground storage tank (UST) investigations.

If you have any questions regarding this report, please contact Scott Bittinger at (530) 676-2062.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Scott G. Bittifger. Project Manager

No. 7477

Gøwri S. Kowtha, P.E.

Scott G. Bittinger Principal Engineer

Attachment: Grou oring Report, Third Quarter 2010

Mr. Ravi Sekhon cc:

Date September 30, 2010

FOOTHILL MINI MART GROUNDWATER MONITORING REPORT

Facility Address: 6600 Foothill Boulevard, California

Consulting Co./Contact Person: Stratus Environmental, Inc. / Scott Bittinger, P.G.

Consultant Project No: 2087-6600-01

Primary Agency/Regulatory ID No: Alameda County Environmental Health Services / Case No.

RO0000175

WORK PERFORMED THIS PERIOD (Third Quarter 2010):

- 1. Stratus conducted groundwater monitoring and sampling activities on September 7, 2010. During this event, wells MW-1 through MW-3, MW-5 through MW-7, MW-10, MW-11, MW-5B and MW-6B were gauged to determine depth to groundwater, and evaluated for the presence of free product. Monitoring wells MW-5B, MW-6B, MW-7, MW-10, and MW-11 were purged and groundwater samples were collected. Stratus was unable to coordinate access to offsite properties to the east and southeast of the site in order to gauge and/or sample wells MW-4, MW-12A/B, and MW-13A.
- 2. Groundwater samples were analyzed at a state-certified analytical laboratory for gasoline range organics (GRO) by EPA Method SW8015B/DHS LUFT Manual, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary butyl alcohol (TBA), ethanol, and methanol by EPA Method SW8260B.
- 3. Stratus submitted a Feasibility Study/Corrective Action Plan (FS/CAP) report for the site on August 3, 2010.

WORK PROPOSED FOR NEXT PERIOD (Fourth Quarter 2010):

1. Conduct fourth quarter 2010 groundwater monitoring and sampling activities. During this event, all wells will be gauged, purged, and sampled. Groundwater samples will be analyzed at a state-certified analytical laboratory for gasoline range organics (GRO) by EPA Method SW8015B/DHS LUFT Manual, and for benzene, toluene, ethylbenzene, and total xylenes (BTEX), methyl tertiary butyl ether (MTBE), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary butyl alcohol (TBA), ethanol, and methanol by EPA Method SW8260B.

Current Phase of Project:	Monitoring/Assessment
Frequency of Groundwater Sampling:	Wells MW-1 through MW-6 : Semi-Annually
	Wells MW-7, MW-10, MW-11, MW-12A, MW-13A, MW-5B, MW-6B, and MW-12B: Quarterly until initial 4 sampling events completed, then semi-annually
Frequency of Groundwater Monitoring:	All Wells : Quarterly
Groundwater Sampling Date:	September 7, 2010
Is Free Product (FP) Present on Site:	No

Approx. Depth to Groundwater (Upper):	7.84 to 11.75 feet below top of well casing
Approx. Depth to Groundwater (Lower):	13.28 to 37.24 feet below top of well casing
Groundwater Flow Direction (Upper):	South-southeast
Approximate Groundwater Gradient (Upper):	0.005 to 0.01 ft/ft
Groundwater Flow Direction (Lower):	Not calculated
Approximate Groundwater Gradient	Not calculated

DISCUSSION:

Shallow Screened Well Network

Depth to groundwater in the monitoring wells ranged from 7.84 to 11.75 feet below the top of the well casing. Depth-to-water measurements were converted to feet above mean sea level (MSL) and used to construct a groundwater elevation contour map (Figure 2). South-southeast groundwater flow direction was observed in the site vicinity, using the September 7, 2010 groundwater level measurements, with groundwater gradients ranging from approximately 0.005 to 0.01 ft/ft. MTBE was reported in samples collected from MW-7 and MW-11 at concentrations of 17 micrograms per liter (μ g/L) and 98 μ g/L, respectively. GRO was only reported in well MW-11 at 59 μ g/L. No other analytes were detected in sampled shallow screened wells. Field data sheets, sampling procedures and laboratory analytical reports are included as Appendices A, B, and C, respectively. Analytical results of sampled wells and depth to groundwater measurements have been uploaded to the State of California's GeoTracker database. Documentation of these data uploads is attached in Appendix D.

Deeper Screened Well Network

Depth to groundwater in the monitoring wells ranged from 13.28 to 37.24 feet below the top of the well casing. Groundwater elevations are depicted on Figure 3. Given the large discrepancy in groundwater elevations measured in the three deeper screened monitoring wells, an evaluation of groundwater flow direction at this depth in the subsurface does not appear appropriate using the current data set. MTBE was detected at very low concentrations in the sample collected from well MW-5B (1.4 μ g/L). No other analytes were detected in any samples collected from the deeper screened monitoring wells.

ATTACHMENTS:

0	Table 1	Groundwater Elevation and Analytical Summary
0	Table 2	Groundwater Analytical Results for Oxygenates
0	Table 3	Drilling and Well Construction Summary
0	Figure 1	Site Location Map
•	Figure 2	Groundwater Elevation Contour Map, Shallow Screened Wells (Third Quarter 2010)
0	Figure 3	Groundwater Elevation Map, Deep Screened Wells (Third Quarter 2010)
9	Figure 4	Groundwater Analytical Summary, Shallow Screened Wells (Third Quarter 2010)
	Figure 5	Groundwater Analytical Summary, Deep Screened Wells (Third Quarter 2010)
0	Appendix A	Field Data Sheets
0	Appendix B	Sampling and Analyses Procedures
0	Appendix C	Laboratory Analytical Reports and Chain-of-Custody Documentation
•	Appendix D	GeoTracker Electronic Submittal Information

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Groundwater Elevation (ft msl) [1]	GRO (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
SHALLOW	WELLS									
MW-1	06/13/01	9.36	100*	90.64	ND	ND	ND	ND	ND	130
	03/21/02	7.96	100*	92.04	95	ND	ND	ND	ND	72.5
	07/09/02	8.51	100*	91.49	ND	ND	ND	ND	ND	208
	07/11/03	8.66	160.25	151.59	ND	0.7	ND	ND	1.2	636
	11/13/03	8.10	160.25	152.15	<5,000	ND	ND	ND	ND	72,000
	02/19/04	8.24	160.25	152.01	1,350	460	ND	ND	ND	82,000
	05/21/04	8.51	160.25	151.74	ND	< 50	< 50	< 50	<100	12,000
	08/11/05	8.34	160.25	151.91	ND	ND	ND	ND	ND	4,900
	11/30/05	9.86	160.25	150.39	<250	< 2.5	< 2.5	<2.5	< 2.5	8,400
	08/08/08	10.62	60.02	49.40	390	<1.5	<1.5	<1.5	<1.5	720
	11/05/08	10.78	60.02	49.24	350	< 5.0	<10	<10	<10	580
	02/06/09	9.05	60.02	50.97	150	<1.5	<1.5	<1.5	<1.5	610
	05/07/09	6.76	60.02	53.26	420	< 0.50	< 0.50	< 0.50	< 0.50	210
	06/01/10	7.58	60.02	52.44	190	< 0.50	< 0.50	< 0.50	< 0.50	170
	09/07/10	11.33	60.02	48.69			Not Schedule	ed for Sampling	;	

TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Groundwater Elevation (ft msl) [1]	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
MW-2	06/13/01	10.44	98.71*	88.27	5,800	160	210	290	980	94,000
	03/21/02	8.18	98.71*	90.53	452	3.4	ND	1.6	2.1	79,100
	07/09/02	8.35	98.71*	90.36	497	61.6	ND	ND	1.6	37,600
	07/11/03	7.58	158.97	151.39	553	48.9	ND	ND	ND	38,200
	11/13/03	8.01	158.97	150.96	<2,500	NS	ND	ND	ND	47,000
	02/19/04	6.43	158.97	152.54	4,390	410	265	160	490	26,700
	05/21/04	6.83	158.97	152.14	1,150	254	<200	<200	<400	24,600
	08/11/05	7.31	158.97	151.66	91	ND	1.1	ND	ND	6,500
	11/30/05	7.98	158.97	150.99	69	ND	1.4	ND	ND	2,300
	08/08/08	7.19	58.74	51.55	300	< 9.0	<9.0	<9.0	<9.0	9.8
	11/05/08	7.14	58.74	51.60	510	< 0.50	<1.0	<1.0	<1.0	12
	02/06/09	6.92	58.74	51.82	50	<4.0	<4.0	<4.0	<4.0	10
	05/07/09	6.53	58.74	52.21	860	<4.0	<4.0	<4.0	<4.0	9.7
	06/01/10	9.15	58.74	49.59	<1,000 [3]	<5.0 [3]	<5.0 [3]	<5.0 [3]	<5.0 [3]	69
	09/07/10	9.69	58.74	49.05			Not Schedule	ed for Sampling	7	

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Groundwater Elevation (ft msl) [1]	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)
MW-3	06/13/01	9.69	99.90*	90.21	300	1	ND	0.07	2	450
	03/21/02	8.80	99.90*	91.10	274	1.1	ND	1	2.5	7,520
	07/09/02	9.33	99.90*	90.57	ND	ND	ND	ND	ND	40.8
	07/11/03	9.35	160.17	150.82	ND	ND	ND	ND	ND	24
	11/13/03	8.85	160.17	151.32	ND	ND	ND	ND	ND	37
	02/19/04	8.46	160.17	151.71	83	ND	ND	ND	ND	42.7
	05/21/04	9.09	160.17	151.08	ND	ND	ND	ND	ND	54
	08/11/05	8.87	160.17	151.30	ND	ND	ND	ND	ND	27
	11/30/05	9.73	160.17	150.44	ND	ND	ND	ND	ND	28
	08/08/08	9.64	59.94	50.30	99	< 0.50	< 0.50	< 0.50	< 0.50	4.5
	11/05/08	9.33	59.94	50.61	55	< 0.50	<1.0	<1.0	<1.0	4.5
	02/06/09	9.37	59.94	50.57	100	< 0.50	< 0.50	< 0.50	< 0.50	5.3
	05/07/09	8.98	59.94	50.96	410	< 0.50	< 0.50	< 0.50	< 0.50	5.5
	06/01/10	9.82	59.94	50.12	< 50	< 0.50	< 0.50	< 0.50	< 0.50	5.1
	09/07/10	10.88	59.94	49.06			Not Schedule	ed for Sampling	5	

TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Groundwater Elevation (ft msl) [1]	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
MW-4	07/09/02	8.14	98.19*	90.05	9,680	43	17	369	1,990	28,300
	07/11/03	6.73	158.42	151.69	3,170	16.5	6.4	71.7	240	16,600
	11/13/03	6.54	158.42	151.88	<1,000	49	ND	340	900	16,000
	02/19/04	4.37	158.42	154.05	7,230	107	7	497	1,063	14,300
	05/21/04	5.79	158.42	152.63	9,340	194	ND	309	860	7,380
	08/11/05	6.65	158.42	151.77	3,000	15	24	87	190	1,200
	11/30/05	6.05	158.42	152.37	4,300	18	28	84	130	340
	08/08/08	5.91	58.19	52.28	3,600	0.53	0.61	5.6	1.5	24
	11/05/08	5.33	58.19	52.86	2,000	0.58	<1.0	6.8	1.2	31
	02/06/09	5.15	58.19	53.04	3,400	0.81	< 0.50	10	1.2	39
	05/07/09	4.86	58.19	53.33	4,500	0.73	< 0.50	7.4	1.2	29
	06/01/10	6.00	58.19	52.19	3,300	<1.0 [3]	<1.0 [3]	4.1	<1.0 [3]	9.4
	09/07/10			Inaccessil	ole for monit	oring; not sche	duled for sampli	ing		

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Groundwater Elevation (ft msl) [1]	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
MW-5	07/09/02	8.16	97.81*	89.65	275	30.2	ND	ND	3	18,600
	07/11/03	7.94	158.03	150.09	890	10	0.6	ND	7.1	5,090
	11/13/03	7.41	158.03	150.62	<1,000	ND	ND	ND	ND	3,400
	02/19/04	6.14	158.03	151.89	1,310	ND	0.7	ND	2.2	438
	05/21/04	7.42	158.03	150.61	1,960	9.7	0.7	ND	ND	214
	08/11/05	7.67	158.03	150.36	410 [2]	ND	3.3	ND	ND	100
	11/30/05	8.51	158.03	149.52	240 [2]	ND	1.8	ND	1.4	82
	08/08/08	7.59	57.80	50.21	1,900	< 0.50	< 0.50	< 0.50	4.0	8.6
	11/05/08	6.91	57.80	50.89	1,600	< 0.50	<1.0	<1.0	1.1	4.8
	02/06/09	6.98	57.80	50.82	680	< 0.50	< 0.50	< 0.50	2.2	5.5
	05/07/09	6.43	57.80	51.37	1,900	0.72	0.91	< 0.50	2.3	4.3
	06/01/10	8.15	57.80	49.65	1,000	< 0.50	< 0.50	< 0.50	< 0.50	4.3
	09/07/10	9.37	57.80	48.43			Not Schedule	ed for Sampling	5	

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Groundwater Elevation (ft msl) [1]	GRO (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
MW-6	07/09/02	7.45	97*	89.55	12,000	432	22	637	1,740	11,300
	07/11/03	7.98	157.24	149.26	2,970	534	6.3	70.1	278	18,000
	11/13/03	7.47	157.24	149.77	<2,500	300	ND	ND	52	18,000
	02/19/04	5.09	157.24	152.15	5,340	184	5	65	127	5,310
	05/21/04	6.38	157.24	150.86	6,110	340	12.7	205	308.8	3,900
	08/11/05	6.68	157.24	150.56	6,100	470	48	23	30	3,200
	11/30/05	7.43	157.24	149.81	3,700	310	30	16	12	3,400
	08/08/08	6.23	57.01	50.78	6,500	63	2.0	42	98	230
	11/05/08	5.35	57.01	51.66	4,800	74	< 5.0	23	42	340
	02/06/09	5.44	57.01	51.57	5,800	34	1.1	16	38	140
	05/07/09	4.91	57.01	52.10	5,800	32	1.2	14	37	150
	06/01/10	5.85	57.01	51.16	7,500	100	<2.5 [3]	28	48	350
	09/07/10	7.84	57.01	49.17			Not Schedule	ed for Sampling	5	

TABLE 1
GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Top of Casing Elevation (ft msl)	Groundwater Elevation (ft msl) [1]	GRO (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl- benzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)
MW-7	06/01/10	9.74	58.66	48.92	< 50	< 0.50	< 0.50	< 0.50	< 0.50	22
	09/07/10	9.74	58.66	48.92	<50	< 0.50	< 0.50	< 0.50	< 0.50	17
MW-10	06/01/10	8.85	61.89	53.04	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	09/07/10	11.75	61.89	50.14	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
MW-11	06/01/10	9.74	60.97	51.23	<50	< 0.50	<0.50	< 0.50	< 0.50	6.7
14144-11	09/07/10	11.68	60.97	49.29	59	< 0.50	< 0.50	< 0.50	< 0.50	98
		0.0=	(2.00	~ + O.1	270	-0.50	-0.50	10.50	-0.50	260
MW-12A	06/01/10	8.07	62.98	54.91	270	< 0.50	< 0.50	< 0.50	< 0.50	260
	09/07/10]	Inaccessible				
MW-13A	06/01/10	6.47	60.90	54.43	1,500	< 0.50	< 0.50	< 0.50	< 0.50	7.1
	09/07/10]	Inaccessible				
DEEPER W	ELLS									
MW-5B	06/01/10	12.87	57.69	44.82	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.70
	09/07/10	13.28	57.69	44.41	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.4
MW-6B	06/01/10	35.75	56.71	20.96	<50	< 0.50	<0.50	<0.50	< 0.50	< 0.50
2.2,1,023	09/07/10	37.24	56.71	19.47	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
BANK 40F	0.540.4.14.7	27.40	(2.04	27.47		.0.50	.0.70	10.50	10.50	0.04
MW-12B	06/01/10	37.49	62.94	25.45	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.84
	09/07/10]	naccessible				

TABLE 1 GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Foothill Mini Mart, 6600 Foothill Boulevard, Oakland, California

I	337.11	D-4-	Danth to Water	Top of Casing	Groundwater	GRO	Ronzono	Toluene	Ethyl-	Total	MTBE
	Well	Date	Depth to Water	Elevation (ft	Elevation		Benzene		benzene	Xylenes	
	Number	Collected	(feet)	msl)	(ft msl) [1]	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
IL.					\-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\						

Legend/Key:

GRO = Gasoline range organics

-- = Not available/not analyzed

MTBE = Methyl tertiary butyl ether

ft msl = feet above mean sea level

ND= "not-detected" or below the Method Detection Limits

μg/L = micrograms per liter

- [1] = The TOC elevations reported in groundwater monitoring reports prior to second quarter 2010 are incorrect. The datum elevation adopted previously was revised on August 4, 2008 using the city of Oakland datum ('--D83). The revised TOC elevations are converted to mean sea level elevation and used to calculate all groundwater elevations.
- [2] = Laboratory reported does not match gasoline pattern.
- [3] = Reporting limits were increased due to high concentration of target analytes.
- * The top of casing (TOC) elevations origi'—lly surveyed on June 31. 2001 used MW-1 as the common datum with assumed elevation of 100.00 feet above mean sea level (msl). All other TOC elevations were surveyed relative to MW-1. All of the wells were again surveyed per GeoTracker standard on July 11, 2003, by PLS Surveys Inc., a California licensed surveyor. All elevations are reported with respect to feet above lmean sea level.

TABLE 2
ANALYTICAL RESULTS FOR FUEL OXYGENATES AND ADDITIVES

Well Number	Date	MTBE	TBA	ETBE	DIPE	TAME	Methanol	Ethanol	1,2-DCA	EDB
	Collected	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)
SHALLOW W	ELLS									
MW-1	06/13/01	130								
	03/21/02	72.5								
	07/09/02	208								
	07/11/03	636								
	11/13/03	72,000	22,000							
	02/19/04	82,000	8,360							
	05/21/04	12,000	<1,000							
	08/11/05	4,900								
	11/30/05	8,400								
	08/08/08	720	7.4J	<1.5	<1.5	<1.5	<300	<15	<1.5	<1.5
	11/05/08	580	<100	<20	<20	<20	***	<1,000		
	02/06/09	610	120	<1.5	<1.5	<1.5	< 600	<15		
	05/07/09	210	110	< 0.50	< 0.50	< 0.50	<150	< 5.0		
	06/01/10	170	200	<1.0	<1.0	<1.0	< 50	< 5.0	***	
	09/07/10				Not Sche	eduled for Sa	ampling			
MW-2	06/13/01	94,000	980							
	03/21/02	79,100						and the		ANY 1800
	07/09/02	37,600				***				
	07/11/03	38,200								
	11/13/03	47,000	11,000							
	02/19/04	26,700	3,930							
	05/21/04	24,600	<4,000							
	08/11/05	6,500								
	11/30/05	2,300								
	08/08/08	9.8	17,000	<9.0	< 9.0	<9.0	<900	<90	<9.0	<9.0
	11/05/08	12	13,000	<2.0	<2.0	<2.0		<100		~9.0
	02/06/09	10	11,000	<4.0	<4.0	<4.0	<400	<40		
	05/07/09	9.7	12,000	<4.0	<4.0	<4.0	<400	<40		
	06/01/10	69	7,300	<10 [1]	<10 [1]	<10[1]	< 5 00	<5.0		
	09/07/10	U 9	7,500	~10 [1]		eduled for S		~3.0		

TABLE 2
ANALYTICAL RESULTS FOR FUEL OXYGENATES AND ADDITIVES

Well Number	Date	MTBE	TBA	ETBE	DIPE	TAME	Methanol	Ethanol	1,2-DCA	EDB
wen Number	Collected	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)
MW-3	06/13/01	450			w					
	03/21/02	7,520								
	07/09/02	40.8								
	07/11/03	24.3								
	11/13/03	37	27		~ ~					
	02/19/04	42.7	508				***			
	05/21/04	54	1,100							
	08/11/05	27								
	11/30/05	28								
	08/08/08	4.5	130	< 0.50	< 0.50	< 0.50	<80	< 5.0	< 0.50	< 0.50
	11/05/08	4.5	500	< 2.0	< 2.0	< 2.0		<100		
	02/06/09	5.3	770	< 0.50	< 0.50	< 0.50	<100	< 5.0		
	05/07/09	5.5	900	< 0.50	< 0.50	< 0.50	< 50	< 5.0		
	06/01/10	5.1	36	<1.0	<1.0	<1.0	< 50	< 5.0		
	09/07/10				Not Scho	eduled for Sa	ampling			
MW-4	07/09/02	28,300								
	07/11/03	16,600								
	11/13/03	16,000	4,500							
	02/19/04	14,300	1,440							
	05/21/04	7,380	<2,000							
	08/11/05	1,200								
	11/30/05	340								
	08/08/08	24	1,800	< 0.50	< 0.50	< 0.50	<80	< 5.0	< 0.50	< 0.50
	11/05/08	31	760	<2.0	<2.0	<2.0		<100		
	02/06/09	39	1,400	< 0.50	< 0.50	< 0.50	<200	< 5.0		
	05/07/09	29	1,000	< 0.50	< 0.50	< 0.50	<200	< 5.0		
	06/01/10	9.4	900	<2.0[1]	<2.0 [1]	<2.0[1]	< 50	< 5.0		
	09/07/10					eduled for Sa	ampling			

TABLE 2
ANALYTICAL RESULTS FOR FUEL OXYGENATES AND ADDITIVES

Well Number	Date	MTBE	TBA	ETBE	DIPE	TAME	Methanol	Ethanol	1,2-DCA	EDB
Well Number	Collected	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)
MW-5	07/09/02	18,600								
	07/11/03	5,090								
	11/13/03	3,400	3,100							
	02/19/04	438	1,340							
	05/21/04	214	436							
	08/11/05	100							***	
	11/30/05	82								
	08/08/08	8.6	510	< 0.50	< 0.50	< 0.50	<50	< 5.0	< 0.50	< 0.50
	11/05/08	4.8	170	< 2.0	<2.0	< 2.0		<100		
	02/06/09	5.5	110	< 0.50	< 0.50	< 0.50	<200	< 5.0		
	05/07/09	4.3	60	< 0.50	< 0.50	< 0.50	< 50	< 5.0		
	06/01/10	4.3	570	<1.0	<1.0	<1.0	< 50	< 5.0		
	09/07/10				Not Sche	duled for Sa				
MW-6	07/09/02	11,300								
	07/11/03	18,000					No. out			
	11/13/03	18,000	ND							
	02/19/04	5,310	4,260							
	05/21/04	3,900	4,060							
	08/11/05	3,200								
	11/30/05	3,400								
	08/08/08	230	810	< 0.50	< 0.50	< 0.66	<200	<8.0	< 0.50	< 0.50
	11/05/08	340	950	<10	<10	<10		< 500		
	02/06/09	140	690	< 0.50	< 0.50	< 0.50	<200	< 5.0	**-	
	05/07/09	150	460	< 0.50	< 0.50	< 0.50	<100	< 5.0		
	06/01/10	350	770	<5.0 [1]	<5.0 [1]	<5.0 [1]	< 50	< 5.0		
	09/07/10				Not Sche					
							r5			

TABLE 2 ANALYTICAL RESULTS FOR FUEL OXYGENATES AND ADDITIVES

Foothill Mini Mart, 6600 Foothill Boulevard, Oakland, California

Date	MTBE	TBA	ETBE	DIPE	TAME	Methanol	Ethanol	1,2-DCA	EDB
Collected	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)
06/01/10	22	18	<1.0	<1.0	<1.0	< 50	< 5.0		
09/07/10	17	<10	<1.0	<1.0	<1.0	<50	<5.0		
06/01/10	< 0.50	<10	<1.0	<1.0	<1.0	<50	<5.0	se =-	
09/07/10	< 0.50	<10	<1.0	<1.0	<1.0	<50	< 5.0		
06/01/10	6.7	<10	<1.0	<1.0	<1.0	<50	<5.0		
09/07/10	98	<10	<1.0	<1.0	<1.0	<50	<5.0		
06/01/10	260	<10	<1.0	<1.0	<1.0	<50	< 5.0		
09/07/10					Inaccessible				
06/01/10	7.1	33	<1.0	<1.0	<1.0	<50	<5.0		
09/07/10									
ELLS									
06/01/10	0.70	<10	<1.0	<1.0	<1.0	<50	<5.0		
09/07/10	1.4	<10	<1.0	<1.0	<1.0	<50	<5.0		
06/01/10	< 0.50	<10	<1.0	<1.0	<1.0	<50	<5.0		
09/07/10	< 0.50	<10	<1.0	<1.0	<1.0	<50	<5.0		
06/01/10	0.84	<10	<1.0	<1.0	<1.0	<50	<5.0		
09/07/10	•	2.0	2.0			-20	-5.0		
	06/01/10 09/07/10 06/01/10 09/07/10 06/01/10 09/07/10 06/01/10 09/07/10 ELLS 06/01/10 09/07/10 06/01/10 09/07/10 06/01/10 09/07/10	Collected (μg/L) 06/01/10 22 09/07/10 17 06/01/10 <0.50	Collected (μg/L) (μg/L) 06/01/10 22 18 09/07/10 17 <10	Collected (μg/L) (μg/L) (μg/L) 06/01/10 22 18 <1.0	Collected (μg/L) (μg/L) (μg/L) (μg/L) 06/01/10 22 18 <1.0	Collected (μg/L) (μg/L) (μg/L) (μg/L) (μg/L) 06/01/10 22 18 <1.0	Collected (μg/L) (μg	Collected (μg/L) (ξρ) (ξρ)	Collected (μg/L) (μg

Legend/Key:

MTBE = Methyl tertiary butyl ether

TBA = Tertiary butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1.2-Dibromoethane

ND= "not-detected" or below the Method Detection Limits

--= Not available/not analyzed

mg/L = micrograms per liter

^{[1] =} Reporting limits were increased due to high concentration of target analytes.

TABLE 3
WELL CONSTRUCTION DETAIL SUMMARY
Foothill Mini Mart, 6600 Foothill Boulevard, Oakland, California

Boring/Well I.D.	Installed Depth Dia		Boring Diameter (inches)	Well Diameter (inches)	Well Depth (feet)	Screen Interval (feet bgs)	Slot Size (inches)	Drilling Method	
Shallow Ground	lwater Monitor	ing Wells							
MW-1	06/04/01	25	8	2	25	10-25	0.01	HSA	
MW-2	06/04/01	25	8	2	25	10-25	0.01	HSA	
MW-3	06/04/01	25	8	2	25	10-25	0.01	HSA	
MW-4	06/26/02	20	8	2	20	7.5-20	0.01	HSA	
MW-5	06/26/02	20	8	2	20	7.5-20	0.01	HSA	
MW-6	06/26/02	20	8	2	20	7.5-20	0.01	HSA	
MW-7	09/23/09	25	8	2	25	10-25	0.01	HSA	
MW-10	09/22/09	25	8	2	25	15-25	0.01	HSA	
MW-11	09/23/09	25	8	2	25	10-25	0.01	HSA	
MW-12A	09/22/09	25	8	2	25	10-25	0.01	HSA	
MW-13A	09/24/09	25	8	2	25	525	0.01	HSA	
Deeper Grounds	water Monitori	ng Wells							
MW-5B	09/23/09	45	8	2	45	35-45	0.01	HSA	
MW-6B	09/24/09	50	8	2	50	35-50	0.01	HSA	
MW-12B	09/22/09	43	8	2	43	33-43	0.01	HSA	
Notes:									

HSA = hollow stem auger

APPENDIX A FIELD DATA SHEETS

Site Address	6600	Foothill	Blud
	a. 1/)	. ^	٨

City Cakland Sampled By:

Signature

Project Number 2087-6600-01

Project PM Scott Bittinger

9/7/2010

		Materia	Note.		THE SUR	D	e Volume C	alculations		T	Durce	Method		1 0	ample Reco	ord	Field Data
	Т	Water Level I	Jaia T	T		Turg	je volulile C	aiculations	T	<u> </u>	ruige	, METHO	, 	3	ample necc	1	i ielu Data
Well ID	Time	Depth to Product (feet)	Depth to Water (feet)	Total Depth (feet)	Water Column (feet)	Diamater (inches)	Multiplier	3 casing volumes (gallons	Actual Water Purged (gallons)	No Purge	Bailer	Pump	Other	DTW at sample time (feet)	Sample I.D.	Sample Time	DO (mg/L)
vw-1	0627		11.33	24.21	12.88	2	0.50	6.44				<i>i</i>			1-0M		
	0633		9.69	24.35	14.66			7-33							0-2		
-3	0639		10-88		12.72			6.36	2						-0-3		
-4		Acces	s Der	nied							-				-04		
-5	0655		9.37	19.41	10.04			5.02							05		
-5B	0656 0703 0701		13.28	45.17	31.89			15-95	14.50		X	Dry e	-14.5	28.95	753	1107	P8.0
-6	0703	<u> </u>	7.84	18.79			<u> </u>	5.48							ಿರ	b	
ન્દુ	0701		37.24	49.91	12.67			6.35	6.50		×			43.79	ન્હિ		0.79
-7	0652		9.74	24.74	15.00			7.50	7.50		×			18.12	Fo	1030	0.75
-100													,		0		
71			***************************************												0		
-10	0636		11,75	24.92	13.17	24 (A).		6.58			×	DING	5.5	19-68	-010	0949	1.83
-11	0625			24.82	13-14	V	V	6.57	6.50		×			14.15	-11	0757	0.82
-12A		Access	Den	ied											ACD-		
-128		b .		4											-123		
-13A	<u>, </u>	No C	contact	- #	For P	rop.	our	er =							-93A		
	ļ					•									0		
															0		
						F									0		
															0		
			····												0		
							·								0		
															0		
					4										0		
					<\$P										0		
															0		
											<u>€</u> ;				0	JUDDATION DA	السرر السال

2" = 0.5, 3" = 1.0, 4" = 2.0, 6" = 4.4

Please refer to groundwater sampling field procedures pH/Conductivity/temperature Meter - Oakton Model)PC-10 DO Meter - Oakton 300 Series (DO is always mesured before purge)

194

	CALIBRATION DAT	TE LIF	9/7/10
pН		1	
Conductivity		1.5	
DO		V	

Site Address Loboo Foothill Blud.
City Oakland
Site Sampled by LF

Site Number

Project No. 2087 - 6600 - 01

Project PM Scott Bitting ar

Date Sampled 9/7/2010

DI ORGINAL

								CIMA	5	
Well ID MW	1-10	Ba	:\		Well	ID MW				
purge start time	072	5			- 11	e start time	0744		ail	
	Temp (C pH	cond	gallor			Temp C	T		T
time 0725	19.5	7.11	93.0	Ø	time	0744	19.5		cond	gallo
time 0731	19.1	6.54		1		0748	19.5	5-96		
time 0736	Dry	at 5	5.5 9				19.3	5.82		-1
time 0945	18.7	7.01	124-0	5.5	time	- 13 1	11.5	5.80	159.5	6.4
purge stop time	0736		ORP =		_	stop time	ATELL		0 - 100	
Well ID MW -	. 7	Bail			Well I				(P=128	<u>ئ</u>
ourge start time	0821		***************************************			start time	V-5B 0840		$\frac{1}{2}$	
	Temp C		cond	gallon		Start time			1	T
ime 0821	19.9	6.10	148.2	0	1	3840	Temp C		cond	gallo
ime 0826	19.9	6.34	139.0	4.0	11		19.8	6.73	121.0	0
ime 0829	19.4	6.36	145.1	7.5	time C			6.63	119.9	8
me				1	time I		7		5 gal	ens
urge stop time	0829	<u> </u>	ORP =	137	7	stop time	19.8		134-6	14,5
Vell ID MW-	6B		Bail		Well IE		0902		ORP =	118
urge start time	0925		055			start time				
	Temp C	рН	cond	gallons	11	start time	- 0			
me 0925	19.4	6.79	118-1		time		Temp C	pН	cond	gallor
me 0931	19.3	686			time					
ne 0937	19.4	6.91	124.3		time					
ne					time					······································
irge stop time	0937	0	RP= 1.			top time				
ell ID					Well ID					
rge start time		-								
	Temp C	На	cond	gallons	purge s	tart time			· · · · ·	·
ne		, ,	Oorig		4:		Temp C	pН	cond g	gallons
ne					time					
e	٤				time					
е					ime -					
ge stop time					ime					
So grob mile					ourge st	op time				

APPENDIX B SAMPLING AND ANALYSES PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc[®] type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon® sheeting and plastic caps. The sample is then placed in a Ziploc® type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use of spiked samples, duplicate samples, split samples, use of reference blanks, and check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical instrument performance, a quality check sample, which is prepared independently of the calibration standards and contains the constituents of interest, is analyzed to confirm that measurements were performed accurately.

 Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported and stored with the samples and analyzed to assess the impact of sample transport and storage for data quality. In the event that any analyte is detected in the field blank, a trip blank will be included in the subsequent groundwater sampling event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Scott Bittinger

Phone: (530) 676-2062

Fax:

(530) 676-6005

Date Received: 09/08/10

Job:

2087-6600-01/Foothill Mini Mart

GC/MSD by Direct Injection EPA Method SW8260B-DI

	Parameter	Concentration	Reporting Limit	Date Extracted	Date Analyzed
Client ID: MW-5B					
Lab ID: STR10090843-01A	Methanol	ND	50 μg/L	09/09/10 11:25	09/09/10
Date Sampled 09/07/10 11:07	Ethanol	ND	5.0 μg/L	09/09/10 11:25	09/09/10
Client ID: MW-6B					
Lab ID: STR10090843-02A	Methanol	ND	50 μg/L	09/09/10 11:25	09/09/10
Date Sampled 09/07/10 11:40	Ethanol	ND	5.0 μg/L	09/09/10 11:25	09/09/10
Client ID: MW-7					
Lab ID: STR10090843-03A	Methanol	ND	50 μg/L	09/09/10 11:25	09/09/10
Date Sampled 09/07/10 10:30	Ethanol	ND	5.0 μg/L	09/09/10 11:25	09/09/10
Client ID: MW-10					
Lab ID: STR10090843-04A	Methanol	ND	50 μg/L	09/09/10 11:25	09/09/10
Date Sampled 09/07/10 09:49	Ethanol	ND	5.0 μg/L	09/09/10 11:25	09/09/10
Client ID: MW-11					
Lab ID: STR10090843-05A	Methanol	ND	50 μg/L	09/09/10 11:25	09/09/10
Date Sampled 09/07/10 07:57	Ethanol	ND	5.0 μg/L	09/09/10 11:25	09/09/10

ND = Not Detected

Roger Scholl Kandy Saulow

Walter Findner

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Scott Bittinger Phone: (530) 676-2062 Fax: (530) 676-6005 Date Received: 09/08/10

Job:

2087-6600-01/Foothill Mini Mart

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B Volatile Organic Compounds (VOCs) EPA Method SW8260B

Client ID MW-5B			Parameter	Concentration	Reporting	Date	Date
Lab ID: STR 10090843-01 TPH-F (GRO) ND 50 µg/L 09/09/10 09/09/10 Date Sampler 09/07/10 11:07 Tectiary Bulyl Alcohol (TBA) ND 10 µg/L 09/09/10 09/09/10 La Fampler 1 Page 1 1.4 0.50 µg/L 09/09/10 09/09/10 La Fampler 1 Page 1 1.0 µg/L 09/09/10 09/09/10 09/09/10 La Fampler 1 Page 1 ND 1.0 µg/L 09/09/10 09/09/10 Benzene ND 0.50 µg/L 09/09/10 09/09/10 09/09/10 Toluene ND 0.50 µg/L 09/09/10 09/09/10 Demonary Methyl Ether (TAME) ND 0.50 µg/L 09/09/10 09/09/10 Demonary Methyl Ether (TAME) ND 0.50 µg/L 09/09/10 09/09/10 Demonary Methyl Ether (TAME) ND 0.50 µg/L 09/09/10 09/09/10 Client ID: STR 10090843-08 TPH-F (GRO) ND 50 µg/L 09/10/10 09/10/10 Dissoprosyl Ether (DIPE) ND 1.0	Client ID:	MW-5R			Limit	Extracted	Analyzed
Date Sampled Pont Pont			TPH-P (GRO)	ND	50 ug/I	09/09/10	00/00/10
Methyl tert-butyl ether (MTBE) 1.4 0.50 μg/L 09/09/10 09/09/10 Dissopropyl Ether (DIPE) ND 1.0 μg/L 09/09/10 09/09/10 Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/09/10 09/09/10 Genzene ND 0.50 μg/L 09/09/10 09/09/10 Tertiary Amyl Methyl Ether (TAME) ND 1.0 μg/L 09/09/10 09/09/10 Toluene ND 0.50 μg/L 09/09/10 09/09/10 Toluene ND 0.50 μg/L 09/09/10 09/09/10 Ethylhenzene ND 0.50 μg/L 09/09/10 09/09/10 Oxylene ND 0.50 μg/L 09/10/10 09/10/10 Oxylene Oxylene ND 0.50 μg/L 09/10/10 09/10/10 Oxylene Oxylene ND 0.50 μg/L 09/10/10 09/10/10 Oxylene Oxy	Date Sampled		, ,				
Di-isopropyl Ether (DIPE) ND 1.0 μg/L 09/09/10	•		• • • • • •				
Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/09/10 09			* ' '				
Remark First Remark R							
Tertiary Amyl Methyl Ether (TAME)			- • • • •				
Toluene ND 0.50 μg/L 09/09/10 09/09/10							
Ethylbenzene ND 0.50 μg/L 09/09/10 09/09/10 m.p-Xylene ND 0.50 μg/L 09/09/10 09/09/10 09/09/10 0-Xylene ND 0.50 μg/L 09/09/10 09/09/10 09/09/10 0-Xylene ND 0.50 μg/L 09/09/10 09/09/10 09/09/10 09/09/10 0-Xylene ND 0.50 μg/L 09/10/10 09/10							
m.pXylene ND 0.50 μg/L 09/09/10 09/09/10 09/09/10 0-Xylene ND 0.50 μg/L 09/09/10 09/09/10 09/09/10 0-Xylene ND 0.50 μg/L 09/09/10 09/09/09/10 09/09/09/10 09/09/09/10 09/09/09/10 09/09/09/09/09/09/09/09/09/09/09/09/09/0							
Part			•				
Client ID : STR 10090843-024 TPH-P (GRO) ND S0 μg/L 09/10/10 0							
Lab ID : STR10090843-02A TPH-P (GRO) ND 30 μg/L 09/10/10 09/10/10 Date Sampled 09/07/10 11:40 Tertiary Butyl Alcohol (TBA) ND 10 μg/L 09/10/10 09/10/10 Date Sampled 09/07/10 11:40 Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 09/10/10 09/10/10 Methyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10 Benzene ND 0.50 μg/L 09/10/10 09/10/10 Toluene ND 0.50 μg/	Client ID:	MW-6B	o Aylone	ND	0.50 µg/L	09/09/10	09/09/10
Date Sampled 09/07/10 11:40 Tertiary Butyl Alcohol (TBA) ND 10 μg/L 09/10/10 09/10/10 Lee A Fall III All IIII All III All II			TPH-P (GRO)	ND	50 ug/L	09/10/10	09/10/10
Methyl tert-butyl ether (MTBE) ND 0.50 μg/L 09/10/10 09/10/10 09/10/10 Di-isopropyl Ether (DIPE) ND 1.0 μg/L 09/10/10 09/10/10 09/10/10 Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10 09/10/10 Benzene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10 Tertiary Amyl Methyl Ether (TAME) ND 1.0 μg/L 09/10/10 09/10/10 09/10/10 Toluene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10 1.0 μg/L 09/10/10	Date Sampled	09/07/10 11:40					
Di-isopropyl Ether (DIPE) ND 1.0 μg/L 09/10/10 09/10/10					· -		
Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10 09/10/10 Benzene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10 Tertiary Amyl Methyl Ether (TAME) ND 1.0 μg/L 09/10/10 09/10/10 09/10/10 Toluene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10 Ethylbenzene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10 m.p-Xylene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10 Client ID : MW-7			Di-isopropyl Ether (DIPE)	ND			
Benzene ND 0.50 μg/L 09/10/10 09/10/10 1.0 μg/L 09/10/10 09/10/10 09/10/10 1.0 μg/L 09/10/10 09/10/10 09/10/10 1.0 μg/L 09/10/10 09/			Ethyl Tertiary Butyl Ether (ETBE)		. •		
Tertiary Amyl Methyl Ether (TAME) ND 1.0 μg/L 09/10/10 09/10/10 09/10/10			Benzene	ND			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L	09/10/10	09/10/10
Ethylbenzene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10			Toluene	ND	-		
m.p-Xylene m.p-Xylene ND 0.50 μg/L 09/10/10 09/10/10 09/10/10			Ethylbenzene	ND		09/10/10	
O-Xylene O-Xylene ND O.50 μg/L O9/10/10 O9/10/10			m,p-Xylene	ND	` -		
Client ID: MW-7 Lab ID: STR 10090843-03A TPH-P (GRO) ND 50 μg/L 09/10/10 09/10/10 Date Sampled 09/07/10 10:30 Tertiary Butyl Alcohol (TBA) ND 10 μg/L 09/10/10 09/10/10 Methyl tert-butyl ether (MTBE) 17 0.50 μg/L 09/10/10 09/10/10 Di-isopropyl Ether (DIPE) ND 1.0 μg/L 09/10/10 09/10/10 Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10			o-Xylene	ND			
Date Sampled 09/07/10 10:30 Tertiary Butyl Alcohol (TBA) ND 10 μg/L 09/10/10 09/10/10 Methyl tert-butyl ether (MTBE) 17 0.50 μg/L 09/10/10 09/10/10 Di-isopropyl Ether (DIPE) ND 1.0 μg/L 09/10/10 09/10/10 Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10	Client ID:	MW-7			, 0		
Date Sampled 09/07/10 10:30 Tertiary Butyl Alcohol (TBA) ND 10 μg/L 09/10/10 09/10/10 Methyl tert-butyl ether (MTBE) 17 0.50 μg/L 09/10/10 09/10/10 Di-isopropyl Ether (DIPE) ND 1.0 μg/L 09/10/10 09/10/10 Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10	Lab ID:	STR10090843-03A	TPH-P (GRO)	ND	50 μg/L	09/10/10	09/10/10
Methyl tert-butyl ether (MTBE) 17 0.50 μg/L 09/10/10 09/10/10 Di-isopropyl Ether (DIPE) ND 1.0 μg/L 09/10/10 09/10/10 Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10	Date Sampled	09/07/10 10:30	Tertiary Butyl Alcohol (TBA)	ND		09/10/10	09/10/10
Ethyl Tertiary Butyl Ether (ETBE) ND 1.0 μg/L 09/10/10 09/10/10			Methyl tert-butyl ether (MTBE)	17	· -	09/10/10	09/10/10
			Di-isopropyl Ether (DIPE)	ND	1.0 μg/L	09/10/10	09/10/10
Benzene ND 0.50 ug/I 00/10/10 00/10/10			Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L	09/10/10	09/10/10
οιο (10/10 09/10/10 10 10 10 10 10 10 10 10 10 10 10 10 1			Benzene	ND	0.50 μg/L	09/10/10	09/10/10
Tertiary Amyl Methyl Ether (TAME) ND 1.0 µg/L 09/10/10 09/10/10			Tertiary Amyl Methyl Ether (TAME)	ND	1.0 μg/L	09/10/10	09/10/10
Toluene ND 0.50 µg/L 09/10/10 09/10/10			Toluene	ND	0.50 μg/L	09/10/10	09/10/10
Ethylbenzene ND 0.50 μg/L 09/10/10 09/10/10			Ethylbenzene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
m,p-Xylene ND 0.50 μg/L 09/10/10 09/10/10			m,p-Xylene	ND		09/10/10	09/10/10
o-Xylene ND $0.50 \mu g/L$ $09/10/10$ $09/10/10$			o-Xylene	ND	0.50 μg/L	09/10/10	09/10/10

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	MW-10					
Lab ID :	STR10090843-04A	TPH-P (GRO)	ND	50 μg/L	09/10/10	09/10/10
Date Sampled	09/07/10 09:49	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	09/10/10	09/10/10
		Methyl tert-butyl ether (MTBE)	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		Di-isopropyl Ether (DIPE)	ND	1.0 µg/L	09/10/10	09/10/10
		Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 µg/L	09/10/10	09/10/10
		Benzene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L	09/10/10	09/10/10
		Toluene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		Ethylbenzene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		m,p-Xylene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		o-Xylene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
Client ID:	MW-11					
Lab ID:	STR10090843-05A	TPH-P (GRO)	59	50 μg/L	09/10/10	09/10/10
Date Sampled	09/07/10 07:57	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	09/10/10	09/10/10
		Methyl tert-butyl ether (MTBE)	98	$0.50~\mu g/L$	09/10/10	09/10/10
		Di-isopropyl Ether (DIPE)	ND	1.0 μg/L	09/10/10	09/10/10
		Ethyl Tertiary Butyl Ether (ETBE)	ND	$1.0~\mu g/L$	09/10/10	09/10/10
		Benzene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		Tertiary Amyl Methyl Ether (TAME)	ND	1.0 µg/L	09/10/10	09/10/10
		Toluene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		Ethylbenzene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		m,p-Xylene	ND	$0.50~\mu g/L$	09/10/10	09/10/10
		o-Xylene	ND	$0.50~\mu g/L$	09/10/10	09/10/10

Gasoline Range Organics (GRO) C4-C13

ND = Not Detected

Reported in micrograms per Liter, per client request.

oger Scholl Kundg Saulner

Walter Hiriham

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 736-7522 / Carson, CA • (714) 386-2901 / info@alpha-analytical.com

Alpha certifies that the test results meet all requirements of NELAC unless footnoted otherwise.

Alpha Analytical, Inc. currently holds appropriate and available California (#2019) and NELAC (01154CA) certifications for the data reported. Test results relate only to reported samples.

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Sep-10		(QC Su	ımmary	Repor	t				Work Order: 10090843	
Method Bla	nk		Type: MI	BLK Te	st Code: EF	'A Met	hod SW82	60B-DI			
File ID: C:\HP	CHEM\MS11\DATA\100909\10	090909.D		Ва	tch ID: 2501	4		Analys	is Date:	09/09/2010 17:06	
Sample ID:	MBLK-25014	Units : µg/L		Run ID: MS	D_11_1009	09A		Prep D	Date:	09/09/2010 11:25	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual
Methanol		ND	50								
Ethanol		ND	5								
Surr: Hexafluo	ro-2-propanol	512		500		102	70	130			
	Control Spike		Type: LC	S Te	st Code: EF	A Met	thod SW82	60B-DI			
	CHEM\MS11\DATA\100909\10			Ba	tch ID: 2501	14		Analys	sis Date:	09/09/2010 15:49	
Sample ID:	LCS-25014	Units : μg/L			D_11_1009			Prep D		09/09/2010 11:25	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef\	Val %RPD(Limit)	Qual
Methanol		264	50	250		106	54	132			
Ethanol	0	254	5	250		102	70	142			
Surr: Hexafluo	ro-z-propanoi	518		500		104	70	130			-
Sample Mat			Type: M	S Te	st Code: EF	PA Met	thod SW82	:60B-DI			
	CHEM\MS11\DATA\100909\10	1090907.D		Ba	tch ID: 2501	14		•		09/09/2010 16:28	
Sample ID:	10090843-02AMS	Units : μg/L			D_11_1009			Prep D		09/09/2010 11:25	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Methanol		203	50	250	0	81	48	142			
Ethanol		230	5	250	0	92	68	143			
Surr: Hexafluo	го-2-ргорапоі	466	-	500	·	93	70	130			
	rix Spike Duplicate		Type: M		st Code: EF		thod SW82				
	CHEM\MS11\DATA\100909\10				tch ID: 250'			•		09/09/2010 16:47	
Sample ID:	10090843-02AMSD	Units : µg/L			SD_11_1009			Prep [09/09/2010 11:25	
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME)	RPDRef	Val %RPD(Limit)	Qual
Methanol		211	50	250	0	84	48	142	203.		
Ethanol Surr: Hexafluo	ero 2 proponol	247	5	250	0	99	68	143	230.	1 6.9(20)	
Sun. nexalluo	nu-z-proparior	447		500		89	70	130			

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Sep-10	QC Summary Report									
Method Blank File ID: C:\HPCHEM\MS07\DATA\100909\100		Type: M	Ва	est Code: EF atch ID: MS0	7W090			e: 09/09/2010 17:31		
Sample ID: MBLK MS07W0909B Analyte	Units : µg/L Result	PQL		SD_07_1009 -SnkRef\/al	09/09/2010 17:31 efVal %RPD(Limit)	Qual				
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	ND 10.4 10.1 9.47	50		Opkreival	104 101 95	70 70 70 70	130 130 130 130	sivar /ord D(Carity	Quai	
Laboratory Control Spike	3.47	Type: L0		est Code: EF						
File ID: C:\HPCHEM\MS07\DATA\100909\100	90903.D	7,		atch ID: MS0				e: 09/09/2010 16:43		
Sample ID: GLCS MS07W0909B	Units : µg/L		Run ID: MS	SD_07_1009	09A		Prep Date:	09/09/2010 16:43		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	418 10.1 9.95 9.83	50	400 10 10 10		105 101 100 98	70 70 70 70	130 130 130 130			
Sample Matrix Spike		Type: M	S To	est Code: EF	A Met	hod SW80	15			
File ID: C:\HPCHEM\MS07\DATA\100909\100	90908.D		Ва	atch ID: MS0	7W090	9B	Analysis Dat	e: 09/09/2010 18:41		
Sample ID: 10090843-01AGS	Units : µg/L		Run ID: MS	SD_07_1009	09A		Prep Date:	09/09/2010 18:41		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	2210 49.9 49.9 49.1	250	2000 50 50 50	0	110 99.8 99.8 98	58 70 70 70	135 130 130 130			
Sample Matrix Spike Duplicate		Type: M	SD To	est Code: EF	A Met	hod SW80	15			
File ID: C:\HPCHEM\MS07\DATA\100909\100	90909.D		Ва	atch ID: MS0	7W090	9B	Analysis Dat	e: 09/09/2010 19:05		
Sample ID: 10090843-01AGSD	Units : µg/L		Run ID: M:	SD_07_1009	09A		Prep Date:	09/09/2010 19:05		
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LCL(ME)	UCL(ME) RPDR	efVal %RPD(Limit)	Qual	
TPH-P (GRO) Surr: 1,2-Dichloroethane-d4 Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	1990 50.3 49.4 49.1	250	2000 50 50 50	0	99.6 101 99 98	58 70 70 70	135 22 130 130 130	08 10.3(20)		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per Liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 13-Sep-10	QC Summary Report										
Method Blank		Type: MBL		est Code: EP					_		
File ID: C:\HPCHEM\MS07\DATA\100909\				tch ID: MS07)9A	Analys	is Date:	09/09/2010 17:31		
Sample ID: MBLK MS07W0909A	Units : µg/L	Ru	ın ID: MS	SD_07_10090)9A		Prep D	ate:	09/09/2010 17:31		
Analyte	Result	PQL	SpkVal	SpkRefVal 9	6REC	LCL(ME)	UCL(ME) I	RPDRef\	/al %RPD(Limit)	Qual	
Tertiary Butyl Alcohol (TBA)	ND	10					***************************************				
Methyl tert-butyl ether (MTBE)	ND	0.5									
Di-isopropyl Ether (DIPE)	ND	1									
Ethyl Tertiary Butyl Ether (ETBE)	ND	1									
Benzene	ND	0.5									
Tertiary Amyl Methyl Ether (TAME)	ND	1									
Toluene Ethylbenzene	ND	0.5									
m,p-Xylene	ND	0.5									
o-Xylene	ND ND	0.5									
Surr: 1,2-Dichloroethane-d4	10.4	0.5	10		104	70	130				
Surr: Toluene-d8	10.4		10		104	70 70	130				
Surr: 4-Bromofluorobenzene	9.47		10		95	70	130				
	5.77	~									
Laboratory Control Spike		Type: LCS		est Code: EP							
File ID: C:\HPCHEM\MS07\DATA\100909\	10090904.D		Ba	tch ID: MS07	7W090	09A	Analys	is Date:	09/09/2010 17:07		
Sample ID: LCS MS07W0909A	Units : µg/L	Rı	ın ID: MS	SD_07_10090	9A		Prep D	ate:	09/09/2010 17:07		
Analyte	Result	PQL	SpkVal	SpkRefVal 9	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual	
Methyl tert-butyl ether (MTBE)	9.25	0.5	10		93	62	136				
Benzene	10.6	0.5	10		106	70	130				
Toluene	10.4	0.5	10		104	80	120				
Ethylbenzene	10.2	0.5	10		102	80	120				
m,p-Xylene	10.3	0.5	10		103	70	130				
o-Xylene	11.4	0.5	10		114	70	130				
Surr: 1,2-Dichloroethane-d4	9.89		10		99	70	130				
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	10		10		100	70	130				
Suit. 4-Biomolidorobenzene	9.54		10		95	70	130				
Sample Matrix Spike		Type: MS		est Code: EP							
File ID: C:\HPCHEM\MS07\DATA\100909\				itch ID: MS07		09A			09/09/2010 17:54		
Sample ID: 10090843-01AMS	Units : µg/L	Rı	un ID: MS	SD_07_1009	09A		Prep D	Date:	09/09/2010 17:54		
Analyte	Result	PQL	SpkVal	SpkRefVal 9	%REC	LCL(ME)	UCL(ME)	RPDRef\	/al %RPD(Limit)	Qual	
Methyl tert-butyl ether (MTBE)	47.1	1.3	50	1.38	92	56	141				
Benzene	65.7	1.3	50	0	131	67	130			M1	
Toluene	48.9	1.3	50	0	98	66	130				
Ethylbenzene	48.9	1.3	50	Ō	98	68	130				
m,p-Xylene	48.6	1.3	50	0	97	64	130				
o-Xylene	53.8	1.3	50	0	108	70	130				
Surr: 1,2-Dichloroethane-d4	51.1		50		102	70	130				
Surr: Toluene-d8 Surr: 4-Bromofluorobenzene	49.4		50		99	70	130				
Sun: 4-Biomonuolobenzene	47.7		50		95	70	130			••••	
Sample Matrix Spike Duplicate		Type: MSI) Te	est Code: EP	A Met	hod SW82	60B				
File ID: C:\HPCHEM\MS07\DATA\100909\	10090907.D		Ba	tch ID: MS0	7W090	09A	Analys	is Date:	09/09/2010 18:18		
Sample ID: 10090843-01AMSD	Units : µg/L	Ru	un ID: MS	SD_07_1009	09A		Prep D	Date:	09/09/2010 18:18		
Analyte	Result					LCL(ME)	UCL(ME)	RPDRef	/al %RPD(Limit)	Qual	
Methyl tert-butyl ether (MTBE)	46.4	1.3	50	1.38	90	56	141	47.14	- i		
Benzene	67	1.3	50	0	134	67	130	65.6		M1	
Toluene	49.5	1.3	50	0	99	66	130	48.92		141 1	
Ethylbenzene	48.8	1.3	50	0	99 98	68	130	48.8			
m,p-Xylene	48.8	1.3	50	0	98	64	130	48.6			
o-Xylene	54	1.3	50	0	108	70	130	53.8			
Surr: 1,2-Dichloroethane-d4	49.6		50	J	99	70	130	55.0	0.0(20)		
Surr: Toluene-d8	49.5		50		99	70	130				
Surr: 4-Bromofluorobenzene	48		50		96	70	130				

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date:

QC Summary Report 13-Sep-10

Work Order: 10090843

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

M1 = Matrix spike recovery was high, the method control sample recovery was acceptable.

Billing Information:

CHAIN-OF-CUSTODY RECORD

Page: 1 of 1

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

EMail Address

sbittinger@stratusinc.net

Phone Number

(530) 676-2062 x

WorkOrder: STR10090843

Report Due By: 5:00 PM On: 15-Sep-10

Client:

Stratus Environmental 3330 Cameron Park Drive Suite 550

Cameron Park, CA 95682-8861

EDD Required: Yes

Sampled by: Levi

PO:

Client's COC #: 24870

2087-6600-01/Foothill Mini Mart

Report Attention

Scott Bittinger

Cooler Temp 4°C

Samples Received 08-Sep-10

Date Printed 08-Sep-10

QC Level: S3 = Final Rpt, MBLK, LCS, MS/MSD With Surrogates **Requested Tests** Collection No. of Bottles Alpha Client ALCOHOL TPH/P W VOC_W Matrix Date Alpha Sub TAT Sample ID Sample ID Sample Remarks Low Level GAS-C BTEX/OXY STR10090843-01A MW-5B 09/07/10 0 MeOH / C 11:07 EtOH 09/07/10 Low Level GAS-C BTEX/OXY_ STR10090843-02A MW-6B 6 0 McOH / 11:40 **EtOH** BTEX/OXY STR10090843-03A MW-7 AQ 09/07/10 6 0 Low Level GAS-C McOII/ 10:30 EtOH STR10090843-04A MW-10 AQ 09/07/10 0 Low Level GAS-C BTEX/OXY MeOH / С 09:49 EtOH

Low Level

MeOH /

EtOH

Comments:

Security seals intact. Frozen ice.:

Logged in by:

STR10090843-05A MW-11

Signature

09/07/10

07:57

AQ

0

6

Print Name ara

GAS-C

BTEX/OXY

Company Alpha Analytical, Inc. Date/Time

City, Sta Phone N	Sト 333 ite, Zip Number	ratu So C	n: 5 Environ ameron Park meron Park 6 6004 Fax	Dr.	\$ 55 95 6009	682	Alpha 255 Gler Sparks, I Phone (Fax (775	dale Ave Nevada (775) 355 5) 355-04	enue, 89431 5-1044 406	Suite 2 -5778	21	San AZ ID	mple	CA OF	<u>X</u>	NV OT	rom HER	WA	h State? Page	24870 *__of_\
Client Name Fcothill Mini Mart Address Globo Fcothill Blud City, State, Zip Cakland, CA			Phone #			Job #2087-6600-01							\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	# # B	1		/ /	ired QC Level? II III IV 7 YES NO		
Time Sampled	Data	Matrix*	Sampled by \estimates	· Office \	Report	Attention Stratus Sample Description	incon	۲	AT	Field	Total and type of containers	7 F	ST.E.		7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i I				<u> </u>
167	G /	Below	Lab ID Number (Office Use Only	M	Sample Description W - 5 B		37		Filtered N/\(\text{\\cext{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\(\text{\\cext{\\cext{\\cext{\\cext{\\cext{\\cext{\\cext{\\cext{\\cext{\(\text{\\cint}\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	** See below	\times	~ ×	$\frac{7}{\times}$			f	\vdash	, ne	VIANNO
1140			01-100 100	-02		- 6B														
1030				73		- 7								Ц.	-		ļ	<u> </u>		
०१५१			43/	-04		- 10						-11	\bot		₩.		ļ			,
6757		 		-05		- 1\						\perp							-U-9/2/	2010
		上				12A														7/2010
	_\L	<u> </u>			٧	, -12B		, J				V	U	4	V			<u> </u>	u i	
	***************************************						<u></u>													787
										•										
	-		4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			way very								ļ	ļ	-				
ADDI	TION	AI IN	STRUCTIONS:			***************************************	<u></u>													
AUUI	IIVN	AL IN	SINUCIUNS:								· · · · · · · · · · · · · · · · · · ·									
			Signature			Print Name			T			Col	npan	y				T	Date	Time
Relinquished by				levi Ford				Str	atus	Env	Environmental						7/2010	1515		
Received by					Lisa do Silva					AL	DA	DADA						7-10	1515	
Relinquished by Asyclustic					Lisaye Silver					Al	PA	PAA						7-10	1000	
Received by the 1 Johnson Relinquished by					Taie Mickinson				alphe									8/10	1350	
Receive	_							L	\dashv									+		
*Kov: A			90 - Sail 1	WA - Wast		OT - Other AR - Air	**.	Litor			S-Soil Jar	0-(Orbo	т	-Tedla	r	B-Bras		P-Plastic	OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is limited to the amount paid for the report.

APPENDIX D

GEOTRACKER ELECTRONIC SUBMITTAL CONFIRMATIONS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:

EDF - Monitoring Report - Quarterly

Submittal Title:

3Q10 9-7-10

Facility Global ID:

T0600102286

Facility Name:

FOOTHILL MINI MART

File Name:

10090843.zip

Organization Name:

Stratus Environmental, Inc.

<u>Username:</u>

STRATUS NOCAL 12.186.106.98

IP Address:
Submittal Date/Time:

9/28/2010 12:38:10 PM

Confirmation Number:

4435297667

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type:GEO_WELLSubmittal Title:3q10 9-7-10Facility Global ID:T0600102286

Facility Name: FOOTHILL MINI MART

File Name: GEO_WELL.zip

Organization Name: Stratus Environmental, Inc.

<u>Username:</u> STRATUS NOCAL <u>IP Address:</u> 12.186.106.98

Submittal Date/Time: 9/28/2010 12:57:04 PM

Confirmation Number: 2684701383

Copyright © 2008 State of California