

RECEIVED

10:10 am, Jun 09, 2009

Alameda County
Environmental Health

June 5, 2009

Paresh C. Khatri Hazardous Materials Specialist

Alameda County Health Agency Department of Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: Groundwater Monitoring Report - Second Quarter 2009

Foothill Mini Mart 6600 Foothill Boulevard, Oakland, California Fuel Leak Case No. RO0000175 GeoTracker Global ID: T0600102286

Dear Mr. Khatri:

On behalf of Mr. Ravi Sekhon and pursuant to Alameda County Environmental Health's February 6, 2009 letter, Environmental Risk Specialties Corporation (ERS) has completed the 2009 second quarter groundwater monitoring/sampling for the subject site, and prepared the *Groundwater Monitoring Report – Second Quarter 2009*. Attached with this electronic file, please find this report for your review and comments.

If you have questions, please feel free to call the undersigned at (925) 938-1600 ext. 108. Your assistance on this site is very appreciated.

Sincerely,

ERS

Jim Ho, Ph.D., P.E. Principal Engineer

Cc: Ravi Sekhon, 21696 Knuppe Place, Castro Valley, CA 94552

Mr. Paresh C. Khatri Hazardous Material Specialist

Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: Sekhon Gas Station

6600 Foothill Boulevard
Oakland, California, 94605
Fuel Leak Case No. RO0000175
GeoTracker Global ID: T0600102286
UST Cleanup Fund Claim No. 14095

Dear Mr. Khatri:

As the responsible party of the above-referenced project location, I have reviewed the document entitled "Groundwater Monitoring Report – Second Quarter 2009", prepared by Environmental Risk Specialties Corporation (ERS), of Walnut Creek, California. I declare, under penalty of perjury, that the information and/or recommendations contained in this document or report are true and correct to the best of my knowledge.

Sincerely,

Mr. Ravi Sekhon

Date: 0-6-05-09

Groundwater Monitoring Report – Second Quarter 2009

Former Sekhon Gas Station 6600 Foothill Boulevard Oakland, CA 94605 Fuel Leak Case No. RO0000175

Submitted by:

Mr. Ravi Sekhon

Prepared by:

Environmental Risk Specialties Corporation Walnut Creek, California

TABLE OF CONTENTS

Section	1	<u> Page</u>
1. IN	TRODUCTION	1
2. BA	ACKGROUND	2
2.1	SITE DESCRIPTION	2
2.2	SITE HISTORY	2
2.3	Previous Site Investigations	4
2.4	LOCAL GEOLOGIC AND HYDROGEOLOGIC SETTING	
2.5	GROUNDWATER MONITORING HISTORY	
2.6	CONTAMINANTS OF CONCERN	6
3. GI	ROUNDWATER MONITORING ACTIVITIES	7
4. GI	ROUNDWATER MONITORING RESULTS	8
4.1	Groundwater Elevation and Flow	8
4.2	CONCENTRATION LEVEL AND DISTRIBUTION OF GROUNDWATER CONTAMINANTS	9
5. FI	NDINGS	10
6. CO	ONCLUSIONS AND RECOMMENDATIONS	12
7. FC	DRECAST ACTIVITIES	14
REFER	RENCES	15
RFPO	RT DISTRIBUTION LIST	16

LIST OF TABLES

- Table 1 Well Construction Data
- Table 2 Cumulative Groundwater Elevation and Analytical Data
- Table 3 Field Measured Water Quality Parameters

LIST OF FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Site Plan
- Figure 3 Groundwater Elevation Contours (May 7, 2009)
- Figure 4 TPH-g Concentration Contours (May 7, 2009)
- Figure 5 Benzene Concentration Contours (May 7, 2009)
- Figure 6 MTBE and TBA Concentration Contours (May 7, 2009)
- Figure 7 MTBE Concentration Change Over Time

LIST OF APPENDICES

- Appendix A Groundwater Depth and Well Purging Data Sheets
- Appendix B Laboratory Analytical Reports

1. INTRODUCTION

On behalf of Mr. Ravi Sekhon, Environmental Risk Specialties Corporation (ERS) conducted the Second Quarter 2009 (2Q09) groundwater monitoring event on May 7, 2009, for the site located at 6600 Foothill Boulevard, Oakland, California. Mr. Sekhon is a responsible party for the subsurface contamination of the former Sekhon Gas Station (Foothill Mini Mart) located at the subject address, and also the Claimant of the UST Cleanup Fund (Claimant # 14095).

All of the existing monitoring wells, MW-1 through MW-6, were gauged and sampled during 2Q09 groundwater monitoring event. Wells MW-1 through MW-3 are located on the subject property, well MW-4 is located on the property with an address of 6620 Foothill Boulevard (former Dairy Mart Milk owned by Mr. Le Blanc) east of the subject property, and wells MW-5 and MW-6 are located on the southern edge of Foothill Boulevard south of the subject property (see Figure 2). Monitoring wells MW-1 through MW-3 were installed on June 4, 2001, and wells MW-4 through MW-6 were installed on June 26, 2002.

All of the existing monitoring wells were purged and sampled using the Low-Flow Rate Purging (LRP) and Sampling Method (Puls and Barcelona, 1996). The following analytical methods were used to analyze for concerned compounds: EPA Method 8015B (M) for the total petroleum hydrocarbons as gasoline (TPH-g), EPA Method 8260B for Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) and fuel oxygenates; including Methyl Tertiary Butyl Ether (MTBE), Tertiary Butyl Alcohol (TBA), and ethanol.

Following the field gauging and sampling activities conducted on May 7, 2009, ERS also has prepared a *Groundwater Monitoring Report – Second Quarter 2009*. This report presents the groundwater monitoring activities, monitoring results, discussions and findings, conclusions and recommendations, and the forecast of activities for the subject site.

2. BACKGROUND

2.1 Site Description

The Site is located at 6600 Foothill Boulevard, Oakland, California, on the northeastern corner of Havenscourt Boulevard and Foothill Boulevard (Figure 1). Ground surface elevation at the site is approximately 60 feet above msl. Regional topography of the site slopes gently toward the south-southwest. The site is located in an area with mixed commercial and residential uses. It is currently occupied by a retail gasoline station (Golden Gasoline) that includes a convenience store and two gasoline dispenser islands. Each dispenser island has two dispensers.

The property is bounded by an empty commercial building to the east, Foothill Boulevard to the south, Havenscourt Boulevard to the west and Evergreen Cemetery to the north. Across Foothill Boulevard, south of the subject site, and located at the southeast corner of the intersection of Havenscourt Boulevard and Foothill Boulevard, is an empty lot formerly used as a gas station. Adjacent to this empty lot is a two-story residential building with a store. The site plan is shown in Figure 2.

The site is located in the foothills of the Oakland Hills to the north. San Francisco Bay is located approximately two miles to the west of the property, and San Leandro Bay is approximately two miles southwest of the property. The Frick Jr. High School, Luther Burbank School, and Markham School are located within 2,000 feet of the property.

2.2 Site History

The site has been a retail gas station since 1959 and was formerly operated as Shell, ARCO, and BEACON gasoline stations. The underground storage tank (UST) system of the former gas stations consisted of one 8,000-gallon, single wall, steel UST, two 10,000-gallon, single wall, fiberglass USTs, two dispenser islands, and two dispensers on each dispenser island. Mr. Ravi Sekhon purchased the property from the BEACON gas station in 1998.

As part of the UST system upgrade, a suspected leakage of the 8,000-gallon steel UST was noticed in November 1998. Consequently, the steel UST and associated dispensers were removed on December 16, 1998, and the leakage was reported in January 1999. Mr. Steve Crawford of the City of Oakland Fire Department was on site during the tank removal to observe site conditions and to direct sample collections. At Mr. Crawford's direction, two soil samples were collected individually from the eastern and western sidewalls of the UST pit and three soil samples were collected from beneath the dispenser islands. Since the pipe trench between the dispensers and UST pit was less than 20 feet, Mr. Crawford did not require that pipe trench samples be collected. The sampling results from beneath the dispenser islands and from the UST pit sidewall were forwarded to the Alameda County Environmental Health (ACEH) on January 11, 1999. In addition, on December 31, 1998, staff of Edd Clark & Associates collected one grab groundwater sample. A copy of these sample results was also forwarded to

the ACEH (AARS, 2003). Review of all laboratory reports showed that, with the exception of 25 ppb of toluene in the east dispenser island soil sample, the only detected compound in the soil was MTBE. The water sample from the pit showed that TPH-gasoline, BTEX, and MTBE were detected in the groundwater.

Following the removal of the 8,000-gallon steel UST on December 16, 1998, P&D Environmental (P&D) of Oakland, California, was retained by Mr. Sekhon to provide consulting services. During P&D's site visit on January 9, 1999, approximately 6 inches of groundwater was observed at the bottom of the UST pit, from which a steel UST had just been removed. The measured depth to groundwater was 8.0 feet below ground surface (bgs). Sheen was observed on the water in the UST pit. However, no petroleum hydrocarbon odors were detected in any of the soil at the site. Based on a January 11, 1999 telephone conversation between Mr. Crawford of the City of Oakland Fire Department and the staff of P&D, Mr. Crawford indicated that there was nothing remarkable about the site, and no evidence of contamination other than MTBE, which was reported in the laboratory reports.

Based on the above observations and the sampling results, P&D recommended that the UST pit be backfilled, the upgrade of the remaining UST system be completed, and that a groundwater investigation be performed to determine the extent and origin of petroleum hydrocarbons in groundwater. Subsequently, prior to backfilling, groundwater was pumped from the UST pit and stored in above ground storage tanks pending carbon filtration and discharge to the storm drain with an approved San Francisco Bay Regional Water Quality Control Board temporary groundwater discharge permit. In addition, the stockpile soil generated during UST removal was characterized, profiled and removed from the site to the BFI Vasco Road Landfill in Livermore, California (P&D Environmental, 1999). Additionally, to complete the UST system upgrade, two fiberglass USTs were kept at the site, new dispensers with dispenser pans and sensors, double walled piping, overfill and overspill protection, a sump with a sensor for each UST, and an automatic tank gauging system were installed, and the pit was backfilled in January and February 1999.

Mr. Sekhon retained Advanced Assessment And Remediation Services (AARS) to conduct subsequent groundwater investigation. AARS conducted a preliminary site assessment in June 2001, supervised the installation of monitoring wells MW-1, MW-2, and MW-3 on June 4, 2001, and conducted quarterly sampling on June 13, 2001 (AARS, 2001) and March 21, 2002 (AARS, 2002a). The results of the preliminary site investigation, as well as the June 2001 and March 2002 quarterly monitoring and sampling, confirmed the presence of elevated petroleum hydrocarbons and MTBE in monitoring well MW-2 near the backfilled UST pit. AARS conducted an additional site investigation by installing three monitoring wells MW-4, MW-5, and MW-6 and two soil borings. These monitoring wells were installed on June 26, 2002, and an additional groundwater sampling event was performed on July 9, 2002 (AARS, 2002b). After that, ARRS conducted six monitoring and sampling events between July 2003 and November 2005. The analytical results (ARRS, 2006) indicated an elevated concentration of petroleum hydrocarbons in MW-4 and the farthest downgradient monitoring well MW-6, as well as

elevated MTBE concentrations in monitoring wells MW-1, MW-2, and MW-6. Results of those monitoring events suggested that off-site migration of petroleum hydrocarbons and MTBE might have occurred. Thus, ACEH requested additional site characterization to define the lateral and vertical extent of the groundwater impact (see ACEH's March 28, 2008 letter posted on Alameda County Environmental Cleanup Oversight Programs' ftp site).

In addition to the above activities, all the existing monitoring wells MW-1 through MW-6 were surveyed again on August 4, 2008 due to issues regarding former well coordinates (ERS, 2008a). The revised top of casing (TOC) elevations and the construction data of the existing monitoring wells are presented in Table 1. The revised TOC elevations also have been uploaded to the GeoTracker.

2.3 Previous Site Investigations

To assess the nature and extent of groundwater contamination, P&D prepared and submitted a work plan for a preliminary site investigation. After this work plan was approved by ACEH, Mr. Sekhon retained AARS to supervise the drilling of three soil borings to a maximum depth of 25 feet bgs conducted by Exploration Geoservices of San Jose, California, on June 4, 2001. After being sampled and screened at five-foot intervals, these soil borings were converted into monitoring wells MW-1 through MW-3. One sample from each borehole was delivered for laboratory analysis based on: the groundwater depth, smell of odors, and Photo Ionization Detector (PID) reading. Collected soil samples and groundwater samples from wells MW-1 through MW-3 were analyzed for TPH-g by EPA Method 8015M, and analyzed for BTEX and MTBE by EPA Method 8020. Elevated MTBE concentrations in soil and groundwater samples were found from MW-2 (0.29 mg/Kg and 94,000μg/L, respectively). EPA Method 8260 confirmed the above data. The investigation results are presented in the *Groundwater Quality Investigation* report (AARS, 2001).

A work plan was approved by ACEH (AARS, 2002c) and an additional site investigation was performed in June 2002. AARS supervised drilling and sampling of five borings, SB-1, SB-2, MW-4, MW-5, and MW-6, to a maximum depth of 20 feet bgs by Exploration Geoservices, on June 26 and 27, 2002. Soil samples from these five borings were collected in the same manner as in the 2001 preliminary investigation. Three borings were converted into monitoring wells MW-4 through MW-6 after soil sampling. As in 2001, soil and groundwater samples were analyzed for TPH-g, BTEX, and MTBE using the same EPA methods. The 2002 additional investigation revealed that elevated MTBE concentrations of 37,600, 28,300, 18,600, and 11,300 µg/L were found in wells MW-2, MW-4, MW-5, and MW-6, respectively. Elevated MTBE concentrations of 593, 4,290, and 1160 mg/Kg were found in soil samples collected from borings MW-4, MW-5, and MW-6, respectively, at a depth of 10 feet bgs. The 2002 additional investigation (AARS, 2002b) suggests that both TPH-g and MTBE have migrated to the southeast of the subject property following the groundwater flow. Prior to soil sampling and well installation, a horizontal conduit study and well search was also performed. No significant horizontal and vertical conduits were identified during 2002 investigation.

A work plan was approved by ACEH (AARS, 2003) for another site investigation performed in August 2005 (AARS, 2005). AARS supervised drilling of 12 soil borings, SB-3 through SB-14 by Gregg Drilling and Testing, Inc. of Martinez, California, on August 10 and 11, 2005. Soil borings SB-3 and SB-4 were drilled to 20 feet bgs; soil borings SB-5, SB-6 and SB-10 through SB-14 were drilled to 17 feet bgs. Soil boring SB-7 was drilled to 30 feet bgs, and SB-8 and SB-9 were drilled to 28 feet bgs. Soil samples were collected from the above borings at five-foot intervals and analyzed for TPH-g, BTEX, and MTBE. Multiple soil samples were collected from borings SB-7, SB-8, and SB-9 based on the change of lithology or PID reading. Temporary well casings were installed in all soil borings for groundwater collection. Since borings SB-9, SB-13, and SB-14 were dry, groundwater samples were not collected (see Table 2). Groundwater was collected from other locations within the screened interval of 10 to 20 feet bgs. Collected soil and groundwater samples were analyzed for TPH-g by EPA Method 8015M, and for BTEX and MTBE by EPA Method 8021B.

The 2005 investigation revealed the following conditions:

- Highly clayey soil exists nearby the UST pit. Thus, the migration of dissolved hydrocarbons in groundwater is limited.
- The hydrocarbon plume is primarily confined to the vicinity of the removed tank pit area and has migrated to the southeast following the direction of groundwater flow.
- Groundwater samples collected from MW-2, MW-4, MW-6, SB-7, and SB-8 detected TPH-g concentrations between 91 and 9,300 μ g/L (SB-8), and benzene concentrations between non-detect to 470 μ g/L.
- Although MTBE was detected in all monitoring wells and most soil borings (non-detected only in soil borings SB-5 and SB-6), with concentrations ranging from 13 (SB-11) to 23,000 μg/L (SB-7), elevated MTBE concentrations were detected in monitoring wells MW-1, MW-2, MW-4, and MW-6, and soil borings SB-7 and SB-8.
- Significant levels of MTBE were detected in soil borings SB-7, SB-8, and SB-9 near the UST pit. TPH-g concentration containing strongly aged gasoline or diesel range compounds between 1.7 and 200 mg/Kg was detected in these soil borings.
- Due to the high mobility of MTBE, the delineated MTBE plume boundary is much broader than the hydrocarbon plume.
- Only a low TPH-g concentration of 4.7 mg/Kg containing strongly aged gasoline or diesel range compounds was detected at SB-4. No TPH-g, BTEX, and MTBE were detected in all other soil borings located on the properties of 6601 and 6619 Foothill Boulevard. In accordance with a personal communication with Mr. Billy Jue, property owner, elevated TPH-g concentration of 13,000 μg/L, detected in groundwater from location of SB-5 located

on the property of 6619 Foothill Boulevard, with non-typical gasoline pattern, was likely associated with past railroad activities of General Motor Automotive Plant.

2.4 Local Geologic and Hydrogeologic Setting

The subject property and its vicinity are located in the foothills of the Oakland Hills, as well as at the eastern edge of a broad alluvial plain on the east side of San Francisco Bay. The alluvial plain is relatively flat. The alluvial deposits consist largely of inter-fingered lenses of clayey gravel, sandy and silty clays, and sand to silty clay mixtures. Individual units are discontinuous and have low correlation with distance.

Groundwater under the subject site is often shallow. The average groundwater depths under the subject site on June 4, 2001 and August 11, 2005, were 9.83 and 8.17 feet bgs, respectively. However, the average groundwater depth off site measured on August 11, 2005 was 7.00 feet bgs. Local groundwater elevation varies with rainfall and seasons. The general groundwater flow direction ranges between west and southwest toward the San Francisco Bay or San Leandro Bay.

2.5 Groundwater Monitoring History

As mentioned above, existing monitoring wells were installed separately in June 2001 and 2002. However, the above wells have never been monitored regularly every quarter between 2001 and 2005. All wells were only monitored quarterly for one full year from July 2003 to May 2004 (see Table 2). Wells MW-1 through MW-3 were gauged only twice each year between 2002 and 2005, and wells MW-4 through MW-6 were gauged and sampled twice each year between 2003 and 2005. AARS conducted a final monitoring event on November 30, 2005 (AARS, 2006).

Mr. Ravi Sekhon retained ERS on July 9, 2008, to manage this site cleanup and closure project. Thus, at the request of ACEH in a letter dated July 24, 2008 posted on Alameda County Environmental Cleanup Oversight Programs' ftp site, quarterly groundwater monitoring resumed on August 8, 2008.

2.6 Contaminants of Concern

Cumulative groundwater sampling data of all the sampling events between June 2001 and November 2005 (Table 2) shows that elevated concentrations of dissolved hydrocarbons, including TPH-g and/or benzene, as well as fuel oxygenates, including MTBE and/or TBA, have been detected from on-site monitoring wells MW-1 and MW-2, and off-site monitoring wells MW-4, MW-5, and MW-6. Thus, TPH-g, benzene, MTBE, and TBA are the contaminants of concern for the subject site.

3. GROUNDWATER MONITORING ACTIVITIES

All of the 6 monitoring wells for the subject site were gauged and sampled on May 7th, 2009. Before gauging, all well lids were opened and allowed to equilibrate for approximately 30 minutes. Depth to water was measured in order from wells with the lowest contaminant concentrations to the highest based on the 1Q09 data.

All existing wells MW-1 through MW-6 were gauged and sampled using the Low-Flow Rate Purging (LRP) and Sampling Method (Puls and Barcelona, 1996). The purge rate was calibrated prior to the first purge to establish the flow-rate. The pump was set to a rate of 0.3 liters per minute (L/min). Depth to water (DTW) and water quality parameters were measured in three-minute intervals. Water quality parameters: pH, temperature, dissolved oxygen (DO), specific conductance (SC), and oxidation-reduction potential (ORP) were measured within the flow-through cell. The water quality parameters were measured using an YSI 6820 instrument, which was calibrated prior to use and decontaminated between wells.

When parameters stabilized according to the low-flow sampling protocol (ASTM, 2002), the purging rate was lowered to approximately 0.2 L/min, the discharge tube was disconnected from the flow-through cell, and samples were collected directly from the dedicated tubing. Appendix A provides copies of the groundwater depth and well purging data sheets recorded in the field.

Water samples were collected, labeled and stored in a chilled ice chest with ice. The samples were delivered to the Kiff Analytical, LLC of Davis, California, a State of California certified laboratory, under standard chain-of-custody protocols. Kiff Analytical performed analysis for TPH-g by EPA Method 8015B (M), and analyses for BTEX and fuel oxygenates by EPA Method 8260B. Appendix B includes copies of the laboratory reports and chain-of-custody.

4. GROUNDWATER MONITORING RESULTS

LRP was used to purge and sample each monitoring well during 2Q09. The groundwater purging rate for each well was set at 0.3 liter per minute (L/min). Groundwater gauging indicated that local groundwater was above the top of the well screen for wells MW-1, MW-2, MW-4, and MW-6 and below the top of the well screen for wells MW-3 and MW-5. Thus, the stinger (tubing) for purging/sampling was placed near to the bottom of the well screen.

During 2Q09, again, no sheen or product is visible. Only slight odors are identified in wells MW-5 and MW-6. Groundwater in all the monitoring wells has no visible color and very low turbidity. The water quality measurements reveal that, except for well MW-1 (pH less than 6 and ORP values are positive), local groundwater quality is relatively homogeneous (pH greater than 6.3 and ORP values are negative). MW-1 is the only well with a positive ORP (greater than 80 mV) and lower pH value (less than 5.9). Although the DO concentration of the local groundwater is consistently less than 1 mg/L, the dissolved concentrations of MW-4 and MW-5 are less than 0.1 mg/L. The above water quality parameters indicate that the local groundwater is anaerobic and reductive. In addition to the purging rate and the stinger depth mentioned above, the water quality parameters (pH, temperature, DO, SC, and ORP) and the time required for reaching stabilization of water quality are listed in Table 3. The total volume of water purged from the six monitoring wells was approximately 8 gallons.

4.1 Groundwater Elevation and Flow

The historical data since June 2001 indicate that, maximum and minimum groundwater depths frequently exist in monitoring wells MW-3/MW-1 and MW-4, respectively. During 2Q09, maximum and minimum groundwater depths again occurred in wells MW-3 (8.98 feet bgs) and MW-4 (4.86 feet bgs), respectively. Groundwater elevation was calculated by subtracting measured depth to groundwater from the revised top of casing elevation. The top of casing (TOC) elevations and the well construction data for wells MW-1 through MW-6 is presented in Table 1. Calculated groundwater elevations for the 2Q09 monitoring event are listed in Table 2. The calculated groundwater elevation ranges from 53.33 ft above msl (MW-4) to 50.96 ft above msl (MW-3) in 2Q09. The average groundwater elevation (52.21 ft above msl) of 2Q09 is only 0.74 feet higher than the average groundwater elevation (51.47 ft above msl) of 1Q09. Most importantly, the 2Q09 groundwater elevations in wells MW-2 through MW-4 are 0.3 – 0.4 feet higher than the associated 1Q09 elevations. Rather, the 2Q09 groundwater elevation in well MW-1 is 2.29 feet higher than the associated 1Q09 elevation. The associated groundwater elevation contours are plotted in Figure 3.

Based on the contoured potentiometric surface shown in Figure 3, the primary groundwater flow is in the southwest-west direction with a horizontal hydraulic gradient of approximately 0.015 ft/ft. The groundwater flow distribution determined for the 2Q09 monitoring event is similar to all the groundwater flows observed since February 2004. The delineated groundwater flow direction and calculated hydraulic gradient are presented in Table 2 and Figure 3.

4.2 Concentration Level and Distribution of Groundwater Contaminants

The 2Q09 groundwater sampling again reveals that the on-site TPH-g concentrations (from 410 to 860 μ g/L) are lower than the off-site TPH-g concentrations (from 1,900 to 5,800 μ g/L). The 2Q09 TPH-g concentrations in on-site monitoring wells MW-1 (420 μ g/L) and MW-2 (860 μ g/L) are the highest since February/May 2004. A maximum TPH-g concentration is also found in well MW-3 in 2Q09 since 2001. Similarly, the highest benzene concentration of 32 μ g/L is found in off-site well MW-6. Except for well MW-6, the BTEX concentrations in other monitoring wells are either insignificant or less than their associated method reporting limits.

Again in 2Q09, the highest TPH-g concentration (5,800 μ g/L) was detected in off-site well MW-6, and the highest MTBE concentration (210 μ g/L) was detected in on-site well MW-1. Although the MTBE concentration (9.7 μ g/L) of MW-2 located near the UST pit is relatively low, this well has the highest TBA concentration (12,000 μ g/L), which is a degradation product of MTBE. Conversely, although the on-site well MW-1 has the highest MTBE concentration (210 μ g/L), the associated TBA concentration (110 μ g/L) is relatively low compared with the TBA concentrations of 12,000, 900, 1,000, and 460 μ g/L detected in wells MW-2, MW-3, MW-4, and MW-6, respectively. This situation is shown in Figure 6.

Using the laboratory analytical data (Appendix B), spatial concentration distributions for the contaminants of concern, i.e., TPH-g, benzene, and MTBE/TBA, are plotted in Figures 4 through 6. Comparing the data obtained from the sampling events conducted on August 11, 2005 (AARS, 2005) and November 30, 2005 (AARS, 2006) with the sampling data exhibited in Figures 4 through 6, significant variations for the concentration levels and plume boundaries have occurred since 2005.

5. FINDINGS

Historical groundwater monitoring data shows that local groundwater flow frequently occurred in the southward direction, along with a greater hydraulic gradient (AARS, 2004a; 2004b; 2005; 2006). This has caused the southward migration of TPH-g, benzene, and MTBE from the on-site UST pit area. The above situation has been shown in 3Q08, 4Q08, and 1Q09, and is confirmed in 2Q09 by the lower TPH-g concentrations (410 – 860 μg/L) in on-site wells MW-1 through MW-3 and higher TPH-g concentration (1,900 – 5,800 μg/L) in off-site wells MW-4 through MW-6. In addition, although migration of TPH-g is mainly southward, the TPH-g plume boundary becomes broader. Based on the 3Q08, 4Q08, 1Q09, and 2Q09 data, the lateral range of the TPH-g plume is expanding.

Similar to TPH-g, benzene also has migrated off site. However, compared with the TPH-g plume, the benzene plume has greatly diminished compared with the TPH-g plume because benzene is more mobile and volatile, and gasoline contains more TPH-g than benzene. This finding is clearly shown in Figure 5 of the 2005 site characterization and 3Q05 monitoring report (AARS, 2005), Figure 5 of the 4Q05 groundwater monitoring report (AARS, 2006), and Figure 5 of the 3Q08, 4Q08, and 1Q09 groundwater monitoring reports. However, the 2Q09 sampling indicates that the benzene plume has stabilized.

Comparing the change of the benzene/TPH-g plumes with the change of MTBE plume, the effect of dilution and dispersion (natural attenuation) apparently has a stronger influence for MTBE, as opposed to TPH-g and benzene. The MTBE plume has been greatly diminished because the solubility of MTBE is much higher than the solubilities of benzene and TPH-g, and consequently, MTBE is more mobile than benzene and TPH-g. Since a northwestern component of local groundwater flow exists, the MTBE plume has been split into two smaller plumes. This effect is shown in Figure 6 of the 2005 site characterization and 3Q05 monitoring report (AARS, 2005), Figure 6 of the 4Q05 groundwater monitoring report (AARS, 2006), and in Figure 6 of the 3Q08 and 4Q08 groundwater monitoring reports. The diminishing trend of MTBE is clearly identified in wells MW-1 and MW-4 (Figure 7). However, similar to benzene, the MTBE concentrations in wells MW-2, MW-3, MW-5, and MW-6 appear stable in 2Q09.

In addition to the above, more findings are listed below:

- The TPH-g concentrations of wells MW-1 through MW-5 increase significantly. The 2Q09 TPH-g concentrations in wells MW-1 and MW-2 are the highest since February/May 2004, and a maximum TPH-g concentration is also found in well MW-3 in 2Q09. Conversely, the off-site TPH-g concentration remains unchanged in well MW-6.
- Although the MTBE concentration reduces from 610 to 210 μg/L in MW-1, the MTBE concentrations remain at similar levels for wells MW-2 through MW-6.

- Like TPH-g and MTBE, benzene has migrated off site from the UST area. The resulting plume center is near well MW-6. Although the benzene concentrations in wells MW-1 through MW-5 have declined to less than the reporting limits, the concentration level at MW-6 remains elevated at 32 µg/L.
- The highest TBA concentration (12,000 μ g/L) was detected in well MW-2 located near the UST pit where the MTBE concentration (9.7 μ g/L) is relatively low. Conversely, although onsite well MW-1 has the highest MTBE concentration (210 μ g/L), the associated TBA concentration (110 μ g/L) is relatively low compared with the TBA concentrations in wells MW-2, MW-3, MW-4, and MW-6.
- TBA concentrations increased in wells MW-2 and MW-3. MTBE concentrations decreased in wells MW-1, MW-2, MW-4, and MW-5.

6. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- (1) TPH-g concentrations in on-site wells MW-1 through MW-3 increased significantly, especially in well MW-2. Both MTBE and benzene concentrations in downgradient/off-site well MW-6 remain unchanged. Also, the lateral range of the TPH-g plume is expanding. The above observations strongly suggest the existence of residual petroleum hydrocarbons at the subject site.
- (2) The extremely high MTBE concentration of 94,000 μ g/L detected in well MW-2 near/downgradient of the UST pit in June 2001 has greatly reduced to the range of 9.7 to 12 μ g/L, between August 2008 and May 2009. Conversely, within the same period, the TBA concentration of 980 μ g/L detected in well MW-2 in June 2001 has greatly increased to the range of 11,000 to 17,000 μ g/L. Although the above data suggest the existence of natural attenuation of MTBE in groundwater within the source area, water quality near the subject site has not been improved.
- (3) The 2Q09 groundwater elevations in wells MW-2 through MW-4 are 0.3 0.4 feet higher than the associated 1Q09 elevations. The 2Q09 groundwater elevation in well MW-1 is 2.29 feet higher than the associated 1Q09 elevation. The higher groundwater elevation near well MW-1, and the groundwater recharge that occurred in the winter season, may have caused the increase of TPH-g concentrations in wells MW-1 through MW-5. This condition further suggests the presence of residual petroleum hydrocarbons in the vadose zone soil under the subject site.
- (4) Cumulative groundwater data indicates that the TPH-g impact under the subject site remains unchanged and the center of the TPH-g plume is near off-site well MW-6. Conversely, the MTBE concentrations both on-/off-site have declined from the 10⁵/10⁴ to 10²/10¹ orders of magnitude. Based on the distinct physical and biochemical characteristics of MTBE and TPH-g, as well as their existing concentration levels, groundwater impact of MTBE does not appear as significant as that of TPH-g.
- (5) The historical groundwater flow distribution and the cumulative MTBE concentration data for well MW-1 indicate that the northward migration of MTBE from the tank pit area is influenced by groundwater flow. Conversely, the change of MTBE concentration is influenced by the biodegradation of MTBE within the source area and the dispersion/dilution of MTBE in groundwater (See the MTBE concentration pulse for MW-1 in Figure 7).
- (6) The lateral range of the MTBE plume has shrunk greatly since 2005 due to the fact that MTBE is extremely mobile when groundwater flow is significant; and biodegradation of MTBE has occurred in the source area. As a result, the groundwater impact of MTBE is limited to areas near well MW-1 and MW-6.

(7) Although the MTBE plume has been split, comparatively higher MTBE/TBA groundwater impact exists on site near the tank pit area (see Figure 6). Conversely, a higher level of petroleum hydrocarbon impact is found off site (see Figures 4 and 5).

Recommendations

Results of the quarterly monitoring from 3Q08 to 2Q09 indicate that:

- MTBE/TBA are the major contaminants under the subject site.
- The off-site groundwater has been significantly impacted by petroleum hydrocarbons.

Both the 1Q09 and 2Q09 groundwater data indicate that the TPH-g, benzene, and MTBE concentrations in off-site wells MW-4 through MW-6 are either stable or slightly increasing. Based on the Site Conceptual Model (ERS, 2008b) and the quarterly groundwater monitoring results, it is reasonable to conclude that contaminated soil still exists on site near the UST area. Prior to the implementation of an interim remedial measure or final site cleanup for the "source" areas near the tank pit to eliminate off-site groundwater contamination, the 2009 site characterization proposed in *Data Gap Work Plan Addendum* (ERS, 2009) should be implemented as soon as possible so that a Feasibility Study Report and/or a Corrective Action Plan can be submitted so that interim or final site remediation can be conducted.

7. FORECAST ACTIVITIES

- (1) A request for postponing the 2009 site characterization (NOTE: According to ACEH's February 6, 2009 letter, the associated soil and groundwater investigation report is due on May 4, 2009) was sent to ACEH via an electronic transmittal on April 4, 2009. Pending the resolution of three issues described in the April 4, 2009 transmittal, the 2009 site characterization activities have not been scheduled. At present, in addition to the permit fee issue ERS is encountering, ERS has not been able to locate the property owner of 6601 Foothill Boulevard, Harrison Huynh and Jeanette Kim. Thus, the monitoring wells MW-8A/MW-8B proposed in the *Data Gap Work Plan Addendum* (ERS, 2009) may have to be relocated. Also, Mr. Abdul Ghaffar, the property owner and the responsible party, has not provided required documents that include the Liability Insurance Certificate and a copy of the Grand Deed to allow ERS to submit the application for an encroachment permit to the City of Oakland.
- (2) The 3Q09 quarterly groundwater monitoring and sampling will be conducted on August 6, 2009.

REFERENCES

AARS, Groundwater Quality Investigation, July 2001.

AARS, Quality Groundwater Monitoring and Sampling Report, April 2002a.

AARS, Additional Site Investigation, September 2002b.

AARS, Work Plan for Additional Investigation, January 2002c.

AARS, Work Plan for Site Characterization, July 2003.

AARS, Quality Groundwater Monitoring and Sampling Report, May 2004a.

AARS, Quality Groundwater Monitoring and Sampling Report, July 2004b.

AARS, Site Characterization and Quarterly Groundwater Monitoring and Sampling Report, December 2005.

AARS, Quality Groundwater Monitoring and Sampling Report, February 2006.

ASTM, Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations, ASTM Designation: D 6671 – 02, 2002, p.6.

ERS, Groundwater Monitoring Report – Third Quarter 2008, September 2008a.

ERS, Site Conceptual Model Report and Data Gap Work Plan, October 2008b.

ERS, Data Gap Work Plan Addendum, January 2009.

P&D Environmental, Groundwater Monitoring Well Installation Work Plan, March 1999.

Puls, R.W. and Barcelona, M. J., *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure*, U.S. Environmental Protection Agency, Office of Research and Development, Publication #EPA/540/5-95/504, 1996, pp. 12.

REPORT DISTRIBUTION LIST

Ravi Sekhon (via U.S. Mail) 21696 Knuppe Place Castro Valley, CA 94552

Paresh Khatri (via electronic transmittal) Hazardous Materials Specialist Alameda County Environmental Health Services

CERTIFICATION

This document was prepared under the supervision of a State of California Professional Engineer at Environmental Risk Specialties Corporation (ERS). All statements, conclusions, and recommendations are based solely upon published results from previous consultants, field observations by ERS, and laboratory analysis performed by a California DHS-certified laboratory related to the work performed by ERS.

Information, interpretation, and methods presented herein are for the sole use of the client and regulating agency. The service performed by ERS has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the property. No other warranty, expressed or implied, is made.

Sincerely,

Jim Ho, PE #C68639

ENVIRONMENTAL RISK SPECIALTIES CORPORATION

Groundwater Monitoring Report – Second Quarter 2009 6600 Foothill Boulevard, Oakland, California

Table 1
Well Construction Data

6600 Foothill Boulevard, Oakland, California

Well ID	Date Installed	Casing Diameter (inches)	Borehole Diameter (inches)	Total Depth	Screened Interval (feet bgs)	Sand Interval	Bentonite Seal (feet bgs)	Cement (feet bgs)	Slot Size	Sand Size
MW-1	6/4/2001	2	8 8	25	10 - 25	8 - 25	6 - 8	0 - 6	0.01	Lonestar #2
MW-2	6/4/2001	2	8	25	10 - 25	8 - 25	6 - 8	0 - 6	0.01	Lonestar #2
MW-3	6/4/2001	2	8	25	10 - 25	8 - 25	6 - 8	0 - 6	0.01	Lonestar #2
MW-4	6/26/2002	2	8	20	7.5 - 20	6 - 20	5 - 6	0 - 5	0.01	Lonestar #2
MW-5	6/26/2002	2	8	20	7.5 - 20	6 - 20	5 - 6	0 - 5	0.01	Lonestar #2
MW-6	6/26/2002	2	8	20	7.5 - 20	6 - 20	5 - 6	0 - 5	0.01	Lonestar #2

TABLE 2

Cumulative Groundwater Elevation and Analytical Data

6600 Foothill Boulevard, Oakland, California

						6600) Foothill Bou	levard, Oa	kland, Calii	tornia							
Monitoring Wells	Total Depth Drilled (ft bgs)	Date Sampled	Top of Casing Elevation (ft, above msl)	Depth to Water (ft, below TOC)	Water Elevation (ft, above msl) ⁽¹⁾	Groundwater Flow Direction	GW Gradient (ft/ft)	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Xylenes (ug/L)	MTBE (ug/L)	TBA (ug/L)	ETBE, DIPE, TAME, METH, ETH (ug/L)	1,2-DCA (ug/L)	1,2-EDB (ug/L)
			Analysi	is Methods				EPA 8015M		EPA 80)21B/EPA 826	60B ⁽²⁾			0В	3	
			Maximum Co	ntaminant Leve	el^			NA	5	1,000	700	10,000	5	12 (Ca.)	NA	5	0.05
		6/13/2001	100.00*	9.36	90.64	SE	0.05	ND	ND	ND	ND	ND	130	NA			
		3/21/2002	100.00*	7.96	92.04	SE	0.024	95	ND	ND	ND	ND	72.5	NA			
		7/9/2002	100.00*	8.51	91.49	SE	0.014	ND	ND	ND	ND	ND	208	NA			
		7/11/2003	160.25	8.66	151.59	SE	0.012	ND	0.7	ND	ND	1.2	636	NA			
		11/13/2003	160.25	8.10	152.15	SE	0.012	ND<5000#	ND	ND	ND	ND	72,000	22,000			
		2/19/2004	160.25	8.24	152.01	NW - SW	0.008	1,350	460	ND	ND	ND	82,000	8,630			
		5/21/2004	160.25	8.51	151.74	NW - SW	0.019	ND	ND<50	ND<50	ND<50	ND<100	12,000	ND<1000			
	25	8/11/2005 11/30/2005	160.25 160.25	8.34 9.86	151.91 150.39	SW NW - SW	0.008 0.018	ND ND<250	ND ND<2.5	ND ND<2.5	ND ND<2.5	ND ND<2.5	4,900 8,400	NA NA			
MW-1	25		100.23		130.39	1VW - 5W	0.018	ND<230	ND<2.3	ND<2.3	ND<2.3				<1.5, Meth<300,		
		8/8/2008	60.02	10.62	49.40	NWN - SW	0.031-0.017	390	<1.5	<1.5	<1.5	<1.5	720	7.4J	Eth<15	<1.5	<1.5
		11/5/2008	60.02	10.78	49.24	NWN - SWW	0.039-0.016	350	<5.0	<10	<10	<10	580	<100	<20, Eth<1,000		
		2/6/2009	60.02	9.05	50.97	W	0.015	150	<1.5	<1.5	<1.5	<1.5	610	120	<1.5, Meth<600, Eth<15		
		5/7/2009	60.02	6.76	53.26	sww	0.015	420	<0.50	<0.50	<0.50	<0.50	210	110	<0.50, Meth<150, Eth<5.0		
		6/13/2001	98.71*	10.44	88.27	SE	0.05	5,800	160	210	290	980	94,000	980			
		3/21/2002	98.71*	8.18	90.53	SE	0.024	452	3.4	ND	1.6	2.1	79,100	NA			
		7/9/2002	98.71*	8.35	90.36	SE	0.014	497	61.6	ND	ND	1.6	37,600	NA			
		7/11/2003	158.97	7.58	151.39	SE	0.012	553	48.9	ND	ND	ND	38,200	NA			
		11/13/2003	158.97	8.01	150.96	SE NW. GW.	0.012	ND<2500#	NS 410	ND 265	ND	ND 490	47,000	11,000			
		2/19/2004 5/21/2004	158.97 158.97	6.43	152.54 152.14	NW - SW NW - SW	0.008 0.019	4,390 1,150	410 254	265 ND<200	160 ND<200	ND<400	26,700 24,600	3,930 ND<4000			
		8/11/2005	158.97	7.31	151.66	SW	0.008	91	ND	1.1	ND	ND ND	6,500	NA			
MW-2	25	11/30/2005	158.97	7.98	150.99	NW - SW	0.018	69	ND	1.4	ND	ND	2,300	NA			
2,2,1, 2	23	8/8/2008	58.74	7.19	51.55	NWN - SW	0.031-0.017	300	<9.0	<9.0	<9.0	<9.0	9.8	17,000	<9.0, Meth<900, Eth<90	<9.0	<9.0
		11/5/2008	58.74	7.14	51.60	NWN - SWW	0.039-0.016	510	<0.50	<1.0	<1.0	<1.0	12	13,000	<2.0, Eth<100		
		2/6/2009	58.74	6.92	51.82	W	0.015	50	<4.0	<4.0	<4.0	<4.0	10	11,000	<4.0, Meth<400, Eth<40		
		5/7/2009	58.74	6.53	52.21	sww	0.015	860	<4.0	<4.0	<4.0	<4.0	9.7	12,000	<4.0, Meth<400, Eth<40		
		6/13/2001	99.90*	9.69	90.21	SE	0.05	300	1	ND	0.07	2	450	NA			
		3/21/2002	99.90*	8.80	91.10	SE	0.024	274	1.1	ND	1	2.5	7,520	NA			
		7/9/2002	99.90*	9.33	90.57	SE	0.014	ND	ND	ND	ND	ND	40.8	NA			
		7/11/2003	160.17	9.35	150.82	SE	0.012	ND	ND	ND	ND	ND	24.3	NA 27			
		11/13/2003 2/19/2004	160.17 160.17	8.85 8.46	151.32 151.71	SE NW - SW	0.012 0.008	ND 83	ND ND	ND ND	ND ND	ND ND	37 42.7	27 508			
		5/21/2004	160.17	9.09	151.71	NW - SW	0.008	ND	ND ND	ND ND	ND ND	ND ND	54	1100			
		8/11/2005	160.17	8.87	151.30	SW	0.008	ND	ND	ND	ND	ND	27	NA			
MW-3	25	11/30/2005	160.17	9.73	150.44	NW - SW	0.018	ND	ND	ND	ND	ND	28	NA			
W W-3	23	8/8/2008	59.94	9.64	50.30	NWN - SW	0.031-0.017	99	<0.50	<0.50	<0.50	<0.50	4.5	130	<0.50, Meth<80, Eth<5.0	<0.50	<0.50
		11/5/2008	59.94	9.33	50.61	NWN - SWW	0.039-0.016	55	< 0.50	<1.0	<1.0	<1.0	4.5	500	<2.0, Eth<100		
		2/6/2009	59.94	9.37	50.57	W	0.015	100	<0.50	<0.50	<0.50	<0.50	5.3	770	<0.50, Meth<100, Eth<5.0		
		5/7/2009	59.94	8.98	50.96	SWW	0.015	410	<0.50	<0.50	<0.50	<0.50	5.5	900	<0.50, Meth<50, Eth<5.0		

TABLE 2

Cumulative Groundwater Elevation and Analytical Data

6600 Foothill Boulevard, Oakland, California

Monitoring Wells	Total Depth Drilled (ft bgs)	Date Sampled	Top of Casing Elevation (ft, above msl)	Depth to Water (ft, below TOC)	Water Elevation (ft, above msl) ⁽¹⁾	Groundwater Flow Direction	GW Gradient (ft/ft)	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Xylenes (ug/L)	MTBE (ug/L)	TBA (ug/L)	ETBE, DIPE, TAME, METH, ETH (ug/L)	1,2-DCA (ug/L)	1,2-EDB (ug/L)
			Analys	is Methods				EPA 8015M		EPA 80	21B/EPA 826	0B ⁽²⁾			EPA 826	0B	
			Maximum Co	ntaminant Leve	el^			NA	5	1,000	700	10,000	5	12 (Ca.)	NA	5	0.05
		7/9/2002	98.19 [*]	8.14	90.05	SE	0.014	9,680	43	17	369	1990	28,300	NA			
		7/11/2003	158.42	6.73	151.69	SE	0.012	3,170	16.5	6.4	71.7	240	16,600	NA 4.500			
		11/13/2003	158.42	6.54	151.88	SE	0.012	ND<1000#	49	ND	340	900	16,000	4,500			
		2/19/2004	158.42	4.37	154.05	NW - SW	0.008	7,230	107	7	497	1063	14,300	1,440			
		5/21/2004	158.42	5.79	152.63	NW - SW	0.019	9,340	194	ND	309	860	7,380	ND<2000			
		8/11/2005	158.42	6.65	151.77	SW	0.008	3,000	15	24	87	190	1,200	NA			
MW-4	20	11/30/2005	158.42	6.05	152.37	NW - SW	0.018	4,300	18	28	84	130	340	NA			
		8/8/2008	58.19	5.91	52.28	NWN - SW	0.031-0.017	3,600	0.53	0.61	5.6	1.5	24	1,800	<0.50, Meth<80, Eth<5.0	<0.50	<0.50
		11/5/2008	58.19	5.33	52.86	NWN - SWW	0.039-0.016	2,000	0.58	<1.0	6.8	1.2	31	760	<2.0, Eth<100		
		2/6/2009	58.19	5.15	53.04	W	0.015	3,400	0.81	< 0.50	10	1.2	39	1,400	<0.50,Meth<200, Eth<5.0		
		5/7/2009	58.19	4.86	53.33	sww	0.015	4,500	0.73	<0.50	7.4	1.2	29	1,000	<0.50, Meth<200, Eth<5.0		
		7/9/2002	97.81*	8.16	89.65	SE	0.014	275	30.2	ND	ND	3	18,600	NA			
		7/11/2003	158.03	7.94	150.09	SE	0.012	890	10	0.6	ND	7.1	5,090	NA 2.100			
		11/13/2003	158.03	7.41	150.62	SE	0.012	ND<1000#	ND	ND	ND	ND	3,400	3,100			
		2/19/2004	158.03	6.14	151.89	NW - SW	0.008	1,310	ND	0.7	ND	2.2	438	1,340			
	20	5/21/2004	158.03	7.42	150.61	NW - SW	0.019	1,960	9.7	0.7	ND	ND	214	436			
		8/11/2005	158.03	7.67	150.36	SW	0.008	410**	ND	3.3	ND	ND	100	NA			
MW-5		11/30/2005	158.03	8.51	149.52	NW - SW	0.018	240**	ND	1.8	ND	1.4	82	NA			
		8/8/2008	57.80	7.59	50.21	NWN - SW	0.031-0.017	1,900	< 0.50	< 0.50	< 0.50	4.0	8.6	510	<0.50, Meth<50, Eth<5.0	<0.50	<0.50
		11/5/2008	57.80	6.91	50.89	NWN - SWW	0.039-0.016	1,600	< 0.50	<1.0	<1.0	1.1	4.8	170	<2.0, Eth<100		
		2/6/2009	57.80	6.98	50.82	W	0.015	680	< 0.50	< 0.50	<0.50	2.2	5.5	110	<0.50,Meth<200, Eth<5.0		
		5/7/2009	57.80	6.43	51.37	sww	0.015	1,900	0.72	0.91	<0.50	2.3	4.3	60	<0.50, Meth<50, Eth<5.0		
		7/9/2002	97*	7.45	89.55	SE	0.014	12,000	432	22	637	1740	11,300	NA			
		7/11/2003	157.24 157.24	7.98 7.47	149.26	SE SE	0.012 0.012	2,970 ND<2500#	534 300	6.3	70.1 ND	278 52	18,000	NA ND			
		11/13/2003			149.77					ND 5			18,000	ND 4.260			
		2/19/2004	157.24	5.09	152.15	NW - SW	0.008	5,340	184	5	65	127	5,310	4,260			
		5/21/2004	157.24	6.38	150.86	NW - SW	0.019	6,110	340	12.7	205	308.8	3,900	4,060			
		8/11/2005 11/30/2005	157.24 157.24	6.68 7.43	150.56 149.81	SW NW - SW	0.008 0.018	6,100 3,700	470 310	48 30	23 16	30 12	3,200 3,400	NA NA			
		11/30/2003	137.24	ı.+J	177.01	1444 - 244	0.016	3,700	510	30	10	12	3,400	11/1			-
MW-6	20	8/8/2008	57.01	6.23	50.78	NWN - SW	0.031-0.017	6,500	63	2.0	42	98	230	810	<0.50, TAME<0.66, Meth<200, Eth<8.0	<0.50	<0.50
		11/5/2008	57.01	5.35	51.66	NWN - SWW	0.039-0.016	4,800	74	<5.0	23	42	340	950	<10, Eth<500		
		2/6/2009	57.01	5.44	51.57	W	0.015	5,800	34	1.1	16	38	140	690	<0.50,Meth<200, Eth<5.0		
		5/7/2009	57.01	4.91	52.10	sww	0.015	5,800	32	1.2	14	37	150	460	<0.50, Meth<100, Eth<5.0		

TABLE 2

Cumulative Groundwater Elevation and Analytical Data

6600 Foothill Boulevard, Oakland, California

									/								
Monitoring Wells	Total Depth Drilled (ft bgs)	Date Sampled	Top of Casing Elevation (ft, above msl)	(ft. below	Water Elevation (ft, above msl) ⁽¹⁾	Groundwater Flow Direction	GW Gradient (ft/ft)	TPH-g (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl- benzene (ug/L)	Xylenes (ug/L)	MTBE (ug/L)	TBA (ug/L)	ETBE, DIPE, TAME, METH, ETH (ug/L)	1,2-DCA (ug/L)	1,2-EDB (ug/L)
	Analysis Methods									EPA 80)21B/EPA 826	60B ⁽²⁾			EPA 826	60B	
			Maximum Co	ontaminant Lev	rel^			NA	5	1,000	700	10,000	5	12 (Ca.)	NA	5	0.05
SB-1/GW	20	6/27/2002						554	1	0.8	11.6	76.2	74.1	NA			
SB-2/GW	20	6/27/2002						3000	95.6	10.2	394	831	485*	NA			
SB-3/GW	20	8/11/2005						ND	ND	ND	ND	ND	32	NA			
SB-4/GW	20	8/11/2005						160**	ND	ND	ND	ND	180	NA			
SB-5/GW	17	8/10/2005						13000**	ND<5.0	260	ND<5.0	ND<5.0	ND<50	NA			
SB-6/GW	17	8/10/2005						ND	ND	ND	ND	ND	ND	NA			
SB-7/GW	30	8/11/2005						2900	19	ND<10	160	ND	23000	NA			
SB-8/GW	28	8/11/2005						9300	230	10	460	1500	11000	NA			
SB-10/GW	17	8/10/2005						ND	ND	ND	ND	ND	16	NA			
SB-11/GW	17	8/10/2005						ND	ND	ND	ND	ND	13	NA			
SB-12/GW	17	8/10/2005						ND	ND	ND	ND	ND	ND	NA			

Notes:

total petroleum hydrocarbons as gasoline TPH-g

Methyl Tertiary Butyl Ether MTBE Tertiary Butyl Alcohol TBA Ethyl-tetra-butyl ether **ETBE** DIPE Diisopropyl ether

Tertiary-amyl methyl ether TAME

Methanol METH Ethanol ETH

1,2-Dichloroethane 1,2-DCA 1,2-Dibromoethane 1,2-EDB Soil Boring SB

Grab Ground Water GW

ND = "non-detect" or below the Method Reporting Limits

NA = Not Available

^ US EPA Drinking Water Standard

* The top of casing (TOC) elevations originally surveyed on June 13, 2001 used MW-1 as the common datum with an assumed elevation of 100.00 feet above mean sea level (MSL). All other TOC elevations were surveyed relative to MW-1. All the wells were again surveyed per GeoTracker standard on July 11, 2003, by PLS Surveys, Inc., a California licensed surveyor. All elevations are reported with respect to feet above mean sea leval (MSL).

- + Confirmed by GC/MS method 8260B
- ** Laboratory reported does not match gasoline pattern
- # See Laboratory explanations (dated November 26 & December 8, 2003)
- (1) The TOC elevations reported in all previous groundwater monitoring reports are incorrect. The datum elevation adopted previously was revised on August 4, 2008 using City of Oakland datum (NAD83). The revised TOC elevations are converted to mean sea level elevation and used to calculate all the groundwater elevations.
- (2) EPA 8260B adopted since 8/8/2008

ug/L - microgram per litter (part per billion)

Table 3
Field Measured Water Quality Parameters
6600 Foothill Boulevard, Oakland, California

Monitoring Wells	Date	Purging Time	рН	Temperature	Specific Conductivity	DO	ORP
weiis		(minutes)	(SU)	(°F)	(µmhos/cm)	(mg/l)	(mV)
	08/08/08	26	5.76	73.43	491	0.58	149.3
MW-1	11/05/08	22	5.86	72.11	453	0.06	132.7
10100-1	02/06/09	30	6.13	66.79	541	0.01	152
	05/07/09	19	5.98	67.17	399	0.30	93.3
	08/08/08	21	6.39	75.47	788	0.82	-33.4
MW-2	11/05/08	22	6.36	74.96	739	0.16	-10.9
10100-2	02/06/09	32	6.52	67.15	889	0.06	-25
	05/07/09	25	6.38	67.88	678	0.19	-40.4
	08/08/08	19	6.31	72.81	290	0.53	-37.6
MW-3	11/05/08	18	6.5	73.71	259	0.37	-18.5
10100-3	02/06/09	28	6.63	69.21	384	0.1	-66
	05/07/09	13	6.48	68.82	333	0.12	-69.7
	08/08/08	27	6.58	73.5	638	0.56	-59.2
MW-4	11/05/08	20	6.74	72.92	470	0.16	-86.8
10100-4	02/06/09	18	6.93	64.38	561	0.01	-97
	05/07/09	19	6.72	68.04	405	0.09	-79.4
	08/08/08	29	6.35	70.41	307	0.63	-54.1
MW-5	11/05/08	24	6.63	71.54	368	0.24	-70.1
10100-5	02/06/09	15	6.91	64.4	279	0.01	-98
	05/07/09	13	6.68	66.27	224	0.08	-104.5
	08/08/08	19	6.18	70.71	595	0.52	-18.8
MW-6	11/05/08	16	6.47	68.52	608	0.05	-57.3
IVIVV-O	02/06/09	15	6.87	62.94	604	0.01	-71
	05/07/09	16	6.67	64.99	422	0.14	-82.8

Figure 7
MTBE Concentration Change Over Time

Jan-01 Jul-01 Jan-02 Jul-02 Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06 Jul-06 Jan-07 Jul-07 Jan-08 Jul-08 Jan-09 Date

→ MW-1 → MW-2 → MW-3 → MW-4 → MW-5 → MW-6

Monitoring Well Gauging and Purging Data Sheet

Date: 5/7/6		ject No. ekhon	Site: 6600 F	oothill	Location:	Pakla	A	Initials:	
Purge Metho	od:		Gauging	Gauging	Purge Startir	ıg Time:	Purge Ending	Time:	Sampling Method:
Peri			Time: 0935	Time:	101	1018			Peri
Well ID	Diameter (in)	Depth to Bottom (ft)	Initial Depth to Water from TOC (ft)	Equilibrated Depth to Water from	Static Water Column (ft)	Casing Volume (gal)	Purged Volume (gal)	Depth to Product (ft)	Note:
				TOC (ft)			Lilera		
Mw-I	2"	24.52	6.76	6.76	17.76	2.90			
MW-2	2"	24.62	6.53	6.53	18.09	2.95			
MW-3	2"	24.01	8,98	8.98	15.03	2.45			
MW-4	2"	19.91	4.86	4.86	15.05	2.46			
MW-5	2"	19.69	6.43	6.43	13.26	2.17			
MW-6	7 "	19.39	4.91	4.91	14.48	2.37			
			===						
Casing Volu	me = Static	Water Column	x Conversion Fa	actor	Conversion l 6-in well = 1.		 ell = 0.163 gal/ft,	4-in well = 0.65	53 gal/ft,
Total purged	d volume fr	om all wells (ga	als):						

allowed to equilibrate approx. 20 min prior Environmental Risk Services Corp. 2121 North California Blvd., Suite 820, Walnut Creek, CA 94596 to gauging.

Site Name: S	ekhon Gas	s Station	######################################	Well/Samp	le ID:	1W - (Ø			
Location: 660	0 Foothill I	Blvd, Oakland C	4	Initial Depth to Water (DTW): 6.76						
Client:	50	khow		Total Well Depth (TD): 24.52						
Sampler:	LT	C		Well Diameter: 2 (1						
Date: 5/7/09				1 Casing V	olume:	2.90				
Purge Metho	<u> </u>		Purge Rate	· 0.3	3 4/1	MA America				
Sample Meth	od: Low FI	ow		Sampling F	Rate: C).2 L	1 uin	lander of the state of the stat		
2" well x 1 foo	ot = 0.6 lite	rs		4" well x 1	foot = 2.4L					
Time	рН	SC	DO	Temp	DTW	Cumulative Volume	ORP	Notes		
hh:mm	SU	µmhos/cm	mg/l	°F	feet	liters	mV			
112-3	6.01	371	0.38	67.20	8.30	1.2	64.9			
1126	5,94	366	0/31	67.16	9.06	2.1	82.6			
1129	5.94	369	0.31	67.14	9.60	3	86.9			
1132	5.94	380	0.34	67.13	10,08	3.9	90.9			
1/35	5.94	384	0.32	67.15	10.11	4.8	93.6			
1138	5.98	399	E .	E .	10.10		93.3			
					•					
Did Well Dev	vater?	No	Start Purge	e Time:	***************************************	DTW prior to	o sample:	10.10		
Casing volun Purged:	nes	- Company of the Control of the Cont	Stop Purge	e Time:	1138	Start Sampl	e Time:	113.8		
Length of Tu	bing (ft):	~25′	Total Liters	Purged:	5.7.	Total Sampl	le Volume:	240mL		
Well Recharge: moderate Turbidity:			Very	low	Color:		none			
Odor:		no	Sheen:	V	NO	Product Thi	nkness (in):	N/A		
Notes:								1		

Site Name: S	Sekhon Ga	s Station		Well/Samp	le ID:	(w-2)						
Location: 660	00 Foothill	Blvd, Oakland C	A	Initial Dept	h to Water (DTW): 6	.53					
Client:	506	. 610		Total Well Depth (TD): 24.62								
Sampler:	LTL	-		Well Diameter: 2 11								
Date: 5/7/09				1 Casing V	1 Casing Volume: 2.95 gal							
Purge Method: Peristaltic Pump				Purge Rate	e: 0,	20 L	-/win					
Sample Method: Low Flow				Sampling F		7 4						
2" well x 1 foo	ot = 0.6 lite	rs		4" well x 1	foot = 2.4L							
Time	рН	SC	DO	Temp DTW Cumulative Volume ORP Notes								
hh:mm	SU	µmhos/cm	mg/l	°F feet liters mV								
1022	6.31	697	0.17	67.77	8.50	(12	-52.8					
1025	6.30	689	0.31	67.60	9.53	2.1	-54.0					
1028	6.31	683	0.28	67.58	10.06	3	-52.0					
1031	6.31	681	0.25	67.61	10.39	3.9	-50.7					
1034	6.36	678	0,25	67.66	10.72	4.8	-48.4	,				
1037	6.38	676	0,22	67.54	10.97	5.7	(H8, 1	slowed rate				
1040	6.39	677	0.19	67.79	11.((6.3	-42.9					
1043	6.38	678	0.19	67.88	11.26	6.9	-40.4					
Did Well Dew	vater?	No	Start Purge	Time:	1018	DTW prior t	o sample:	11.26				
Casing volun Purged:	nes		Stop Purge	e Time:	1043	Start Sampl	e Time:	1043 240 ML				
Length of Tu	bing (ft):	~26	Total Liters	s Purged:	6.9	Total Sampl	le Volume:	240 ML				
Well Recharg	ge:	JOOR	Turbidity:	Very	low	Color:	Nona					
Odor:	hone	,	Sheen:	nons	2	Product Thi	nkness (in):	NIA				
Notes:					-							

Environmental Risk Services Corp.,1600 Riviera Ave Walnut Creek CA, 94596

Site Name: S	ekhon Gas	Station		Well/Sample ID: $4w-3$						
Location: 660	0 Foothill E	3lvd, Oakland C	A	Initial Depti	ո to Water ([DTW): 🎖	.98			
Client: C	Sekh	ÓN.		Total Well Depth (TD): 24.0						
Sampler:	LTL			Well Diameter: 2 1/						
Date: 5 /	1710	9		1 Casing V	olume:	2.45	gal			
Purge Metho	d: Peristalti	ic Pump		Purge Rate	· 0.3	, //u	~Vh			
Sample Meth	od: Low Fl	ow		Sampling F	· · · · · · · · · · · · · · · · · · ·		(ML)			
2")well x 1 foo	ot = 0.6 lite	rs		4" well x 1						
Time	рН	sc	DO	Temp DTW Cumulative ORP						
hh:mm	SU	µmhos/cm	mg/l	°F	feet	liters	mV			
lojj	6.55	351	0.14	68,71	9.24	1.2	-59.6			
1184	6.51	345	0-13 68.73		9.26	2.1	-65.1			
Not	6.49	338			9.29		-68.5			
1110	6.48	3 33	0.12	-68.82	-9.30	3.9	-69.7			

Did Well Dev	vater?	NO	Start Purge	e Time:	1057	DTW prior t	o sample:	9.30		
Casing volun Purged:	nes	The state of the s	Stop Purge	e Time:	1110	Start Sampl	le Time:	1110		
Length of Tu	bing (ft):	~241	Total Liters	s Purged:	3.9	Total Samp	le Volume:	240 m L		
Well Recharg	ge:	good	Turbidity:	very	low	Color:		none		
Odor:		NO	Sheen:	<u> </u>	no	Product Thi	nkness (in):	NIA		
Notes:					L.	•				

Site Name: S	ekhon Gas	Station	о-даментатем поделения	Well/Samp	le ID:	1W-	4				
Location: 660	0 Foothill E	Blvd, Oakland C	Ą	Initial Depth	to Water ([DTW): 4	, & C				
Client:	Sek	hou		Total Well Depth (TD): (9,9)							
Sampler:	1-1			Well Diameter: 2"							
Date:	5/7	109		1 Casing V	olume: η	.46					
Purge Metho	d: Peristalti			Purge Rate	: <i>O</i> .	3 1/	www				
Sample Meth	od: Low Fl	ow		Sampling Rate: O. 2 L/win							
2" well x 1 foo	ell x 1 foot = 0.6 liters 4" well x 1 foot = 2.4L										
Time	рН	SC	DO	Temp	DTW	Cumulative Volume	ORP	Notes			
hh:mm	SU	μmhos/cm	mg/l	°F feet liters mV							
1243	6.69	408	0.19	67.46	6.25	E .	-83.3				
1246	6.69	406	0.14	67.60	6.62	2.1	-85.4				
1249	6.71	404	0.12	67,67	6.99	3	-88.°				
1252	6.71	404	0.15	67.63	7,19	3.9	-88.9	Slowed ra			
1255	6.73	404	0.12	67.95	7.03	华署45	-89.0				
1258	6.72	- 405	0.09	68.04	7.02	5.1	-79.4				
			-								
Did Well Dev	vater?	No	Start Purg	e Time:	1239	DTW prior t	o sample:	7.02			
Casing volun Purged:	nes		Stop Purge	e Time:	(258	Start Sampl	le Time:	1258			
Length of Tu	bing (ft):	~20'	Total Liter	s Purged:	5.1	Total Samp	le Volume:	240 mL			
Well Rechar	ge:	moderate	Turbidity:	Veri	low	Color:		none			
Odor:		NO	Sheen:		NO	Product Thi	nkness (in):	NA			
Notes:											

Site Name: S	te Name: Sekhon Gas Station				Well/Sample ID: $M(\chi) - 5$						
		Blvd, Oakland C	4		n to Water (E	NVV): /	,43	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Client:	seki			Total Well Depth (TD): 19,69							
Sampler:	de la companion de la companio	J.		Well Diame	eter: 2	(.)					
Date: 🤤	i/7	109	1 Casing V		.17						
Purge Metho	d: Peristalti	ic Pump	Purge Rate	: O:	3 C/	win					
Sample Meth	od: Low Fl	ow		Sampling F	Rate:	9.2	L./mi				
2" well x 1 foo	ot = 0.6 lite	rs		4" well x 1	foot = 2.4L						
Time	рН	sc	DO	Temp	Notes						
hh:mm	SU	μmhos/cm	mg/l	°F	mV						
1154	6.67	225	0,12	66,44	7.20	(. 2	-96.2	Man-r-			
1157	6.70	224	0.08	66.36	7.45	2.1	-102.4				
(2.00	6.71	224			7.54	3	-104.7				
(203)	6.68	224	0.08	66.27	7,63	3.9	-1045				
Did Well Dev	vater?	No	Start Purge	e Time:	1150	DTW prior t	o sample:	7.63			
Casing volun Purged:	nes		Stop Purge	e Time:	203	Start Sampl	e Time:	1203			
Length of Tu	bing (ft):	~20'	Total Liters	s Purged:	3.9	Total Samp	le Volume:	740 mL			
Well Rechar	ge:	good	Turbidity:	very	low	Color:		none			
Odor:		slight	Sheen:		no	Product Thi	nkness (in):	N/A			
Notes:											

Environmental Risk Services Corp., 1600 Riviera Ave Walnut Creek CA, 94596

	0-1-0-0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-			Well/Sample ID: M(A) - C							
Site Name: S	Sekhon Gas	Station		Well/Sample ID: MW-6							
Location: 660	00 Foothill E	3lvd, Oakland C	4	Initial Depth	to Water (I	OTW): 🤟	.91				
Client:	Sek	hon		Total Well Depth (TD): 19,39							
Sampler:	Late			Well Diameter: 2 1/							
Date: 5/7/09				1 Casing V	olume:	2.37	aoQ				
Purge Metho	d: Peristalti	ic Pump	Purge Rate	· O.	3 1/2	v.					
Sample Meth	od: Low Fl	ow		Sampling F	Rate:	. 2 (/win				
2" well x 1 fo	ot = 0.6 lite	rs		4" well x 11	foot = 2.4L						
Time	рН	SC	DO	Temp	Notes						
hh:mm	SU	µmhos/cm	mg/l	°F							
1215	6,66	443	0.23	65.00	5,54	1.2	-78,4				
(218	6.70	439	0.17	64.96	5.76	2.1	_82.7				
(221	6.68	428	0.15	64.98	5.85	3	-81.7				
(224	6.68	424	0.17	65.02	- 5.87	3.9	-82.5				
1227	6.67	422	0.14	64.99	5.88	4.8	-82.8				
Did Well Dev	water?	No	Start Purge	e Time:	1211	DTW prior t	o sample:	5.88			
Casing volur Purged:	nes	NEW TOTAL PROPERTY OF THE PROP	Stop Purge	e Time:	1227	Start Sampl	le Time:	1227			
Length of Tu	bing (ft):	~201	Total Liters	s Purged:	4.8	Total Samp	le Volume:	240 ~ L			
Well Rechar	ge:	good	Turbidity:	very	low	Color:		nohe			
Odor: ‹	slight	+ TPH	Sheen:		No	Product Thi	nkness (in):	N/A			
Notes:											

Date: 05/12/2009

Jim Ho Environmental Risk Services Corporation 1600 Riviera Avenue, Suite 310 Walnut Creek, CA 94596

Subject: 6 Water Samples

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Dear Dr. Ho,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 05/12/2009

Subject: 6 Water Samples

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Case Narrative

The Method Reporting Limit for Methanol has been increased due to the presence of an interfering compound for samples MW-1, MW-4, and MW-6.

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Sample: MW-1 Matrix: Water Lab Number: 68406-01

Sample Date :05/07/2009		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009
Methyl-t-butyl ether (MTBE)	210	0.50	ug/L	EPA 8260B	05/09/2009
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009
Tert-Butanol	110	5.0	ug/L	EPA 8260B	05/09/2009
Methanol	< 150	150	ug/L	EPA 8260B	05/08/2009
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/09/2009
1,2-Dichloroethane-d4 (Surr)	99.4		% Recovery	EPA 8260B	05/09/2009
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	05/09/2009

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Sample: MW-2 Matrix: Water Lab Number: 68406-02

Sample Date :03/07/2009		Method			5 .
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 4.0	4.0	ug/L	EPA 8260B	05/07/2009
Toluene	< 4.0	4.0	ug/L	EPA 8260B	05/07/2009
Ethylbenzene	< 4.0	4.0	ug/L	EPA 8260B	05/07/2009
Total Xylenes	< 4.0	4.0	ug/L	EPA 8260B	05/07/2009
Methyl-t-butyl ether (MTBE)	9.7	4.0	ug/L	EPA 8260B	05/07/2009
Diisopropyl ether (DIPE)	< 4.0	4.0	ug/L	EPA 8260B	05/07/2009
Ethyl-t-butyl ether (ETBE)	< 4.0	4.0	ug/L	EPA 8260B	05/07/2009
Tert-amyl methyl ether (TAME)	< 4.0	4.0	ug/L	EPA 8260B	05/07/2009
Tert-Butanol	12000	20	ug/L	EPA 8260B	05/07/2009
Methanol	< 400	400	ug/L	EPA 8260B	05/07/2009
Ethanol	< 40	40	ug/L	EPA 8260B	05/07/2009
1,2-Dichloroethane-d4 (Surr)	96.9		% Recovery	EPA 8260B	05/07/2009
Toluene - d8 (Surr)	99.1		% Recovery	EPA 8260B	05/07/2009

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Sample: MW-3 Matrix: Water Lab Number: 68406-03

Sample Date :03/07/2009		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Methyl-t-butyl ether (MTBE)	5.5	0.50	ug/L	EPA 8260B	05/07/2009
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Tert-Butanol	900	5.0	ug/L	EPA 8260B	05/07/2009
Methanol	< 50	50	ug/L	EPA 8260B	05/07/2009
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/07/2009
1,2-Dichloroethane-d4 (Surr)	99.7		% Recovery	EPA 8260B	05/07/2009
Toluene - d8 (Surr)	96.6		% Recovery	EPA 8260B	05/07/2009

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Sample: MW-4 Matrix: Water Lab Number: 68406-04

Sample Date .05/07/2009		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	0.73	0.50	ug/L	EPA 8260B	05/07/2009
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Ethylbenzene	7.4	0.50	ug/L	EPA 8260B	05/07/2009
Total Xylenes	1.2	0.50	ug/L	EPA 8260B	05/07/2009
Methyl-t-butyl ether (MTBE)	29	0.50	ug/L	EPA 8260B	05/07/2009
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Tert-Butanol	1000	5.0	ug/L	EPA 8260B	05/07/2009
Methanol	< 200	200	ug/L	EPA 8260B	05/07/2009
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/07/2009
1,2-Dichloroethane-d4 (Surr)	95.0		% Recovery	EPA 8260B	05/07/2009
Toluene - d8 (Surr)	92.3		% Recovery	EPA 8260B	05/07/2009

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Sample: MW-5 Matrix: Water Lab Number: 68406-05

Sample Date .05/07/2009		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	0.72	0.50	ug/L	EPA 8260B	05/07/2009
Toluene	0.91	0.50	ug/L	EPA 8260B	05/07/2009
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Total Xylenes	2.3	0.50	ug/L	EPA 8260B	05/07/2009
Methyl-t-butyl ether (MTBE)	4.3	0.50	ug/L	EPA 8260B	05/07/2009
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Tert-Butanol	60	5.0	ug/L	EPA 8260B	05/07/2009
Methanol	< 50	50	ug/L	EPA 8260B	05/07/2009
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/07/2009
1,2-Dichloroethane-d4 (Surr)	95.2		% Recovery	EPA 8260B	05/07/2009
Toluene - d8 (Surr)	98.2		% Recovery	EPA 8260B	05/07/2009

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

Project Number: 6600 FHB

Sample: MW-6 Matrix: Water Lab Number: 68406-06

Sample Date :05/07/2009		Method			
Parameter	Measured Value	Reporting Limit	Units	Analysis Method	Date Analyzed
Benzene	32	0.50	ug/L	EPA 8260B	05/08/2009
Toluene	1.2	0.50	ug/L	EPA 8260B	05/08/2009
Ethylbenzene	14	0.50	ug/L	EPA 8260B	05/08/2009
Total Xylenes	37	0.50	ug/L	EPA 8260B	05/08/2009
Methyl-t-butyl ether (MTBE)	150	0.50	ug/L	EPA 8260B	05/08/2009
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/08/2009
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/08/2009
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/08/2009
Tert-Butanol	460	5.0	ug/L	EPA 8260B	05/08/2009
Methanol	< 100	100	ug/L	EPA 8260B	05/08/2009
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/08/2009
1,2-Dichloroethane-d4 (Surr)	88.6		% Recovery	EPA 8260B	05/08/2009
Toluene - d8 (Surr)	92.0		% Recovery	EPA 8260B	05/08/2009

Date: 05/12/2009

QC Report : Method Blank Data

Project Name : Former Sekhon Gas Station

Project Number: 6600 FHB

		Method			D .
Parameter	Measured Value	Reporting Limit	g Units	Analysis Method	Date Analyzed
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/06/2009
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
Methanol	< 50	50	ug/L	EPA 8260B	05/06/2009
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/06/2009
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/06/2009
1,2-Dichloroethane-d4 (Surr)	103		%	EPA 8260B	05/06/2009
Toluene - d8 (Surr)	96.0		%	EPA 8260B	05/06/2009
D.	. 0. 50	0.50	,,	EDA 0000D	05/07/0000
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/07/2009
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Methanol	< 50	50	ug/L	EPA 8260B	05/07/2009
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/07/2009
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/07/2009
1,2-Dichloroethane-d4 (Surr)	97.4		%	EPA 8260B	05/07/2009
Toluene - d8 (Surr)	103		%	EPA 8260B	05/07/2009

		Method	1			
	Measured	Report	ing	Analysis	Date	
<u>Parameter</u>	Value	Limit	Units	Method	Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	05/09/2009	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	05/09/2009	
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	05/09/2009	
1,2-Dichloroethane-d4 (Surr)	100		%	EPA 8260B	05/09/2009	
Toluene - d8 (Surr)	103		%	EPA 8260B	05/09/2009	

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Number: 6600 FHB

Parameter	Spiked Sample	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicat Spiked Sample Percent Recov.	Relative	Spiked Sample Percent Recov. Limit	Relative Percent Diff. Limit
Benzene	68371-09	<0.50	40.5	40.6	41.1	41.0	ug/L	EPA 8260B	5/6/09	101	101	0.462	70-130	25
Methyl-t-butyl ether	r 68371-09	8.8	40.6	40.7	45.0	44.7	ug/L	EPA 8260B	5/6/09	89.0	88.1	0.968	70-130	25
Tert-Butanol	68371-09	<5.0	201	201	220	200	ug/L	EPA 8260B	5/6/09	109	99.4	9.56	70-130	25
Toluene	68371-09	<0.50	40.0	40.1	38.5	38.5	ug/L	EPA 8260B	5/6/09	96.2	96.1	0.157	70-130	25
Benzene	68405-05	1.6	40.6	40.6	43.1	41.7	ug/L	EPA 8260B	5/7/09	102	98.9	3.49	70-130	25
Methyl-t-butyl ether	r 68405-05	110	40.7	40.7	149	143	ug/L	EPA 8260B	5/7/09	99.8	87.2	13.6	70-130	25
Tert-Butanol	68405-05	10	201	201	202	210	ug/L	EPA 8260B	5/7/09	95.3	99.5	4.28	70-130	25
Toluene	68405-05	<0.50	40.1	40.1	40.2	34.8	ug/L	EPA 8260B	5/7/09	100	86.8	14.4	70-130	25
Benzene	68411-16	<0.50	40.6	40.6	40.0	40.9	ug/L	EPA 8260B	5/9/09	98.6	101	2.22	70-130	25
Methyl-t-butyl ether	r 68411-16	<0.50	40.7	40.7	34.7	36.3	ug/L	EPA 8260B	5/9/09	85.3	89.2	4.49	70-130	25
Tert-Butanol	68411-16	<5.0	201	201	203	199	ug/L	EPA 8260B	5/9/09	101	98.9	1.74	70-130	25
Toluene	68411-16	< 0.50	40.1	40.1	40.1	41.0	ug/L	EPA 8260B	5/9/09	100	102	2.09	70-130	25

Date: 05/12/2009

Project Name: Former Sekhon Gas Station

QC Report : Laboratory Control Sample (LCS)

Project Number: 6600 FHB

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit	
Benzene	40.6	ug/L	EPA 8260B	5/6/09	104	70-130	
Methyl-t-butyl ether	40.7	ug/L	EPA 8260B	5/6/09	104	70-130	
Tert-Butanol	201	ug/L	EPA 8260B	5/6/09	101	70-130	
Toluene	40.1	ug/L	EPA 8260B	5/6/09	101	70-130	
Benzene	40.6	ug/L	EPA 8260B	5/7/09	103	70-130	
Methyl-t-butyl ether	40.7	ug/L	EPA 8260B	5/7/09	105	70-130	
Tert-Butanol	201	ug/L	EPA 8260B	5/7/09	93.0	70-130	
Toluene	40.1	ug/L	EPA 8260B	5/7/09	101	70-130	
Benzene	40.6	ug/L	EPA 8260B	5/9/09	97.7	70-130	
Methyl-t-butyl ether	40.7	ug/L	EPA 8260B	5/9/09	85.7	70-130	
Tert-Butanol	201	ug/L	EPA 8260B	5/9/09	98.5	70-130	
Toluene	40.1	ug/L	EPA 8260B	5/9/09	100	70-130	

May 14, 2009

Joel Kiff Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Subject: Calscience Work Order No.: 09-05-0694

Client Reference: Former Sekhon Gas Station

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 5/8/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

amande Porter

Laboratories, Inc.

Amanda Porter Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Analytical Report

Kiff Analytical Date Received: 05/08/09 2795 2nd Street, Suite 300 Work Order No: 09-05-0694 Preparation: Davis, CA 95616-6593 **EPA 5030B** Method: EPA 8015B (M)

Project: Former Sekhon Gas Station

TPH as Gasoline

Page 1 of 2

Client Sample Number	er	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1		09-05-0694-1-B	05/07/09 11:38	Aqueous	GC 11	05/13/09	05/14/09 05:00	090513B01
Comment(s):	-The sample chromatographic pattern of the unknown hydrocarbon(s) in the					e specified sta	andard. Qua	ntitation
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			

ug/L

420 **REC (%) Control Limits** Qual Surrogates:

1,4-Bromofluorobenzene 78 38-134

MW-2 09-0	5-0694-2-B 05/07 10:	7/09 Aqueous 13	GC 11	05/13/09	05/14/09 05:34	090513B01
-----------	-------------------------	--------------------	-------	----------	-------------------	-----------

Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

50

<u>Parameter</u> Result **Units** RL DF Qual TPH as Gasoline 860 50 ug/L

REC (%) Control Limits Qual Surrogates:

1,4-Bromofluorobenzene 77 38-134

Comment(s): -The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

Parameter Result <u>DF</u> **Units** TPH as Gasoline 410 50 ug/L **REC (%)** Surrogates: Control Limits Qual

1,4-Bromofluorobenzene 79 38-134

Analytical Report

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593

Date Received: Work Order No: Preparation: Method:

09-05-0694 EPA 5030B EPA 8015B (M)

05/08/09

Project: Former Sekhon Gas Station

Page 2 of 2

Project. Former Seknon	Gas Station						Г	age 2 or 2
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-4		09-05-0694-4-B	05/07/09 12:58	Aqueous	GC 11	05/13/09	05/14/09 06:41	090513B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	4500	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	263	38-134		2				
MW-5		09-05-0694-5-B	05/07/09 12:03	Aqueous	GC 11	05/13/09	05/14/09 07:14	090513B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	1900	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	112	38-134						
MW-6		09-05-0694-6-B	05/07/09 12:27	Aqueous	GC 11	05/13/09	05/14/09 08:21	090513B01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	5800	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	170	38-134		2				
Method Blank		099-12-436-3,234	N/A	Aqueous	GC 11	05/13/09	05/14/09 00:00	090513B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
1,4-Bromofluorobenzene	76	38-134						

RL - Reporting Limit

DF - Dilution Factor

Qual - Qualifiers

Quality Control - Spike/Spike Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method: 05/08/09 09-05-0694 EPA 5030B EPA 8015B (M)

Project Former Sekhon Gas Station

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-05-0786-1	Aqueous	GC 11	05/13/09		05/14/09	090513S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	87	86	68-122	1	0-18	

MMM_

Quality Control - LCS/LCS Duplicate

Kiff Analytical 2795 2nd Street, Suite 300 Davis, CA 95616-6593 Date Received: Work Order No: Preparation: Method:

09-05-0694 EPA 5030B EPA 8015B (M)

N/A

Project: Former Sekhon Gas Station

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat Analy		LCS/LCSD Batch Number	'n
099-12-436-3,234	Aqueous	GC 11	05/13/09	05/13	/09	090513B01	
Parameter	LCS %	<u> 6REC LCSE</u>) %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	84	8	5	78-120	1	0-10	

Mullim.

RPD - Relative Percent Difference , CL - Control Limit

Glossary of Terms and Qualifiers

Work Order Number: 09-05-0694

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
Е	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

2795 Second Street, Suite 300

Lab: 530.297.4800

7440 Lincoln Way

Calscience

Davis, CA 95618 Garden Grove, CA 92841-1427 Fax: 530.297.4808 714-895-5494 COC No.

Project Contact (Hardco		ED	F Re _l	oort?		YES	}	Chain-of-Custody Record and Analysis Request																
Troy Turpen														,				,,		10.00				
Company/Address:	Recomn	nended but	not manda	atory to compl	ete this sec	tion:	1								Т		Т							
Kiff Analytical	Samp	oling Co	npany L	og Code:	ERV	VC	Analysis Request Due Date:																	
Phone No.: 530-297-4800	FAX No.: 530-297-4	1808		Globa	al ID:	7	060010	2286										T	\prod	\top				
Project Number:	P.O. No.:			Deliv	erables 1	o (Emai	l Address):	<u> </u>		1									_					
6600 FHB	68	406		inbox	@kiffa	nalytica	al.com			ro C			1 1					۶	2008		Only			
Project Name:	· ·		-	C	ontaine	r / Pres	ervative		latrix	801								5	네		se (
Former Sekhon G	as Station									EPA								Į;	4		ا څر			
Project Address:	Sar	npling		VOA / HCI						Gasoline BY									May		For Lab Use			
Sample				/\ \ \						as Gas								ſ	ا ا ٔ		<u>"</u>			
Designation	Dat	te T	ime	40mL				Water		TPH.														
MW-1	05/07	7/09 1	1:38	3				X		Х								7	x		, 			
MW-2	05/07	7/09 10	0:43	3				X		Х								7	X		2			
MW-3	05/07	7/09 1	1:10	3				Х		Х					İ			7	x		3			
MW-4	05/07	7/09 12	2:58	3				Х		Х								7	X		4			
MW-5	05/07	7/09 12	2:03	3		\prod		X		Х								7	x	- (5			
MW-6	05/07	7/09 12	2:27	3				Х		x								<u> </u>	x		ط			
						<u> </u>							$\perp \downarrow$	Щ				_	$\perp \downarrow \downarrow$	\bot				
									$\downarrow \downarrow$				$\perp \perp$				$\perp \downarrow$	_	$\perp \perp$	4				
					\coprod	 		$\bot\!\!\!\bot$					4-4				$\downarrow \downarrow$	4	$\bot\!$	_				
Relinquished by		1 -	Date	Time	Receiv	ed by:						marks:						上		上				
Relinquished by Relinquished by:	CittAnalytic	q/ 05x	0709	1900)	eu by.					I ve	iliains.									Ę.			
Relinquished by:		С	Date	Time		ed by:															ď			
Relinquished by: ONTRACBIO2320	Pate 109	Time	Receiv	ed by La	boratory:				Bill	to: A	ccou	nts F	ayat	ole										

WORK ORDER #: 09-05- □ 🗒 🛱 📥

SAMPLE RECEIPT FORM

Cooler \(\ \ \ \)

CLIENT: KATE ANALYTICAL	DATE: _	5 18 10	29
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 2 . \	Blank	☐ Sample	
	•	ig.	
☐ Received at ambient temperature, placed on ice for transport by Co Ambient Temperature: ☐ Air ☐ Filter ☐ Metals Only ☐ PCBs C		Initial: W	6
CUSTODY SEALS INTACT: ☐ Cooler ☐ ☐ No (Not Intact) ☐ Not Present ☐ Sample ☐ ☐ No (Not Intact) ☐ Not Present	□ N/A	Initial: $\frac{\mathcal{U}}{\mathcal{U}}$	B
SAMPLE CONDITION:	Yes /	No N/	A
Chain-Of-Custody (COC) document(s) received with samples]
COC document(s) received complete]
☐ Collection date/time, matrix, and/or # of containers logged in based on sample labels.			
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished.			
Sampler's name indicated on COC	П		,
Sample container label(s) consistent with COC			1
Sample container(s) intact and good condition		1	
Correct containers and volume for analyses requested			_
Analyses received within holding time]
Proper preservation noted on COC or sample container]
□ Unpreserved vials received for Volatiles analysis			
Volatile analysis container(s) free of headspace] ,
Tedlar bag(s) free of condensation			
CONTAINER TYPE:			
Solid: □4ozCGJ ∕⊡8ozCGJ □16ozCGJ □Sleeve □EnCores® □	TerraCores	s [®] □	
Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGBp			GB s
□500AGB □500AGJ □500AGJs □250AGB □250CGBs			
□250PB □250PBn □125PB □125PB znna □100PB □100PB na ₂ □			
Air: □Tedlar [®] □Summa [®] □ Other: □			<i>1</i> h
Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrow-mou		eviewed by:	
Preservative: h: HCL n: HNO3 na ₂ :Na ₂ S ₂ O ₃ Na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f:	Field-filtered	Scanned by: \\W	(I)

KIFF	
Analytical ட	

2795 2nd Street Suite 300 Davis, CA 95616

Lab: 530.297.4800 Fax: 530.297.4802

Page 1

_	- '		rax.	100.4	201.	400	۷																												
Project Contact (Hardcopy or PDF To): Logan Linderman					California EDF Report?												Chain-of-Custody Record and Analysis Request																		
Company / Address: Environmental Risk Services					Sampling Company Log Code:												Analysis Request TAT														T				
1600 Riviera Ave, Suite 310, Walnut Creek, CA. 94596						ERWC															OB)										П				1
Phone #: (925) 938-1600	Fax	#:	Global ID: T0600102286															EDB EPA 8260B													12 hi				
Project #:	P.O. #:					PDF/EDF Deliverable To (Email Address):															3 E										ŀ				For Lab Use Only
6600 FHB				inoce erscorp. us																ED										ļ			24 hi	Se	
Project Name: Former Sekhon Gas Station					Sampler Signature:															_	1,2] q
Project Address:	111	Samp	ling	╆	Container Preservative Matrix															8260B)	Š										1			48hr	[a
6600 Foothill Blvd.,		Sanip	niig	╁	$\overline{}$		anie	<u>'</u>	Preservative							Matrix				82(,2 D	_		<u> </u>										70111	Ğ.
Oakland, CA.				VOA	g.	Poly					3					;		TPH Gas (EPA 8015M)	BTEX (EPA 8260B)	7 Oxygenates (EPA	Lead Scavengers(1,2 DCA,	Arsenic (EPA 6010)	Lead (EPA 6010)	Mercury (EPA 7470)										☐ 72 hi	-
			l	Ε	<u>6</u>	훙	Glass		Ιō	12	None		Н	Water	Soil	¥		표	<u>~</u>	ő	aad	rsen	bg gg	erc.								- 1	FOLD	المحارا	
Sample Designation		Date	Time			۵	ဗ	<u> </u>	1	╀	Z	╁	┼┤	-	ပ	⋖	-			-	1	٧	1-	≥		\vdash		H	┢	\vdash	\dashv	+	┯	1 wk	
MW-1		5/7/09	+	6	-				×	+-	ļ	_	Ш	Х				Х	Х						_					\sqcup	\dashv	+	+	-	Ol
MW-2			1043	6					×				Ш	Х				Х	Х	Х						<u> </u>	L	<u> </u>		\coprod	\dashv		\bot	<u> </u>	02
MW-3			1110	6					Х					Х				X	Х	Х												\perp	\perp		03
MW-4			1258	6					×					x				Х	Х	X															04
MW-5			1203	6					Х					х				Х	х	х															05
MW-6		4	1227	6					Х					х				Х	х	х								ļ				\bot	\perp		06
								_	ļ	-		_		Ш					_								_	_	_	\square	\dashv	\bot	\bot	 	
			<u> </u>	╀	╀			\perp	+	\downarrow	igapha	_	-	\square				!			_			ļ	 			<u> </u>	┝	igwdap	\dashv	+	+	┼	
				╁	╁	ļ		-+	╀	╁	+	╁	${\mathbb H}$	<u> </u>			-						\vdash			├				H	\dashv	+	+		-
Relinquished by:	1		Date		<u> </u>	Tim	е	Řecen	ved t	N:			Ш				لــا			Ren	l narks	<u> </u>			<u> </u>	<u> </u>		Щ.	<u> </u>	<u></u>			—	Щ.	<u></u>
Relinquished by: Date			10	9	14											•				ternaliks.															
					Recei	ved l	oy:						_																						
																		Bill	to:							•									
Relinquished by:		- -	Date			Tim	e	Recei	ved I	y La	abora	tory:		4	i H	Ç.								F	or L	ab l	Jse	Only	r: S	3amp	le R	eceipt	t		
		-	0503	100	î	14	1	1	1	Š							. I	٠.	1		emp			Initia	ls			ate		Tim				_	nt Present
					`	" Y MA						- Analyt							U	3,0			TJB		050704		162	7	TP	-5	Yes	/ No			