ENVALORMENTAL FROMEOTION

00 JUN -9 PM 4: 18

June 7, 2000

Mr. Amir K. Gholami Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Subsurface Investigation Report
and Work Plan for Installation of
Groundwater Monitoring Wells
Shell-branded Service Station
2120 Montana Street
Oakland, California
Incident #98995740
Cambria Project # 242-0733-006

Dear Mr. Gholami:

On behalf of Equiva Services LLC (Equiva), Cambria Environmental Technology, Inc. (Cambria)
is submitting the results of the subsurface investigation conducted on October 35, 1999 at the

is submitting the results of the subsurface investigation conducted on October 25, 1999 at the above-referenced site. The objective of this investigation was to define the vertical extent of hydrocarbons in soil, as requested by the Alameda County Health Care Services Agency (ACHCSA) in their April 21, 1999 and May 1, 2000 letters to Equiva. The investigation was conducted in accordance with Cambria's May 27, 1999 Investigation Work Plan Addendum, which was approved in ACHCSA's September 8, 1999 letter to Equiva. Presented below are the site background, investigation procedures, investigation results, and our conclusions and recommendations for additional work.

SITE BACKGROUND

Site Location: This operating Shell-branded service station is located at the intersection of Montana Street and Fruitvale Avenue in Oakland, California. Commercial properties surround the site to the north and east, and residential properties are to the west. Highway 580 is located to the adjacent south of the site.

Portland, OR Cambria

Oakland, CA

San Ramon, CA Sonoma, CA

> 1998 Dispenser Upgrades: In November 1997, Paradiso Mechanical of San Leandro, California upgraded the service station. Secondary containments were added to the three existing dispensers (D-1, D-2, and D-3) and turbine sumps above the underground storage tanks (Figure 1).

Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (\$10) 420-0700 Fax (510) 420-9170

3

Mr. Amir K. Gholami

June 7, 2000

Soil samples were collected from native soil beneath dispensers D-1, D-2, and D-3 at a depth of approximately 5 feet below grade (fbg). Soil samples were not collected from beneath the associated piping since it was exposed during the upgrade activities. The maximum total petroleum hydrocarbons as gasoline (TPHg), benzene, and methyl tertiary butyl ether (MTBE by EPA Method 8020) concentrations were reported in sample D-3 at 59 parts per million (ppm), 0.76 ppm, and 1.1 ppm, respectively.

INVESTIGATION PROCEDURES

Three soil borings were advanced to a maximum depth of 20 fbg. Soil and groundwater samples were collected for analysis. The procedures for this investigation, as described in Cambria's approved work plan, are summarized below. Boring locations are shown on Figure 1. Analytical results for soil and groundwater samples are summarized in Tables 1 and 2. The certified laboratory analytical reports are presented as Attachment A. Boring logs and Cambria's Standard Field Procedures for GeoProbe Sampling are presented as Attachments B and C, respectively.

Personnel Present: Matthew Gaffney, Staff Geologist, and Eric Goldman, Senior

Staff Scientist, of Cambria

Permit: Alameda County Public Works Agency Drilling Permit

#99WR558 (Attachment D)

Drilling Company: Gregg Drilling of Martinez, California (C-57 License #485165)

Drilling Date: October 27, 1999

Drilling Method: GeoProbe direct-push rig

Number of Borings: Three (SB-1, SB-2, and SB-3)

Boring Depths: SB-1 was advanced to 16 fbg. SB-2 and SB-3 were advanced to

20 fbg.

Sediment Lithology: Subsurface material encountered consists primarily of silty sand

and sand of low to high estimated permeability. Boring logs are

included as Attachment B.

Mr. Amir K. Gholami June 7, 2000

Groundwater Depth:

Groundwater was first encountered at 12.5 fbg in SB-1, 16.5 fbg in SB-2, and 16.0 fbg in SB-3. However, when samples were collected from the borings, the depths to water were 16 fbg in SB-1 and 20 fbg in SB-2 and SB-3.

Chemical Analyses:

The soil and groundwater samples were analyzed as follows:

- TPHg by modified EPA Method 8015;
- Benzene, toluene, ethylbenzene, and xylenes (BTEX)
 and MTBE by EPA Method 8020;
- The highest MTBE concentration in soil was confirmed by EPA Method 8260; and
- Selected soil samples for fractional organic carbon, moisture content, dry bulk density and porosity (Attachment A).

Soil Disposal:

No waste was generated during this investigation.

Backfill Method:

The borings were backfilled with cement grout to match the existing grade.

INVESTIGATION RESULTS

Hydrocarbon Distribution in Soil: In general, soil beneath the site does not appear to be highly impacted by petroleum hydrocarbons. Detectable TPHg concentrations ranged from 12 ppm to 54 ppm. Low levels of benzene and MTBE by EPA Method 8020 were reported in three of the nine soil samples analyzed. Soil analytical results are summarized in Table 1. The maximum concentration of TPHg was detected in sample SB-1-5.0' at 54 ppm. The maximum concentration of MTBE was detected in sample SB-2-10.0' at 0.24 ppm (by EPA Method 8260). The maximum benzene concentration was detected in SB-2-15 at 0.019 ppm.

Cambria requested that the soil sample with the highest MTBE concentration by EPA Method 8020 from each boring be confirmed by EPA Method 8260. This analysis was completed for soil sample SB-2-10.0', but due to analytical laboratory oversight, was not completed for the

remaining soil samples. In addition, the highest MTBE concentration in groundwater by EPA Method 8020 was not confirmed using EPA Method 8260 by the laboratory.

In sample SB-2-10, analyzed using EPA 8260, the five fuel oxygenates of concern (di-isopropyl ether, ethanol, ethyl tert-butyl ether, tert-amyl methyl ether, and tert-Butyl alcohol) were not reported above the laboratory detection limit.

Hydrocarbon Distribution in Groundwater: Groundwater analytical results are summarized in Table 2. The maximum groundwater concentrations of TPHg and MTBE by EPA Method 8020 were detected in SB-3 at 2,380 parts per billion (ppb) and 3,210 ppb, respectively. This sample contained 6.8 ppb benzene. The maximum concentration of benzene was detected in SB-2 at 10.6 ppb.

CONCLUSIONS AND RECOMMENDATIONS

Hydrocarbons and MTBE have primarily impacted groundwater beneath the site in the vicinity of the product dispensers. To determine groundwater flow direction and the extent of hydrocarbon and MTBE impact to groundwater at the site, we recommend installing one offsite and two onsite groundwater monitoring wells. Following is our proposed scope of work for this additional investigation and a response to the ACHCSA May 1, 2000 letter to Equiva.

RESPONSE TO ACHCSA MAY 1, 2000 LETTER

Following are specific responses to requests made in the ACHCSA dated May 1, 2000 by Mr. Amir Gholami.

Item #1, Identify revised location for soil boring SB-2: Cambria has previously responded to the ACHCSA requests for revising the location for soil boring SB-2. Fax transmittals were sent to ACHCSA dated September 22, 1999 and October 19, 1999. These transmittals are included in Attachment E.

Item #2, Test for presence of other oxygenates TAME, DIPE, ETBE, TBA, EDB, and EDC. Cambria will coordinate a one time analysis by EPA Method 8260 for the above oxygenates from the initial groundwater sampling event from proposed monitoring wells discussed below.

Item #3, A Risk Management Plan shall be completed upon completion of site investigation. A Risk Management Plan and Site Conceptual Model will be developed upon completion of site investigation activities.

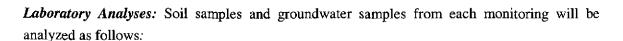
Item #4, Pending results of the investigation, more investigation may be necessary. Following is a proposal for installation of groundwater monitoring wells and initiation of groundwater monitoring at the subject site.

PROPOSED SCOPE OF WORK

We propose installing three groundwater monitoring wells to evaluate the extent of hydrocarbons and MTBE in soil and groundwater beneath the site. Two of the wells will be installed onsite and a third will be installed offsite, downgradient of the site, at the approximate locations shown on Figure 1. Based on a site approximately 3,000 feet southwest of the subject site, it is anticipated that groundwater flows in a southwesterly direction.

IMPLEMENTATION OF FIELD WORK

Upon ACHCSA approval of this work plan, Cambria will complete the following tasks:


Utility Location: Cambria will notify Underground Service Alert prior to drilling activities to identify any underground utilities that exist near the proposed drilling locations. Cambria will also contract an electro-magnetic line locator to identify any underground piping associated with the service station.

Permits: Cambria will obtain drilling permits from the Alameda County Department of Public Works, and encroachment permits from City of Oakland, if required.

Site Health and Safety Plan: In accordance with OSHA regulations, a site-specific Health & Safety Plan will be developed for the field investigations described herein. All field personnel will be required to implement the procedures presented in this document while conducting onsite fieldwork.

Monitoring Wells: Cambria will advance three soil borings using a hollow-stem auger drilling rig to approximately 35 fbg. We will collect soil samples at five-foot intervals, at lithologic changes and from just above the water table. Soil samples will be collected at five-foot intervals and will be screened in the field with a photo-ionization detector. The wells will be installed to a depth of approximately 35 fbg in accordance with our Standard Field Procedure for Monitoring Wells, provided as Attachment F.

Well Development, Sampling and Top of Casing Survey: Each groundwater monitoring well will be developed and sampled. Top of casing elevations will be surveyed to mean sea level.

- TPHg by EPA Method 8015;
- BTEX and MTBE by EPA Method 8020;
- Any detection of MTBE will be confirmed by EPA Method 8260; and
- One-time analysis of groundwater samples for oxygenates (TAME, DIPE, ETBE, TBA, EDB, and EDC) by EPA Method 8260.

Subsurface Investigation Report: After the analytical results are received, Cambria will prepare a report that, at a minimum, will contain:

- A summary of the site background and history;
- Descriptions of drilling and sampling activities;
- Boring logs and well completion details;
- Tabulated analytical results;
- A figure presenting well locations;
- Analytical reports and chain-of-custody forms; and
- A discussion of the hydrocarbon and MTBE distribution.

SCHEDULE

Upon receiving written approval of this work plan from the ACHCSA, Cambria will obtain necessary permits and schedule field activities.

CLOSING

We appreciate the opportunity to work with you on this project. Please call Darryk Ataide at (510)-420-3339 if you have any questions or comments.

No. HG 425

Certified Hydrogeologist

Sincerely,

Cambria Environmental Technology, Inc.

Darryk Ataide, REA I Project Manager

Stephan A. Bork, C.E.G., C.HG.

Associate Hydrogeologist

Figure:

1 - Site Plan

Tables:

1 - Soil Analytical Data

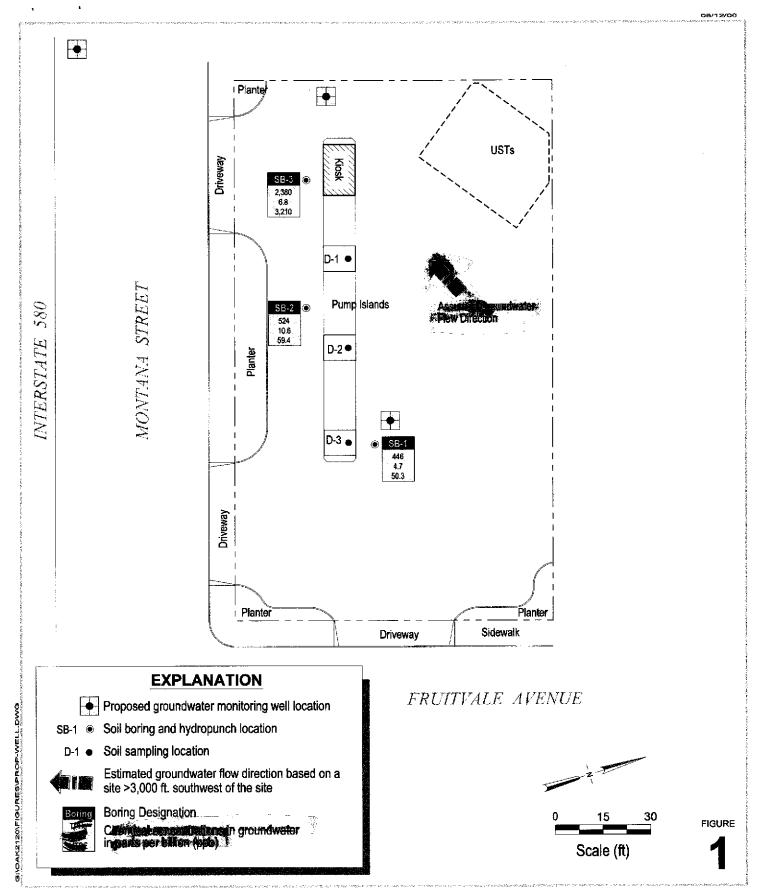
2 – Groundwater Analytical Data

Attachments:

A – Laboratory Analytical Reports

B - Soil Boring Logs

C - Standard Field Procedures for GeoProbe Sampling


D - Drilling Permit

E - Previous Transmittals to ACHCSA

F - Standard Field Procedures for Monitoring Wells

cc: Karen Petryna, Equiva Services LLC, P.O. Box 7869, Burbank, California 91510-7869

G:\2120 Montana\Reports\2120FinalInvRpt.doc

Shell-branded Service Station

2120 Montana Street Oakland, California Incident #98995740

Site Plan

CAMBRIA

Table 1. Soil Analytical Data - Shell-branded Service Station - 2120 Montana Ave., Oakland, California, Incident # 98995740

Sample ID	Depth	TPHg	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
	(in fbg)	←		- (Concentra	ations reported in 🏿	ym) ————————————————————————————————————	
October 27, 1999 Samples:							
SB-1-5	5	54	<0.50	< 0.050	< 0.050	0.091	0.099
SB-1-10	10	12	< 0.05	< 0.0050	< 0.0050	0.0093	0.030
SB-2-5	5	<1.0	< 0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
SB-2-10	10	2.0	0.27 (0.24)	0.0050	0.0063	< 0.0050	< 0.0050
SB-2-15	15	14	< 0.05	0.019	0.032	0.064	0.072
SB-2-20	20	<1.0	< 0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
SB-3-5	5	<1.0	< 0.05	< 0.0050	< 0.0050	< 0.0050	< 0.0050
SB-3-10	10	<1.0	0.11	< 0.0050	< 0.0050	< 0.0050	< 0.0050
SB-3-15	15	17	0.19	0.013	0.018	0.054	0.16

Abbreviations and Notes:

TPHg = Total purgable hydrocarbons as gasoline by modified EPA Method 8015.

Benzene, ethylbenzene, toluene, xylenes by EPA Method 8020.

MTBE = Methyl tertiary butyl ether by EPA Method 8020. Parenthesis indicate confirmation analysis by EPA Method 8260.

ppm = parts per million

fbg = feet below grade

<n = Below detection limits for n milligrams per kilograms.

Table 2. Groundwater Analytical Data - Shell Service Station - 2120 Montana Ave., Oakland, California, Incident # 98995740

Sample ID	Depth	TPHg	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes
		←		- (Concentration	s reported in ppb)	· ·	
tober 27, 1999 Sample:	3:				'		
SB-1-W	15	446	50.3	4.72	1.57	<0.500	4.53
SB-2-W	20	524	59.4	10.6	1.47	2.42	2.18
SB-3-W	20	2,380	3,210	6.75	6.63	46.4	75.2

Abbreviations and Notes:

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015.

Benzene, ethylbenzene, toluene, xylenes by EPA Method 8020.

MTBE = Methyl tertiary butyl ether by EPA Method 8020.

ppb = parts per billion

<n = Below detection limits for n ppb.

ATTACHMENT A

Laboratory Analytical Reports

March 17, 2000

RECEIVED
MAR 2 2000
BY:

Jeff Gaarder Cambria - Oakland (Shell) 1144 65th St. Suite C Oakland, CA 94608

RE: Shell 2120 Montana

Dear Jeff Gaarder

Enclosed are the results of analyses for sample(s) received by the laboratory on October 29, 1999. If you have any questions concerning this report, please feel free to contact me. Report revised and reissued due to the addition of Oxygenates for sample M911056-04.

Sincerely,

Kayvan Kimyai

Project Manager D.M.

CA ELAP Certificate Number 1210

Project: Shell
Project Number: 2120 Montana

Project Manager: Jeff Gaarder

Sampled: 10/27/99 Received: 10/29/99 Reported: 3/17/00 13:39

ANALYTICAL REPORT FOR SAMPLES:

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
SB-1-5	M911056-01	Soil	10/27/99
SB-1-10	M911056-02	Soil	10/27/99
SB-2-5	M911056-03	Soil	10/27/99
SB-2-10	M911056-04	Soil	10/27/99
SB-2-15	M911056-05	Soil	10/27/99
SB-2-20	M911056-06	Soil	10/27/99
SB-3-5	M911056-07	Soil	10/27/99
SB-3-10	M911056-08	Soil	10/27/99
SB-3-15	M911056-09	Soil	10/27/99
SB-1-W	M911056-10	Water	10/27/99
SB-2-W	M911056-11	Water	10/27/99
SB-3-W	M911056-12	Water	10/27/99

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document.

This analytical report must be reproduced in its entirety.

流

Project: Shell

Received: 10/29/99

Sampled: 10/27/99

Project Number: 2120 Montana Project Manager: Jeff Gaarder

Reported: 3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Morgan Hill

Batch	Date	Date	Specific	Reporting			
Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
		M91105	66-10			Water	
9110266	11/8/99	11/8/99	DHS LUFT	50.0	446	ug/l	
**		H .	DHS LUFT	0.500	4.72	**	
•	10	**	DHS LUFT	0.500	1.57	**	
Ħ	tt	17	DHS LUFT	0.500	ND	**	
н	н	н	DHS LUFT	0.500	4.53	78	
н	*	••	DHS LUFT	2.50	50.3	**	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		70-130		NR	%	
		M91105	56-1 <u>1</u>			<u>Water</u>	
9110154	11/4/99	11/4/99	DHS LUFT	50.0	524	ug/l	P-01
. н	:•		DHS LUFT	0.500	10.6	**	
н	**	t+	DHS LUFT	0.500	1.47	**	
н	10	н	DHS LUFT	0.500	2.42	**	
н	r	17	DHS LUFT	0.500	2.18	**	
**	10	*	DHS LUFT	2.50	59.4	**	
ч	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	70-130		132	%	
		M9 <u>1105</u>	<u> 66-12</u>			Water	
9110117	11/3/99	11/3/99	DHS LUFT	500	2380	ug/l	P-01
**	It	10	DHS LUFT	5.00	6.75	**	
*1	4	и	DHS LUFT	5.00	6.63	**	
"	17	и	DHS LUFT	5.00	46.4	**	
*1	11	и	DHS LUFT	5.00	75.2	**	
+1	It	и	DHS LUFT	25.0	3210	**	
ń	н	**	70-130		97.3	⅔	
	9110266 " " 9110154 " 9110117 "	Number Prepared 9110266 11/8/99 """ """ 9110154 11/4/99 """ """ 9110117 11/3/99 """ """ """ """ """ """ """	Number Prepared Analyzed M91105	Number	Number	Number Prepared Analyzed Method Limit Result	Number Prepared Analyzed Method Limit Result Units

Project Number: 2120 Montana
Project Manager: Jeff Gaarder

Sampled: 10/27/99 Received: 10/29/99

Reported: 3/17/00 13:39

Conventional Chemistry Parameters by APHA/EPA Methods Sequoia Analytical - Morgan Hill

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method	Reporting Limit	Result	Units	Notes*
SB-1-10			M91105	36_02			<u>Soil</u>	
Moisture	9110185	11/3/99	11/3/99	EPA 160.3	0.100	14.4	%	
Fractional Organic Carbon	9110345	11/9/99	11/9/99	EPA 415.1	0.00200	0.284	п	
SB-2-15			M91105	6-0 <u>5</u>			<u>Soil</u>	
Moisture	9110185	11/3/99	11/3/99	EPA 160.3	0.100	24.0	%	
Fractional Organic Carbon	9110345	11/9/99	11/9/99	EPA 415.1	0.00200	0.235	**	
SB-3-15			M91105	6-09			<u>Soil</u>	
Moisture	9110185	11/3/99	11/3/99	EPA 160.3	0.100	20.4	%	
Fractional Organic Carbon	9110345	11/9/99	11/9/99	EPA 415.1	0.00200	0.149	**	

Cambria - Oakland (Shell) 1144 65th St. Suite C

Project:

Shell

Sampled: Received:

10/27/99 10/29/99

Oakland, CA 94608

Project Number: 2120 Montana Project Manager: Jeff Gaarder

Reported: 3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Batch	Date	Date	Specific	Reporting			
Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
			<u> </u>		-		
		M91105	<u>56-01</u>				<u>P-06</u>
9K08002	11/8/99	11/8/99	EPA 8015/8020	10	54	mg/kg	
*	44	n	EPA 8015/8020	0.050	ND	**	
ri -	11		EPA 8015/8020	0.050	ND		
#	11	H	EPA 8015/8020	0.050	0.091		
S 4	n .	H	EPA 8015/8020	0.050	0.099	**	
**	11	**	EPA 8015/8020	0.50	ND		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	n	"	40-140			%	S-01
		M91105	<u>56-02</u>			<u>Soil</u>	<u>P-03</u>
9K08002	11/8/99	11/8/99	EPA 8015/8020	10	12	mg/kg	
	1 1	и	EPA 8015/8020	0.0050	ND	**	
	II	**	EPA 8015/8020	0.0050	ND	#	
**	п	•	EPA 8015/8020	მ.0050	0.0093	н	
1.	n .	••	EPA 8015/8020	0.0050	0.030	7.0	
r #	п	**	EPA 8015/8020	0.050	ND	л	
	. H		40-140		92.0	%	
		M91105	56-03			<u>Soil</u>	
9K08002	11/8/99	11/8/99	EPA 8015/8020	1.0	ND	mg/kg	
**	li .	13	EPA 8015/8020	0.0050	ND	**	
11	it	#	EPA 8015/8020	0.0050	ND	11	
**	n .	"	EPA 8015/8020	0.0050	ND	••	
**	и	**	EPA 8015/8020	0.0050	ND	**	
**	n .	**	EPA 8015/8020	0.050	ND	11	
"	ч	"	40-140		89.3	%	
		<u>M91105</u>	56 <u>-04</u>			<u>Soil</u>	<u>P-01</u>
9K08002	11/8/99	11/9/99	EPA 8015/8020	1.0	2.0	mg/kg	
**	IF.	н	EPA 8015/8020	0.0050	0.0050	**	
**	17	**	EPA 8015/8020	0.0050	0.0063	n	
**	ir	11	EPA 8015/8020	0.0050	ND	**	
11	lf.	*	EPA 8015/8020	0.0050	ND	*1	
1+	P	"	EPA 8015/8020	0.050	0.27	n	
n	"	,,	40-140		91.7	%	
		<u>M91</u> 105	56-05			<u>Soil</u>	<u>P-03</u>
9K08002	11/8/99	11/8/99	EPA 8015/8020	1.0	14	mg/kg	
"	17	"	EPA 8015/8020	0.0050	0.019	,,	
	9K08002 " " " " " " " " " " " " " " " " " "	9K08002 11/8/99 9K08002 11/8/99 9K08002 11/8/99 """ 9K08002 11/8/99 """ 9K08002 11/8/99 """ """ 9K08002 11/8/99 """ """ 9K08002 11/8/99	Number Prepared Analyzed	Number Prepared Analyzed Method	Number Prepared Analyzed Method Limit	Number Prepared Analyzed Method Limit Result	Number

Sequoia Analytical - Morgan Hill

*Refer to end of report for text of notes and definitions.

Cambria - Oakland (Shell)	Project:	Shell	Sampled:	10/27/99
1144 65th St. Suite C	Project Number:	2120 Montana	Received:	10/29/99
Oakland, CA 94608	Project Manager:	Jeff Gaarder	Reported:	3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

<u> </u>	Batch	Date	Date	Specific	Reporting	·		
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
						-		
SB-2-15 (continued)			M91105				<u>Soil</u>	<u>P-03</u>
Toluene	9K08002	11/8/99	11/8/99	EPA 8015/8020	0.0050	0.032	mg/kg	
Ethylbenzene	H	11	11	EPA 8015/8020	0.0050	0.064	!*	
Xylenes (total)	!! -	11*	**	EPA 8015/8020	0.0050	0.072	H	
Methyl tert-butyl ether				EPA 8015/8020	0.050	ND_		
Surrogate: a,a,a-Trifluorotoluene	"	**	"	40-140		75.0	%	
SB-2-20			M91105	<u>66-06</u>			<u>Soil</u>	
Purgeable Hydrocarbons	9K08002	11/8/99	11/8/99	EPA 8015/8020	1.0	ND	mg/kg	
Benzene	••	**	**	EPA 8015/8020	0.0050	ND	**	
Toluene	10	н	н	EPA 8015/8020	0.0050	ND	**	
Ethylbenzene	••		Ħ	EPA 8015/8020	0.0050	ND	71	
Xylenes (total)	**	**	*1	EPA 8015/8020	0.0050	ND	**	
Methyl tert-butyl ether	71	**	H	EPA 8015/8020	0.050	ND	"	
Surrogate: a,a,a-Trifluorotoluene	n	3/	"	40-140		90.7	%	
SB-3-5			M91105	56-07			Soil	
Purgeable Hydrocarbons	9K08002	11/8/99	11/8/99	EPA 8015/8020	1.0	ND	mg/kg	
Benzene	11		н	EPA 8015/8020	0.0050	ND	н	
Toluene	**	11	a	EPA 8015/8020	0.0050	ND	11	
Ethylbenzene	н	н		EPA 8015/8020	0.0050	ND	*1	
Xylenes (total)	79	"	н	EPA 8015/8020	0.0050	ND	+1	
Methyl tert-butyl ether	**	•	п	EPA 8015/8020	0.050	ND	**	
Surrogate: a.a,a-Trifluorotoluene	H	"	rr .	40-140		89 0	%	
SB-3-10			M91105	56-08			Soil	
Purgeable Hydrocarbons	9K08002	11/8/99	11/10/99	EPA 8015/8020	1.0	ND	mg/kg	
Benzene	"	11 11 11 11 11	11	EPA 8015/8020	0.0050	ND	"	
Toluene	11	*1	#	EPA 8015/8020	0.0050	ND	n	
Ethylbenzene	n	н	II.	EPA 8015/8020	0.0050	ND		
Xylenes (total)	п	n	#	EPA 8015/8020	0.0050	ND	п	
Methyl tert-butyl ether	11	п	H	EPA 8015/8020	0.050	0.11	n	
Surrogate: a,a,a-Trifluorotoluene	"	"	"	40-140		82.3	%	
SB-3-15			M91105				Soil	P-01
Purgeable Hydrocarbons	9K08002	11/8/99	11/9/99	EPA 8015/8020	1.0	17	mg/kg	<u></u>
Benzene	7K00002	11/0/99	1 (<i>1) 3) 3 3</i>	EPA 8015/8020	0.0050	0.013	u ga kg	
Toluene	u.	ır	+1	EPA 8015/8020	0.0050	0.013	1+	
Ethylbenzene	н	ii.	H	EPA 8015/8020	0.0050	0.054	"	
Emy wentene				Ca 71 00 15/0020	0.0050	0.0.7		

Sequoia Analytical - Morgan Hill

*Refer to end of report for text of notes and definitions.

Project: Shell
Project Number: 2120 Montana

Project Number: 2120 Montana Project Manager: Jeff Gaarder Sampled: 10/27/99 Received: 10/29/99

Reported: 3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Batch Number	Date Prepared	Date Analyzed	Specific Method	Reporting Limit	Result	Units	Notes*
SB-3-15 (continued)			M91105	56-09			Soil	<u>P-01</u>
Xylenes (total)	9K08002	11/8/99	11/9/99	EPA 8015/8020	0.0050	.0.16	mg/kg	
Methyl tert-butyl ether	11-	H	tr	EPA 8015/8020	0.050	0.19	H 	
Surrogate: a,a,a-Trifluorotoluene	ŗr.	"	"	40-140		82.3	%	

Project: Shell
Project Number: 2120 Montana
Project Manager: Jeff Gaarder

Sampled: 10/27/99 Received: 10/29/99

Reported: 3/17/00 13:39

MTBE Confirmation by EPA Method 8260A Sequoia Analytical - Walnut Creek

	Batch	Date	Date	Specific	Reporting	<u> </u>		
Analyte	Number	Prepared	Analyzed	Method	Limit	Result	Units	Notes*
OD 4.10			2504404				C-11	
<u>SB-2-10</u>			M91105	00-04			<u>Seil</u>	
Di-isopropyl ether	9K10023	11/9/99	11/10/99	EPA 8260A	0.10	ND	mg/kg	
Ethanol	11	#	11	EPA 8260A	2.5	ND	11	A-01
Ethyl tert-butyl ether	1) ·	**	11	EPA 8260A	0.10	ND	**	
tert-Amyl methyl ether	11	11	11	EPA 8260A	0.10	ND	#	
tert-Butyl alcohol	H	H	11	EPA 8260A	0.50	ND	н	
Methyl tert-butyl ether	Ŋ.	Ħ	II	EPA 8260A	0.10	0.24	**	
Surrogate: Dibromofluoromethane	"	"	#	50-150		84.0	%	
Surrogate: 1,2-Dichloroethane-d4	**	"	"	50-150	•	70.0	*	

Cambria - Oakland (Shell) Project: Shell Sampled: 10/27/99
1144 65th St. Suite C Project Number: 2120 Montana Received: 10/29/99

Oakland, CA 94608 Project Manager: Jeff Gaarder Reported: 3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - Morgan Hill

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*	
B / L 0110115	D 4 D	1 11/2	(D.O.		F4	.c. Se.Al.a. Eti	A 80201	D (D/T)		
<u>Batch: 9110117</u> Blank	Date Prepa		<u>199</u>		Extraction Method: EPA 5030B [P/T]					
	9110117-B 11/3/99	<u>LK1</u>		ND	ug/l	50.0				
Purgeable Hydrocarbons Benzene	11/3/39 !!			ND	ug/i	0.500				
Toluene	9			ND	41	0.500				
- +	41			ND ND	•	0.500				
Ethylbenzene Walana (Astal)	11				*1	0.500 0.500				
Xylenes (total)	 D			ND	Ħ	9.500 2.50				
Methyl tert-butyl ether		100		ND	·····	70-130	115			
Surrogate: a,a,a-Trifluorotoluene	**	10.0		11.5		/0-130	113			
LCS	9110117-B	S1								
Purgeable Hydrocarbons	11/3/99	250		235	սջ/Լ	70-130	94.0			
Surrogate: a,a,a-Trifluorotoluene	<i>H</i>	10.0	. "	8.68	3	70-130	86.8			
Matrix Spike	9110117-M		10886-01	75.		60.140	00.1			
Purgeable Hydrocarbons	11/3/99	250	ND	226	ug/l "	60-140	90.4			
Surrogate: a.a.a-Trifluorotoluene	"	10.0		8.66	,,	70-130	86.6			
Matrix Spike Dup	9110117-M	ISD1 M9	10886-01							
Purgeable Hydrocarbons	11/3/99	250	ND	225	ug l	50-140	90.0	25	0.443	
Surrogate: a.a.a-Trifluorotoluene	"	10.0		8.26	,,	70-130	82.6			
Potob. 0110154	Data Buana	made 11/4	/0 0		Evtras	tion Method: EP	A 50301	R (P/T)		
Batch: 9110154 Blank	<u>Date Prepa</u> 9110154-B		<u>(99</u>		EXITAL	tion Method. El	A 30301	<u> </u>		
	9110154- <u>6</u> 11/4/99	LINI		ND		50.0				
Purgeable Hydrocarbons Benzene	11/4/99			ND	ug/l	0.500			•	
Toluene	"			ND ND	a	0.500				
	11			ND ND	н	0.500				
Ethylbenzene Valence (total)	st.			ND	4	9.500				
Xylenes (total)	п				11	2.50				
Methyl tert-butyl ether	" "	ino		ND	;,		00.1			
Surrogate: a,a,a-Trifluorotoluene	"	Ì0.0		9.01		70-130	90.1			
LCS	9110154-B	<u>S1</u>								
Веплепе	11/4/99	10.0		10.2	ug/l	70-130	102			
Toluene	n	10.0		9.98	11	70-130	99.8			
Ethylbenzene	п	10.0		10.2	**	70-130	102			
Xylenes (total)	н	30.0		30.3	o	70-130	101			
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.27	9	70-130	92.7			

Sequoia Analytical - Morgan Hill

^{*}Refer to end of report for text of notes and definitions.

Cambria - Oakland (Shell)Project:ShellSampled:10/27/991144 65th St. Suite CProject Number:2120 MontanaReceived:10/29/99Oakland, CA 94608Project Manager:Jeff GaarderReported:3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - Morgan Hill

	Date	Spike	Sample	QC		Reporting Limit		RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
Matrix Spike	9110154-M	IS1 M91	0AAU-08						
Benzene	11/4/99	10.0	ND	9.70	ug/l	60-140	97.0		
Toluene	n	10.0	ND	9.55	"	60-140	95.5		
Ethylbenzene	ę.	10.0	ND	9.74	R	60-140	97.4		
Xylenes (total)	н	30.0	ND	28.9	tr.	60-140	96.3		
Surrogate: a,a,a-Trifluorotoluene	11	10.0		8.47	nt .	70-130	84.7		
Matrix Spike Dup	9110154-M	ISD1 M91	0AAU-08						
Benzene	11/4/99	10.0	ND	9.94	ug/l	60-140	99.4	25	2.44
Toluene	11	10.0	ND	9.79	, ~	60-140	97.9	25	2.48
Ethylbenzene	н	10.0	ND	10.0	11	60-140	100	25	2.63
Xylenes (total)	17	30.0	ND	29.5	н	60-140	98.3	25	2.05
Surrogate: a,a,a-Trifluorotoluene	"	10.0		3.52	"	70-130	85.2		
Batch: 9110266	Date Prepa	red: 11/8.	/99		Extrac	ction Method: EP	A 50301	B (P/T)	
Blank	9110266-B		-		-				
Purgeable Hydrocarbons	11/8/99			ND	ug/l	50.0			
Benzene	**			ND	4	0.500			
Toluene	11			ND	n	0.500			
Ethylbenzene	**			ND	**	0.500			
Xylenes (total)	**			ND	:•	0.500			
Methyl tert-butyl ether	**			ND	rı	2.50			
Surrogate: a,a,a-Trifluorotoluene		10.0		9.64	. ,	70-130	96.4		
LCS	9110266-B	S1							
Benzene	11/8/99	10.0		10.1	ug/l	70-130	101		
Toluene	n	10.0		10.0	0	70-130	100		
Ethylbenzene	11	10.0		10.2	17	70-130	102		
Xylenes (total)	n	30.0		30.5	0	70-130	102		
Surrogate: a,a,a-Trifluorotoluene	H .	10.0		10.6	"	70-130	106		·
Matrix Spike	9110266-M	<u>IS1 M</u> 9	11010-02						
Benzene	11/9/99	10.0	ND	10.1	ug/l	60-140	101		
Toluene	u	10.0	ND	10.0	"	60-140	100		
Ethylbenzene	ц	10.0	ND	10.2	"	60-140	102		
Xylenes (total)	н	30.0	ND	30.3	n	60-140	101		
Surrogate: a.a,a-Trifluorotoluene	"	10.0		8.76	"	70-130	87.6		

Sequoia Analytical - Morgan Hill

*Refer to end of report for text of notes and definitions.

Cambria - Oakland (Shell) Project: Shell Sampled: 10/27/99
1144 65th St. Suite C Project Number: 2120 Montana Received: 10/29/99

Oakland, CA 94608 Project Manager: Jeff Gaarder Reported: 3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - Morgan Hill

Analyte	Date Analyzed	Spike Level	Sample Result	QC Result	Units	Reporting Limit Recov. Limits	Recov.	RPD Limit	RPD % Notes*
Matrix Spike Dup	9110266-M	ISD1 M9	<u> 11010-02</u>						
Benzene	11/9/99	10.0	ND	10.6	ug/l	60-140	106	25	4.83
Toluene	**	10.0	ND	10.4	n	60-140	104	25	3.92
Ethylbenzene	H.	10.0	ND	10.6	It .	60-140	106	25	3.85
Xylenes (total)	tf.	30.0	ND	31.7	Ħ	60-140	106	25	4.52
Surrogate: a,a,a-Trifluorotoluene	"	10.0		8.57	11	70-130	85.7		

Project: Shell
Project Number: 2120 Montana

Sampled:

10/27/99

Project Manager: Jeff Gaarder

Received: Reported:

10/29/99 3/17/00 13:39

Conventional Chemistry Parameters by APHA/EPA Methods/Quality Control Sequoia Analytical - Morgan Hill

	Date	Spike	Sample	QC	1	Reporting Limit Re	ecov. R	PD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	% L	imit	<u>%</u>	Notes*
Batch: 9110185 Duplicate	<u>Date Prepa</u> 9110185-D		/ <u>99</u> 911056-05		Extrac	tion Method: Gene	eral Prepa	aratio	<u>n</u>	
Moisture	11/3/99		24.0	24.0	%			20	0	
Batch: 9110345 Blank	<u>Date Prepa</u> 9110345-B		<u>/99</u>		Extrac	tion Method: Gene	eral Prepa	a <u>ratio</u> :	<u>n</u>	
Fractional Organic Carbon	11/9/99			ND	%	0.90200				
<u>Duplicate</u> Fractional Organic Carbon	<u>9110345-D</u> 11/9/99	<u>UP1 M9</u>	0.235	0.233	%			15	0.855	

Oakland, CA 94608

Cambria - Oakland (Shell) Project: Shell

1144 65th St. Suite C Project Number: 2120 Montana

Sampled: 10/27/99 Received: 10/29/99

Project Manager: Jeff Gaarder Reported: 3/17/00 13:39

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT/Quality Control Sequoia Analytical - Walnut Creek

Date	Spike	Sample	QC	F	Reporting Limit	Recov.	RPD	RPD		
Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*		
Date Prepa	red: 1 <u>1/8</u>	/99	Extraction Method: EPA 5030B [MeOH]							
										
11/8/99			ND	mg/kg	1.0					
31 .			ND		0.0050			•		
11			ND		0.0050					
**			ND	11	0.0050					
*1			ND	"	0.0050					
**			ND	**	0.050					
11	0.600		0.556	ri .	40-140	92.7				
9K08002-I	BS1									
11/8/99	0.800		0.894	mg/kg	50-150	112				
н	0.800		0.746	н	. 50-150	93.2				
п	0.800		0.762	**	50-150	95.3				
и			2.58	**	50-150	107				
	0.600		0.548		40-140	91.3				
9K08002-N	MSI MS	011056-03								
11/8/99	0.800	ND	0.850	mg/kg	50-150	106		•		
P	0.800	ND	0.712		50-150	89.0				
ii .	0.800	ND	0.750	н	50-150	93.7				
и	2.40	ND	2.48	n	50-150	103				
<i>17</i>	<i>3.600</i>		0.476	"	40-140	79.3				
9K08002-N	MSDI M9	911056-03								
	0.800	ND	0.838	mg/kg	50-150	105	20	1.42		
	0.800	ND	0.694	"	50-150	86.7	20	2.56		
•	0.800	ND	0.728	0	50-150	91.0	20	2.98		
11	2.40	ND	2.40	**	50-150	100	20	3.28		
"	0 600		0.470	n	40-140	78.3				
	### Analyzed Date Prepa	Date Prepared: 11/8 9K08002-BLK1 11/8/99 "	Date Prepared: 11/8/99 9K08002-BLK1 11/8/99 " " " 0.600 9K08002-BS1 11/8/99 0.800 " 0.800 " 0.600 " 0.800 " 0.600 PK08002-MS1 M911056-03 11/8/99 0.800 ND " 0.800 ND " 2.40 ND " 3.600 ND " 0.800 ND "	Date Prepared: 11/8/99 9K08002-BLK1 ND 11/8/99 ND " 0.600 0.556 PK08002-BS1 11/8/99 0.800 0.746 " 0.800 0.746 " 0.800 0.762 " 2.40 2.58 " 0.606 0.548 PK08002-MS1 M911056-03 11/8/99 " 0.800 ND 0.750 " 2.40 ND 2.48 " 0.600 ND 0.476 PK08002-MSD1 M911056-03 11/8/99 0.800 ND 0.838 " 0.800 ND 0.694 0.800 ND 0.728 " 0.800 ND 0	Date Prepared: 11/8/99 Extract	Date Prepared: 11/8/99 ND mg/kg 1:0 11/8/99 ND " 0.0050 " 0.600 0.556 " 40-140 9K08002-BS1 ** ** ** 50-150 " 0.800 0.746 " 50-150 " 0.800 0.762 " 50-150 " 0.696 0.548 " 50-150 " 0.800 ND 0.850 mg/kg 50-150	Date Prepared: 11/8/99 ND mg/kg 1:0	Date Prepared: 11/8/99 Extraction Method: EPA 5030B [MetO] 9K08002-BLK1		

Cambria - Oakland (Shell)	Project:	Shell	Sampled:	10/27/99
1144 65th St. Suite C	Project Number:	2120 Montana	Received:	10/29/99
Oakland, CA 94608	Project Manager:	Jeff Gaarder	Reported:	3/17/00 13:39

MTBE Confirmation by EPA Method 8260A/Quality Control Sequoia Analytical - Walnut Creek

	Date	Spike	Sample	QC]	Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%_	Limit	% Notes*
Batch: 9K10023	Date Prepa	red: 11/9/	99		Extrac	tion Method: El	PA 50301	B (MeOl	HI
Blank	9K10023-B		<u></u>				_		
Di-isopropyl ether	11/10/99			ND	mg/kg	0.10			
Ethanol	Pr.			ND	" .	2.5			A-01a
Ethyl tert-butyl ether	H			ND	TP	0.10			
tert-Amyl methyl ether	H			ND	**	0.10			
tert-Butyl alcohol	PF .			ND	**	0.50			
Methyl tert-butyl ether	11			ND	**	0.10			
Surrogate: Dibromofluoromethane	"	2.50		2.65	#	50-150	106		
Surrogate: 1,2-Dichloroethane-d4	"	2.50		2.45	#	50-150	98 .0		
LCS	9K10023-B	S1							
Methyl tert-butyl ether	11/10/99	2.50		2.61	mg/kg	70-130	104		
Surrogate: Dibromofluoromethane	"	2.50	•	2.75	"	50-150	110		
Surrogate: 1,2-Dichloroethane-d4	ø	2.50		2.60	"	50-150	104		
Matrix Spike	9K10023-M	isi W9	11084-0 <u>6</u>						
Methyl tert-butyl ether	11/10/99	2.50	ND	1.78	mg/kg	60-150	71.2		
Surrogate: Dibromofluoromethane	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.50		2.10	,,	50-150	84.0		
Surrogate: 1,2-Dichloroethane-d4	u	2.50		1.75		50-150	70.0		
Matrix Spike Dup	9K10023-M	ISDI W9	11084-06						
Methyl tert-butyl ether	11/10/99	2.50	ND	1.99	mg/kg	60-150	79.6	25	11.1
Surrogate: Dibromofluoromethane	"	2.50		2.10	, ,	50-150	84.0		
Surrogate: 1.2-Dichloroethane-d4	rt .	2.50		1.75	"	50-150	70.0		

Project: Shell Project Number: 2120 Montana

Sampled: Received: 10/29/99

10/27/99

Project Manager: Jeff Gaarder

Reported: 3/17/00 13:39

Notes and Definitions

#	Note
A-01	Sample ran after an ethanol standard which had a recovery (72%) less than the method specifies (80%).
A-01a	Sample ran after an ethanol standard which had a recovery (72%) less than the method specifies (80%).
P-01	Chromatogram Pattern: Gasoline C6-C12
P-03	Chromatogram Pattern: Unidentified Hydrocarbons C6-C12
P-06	Chromatogram Pattern: Gasoline C6-C12+ Unidentified Hydrocarbons >C8
S-01	The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

CORE LABORATORIES

CL File No.: 57111-99264

Sequoia Analytical (Morgan Hill)

พorgan HIII) M911056

Sample	Sample	Sample	Total	Bulk	Density	Matrix	Description			
Fraction	Desc.	Date	Porosity %	Dry g/cc	Natural g/cc	Density g/cc				
M911056-02 M911056-05 M911056-09	Soil Soil	27-Oct-99 27-Oct-99 27-Oct-99	31.3 45.4 38.3	1.83 1.40 1.60	2.12 1.86 1.98	2.66 2.57 2.59	Gray vf-gran silty clayey sand Gray clayey silt Gray clayey silt			

Grain and pore volumes were determined by Boyle's Law methods as per API RP-40. Sample densities and total porosity were calculated as per API RP-40.

Coll Stein of	north Ri	et							· <u> </u>									~			
SHELI RETAIL I	L OI	L CO	NVIP MTA 8		V 4 U: E: B 2	ed erro	BAAR!	œT'		•	CH				USI	101	Y	(EC	ORD	Dale	1
ASIAN Arteranses			· · · · · · · · · · · · · · · · · · ·				AAG	D 1	<u> </u>		·	·····	· · · · · · · · · · · · · · · · · · ·							Page	9 01
1 2120 M	outo	com	C	ELKICI	nd	CA	<u> </u>			An	alys	ls R	edi	lrec	3				LAB: SEQ		
LINCIDENTA		740		•								la,							CHICK OHE (1) BOX OH	A C1/R1	turil Aboutto hist
Shell Enghaer:	LIS	170		Brannani	Men	·					١.	XIX		W12				İ	a.W. Montoling	3 4441	24 hours
Kesen	Petri	ma 1		Phone for ():	2760	P 1 11'5						₹	Ġ	かがなり				•	nollagilievni eit	ZI 4441	40 hotes
Consultant Name & A	\ddres	s: CAME	BRIA	ENVIR	contra	NTML						8		No.					, .		i ''
11 4 45 5t. Sui	te C	, Oak	and,	CA S	1460	0 . ;		į.				X	W.C	\$12					1] 440	18 days Olomail
Consultant Contact:	. 0	\sim		Fhong Fax ():	No.:		ູ	7	١,	2		& 312X	. 4] 4412	Olher []
Mott J. G. Communis:	sert f	- 47		Far II:	420-	4170		Queen Company	l	4		W)	Everna cos								HOIE; Holly lab as toan as Fassikis at
						•	y	Į.		ii n		FI 2016	3				***		O M M] 4453	24/48 hrs. 1A1.
Sampled by: Watt	- 7	1/1/					温		209/0238	M	N		کم			,	Used	\$	Olher		<u> </u>
		Iba					8	图记	1	Ö	Į.	H	-			2253			UST AGENCY	<u> </u>	
· ·	recover	1150	-(-,	1 /-		,	Ü	e i		鼎	ij		3		12	Ğ	H	l ä	MATERIAL		SAMPLE
Sample ID	Dale	sludge	Solt	Wuter	Λħ	No. of confs.	适	直	数の	Voice	Test for Dayson	Cambibulan	Phys.col		Å\$	8	Preparation	Composita	DESCRIPTION	1	CONDITION/ COMMENTS
5B-1-5	1957		Ж.			١						X							Z GA	W.	WEPA
53-1-10						1						λ	$\sqrt{\chi}$								260
<u>5</u> 8-2-5.												X		_	,				5		, , ,
		; ₁₁	-				÷					\forall					<u> </u>	 			rm Highist
33-2-10	 	, 				(\		= 10/ 10/ 10-3(
5B2-15	<u> </u>											X	X						EP		8260
582-20	1/	l	V)						X		•			٠,				
										<u> </u>						····			J	-	**************************************
		· · ·	ļ																		
													.				•				
Hentelinghood by (epitualine)	resultation by (elementary); Pointard Rengios						200		··········				nului		البسمييي			della	d flumps	1	Dale: 12/28/49
Helltelingefeary BA (officentria)	Micentaliaci By (algrestera): Publiad Hanna:					·····	Jku Dol	a: 	 	Rec	alver	ş (elgi	nulvia	b);	*	· · · · · · · · · · · · · · · · · · ·		rinie Pilnie	185 W.Maihaell Ilmer 10.2		
Ratingulation by (signalus)						_W	9							iline)							
					Dol Uni					Valet Unio:											
THE LANDRATORY MUST PROVIDE A						ACU	PYO	Ě	CIV	il O	-Cila	TOUY	WILL	HYO	CEA	NO R	ESVLI	\$	· · · ·		

 -	SHELL OIL COMPANY RETAIL ENVIRONMENTAL ENGINEERING - WEST																				Page 2 of 2 .	
	Silo Addross:) Ho	tecs	Ave	Dal	dan	\mathcal{J}				And	ulysi	la Re	qui	red				1	LAD: <u>5E</u>	<u>Q</u>	
	WIEH: Includent #	÷ 0.6	a a h	147	7						1/1	41	1	13.6				- Air prade-	CHECK OH (1) FOX OHA	C1/01	INNI AROUND BLIE	
	Shall Engineer:	7 6	113	1 1	Phons	Nn.				. '			mrBE	72	17.00					G.W. MonRoday] 441	24 hours
	Shell Engineer: Consultant Name & A	Petry	na i	į	rox #:	645	306 5647					· ·		39	Merit to					She Investigation	₹4401	48 hours []
	Consultant Name & A	ddies	s: CAME	RIA	ENVIR	AMNO	NTAL				٠		뛿	5						· ·] 4442	16 days Hillounal
	1144 65th St. Svi Consultant Contact:	te C	, Oak	Miles .	OI: 1	4001	•			١.	8		الله ع الله ع	12				!		Waler Clarify/Disposal] 4445	Other []
. •	Consultant Controls			ľ	Phone Fax #:	20.0	700	ห	Clessic	``	6772		실	7 e						SONAH ROME OF SYM. L	3 4452	MOIG Hally lob to
	Comments:	1	***************************************		<u>run Hi</u>	144	11.10	ğ	ă	ล	ð	1	2015	Sa						Wales Rein, or Sys.] 4465	tuon at Possible of
								ğ K	Š		Ŋ	13	E	1				y. Q	Z	Other [ן '	
	Sampled by: MGQE	F 6	•	٠,				원	12.00	ä	ij	18	Ę	(0)		, ·	5,729	n u	N ₹	UST AGENCY	:	
	Minied Name: M.	ntl.	64 (ln	ey				χ n.	⊲ť	ř	9,	出出		Physic		ş	iner.	Ħ	omposite	A 8 A TENNS A 8		SAMPLE
	Sample ID	pale	Sludge	soli	Waler	Alt	No, of conta	9 7 1	西西西	対対	York Y	Test for Disp	Combination	Ph		Astrestos	Container	Preparation Used	Contra	MATERIAL DESCRIPTION		COMMENTS
7 - 1 1 - 1	8133-5	10/27					(,			\times			٠.						Confirm
	583 -10.												X			•						highest will
	5B3 -15.					,	1	-					X	X								
J.J.	5B3 20-			1			7						X				=					
	5B1-W				X		3						X								-	Confirm h
ř.	5B2-W				X		3						X		 -					1.7	7	thitse i
	5B3-W	1.			X		4						X			·				5		
		10				ļ				-	1	-					<u> </u>	""		1	_	
	Rollinguished By (signalue	n); ·		d Naij		ļ	J	<u> Du</u>		J:		a e le	र्व सार्व	nalui	*):	<u></u>	<u></u>	ا ـــــا	नित्त ा	id Hamer		DaloilCV25/
	Relinguished By (eignalus	p);		od Nan	1981	<u></u>		- <u> </u>	19i e:			polvo	व (ग्रह	nului	1) 1	··				od Namer		Raisi 10:24
	Rollandshoot By (signalur		intel	od Na	1191]][] 	@ @		Rē	00 10	त (बिद्ध	nalui	o);	············	·······		Printe	od Hamer .		Dale;
			1	HELLAN	RAKORY	LAWAL	PROVID		DEAT.	EIII		AHLO OLHIN	E-CV:	HODY	WILL	IHYC	ugr.	MILL	EZYL	3		Ilitio:
	Jes thint	,				•		•	• •								,				•	manu 654 85 48 - 04 C 04 phot

ATTACHMENT B

Soil Boring Logs

BORING/WELL LOG

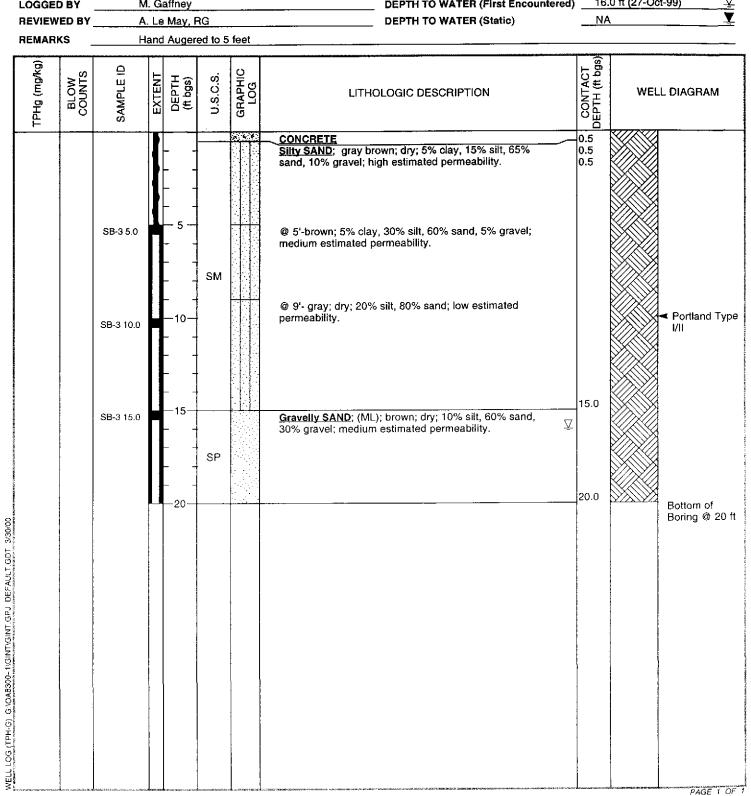
Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Equiva Services LLC	BORING/WELL NAME _	SB-1		
JOB/SITE NAME	2120 Montana Street, Oakland	DRILLING STARTED	27-Oct-99		
LOCATION	2120 Montana Street, Oakland	DRILLING COMPLETED _	27-Oct-99	<u>,</u>	<u>'</u>
PROJECT NUMBER	242-0733	WELL DEVELOPMENT DA	TE (YIELD)_	NA	
DRILLER _	Gregg Drilling	GROUND SURFACE ELEV	ATION _	Not Surveyed	
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATI	ON NA		
BORING DIAMETER	2"	SCREENED INTERVAL	NA_		
LOGGED BY	M. Gaffney	DEPTH TO WATER (First I	incountered)	12.5 ft (27-Oct-99)	Δ
REVIEWED BY	A. Le May, RG	DEPTH TO WATER (Static)	NA	Ţ

REMARKS Hand Augered to 5 feet Concrete Silty SAND: (SM); brown; dry; 5% clay, 25% silt, 65% sand, 10% gravel; low plasticity. SB-1 10.0 SAND: Gray; dry; 10% silt, 80% sand, 10% gravel; high estimated permeability. SAND: Gray; dry; 10% silt, 80% sand, 10% gravel; high estimated permeability. NA
ENDING SECTION Section Concrete Concrete Silty Sand; forward for the stimated permeability. Section Concrete Concrete
SB-1 10.0 SAND; Gray; dry; 10% silt, 80% sand, 10% gravel; high SAND; Gray; dry; 10% silt, 80% sand, 10% gravel; high Portland Ty
SP @ 15'- orange; 10% silt, 90% solidified coarse grained sand; medium estimated permeability. Bottom of Boring @ 16

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Equiva Services LLC	BORING/WELL NAME SB-2
JOB/SITE NAME	2120 Montana Street, Oakland	DRILLING STARTED 27-Oct-99
LOCATION	2120 Montana Street, Oakland	DRILLING COMPLETED 27-Oct-99
PROJECT NUMBER	242-0733	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD	Hydraulic push	TOP OF CASING ELEVATION NA
BORING DIAMETER	2"	SCREENED INTERVAL NA
LOGGED BY	M. Gaffney	DEPTH TO WATER (First Encountered) 16.5 ft (27-Oct-99)
REVIEWED BY	A. Le May, RG	DEPTH TO WATER (Static) NA Y


REMARKS	H	and	Auger	ed to 5	feet_					
TPHg (mg/kg) BLOW COUNTS	SAMPLEID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
WELL LOG (TPH-G) G (OA8300-1/G/NT/GINT GDT 3/30/00	SB-2 5.0 SB-2 8.0 SB-2 16			SM		CONCRETE Silty SAND: gray green; dry; 5% clay, 25% silt, 65% sand, 5% gravel; medium plasticity; high estimated permeability. @ 5'-gray; 30% silt, 65% sand, 5% gravel; high estimated permeability. @ 12'-gray green; moist; 30% silt, 70% sand; medium estimated permeability. @ 15'-brown; medium estimated permeability. @ 16.5'- wet; medium estimated permeability.	∇	20.0		✓ Portland Type I/II Bottom of Boring @ 20 ft

BORING/WELL LOG

Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Equiva Services LLC	BORING/WELL NAME \$8-3		
_				
JOB/SITE NAME	2120 Montana Street, Oakland	DRILLING STARTED 27-Oct-99		
LOCATION _	2120 Montana Street, Oakland	DRILLING COMPLETED 27-Oct-99	· · · · · · · · · · · · · · · · · · ·	<u> </u>
PROJECT NUMBER	242-0733	WELL DEVELOPMENT DATE (YIELD)_	NA	
DRILLER _	Gregg Drilling	GROUND SURFACE ELEVATION _	Not Surveyed	
DRILLING METHOD _	Hydraulic push	TOP OF CASING ELEVATION NA		
BORING DIAMETER	2"	SCREENED INTERVAL NA		
LOGGED BY	M. Gaffney	DEPTH TO WATER (First Encountered)	16.0 ft (27-Oct-99)	<u> </u>
REVIEWED BY	A. Le May, RG	DEPTH TO WATER (Static)	NA	<u> </u>
DEMARKS	Lland Augusta E foot			

ATTACHMENT C

Standard Field Procedures for GeoProbe Sampling

STANDARD FIELD PROCEDURES FOR GEOPROBE® SAMPLING

This document describes Cambria Environmental Technology's standard field methods for GeoProbe® soil and ground water sampling. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist or engineer working under the supervision of a California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e., sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color
- · Approximate water or separate-phase hydrocarbon saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e., cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Sampling

GeoProbe® soil samples are collected from borings driven using hydraulic push technologies. A minimum of one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples can be collected near the water table and at lithologic changes. Samples are collected using samplers lined with polyethylene or brass tubes driven into undisturbed sediments at the bottom of the borehole. The ground surface immediately adjacent to the boring is used as a datum to measure sample depth. The horizontal location of each boring is measured in the field relative to a permanent on-site reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned or washed prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon® tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

After a soil sample has been collected, soil from the remaining tubing is placed inside a sealed plastic bag and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable GasTech® or photoionization detector measures volatile hydrocarbon vapor concentrations in the bag's headspace, extracting the vapor through a slit in the plastic bag. The measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Grab Ground Water Sampling

Ground water samples are collected from the open borehole using bailers, advancing disposable Tygon[®] tubing into the borehole and extracting ground water using a diaphragm pump, or using a hydro-punch style sampler with a bailer or tubing. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4° C, and transported under chain-of-custody to the laboratory.

Duplicates and Blanks

Blind duplicate water samples are usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory quality assurance/quality control (QA/QC) blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

F:\TEMPLATE\SOPs\GEOPROBE.WPD

ATTACHMENT D

Drilling Permit

וט ארקהטווא בי ארי היה הרי הרי הרי

ALAMEDA COUNTY PUBLIC WORKS AGENCY

APPLICANTS
JIGNATURE

WATER RESOURCES SECTION 951 TURNER COURT, SUITE 108, HAYWARD, CA 34545-2651 PHONE (510) 676-5355 ANDRIAS CONVERY FAX (510) 678-5262 (518) 478-5248 ALVIN KAN

DRILLING PERMIT APPLICAT	TON .

Tob applicant to complete	for office use
	PERMIT NUMBER 99 WR 558
LOCATION OF PROJECT 2120 MOSTANA AVC	WEIL NUMBER
OREUSIND CA	APN
	MIN
California Countinates Source	PERMIT COMPITIONS
CCV	Circled Permit Requirements Apply
CLIENT	(A) GENERAL
Name EQUILIVA Services LLC	- (). A permit application should by submitted so as to
Address P.O ISOK 6244 Phone 557-645-5643	errive at the ACEWA office five days print to
CHY CARSON CA DP 94509	proposed sordeg data.
1	2. Submit to ACTWA within \$6 days after completion of
APPLICANT Cambria Environ. Matt Graffus	pormisted work the original Department of Water
For Fin -420 - 9170	Resources Wear Well Drillers Report or equivalent for well projects, or etiling logs and location sketch for
Address 1144 65 - 67 Phone \$0-420-3336	Assistantial biologics.
CITY DAY IAND 229 94608	3. Point is void if project not begun white 90 days of
-(V_ 	syproval data.
tyte of project	l -water supply wells
Well Communities Geometrical Investigation	1. Minimum surface soul thickness is two inches of
Carhelle Protection C General W	coment grout placed by Utinic.
Water Supply 🗆 Companies in K	3. Minimum seal depth is 50 feet for municipal and
Manitoring O Well Destruction D	industrial wells or 20 dept for demostic and irrigation
	haverage wilding a lesser a specially approved.
Proposed water supply will use	C. GROUNDWATER MONTOSING WELLS
New Domestic G Replacement Domestic G	INCLUDING PIEZOMETERS
Municipal D integration	l. Minimum muritics scal thickness is two inches of
Industrial C Other C	commat grout placed by transla.
·	2. Minimum seal dopth for monitoring wells is the
DENLLING MATHOD: Mid listery C Air Rother C Avec: C	D. GEOTECHNICAL
Carble C Oducr XX	Beckill bere hole with compacted cuttings of keavy
DRILLER'S LICENSE NO C == # 485165	benroots and upper two feet with compacted material.
Married a received to CE Co. L.	In arrow of known or suspected continuisation, tremied content grout staff be used in place of compacted circlings
WELL PROJECTS	E. CATEORC
Drill Role Diemeter	Pill hair above speed soon with occurrent placed by wernis
Caring Diameter in. Day fi	y. Well destruction
Surface Seal Depthft. Number	Sea attached.
POTECHNICAL PROJECTS	COSPECIAL CONDITIONS SEE WATTHACHE
Number of Borings Hazimum	INFORMATION
Hole Diemster In. DepthR	
	~ 1.001
STIMATED STARTING DATE SEPTEMBET 23, 1999	-hand 2/ m/s = 9 15
STIMATED COMPLETION DATE OF VO 30, 1999	APPROVED WOUNDED DATE
•	
hereby agree to comply with all respellements of this permit and	

ATTACHMENT E

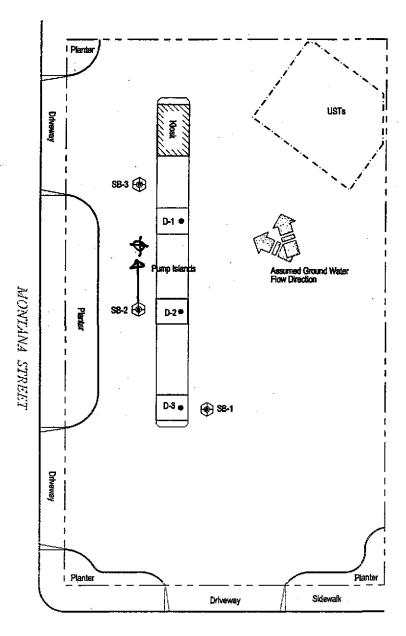
Previous Transmittals to ACHCSA

To: Amir K. Gholami Company: AHCSA Address: 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502 Phone: (510) 567-6700

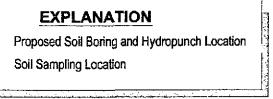
From:	Darryk Ataide	
Phone:	(510) 420-3339	
Date:	September 22, 1999	
Re:	2120 Montana Ave. Oakland, CA	

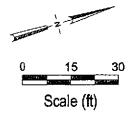
Transmittal

Mr. Gholami,


This transmittal serves as a response to your September 8, 1999 letter to Equilon Enterprises LLC regarding the referenced site. As requested in your letter, following is a Site Plan showing the revised location for proposed boring SB-2. Also, Cambria will insure that grab water samples are analyzed for oxygenates: TAME, DIPE, ETBE, TBA, EDB, and EDC.

We trust this meets the requirements of your September 8, 1999 letter. Unless we hear otherwise, Cambria will proceed with the proposed investigation which is currently scheduled for October 27, 1999. We appreciate your continued assistance with this project, please call me if you have any questions or comments.


Thank You,


Darryk Ataide Project Manager

c.c. Karen Petryna, Equiva Services LLC

FRUITVALE AVENUE

FIGURE

Shell-branded Service Station

2120 Montana Street Oakland, California Incident #98995740

SB-1 🏶

D-1 •

Site Map

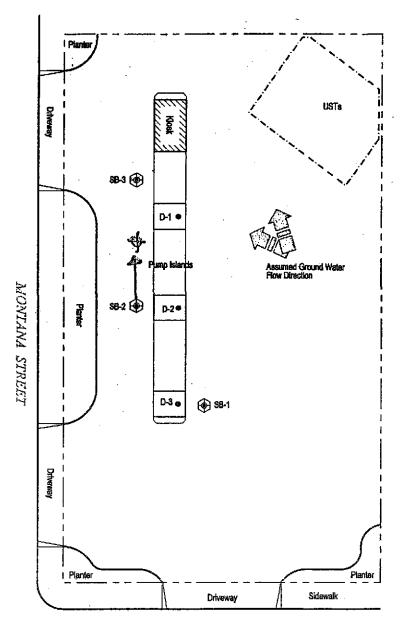
CAMBRIA

То:	Amir K. Gholami
Company:	AHCSA
Address:	1131 Harbor Bay Parkway, Suite 250
	Alameda, CA 94502
Phone:	(510) 567-6700

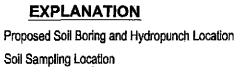
From:	Darryk Ataide	
Phone:	(510) 420-3339	
Date:	October 19, 1999	
Re:	2120 Montana Ave. Oakland, CA	

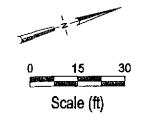
Transmittal

Mr. Gholami,


This transmittal serves as a response to your October 6, 1999 letter to Equilon Enterprises LLC regarding the referenced site. As requested in your letter, following is a Site Plan showing the revised location for proposed boring SB-2. Also, Cambria will insure that grab water samples are analyzed for oxygenates: TAME, DIPE, ETBE, TBA, EDB, and EDC.

We trust this meets the requirements of your October 6, 1999 letter. Unless we hear otherwise, Cambria will proceed with the proposed investigation which is currently scheduled for October 27, 1999. We appreciate your continued assistance with this project, please call me if you have any questions or comments.


Thank You,


Darryk Ataide Project Manager

c.c. Karen Petryna, Equiva Services LLC

FRUITVALE AVENUE

FIGURE

1

Shell-branded Service Station

2120 Montana Street Oakland, California Incident #98995740

SB-1 🌘

D-1 •

Site Map

CAMBRIA

ATTACHMENT F

Standard Field Procedures for Monitoring Wells

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

This document describes Cambria Environmental Technology's standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.