

May 8, 2014

David D. Bohannon Organization

Sixty 31st Avenue

San Mateo, CA 94403-3404

T 650.345.8222

F 650.573.5457

w ddbo.com

RECEIVED

By Alameda County Environmental Health at 2:36 pm, May 09, 2014

SUBMITTED ELECTRONICALLY

Mr. Mark E. Detterman, P.G., CEG
Hazardous Materials Specialist
Alameda County Health Care Services Agency
Department of Environmental Health
1131 Harbor Bay Parkway
Alameda, California 94502

Re: First Semi-Annual 2014 Groundwater Monitoring Report Former Petroleum Underground Storage Tank (UST) Site David D. Bohannon Organization Property Located at 575 Paseo Grande - San Lorenzo, CA

Dear Mr. Detterman:

Enclosed for your review is the *First Semi-Annual 2014 Groundwater Monitoring Report* prepared by Stantec Consulting Services Inc. (Stantec) on behalf of David D. Bohannon Organization (Bohannon). The report summarizes recent groundwater monitoring and sampling conducted by Stantec at 575 Paseo Grande in San Lorenzo, California (the Site) in March 2014. The semi-annual groundwater monitoring and sampling event was conducted pursuant to the Alameda County Health Care Services Agency (ACHCSA) letter to Bohannon dated March 4, 2014.

Stantec has been working during the last 60 days to plan and schedule the site investigation activities approved in the ACHCSA March 4, 2014 letter. This work included installation of soil vapor points and collection of soil and groundwater samples which is scheduled to start Friday, May 16th. Field activities will take approximately 45 days, including laboratory analysis. In order to compile, review, and evaluate the data from the investigation, Bohannon is requesting an eight-week extension of the May 16, 2014 report submittal date included in the March 4 letter. We propose to submit the data report by July 16, 2014.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding the enclosed report, please contact me at (650) 345-8222.

Sincerely,

CC:

Robert L. Webster, Chairman

Mr. Chris Maxwell, Stantec Consulting Services Inc.

Mr. Andrew A. Bassak, Manatt, Phelps, and Phillips LLP

First Semi-Annual 2014 Groundwater Monitoring Report

575 Paseo Grande San Lorenzo, California PN: 185702534

Prepared for:

David D. Bohannon Organization

Prepared by: Stantec Consulting Services Inc. 1340 Treat Boulevard Suite 300 Walnut Creek, California 94597

Limitations and Certifications May 8, 2014

Limitations and Certifications

This report was prepared in accordance with the scope of work outlined in Stantec's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of David D. Bohannon Organization for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Stantec. To the extent that this report is based on information provided to Stantec by third parties, Stantec may have made efforts to verify this third party information, but Stantec cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by Stantec.

Prepared by:

Eva Hey

Senior Geologist

Reviewed by:

Chris Maxwell

Principal Geologist

Information, conclusions, and recommendations provided by Stantec in this document have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

Licensed Approver:

Chris Maxwell, P.G., #7269

Principal Geologist

Table of Contents May 8, 2014

Table of Contents

TAB	BLE OF CONTENTS	
LIST	T OF ATTACHMENTS	
ABE	BREVIATIONS AND ACRONYMS	III
1.0	INTRODUCTION	1.1
2.0	GROUNDWATER MONITORING	2.1
2.1	WATER LEVEL GAUGING	2.1
2.2	GROUNDWATER SAMPLING	2.1
	2.2.1 Quality Assurance/Quality Control Procedures	2.2
3.0	RESULTS	3.1
3.1	GROUNDWATER ANALYTICAL RESULTS	3.1
4.0	CONCLUSIONS	4.1

List of Attachments May 8, 2014

List of Attachments

LIST OF TABLES

Table 1	Well Construction Details
Table 2	Historical Groundwater Elevations
Table 3	Groundwater Analytical Results - March 2014 and Historical

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Potentiometric Surface Map, March 26, 2014
Figure 4	Petroleum Hydrocarbon Concentrations in Groundwater, March 26 and 27, 2014

Note: Tables and Figures appear at end of report.

LIST OF APPENDICES

Appendix A	Summary of Previous Site Investigations and Remedial Actions
Appendix B	Field Data Sheets for the March 2014Groundwater Monitoring Event
Appendix C	Laboratory Analytical Report and Chain of Custody for the March 2014
	Groundwater Monitoring Event
Appendix D	Chemical Concentration Trends in Groundwater

Abbreviations and Acronyms May 8, 2014

Abbreviations and Acronyms

amsl above mean sea level

Bohannon David D. Bohannon Organization

BTEX benzene, toluene, ethylbenzene, and total xylenes

DO dissolved oxygen

LCS laboratory control spike

MB method blank
mL/min milliliters per minute
MRL method reporting limit

MS matrix spike

ORP oxidation/reduction potential
QA/QC quality assurance/quality control
RPD relative percent difference
Stantec Stantec Consulting Services Inc.

TPHg total petroleum hydrocarbons as gasoline

μg/L micrograms per liter

U.S. EPA United States Environmental Protection Agency

Introduction May 8, 2014

1.0 Introduction

Stantec Consulting Services Inc. (Stantec) presents this groundwater monitoring report for the first semester of 2014 which describes results of groundwater monitoring and sampling conducted on March 26 and 27, 2014, for the property located at 575 Paseo Grande, San Lorenzo, California (the Site; see Figure 1). This sampling event was conducted by Stantec pursuant to a letter from Alameda County Environmental Health to David D. Bohannon Organization (Bohannon), dated March 4, 2014, requesting semi-annual groundwater monitoring and sampling to monitor post-remediation trends at the Site. The scope of work for the first semi-annual event in 2014 included measuring the depth-to-water and collecting groundwater samples in groundwater monitoring wells MW-1 through MW-7 and observation wells POBS-A1, POBS-B1, POBS-B2, and NOBS-B1 (see Figure 2). Well construction details are included in Table 1. Groundwater samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and benzene, toluene, ethylbenzene, and total xylenes, (collectively BTEX). Site background information including a summary of previous Site investigations and remedial actions is included in Appendix A of this report.

Groundwater Monitoring May 8, 2014

2.0 Groundwater Monitoring

Site-wide groundwater monitoring and sampling was performed on March 26 and 27, 2014, and consisted of sounding wells for depth-to-water and sampling monitoring wells MW-1 through MW-7 and observation wells POBS-A1, POBS-B1, POBS-B2, and NOBS-B1. Well gauging data is reported on Table 2. Field data sheets are provided in Appendix B. Laboratory analytical data is reported on Table 3 and included in Appendix C. The following summarizes the data collected by Stantec in March 2014.

2.1 WATER LEVEL GAUGING

Prior to purging and sampling, the depth-to-water was measured from the top of each well casing using a water-level indicator graduated to 0.01 foot. Depth-to-groundwater measurements and surveyed wellhead top-of-casing elevations were used to calculate groundwater surface elevations in wells MW-1 through MW-7. Table 2 presents historical monitoring well groundwater elevation data for the Site.

The depth-to-water measured at the Site on March 26, 2014, ranged from 4.58 feet below the top of well casing in MW-3 to 6.7 feet below the top of well casing in MW-1. Corresponding water-table elevations ranged from 24.76 feet above mean sea level (amsl) to 23.01 feet amsl. A potentiometric surface map illustrating the interpreted groundwater surface elevation and flow direction on March 26, 2014, is presented on Figure 3. The hydraulic gradient across the Site was approximately 0.002 feet per foot toward the southwest.

2.2 GROUNDWATER SAMPLING

On March 26 and 27, wells were purged and sampled using a low-flow purging method consisting of dedicated well tubing attached to a variable speed peristaltic pump set to extract groundwater at a rate of approximately 200 milliliters per minute (mL/min). Temperature, conductivity, pH, dissolved oxygen (DO) content, and oxidation/reduction potential (ORP) were monitored using a flow-through cell during purging to confirm stable water conditions prior to sampling. Copies of field data sheets are attached as Appendix B.

Samples were collected from each well using the dedicated tubing to limit the potential for cross-contamination between wells. Samples were placed in laboratory-supplied sample containers, labeled, and stored on ice pending delivery to TestAmerica, a California state accredited laboratory located in Pleasanton, California. The groundwater samples were analyzed for gasoline range organics (C5-C12) and BTEX by United States Environmental Protection Agency (U.S. EPA) Method 8260B.

Groundwater Monitoring May 8, 2014

2.2.1 Quality Assurance/Quality Control Procedures

Analytical data were evaluated for accuracy and precision based on field and laboratory quality assurance and quality control (QA/QC) performance.

Duplicate Sample

One duplicate sample was collected during the first semi-annual 2014 sampling event from observation well MW-4. The analysis of field duplicate samples is a measure of both field and analytical precision. The relative percent difference (RPD) between primary and duplicate sample concentrations for the March 2014 sampling event was less than 5 percent for detected petroleum hydrocarbon analytes.

Holding Times

The laboratory QA/QC includes checking adherence to holding times. Holding times are established by the U.S. EPA and refer to the maximum allowable time to pass between sample collection and analysis by the laboratory. Analyses were performed within the holding times specified by the U.S. EPA.

Control Spikes and Method Blanks

The laboratory control spike (LCS) and matrix spike (MS) recovery results and method blank (MB) results were used to assess accuracy of the analytical data. The analytical program included eight LCS and LCS duplicate pairs, one MS and MS duplicate pair, and four MBs. The spike recovery results were within the prescribed range of acceptable limits for analytical accuracy. The data are included in Appendix C.

3.0 Results

The following presents a discussion of results of the March 2014 groundwater monitoring conducted at the Site.

3.1 GROUNDWATER ANALYTICAL RESULTS

Petroleum hydrocarbon chemical data for the March 2014 event are shown in Table 3 and illustrated on Figure 4. Laboratory analytical reports are included in Appendix C. Historical concentration trends for TPHg and benzene in select groundwater monitoring wells including MW-1, MW-2, MW-3, MW-4, and observation wells POBS-A1, POBS-B1, POBS-B2, and NOBS-B1 are included in Appendix D.

- TPHg and BTEX concentrations continued to be below the laboratory method reporting limits (MRLs) in on-Site monitoring wells MW-1 and MW-3, off-Site monitoring wells MW-5, MW-6, and MW-7, and observation well NOBS-B1.
- Concentrations of TPHg and benzene in on-Site monitoring well MW-2 are consistent with sampling events for 2013 and remain well below historical concentrations. Total xylenes were not detected above the MRLs during the March 2014 sampling of monitoring well MW-2.
- The concentrations of petroleum hydrocarbons in the primary and duplicate samples from off-Site monitoring well MW-4 are similar to or lower than the primary and duplicate sample collected during the December 2013 event.

MW-4 Sample Results*

Analyte	March 2014 Results (µg/L)	December 2013 Results (µg/L)		
TPHg	5,500/5,500	6,900/7,700		
Benzene	130/130	190/240		
Toluene	13/13	17/22		
Ethylbenzene	3.9/4.0	3.3/4.2		
Total Xylenes	9.8/9.5	16/20		

^{*}Results shown are Primary Sample/Duplicate Sample values.

Results May 8, 2014

- The concentrations of TPHg, benzene, toluene, and total xylenes in observation well POBS-A1 in March 2014 are lower than those reported in December 2013. The March 2014 TPHg, benzene and toluene concentrations at well POBS-A1 are the lowest observed since first sampled in 2004 (see Table 3).
- The March 2014 concentration of TPHg in observation well POBS-B1 is higher than those reported since May 2012.

Conclusions May 8, 2014

4.0 Conclusions

Detectable concentrations observed in March 2014 were within historic ranges for monitoring wells MW-2, MW-4, and NOBS-B1, and below MRLs in monitoring wells MW-1, MW-3, MW-5, MW-6, MW-7, POBS-A1 and POBS-B2. Detectable concentrations observed in monitoring well POBS-B1 were greater than results reported since May 2012, but are significantly lower than historical maximums.

TABLES

First Semi-Annual 2014 Groundwater Monitoring Report

PN: 185702534 May 8, 2014

TABLE 1
Well Construction Details
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

Well	Date Installed	Top of Casing Elevation (ft amsl) ¹	Total Depth (ft bgs)	Casing Diameter (inches)	Screen Slot Size (inches)	Screen Length (feet)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)
MW-1	5/10/1996	29.77	15.5	2	0.02	9.75	5.5	15.25
MW-2	5/10/1996	29.54	15.5	2	0.02	9.75	5.5	15.25
MW-3	5/10/1996	29.34	14.5	2	0.02	9.75	4.5	14.25
MW-4	10/2/2000	28.64	15	2	0.02	9	6	15
MW-5	10/2/2000	28.56	15	2	0.02	9	6	15
MW-6	10/2/2000	27.70	15	2	0.02	9	6	15
MW-7	10/2/2000	28.22	15	2	0.02	9	6	15
PIW-A1	5/4/2004	32.46	18	4	0.02	10	8	18
PIW-A2	5/4/2004	32.57	18	4	0.02	10	8	18
PIW-A3	5/4/2004	31.74	18	4	0.02	10	8	18
PIW-A4	5/6/2004	32.35	18	4	0.02	10	8	18
PIW-B1	5/3/2004	32.11	25.5	4	0.02	6	19.5	25.5
PIW-B2	5/3/2004	32.37	26	4	0.02	6	20	26
PIW-B3	5/4/2004	31.91	26	4	0.02	6	20	26
PIW-B4	5/4/2004	32.18	26	4	0.02	6	20	26
POBS-A1	5/6/2004	29.84	18	1	0.02	10	8	18
POBS-B1	5/6/2004	29.95	26	1	0.02	6	20	26
POBS-B2	5/6/2004	29.21	26	2	0.02	6	20	26
NIW-A1	5/5/2004	31.53	18	4	0.02	10	8	18
NIW-A2	5/5/2004	30.80	18	4	0.02	10	8	18
NIW-B1	5/5/2004	29.91	26	4	0.02	6	20	26
NIW-B2	5/5/2004	31.04	26	4	0.02	6	20	26
NOBS-B1	5/7/2004	28.54	26	2	0.02	6	20	26
DP-1	9/30/2005	32.53	20.5	8	0.02	10	4.75	14.75
DP-2	9/29/2005	32.35	20	8	0.02	10	4.25	14.25
DP-3	9/29/2005	32.22	20	8	0.02	10	4.50	14.50
DP-4	9/28/2005	32.07	20	8	0.02	10	4.25	14.25
DP-5	9/28/2005	32.24	20.25	8	0.02	9.75	4.75	14.50
DP-6	9/29/2005	31.66	20.25	8	0.02	10	4.50	14.50
DP-7	9/29/2005	31.34	20.25	8	0.02	10	4.50	14.50

Abbreviations:

ft amsl = feet above mean sea level

ft bgs = feet below ground surface

in = inches

NA = Not Available or Not Known

Notes:

- 1) Top of casing elevations surveyed by Mid Coast Engineers on September 24, 2012; North American Vertical Datum of 1988, NAVD 88.
- 2) Well construction information in Table 1 was updated in September 2012 for GeoTracker $^{\circledR}$ compliance.

TABLE 2 Historical Groundwater Elevations David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, CA

	Date Sampled	TOC Elevation ¹ (ft amsl)	DTW (ft BTOC)	Groundwater Elevation (ft amsl)
MW-1	05/17/96	27.11	5.65	21.46
	10/08/96		7.47	19.64
	04/01/97		6.27	20.84
	06/12/97		6.90	20.21
	09/10/97		7.48	19.63
	06/08/99		6.44	20.67
	09/13/99		7.56	19.55
	12/21/99		7.41	19.70
	03/17/00		5.35	21.76
	12/05/00	26.98	6.99	19.99
	02/28/01	20170	5.71	21.27
	08/22/01		7.39	19.59
	05/22/02		6.25	20.73
	08/29/02		7.23	19.75
	12/02/02		7.13	19.85
	03/04/03		5.77	21.21
	12/18/03		6.37	20.61
	04/13/04		6.13	20.85
	12/02/04		6.93	20.05
	05/27/05		5.90	21.08
	08/24/06		6.79	20.19
	03/24/00		6.59	20.19
	05/03/12		5.92	21.06
	09/18/12	29.77	7.32	22.45
	11/15/12	29.11	7.32	22.45
	12/11/13		7.04	22.73
	03/26/14		6.76	23.01
MW-2	05/17/96	26.73	5.56	21.17
	10/08/96		7.15	19.58
	04/01/97		6.61	20.12
	06/12/97		6.76	19.97
	09/10/97		7.19	19.54
	06/08/99		6.45	20.28
	09/13/99		7.46	19.27
	12/21/99		7.26	19.47
	03/17/00		5.56	21.17
	12/05/00	26.73	7.01	19.72
	02/28/01		5.81	20.92
	08/22/01		7.42	19.31
	05/22/02		6.40	20.33
	08/29/02		7.26	19.47
	12/02/02		7.02	19.71
	03/04/03		5.91	20.82
	12/18/03		6.47	20.26
	04/13/04		6.28	20.45
	12/02/04		6.80	19.93
	05/27/05		6.11	20.62
	08/24/06		6.90	19.83
	08/24/00		6.53	20.20

TABLE 2 Historical Groundwater Elevations David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, CA

Well	Date Sampled	TOC Elevation ¹ (ft amsl)	DTW (ft BTOC)	Groundwater Elevation (ft amsl)
MW-2	05/03/12	(it diffisi)	6.17	20.56
cont.	09/18/12	29.54	7.37	22.17
COIII.	11/15/12	27.54	7.12	22.42
	12/11/13		7.01	22.53
	03/26/14		6.75	22.79
	03/20/14		0.73	22.17
MW-3	05/17/96	26.15	4.39	21.76
	10/08/96		6.82	19.33
	04/01/97		5.53	20.62
	06/12/97		6.18	19.97
	09/10/97		6.81	19.34
	06/08/99		5.74	20.41
	09/13/99		6.88	19.27
	12/21/99		6.66	19.49
	03/17/00		4.51	21.64
	12/05/00	26.55	6.84	19.71
	02/28/01		5.44	21.11
	08/22/01		7.29	19.26
	05/22/02		6.22	20.33
	08/29/02		7.26	19.29
	12/02/02		6.85	19.70
	03/04/03		5.72	20.83
	12/18/03		6.15	20.40
	04/13/04		5.97	20.58
	12/02/04		6.64	19.91
	05/27/05		5.74	20.81
	08/23/06		6.69	19.86
	01/13/10		6.08	20.47
	05/03/12		5.72	20.83
	09/18/12	29.34	7.18	22.16
	11/15/12		6.90	22.44
	12/11/13		6.77	22.57
	03/26/14		4.58	24.76
MW-4	12/05/00	25.87	6.28	19.59
	02/28/01		4.99	20.88
	08/22/01		6.73	19.14
	05/22/02		5.50	20.37
	08/29/02		6.55	19.32
	12/02/02		6.28	19.59
	03/04/03		5.28	20.59
	12/18/03		5.85	20.02
	04/13/04		5.50	20.37
	12/02/04		6.05	19.82
	05/27/05		5.46	20.41
	08/24/06		6.15	19.72
	01/13/10		5.78	20.09
	05/03/12		5.38	20.49
	06/08/12		5.87	20.00
	09/18/12	28.64	6.65	21.99

TABLE 2 Historical Groundwater Elevations David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, CA

Well	Date Sampled	TOC Elevation ¹ (ft amsl)	DTW (ft BTOC)	Groundwater Elevation (ft amsl)
MW-4	11/15/12		6.38	22.26
cont.	12/11/13		6.20	22.44
	03/26/14		5.92	22.72
MW-5	12/05/00	25.77	6.25	19.52
	02/28/01		4.95	20.82
	08/22/01		6.69	19.08
	05/22/02		5.50	20.27
	08/29/02		6.54	19.23
	12/02/02		6.37	19.40
	03/04/03		5.41	20.36
	12/18/03		5.65	20.12
	04/13/04		5.37	20.40
	12/02/04		6.03	19.74
	05/27/05		5.46	20.31
	08/24/06		6.17	19.60
	01/13/10		5.72	20.05
	05/03/12		5.52	20.25
	09/18/12	28.56	6.67	21.89
	11/15/12		6.39	22.17
	12/11/13		6.29	22.27
	03/26/14		5.90	22.66
MW-6	12/05/00	24.89	5.68	19.21
	02/28/01		4.35	20.54
	08/22/01		6.15	18.74
	05/22/02		4.91	19.98
	08/29/02		5.96	18.93
	12/02/02		5.70	19.19
	03/04/03		4.69	20.20
	12/18/03		5.05	19.84
	04/13/04		4.87	20.02
	12/02/04		5.42	19.47
	05/27/05		4.75	20.14
	08/24/06		5.57	19.32
	01/13/10		5.17	19.72
	05/03/12		4.82	20.07
	09/18/12	27.70	6.10	21.60
	11/15/12		5.79	21.91
	12/11/13		5.61	22.09
	03/26/14		5.49	22.21
MW-7	12/05/00	25.43	6.43	19.00
	02/28/01		4.76	20.67
	08/22/01		6.95	18.48
	05/22/02		5.55	19.88
	08/29/02		NM	
	12/02/02		6.43	19.00
	03/04/03		5.10	20.33
	12/18/03		5.65	19.78

TABLE 2 Historical Groundwater Elevations David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, CA

Well	Date Sampled	TOC Elevation ¹ (ft amsl)	DTW (ft BTOC)	Groundwater Elevation (ft amsl)
MW-7	04/13/04		5.27	20.16
cont.	12/02/04		6.15	19.28
	05/27/05		5.12	20.31
	08/24/06		6.28	19.15
	01/13/10		5.97	19.46
	05/04/12		5.20	20.23
	09/18/12	28.22	6.60	21.62
	11/15/12		6.07	22.15
	12/11/13		4.90	23.32
	03/26/14		6.19	22.03

Notes:

DTW = Depth to water

ft amsl = feet above mean sea level

ft BTOC = feet below top of casing

NM = Not measured

TOC = Top of casing

1) Top of casing elevations surveyed by Mid Coast Engineers on September 24, 2012; North American Vertical Datum of 1988, NAVD 88. Previous surveys in May 1996 and December 2000 referenced National Geodetic Vertical Datum, NGVD 29.

				1					
Well	Data Campled	TDULC	Damasas	Taluana	Cale alle a manage	Total	MTBE	Chromium	Inorganic
weii	Date Sampled	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes			Lead
Cuarratura		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1	nter Monitoring We		0.5	0.7	7.4	17	l	-10	
IVIVV-I	05/17/96 10/08/96	1,100	<0.5	8.7				<10	<50
		120	<0.5	<0.5	2.7	<0.5			
	04/01/97	550	<0.5	<0.5	7.6	6.6			
	06/12/97	160	<0.5	<0.5	2.9	1.7			
	09/10/97	640	2.2	3.8	7.4	16			
	06/08/99	<50	<0.5	<0.5	<0.5	< 0.5	<10	<10	<20
	09/13/99	<50	<0.5	<0.5	<0.5	1.1			<5
	12/21/99	<50	<0.5	<0.5	<0.5	<0.5			_
	03/17/00	<50	<0.5	<0.5	<0.5	0.79	<5		<5
	12/05/00	<50	<0.5	<0.5	<0.5	<0.5			
	02/28/01	<50	<0.5	<0.5	<0.5	<0.5			
	08/22/01	<50	<0.5	<0.5	< 0.5	<0.5	<5		<5
	05/22/02	<50	<0.5	<0.5	<0.5	<0.5			
	08/29/02	<50	<0.5	<0.5	<0.5	<0.5			
	12/02/02	<50	<0.5	<0.5	<0.5	<0.5			
	03/04/03	<50	<0.5	<0.5	< 0.5	<0.5			
	12/18/03	<50	<0.5	<0.5	< 0.5	<0.5			
	04/13/04	<50	<0.5	<0.5	< 0.5	<1.0			
	06/18/04	150	1.5	<0.5	2.7	2.4			
	05/27/05	<50	1.6	< 0.5	< 0.5	< 0.5			
	08/24/06	<50	<0.5	<0.5	< 0.5	<1.0			
	01/13/10	<50	< 0.5	< 0.5	< 0.5	<1.0			
	05/03/12	<50	< 0.5	< 0.5	< 0.5	<1.0			
	11/15/12	<50	< 0.5	<0.5	< 0.5	<0.5-1.0			
	12/12/13	<50	< 0.5	<0.5	< 0.5	<1.0			
	03/26/14	<50	<0.5	<0.5	<0.5	<1.0			
MW-2	05/17/96	23,000	900	330	650	1,500		<10	<50
	10/08/96	8,400	530	<50	400	360			
	04/01/97	7,600	470	64	210	250			
	06/12/97	8,200	440	52	190	190			
	09/10/97	8,500	390	51	220	240			
	06/08/99	2,100	240	8	33	40	<10	<10	33
	09/13/99	1,300	120	<5	<5	15			
	12/21/99	1,400	110	5.6	11	17			<5
	03/17/00	1,200	180	19	28	31	<50		<5
	12/05/00	800	75	1.8	11	14			
	02/28/01	1,200	120	7.1	19	27			
	08/22/01	990	75	3.5	8.9	8.1	<5		<5
	05/22/02	1,700	230	12	12	25			
	08/29/02	1,000	66	2.6	12	12			
	12/02/02	1,100	76	8.7	11	17			
	03/04/03	1,100	130	4.5	22	24			
	12/18/03	910	55	4.1	3.3	3.7			
	04/13/04	2,700	350	15	18	24			
	10/05/04	2,000	120	5.5	<2.5	8.3			
	05/27/05	5,700	450	53	240	71			
	08/24/06	1,400	90	4.7	16	21			
	01/13/10	130 ^J	1.2	< 0.5	<0.5	<1.0			
	05/03/12	350	22	<0.5	2.1	<1.0			
	09/18/12	410	4.7	<0.5	<0.5	<1.0			
	11/15/12	350	3.2	<0.5	<0.5	<0.5-1.0			
	12/12/13	410	20	1.1	<0.5	<1.0			
	12/12/10					× 1.0	I	i l	
	03/27/14	450	32	1.1	1.2	<1.0			

						Total			Inorganic
Well	Date Sampled	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Chromium	Lead
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-3	05/17/96	6,700	140	45	210	180		<10	<50
	10/08/96	1,800	2,700	240	910	970			
	04/01/97	27,000	520	50	520	450			
	06/12/97	29,000	2,700	160	940	500			
	09/10/97	290,000	1,800	3,200	2,800	6,900			
		· ·							
	06/08/99	1,700	320	6.4	15	<0.5	<10	<10	24
	09/13/99	5,400	1,000	<20	<20	<20			
	12/21/99	8,800	1,400	63	17	23			<5
	03/17/00	1,500	190	<5	7.6	<5	<50		<5
	12/05/00	5,400	790	20	7.4	10			
	02/28/01	3,600	850	15	25	10			
	08/22/01	8,100	1,600	28	44	17	<50		<5
	05/22/02	5,400	1,000	32	13	21			
	08/29/02	6,700	1,700	55	49	38			
	12/02/02	5,700	650	17	37	33			
	03/04/03	5,000	650	18	42	27			
	12/18/03	5,200	910	25	20	21			
	04/13/04	3,900	1,200	19	<5.0	<10			
	06/18/04	4,300	1,600	40	81	26			
		-	-						
	08/27/04	6,900	2,100	59	220	<50			
	10/05/04	9,800	2,500	52	160	38			
	12/02/04	8,300	2,400	41	200	29			
	12/14/04	15,000	3,600	140	560	210			
	05/27/05	5,500	840	36	210	41			
	08/23/06	1,700	190	5.3	51	<10			
	01/13/10	<50	2	< 0.5	< 0.5	<1.0			
	05/03/12	<50	< 0.5	< 0.5	<0.5	<1.0			
	09/18/12	480/440	110/100	2.6/2.4	0.66/0.62	1.2/1.1			
	11/16/12	66	2.0	< 0.5	< 0.5	<0.5-1.0			
	12/12/13	110	7.0	< 0.5	< 0.5	<1.0			
	03/27/14	<50	<0.5	<0.5	<0.5	<1.0			
	00/2// 11	100	10.0	10.0	10.0	1110			
MW-4	12/05/00	3,900	320	13	41	31			<5
10100 -	02/28/01	3,400	250	14	44	22			<5
	08/22/01	· ·		12	27	9	<50		<5
		4,800	260						
	05/22/02	5,100	320	29	74	50			
	08/29/02	3,700	260	<5	30	28			
	12/02/02	5,100	250	8.9	26	22			
	03/04/03	4,500	170	18	63	47			
	12/18/03	2,900	160	8.3	8	<5			
	04/13/04	7,400	290	29	110	100			
	06/18/04	2,700	140	12	36	16			
	08/27/04	460	19	1.2	1.1	1.5			
	10/05/04	460	19	<1.0	<1.0	<1.0			
	12/02/04	2,800	120	5.4	8.3	5.3			
	05/27/05	7,300	350	37	100	50			
	08/24/06	2,400	59	8.2	19	14			
		400 J							
	01/14/10		1.6	< 0.5	< 0.5	<1.0			
	05/03/12	6,800	190	26	15	25			
	06/08/12	3,400	83	11	7.1	11	<0.50		
	09/18/12	1,400	25	4.2	1.2	3.6			
	11/15/12	4,000	69	6.4	<2.5	<2.5-5.0			
	12/11/13	6,900	190	17	3.3	16			
DUP	12/11/13	7,700	240	22	4.2	20			
	03/26/14	5,500	130	13	3.9	9.8			
			120	12	10	9.5			
DUP	03/26/14	5,500	130	13	4.0	9.5			

						Total			Inorganic
Well	Date Sampled	TPH-G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Chromium	Lead
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-5	12/05/00	<50	<0.5	<0.5	<0.5	<0.5			<5
	02/28/01	<50	<0.5	<0.5	<0.5	<0.5			<5
	08/22/01	<50	<0.5	<0.5	<0.5	<0.5	<5		<5
	05/22/02	<50	<0.5	<0.5	<0.5	<0.5			
	08/29/02	<50	<0.5	<0.5	<0.5	<0.5			
	12/02/02	<50	<0.5	<0.5	<0.5	<0.5			
	03/04/03	<50	<0.5	<0.5	<0.5	<0.5			
	12/18/03	<50	<0.5	<0.5	<0.5	<0.5			
	04/13/04	<50	<0.5	<0.5	<0.5	<1.0			
	12/02/05	<50	<0.5	<0.5	<0.5	<1.0			
	05/27/05	<50	<0.5	<0.5	<0.5	<0.5			
	08/24/06	<50	<0.5	<0.5	<0.5	<1.0			
	01/14/10	<50	<0.5	<0.5	<0.5	<1.0			
	05/03/12	<50	<0.5	<0.5	<0.5	<1.0			
	11/15/12	<50	<0.5	<0.5	<0.5	<0.5-1.0			
	12/11/13	<50	<0.5	<0.5	<0.5	<1.0			
	03/26/14	<50	<0.5	<0.5	<0.5	<1.0			
MW-6	12/05/00	<50	<0.5	<0.5	<0.5	<0.5			<5
	02/28/01	<50	< 0.5	< 0.5	<0.5	< 0.5			<5
	08/22/01	<50	< 0.5	< 0.5	<0.5	< 0.5	<5		<5
	05/22/02	<50	< 0.5	< 0.5	<0.5	<0.5			
	08/29/02	<50	< 0.5	< 0.5	<0.5	<0.5			
	12/02/02	<50	<0.5	< 0.5	<0.5	<0.5			
	03/04/03	<50	< 0.5	< 0.5	<0.5	<0.5			
	12/18/03	<50	<0.5	<0.5	<0.5	<0.5			
	04/13/04	<50	< 0.5	< 0.5	<0.5	<1.0			
	12/02/04	<50	<0.5	< 0.5	<0.5	<1.0			
	05/27/05	<50	< 0.5	<0.5	<0.5	<0.5			
	08/24/06	<50	< 0.5	<0.5	<0.5	<1.0			
	01/13/10	<50	<0.5	< 0.5	<0.5	<1.0			
	05/03/12	<50	<0.5	< 0.5	<0.5	<1.0			
	11/15/12	<50	<0.5	<0.5	<0.5	<0.5-1.0			
	12/11/13	<50	< 0.5	< 0.5	<0.5	<1.0			
	03/26/14	<50	<0.5	<0.5	<0.5	<1.0			
MW-7	12/05/00	<50	<0.5	<0.5	<0.5	1.5			<5
IVIVV-/	02/28/01	<50 <50	<0.5	<0.5	<0.5	6.7			<5 <5
	08/22/01	<50 <50	<0.5	<0.5	<0.5	<0.5	<5		<5 <5
	05/22/02	<50	<0.5	<0.5	<0.5	<0.5			/ 5
	12/02/02	<50 <50	<0.5	<0.5	<0.5	<0.5			
	03/04/03	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5			
	12/18/03	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5			
	04/13/04	<50 <50	<0.5	<0.5 <0.5	<0.5	<0.5 <1.0			
	12/02/04	<50 <50	<0.5	<0.5	<0.5 <0.5	<1.0 <1.0			
	05/27/05	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	< 1.0 < 0.5			
						<0.5 <1.0			
	08/24/06	<50	< 0.5	< 0.5	< 0.5				
	01/13/10	<50	< 0.5	< 0.5	< 0.5	<1.0			
	05/04/12	<50	<0.5	<0.5	<0.5	<1.0			
	11/15/12	<50 <50	< 0.5	< 0.5	< 0.5	<0.5-1.0			
	12/11/13 03/26/14	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<1.0 <1.0			
	22.20,	. 30	. 5.0	. 5.0	.3.0				
		1	l .	I .	I .		1		

						Total			Inorgania
Well	Date Sampled	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Chromium	Inorganic Lead
WCII	Date Jampied	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Peroxide 1	reatment Area - A			(mg/L)	(1119/2)	(1119/2)	(1119/2)	(1119/2)	(1119/2)
PIW-A1	05/13/04	6,800	460	50	31	300			
	06/18/04	240	10	2.1	4	11			
	08/27/04	220	14	1.2	2	5			
	10/05/04	<50	<0.5	<0.5	<0.5	<1.0			
	12/02/04	640	63	12.0	15	29			
	12/02/04	040	03	12.0	15	27			
PIW-A2	05/13/04	20,000	1,500	460	760	2,600			
	06/18/04	2,800	150	14	6.5	90			
	08/27/04	500	34	3	4.4	12			
	12/02/04	350	6.1	1.2	2.4	5.4			
PIW-A3	12/14/04	1,500	220	28	55	99			
Peroxide T	reatment Area - L	7one Inject	ion Wells				<u> </u>		
PIW-B1	05/13/04	1,900	28	<5.0	11	51			
	06/18/04	270	22	1	2.2	2.7			
	08/27/04	230	11	0.85	1.7	4.3			
	12/02/02	66		<0.5	<0.5				
	12/02/02	00	<0.5	<0.5	<0.5	<1.0			
PIW-B3	05/13/04	3,300	420	17	7.8	44			
50	06/18/04	180	1.2	<0.5	<0.5	2.4			
	08/27/04	230	20.0	0.93	3.3	2.9			
		64			3.3 <0.5				
	12/02/04	04	0.75	<0.5	<0.5	<1.0			
Peroxide 1	l Treatment Area - A	A Zone Obse	rvation Wells	<u> </u>					
POBS-A1	05/13/04	16,000	2,200	220	480	980			
	06/18/04	11,000	2,200	150	120	820			
	08/27/04	23,000	2,900	140	180	470			
	10/05/04	13,000	2,400	83	130	94			
	12/02/04	17,000	3,500	240	210	730			
					220	510			
	12/14/04	13,000	2,700	200					
	05/27/05	9,600	1,200	62	110	180			
	08/24/06	8,500	1,700	58	120	100			
	01/13/10	7,300 ^J	1,100	29	53	42			
	05/04/12	540	110	2.0	1.4	<1.0			
	09/18/12	2,600	1,100	27	8.3	18			
	11/16/12	4,700/4,700	1,600/1,700	36/35	6.6/6.3	28.1/27.1			
	12/12/13	2,600	1,200	28	< 5.0	15			
	03/27/14	510	40	1.3	0.72	2.3			
Danavida 7	[77 06							
POBS-B1	Treatment Area - E 05/13/04	11,000	vation Wells 250	71	160	590			
1 000-01	06/18/04	3,500	9.8	<0.5	0.8	13			
		-							
	08/27/04	500	1.4	< 0.5	<0.5	<1.0			
	12/02/04	190	2.6	<0.5	<0.5	<1.0			
	05/27/05	68	17.0	<0.5	1.6	0.52			
	08/24/06	50	1.1	<0.5	<0.5	<1.0			
	05/04/12	<50	0.80	<0.5	<0.5	<1.0			
	09/18/12	<50	<0.5	< 0.5	<0.5	<1.0			
	11/16/12	<50	<0.5	< 0.5	<0.5	<0.5-1.0			
	12/12/13	<50	< 0.5	< 0.5	< 0.5	<1.0			
	03/27/14	390	63	1.5	0.72	<1.0			
	03/2//14				J., _				

Peroxide Treat POBS-B2	atment Area - E 05/13/04 06/18/04 08/27/04 12/02/04 05/27/05 08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05	4,500 97 240 <50 97 57 83 <50 <50 <50 <50	150 7.4 36.0 <0.5 33.0 <0.5 8.8 <0.5 <0.5 <0.5	Toluene (mg/L) 5 (continued) 23 0.8 1.6 <0.5 0.56 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	### Company Co	Xylenes (mg/L) 120 1.7 4.2 <1.0 0.74 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 1.0 <2.5-1.0 <1.0 <1.0 2.0 55 5.7 12 23 300	### MTBE (mg/L)	Chromium (mg/L)	Inorganic Lead (mg/L)
Nitrate Injection NIW-A2 Nitrate Injection NIW-B1	05/13/04 06/18/04 08/27/04 12/02/04 05/27/05 08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 12/02/04 05/27/05 05/13/04 06/18/04 06/18/04 06/18/04	3 Zone Obse 4,500 97 240 <50 97 57 83 <50 <50 <50 <50 1,700 1,400 14,000 970 200	rvation Wells 150 7.4 36.0 <0.5 33.0 <0.5 8.8 <0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	23 0.8 1.6 <0.5 0.56 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	11 1.6 6.7 <0.5 1.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	120 1.7 4.2 <1.0 0.74 <1.0 <1.0 <0.5-1.0 <1.0 <1.0 <1.0 21.0 21.0 21.0 21.0			
Nitrate Injection NIW-A2 Nitrate Injection NIW-B1	05/13/04 06/18/04 08/27/04 12/02/04 05/27/05 08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 12/02/04 05/27/05 05/13/04 06/18/04 06/18/04 06/18/04	4,500 97 240 <50 97 57 83 <50 <50 <50 0	150 7.4 36.0 <0.5 33.0 <0.5 8.8 <0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	23 0.8 1.6 <0.5 0.56 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	11 1.6 6.7 <0.5 1.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1.7 4.2 <1.0 0.74 <1.0 <1.0 <0.5-1.0 <1.0 <1.0 <1.0 2.5-1.0 <1.0 <1.0 <1.0	 		
Nitrate Injection NIW-A2 Nitrate Injection NIW-B1	06/18/04 08/27/04 12/02/04 05/27/05 08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 12/02/04 05/27/05 05/13/04 06/18/04 06/18/04 06/18/04	97 240 <50 97 57 83 <50 <50 <50 <50 me Injection 9,300 3,100 250 1,700 14,000 970 200	7.4 36.0 <0.5 33.0 <0.5 8.8 <0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	0.8 1.6 <0.5 0.56 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1.6 6.7 <0.5 1.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1.7 4.2 <1.0 0.74 <1.0 <1.0 <0.5-1.0 <1.0 <1.0 <1.0 2.5-1.0 <1.0 <1.0 <1.0	 		
NIW-A1 NIW-A2 Nitrate Injectio	08/27/04 12/02/04 05/27/05 08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05	240 <50 97 57 83 <50 <50 <50 <50 1,700 1,400 14,000 970 200	36.0 <0.5 33.0 <0.5 8.8 <0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	1.6 <0.5 0.56 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	6.7 <0.5 1.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	4.2 <1.0 0.74 <1.0 <1.0 <0.5-1.0 <1.0 <1.0 <1.0 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	 		
NIW-A1 NIW-A2 Nitrate Injectio	12/02/04 05/27/05 08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 12/02/04 05/27/05 05/13/04 06/18/04 06/18/04 06/18/04	<50 97 57 83 <50 <50 <50 <50 me Injection 9,300 3,100 250 1,700 14,000 970 200	<0.5 33.0 <0.5 8.8 <0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	<0.5 0.56 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1	<0.5 1.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 0.74 <1.0 <1.0 <1.0 <0.5-1.0 <1.0 <1.0 96 55 5.7 12 23	 		
NIW-A1 NIW-A2 Nitrate Injectio	05/27/05 08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 06/18/04 08/27/04	97 57 83 <50 <50 <50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33.0 <0.5 8.8 <0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	0.56 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1	1.3 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	0.74 <1.0 <1.0 <1.0 <0.5-1.0 <1.0 <1.0 96 55 5.7 12 23	 		
NIW-A1 NIW-A2 Nitrate Injectio	08/24/06 05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 06/18/04 08/27/04	57 83 <50 <50 <50 50 50 50 50 50 60 60 60 60	<0.5 8.8 <0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 1.4 <5.0 6.2 61.0	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 <1.0 <0.5-1.0 <1.0 <1.0 96 55 5.7 12 23	 		
NIW-A1 NIW-A2 Nitrate Injectio	05/03/12 09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 06/18/04 08/27/04	83 <50 <50 <50 one Injection 9,300 3,100 250 1,700 14,000 970 200	8.8 <0.5 <0.5 <0.6 6.0 Wells 1,800 340 13 150 28 1,300 18	<0.5 <0.5 <0.5 <0.5 <0.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1.5 <1	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <1.0 <0.5-1.0 <1.0 <1.0 96 55 5.7 12 23			
NIW-A1 NIW-A2 Nitrate Injectio	09/18/12 11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	<50 <50 <50 <50 me Injection 9,300 3,100 250 1,700 1,400 14,000 970 200	<0.5 <0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	<0.5 <0.5 <0.5 <0.5 <1.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<1.0 <0.5-1.0 <1.0 <1.0 96 55 5.7 12 23			
NIW-A1 NIW-A2 Nitrate Injectio	11/16/12 12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	<50 <50 <50 me Injection 9,300 3,100 250 1,700 1,400 14,000 970 200	<0.5 <0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	<0.5 <0.5 <0.5 <0.5 59 22 1.4 <5.0 6.2 61.0	<0.5 <0.5 <0.5 <0.5 250 93 6 24 10	<0.5-1.0 <1.0 <1.0 <1.0 96 55 5.7 12 23			
NIW-A1 NIW-A2 Nitrate Injectio	12/12/13 03/27/14 ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	<50 <50 9,300 3,100 250 1,700 1,400 14,000 970 200	<0.5 6.0 Wells 1,800 340 13 150 28 1,300 18	<0.5 <0.5 59 22 1.4 <5.0 6.2 61.0	<0.5 <0.5 250 93 6 24 10	<1.0 <1.0 96 55 5.7 12 23			
NIW-A1 NIW-A2 Nitrate Injectio	03/27/14 ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	<50 9,300 3,100 250 1,700 1,400 14,000 970 200	6.0 Wells 1,800 340 13 150 28 1,300 18	<0.5 59 22 1.4 <5.0 6.2 61.0	<0.5 250 93 6 24 10	<1.0 96 55 5.7 12 23			
NIW-A1 NIW-A2 Nitrate Injectio	ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	<50 9,300 3,100 250 1,700 1,400 14,000 970 200	1,800 340 13 150 28 1,300	<0.5 59 22 1.4 <5.0 6.2 61.0	<0.5 250 93 6 24 10	96 55 5.7 12 23			
NIW-A1 NIW-A2 Nitrate Injectio	ion Area - A Zo 05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	9,300 3,100 250 1,700 1,400 14,000	1,800 340 13 150 28 1,300	59 22 1.4 <5.0 6.2 61.0	250 93 6 24 10	96 55 5.7 12 23	 		
NIW-A1 NIW-A2 Nitrate Injectio	05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	9,300 3,100 250 1,700 1,400 14,000	1,800 340 13 150 28 1,300	22 1.4 <5.0 6.2 61.0	93 6 24 10	55 5.7 12 23	 		
NIW-A1 NIW-A2 Nitrate Injectio	05/13/04 06/18/04 08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	9,300 3,100 250 1,700 1,400 14,000 970 200	1,800 340 13 150 28 1,300	22 1.4 <5.0 6.2 61.0	93 6 24 10	55 5.7 12 23	 		
Nitrate Injectio	08/27/04 10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	3,100 250 1,700 1,400 14,000 970 200	13 150 28 1,300	1.4 <5.0 6.2 61.0	6 24 10	5.7 12 23	 		
Nitrate Injectio	10/05/04 12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	1,700 1,400 14,000 970 200	150 28 1,300 18	<5.0 6.2 61.0	24 10	12 23			
Nitrate Injectio	12/02/04 05/27/05 05/13/04 06/18/04 08/27/04	1,400 14,000 970 200	28 1,300 18	6.2 61.0	10	23			
Nitrate Injectio	05/27/05 05/13/04 06/18/04 08/27/04	14,000 970 200	1,300 18	61.0					
Nitrate Injectio	05/27/05 05/13/04 06/18/04 08/27/04	14,000 970 200	18		680	300			
Nitrate Injectio	05/13/04 06/18/04 08/27/04	970 200	18	<2.5					
Nitrate Injectio	06/18/04 08/27/04	200		<2.5					
Nitrate Injectio	06/18/04 08/27/04	200		_	<2.5	4			
NIW-B1	08/27/04			1.7	2.1	3.5			
NIW-B1			6.3	<5.0	<5.0	<10			
NIW-B1		<50	<0.5	<0.5	<0.5	<1.0			
NIW-B1	05/27/05	550	14.0	0.7	1.8	0.93			
NIW-B1	00,2,,00			0.7		0.70			
NIW-B1	ion Area - B Zo	ne Injection	Wells	ļ					
NIW-B2	05/13/04	170	6.5	1.1	2.4	8.0			
NIW-B2	06/18/04	160	2.9	0.7	2.6	2.5			
NIW-B2	08/27/04	110	6.9	< 0.5	1.4	2.0			
NIW-B2	12/02/04	<50	< 0.5	<0.5	<0.5	<1.0			
NIW-B2									
	05/13/04	260	8.9	1.5	4	8.4			
	06/18/04	120	1.0	<0.5	1.1	<1.0			
	08/27/04	120	4.4	<0.5	1.1	1.6			
	12/02/04	<50	<0.5	<0.5	<0.5	<1.0			
	. 2, 02, 0 .	100	10.0	10.0	10.0	*****			
Nitrate Injection	ion Area - Obs	ervation We	lls						
NOBS-B1	05/13/04	120	4.6	0.8	2.3	5.4			
	06/18/04	88	1.9	0.7	1.7	<1.0			
	08/27/04	180	5.5	0.53	0.99	1.6			
	12/02/04	<50	2.0	<0.5	<0.5	<1.0			
	08/24/06	<50	<0.5	<0.5	<0.5	<1.0			
	05/03/12	<50	<0.5	<0.5	<0.5	<1.0			
	30,00,12	<50	<0.5	<0.5	<0.5	<1.0			
			<0.5	<0.5	<0.5	<1.0			
	09/18/12	(< h()	<0.5	<0.5	<0.5	<1.0			
	09/18/12 11/15/12	<50 <50	\ \U.U	<0.5	<0.5	<1.0			
	09/18/12	<50 <50 <50	<0.5		\U.S	< 1.U		!	

Abbreviations:

mg/L = micrograms per liter

MTBE = methyl tert-butyl ether

TPH-G = Total Petroleum Hydrocarbons, Gasoline Range

-- = water sample not analyzed for specified constituents

DUP = Duplicate

Notes:
Bold indicates detected concentration.

J = the chromatograph for this sample does not match the chromatographic pattern of the specified standard

FIGURES

First Semi-Annual 2014 Groundwater Monitoring Report

PN: 185702534 May 8, 2014

APPENDIX A Summary of Previous Site Investigations and Remedial Actions

First Semi-Annual 2014 Groundwater Monitoring Report

PN: 185702534 May 8, 2014

APPENDIX A

Summary of Previous Site Investigations and Remedial Actions

David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, California

Over the last 25 years, the Site has been used as an asphalt-paved parking area located in a C1 commercial zone. The Site was a gasoline station prior to 1969. Little information is known about the Site history related to its use as a gasoline service station. In anticipation of property redevelopment, investigation activities were conducted in March 1995 to determine if former underground service station equipment remained on-Site. The work was conducted by Twining Laboratories, Inc. as documented in their letter report dated April 15, 1995. The investigation included a magnetometer survey followed by an exploratory excavation. In summary, the work conducted identified underground gasoline service station equipment which included what appeared to be the former tank pit, approximately 110 feet of fuel delivery system piping, and a grease sump and/or hydraulic lift pit in an area which may have been the former service garage. Field evidence and one soil sample indicated the potential for soil contamination along the piping runs, around the grease sump, and around the inferred location of the former tank pit. Characterization of the magnitude and extent of potential soil contamination were not performed during the initial activities.

In June 1995, SECOR International Incorporated (SECOR) conducted additional activities at the Site which included removal of the former underground storage tank (UST) system piping and the former grease sump, and characterization soil sampling along the pipelines and around the former grease sump and former tank pit areas. This work was summarized in SECOR's document entitled, "Preliminary Characterization Report," to ACEH dated June 29, 1995 (SECOR, 1995). The characterization data from this investigation indicated that there were two areas of concern at the Site: 1) the former grease sump area; and 2) the former gasoline distribution system area. SECOR subsequently conducted excavation activities in these two areas. The soil excavated from the former sump area was transported off-Site for disposal. The soil generated from the UST excavation was treated by means of aeration and later transported off-Site for disposal. Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed during the investigation activities to evaluate the degree to which the groundwater had been affected. The results of the soil characterization and groundwater monitoring activities are reported in SECOR's documents entitled, "Report of Interim Remedial Actions" (RIRA; SECOR, 1996), dated June 4, 1996, and "Fourth Quarter 1996 Monitoring and Sampling Report," dated November 26, 1996.

In June 1999, a utility trench survey was conducted around the Site, and a passive soil vapor survey was performed downgradient from the Site. The results of the utility trench and passive soil vapor surveys are documented in SECOR's document entitled, "Third Quarter Groundwater Monitoring Results and Plume Definition Investigation Report," dated October 22, 1999 (3Q99 GWM Report, SECOR, 1999).

On December 5, 2000, four additional groundwater monitoring wells (MW-4 through MW-7) were installed at the Site. Soil and groundwater sampling was conducted to evaluate possible off-Site migration of petroleum-related constituents originating from the Site, and to collect data to direct further subsurface investigations and/or remediation at the Site, if necessary. The work was

conducted in general accordance with SECOR's documents entitled, "Work Plan for Additional Groundwater Monitoring Well Installation," dated October 22, 1999, and "Addendum to the Work Plan for Additional Groundwater Monitoring Well Installation," dated December 2, 1999. The Work Plan was approved with comments in correspondence from the ACEH in a letter dated November 4, 1999. Historically, two of the on-Site wells (MW-2 and MW-3) and one well immediately downgradient to the west (MW-4) contain elevated concentrations of petroleum hydrocarbons. Wells further off-Site to the west (MW-6 and MW-7) and south (MW-5) typically do not contain detectable levels of petroleum hydrocarbons, with exception of MW-7, which reported low concentrations of total xylenes (up to 6.7 micrograms per liter [µg/L]) in the first two sampling events (December 2000 and February 2001). The well has since been non-detect for all constituents.

In January 2003, SECOR performed an additional limited subsurface investigation as described in the document entitled, "Remedial Action Work Plan," dated October 25, 2002, and submitted to ACEH. The Work Plan was approved by ACEH in a letter dated October 28, 2002. Based on field observations, soil boring logs, and laboratory analytical results, SECOR concluded that: 1) perched groundwater was encountered within fill materials at approximately 5 to 8 feet below ground surface (bgs); 2) water-bearing zones were encountered in silt and sand at depths of 13-to 15-feet bgs (A zone), in sand from 16- to 19-feet bgs (B zone), and in silty sand at 22.5 feet bgs (C zone); and 3) soil sample analytical results suggest that the majority of chemical impact exists in silty clay from approximately 8- to 13.5-feet bgs within and adjacent to the former gasoline UST and pump island excavation. The findings of the investigation were presented in the document entitled, "Limited Subsurface Investigation Report and Work Plan for Additional Soil and Groundwater Assessment," dated February 19, 2003, and prepared by SECOR (SECOR, 2003a).

At the request of ACEH, a sensitive receptor survey was performed for the Site. The survey consisted of identifying the locations and depths of subsurface utilities near the Site and reviewing data provided by the California Department of Water Resources (DWR) for potential groundwater production wells. The survey results are presented in SECOR's document entitled, "Sensitive Receptor Survey and Conduit Study," dated June 30, 2003 (Receptor Study; SECOR, 2003b). The report indicates that no groundwater production wells are likely to be affected by hydrocarbons in the soil and groundwater at the Site.

Chemical Injection and Dual-Phase Extraction (DPE) Pilot Testing

The October 2002 Remedial Action Workplan (RAW) proposed nitrate injections to stimulate biological degradation of hydrocarbons in the groundwater. Based on the data collected in January 2003, additional remediation of soil was also recommended. An addendum to the RAW was submitted by SECOR in December 2003 proposing hydrogen peroxide injections for chemical oxidation of soils in addition to nitrate injections. The RAW addendum was approved by ACEH in a letter to Bohannon dated December 15, 2003.

In May 2004, EFI Global began the pilot groundwater remediation program. Four wells were installed on-Site for the purposes of injecting nitrate solution into groundwater upgradient of well

MW-4 (NIW-A1, NIW-A2, NIW-B1, and NIW-B2). Eight wells were installed on-Site for injection of peroxide solution into soil and groundwater upgradient of well MW-3 (PIW-A1 to PIW-A4 and PIW-B1 to PIW-B4). Four wells were installed to observe the effects of the injection program (NOBS-B1, POBS-A1, POBS-B1, and POBS-B2).

Injection and observation well installations were completed during May 2004 in accordance with the approved RAW, and initial chemical injections were completed during May/June 2004. Soil boring logs for these wells are provided in Appendix A. The well installation activities were described in the document entitled, "Semi-Annual (First Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report," prepared by EFI Global (EFI Global, 2004b).

Additional injections were completed in July 2004 (Phase Two) and October 2004 (Phase Three). Progress groundwater sampling for Phases Two and Three was conducted in August 2004 and December 2004, respectively. Following Phase Three injections, EFI Global conducted a single-day DPE test (February 2005) and a five-day DPE test (April 2005) in the area of the former gasoline UST. The results of the Phase Three progress sampling (December 2004) and single-day DPE test (February 2005) are reported in the document entitled, "Semi-Annual (Second Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report," (EFI Global, 2005).

Site-wide groundwater monitoring was conducted in May 2005. In June 2005, SECOR advanced 14 soil borings at locations intended to provide additional delineation of the target area for full-scale DPE system implementation. SECOR obtained an operation permit from the Bay Area Air Quality Management District (BAAQMD) in July 2005 and installed seven additional remediation wells in September 2005. SECOR conducted additional Site-wide groundwater monitoring during August 2006. The results of the five-day DPE test (April 2005) and subsequent groundwater monitoring activities are presented in SECOR's document entitled, "Groundwater Monitoring and Remediation Progress Report," dated April 23, 2007 (SECOR, 2007).

Full-Scale DPE Operations and Remedial Progress Sampling

During December 2008, additional DPE system infrastructure was added and full-scale DPE system operation commenced during January/February 2009. Full-scale DPE operations consisted of soil vapor and groundwater extraction and treatment from 11 Site extraction wells and former chemical injection wells. Full-scale DPE operated through December 2009 at which point remedial progress groundwater monitoring was conducted during January 2010. DPE system operations and results of remedial progress groundwater monitoring are described in the Stantec's document entitled, "Report of Dual-Phase Extraction System Operations, Soil Vapor Sampling, and Risk Analysis," (DPE Report; Stantec, 2011). The results of groundwater monitoring and DPE system performance data indicated that the DPE system significantly reduced concentrations of total petroleum hydrocarbons in the gasoline range (TPHg) and benzene, toluene, ethylbenzene and total xylenes (BTEX) in monitoring wells downgradient of the Site below historical concentrations and to near the laboratory reporting limit (LRL) concentrations in monitoring wells immediately downgradient of the former UST on-Site. DPE system treatment equipment was removed from the

Site in December 2009; however, all wells used for extraction and aboveground conveyance piping remain on-Site.

Soil vapor sample well installation and subsequent soil vapor sampling was conducted at four locations on-Site during March and April 2011. The purpose of the soil vapor sampling was to evaluate the potential for vapors associated with residual petroleum hydrocarbons in soil and/or groundwater to be present at concentrations that could pose a risk to conceptual future occupants of a Site building (if the Site was to be redeveloped with commercial and/or residential structures). Results from the soil vapor sampling indicated that concentrations of petroleum hydrocarbons present in shallow soil vapor at the Site were below available screening criteria such as California Environmental Protection Agency (Cal-EPA) California Human Health Screening Levels (CHHSLs) and Environmental Screening Levels (ESLs) published by the California Regional Water Quality Control Board (RWQCB), San Francisco Bay Region. A Site-specific vapor intrusion risk analysis was performed using the Johnson & Ettinger (J&E) model and the concentrations of all chemicals detected in soil vapor at the Site were inputted into the model. The J&E model results indicated that residual concentrations of chemicals in shallow soil vapor at the Site do not pose a risk to human health considering commercial/industrial or residential land uses. A detailed description of soil vapor sampling and results of the risk analysis are included in the DPE Report (Stantec, 2011).

At the request of ACEH, Stantec performed additional groundwater monitoring during the second and third quarters of 2012 to monitor petroleum hydrocarbon concentrations in Site monitoring wells after the completion of full-scale DPE system operations. The monitoring results are reported in the documents entitled, "Second Quarter 2012 (Semi-Annual) Groundwater Monitoring Report," dated July 27, 2012 (Stantec, 2012a) and the "Third Quarter 2012 Groundwater Monitoring Report," dated December 21, 2012 (Stantec, 2012b). Monitoring results for the second and third quarters of 2012 showed concentrations of petroleum hydrocarbons downgradient of the Site in monitoring wells MW-5, MW-6, and MW-7 remain below laboratory MRLs and concentrations in on-Site monitoring wells MW-1 and MW-2 remain stable or near the laboratory MRLs. Groundwater in POBS-A1 within the former UST area showed a rebound in TPHg and BTEX concentrations during the third quarter 2012; however, concentrations in well MW-3 located immediately downgradient of POBS-A1 were near the MRLs.

ACEH issued a Request for Site Conceptual Model and Data Gap Work Plan letter on August 31, 2012. The August 31, 2012 letter requested GeoTracker compliance documentation and a Site Conceptual Model and Data Gap Work Plan (ACEH, 2012). In response, Bohannon submitted documentation of GeoTracker compliance in May 2012 and submitted the Site Conceptual Model and Work Plan (SCM-WP) to ACEH on December 21, 2012. The Fourth Quarter 2012 Groundwater Monitoring Report was submitted February 19, 2013 (Stantec, 2013).

Based on review of the SCM-WP and the fourth quarter groundwater monitoring results, ACEH requested an addendum to the work plan to address technical comments in a letter dated November 18, 2013 (ACEH, 2013).

Representatives of Bohannon and Stantec met with ACEH on January 8, 2014 to discuss the proposed scope of work for the SCM-WP. The *Updated Work Plan to Evaluate Post-Remediation Site Conditions* (Work Plan) was submitted to ACEH on January 17, 2014 (Stantec, 2014), and approved by the ACEH in a letter dated March 4, 2014 (ACEH, 2014).

The 2014 Work Plan proposed the following scope of work:

- Installation of 10 shallow soil vapor wells to a depth of five (5) feet below ground surface (bgs).
- Analysis of soil vapor samples for VOCs, naphthalene, oxygen, nitrogen, methane, and carbon dioxide.
- Advancement of 10 soil borings on-site to a depth of 10 feet bgs with collection of one sample from the 0-5 foot interval and one sample from the 5-10 foot interval.
- Advancement of 13 off-site soil borings to a depth of 15 feet bgs to delineate the depth of groundwater for collection of discrete depth groundwater samples with collection of soil samples from 5-, 10-, and 15-feet bgs.
- Analysis of all soil samples for TPHg and BTEX, and select samples for naphthalene.
- Collection of 13 HydroPunch™ grab-groundwater samples from the shallow water bearing zone (i.e., the upper 15 feet of sediment).
- Analysis of groundwater samples for TPHg and BTEX.

Implementation of the 2014 Work Plan is scheduled to begin during second quarter 2014.

References

- Alameda County Health Care Services Agency, Environmental Health Services (ACEH), 2012.

 Request for Site Conceptual Model and Data Gap Work Plan, Fuel Leak Case No.

 RO0000167 and GeoTracker Global ID TO600102098, Bohannon Development Property, 575

 Paseo Grande, San Lorenzo, California. August 3. 2012.
- ACEH, 2013. Request for Work Plan Addendum, Fuel Leak Case No. RO0000167 and GeoTracker Global ID TO600102098, Bohannon Development Property, 575 Paseo Grande, San Lorenzo, California. November 18, 2013.
- ACEH, 2014. Approval of Work Plan Addendum, Fuel Leak Case No. RO0000167 and GeoTracker Global ID TO600102098, Bohannon Development Property, 575 Paseo Grande, San Lorenzo, California. March 4, 2014.
- EFI Global, 2004a. Semi-Annual (Second Half 2003) Groundwater Monitoring Report, 575 Paseo Grande, San Lorenzo, California. June 21, 2004.
- EFI Global, 2004b. Semi-Annual (First Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report, 575 Paseo Grande, San Lorenzo, California. August 2004.
- EFI Global, 2005. Semi-Annual (Second Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report, 575 Paseo Grande, San Lorenzo, California. April 2005.
- Regional Water Quality Control Board (RWQCB), 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. California Regional Water Quality Control Board, San Francisco Bay Region. Interim Final November 2007, Revised May 2008.
- SECOR International Incorporated (SECOR), 1995. Preliminary Characterization Report, Former Gasoline Service Station Property at the Northeast Corner of Paseo Grande and Paseo Largavista, San Lorenzo, California. June 29, 1995.
- SECOR, 1996. Report of Interim Remedial Actions, Former Gasoline Service Station, 575 Paseo Grande, San Lorenzo, California. June 4, 1996.
- SECOR, 1999. Third Quarter 1999 Groundwater Monitoring Results and Plume Definition Investigation Report, 575 Paseo Grande, San Lorenzo, California. October 22, 1999.

- SECOR, 2003a. Limited Subsurface Investigation Report and Work Plan for Additional Soil and Groundwater Assessment, David D. Bohannon Organization Property, 575 Paseo Grande, San Lorenzo, California. February 19, 2003.
- SECOR, 2003b. Sensitive Receptor Survey and Conduit Study, The Bohannon Development Company Property, 575 Paseo Grande, San Lorenzo, California. June 30, 2003.
- Stantec Consulting Corporation (Stantec), 2011. Report of Dual-Phase Extraction System Operations, Soil Vapor Sampling, and Risk Analysis, David D. Bohannon Organization. November 22, 2011.
- Stantec, 2012a. Second Quarter 2012 (Semi-Annual) Groundwater Monitoring Report, David D. Bohannon Organization, 575 Paseo Grande, San Lorenzo, California. July 27, 2012.
- Stantec, 2012b. Third Quarter 2012 Groundwater Monitoring Report,
 David D. Bohannon Organization, 575 Paseo Grande, San Lorenzo, California.
 December 21, 2012.
- Stantec, 2012c. Site Conceptual Model and Work Plan to Evaluate Post-Remediation Site Conditions, David D. Bohannon Organization, 575 Paseo Grande, San Lorenzo, California. December 21, 2012.
- Stantec, 2013. Fourth Quarter 2012 Groundwater Monitoring Report, David D. Bohannon Organization, 575 Paseo Grande, San Lorenzo, California. February 19, 2013.
- Stantec, 2014. Updated Work Plan to Evaluate Post-Remediation Site Conditions, Former Petroleum Underground Storage Tank (UST) Site, David D. Bohannon Organization Property Located at 575 Paseo Grande San Lorenzo, CA. January 17, 2014.

APPENDIX B Field Data Sheets for the March 2014 Groundwater Monitoring Event

First Semi-Annual 2014 Groundwater Monitoring Report

PN: 185702534 May 8, 2014

Stantec

HYDROLOGIC DATA SHEET

Date:	3-26-1\$	Project: _	Bohannon	
Technician:	C. Melancon	Project #:	185702534	

TOC = Top of Well Casing Elevation DTP = Depth to Free Product (FP or NAPH) Below TOC
DTW = Depth to Groundwater Below TOC
DTB = Depth to Bottom of Well Casing Below TOC

DIA = Well Casing Diameter ELEV = Groundwater Elevation DUP = Duplicate

WELL OR LOCATION	TIME	MEA	ASUREMENT		COMMENTS
		DTW	DTB	Dia	
MW-1	925	6.76		2	
MW-2	930	6,75		2	
MW-3	935	4.58*		2	* elmocwally high - doc to rain?
MW-4	915	5,92		2	/ /
MW-5	910	5,90		2	
MW-6 *	905	5,49		2	
MW-7	900	6,19		2	
POBS-A1	945	6,93		1	
POBS-B1	950	7.02		1	
POBS-B2	940	6,12	25.9	2	
NOBS-B1	920	5.83		2	
		G.	h.		
* Nofe:	MW-6 ?	5 by 5	form di	ain	and may have local vecharge inflorace
	due to	culle	ut lu	:43	6.
Drumio	vento	ry's 5	- tot	al	
-					
3 -	Pucy-	e wat	er, 1	9b+	pls-1997, 2001, 2014
1 ~	11 C 0	0 6.	0.11	2/0	
	0240	d bag	F1/7	P1 5	
1 -					begfilters
	- 011	-1049	7 7 6	, , ,	eg rillige

Groundwater Sampling Data Sheet **Project Name:** Project #: 1857 02534 Task No: Date: 3 126114 **Bohannon** Site Location: San Lorenzo Sampler(s): C. Welgycon Depth to Water (DTW) (ft): 6,66 Well ID: Mu) ~ Sample DTW (ft): 6,55 Screen Interval (ft): 5-15 Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft): 10 Well Diameter (inch): 2 OVM (ppm) = -CALCULATIONS: Length of the water column: Volume of Schedule 40 PVC Pipe Well Diameter. I.D gal/linear ft. 1.25 1.38 0.08 DTW ft + (ft X 0.2) = ft Recharge water level 80% of the water level: 2 2.067 0.17 3 3.068 0.38 4 4.026 0.66 6 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:_) Other: 1400 Begin Purge at Specific Redox Temp. Time Volume Conductivity pН DO Potential (°C) °F) (24 hrs) (G (L) DTW (µS/cm) (units) Color Odor (mg/L) (mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 20\%)$ $(\pm 10\%)$ 1405 20,2 6.63 1127 45 1001 0.59 61.2 UDUR 1410 20,2 6.55 1106 6.47 76 0.51 11 20.2 6.55 1097 11 11 6,48 1091 2012 6.55 11 10 50 425 6.55 1086 11 95 0.51 1084 11 11 0.52 Liters / Gallons Purged: Pump Rate in L or G /min: 6.5 200 Sampling Time: **Duplicate Sample ID:** Sample Time: 1430 Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): (√) Analyte(s): Preservative: **Bottles:** Preservative: Bottles: (X) TPH-g, BTEX, MTBE HCI 3 X 40 mL VOAs) TOC 2 X 40 mL Amber VOAs H₂SO₄) TPH-d & TPH-mo HCI 2 x 0.5 L Ambers , Methane **HCI** 3 X 40 mL VOAs) NO2, NO3 & SO4 None 1 X 500 mL Poly Naphthalene, Phenol None 2 x 1 L Ambers) Total Manganese 1 X 250 mL Poly Alkalinity, TDS HNO₃ None 1 X 500 mL Poly) Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly) Ferrous Iron HCI 2 X Amber VOAs VOCs HCI 3 X 40 mL VOAs **SVOCs** None 2 x 1 L Ambers) Other Notes:

Groundwater Sampling Data Sheet Project Name: Project #: 18 5 70253 4 Task No: Bohannon Date: 3/27/14 Site Location: Depth to Water (DTW) (ft): 6.25 Sample DTW San Lorenzo Well ID: MW-2 Screen Interval (ft): 5-15 Sample DTW (ft): 6,54 Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft): 10 Well Diameter (inch): ス OVM (ppm) = CALCULATIONS: Length of the water column: Volume of Schedule 40 PVC Pipe Well Diameter. I.D gal/linear ft. 0.08 1 25 1.38 80% of the water level: 2 2.067 0.17 3 3.068 0.38 4.026 0.66 Estimated Purge Volume (EPV): = $\frac{1}{\text{Water col}}$ ft X $\frac{1}{\text{gal/lin. ft.}}$ X $\frac{3}{\text{Casing Volumes}}$ = $\frac{1}{\text{Gallons}}$ 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer () ______E (X) Pump Discharge (X) YSI 556 Disposable Bailer) Myron L) Electric Submergible Pump () Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:) Other: Begin Purge at 1045 Specific Redox Temp. Time Volume Conductivity pН DO **Potential** (°C)(°F) (24 hrs) (G (L) DTW (µS/cm) (units) Color Odor (mV) (mg/L) (every 3-5 min) $(\pm 10\%)$ (± 0.2) $(\pm 10\%)$ $(\pm 20\%)$ 1050 19,50 6.58 1486 6,92 1841 2,39 Wod. 1055 6,87 11 0,83 6,87 1100 20 10 0,87 0,47 1105 20 1 1110 10 Liters Gallons Purged: Pump Rate in Cor G /min: 200 Sampling Time: Duplicate Sample ID: Sample Time: 1120 Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): (X) TPH-g, BTEX, MTBE Preservative: Bottles: (√) Analyte(s): Preservative: Bottles: HCI 3 X 40 mL VOAs TOC H₂SO₄ 2 X 40 mL Amber VOAs) TPH-d & TPH-mo HCI 2 x 0.5 L Ambers Methane HCI 3 X 40 mL VOAs) NO2, NO3 & SO4 None 1 X 500 mL Poly Naphthalene, Phenol 2 x 1 L Ambers None) Total Manganese HNO₃ 1 X 250 mL Poly Alkalinity, TDS None 1 X 500 mL Poly) Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly Phosphorus, TKN H2SO4 1 x 500 mL Poly) Ferrous Iron 2 X Amber VOAs VOCs HCI HCI 3 X 40 mL VOAs) SVOCs None 2 x 1 L Ambers Other Notes:

Groundwater Sampling Data Sheet Project Name: Project #: 185702534 Task No: Date: 3 127/14 **Bohannon** Site Location: Sampler(s): C. Melaycon San Lorenzo Well ID: MW-3 Depth to Water (DTW) (ft): 4.58 Sample DTW (ft): 6.43 Screen Interval (ft): 5-15 Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft): 10 Well Diameter (inch): 2 OVM (ppm) = CALCULATIONS: Length of the water column: Volume of Schedule 40 PVC Pipe Well Diameter. I.D gal/linear ft 1.25 1.38 0.08 _____ft + (______ft X 0.2) = _____ft _____Recharge water level 80% of the water level: 2 2.067 0.17 3 3.068 0.38 4 4.026 0.66 6 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:) Other: 805 Begin Purge at Specific Redox Temp. Time Volume Conductivity pН DO **Potential** (°C) °F) (24 hrs) (G (L)) DTW (µS/cm) (units) Color Odor (mg/L) (mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 20\%)$ $(\pm 10\%)$ 810 17.21 531 Cleur 2.71 103 7.01 403,5 4048 2.5 1734 6.43 547 7.01 11 820 3,017266,41 6,99 38 11 384.1 5 17.12 6,43 16 .87 10 .0 17.09 6,43 .5 17.03 6,43 .0 17.06 6.43 330 558 21 6,97 01 05 346,4 835 6,96 16 11 332.9 2.20 840 6.96 u er Liters) Gallons Purged: 5,0 Pump Rate in Lor G /min: / O O Sampling Time: **Duplicate Sample ID:** 840 Sample Time: Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): (X) TPH-g, BTEX, MTBE Bottles: Preservative: (√) Analyte(s): Preservative: Bottles: HCI 3 X 40 mL VOAs) TOC H₂SO₄ 2 X 40 mL Amber VOAs) TPH-d & TPH-mo HCI 2 x 0.5 L Ambers) Methane HCI 3 X 40 mL VOAs) NO₂, NO₃ & SO₄ 1 X 500 mL Poly None) Naphthalene, Phenol None 2 x 1 L Ambers) Total Manganese HNO₃ 1 X 250 mL Poly) Alkalinity, TDS 1 X 500 mL Poly None) Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly) Ferrous Iron HCI 2 X Amber VOAs **VOCs** 3 X 40 mL VOAs) SVOCs None 2 x 1 L Ambers Other Notes:

Groundwater Sampling Data Sheet Project Name: Project #: 185702534 Task No: Date: 3 /26/14 Bohannon Site Location: Sampler(s): C, Welageon San Lorenzo Sample DTW (ft): 5.54/
Measurements Referenced to: TOC Well ID: MW-4 Depth to Water (DTW) (ft): 5, 92 Screen Interval (ft): 5-15 Depth to Bottom (DTB) (ft): Tube/Pump Depth (ft): 19 Well Diameter (inch): 2 OVM (ppm) = -CALCULATIONS: Length of the water column: Volume of Schedule 40 PVC Pipe Well Diameter. gal/linear ft. I.D 1.25 1.38 0.08 80% of the water level: 2.067 0.17 3 3.068 0.38 4.026 0.66 Estimated Purge Volume (EPV): = _____ ft X ____ X _3 = ____ Gallons Water col gal/lin. ft. X ____ X _3 = ____ Gallons 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:) Other: 1220 Begin Purge at Specific Redox Temp. Conductivity Time Volume рΗ DO Potential (°C) °F) (24 hrs) (G /(L)) DTW (µS/cm) (units) Color Odor (mg/L) (mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 20\%)$ $(\pm 10\%)$ 1225 864 6.66 Wod 0,57 101.3 5,62 C/291 1230 18.7 5.55 6.61 0.49 25 Pr 1235 883 6.59 10 106.7 1240 5.54 884 5 11 15 0,39 7107 1245 11 ff 0.36 187 1250 0.35 Liters) Gallons Purged: Pump Rate in Lor G /min: 200 Sampling Time: Duplicate Sample ID: Sample Time: 1250 DUP |Bupilicate Sample Analyzed For: SEE WORK ORDER Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): Preservative: Bottles: (√) Analyte(s): Preservative: Bottles:

(X) TPH-g, BTEX, MTBE	HCI	3 X 40 mL VOAs	() TOC	H ₂ SO ₄	2 X 40 mL Amber VOAs
() TPH-d & TPH-mo	HCI	2 x 0.5 L Ambers	() Methane	HCI	3 X 40 mL VOAs
() NO ₂ , NO ₃ & SO ₄	None	1 X 500 mL Poly	() Naphthalene, Phenol	None	2 x 1 L Ambers
() Total Manganese	HNO ₃	1 X 250 mL Poly	() Alkalinity, TDS	None	1 X 500 mL Poly
() Dissolved Iron	Field-filtered, HNO ₃	1 X 250 mL Poly	() Phosphorus, TKN	H ₂ SO ₄	1 x 500 mL Poly
() Ferrous Iron	HCI	2 X Amber VOAs	() VOCs	HCI	3 X 40 mL VOAs
() SVOCs	None	2 x 1 L Ambers	() Other		
Notes:					
-					

Groundwater Sampling Data Sheet Project Name: Project #: 1857 02534 Task No: Date: 3 /26/ 14 Bohannon Site Location: Sampler(s): C. Welaucon

Depth to Water (DTW) (ft): 5,90 Sample DTW (ft): 5,98 San Lorenzo Well ID: MW-5 Depth to Bottom (DTB) (ft): Screen Interval (ft): 5-15 Measurements Referenced to: TOC Tube/Pump Depth (ft): 10 Well Diameter (inch): 2 OVM (ppm) = ____ CALCULATIONS: ______ft - ______ft = _____ft _____ft Volume of Schedule 40 PVC Pipe Length of the water column: Well Diameter. I.D gal/linear ft. 1.25 1.38 0.08 80% of the water level: 2 2.067 0.17 3 3.068 0.38 4.026 0.66 Estimated Purge Volume (EPV): = _____ ft X ____ X _3 = ____ Gallons Gallons 6 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4 12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:_) Other:) Other: Begin Purge at 1/30 Specific Redox Temp. Volume Conductivity Time pН DO **Potential** (°C) °F) (24 hrs) (G / L) DTW (µS/cm) (units) Color Odor (mg/L) (mV) (± 10%) $(\pm 10\%)$ (every 3-5 min) (± 0.2) $(\pm 10\%)$ $(\pm 20\%)$ 1135 1.5 17.8 6.02 725 7,09 2/201 2.98 59.3 none 1140 18,1 728 2,5 5,97 7.07 6 15 1,13 3.5 18.0 5.98 7,05 730 ** 0,91 4.5 18.2 1150 732 5.98 0.73 7-04 01 11 1155 7.03 5198 11 0,61 1200 6,5 183 7.03 10 11 0.59 Liters ()Gallons Purged: 6,5 Pump Rate in Cor G /min: 200 Sampling Time: Duplicate Sample ID: Sample Time: 1200 Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): Preservative: Bottles: (√) Analyte(s): Preservative: Bottles: (X) TPH-g, BTEX, MTBE HCI 3 X 40 mL VOAs) TOC H₂SO₄ 2 X 40 mL Amber VOAs) TPH-d & TPH-mo HCI 2 x 0.5 L Ambers Methane HCI 3 X 40 mL VOAs) NO₂, NO₃ & SO₄ None 1 X 500 mL Poly Naphthalene, Phenol None 2 x 1 L Ambers) Total Manganese 1 X 250 mL Poly HNO₃ Alkalinity, TDS 1 X 500 mL Poly None) Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly Ferrous Iron HCI 2 X Amber VOAs **VOCs** 3 X 40 mL VOAs HCI) SVOCs None 2 x 1 L Ambers Other Notes:

Groundwater Sampling Data Sheet Project Name: Date: 3 /26/ 19 Project #: 185702534 Task No: Bohannon Site Location: Sampler(s): C. Melageen
- (DTW) (ft): 5,49 Sample DTW (ft): 5,52 San Lorenzo Well ID: M W-6 Depth to Water (DTW) (ft): 5.49 Screen Interval (ft): 5-15 Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft): 10 Well Diameter (inch): 7 OVM (ppm) = CALCULATIONS: Length of the water column: Volume of Schedule 40 PVC Pipe Well Diameter. gal/linear ft. I.D 1.25 1.38 0.08 80% of the water level: 2.067 0.17 3 3.068 0.38 4 4.026 0.66 Estimated Purge Volume (EPV): = _____ ft X ____ X _3 = ____ Gallons Gallons 6 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:) Other:) Other: Begin Purge at 1050 Specific Redox Temp. Time Conductivity Volume рΗ DO **Potential** (°C)/ °F) (24 hrs) (G /(L') DTW (µS/cm) (units) Odor Color (mg/L) (mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 20\%)$ $(\pm 10\%)$ 1095 17.5 5.51 801 7.76 clear 5.01 69.5 1 Dyp 2.5 17.9 1100 5,52 7.94 7.69 63,7 11 11 87 7.51 1109 3.5 18.1 5,52 11 11 .23 53. 1110 4.5 18.2 84 43 1.09 11 11 11 1115 83 515 18.1 7.40 10 11 15 56.3 0,98 83 18,2 11 1120 7.38 6.5 " Liters / Gallons Purged: Pump Rate in Cor G /min: 6.5 200 Sampling Time: **Duplicate Sample ID:** Sample Time: 1120 Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): Preservative: Bottles: (√) Analyte(s): Preservative: Bottles: (X) TPH-q, BTEX, MTBE HCI 3 X 40 mL VOAs) TOC H₂SO₄ 2 X 40 mL Amber VOAs) TPH-d & TPH-mo HCI 2 x 0.5 L Ambers) Methane HCI 3 X 40 mL VOAs) NO2, NO3 & SO4) Naphthalene, Phenol None 1 X 500 mL Poly None 2 x 1 L Ambers) Total Manganese HNO₃ 1 X 250 mL Poly) Alkalinity, TDS None 1 X 500 mL Poly) Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly) Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly) Ferrous Iron **HCI** 2 X Amber VOAs **VOCs** HCI 3 X 40 mL VOAs) SVOCs None 2 x 1 L Ambers Other Notes:

Groundwater Sampling Data Sheet Project Name: Date: 3 1261-14 Project #: 18570253 4 Task No: Bohannon Site Location: San Lorenzo Sampler(s): C. Melayery Depth to Water (DTW) (ft): 6.19 Sample DTW (ft): 6,2/ Well ID: MW W-7 Screen Interval (ft): 5-15 Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft): / O Well Diameter (inch): 2 OVM (ppm) =CALCULATIONS: Length of the water column: ______ft - ______ft = _____ft
DTB DTW Water Col Volume of Schedule 40 PVC Pipe Well Diameter. I.D gal/linear ft. 1.25 1.38 0.08 80% of the water level: 2 2.067 0.17 3 3.068 0.38 4 4.026 0.66 Estimated Purge Volume (EPV): = _____ ft X ____ X _3 = ____ Gallons Gallons 6 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer) Horriba) Peristaltic Pump & Dedicated Tubing (X) Peristaltic Pump) Hanna () Other:) Other:) Other:_ 1010 Begin Purge at Specific Redox Temp. Conductivity Time Volume рΗ DO **Potential** (°C) °F) (24 hrs) (G (L) DTW (µS/cm) (units) Color Odor (mg/L)(mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 20\%)$ $(\pm 10\%)$ 13.30 1015 135 8.31 6,24 10.85 clear 1040 1020 121 14916.21 8:72 11 6.35 1025 8,69 3.5 14,97 5.09 16 ĺ 15 11 1030 4.5 " 15.01 1 2 8,52 0/ 15 4,11 1035 8.53 15.05 11 09 1 3.97 Liters / Gallons Purged: Pump Rate in Lor G /min: 200 Sampling Time: **Duplicate Sample ID:** Sample Time: 1040 Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): Preservative: Bottles: (√) Analyte(s): Preservative: Bottles: (X) TPH-g, BTEX, MTBE 3 X 40 mL VOAs HCI) TOC H₂SO₄ 2 X 40 mL Amber VOAs TPH-d & TPH-mo HCI 2 v 0 5 1 Ambers Mothana

_

	Groundwater Sampling Data Sheet										
Project #: [8		2534	Task No:			ect Name: innon			D	ate: 3 /27	414
Site Location:	1				•	, , , ,	111	1			
San Lorenzo Well ID: Pop	26	4 1	Donth	to Water /	ample	er(s):	me			0 0 =	
Screen Interva		+ /	Depth	to Water ((DTP	(π): 6 °	73			6.95	TOO
Tube/Pump De		5' 1C+	Well F	iameter (i	uch).) (IL):			om) = —	ferenced to:	100
CALCULATIONS		2014	VVEII L	nameter (ii	ilcii).			ОУМ (р) = ·		
07.120027.1.10110											
Length of the war	ter columr	n:	ft	DTW	ft =		ft		Volume of S	Schedule 40 PV	'C Pipe
			DTB	DTW		Water Col			Well Diame	eter. I.D	gal/linear ft.
000/ -f-th				,					1.25	1.38	0.08
80% of the water	level:		Tt.	+ (Water Co	— ^{ft X}	0.2) =	ft		2	2.067	0.17
			DIW	water Co	1	Red	charge water	r level	3	3.068	0.38
									4	4.026	0.66
Estimated Purge	Volume (F	EPV): =	ft	X	Χ	3 =	Ga	llons	6	6.065	1.5
Estimated Purge	(-	Wa	ater col	gal/lin. ft.	—^` c	asing Volumes					
									8	7.981	2.6
(X) I	Low-Flow	/Micro Pur	ging						10	10.02	4.12
() F	Purge at	least 3 well	volumes						12	11.938	5.81
Purging Equipment: ()Bailer					ole Bailer c Pump & D		Tubing	(X) YS () M () Ho () Ho	yron L orriba	Used:	
	3 u. g.			Specifi	c						Redox
Time	Volume	Temp.		Conducti		рН				DO	Potential
(24 hrs)	(G /(L))	(C)/ °F)	DTW	(μS/cm	1)	(units)	Co	lor	Odor	(mg/L)	(mV)
(every 3-5 min)		(± 10%)		(± 10%)	(± 0.2)				(± 10%)	(± 20%)
930	1,5		6.83	866		6,81	Cle	91	Fuiut	1,89	174,5
435	2.5	18,53	7.01	882	4	6,80	• (ie	1,37	129,7
	3,0	18.87	6,95	892		80	U		11	1,10	88.3
	3,5	19.04	6,95	905		6.81	10		ir	0,66	9/1
950	4.0	19,13	0,95	910		2.80	er		er	0.69	70,5
955	4,5	1917	6,95	914	•	280	L		e ₁	0,71	61.9
1000	5,0	19,19	6,95	916		.80	le		e,	0.68	63,1
Liters) Gallons	s Purged	: 5,0)		Pum	Rate in L	or G /m	iin: /	00		
Sampling Time	: 11-	7 m			Dunli	cate Sam	nle ID:		Sample Tim		
gg	10	90			Bupii	cate cam	pic ib.	•	pampie i iii	ie.	
Sample Analyz	ed For:	SEE WOR	K ORDER	₹	'	Duplicate	e Sample	e Analyz	ed For: SE	E WORK OR	DER
(√) Analyte(s):		Preserv		Bottles:		(√) Analy			reservative		
(X) TPH-g, BTEX () TPH-d & TPH		HC		3 X 40 mL V		() TOC			H ₂ SO ₄	2 X 40 mL A	
() NO ₂ , NO ₃ & S		HC Non		2 x 0.5 L Am 1 X 500 mL		() Metha	ne halene, Pr	nenol	HCI None	3 X 40 mL V 2 x 1 L Amb	
() Total Mangan	ese	HNC		1 X 250 mL			naiene, Fr nity, TDS	131101	None	1 X 500 mL	
() Dissolved Iron	า	Field-filtere	d, HNO₃	1 X 250 mL	Poly	() Phosp	horus, TK	N	H ₂ SO ₄	1 x 500 mL	
() Ferrous Iron () SVOCs		HC Non		2 X Amber \ 2 x 1 L Amb		() VOCs () Other			HCI	3 X 40 mL V	OAs
Notes:		NOIT	е	Z X I L AIIID	ers	<u>J() Other .</u>					
								-			
_	-									· · · · · · · · · · · · · · · · · · ·	

Revised: 5/2/2012 Stantec

Groundwater Sampling Data Sheet Project Name: Project #: 185702534 Task No: Date: 3 /27/14 Bohannon Site Location: Sampler(s): C. Melancon r (DTW) (ft): 6.57 Sample DTW (ft): 6.87 San Lorenzo Well ID: POBS-BI Depth to Water (DTW) (ft): 6.57 Screen Interval (ft): Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft): 7 off TO Well Diameter (inch): / OVM (ppm) = --CALCULATIONS: Length of the water column: ______ft - ______ft = ______ft
DTB DTW Water Col Volume of Schedule 40 PVC Pipe Well Diameter. I.D gal/linear ft. 1.25 1.38 0.08 DTW ft + (Mater Col ft X 0.2) = ft Recharge water level 80% of the water level: 2 2.067 0.17 3 3.068 0.38 4 4.026 0.66 6 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:) Other:_ Begin Purge at 1005 Specific Redox Temp. Time Volume Conductivity рΗ DO **Potential** (°C) °F) (24 hrs) DTW (G (L) (µS/cm) (units) Color Odor (mg/L) (mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 20\%)$ $(\pm 10\%)$ 1010 19,47 F.03 1259 6,90 1.51 1000 4048 1015 19.896.87 1351 6.87 1,28 020 19.92 6,87 1364 er 6,86 11 09 1025 19,87 6,87 1366 6,86 25 00 0.6 030 19.90 6.87 1369 4 0.66 4 035 0,68 Liters) Gallons Purged: 6,5 Pump Rate in Lor G /min: 200 Sampling Time: 1040 **Duplicate Sample ID:** Sample Time: Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): (X) TPH-g, BTEX, MTBE Preservative: Bottles: (√) Analyte(s): Preservative: Bottles: 3 X 40 mL VOAs 2 X 40 mL Amber VOAs **HCI** TOC H₂SO₄) TPH-d & TPH-mo **HCI** 2 x 0.5 L Ambers Methane HCI 3 X 40 mL VOAs) NO₂, NO₃ & SO₄ 1 X 500 mL Poly None Naphthalene, Phenol 2 x 1 L Ambers None) Total Manganese HNO₃ 1 X 250 mL Poly Alkalinity, TDS 1 X 500 mL Poly None) Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly) Ferrous Iron HCI 2 X Amber VOAs) VOCs 3 X 40 mL VOAs) SVOCs None 2 x 1 L Ambers Other Notes:

Groundwater Sampling Data Sheet Project Name: Project #: 185702534 Task No: Date: 3 127 / 14 Bohannon Site Location: Sampler(s): C. Welencon San Lorenzo Depth to Water (DTW) (ft): 6.12 Well ID: POBS-B-2 Sample DTW (ft): 7-26 Screen Interval (ft): Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft):5 6 FF TV Well Diameter (inch): 2 OVM (ppm) = -CALCULATIONS: ______ft - ______ft = ______ft
______ft Water Col Length of the water column: Volume of Schedule 40 PVC Pipe Well Diameter. gal/linear ft. I.D 1.25 1.38 0.08 80% of the water level: 2 2.067 0.17 3 0.38 3.068 4.026 0.66 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 5.81 11.938 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer) Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:) Other: 850 Begin Purge at Specific Redox Temp. Conductivity Time Volume рΗ DO **Potential** (°C) °F) (24 hrs) (G/L) DTW (µS/cm) (units) Color Odor (mg/L) (mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 10\%)$ $(\pm 20\%)$ 855 C/40 5,82 172 7,20 339.5 4045 900 2,95 481 196 15 905 16 3,5 15 Faiut

117	11.00	1-	7	10			•	700	
						_			
Liters / Gallons Purged	4.5	F	Pump F	Rate in	L)or G /min:	100			
Sampling Time:	20	3 0	Duplica	ite Sam	ple ID:	Samp	ole Time	e:	
Sample Analyzed For:	SEE WORK ORDE	R	D	uplicat	te Sample An	alyzed F	or: SEE	WORK OF	RDER
(√) Analyte(s):	Preservative:	Bottles:		√) Analy			rvative:		
(X) TPH-g, BTEX, MTBE () TPH-d & TPH-mo () NO₂, NO₃ & SO₄ () Total Manganese () Dissolved Iron () Ferrous Iron () SVOCs	HCI HCI None HNO ₃ Field-filtered, HNO ₃ HCI None	3 X 40 mL VC 2 x 0.5 L Amb 1 X 500 mL P 1 X 250 mL P 1 X 250 mL P 2 X Amber VC 2 x 1 L Amber	ers (oly (oly (oly (OAs () Alkaliı	thalene, Phenol nity, TDS ohorus, TKN	H N N H ₂	SO ₄ HCI one one SO ₄ HCI	2 X 40 mL 3 X 40 mL 2 x 1 L Am 1 X 500 ml 1 x 500 mL 3 X 40 mL	bers L Poly - Poly

Revised: 5/2/2012 Stantec

Groundwater Sampling Data Sheet Project Name: Project #: 185702534 ask No: Date: 3 /26/14 Bohannon Site Location: Sampler(s): C. Melaucon
Sample DTW (ft): 5,32
Peferenced t San Lorenzo Well ID: NOBS - B I Screen Interval (ft): Depth to Water (DTW) (ft): 5783 Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft):5 off 70 Well Diameter (inch): 2 OVM (ppm) = -CALCULATIONS: Length of the water column: Volume of Schedule 40 PVC Pipe Well Diameter. gal/linear ft. I.D 1.25 1.38 0.08 80% of the water level: 2 2.067 0.17 3 3.068 0.38 4 4.026 0.66 Estimated Purge Volume (EPV): = _____ ft X ____ X _3 = ____ Gallons Gallons 6 6.065 1.5 8 7.981 2.6 (X) Low-Flow/Micro Purging 10 10.02 4.12 () Purge at least 3 well volumes 12 11.938 5.81 **Purging Equipment:** Sampling Equipment: Type of Water Quality Kit Used: Bailer Bailer (X) YSI 556 Disposable Bailer (X) Pump Discharge) Myron L) Electric Submergible Pump) Disposable Bailer Horriba (X) Peristaltic Pump) Peristaltic Pump & Dedicated Tubing) Hanna () Other:) Other:) Other: Begin Purge at Specific Redox Temp. Conductivity Time Volume рΗ DO **Potential** (°C) °F) (24 hrs) (G /(L')) DTW (µS/cm) (units) Odor Color (mg/L) (mV) (every 3-5 min) $(\pm 10\%)$ $(\pm 10\%)$ (± 0.2) $(\pm 20\%)$ $(\pm 10\%)$ 1300 105 19.9 908 6.40 Cleul 5.35 1.07 none 2.5 1305 20.0 9.09 6.40 5,32 11 15 1.01 1310 9.10 6.41 11 11 69.8 9.12 315 5,32 6.41 11 11 60.3 5.32 59,1 9.11 6.41 11 11 0.49 325 11 58,2 Liters Gallons Purged: Pump Rate in L or G /min: 200 Sampling Time: 1330 **Duplicate Sample ID:** Sample Time: Sample Analyzed For: SEE WORK ORDER Duplicate Sample Analyzed For: SEE WORK ORDER (√) Analyte(s): Preservative: **Bottles:** (√) Analyte(s): Preservative: Bottles: (X) TPH-g, BTEX, MTBE HCI 3 X 40 mL VOAs) TOC H₂SO₄ 2 X 40 mL Amber VOAs) TPH-d & TPH-mo HCI 2 x 0.5 L Ambers Methane HCI 3 X 40 mL VOAs) NO₂, NO₃ & SO₄ Naphthalene, Phenol 1 X 500 mL Poly None None 2 x 1 L Ambers) Total Manganese HNO₃ 1 X 250 mL Poly Alkalinity, TDS None 1 X 500 mL Poly) Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly) Ferrous Iron **HCI** 2 X Amber VOAs **VOCs HCI** 3 X 40 mL VOAs SVOCs None 2 x 1 L Ambers Other Notes:

APPENDIX C Laboratory Analytical Report of Chainof-Custody for the March 2014 Groundwater Monitoring Event

First Semi-Annual 2014 Groundwater Monitoring Report

PN: 185702534 May 8, 2014

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-56377-1

Client Project/Site: Bohannon San Lorenzo

For:

Stantec Consulting Corp. 3017 Kilgore Road Suite 100 Rancho Cordova, California 95670

Attn: Brian Westhoff

Akanaf Sal

Authorized for release by: 4/3/2014 2:27:40 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919

afsaneh.salimpour@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	20
QC Association Summary	27
Lab Chronicle	29
Certification Summary	32
Method Summary	33
Sample Summary	34
Chain of Custody	35
Receipt Checklists	36

4

5

7

9

10

12

Definitions/Glossary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-56377-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

5

6

7

8

10

11

12

13

| | 4

Case Narrative

Client: Stantec Consulting Corp.
Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Job ID: 720-56377-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-56377-1

Comments

No additional comments.

Receipt

The samples were received on 3/27/2014 11:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.1° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

_

4

5

6

1 1

12

2

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

3

No Detections.

Lab Sample ID: 720-56377-1

Client Sample ID: TB-1

Client Sample ID: MW-7

Lab Sample ID: 720-56377-2

No Detections.

Client Sample ID: MW-6

Lab Sample ID: 720-56377-3

No Detections.

Client Sample ID: MW-5

Lab Sample ID: 720-56377-4

No Detections.

3

Client Sample ID: MW-4

Lab Sample ID: 720-56377-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	130		2.5		ug/L	5	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	3.9		2.5		ug/L	5		8260B/CA_LUFT MS	Total/NA
Toluene	13		2.5		ug/L	5		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	9.8		5.0		ug/L	5		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) C5-C12	5500		250		ug/L	5		8260B/CA_LUFT MS	Total/NA

Client Sample ID: NOBS-B1

Lab Sample ID: 720-56377-6

No Detections.

Client Sample ID: MW-1

Lab Sample ID: 720-56377-7

No Detections.

Client Sample ID: DUP

Lab Sample ID: 720-56377-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	130		2.5		ug/L	5	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	4.0		2.5		ug/L	5		8260B/CA_LUFT MS	Total/NA
Toluene	13		2.5		ug/L	5		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	9.5		5.0		ug/L	5		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) C5-C12	5500		250		ug/L	5		8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-3

Lab Sample ID: 720-56377-9

No Detections.

Client Sample ID: POBS-B2

Lab Sample ID: 720-56377-10

_

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

TestAmerica Job ID: 720-56377-1

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Client Sample ID: POBS-B2 (Continued)

Lab Sample ID: 720-56377-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	6.0	0.50	ug/L		8260B/CA_LUFT	Total/NA
					MS	

Client Sample ID: POBS-A1 Lab Sample ID: 720-56377-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	40		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	0.72		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Toluene	1.3		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	2.3		1.0		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	510		50		ug/L	1		8260B/CA_LUFT MS	Total/NA

Client Sample ID: POBS-B1 Lab Sample ID: 720-56377-12

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Benzene	63	0.50	ug/L		8260B/CA_LUFT MS	Total/NA
Ethylbenzene	0.72	0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA
Toluene	1.5	0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	390	50	ug/L	1	8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-2 Lab Sample ID: 720-56377-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	32		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	1.2		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Toluene	1.1		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	450		50		ug/L	1		8260B/CA_LUFT MS	Total/NA

This Detection Summary does not include radiochemical test results.

4/3/2014

7

q

10

10

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-1

Matrix: Water

Client Sample ID: MW-7
Date Collected: 03/26/14 10:40

Date Received: 03/27/14 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			03/28/14 02:28	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 02:28	1
Toluene	ND		0.50		ug/L			03/28/14 02:28	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 02:28	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			03/28/14 02:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		67 - 130			-		03/28/14 02:28	1
4-Bromofluorobenzene	98		67 - 130					03/31/14 22:31	1
1,2-Dichloroethane-d4 (Surr)	92		72 - 130					03/28/14 02:28	1
1,2-Dichloroethane-d4 (Surr)	88		72 - 130					03/31/14 22:31	1
Toluene-d8 (Surr)	101		70 - 130					03/28/14 02:28	1

4

6

9

10

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-2

03/28/14 11:49

03/28/14 11:49

Matrix: Water

Client Sample ID: TB-1 Date Collected: 03/26/14 10:00 Date Received: 03/27/14 11:55

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Method: 8260B/CA_LUFTMS - 8	3260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			03/28/14 11:49	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 11:49	1
Toluene	ND		0.50		ug/L			03/28/14 11:49	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 11:49	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			03/28/14 11:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130			-		03/28/14 11:49	1

72 - 130

70 - 130

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Client Sample ID: MW-6

Lab Sample ID: 720-56377-3

Matrix: Water

Date Collected: 03/26/14 11:20 Date Received: 03/27/14 11:55

Method: 8260B/CA_LUFTMS - 8 Analyte		Qualifier	RL	MDL	Linit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	- KL	MIDL	UIIIL		Frepareu	Allalyzeu	DII Fac
Benzene	ND		0.50		ug/L			03/28/14 02:58	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 02:58	1
Toluene	ND		0.50		ug/L			03/28/14 02:58	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 02:58	1
Gasoline Range Organics (GRO)	ND		50		ug/L			03/28/14 02:58	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		67 - 130			-		03/28/14 02:58	1
1,2-Dichloroethane-d4 (Surr)	93		72 - 130					03/28/14 02:58	1
Toluene-d8 (Surr)	101		70 - 130					03/28/14 02:58	1

9

10

12

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-4

Matrix: Water

Client Sample ID: MW-5 Date Collected: 03/26/14 12:00 Date Received: 03/27/14 11:55

Method: 8260B/CA_LUFTMS - 8	3260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			03/28/14 03:27	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 03:27	1
Toluene	ND		0.50		ug/L			03/28/14 03:27	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 03:27	1
Gasoline Range Organics (GRO)	ND		50		ug/L			03/28/14 03:27	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130			-		03/28/14 03:27	
1,2-Dichloroethane-d4 (Surr)	91		72 - 130					03/28/14 03:27	
Toluene-d8 (Surr)	100		70 - 130					03/28/14 03:27	1

5

7

8

9

10

12

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-56377-1

Client Sample ID: MW-4

Lab Sample ID: 720-56377-5 Date Collected: 03/26/14 12:50 Date Received: 03/27/14 11:55

Matrix: Water

Method: 8260B/CA_LUFTMS - 82 Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	130		2.5		ug/L			03/28/14 05:25	5
Ethylbenzene	3.9		2.5		ug/L			03/28/14 05:25	5
Toluene	13		2.5		ug/L			03/28/14 05:25	5
Xylenes, Total	9.8		5.0		ug/L			03/28/14 05:25	5
Gasoline Range Organics (GRO) -C5-C12	5500		250		ug/L			03/28/14 05:25	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106		67 - 130			-		03/28/14 05:25	5
1,2-Dichloroethane-d4 (Surr)	100		72 - 130					03/28/14 05:25	5
Toluene-d8 (Surr)	105		70 - 130					03/28/14 05:25	5

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-56377-1

Client Sample ID: NOBS-B1

Lab Sample ID: 720-56377-6 Date Collected: 03/26/14 13:30

Matrix: Water

Date Received: 03/27/14 11:55

Method: 8260B/CA_LUFTMS - 8	260B / CA LUFT	MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			03/28/14 03:57	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 03:57	1
Toluene	ND		0.50		ug/L			03/28/14 03:57	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 03:57	1
Gasoline Range Organics (GRO)	ND		50		ug/L			03/28/14 03:57	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130					03/28/14 03:57	1
1,2-Dichloroethane-d4 (Surr)	95		72 - 130					03/28/14 03:57	1
Toluene-d8 (Surr)	101		70 - 130					03/28/14 03:57	1

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-7

Client Sample ID: MW-1 Date Collected: 03/26/14 14:30 Date Received: 03/27/14 11:55

-C5-C12

Matrix: Water

 03/	00/// 0// 00	
	/28/14 04:26	1
03/	/28/14 04:26	1
03/	28/14 04:26	1
03/	28/14 04:26	1
03/	28/14 04:26	1
	03/	03/28/14 04:26 03/28/14 04:26 03/28/14 04:26

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 92 67 - 130 03/28/14 04:26 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) 97 72 - 130 03/28/14 04:26 Toluene-d8 (Surr) 99 70 - 130 03/28/14 04:26

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Client Sample ID: DUP

TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-8

Date Collected: 03/26/14 00:00 Date Received: 03/27/14 11:55 Matrix: Water

Method: 8260B/CA_LUFTMS - 82	260B / CA LUFT	MS						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	130		2.5	ug/L			03/28/14 05:54	5
Ethylbenzene	4.0		2.5	ug/L			03/28/14 05:54	5
Toluene	13		2.5	ug/L			03/28/14 05:54	5
Xylenes, Total	9.5		5.0	ug/L			03/28/14 05:54	5
Gasoline Range Organics (GRO) -C5-C12	5500		250	ug/L			03/28/14 05:54	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		•		03/28/14 05:54	5
1,2-Dichloroethane-d4 (Surr)	101		72 - 130				03/28/14 05:54	5
Toluene-d8 (Surr)	106		70 - 130				03/28/14 05:54	5

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-9

Matrix: Water

Date Collected: 03/27/14 08:40 Date Received: 03/27/14 11:55

Client Sample ID: MW-3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			03/28/14 04:55	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 04:55	1
Toluene	ND		0.50		ug/L			03/28/14 04:55	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 04:55	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			03/28/14 04:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130					03/28/14 04:55	1
1,2-Dichloroethane-d4 (Surr)	96		72 - 130					03/28/14 04:55	1
Toluene-d8 (Surr)	102		70 - 130					03/28/14 04:55	1

TestAmerica Pleasanton

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-10

Matrix: Water

Client Sample ID: POBS-B2 Date Collected: 03/27/14 09:20

Date Received: 03/27/14 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	6.0		0.50		ug/L			03/28/14 14:24	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 14:24	1
Toluene	ND		0.50		ug/L			03/28/14 14:24	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 14:24	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			03/28/14 14:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130					03/28/14 14:24	1
1,2-Dichloroethane-d4 (Surr)	88		72 - 130					03/28/14 14:24	1
Toluene-d8 (Surr)	97		70 - 130					03/28/14 14:24	1

0

9

10

10

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-11

Matrix: Water

Client Sample ID: POBS-A1
Date Collected: 03/27/14 10:00

Date Received: 03/27/14 11:55

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	40		0.50		ug/L			04/01/14 21:14	1
Ethylbenzene	0.72		0.50		ug/L			04/01/14 21:14	1
Toluene	1.3		0.50		ug/L			04/01/14 21:14	1
Xylenes, Total	2.3		1.0		ug/L			04/01/14 21:14	1
Gasoline Range Organics (GRO) -C5-C12	510		50		ug/L			04/01/14 21:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		67 - 130					04/01/14 21:14	1
1,2-Dichloroethane-d4 (Surr)	91		72 - 130					04/01/14 21:14	1
Toluene-d8 (Surr)	101		70 - 130					04/01/14 21:14	1

8

9

10

12

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-12

Matrix: Water

Client Sample ID: POBS-B1 Date Collected: 03/27/14 10:40 Date Received: 03/27/14 11:55

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	63	0.50		ug/L			03/28/14 13:33	1
Ethylbenzene	0.72	0.50		ug/L			03/28/14 13:33	1
Toluene	1.5	0.50		ug/L			03/28/14 13:33	1
Xylenes, Total	ND	1.0		ug/L			03/28/14 13:33	1
Gasoline Range Organics (GRO) -C5-C12	390	50		ug/L			03/28/14 13:33	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		67 - 130	-		03/28/14 13:33	1
1,2-Dichloroethane-d4 (Surr)	88		72 - 130			03/28/14 13:33	1
Toluene-d8 (Surr)	99		70 - 130			03/28/14 13:33	1

5

6

8

9

10

12

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-13

03/28/14 13:58

Matrix: Water

Client Sample ID: MW-2
Date Collected: 03/27/14 11:20
Date Received: 03/27/14 11:55

Toluene-d8 (Surr)

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	32	0.50		ug/L			03/28/14 13:58	1
Ethylbenzene	1.2	0.50		ug/L			03/28/14 13:58	1
Toluene	1.1	0.50		ug/L			03/28/14 13:58	1
Xylenes, Total	ND	1.0		ug/L			03/28/14 13:58	1
Gasoline Range Organics (GRO) -C5-C12	450	50		ug/L			03/28/14 13:58	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98	67 - 130		03/28/14 13:58	1
1,2-Dichloroethane-d4 (Surr)	89	72 - 130		03/28/14 13:58	1

70 - 130

102

6

8

9

10

4.0

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-56377-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-156119/7

Matrix: Water

Analysis Batch: 156119

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			03/27/14 19:36	1
Ethylbenzene	ND		0.50		ug/L			03/27/14 19:36	1
Toluene	ND		0.50		ug/L			03/27/14 19:36	1
Xylenes, Total	ND		1.0		ug/L			03/27/14 19:36	1
Gasoline Range Organics (GRO)	ND		50		ug/L			03/27/14 19:36	1
_C5_C12									

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		67 - 130		03/27/14 19:36	1
1,2-Dichloroethane-d4 (Surr)	97		72 - 130		03/27/14 19:36	1
Toluene-d8 (Surr)	101		70 - 130		03/27/14 19:36	1

LCS LCS

550

Unit

ug/L

Spike

Lab Sample ID: LCS 720-156119/10

Matrix: Water

Analysis Batch: 156119

Client Sample ID: Lab Control Sample Prep Type: Total/NA

62 - 120

%Rec. %Rec Limits

110

Added Analyte Result Qualifier 500 Gasoline Range Organics (GRO)

-C5-C12

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: LCS 720-156119/8

Matrix: Water

Analysis Batch: 156119

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Benzene		23.3	ug/L	93	79 _ 130	
Ethylbenzene	25.0	26.7	ug/L	107	80 - 120	
Toluene	25.0	25.0	ug/L	100	78 - 120	
m-Xylene & p-Xylene	50.0	52.1	ug/L	104	70 - 142	
o-Xylene	25.0	27.2	ug/L	109	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	94		72 - 130
Toluene-d8 (Surr)	106		70 - 130

Lab Sample ID: LCSD 720-156119/11

Matrix: Water

Analysis Batch: 156119

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	 500	571		ug/L		114	62 - 120	4	20
-C5-C12									

TestAmerica Pleasanton

Page 20 of 36

4/3/2014

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-156119/11

Matrix: Water

Analysis Batch: 156119

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	101		72 - 130
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: LCSD 720-156119/9

Matrix: Water

Analysis Batch: 156119

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	25.0	23.2		ug/L		93	79 - 130	0	20
Ethylbenzene	25.0	27.4		ug/L		110	80 - 120	3	20
Toluene	25.0	26.1		ug/L		104	78 - 120	4	20
m-Xylene & p-Xylene	50.0	53.2		ug/L		106	70 - 142	2	20
o-Xylene	25.0	27.8		ug/L		111	70 - 130	2	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: MB 720-156151/4

Matrix: Water

Analysis Batch: 156151

Client Sample ID: Method Blank

Prep Type: Total/NA

MB	MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			03/28/14 08:47	1
Ethylbenzene	ND		0.50		ug/L			03/28/14 08:47	1
Toluene	ND		0.50		ug/L			03/28/14 08:47	1
Xylenes, Total	ND		1.0		ug/L			03/28/14 08:47	1
Gasoline Range Organics (GRO)	ND		50		ug/L			03/28/14 08:47	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		67 - 130	_		03/28/14 08:47	1
1,2-Dichloroethane-d4 (Surr)	90		72 - 130			03/28/14 08:47	1
Toluene-d8 (Surr)	96		70 - 130			03/28/14 08:47	1

Lab Sample ID: LCS 720-156151/5

Matrix: Water

Analysis Batch: 156151

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	25.2		ug/L		101	79 - 130	
Ethylbenzene	25.0	25.1		ug/L		101	80 - 120	
Toluene	25.0	25.3		ug/L		101	78 ₋ 120	
m-Xylene & p-Xylene	50.0	51.5		ug/L		103	70 - 142	
o-Xylene	25.0	26.1		ug/L		104	70 - 130	

TestAmerica Pleasanton

Page 21 of 36

TestAmerica Job ID: 720-56377-1

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-156151/5

Matrix: Water

Analysis Batch: 156151

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	87		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCS 720-156151/7

Matrix: Water

Analysis Batch: 156151

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit %Rec Gasoline Range Organics (GRO) 500 451 ug/L 90 62 _ 120

-C5-C12

LCS LCS %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 98 67 - 130 1,2-Dichloroethane-d4 (Surr) 88 72 - 130 Toluene-d8 (Surr) 100 70 - 130

Lab Sample ID: LCSD 720-156151/6 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 156151

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	25.0	24.7		ug/L		99	79 - 130	2	20	
Ethylbenzene	25.0	23.8		ug/L		95	80 - 120	6	20	
Toluene	25.0	24.3		ug/L		97	78 - 120	4	20	
m-Xylene & p-Xylene	50.0	49.2		ug/L		98	70 - 142	5	20	
o-Xylene	25.0	24.7		ug/L		99	70 - 130	5	20	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCSD 720-156151/8

Matrix: Water

Analysis Batch: 156151

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD RPD Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits RPD Limit 500 446 89 20 Gasoline Range Organics (GRO) ug/L 62 - 120 -C5-C12

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	85		72 _ 130
Toluene-d8 (Surr)	99		70 - 130

TestAmerica Pleasanton

4/3/2014

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-156329/5

Matrix: Water

Analysis Batch: 156329

Client Sample ID: Method Blank

Prep Type: Total/NA

ı		MB	мв							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	ND		0.50		ug/L			03/31/14 19:03	1
ı	Ethylbenzene	ND		0.50		ug/L			03/31/14 19:03	1
	Toluene	ND		0.50		ug/L			03/31/14 19:03	1
ı	Xylenes, Total	ND		1.0		ug/L			03/31/14 19:03	1
	Gasoline Range Organics (GRO)	ND		50		ug/L			03/31/14 19:03	1
	-C5-C12									

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		67 - 130	_		03/31/14 19:03	1
1,2-Dichloroethane-d4 (Surr)	88		72 - 130			03/31/14 19:03	1
Toluene-d8 (Surr)	97		70 - 130			03/31/14 19:03	1

Lab Sample ID: LCS 720-156329/6

Matrix: Water

Analysis Batch: 156329

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	23.4		ug/L		93	79 - 130	
Ethylbenzene	25.0	22.7		ug/L		91	80 - 120	
Toluene	25.0	22.8		ug/L		91	78 - 120	
m-Xylene & p-Xylene	50.0	46.5		ug/L		93	70 - 142	
o-Xylene	25.0	23.5		ug/L		94	70 - 130	

LCS LCS

Surrogate	%Recovery Quali	fier Limits
4-Bromofluorobenzene	98	67 - 130
1,2-Dichloroethane-d4 (Surr)	81	72 - 130
Toluene-d8 (Surr)	99	70 - 130

Lab Sample ID: LCS 720-156329/8

Matrix: Water

Analysis Batch: 156329

Client Sample ID	: Lab Control Sample
	Pron Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	413		ug/L		83	62 - 120	
-C5-C12								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	87		72 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab

Matr

Analy

o Sample ID: LCSD 720-156329/7	Client Sample ID: Lab Control Sample Dup
trix: Water	Prep Type: Total/NA
alysis Batch: 156329	

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	25.0	23.3		ug/L		93	79 - 130	0	20
Ethylbenzene	25.0	22.7		ug/L		91	80 - 120	0	20

TestAmerica Pleasanton

Page 23 of 36

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-156329/7

Matrix: Water

Analysis Batch: 156329

Client Sample I	D: Lab	Control Sample Dup
		Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	25.0	23.2		ug/L		93	78 - 120	2	20
m-Xylene & p-Xylene	50.0	46.6		ug/L		93	70 - 142	0	20
o-Xylene	25.0	23.7		ug/L		95	70 - 130	1	20

	LCSD	LCSD		
Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene	99		67 - 130	
1,2-Dichloroethane-d4 (Surr)	85		72 - 130	
Toluene-d8 (Surr)	100		70 - 130	

Client Sample ID: Lab Control Sample Dup

Lab Sample ID: LCSD 720-156329/9 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 156329

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Limits Limit 500 410 ug/L 82 62 _ 120 Gasoline Range Organics (GRO)

-C5-C12

LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 97 67 - 130 1,2-Dichloroethane-d4 (Surr) 85 72 - 130 Toluene-d8 (Surr) 100 70 - 130

Lab Sample ID: MB 720-156448/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 156448

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			04/01/14 18:43	1
Ethylbenzene	ND		0.50		ug/L			04/01/14 18:43	1
Toluene	ND		0.50		ug/L			04/01/14 18:43	1
Xylenes, Total	ND		1.0		ug/L			04/01/14 18:43	1
Gasoline Range Organics (GRO)	ND		50		ug/L			04/01/14 18:43	1
-C5-C12									

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		67 - 130		04/01/14 18:43	1
1,2-Dichloroethane-d4 (Surr)	91		72 - 130		04/01/14 18:43	1
Toluene-d8 (Surr)	95		70 - 130		04/01/14 18:43	1

Lab Sample ID: LCS 720-156448/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 156448

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	23.8		ug/L		95	79 - 130	 _
Ethylbenzene	25.0	23.8		ug/L		95	80 - 120	
Toluene	25.0	24.4		ug/L		97	78 - 120	
m-Xylene & p-Xylene	50.0	50.2		ug/L		100	70 - 142	

TestAmerica Pleasanton

Page 24 of 36

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Lab Sample ID: LCS 720-156448/5

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 156448

Matrix: Water

LCS LCS Spike %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 103 o-Xylene 25.0 25.7 70 - 130 ug/L

LCS LCS Surrogate %Recovery Qualifier Limits 67 - 130 4-Bromofluorobenzene 100 72 - 130 1,2-Dichloroethane-d4 (Surr) 84 100 70 - 130 Toluene-d8 (Surr)

Lab Sample ID: LCS 720-156448/7 Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA

Analysis Batch: 156448

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits 500 495 ug/L 99 62 - 120 Gasoline Range Organics (GRO)

-C5-C12

LCS LCS Surrogate %Recovery Qualifier Limits 67 - 130 4-Bromofluorobenzene 97 72 - 130 88 1,2-Dichloroethane-d4 (Surr) 70 - 130 Toluene-d8 (Surr) 99

Lab Sample ID: LCSD 720-156448/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 156448

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 25.0 24.2 ug/L 97 79 - 130 20 Ethylbenzene 25.0 24.1 ug/L 96 80 - 120 20 Toluene 25.0 24.7 99 78 - 120 20 ug/L 2 50.0 50.7 20 m-Xylene & p-Xylene ug/L 101 70 - 142o-Xylene 25.0 25.9 ug/L 104 70 - 130 20

LCSD LCSD Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene 99 67 - 130 1,2-Dichloroethane-d4 (Surr) 84 72 - 130 Toluene-d8 (Surr) 102 70 - 130

Lab Sample ID: LCSD 720-156448/8 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D 500 518 ug/L 104 62 _ 120 20

Gasoline Range Organics (GRO) -C5-C12

Analysis Batch: 156448

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 98 67 - 130 72 - 130 1,2-Dichloroethane-d4 (Surr) 89

TestAmerica Pleasanton

Page 25 of 36

QC Sample Results

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

-

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-156448/8

Matrix: Water

Analysis Batch: 156448

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 102
 70 - 130

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

5

0

7

g

10

12

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

GC/MS VOA

Analysis Batch: 156119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56377-1	MW-7	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-56377-3	MW-6	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-56377-4	MW-5	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-56377-5	MW-4	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-56377-6	NOBS-B1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-56377-7	MW-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-56377-8	DUP	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-56377-9	MW-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-156119/10	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
		<u>-</u>		MS	
LCS 720-156119/8	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-156119/11	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-156119/9	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
		<u>-</u>		MS	
MB 720-156119/7	Method Blank	Total/NA	Water	8260B/CA_LUFT	
_				MS	

Analysis Batch: 156151

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Bato
720-56377-2	TB-1	Total/NA	Water	8260B/CA_LUFT
				MS
720-56377-10	POBS-B2	Total/NA	Water	8260B/CA_LUFT
				MS
720-56377-12	POBS-B1	Total/NA	Water	8260B/CA_LUFT
				MS
720-56377-13	MW-2	Total/NA	Water	8260B/CA_LUFT
				MS
LCS 720-156151/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT
				MS
LCS 720-156151/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT
				MS
LCSD 720-156151/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT
				MS
LCSD 720-156151/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT
				MS
MB 720-156151/4	Method Blank	Total/NA	Water	8260B/CA_LUFT
				MS

Analysis Batch: 156329

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
720-56377-1	MW-7	Total/NA	Water	8260B/CA_LUFT
				MS
LCS 720-156329/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT
				MS
LCS 720-156329/8	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT
				MS

TestAmerica Pleasanton

Page 27 of 36

6

3

0

8

46

11

12

QC Association Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

GC/MS VOA (Continued)

Analysis Batch: 156329 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Pr	ep Batch
LCSD 720-156329/7	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-156329/9	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-156329/5	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Analysis Batch: 156448

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-56377-11	POBS-A1	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-156448/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-156448/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-156448/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-156448/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-156448/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
_				MS	

Ţ

6

8

10

11

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Lab Sample ID: 720-56377-1

Matrix: Water

Client Sample ID: MW-7
Date Collected: 03/26/14 10:40
Date Received: 03/27/14 11:55

Batch Dilution Batch Prepared Batch Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab Total/NA 8260B/CA LUFTMS 156119 03/28/14 02:28 PDR TAL PLS Analysis TAL PLS PDR Total/NA Analysis 8260B/CA_LUFTMS 156329 03/31/14 22:31 1

Client Sample ID: TB-1 Lab Sample ID: 720-56377-2

Date Collected: 03/26/14 10:00 Matrix: Water

Date Received: 03/27/14 11:55

Batch Dilution Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 8260B/CA_LUFTMS TAL PLS Total/NA Analysis 156151 03/28/14 11:49 PDR

Client Sample ID: MW-6 Lab Sample ID: 720-56377-3

Date Collected: 03/26/14 11:20 Matrix: Water

Date Received: 03/27/14 11:55

Batch Batch Dilution Batch Prepared Method **Prep Type** Factor Number or Analyzed Type Run Analyst Lab Total/NA 03/28/14 02:58 PDR TAL PLS Analysis 8260B/CA_LUFTMS 156119

Client Sample ID: MW-5 Lab Sample ID: 720-56377-4

Date Collected: 03/26/14 12:00 Matrix: Water

Date Received: 03/27/14 11:55

Date Received: 03/27/14 11:55

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 156119 03/28/14 03:27 PDR TAL PLS

Client Sample ID: MW-4 Lab Sample ID: 720-56377-5

Date Collected: 03/26/14 12:50 Matrix: Water

Batch Dilution Batch Batch Prepared Factor **Prep Type** Type Method Run Number or Analyzed Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 156119 03/28/14 05:25 PDR TAL PLS

Client Sample ID: NOBS-B1 Lab Sample ID: 720-56377-6

Date Collected: 03/26/14 13:30 Matrix: Water

Date Received: 03/27/14 11:55

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total/NA 8260B/CA_LUFTMS 156119 03/28/14 03:57 PDR TAL PLS Analysis

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Lab Sample ID: 720-56377-7

Matrix: Water

Client Sample ID: MW-1 Date Collected: 03/26/14 14:30 Date Received: 03/27/14 11:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS	·	1	156119	03/28/14 04:26	PDR	TAL PLS

Lab Sample ID: 720-56377-8

Matrix: Water

Date Collected: 03/26/14 00:00 Date Received: 03/27/14 11:55

Client Sample ID: DUP

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		5	156119	03/28/14 05:54	PDR	TAL PLS

Client Sample ID: MW-3 Lab Sample ID: 720-56377-9

Date Collected: 03/27/14 08:40 Matrix: Water

Date Received: 03/27/14 11:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	156119	03/28/14 04:55	PDR	TAL PLS

Client Sample ID: POBS-B2 Lab Sample ID: 720-56377-10

Date Collected: 03/27/14 09:20 Matrix: Water

Date Received: 03/27/14 11:55

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA LUFTMS			156151	03/28/14 14:24	PDR	TAL PLS	_

Client Sample ID: POBS-A1 Lab Sample ID: 720-56377-11

Date Collected: 03/27/14 10:00 Matrix: Water

Date Received: 03/27/14 11:55

Analysis

8260B/CA_LUFTMS

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA LUFTMS			156448	04/01/14 21:14	I PI	TAL PLS

Client Sample ID: POBS-B1 Lab Sample ID: 720-56377-12

Date Collected: 03/27/14 10:40 **Matrix: Water** Date Received: 03/27/14 11:55

156151 03/28/14 13:33 PDR

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number or Analyzed Analyst

TAL PLS

Lab Chronicle

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-56377-1

Lab Sample ID: 720-56377-13

Matrix: Water

Client Sample ID: MW-2 Date Collected: 03/27/14 11:20 Date Received: 03/27/14 11:55

Prepared Batch Batch Dilution Batch Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 156151 03/28/14 13:58 PDR TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority California	Program State Prog	gram	EPA Region 9	Certification ID 2496	Expiration Date 01-31-16
Analysis Method	Prep Method	Matrix	Analyt	е	

4

5

0

ŏ

10

46

13

Method Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
•			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Δ

7

8

11

19

13

Sample Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-56377-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-56377-1	MW-7	Water	03/26/14 10:40	03/27/14 11:55
720-56377-2	TB-1	Water	03/26/14 10:00	03/27/14 11:55
720-56377-3	MW-6	Water	03/26/14 11:20	03/27/14 11:55
720-56377-4	MW-5	Water	03/26/14 12:00	03/27/14 11:55
720-56377-5	MW-4	Water	03/26/14 12:50	03/27/14 11:55
720-56377-6	NOBS-B1	Water	03/26/14 13:30	03/27/14 11:55
720-56377-7	MW-1	Water	03/26/14 14:30	03/27/14 11:55
720-56377-8	DUP	Water	03/26/14 00:00	03/27/14 11:55
720-56377-9	MW-3	Water	03/27/14 08:40	03/27/14 11:55
720-56377-10	POBS-B2	Water	03/27/14 09:20	03/27/14 11:55
720-56377-11	POBS-A1	Water	03/27/14 10:00	03/27/14 11:55
720-56377-12	POBS-B1	Water	03/27/14 10:40	03/27/14 11:55
720-56377-13	MW-2	Water	03/27/14 11:20	03/27/14 11:55

4

7

8

9

10

12

13

CHAIN OF CUSTODY RECORD

Stantec Rancho Cordova Office 3017 Kilgore Road, Suite 100 Rancho Cordova, CA 95670

-		157760
Stantec Company Contact(s) for Invoice:	Stantec Project #	DATE: 3-27-14
Project Manager: Brian Westhoff	185702534	PAGE:
email: brian.westhoff@stantec.com	105/02554	/ OF /

	TEL:(916) 861-0400 FAX:(916)861-0430	email: bri	an.westho	ff@sta	antec.	com							0200-				/	OF /	<i>!</i>	
Project Nar	_{pe:} Bohanno	n					Sample	(s) Printe	i Name:				Laborat	orv:						
Address:			Charles Melancon			TestAmerica														
575 Paseo Grande, San Lorenzo CA			Sample	(s) Signat			THE REAL PROPERTY AND ADDRESS OF THE PARTY AND		Lab Use ()rily:		394	1000							
<u> </u>							2	A STATE OF THE PARTY OF THE PAR								1 Blate i con	1.0066.0			
Turn-aroun	d Time (Business Days):												DEOUE	CTED A	NALVE					
10 DAYS	X 5 DAYS 72 HF 48 H		24 H□	<24	4 H								REQUE	SIEDA	WALYS) (S				
☐ OTI	HER																			
Cassialla	-tti		11 0	! t (O)			_													
Special in	structions or Notes:	emperature	upon Hece	ipt (C):			↓							•						
İ							2601													
							ργ													
							TPH-9/BTEX by 8260B										İ			;
LAB USE	F.110 111 10 1	SAM	PLING	MAT-	No. of	Pre-	- \$													į
CMLY	Field Sample Identification	DATE	TIME	RIX	Cont.	serve	臣											Labo	oratory Note	s
0	MW-7	3-26-14	1040	W	3	HCL	X													·
(0.6) (0.5)	TB-1	Ì	1000	ì	1	j	ì													
	MW-6		1120																	
,	MW-5		1200	1																
13	MW-4	1	1250																	
	NOBS-BI		1330																	
And the second s	MW-I		1430																	
	DUP				1									i			i	· · · · · · · · · · · · · · · · · · ·		
3 (4) (4) (4) 3 (4) (4)	MW-3	3-27-14	840			П														-
1000	POBS-B2		920									İ		-						
	POBS-A1		1000	Ħ										-					-	
1 0 de 1 2 e de	POBS-B1		1040					i i						72	20-5637	7 Chain	of Custo	dy	_	
Marine	MW-2		1120		V	1	V							_	-:	1	1	ſ	_	
		1				_ *	Ī													
		İ																		
Reinquishe	Sy (Synature)	Date:	Time	Receive	ad by: (Si	ignatiere)		-67	. 1	<u> </u>	<u> </u>				: 5	I ^{Time}	م جسر د ا		7 1	6
Relinquished	by: (Signature)	3-27-14 Date:	(/55-	Receive	ed by: (Si	ignature)	منر	-W	<u>ml</u>	لم				3-2	7-19	Time:	155		<u> 3,1</u>	_
	·												'		l		ı			
Relinquished	by: (Signature)	Date:	Time	Receive	ed by (Si	gnature)										Time:	1			
		1		l																

Login Sample Receipt Checklist

Client: Stantec Consulting Corp. Job Number: 720-56377-1

Login Number: 56377 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

orditori contanto, cucimi		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

4

6

8

10

12

13

APPENDIX D Chemical Concentration Trends in Groundwater

First Semi-Annual 2014 Groundwater Monitoring Report

PN: 185702534 May 8, 2014

