

David D. Bohannon Organization Sixty 31st Avenue San Mateo, CA 94403-3404

т 650.345.8222

F 650.573.5457

w ddbo.com

December 20, 2012

SUBMITTED ELECTRONICALLY

Mr. Mark E. Detterman, P.G., CEG Hazardous Materials Specialist Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

RECEIVED

By Alameda County Environmental Health at 5:38 pm, Jan 02, 2013

Re: Third Quarter 2012 Groundwater Monitoring Report – Former Petroleum Underground Storage Tank (UST) Site David D. Bohannon Organization Property Located at 575 Paseo Grande - San Lorenzo, CA

Dear Mr. Detterman:

Enclosed for your review is the *Third Quarter 2012 Groundwater Monitoring Report* prepared by Stantec Consulting Services Inc. (Stantec) on behalf of David D. Bohannon Organization (Bohannon). The report summarizes recent groundwater monitoring and sampling conducted by Stantec at 575 Paseo Grande in San Lorenzo, California (the Site). Quarterly groundwater monitoring and reporting is being conducted by Stantec pursuant to the Alameda County Environmental Health (ACEH) letter to Bohannon dated August 31, 2012.

The fourth quarter 2012 sampling event was conducted in November 2012. Bohannon will submit a fourth quarter 2012 groundwater monitoring report to ACEH by March 1, 2013 as required by ACEH in the August 31, 2012 letter to Bohannon.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge. If you have any questions regarding the enclosed report, please contact me at (650) 345-8222.

Sincerely,

CC:

Scott E. Bohannon, Senior Vice President

Mr. Chris Maxwell, Stantec Consulting Services Inc.

Mr. Andrew A. Bassak, Manatt, Phelps, and Phillips LLP

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT David D. Bohannon Organization

575 Paseo Grande San Lorenzo, California

PN: 185702534

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

Limitations and Certifications December 21, 2012

Limitations and Certifications

This report was prepared in accordance with the scope of work outlined in Stantec's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of David D. Bohannon Organization for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Stantec. To the extent that this report is based on information provided to Stantec by third parties, Stantec may have made efforts to verify this third party information, but Stantec cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by Stantec.

Prepared by:

Mason Albrecht, P.E. #C78130

Engineering Associate

Reviewed by:

Chris Maxwell, P.G.

Principal Geologist

Information, conclusions, and recommendations provided by Stantec in this document have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

Licensed Reviewer:

Mason Albrecht, P.E. #C78130

Engineering Associate

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

Table of Contents December 21, 2012

Table of Contents

	IITATIONS AND CERTIFICATIONS	
TAI	BLE OF CONTENTS	I
LIS	T OF ATTACHMENTS	II
1.0	INTRODUCTION	. 1-1
2.0	GROUNDWATER MONITORING	. 2-1
2.1	WATER LEVEL GAUGING	. 2-1
2.2	GROUNDWATER SAMPLING	. 2-1
	2.2.1 Quality Assurance/Quality Control Procedures	. 2-2
3.0	RESULTS	
3.1	GROUNDWATER ANALYTICAL RESULTS	
4.0	CONCLUSIONS	

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

List of Attachments December 21, 2012

List of Attachments

LIST OF TABLES

Table 1	Well Construction Details
Table 2	Historical Groundwater Elevations
Table 3	Groundwater Analytical Results – September 2012 and Historical

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Potentiometric Surface Map, September 18, 2012
Figure 4	Petroleum Hydrocarbon Concentrations in Groundwater, September 18, 2012

Note: Tables and Figures appear at end of report.

LIST OF APPENDICES

Appendix A	Summary of Previous Site Investigations and Remedial Actions
Appendix B	Field Data Sheets for the September 2012 Groundwater Monitoring Event
Appendix C	Laboratory Analytical Report and Chain-of-Custody for the September 2012 Groundwater
	Monitoring Event
Appendix D	Chemical Concentration Trends in Groundwater

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

Introduction
December 21, 2012

1.0 Introduction

Stantec Consulting Services Inc. (Stantec; formerly SECOR) presents this groundwater monitoring report for the third quarter of 2012 which describes results of groundwater monitoring and sampling conducted on September 18, 2012 for the property located at 575 Paseo Grande, San Lorenzo, California (Site), Figure 1. This sampling event was conducted by Stantec pursuant to a letter from Alameda County Environmental Health (ACEH) to David D. Bohannon Organization (Bohannon), dated August 31, 2012, requesting additional third quarter 2012 groundwater monitoring to monitor post-remediation trends at the Site. The scope of work for the third quarter 2012 included measuring the depth to water in groundwater monitoring wells MW-1 through MW-7 and observation wells POBS-A1, POBS-B1, POBS-B2, and NOBS-B1 (Figure 2), and collecting groundwater samples for analysis of total petroleum hydrocarbons as gasoline (TPH-g) and benzene, toluene, ethylbenzene, and total xylenes, (collectively BTEX). Groundwater samples were not collected from monitoring wells MW-1, MW-5, MW-6, and MW-7 during the third quarter 2012 pursuant to the August 31, 2012 letter.

Site background information including a summary of previous Site investigations and remedial actions is included in Appendix A of this report.

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

Groundwater Monitoring December 21, 2012

2.0 Groundwater Monitoring

The horizontal coordinates and elevations of all Site wells were surveyed by a California licensed land surveyor on September 24, 2012 to California State Water Resources Control Board (SWRCB)

GeoTracker requirements and pursuant to technical comment #1 of the August 31, 2012 ACEH letter to Bohannon. Well construction information including top of casing elevations were updated and are shown on Table 1. The elevations in feet above mean sea level are based on the North American Vertical Datum of 1988. The vertical datum for the previous well surveys conducted in May 1996 and December 2000 was the National Geodetic Vertical Datum of 1929. The top of casing elevations in relation to mean sea level from previous surveys are lower than the September 24, 2012 survey due to the different datum reference. The top of casing elevations obtained from the September 24, 2012 survey were used to calculate groundwater elevations based on the depth-to-water measurements collected from Site monitoring wells on September 18, 2012 as described below.

Site-wide groundwater monitoring and sampling was performed on September 18, 2012, and consisted of sounding all Site monitoring wells for depth-to-water and sampling wells MW-2 through MW-4, POBS-A1, POBS-B1, POBS-B2, and NOBS-B1. Groundwater samples were not collected from monitoring wells MW-1, MW-5, MW-6, and MW-7 during the third quarter 2012 pursuant to the August 31, 2012 letter. Field data sheets are provided in Appendix B. Laboratory analytical data is reported on Table 3 and included in Appendix C. The following summarizes the data collected by Stantec in September 2012.

2.1 WATER LEVEL GAUGING

Prior to purging and sampling, the depth-to-water was measured from the top of each well casing using a water-level indicator graduated to 0.01 foot. Depth-to-groundwater measurements and surveyed wellhead top-of-casing elevations were used to calculate groundwater surface elevations in wells MW-1 through MW-7. Table 2 presents historical monitoring well groundwater elevation data for the Site.

The average depth-to-water measured at the Site on September 18, 2012 was 6.84 feet below the top of well casing with an average water-table elevation of 21.98 feet above mean sea level (amsl). A potentiometric surface map illustrating the interpreted groundwater surface elevation and flow direction on September 18, 2012 is presented on Figure 3. The hydraulic gradient across the Site was approximately 0.0024 feet per foot (ft/ft) toward the southwest.

2.2 GROUNDWATER SAMPLING

On September 18, 2012, wells were purged and sampled using a low-flow purging method consisting of dedicated well tubing attached to a variable speed peristaltic pump set to extract groundwater at a rate of approximately 200 milliliters per minute (mL/min). Temperature, conductivity, pH, dissolved oxygen (DO)

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

Groundwater Monitoring December 21, 2012

content, and oxidation/reduction potential (ORP) were monitored using a flow-through cell during purging to confirm stable water conditions prior to sampling. Observations of water color and odor were also recorded during purging. Copies of field data sheets are attached as Appendix B.

Samples were collected from each well using the dedicated tubing to eliminate the possibility of cross-contamination between wells. Samples were placed in laboratory-supplied sample containers, labeled, and stored on ice pending delivery to TestAmerica, a California state accredited lab located in Pleasanton, California. The groundwater samples were analyzed for gasoline range organics (C5-C12) and BTEX by United States Environmental Protection Agency (U.S. EPA) Method 8260B.

2.2.1 Quality Assurance/Quality Control Procedures

Analytical data were evaluated for accuracy and precision based on field and laboratory quality assurance and quality control (QA/QC) performance.

Duplicate Sample

One duplicate sample was collected during the third quarter 2012 sampling event from monitoring well MW-3. The analysis of field duplicate samples is a measure of both field and analytical precision.

Holding Times

The laboratory QA/QC includes checking adherence to holding times. Holding times are established by the U.S. EPA and refer to the maximum allowable time to pass between sample collection and analysis by the laboratory. All analyses were performed within the holding times specified by the U.S. EPA.

Control Spikes and Method Blanks

The laboratory control spike (LCS) and matrix spike (MS) recovery results and method blank (MB) results were used to assess accuracy of the analytical data. The analytical program included four LCSs and five LCS duplicates, one MS and MS duplicate pair, and two MBs. The spike recovery results were within the prescribed range of acceptable limits for analytical accuracy in all cases. The data are included in Appendix C.

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

Results December 21, 2012

3.0 Results

The following presents a discussion of results of the September 2012 groundwater monitoring conducted at the Site.

3.1 GROUNDWATER ANALYTICAL RESULTS

Petroleum hydrocarbon chemical data for the September 2012 events are shown in Table 3 and illustrated on Figure 4. Laboratory analytical reports are included in Appendix C. Historical concentration trends for TPHg and benzene in select groundwater monitoring wells including MW-2, MW-3, MW-4, and POBS-A1 are included in Appendix D.

The TPHg result from on-site monitoring well MW-2 was slightly above the May 2012 sampling event. The concentrations of benzene in this well decreased from the May 2012 event. Concentrations of these compounds remain well below historical concentrations for MW-2. Toluene, ethylbenzene, and xylenes were not detected above the MRLs during the September 2012 sampling of well MW-2.

Sample analytical results from off-site well MW-4 show that concentrations decreased from June 2012 by over fifty-percent. For example, TPHg and benzene decreased from 3,400 μ g/L and 83 μ g/L, respectively in June 2012, to 1,400 μ g/L and 25 μ g/L in September 2012.

The concentrations of all petroleum hydrocarbons in well POBS-A1 increased from the May 2012 sampling event. The September 2012 benzene concentration in MW-2 (1,100 μ g/L) is equal to the concentration observed during the post-DPE sampling event in January 2010.

The concentrations of petroleum hydrocarbons in the primary and duplicate samples from monitoring well MW-3, located approximately 14 feet downgradient of POBS-A1, also increased from the May 2012 sampling event (most petroleum hydrocarbon concentrations in MW-3 were below MRLs in May 2012). Petroleum hydrocarbon concentrations in MW-3 remain well below historical concentrations.

THIRD QUARTER 2012 GROUNDWATER MONITORING REPORT DAVID D. BOHANNON ORGANIZATION

Conclusions
December 21, 2012

4.0 Conclusions

The following presents a discussion of the most significant results of the third quarter 2012 monitoring and sampling event conducted in September 2012:

- □ As indicated by the sample analytical results for well POBS-A1 and MW-3, the concentrations of TPHg and BTEX in groundwater within and immediately downgradient of the former UST area increased compared to the May 2012 sampling event. The September 2012 concentrations remain substantially below historical values pre-remediation. The concentrations will be monitored during the fourth quarter 2012 monitoring and sampling event.
- □ Compared to the second quarter 2012 monitoring and sampling event in May 2012, petroleum hydrocarbon concentrations appear to be stable in on-site monitoring well MW-2 and decreasing in off-site monitoring well MW-4. The September 2012 concentrations remain substantially below historical values pre-remediation.

TABLES

December 21, 2012

Third Quarter 2012 Groundwater Monitoring Report
David D. Bohannon Organization
575 Paseo Grande
San Lorenzo, California
Stantec PN: 185702534

TABLE 1
Well Construction Details
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

Well	Date Installed	Top of Casing Elevation (ft amsl) ¹	Total Depth (ft bgs)	Casing Diameter (inches)	Screen Slot Size (inches)	Screen Length (feet)	Top of Screen (ft bgs)	Bottom of Screen (ft bgs)
MW-1	5/10/1996	29.77	15.5	2	0.02	9.75	5.5	15.25
MW-2	5/10/1996	29.54	15.5	2	0.02	9.75	5.5	15.25
MW-3	5/10/1996	29.34	14.5	2	0.02	9.75	4.5	14.25
MW-4	10/2/2000	28.64	15	2	0.02	9	6	15
MW-5	10/2/2000	28.56	15	2	0.02	9	6	15
MW-6	10/2/2000	27.70	15	2	0.02	9	6	15
MW-7	10/2/2000	28.22	15	2 2	0.02	9	6	15
PIW-A1	5/4/2004	32.46	18	4	0.02	10	8	18
PIW-A2	5/4/2004	32.57	18	4	0.02	10	8	18
PIW-A3	5/4/2004	31.74	18	4	0.02	10	8	18
PIW-A4	5/6/2004	32.35	18	4	0.02	10	8	18
PIW-B1	5/3/2004	32.11	25.5	4	0.02	6	19.5	25.5
PIW-B2	5/3/2004	32.37	26	4	0.02	6	20	26
PIW-B3	5/4/2004	31.91	26	4	0.02	6	20	26
PIW-B4	5/4/2004	32.18	26	4	0.02	6	20	26
POBS-A1	5/6/2004	29.84	18	1	0.02	10	8	18
POBS-B1	5/6/2004	29.95	26	1	0.02	6	20	26
POBS-B2	5/6/2004	29.21	26	2	0.02	6	20	26
NIW-A1	5/5/2004	31.53	18	4	0.02	10	8	18
NIW-A2	5/5/2004	30.80	18	4	0.02	10	8	18
NIW-B1	5/5/2004	29.91	26	4	0.02	6	20	26
NIW-B2	5/5/2004	31.04	26	4	0.02	6	20	26
NOBS-B1	5/7/2004	28.54	26	2	0.02	6	20	26
DP-1	9/30/2005	32.53	20.5	8	0.02	10	4.75	14.75
DP-2	9/29/2005	32.35	20	8	0.02	10	4.25	14.25
DP-3	9/29/2005	32.22	20	8	0.02	10	4.50	14.50
DP-4	9/28/2005	32.07	20	8	0.02	10	4.25	14.25
DP-5	9/28/2005	32.24	20.25	8	0.02	9.75	4.75	14.50
DP-6	9/29/2005	31.66	20.25	8	0.02	10	4.50	14.50
DP-7	9/29/2005	31.34	20.25	8	0.02	10	4.50	14.50

Abbreviations:

ft amsl = feet above mean sea level ft bgs = feet below ground surface in = inches NA = Not Available or Not Known

Notes:

- 1) Top of casing elevations surveyed by Mid Coast Engineers on September 24, 2012; North American Vertical Datum of 1988, NAVD 88.
- 2) Well construction information in Table 1 was updated in September 2012 for Geotracker compliance.

TABLE 2
Historical Groundwater Elevations
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

	TOC Elevation ¹	DTW	Groundwater Elevation
Date Sampled	(ft amsl)	(ft BTOC)	(ft amsl)
MW-1	(it dirioi)	(11 100)	(it diriol)
5/17/1996	27.11	5.65	21.46
10/8/1996	_,	7.47	19.64
4/1/1997		6.27	20.84
6/12/1997		6.90	20.21
9/10/1997		7.48	19.63
6/8/1999		6.44	20.67
9/13/1999		7.56	19.55
12/21/1999		7.41	19.70
3/17/2000		5.35	21.76
12/5/2000	26.98	6.99	19.99
2/28/2001	20.30	5.71	21.27
8/22/2001		7.39	19.59
5/22/2001		6.25	20.73
8/29/2002		7.23	19.75
12/2/2002		7.13	19.85
3/4/2003		5.77	21.21
12/18/2003		6.37	20.61
4/13/2004		6.13	20.85
12/2/2004		6.93	20.05
5/27/2005		5.90	20.05
		6.79	20.19
8/24/2006 1/13/2010		6.59	20.19
5/3/2010 5/3/2012		5.92	
	20.77	7.32	21.06
9/18/2012	29.77	1.32	22.45
MW-2			
5/17/1996	26.73	5.56	21.17
10/8/1996	20.70	7.15	19.58
4/1/1997		6.61	20.12
6/12/1997		6.76	19.97
9/10/1997		7.19	19.54
6/8/1999		6.45	20.28
9/13/1999		7.46	19.27
12/21/1999		7.26	19.47
3/17/2000		5.56	21.17
12/5/2000	26.73	7.01	19.72
2/28/2001		5.81	20.92
8/22/2001		7.42	19.31
5/22/2002		6.40	20.33
8/29/2002		7.26	19.47
12/2/2002		7.02	19.71
3/4/2003		5.91	20.82
12/18/2003		6.47	20.26
4/13/2004		6.28	20.45
12/2/2004		6.80	19.93
5/27/2005		6.11	20.62
8/24/2006		6.90	19.83
1/13/2010		6.53	20.20
5/3/2012		6.17	20.56
9/18/2012	29.54	7.37	22.17
5/10/2012	20.04	7.07	<u></u> 17
		<u> </u>	

TABLE 2
Historical Groundwater Elevations
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

	TOC Elevation ¹	DTW	Groundwater Elevation
Date Sampled	(ft amsl)	(ft BTOC)	(ft amsl)
MW-3			
5/17/1996	26.15	4.39	21.76
10/8/1996		6.82	19.33
4/1/1997		5.53	20.62
6/12/1997		6.18	19.97
9/10/1997		6.81	19.34
6/8/1999		5.74	20.41
9/13/1999		6.88	19.27
12/21/1999		6.66	19.49
3/17/2000		4.51	21.64
12/5/2000	26.55	6.84	19.71
2/28/2001	_0.00	5.44	21.11
8/22/2001		7.29	19.26
5/22/2002		6.22	20.33
8/29/2002		7.26	19.29
12/2/2002		6.85	19.70
3/4/2003		5.72	20.83
12/18/2003		6.15	20.40
4/13/2004		5.97	20.58
12/2/2004		6.64	19.91
5/27/2005		5.74	20.81
8/23/2006		6.69	19.86
1/13/2010		6.08	20.47
5/3/2012		5.72	20.47
9/18/2012	29.34	7.18	20.63
9/10/2012	29.34	7.10	22.10
MW-4			
12/5/2000	25.87	6.28	19.59
2/28/2001	_0.0.	4.99	20.88
8/22/2001		6.73	19.14
5/22/2002		5.50	20.37
8/29/2002		6.55	19.32
12/2/2002		6.28	19.59
3/4/2003		5.28	20.59
12/18/2003		5.85	20.02
4/13/2004		5.50	20.02
12/2/2004		6.05	19.82
5/27/2005		5.46	20.41
8/24/2006		6.15	19.72
1/13/2010		5.78	20.09
5/3/2012		5.78	20.49
6/8/2012		5.87	20.49
9/18/2012	20 64		21.99
9/10/2012	28.64	6.65	21.99

TABLE 2
Historical Groundwater Elevations
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

	TOC Elevation ¹	DTW	Groundwater Elevation
Date Sampled	(ft amsl)	(ft BTOC)	(ft amsl)
MW-5			
12/5/2000	25.77	6.25	19.52
2/28/2001	-	4.95	20.82
8/22/2001		6.69	19.08
5/22/2002		5.50	20.27
8/29/2002		6.54	19.23
12/2/2002		6.37	19.40
3/4/2003		5.41	20.36
		5.65	20.36
12/18/2003			
4/13/2004		5.37	20.40
12/2/2004		6.03	19.74
5/27/2005		5.46	20.31
8/24/2006		6.17	19.60
1/13/2010		5.72	20.05
5/3/2012		5.52	20.25
9/18/2012	28.56	6.67	21.89
MW-6			
12/5/2000	24.89	5.68	19.21
2/28/2001		4.35	20.54
8/22/2001		6.15	18.74
5/22/2002		4.91	19.98
8/29/2002		5.96	18.93
12/2/2002		5.70	19.19
3/4/2003		4.69	20.20
12/18/2003		5.05	19.84
4/13/2004		4.87	20.02
12/2/2004		5.42	19.47
5/27/2005		4.75	20.14
8/24/2006		5.57	19.32
1/13/2010		5.17	19.72
5/3/2012		4.82	20.07
9/18/2012	27.70	6.10	21.60
9/10/2012	21.10	0.10	21.00
MW-7			
12/5/2000	25.43	6.43	19.00
2/28/2001	20.10	4.76	20.67
8/22/2001		6.95	18.48
5/22/2001		5.55	19.88
8/29/2002		NM	19.00
		6.43	19.00
12/2/2002			
3/4/2003		5.10	20.33
12/18/2003		5.65	19.78
4/13/2004		5.27	20.16
12/2/2004		6.15	19.28
5/27/2005		5.12	20.31
8/24/2006		6.28	19.15
1/13/2010		5.97	19.46
5/4/2012		5.20	20.23
9/18/2012	28.22	6.60	21.62

TABLE 2 Historical Groundwater Elevations David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, CA

	TOC Elevation ¹	DTW	Groundwater Elevation
Date Sampled	(ft amsl)	(ft BTOC)	(ft amsl)

Notes:

DTW = Depth to water
ft amsl = feet above mean sea level
ft BTOC = feet below top of casing
NM = Not measured
TOC = Top of casing

1) Top of casing elevations surveyed by Mid Coast Engineers on September 24, 2012; North American Vertical Datum of 1988, NAVD 88. Previous surveys in May 1996 and December 2000 referenced National Geodetic Vertical Datum, NGVD 29.

TABLE 3
Groundwater Analytical Results - September 2012 and Historical
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Chromium	Dissolved Inorganic Lead
Date Sampled	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(μg/L)
Groundwater Mor	nitoring We		· · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,			,, ,
MW-1	•							
5/17/1996	1,100	< 0.5	8.7	7.4	17		<10	<50
10/8/1996	120	< 0.5	< 0.5	2.7	<0.5			
4/1/1997	550	< 0.5	< 0.5	7.6	6.6			
6/12/1997	160	< 0.5	< 0.5	2.9	1.7			
9/10/1997	640	2.2	3.8	7.4	16			
6/8/1999	<50	< 0.5	< 0.5	<0.5	<0.5	<10	<10	<20
9/13/1999	<50	< 0.5	< 0.5	< 0.5	1.1			<5
12/21/1999	<50	< 0.5	< 0.5	<0.5	<0.5			
3/17/2000	<50	< 0.5	< 0.5	<0.5	0.79	<5		<5
12/5/2000	<50	< 0.5	< 0.5	< 0.5	< 0.5			
2/28/2001	<50	< 0.5	< 0.5	<0.5	<0.5			
8/22/2001	<50	< 0.5	< 0.5	<0.5	< 0.5	<5		<5
5/22/2002	<50	< 0.5	< 0.5	<0.5	< 0.5			
8/29/2002	<50	< 0.5	< 0.5	<0.5	< 0.5			
12/2/2002	<50	< 0.5	< 0.5	<0.5	<0.5			
3/4/2003	<50	< 0.5	< 0.5	<0.5	< 0.5			
12/18/2003	<50	< 0.5	< 0.5	<0.5	< 0.5			
4/13/2004	<50	< 0.5	< 0.5	<0.5	<1.0			
6/18/2004	150	1.5	< 0.5	2.7	2.4			
5/27/2005	<50	1.6	< 0.5	< 0.5	< 0.5			
8/24/2006	<50	< 0.5	< 0.5	< 0.5	<1.0			
1/13/2010	<50	< 0.5	< 0.5	<0.5	<1.0			
5/3/2012	<50	< 0.5	< 0.5	<0.5	<1.0			
MW-2								
5/17/1996	23,000	900	330	650	1,500		<10	<50
10/8/1996	8,400	530	<50	400	360			
4/1/1997	7,600	470	64	210	250			
6/12/1997	8,200	440	52	190	190			
9/10/1997	8,500	390	51	220	240			
6/8/1999	2,100	240	8	33	40	<10	<10	33
9/13/1999	1,300	120	<5	<5	15			
12/21/1999	1,400	110	5.6	11	17			<5
3/17/2000	1,200	180	19	28	31	<50		<5
12/5/2000	800	75	1.8	11	14			
2/28/2001	1,200	120	7.1	19	27			
8/22/2001	990	75	3.5	8.9	8.1	<5		<5
5/22/2002	1,700	230	12	12	25			
8/29/2002	1,000	66	2.6	12	12			
12/2/2002	1,100	76	8.7	11	17			
3/4/2003	1,100	130	4.5	22	24			
12/18/2003	910	55	4.1	3.3	3.7			
4/13/2004	2,700	350	15	18	24			
10/5/2004	2,000	120	5.5	<2.5	8.3			
5/27/2005	5,700	450	53	240	71			
8/24/2006	1,400	90	4.7	16	21			
1/13/2010	130 ^J	1.2	< 0.5	<0.5	<1.0			
5/3/2012	350	22	< 0.5	2.1	<1.0			
9/18/2012	410	4.7	< 0.5	<0.5	<1.0			

TABLE 3
Groundwater Analytical Results - September 2012 and Historical
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Chromium	Dissolved Inorganic Lead
Date Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-3	(µg/ =)	(μg/ Ξ/	(µg/=/	(μg/ Ξ/	(µg/ =)	(µg/ =)	(μg/ Ξ)	(μg, Ξ)
5/17/1996	6,700	140	45	210	180		<10	<50
10/8/1996	1,800	2,700	240	910	970			
4/1/1997	27,000	520	50	520	450			
6/12/1997	29,000	2,700	160	940	500			
9/10/1997	290,000	1,800	3,200	2,800	6,900			
6/8/1999	1,700	320	6.4	15	<0.5	<10	<10	24
9/13/1999	5,400	1,000	<20	<20	<20			
12/21/1999	8,800	1,400	63	17	23			<5
3/17/2000	1,500	190	<5	7.6	<5	<50		<5
12/5/2000	5,400	790	20	7.4	10			
2/28/2001	3,600	850	15	25	10			
8/22/2001	8,100	1,600	28	44	17	<50		<5
5/22/2002	5,400	1,000	32	13	21			
8/29/2002	6,700	1,700	55	49	38			
12/2/2002	5,700	650	17	37	33			
3/4/2003	5,000	650	18	42	27			
12/18/2003	5,200	910	25	20	21			
4/13/2004	3,900	1,200	19	<5.0	<10			
6/18/2004	4,300	1,600	40	81	26			
8/27/2004	6,900	2,100	59	220	<50			
10/5/2004	9,800	2,500	52	160	38			
12/2/2004	8,300	2,400	41	200	29			
12/14/2004	15,000	3,600	140	560	210			
5/27/2005	5,500	840	36	210	41			
8/23/2006	1,700	190	5.3	51	<10			
1/13/2010	<50	2	<0.5	<0.5	<1.0			
5/3/2012	<50	<0.5	<0.5	<0.5	<1.0			
9/18/2012	480/440	110/100	2.6/2.4	0.66/0.62	1.2/1.1			
MW-4	100/ 110	110,100	210/211	0.00/0.02				
12/5/2000	3,900	320	13	41	31			<5
2/28/2001	3,400	250	14	44	22			<5
8/22/2001	4,800	260	12	27	9	<50		<5
5/22/2002	5,100	320	29	74	50			
8/29/2002	3,700	260	<5	30	28			
12/2/2002	5,100	250	8.9	26	22			
3/4/2003	4,500	170	18	63	47			
12/18/2003	2,900	160	8.3	8	<5			
4/13/2004	7,400	290	29	110	100			
6/18/2004	2,700	140	12	36	16			
8/27/2004	460	19	1.2	1.1	1.5			
10/5/2004	460	19	<1.0	<1.0	<1.0			
12/2/2004	2,800	120	5.4	8.3	5.3			
5/27/2005	7,300	350	37	100	50			
8/24/2006	2,400	59	8.2	19	14			
1/14/2010	400 J	1.6	< 0.5	<0.5	<1.0			
5/3/2012	400 6,800	1.6	<0.5 26	<0.5 15	<1.0 25			 -
6/8/2012	3,400	83	26 11	7.1	25 11	<0.50		
	3,400 1,400					<0.50		
9/18/2012	1,400	25	4.2	1.2	3.6			

TABLE 3
Groundwater Analytical Results - September 2012 and Historical
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

	TPH-G	Benzene	Toluene	Fthylhenzene	Total Xylenes	MTBE	Chromium	Dissolved Inorganic Lead
Date Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
MW-5	(µg/=/	(µg/ =)	(µg/2)	(µg/ =)	(μg/ L)	(µg/L)	(μg/ Ξ)	(μg, ε)
12/5/2000	<50	< 0.5	< 0.5	<0.5	< 0.5			<5
2/28/2001	<50	< 0.5	< 0.5	<0.5	< 0.5			<5
8/22/2001	<50	< 0.5	< 0.5	<0.5	< 0.5	<5		<5
5/22/2002	<50	< 0.5	< 0.5	<0.5	< 0.5			
8/29/2002	<50	<0.5	<0.5	<0.5	<0.5			
12/2/2002	<50	<0.5	<0.5	<0.5	<0.5			
3/4/2003	<50	<0.5	<0.5	<0.5	<0.5			
12/18/2003	<50	<0.5	< 0.5	<0.5	<0.5			
4/13/2004	<50	<0.5	< 0.5	<0.5	<1.0			
12/2/2005	<50	<0.5	<0.5	<0.5	<1.0			
5/27/2005	<50	<0.5	< 0.5	<0.5	<0.5			
8/24/2006	<50	<0.5	<0.5	<0.5	<1.0			
1/14/2010	<50	<0.5	<0.5	<0.5	<1.0			
5/3/2012	<50	<0.5	<0.5	<0.5	<1.0			
MW-6	\00	٧٥.٥	νο.σ	νο.σ	\1.0			
12/5/2000	<50	<0.5	<0.5	<0.5	<0.5			<5
2/28/2001								
	<50	< 0.5	<0.5	<0.5	<0.5	 -E		<5 .F
8/22/2001	<50	< 0.5	< 0.5	<0.5	<0.5	<5		<5
5/22/2002	<50	<0.5	< 0.5	<0.5	<0.5			
8/29/2002	<50	<0.5	< 0.5	<0.5	<0.5			
12/2/2002	<50	<0.5	< 0.5	<0.5	<0.5			
3/4/2003	<50	<0.5	<0.5	<0.5	<0.5			
12/18/2003	<50	<0.5	<0.5	<0.5	<0.5			
4/13/2004	<50	<0.5	<0.5	<0.5	<1.0			
12/2/2004	<50	<0.5	<0.5	<0.5	<1.0			
5/27/2005	<50	<0.5	<0.5	<0.5	<0.5			
8/24/2006	<50	<0.5	<0.5	<0.5	<1.0			
1/13/2010	<50	<0.5	<0.5	<0.5	<1.0			
5/3/2012	<50	< 0.5	< 0.5	<0.5	<1.0			
MW-7								
12/5/2000	<50	< 0.5	< 0.5	<0.5	1.5			<5
2/28/2001	<50	< 0.5	< 0.5	<0.5	6.7			<5
8/22/2001	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5		<5
5/22/2002	<50	< 0.5	< 0.5	< 0.5	< 0.5			
12/2/2002	<50	< 0.5	< 0.5	< 0.5	< 0.5			
3/4/2003	<50	< 0.5	< 0.5	<0.5	< 0.5			
12/18/2003	<50	< 0.5	< 0.5	< 0.5	< 0.5			
4/13/2004	<50	< 0.5	< 0.5	<0.5	<1.0			
12/2/2004	<50	<0.5	<0.5	<0.5	<1.0			
5/27/2005	<50	<0.5	< 0.5	< 0.5	< 0.5			
8/24/2006	<50	<0.5	<0.5	<0.5	<1.0			
1/13/2010	<50	< 0.5	< 0.5	<0.5	<1.0			
5/4/2012	<50	< 0.5	< 0.5	<0.5	<1.0			
Peroxide Treatme		Zone Inject	ion Wells					
PIW-A1								
5/13/2004	6,800	460	50	31	300			
6/18/2004	240	10	2.1	4	11			
8/27/2004	220	14	1.2	2	5			
10/5/2004	<50	<0.5	< 0.5	<0.5	<1.0			
12/2/2004	640	63	12.0	15	29			
PIW-A2								
5/13/2004	20,000	1,500	460	760	2,600			
6/18/2004	2,800	150	14	6.5	90			
8/27/2004	500	34	3	4.4	12			
12/2/2004	350	6.1	1.2	2.4	5.4			
PIW-A3	-30							
12/14/2004	1,500	220	28	55	99			
,, _ 00 1	.,500						I.	l .

TABLE 3
Groundwater Analytical Results - September 2012 and Historical
David D. Bohannon Organization
575 Paseo Grande, San Lorenzo, CA

	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Chromium	Dissolved Inorganic Lead
Date Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)
Peroxide Treatme				(F-9, =)	(F-9' = /	(F-9: -)	(4-9, -)	([2]
PIW-B1		1						
5/13/2004	1,900	28	< 5.0	11	51			
6/18/2004	270	22	1	2.2	2.7			
8/27/2004	230	11	0.85	1.7	4.3			
12/2/2002	66	< 0.5	<0.5	<0.5	<1.0			
PIW-B3								
5/13/2004	3,300	420	17	7.8	44			
6/18/2004	180	1.2	< 0.5	<0.5	2.4			
8/27/2004	230	20.0	0.93	3.3	2.9			
12/2/2004	64	0.75	< 0.5	< 0.5	<1.0			
Peroxide Treatme	nt Area - A	Zone Obse	rvation Well	ls				
POBS-A1								
5/13/2004	16,000	2,200	220	480	980			
6/18/2004	11,000	2,200	150	120	820			
8/27/2004	23,000	2,900	140	180	470			
10/5/2004	13,000	2,400	83	130	94			
12/2/2004	17,000	3,500	240	210	730			
12/14/2004	13,000	2,700	200	220	510			
5/27/2005	9,600	1,200	62	110	180			
8/24/2006	8,500	1,700	58	120	100			
1/13/2010	7,300 ^J	1,100	29	53	42			
5/4/2012	540	110	2.0	1.4	<1.0			
9/18/2012	2,600	1,100	27	8.3	18			
Peroxide Treatme	nt Área - E	Zone Obse	rvation Well	ls				
POBS-B1								
5/13/2004	11,000	250	71	160	590			
6/18/2004	3,500	9.8	< 0.5	0.8	13			
8/27/2004	500	1.4	<0.5	<0.5	<1.0			
12/2/2004	190	2.6	<0.5	<0.5	<1.0			
5/27/2005	68	17.0	<0.5	1.6	0.52			
8/24/2006	50	1.1	< 0.5	< 0.5	< 1.0			
5/4/2012	<50	0.80	< 0.5	< 0.5	< 1.0			
9/18/2012	<50	< 0.5	< 0.5	< 0.5	< 1.0			
POBS-B2								
5/13/2004	4,500	150	23	11	120			
6/18/2004	97	7.4	0.8	1.6	1.7			
8/27/2004	240	36.0	1.6	6.7	4.2			
12/2/2004	<50	<0.5	<0.5	<0.5	<1.0			
5/27/2005	97	33.0	0.56	1.3	0.74			
8/24/2006	57	< 0.5	< 0.5	< 0.5	< 1.0			
5/3/2012	83	8.8	< 0.5	< 0.5	< 1.0			
9/18/2012	<50	< 0.5	< 0.5	< 0.5	< 1.0			
Nitrate Injection A				1 3.3				
NIW-A1		,						
5/13/2004	9,300	1,800	59	250	96			
6/18/2004	3,100	340	22	93	55			
8/27/2004	250	13	1.4	6	5.7			
10/5/2004	1,700	150	<5.0	24	12			
12/2/2004	1,400	28	6.2	10	23			
5/27/2005	14,000	1,300	61.0	680	300			
NIW-A2	,500	.,500	2.10					
5/13/2004	970	18	<2.5	<2.5	4			
6/18/2004	200	6.4	1.7	2.1	3.5			
8/27/2004	<500	6.3	<5.0	<5.0	<10			
12/2/2004	<50	<0.5	<0.5	<0.5	<1.0			
5/27/2005	550	14.0	0.7	1.8	0.93			
5,21,2000	550	. 1.0	5.7		3.30		i .	<u>I</u>

TABLE 3 Groundwater Analytical Results - September 2012 and Historical David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, CA

	TPH-G	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Chromium	Dissolved Inorganic Lead
Date Sampled	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)
Nitrate Injection Area - B Zone Injection Wells		Wells						
NIW-B1								
5/13/2004	170	6.5	1.1	2.4	8.0			
6/18/2004	160	2.9	0.7	2.6	2.5			
8/27/2004	110	6.9	< 0.5	1.4	2.0			
12/2/2004	<50	< 0.5	< 0.5	< 0.5	<1.0			
NIW-B2								
5/13/2004	260	8.9	1.5	4	8.4			
6/18/2004	120	1.0	< 0.5	1.1	<1			
8/27/2004	120	4.4	< 0.5	1.1	1.6			
12/2/2004	<50	< 0.5	< 0.5	< 0.5	<1.0			
Nitrate Injection A	rea - Obse	ervation Well	s					
NOBS-B1								
5/13/2004	120	4.6	0.8	2.3	5.4			
6/18/2004	88	1.9	0.7	1.7	<1			
8/27/2004	180	5.5	0.53	0.99	1.6			
12/2/2004	<50	2.0	< 0.5	< 0.5	<1.0			
8/24/2006	< 50	< 0.5	< 0.5	< 0.5	< 1.0			
5/3/2012	< 50	< 0.5	< 0.5	< 0.5	< 1.0			
9/18/2012	< 50	< 0.5	< 0.5	< 0.5	< 1.0			

Abbreviations:

 $\mu g/L = micrograms per liter$

MTBE = methyl tert-butyl ether

TPH-G = Total Petroleum Hydrocarbons, Gasoline Range
-- = water sample not analyzed for specified constituents

Notes:

Bold indicates detected concentration.

J = the chromatograph for this sample does not match the chromatographic pattern of the specified standard

480/440 = primary and duplicate sample analytical results.

FIGURES

December 21, 2012

Third Quarter 2012 Groundwater Monitoring Report
David D. Bohannon Organization
575 Paseo Grande
San Lorenzo, California
Stantec PN: 185702534

APPENDIX A Summary of Previous Site Investigations and Remedial Actions

Third Quarter 2012 Groundwater Monitoring Report
David D. Bohannon Organization
575 Paseo Grande
San Lorenzo, California
Stantec PN: 185702534
December 21, 2012

APPENDIX A

Summary of Previous Site Investigations and Remedial Actions

David D. Bohannon Organization 575 Paseo Grande, San Lorenzo, California

Over the last 25 years, the Site has been used as an asphalt-paved parking area located in a C1 commercial zone. The Site was a gasoline station prior to 1969. Little information is known about the Site history related to its use as a gasoline service station. In anticipation of property redevelopment, investigation activities were conducted in March 1995 to determine if former underground service station equipment remained on-site. The work was conducted by Twining Laboratories, Inc. as documented in their letter report dated April 15, 1995. The investigation included a magnetometer survey followed by an exploratory excavation. In summary, the work conducted identified underground gasoline service station equipment which included what appeared to be the former tank pit, approximately 110 feet of fuel delivery system piping, and a grease sump and/or hydraulic lift pit in an area which may have been the former service garage. Field evidence and one soil sample indicated the potential for soil contamination along the piping runs, around the grease sump, and around the inferred location of the former tank pit. Characterization of the magnitude and extent of potential soil contamination were not performed during the initial activities.

In June 1995, SECOR conducted additional activities at the Site which included removal of the former underground storage tank (UST) system piping and the former grease sump, and characterization soil sampling along the pipelines and around the former grease sump and former tank pit areas. This work was summarized in SECOR's "Preliminary Characterization Report" to ACEH dated June 29, 1995 (SECOR, 1995). The characterization data from this investigation indicated that there were two areas of concern at the Site: 1) the former grease sump area; and 2) the former gasoline distribution system area. SECOR subsequently conducted excavation activities in these two areas. The soil excavated from the former sump area was transported off-site for disposal. The soil generated from the UST excavation was treated by means of aeration and later transported off-site for disposal. Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed during the investigation activities to evaluate the degree to which the groundwater had been affected. The results of the soil characterization and groundwater monitoring activities are reported in SECOR's documents entitled, "Report of Interim Remedial Actions" (RIRA; SECOR, 1996), dated June 4, 1996, and "Fourth Quarter 1996 Monitoring and Sampling Report," dated November 26, 1996.

In June 1999, a utility trench survey was conducted around the Site, and a passive soil vapor survey was performed downgradient from the Site. The results of the utility trench and passive soil vapor surveys are documented in SECOR's document entitled, "Third Quarter Groundwater Monitoring Results and Plume Definition Investigation Report", dated October 22, 1999 (3Q99 GWM Report, SECOR, 1999).

On December 5, 2000, four additional groundwater monitoring wells (MW-4 through MW-7) were installed at the Site. Soil and groundwater sampling was conducted to evaluate possible off-site migration of petroleum-related constituents originating from the Site, and to collect data to direct further subsurface investigations and/or remediation at the Site, if necessary. The work was conducted in general accordance with SECOR's documents entitled, "Work Plan for Additional Groundwater Monitoring Well Installation," dated October 22, 1999, and "Addendum to the Work Plan for Additional Groundwater

APPENDIX A SUMMARY OF PREVIOUS SITE INVESTIGATIONS AND REMEDIAL ACTIONS

Monitoring Well Installation," dated December 2, 1999. The Work Plan was approved with comments in correspondence from the ACEH in a letter dated November 4, 1999. Historically, two of the on-site wells (MW-2 and MW-3) and one well immediately downgradient to the west (MW-4) contain elevated concentrations of petroleum hydrocarbons. Wells further off-site to the west (MW-6 and MW-7) and south (MW-5) typically do not contain detectable levels of petroleum hydrocarbons, with exception of MW-7, which reported low concentrations of total xylenes (up to 6.7 micrograms per liter $[\mu g/L]$) in the first two sampling events (December 2000 and February 2001). The well has since been non-detect for all constituents.

In January 2003, SECOR performed an additional limited subsurface investigation as described in the document entitled, "Remedial Action Work Plan," dated October 25, 2002, and submitted to ACEH. The Work Plan was approved by ACEH in a letter dated October 28, 2002. Based on field observations, soil boring logs, and laboratory analytical results, SECOR concluded that: 1) perched groundwater was encountered within fill materials at approximately 5 to 8 feet bgs; 2) water-bearing zones were encountered in silt and sand at depths of 13- to -15 feet bgs (A zone), in sand from 16-to -19 feet bgs (B zone), and in silty sand at 22.5 feet bgs (C zone); and 3) soil sample analytical results suggest that the majority of chemical impact exists in silty clay from approximately 8-to -13.5 feet bgs within and adjacent to the former gasoline UST and pump island excavation. The findings of the investigation were presented in the document entitled, "Limited Subsurface Investigation Report and Work Plan for Additional Soil and Groundwater Assessment," dated February 19, 2003, and prepared by SECOR (SECOR, 2003a).

At the request of ACEH, a sensitive receptor survey was performed for the Site. The survey consisted of identifying the locations and depths of subsurface utilities near the Site and reviewing data provided by the California Department of Water Resources (DWR) for potential groundwater production wells. The survey results are presented in SECOR's document entitled, "Sensitive Receptor Survey and Conduit Study," dated June 30, 2003 (Receptor Study; SECOR, 2003b). The report indicates that no groundwater production wells are likely to be affected by hydrocarbons in the soil and groundwater at the Site.

Chemical Injection and Dual-Phase Extraction (DPE) Pilot Testing

The October 2002 Remedial Action Workplan (RAW) proposed nitrate injections to stimulate biological degradation of hydrocarbons in the groundwater. Based on the data collected in January 2003, additional remediation of soil was also recommended. An addendum to the RAW was submitted by SECOR in December 2003 proposing hydrogen peroxide injections for chemical oxidation of soils in addition to nitrate injections. The RAW addendum was approved by ACEH in a letter to Bohannon dated December 15, 2003.

In May 2004, EFI Global began the pilot groundwater remediation program. Four wells were installed on-site for the purposes of injecting nitrate solution into groundwater upgradient of well MW-4 (NIW-A1, NIW-A2, NIW-B1, and NIW-B2). Eight wells were installed on-site for injection of peroxide solution into soil and groundwater upgradient of well MW-3 (PIW-A1 to PIW-A4 and PIW-B1 to PIW-B4). Four wells were installed to observe the effects of the injection program (NOBS-B1, POBS-A1, POBS-B1, and POBS-B2). Injection and observation well installations were completed during May 2004 in accordance with the approved RAW, and initial chemical injections were completed during May/June 2004. Soil boring logs

APPENDIX A SUMMARY OF PREVIOUS SITE INVESTIGATIONS AND REMEDIAL ACTIONS

for these wells are provided in Appendix A. The well installation activities were described in the document entitled, "Semi-Annual (First Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report" prepared by EFI Global (EFI Global, 2004b).

Additional injections were completed in July 2004 (Phase Two) and October 2004 (Phase Three). Progress groundwater sampling for Phases Two and Three was conducted in August 2004 and December 2004, respectively. Following Phase Three injections, EFI Global conducted a single-day DPE test (February 2005) and a five-day DPE test (April 2005) in the area of the former gasoline UST. The results of the Phase Three progress sampling (December 2004) and single-day DPE test (February 2005) are reported in the document entitled, "Semi-Annual (Second Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report" (EFI Global, 2005).

Site-wide groundwater monitoring was conducted in May 2005. In June 2005, SECOR advanced 14 soil borings at locations intended to provide additional delineation of the target area for full-scale DPE system implementation. SECOR obtained an operation permit from the BAAQMD in July 2005 and installed seven additional remediation wells in September 2005. SECOR conducted additional Site-wide groundwater monitoring during August 2006. The results of the five-day DPE test (April 2005) and subsequent groundwater monitoring activities are presented in the "*Groundwater Monitoring and Remediation Progress Report*", dated April 23, 2007 (SECOR, 2007).

Full-Scale DPE Operations and Remedial Progress Sampling

During December 2008, additional DPE system infrastructure was added and full-scale DPE system operation commenced during January/February 2009. Full-scale DPE operations consisted of soil vapor and groundwater extraction and treatment from eleven (11) Site extraction wells and former chemical injection wells. Full-scale DPE operated through December 2009 at which point remedial progress groundwater monitoring was conducted during January 2010. DPE system operations and results of remedial progress groundwater monitoring are described in the "Report of Dual-Phase Extraction System Operations, Soil Vapor Sampling, and Risk Analysis" (DPE Report; Stantec, 2011). The results of groundwater monitoring and DPE system performance data indicated that the DPE system significantly reduced concentrations of total petroleum hydrocarbons in the gasoline range (TPHg) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) in monitoring wells downgradient of the Site below historical concentrations and to near the laboratory reporting limit concentrations in monitoring wells immediately downgradient of the former UST on-site. DPE system treatment equipment was removed from the Site in December 2009; however, all wells used for extraction and aboveground conveyance piping remain on-site.

Soil vapor sample well installation and subsequent soil vapor sampling was conducted at four locations on-site during March and April 2011. The purpose of the soil vapor sampling was to evaluate the potential for vapors associated with residual petroleum hydrocarbons in soil and/or groundwater to be present at concentrations that could pose a risk to conceptual future occupants of a Site building (if the Site was to be redeveloped with commercial and/or residential structures). Results from the soil vapor sampling indicated that concentrations of petroleum hydrocarbons present in shallow soil vapor at the Site were below available screening criteria such as California Environmental Protection Agency

APPENDIX A SUMMARY OF PREVIOUS SITE INVESTIGATIONS AND REMEDIAL ACTIONS

California Human Health Screening Levels (CHHSLs) and Environmental Screening Levels (ESLs) published by the California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB). A Site-specific vapor intrusion risk analysis was performed using the Johnson & Ettinger (J&E) model and the concentrations of all chemicals detected in soil vapor at the Site were inputted into the model. The J&E model results indicated that residual concentrations of chemicals in shallow soil vapor at the Site do not pose a risk to human health considering commercial/industrial or residential land uses. A detailed description of soil vapor sampling and results of the risk analysis are included in the DPE Report (Stantec, 2011).

At the request of ACEH, Stantec performed additional groundwater monitoring during the second and third quarters of 2012 to monitor petroleum hydrocarbon concentrations in Site monitoring wells after the completion of full-scale DPE system operations. The monitoring results for the second quarter of 2012 are presented in the "Second Quarter 2012 (Semi-Annual) Groundwater Monitoring Report" (2Q12 GWM Report), dated July 27, 2012. The results of second quarter 2012 groundwater monitoring showed concentrations of petroleum hydrocarbons downgradient of the Site in monitoring wells MW-5, MW-6, and MW-7 remain below laboratory MRLs, concentrations in on-site monitoring wells MW-1 and MW-2 remain stable or near the laboratory MRLs, and significant decreases in petroleum hydrocarbon concentrations in well POBS-A1 and monitoring well MW-3 located within and immediately downgradient of the former UST excavation area.

APPENDIX A SUMMARY OF PREVIOUS SITE INVESTIGATIONS AND REMEDIAL ACTIONS

References

- EFI Global, 2004a. Semi-Annual (Second Half 2003) Groundwater Monitoring Report, 575 Paseo Grande, San Lorenzo, California. June 21, 2004.
- EFI Global, 2004b. Semi-Annual (First Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report, 575 Paseo Grande, San Lorenzo, California. August 2004.
- EFI Global, 2005. Semi-Annual (Second Half 2004) Groundwater Monitoring and Pilot Remedial Progress Report, 575 Paseo Grande, San Lorenzo, California. April 2005.
- Regional Water Quality Control Board (RWQCB), 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. California Regional Water Quality Control Board, San Francisco Bay Region. Interim Final November 2007, Revised May 2008.
- SECOR International Incorporated (SECOR), 1995. Preliminary Characterization Report, Former Gasoline Service Station Property at the Northeast Corner of Paseo Grande and Paseo Largavista, San Lorenzo, California. June 29, 1995.
- SECOR, 1996. Report of Interim Remedial Actions, Former Gasoline Service Station, 575 Paseo Grande, San Lorenzo, California. June 4, 1996.
- SECOR, 1999. Third Quarter 1999 Groundwater Monitoring Results and Plume Definition Investigation Report, 575 Paseo Grande, San Lorenzo, California. October 22, 1999.
- SECOR, 2003a. Limited Subsurface Investigation Report and Work Plan for Additional Soil and Groundwater Assessment, David D. Bohannon Organization Property, 575 Paseo Grande, San Lorenzo, California. February 19, 2003.
- SECOR, 2003b. Sensitive Receptor Survey and Conduit Study, The Bohannon Development Company Property, 575 Paseo Grande, San Lorenzo, California. June 30, 2003.
- Stantec Consulting Corporation, 2011. Report of Dual-Phase Extraction System Operations, Soil Vapor Sampling, and Risk Analysis, David D. Bohannon Organization. November 22, 2011.
- Stantec Consulting Services Inc., 2012. Second Quarter 2012 (Semi-Annual) Groundwater Monitoring Report, David D. Bohannon Organization, 575 Paseo Grande, San Lorenzo, California. July 27, 2012.

APPENDIX B Field Data Sheets for the September 2012 Groundwater Monitoring Event

Third Quarter 2012 Groundwater Monitoring Report
David D. Bohannon Organization
575 Paseo Grande
San Lorenzo, California
Stantec PN: 185702534
December 21, 2012

HYDROLOGIC DATA SHEET

Date: 9-18-12

Project: Bohannon

Technician: C. Melancon

Project #: 185702534

TOC = Top of Well Casing Elevation
DTP = Depth to Free Product (FP or NAPH) Below TOC
DTW = Depth to Groundwater Below TOC
DTB = Depth to Bottom of Well Casing Below TOC

DIA = Well Casing Diameter ELEV = Groundwater Elevation DUP = Duplicate

WELL OR LOCATION	TIME	MEA	SUREMENT	•	COMMENTS
		DTW	DTB	Dia	
MW-1		7.32		2	
MW-2		7.37		2	
MW-3		7,18		2	
MW-4		6.65		2	
MW-5		6.67		2	
MW-6		6.10		2	
MW-7		6.60		2	
POBS-A1		7.58		1	
POBS-B1		7.71		1	
POBS-B2		7.05		2	
NOBS-B1		6.54		2	
					*

			G				Data Sheet			
Project #: / 8	570	2534	Гask No:			ct Name: innon		D	ate: <i>9 18</i>	1/2
Site Location:	45 9			24			1020 2			•
San Lorenzo				Sa	ample	r(s): Z	Welance	0 64		
Well ID: M			Depth	to Water (I	DTW)	(ft): 7,	18 Sample	DTW (ft):		
Screen Interva				to Bottom					ferenced to:	тос
Tube/Pump D			Well D	iameter (in	ich):	2	OVM (p	pm) = 🚤	Palli	
CALCULATIONS	S:									
Length of the wa	ter columr	ı: <u> </u>	ft -	٠	ft =		ft	Volume of S	Schedule 40 PV	C Pipe
			DTB	DTW		Water Col		Well Diame	eter. I.D	gal/linear ft.
								1.25	1.38	0.08
80% of the water	r level:			+ (2	2.067	0.17
			DTW	Water Col		Re	charge water level	3	3.068	0.38
								4	4.026	0.66
Estimated Purge	Volume (f	= P \ /)· =	ft :	(x	3 =	Gallons	6	6.065	1.5
Estimated Purge	, 0,0,1,1,0 (1	Wa	iter col	gal/lin. ft.	—^` c	asing Volume:	s			
								8	7.981	2.6
		/Micro Puro						10	10.02	4.12
()	Purge at	least 3 well	volumes					12	11.938	5.81
() Other: () Other						ble Bailer c Pump & D	ler Dedicated Tubing	Type of Water Quality Kit Used: (X) YSI 556 () Myron L () Horriba () Hanna () Other:		
Do.	gin Purge	at /2	240							
De	giii ruige	at /								
Time (24 hrs)	Volume	Temp	DTW	Specifi Conducti (µS/cm	vity	pH (units)	Color	Odor	DO (mg/L)	Redox Potential (mV)
Time		Temp.			vity)	pH (units) (± 0.2)	Color	Odor	DO (mg/L) (± 10%)	Potential (mV)
Time (24 hrs)	Volume (G /(L))	Temp.		Conducti (μS/cm	vity)	(units)	Color		(mg/L)	Potential
Time (24 hrs) (every 3-5 min)	Volume (G /(L))	Temp. (C)°F) (± 10%) 24.85 23.4	DTW	Conductiv (μS/cm (± 10%	vity)	(units) (± 0.2)		Odor	(mg/L) (± 10%)	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min)	Volume (G/L)	Temp. (C)°F) (± 10%) 24.85 23.41 23.84	DTW 7.76	Conduction (μS/cm) (± 10%) 924 909	vity i)	(units) (± 0.2) F. 03	Clear	mod.	(mg/L) (± 10%)	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0	Volume (G/L) 1.5 2.5 3.0 3,5	Temp. (± 10%) 24.85 23.41 23.84 24.03	DTW 7.76	Conductive (μS/cm) (± 10%) 9 2 4 9 0 9	vity	(units) (± 0.2) 7,03 7,12	Clear	mod.	(mg/L) (± 10%) 0,72 0,45	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5	Volume (G/(L)) 1.5 2.5 3.0 3,5 4,0	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32	7.76 8.10 8.11 8.11	Conductive (μS/cm) (± 10%) 92 4 9 0 9 9 1 4 9 1 6 9 1 9	vity	(units) (± 0.2) 7.03 7.12 7.12 7.12	C/ear 11 11	200 d.	(mg/L) (± 10%) 0,72 0,45 0,36 0,33 0,25	Potential (mV) (± 20%) 57,0 - 107,7 - 104,1 - 104,7
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0	Volume (G/(L)) 1.5 2.5 3.0 3,5 4,0	Temp. (± 10%) 24.85 23.41 23.84 24.03	7.76 8.10 8.11 8.11	Conduction (μS/cm) (± 10%) 92 4 9 9 9 9 9 9 1 4 9 1 6	vity	(units) (± 0.2) 7.03 7.12 7.12	C/eer 11	11 11 11 11	(mg/L) (± 10%) 0, 72 0, 45 0,36	Potential (mV) (± 20%) 57.0 -107.7 -104.1
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5	Volume (G/(L)) 1.5 2.5 3.0 3,5 4,0	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32	7.76 8.10 8.11 8.11	Conductive (μS/cm) (± 10%) 92 4 9 0 9 9 1 4 9 1 6 9 1 9	vity	(units) (± 0.2) 7.03 7.12 7.12 7.12	C/ear 11 11	200 d.	(mg/L) (± 10%) 0,72 0,45 0,36 0,33 0,25	Potential (mV) (± 20%) 57,0 - 107,7 - 104,1 - 104,7
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5	Volume (G/(L)) 1.5 2.5 3.0 3,5 4,0	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32	7.76 8.10 8.11 8.11	Conductive (μS/cm) (± 10%) 92 4 9 0 9 9 1 4 9 1 6 9 1 9	vity	(units) (± 0.2) 7.03 7.12 7.12 7.12	C/ear 11 11	200 d.	(mg/L) (± 10%) 0,72 0,45 0,36 0,33 0,25	Potential (mV) (± 20%) 57,0 - 107,7 - 104,1 - 104,7
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5	Volume (G/L)	Temp. (C)°F) (± 10%) 24.85 23.41 23.84 24.03 24.32 24.33	7.76 8.10 8.11 8.11	Conductive (μS/cm) (± 10%) 92 4 9 0 9 9 1 4 9 1 6 9 1 9	vity)))	(units) (± 0.2) 7, 03 7, 12 7, 12 7, 10 7, 11 7, 12	C/ear 11 11	200 d.	(mg/L) (± 10%) 0,72 0,45 0,36 0,33 0,25	Potential (mV) (± 20%) 57,0 - 107,7 - 104,1 - 104,7
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5	Volume (G/(L)) 1.5 2.5 3.0 3.5 4.0 4.5	Temp. (£ 10%) 24.85 23.41 23.84 24.03 24.32 24.38	7.76 8.10 8.11 8.11	Conductive (μS/cm) (± 10%) 92 4 9 0 9 9 1 4 9 1 6 9 1 9	vity))) Pump	(units) (± 0.2) 7, 03 7, 12 7, 12 7, 10 7, 11 7, 12	C/eo/ // // // // // L or G /min:	240 d.	(mg/L) (± 10%) 0,72 0,45 0,36 0,33 0,25 0,26	Potential (mV) (± 20%) 57,0 - 107,7 - 104,1 - 104,7
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time	Volume (G /(L)) 1. 5 2. 5 3. 0 3. 5 4. 0 4. 5 s Purgeo	Temp. (£ 10%) 24.85 23.41 23.84 24.03 24.32 24.38	DTW 7.76 8.10 8.11 8.11 8.11	Conductive (μS/cm (± 10%) 92 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	vity))) Pump	(units) (± 0.2) 7.03 7.12 7.12 7.11 p Rate in Dictate Sam	C/ee/ // // // // // L or G /min:	wod.	(mg/L) (± 10%) 0, 72 0, 45 0,36 0,33 0,25 0,26	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time	Volume (G /(L)) 1. 5 2. 5 3. 0 3. 5 4. 0 4. 5 s Purgeo	Temp. (£ 10%) 24.85 23.41 23.84 24.03 24.32 24.33 E: SEE WOR	DTW 7.76 8.10 8.11 8.11 8.11	Conductive (µS/cm (± 10%) 924 909 914 916 919 920	vity))) Pump	(units) (± 0.2) 7, 03 7, 12 7, 12 7, 12 p Rate in Duplicate	L or G /min:	Sample Tin	(mg/L) (± 10%) Ø, 72 Ø, 36 Ø, 33 Ø, 25 Ø, 26	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time Sample Analyz (√) Analyte(s):	Volume (G/(L)) 1.5 2.5 3.0 3.5 4.0 4.5 s Purgeo	Temp. (£ 10%) 24.85 23.41 23.84 24.03 24.32 24.38	DTW 7.76 8.10 8.11 8.11 8.11	Conductive (μS/cm (± 10%) 92 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Pum _l	(units) (± 0.2) 7.03 7.12 7.12 7.11 p Rate in Dictate Sam	L or G /min:	wod.	(mg/L) (± 10%) 0,72 0,95 0,36 0,33 0,25 0,26	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time Sample Analy: (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH-d	Volume (G/(L)) 1.5 2.5 3.0 3.5 4.0 4.5 s Purgeo	Temp. (£ 10%) 24.85 23.41 23.84 24.03 24.32 24.33 E: SEE WOR Preserv	DTW 7.76 8.10 8.11 8.11 8.11 8.11	Conductive (μS/cm (± 10%) 924 909 914 916 919 920 R Bottles: 3 X 40 mL V 2 x 0.5 L Am	Pump Dupli	(units) (± 0.2) 7.03 7.12 7.12 7.12 p Rate in licate Sam (√) Analy () TOC () Metha	L or G /min: ple ID: te Sample Analyte(s):	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI	(mg/L) (± 10%) 0, 72 0, 45 0,36 0,33 0,25 0,26 E WORK OR E Bottles: 2 X 40 mL A 3 X 40 mL N	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S	Volume (G/(L)) 1.5 2.5 3.0 2.5 4.0 4.5 s Purgeo e: /	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32 24.38 E SEE WOR Preserv HC Non	DTW 7.76 8.10 8.11 8.11 8.11 8.11	Conductiv (μS/cm (± 10%) 9 2 4 9 1 9 9 1 9 9 1 9 9 2 0 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL	Pump Dupli	(units) (± 0.2) 7.03 7.12 7.12 7.12 p Rate in licate Sam (√) Analy () TOC () Methal () Napht	L or G /min: ple ID: te Sample Analy te(s):	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI None	(mg/L) (± 10%) Ø, 72 Ø, 45 Ø, 36 Ø, 33 Ø, 25 Ø, 26 E WORK OR E Bottles: 2 X 40 mL A 3 X 40 mL V 2 x 1 L Amb	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar	Volume (G/(L)) 1.5 2.5 3.0 3.5 4.0 4.5 s Purgeo e: / zed For:	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32 24.38 I: SEE WOR Preserv HC Non HNC	DTW 7.76 8.10 8.11 8.11 8.11 8.11 8.11	Conductiv (μS/cm (± 10%) 9 2 4 9 1 9 9 1 9 9 1 9 9 2 0 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL	Pump Dupli	(units) (± 0.2) 7.03 7.12 7.12 P Rate in Duplicate Sam (√) Analy () TOC () Metha () Napht () Alkalin () Alkalin	L or G /min: ple ID: te Sample Analytics(s): ane chalene, Phenol nity, TDS	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI None None	(mg/L) (± 10%) 0, 72 0, 45 0,36 0,33 0,25 0,25 0,26 E WORK OR E Bottles: 2 X 40 mL A 3 X 40 mL V 2 x 1 L Amb 1 X 500 mL	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S	Volume (G/(L)) 1.5 2.5 3.0 3.5 4.0 4.5 s Purgeo e: / zed For:	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32 24.38 E SEE WOR Preserv HC Non	DTW 7.76 8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11	Conductiv (μS/cm (± 10%) 9 2 4 9 1 9 9 1 9 9 1 9 9 2 0 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL	Pump Dupli OAs bers Poly Poly Poly	(units) (± 0.2) 7.03 7.12 7.12 P Rate in Duplicate Sam (√) Analy () TOC () Metha () Napht () Alkalin () Alkalin	L or G /min: ple ID: te Sample Analy. te(s): ane thalene, Phenol nity, TDS bhorus, TKN	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI None	(mg/L) (± 10%) Ø, 72 Ø, 45 Ø, 36 Ø, 33 Ø, 25 Ø, 26 E WORK OR E Bottles: 2 X 40 mL A 3 X 40 mL V 2 x 1 L Amb	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO₂ NO₃ & S () Total Mangar () Dissolved Iro	Volume (G/(L)) 1.5 2.5 3.0 3.5 4.0 4.5 s Purgeo e: / zed For:	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32 24.38 I: SEE WOR Preserv HC HC HC HC Field-filtere	DTW 7.76 8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11	Conductiv (μS/cm (± 10%) 9 2 4 9 1 9 9 1 9 9 1 9 9 2 0 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL	Pump Dupli	(units) (± 0.2) 7, 03 7, 12 7, 12 7, 12 P Rate in licate Sam Diuplicate (√) Analy () TOC () Metha () Napht () Alkalir () Phosp	L or G /min: ple ID: re Sample Analy. te(s): ane thalene, Phenol nity, TDS chorus, TKN	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	(mg/L) (± 10%) 0, 72 0, 45 0,36 0,33 0,25 0,25 0,26 E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL A 1 X 500 mL 1 x 500 mL	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min) 12 4 5 12 5 0 12 5 5 13 0 0 13 0 5 13 1 0 Liters / Gallon Sampling Time (V) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar () Dissolved Iro () Ferrous Iron	Volume (G/(L)) 1.5 2.5 3.0 3.5 4.0 4.5 s Purgeo e: / zed For:	Temp. (± 10%) 24.85 23.41 23.84 24.03 24.32 24.38 I: SEE WOR Preserv HO HO HNO Field-filtere HC	DTW 7.76 8.10 8.11 8.11 8.11 8.11 8.11 8.11 8.11	Conductiv (μS/cm (± 10%) 9 2 4 9 1 9 9 1 9 9 1 9 9 2 0 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL 2 X Amber V	Pump Dupli	(units) (± 0.2) 7, 03 7, 12 7, 12 7, 12 P Rate in I icate Sam Diuplicate (√) Analy () TOC () Metha () Napht () Alkalir () Phosp () VOCs	L or G /min: ple ID: re Sample Analy. te(s): ane thalene, Phenol nity, TDS chorus, TKN	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	(mg/L) (± 10%) 0, 72 0, 45 0,36 0,33 0,25 0,25 0,26 E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL A 1 X 500 mL 1 x 500 mL	Potential (mV) (± 20%)

Revised: 5/2/2012 Stantec

Groundwater Sampling Data Sheet												
		- 1				ct Name:					4	
Project #: /8	570	2534	Task No:		Bohannon Date: 9/18/12							
Site Location San Lorenzo					mala	r(s): 🧸 .	Henry	1.				
Well ID: M	11 - 4		Donth	to Water (TWA	(S):	1901			1 23		
Screen Interv					(DTW) (ft): 6.65 Sample DTW (ft): 6', 82 n (DTB) (ft): Measurements Referenced to: TOC						TOC	
Tube/Pump Depth (ft): Well Diameter (ii												
CALCULATIONS		-	Well L	nameter (ii	iciij.	_		O VIVI (P)	Jiii) —			
	S.)											
Length of the wa	iter column	n: <u></u>	ft		ft =		ft		Volume of S	chedule 40 PV	'C Pipe	
			DTB	DTW		Water Col			Well Diame	eter. I.D	gal/linear ft.	
									1.25	1.38	0.08	
900/ of the water	e laveli				# V	0.0\ -						
80% of the water	r level:	-	DTW	+ (Water Col	_		ft charge water	r laval	2	2.067	0.17	
		'	D1 11	Water Cor		No	charge water	icaci	3	3.068	0.38	
									4	4.026	0.66	
Estimated Purge	Volume (I	EPV): =	ft :	X	X	3 =	Ga	llons	6	6.065	1.5	
		Wa	ater col	gal/lin. ft.	_ <u>_</u> _	asing Volume:	s		8	7.981	2.6	
(V)	Low Flow	/Mioro Dur	nina						_			
		//Micro Puro							10	10.02	4.12	
()	Purge at	least 3 well	volumes						12	11.938	5.81	
						le Bailer c Pump & D		Tubing	Type of Water Quality Kit Used: (X) YSI 556 () Myron L () Horriba () Hanna () Other:			
		Temp.		Specifi	С						Redox	
Time	Volume	(°C)/°F)		Conducti	vity	рН				DO	Potential	
(24 hrs)	(G (L)		DTW	(μS/cm		(units)	Co	lor	Odor	(mg/L)	(mV)	
(every 3-5 min)		(± 10%)		(± 10%		(± 0.2)				(± 10%)	(± 20%)	
920		20.40		891		6.83	Cle	5/	wed.	0.39	-50,4	
925		20,34		895		5.98	1,5		()	0.31	-59.5	
930		20.45		899		5.99				0.31	-60.7	
935		20.43		902		7.00	ir.		17	0.28	-61.6	
770	5.5	20,44	6.82	903	-	7.00	34.0		- (1	0,27	-61.3	
					-							
					_							
		-	-	-								
Liters / Gallon	s Purgeo	l:			Pump	Rate in I	L or G /m	nin:				
Sampling Time: 940					Duplicate Sample ID: Sample Time:							
Sample Analy:			K OPDE	,	!	Dunliest	a Samul	o Analys	ad For SE	E WORK OR	DEB	
(√) Analyte(s):	zeu i oi.	Preserv		Bottles:		(√) Analy			Preservative		JEK	
(X) TPH-g, BTE	X, MTBE	HC		3 X 40 mL V	'OAs	() TOC	10(0).		H ₂ SO ₄		Amber VOAs	
() TPH-d & TPI		НС		2 x 0.5 L Am		() Metha			HCI	3 X 40 mL \		
() NO ₂ , NO ₃ & SO ₄ None 1 X 500 mL () Total Manganese HNO ₃ 1 X 250 mL				•		thalene, Pi nity, TDS	henol	None None	2 x 1 L Amb			
() Dissolved Iro		Field-filtere	•	1 X 250 mL			ohorus, TK	N.	H ₂ SO ₄	1 X 500 mL 1 x 500 mL		
() Ferrous Iron		HC	31	2 X Amber V	OAs	() VOCs	i		HCI	3 X 40 mL \		
() SVOCs		Non	ie	2 x 1 L Amb	ers	() Other						
Notes:												
	T12 -	1 19	20)									
_	TB-	1 (90	90)									

Revised: 5/2/2012 Stantec

				roundwat			Juliu Onoct			
		5.79				ct Name:				
Project #: / 5		2534	Гask No:		Boha	nnon		D	ate: 9 / /8	1/2
Site Location:	:			٥.			11. 1			
San Lorenzo Well ID: 八〇	01-1	2 1	Donth	to Mater (I	TWA	(S): C	54 Sample	DTM (fe)	1 +9	-
Screen Interv	2) (ft).	71	Depth	to Bottom	(DTR	(IL). O	Moseur		ferenced to:	TOC
Tube/Pump D				iameter (in				pm) =		100
CALCULATIONS			Well D	idinotor (iii	ionj.	-	Ovin (P	p, -		
	- 5									
Length of the wa	iter column):	ft	DTW	ft =		ft	Volume of S	Schedule 40 PV	C Pipe
			DTB	DTW		Water Col		Well Diame	eter. I.D	gal/linear ft.
								1.25	 1.38	0.08
80% of the water	r level:		ft .	. 7	ĤΥ	0.2) =	ft	2	2.067	0.17
5070 Of the water	i ievei.		DTW "	+ (Water Col	-"^	0.2) – Re	charge water level			
							•	3	3.068	0.38
								4	4.026	0.66
Estimated Purge	Volume (I	EPV): =	ft :	x	_x	3_=	Gallons	6	6.065	1,5
		Wa	ater col	gal/lin. ft.	C	asing Volumes	s	8	7.981	2.6
(X)	Low-Flow	/Micro Purg	aina					10	10.02	4.12
		least 3 well	-					12	11.938	5.81
()	i dige at	icast o weii	Volumes					12	11.550	5.61
() Dis () Ele (X) Pe () Oth	sposable B ectric Subm ristaltic Pu her:	Bailer ailer nergible Pum mp 	р	() Di:	ımp Dis sposat eristaltic		ler Dedicated Tubing	(X) Y () M () H () H	i ter Quality Kit SI 556 lyron L orriba anna ither:	Used:
Be	gin Purge	at 7	50	- 10			r	Y		
		Temp.		Specifi						Redox
Time (24 hrs)	Volume	(C) °F)	DTW	Conductiv	- 1	pH (units)	Color	Odor	DO (mg/L)	Potential (mV)
(24 hrs)	(G (L)	(J)	DTW	(μS/cm)	(units)	Color	Odor	(mg/L)	(mV)
(24 hrs) (every 3-5 min)	(G (C)	(± 10%)		(μS/cm (± 10%)	(units) (± 0.2)			(mg/L) (± 10%)	(mV) (± 20%)
(24 hrs) (every 3-5 min)	(G/C)	(± 10%) 20 23	6,62	(μS/cm (± 10%)	(units)	Clear	Odor	(mg/L) (± 10%)	(mV) (± 20%) 27.6
(24 hrs) (every 3-5 min)	(G (C)	(± 10%) 20 Z3 20 /13		(μS/cm (± 10%)	(units) (± 0.2) 7/19	Clear	ирие	(mg/L) (± 10%)	(mV) (± 20%)
(24 hrs) (every 3-5 min) 955 1000 1005	(G (C)	(± 10%) 20 23 20 13 20 15	6.62	(μS/cm (± 10% 9 90 988 989 999)	(units) (± 0.2) 7/19 7.23	Clear	3 Dure	(mg/L) (± 10%) 0.30	(mV) (± 20%) 27.6 34.6
(24 hrs) (every 3-5 min) 955 1005 1005 1015	(G (C)	(± 10%) 20 23 20 13 20 15	6,62 6.60 6.59	(μS/cm (± 10% 9 9 0 9 8 8 9 8 9)	(units) (± 0.2) 7/19 7.23 7.24	Clear	DDD P	(mg/L) (± 10%) 0.56 0.30	(mV) (± 20%) 27.6 34.6 34.8
(24 hrs) (every 3-5 min) 955 1000 1005	(G/C) 1.5 2.5 3.5 4.5	(± 10%) 20 23 20 13 20 15 20 18	6,62 6.60 6.59 6.59	(μS/cm (± 10% 9 90 988 989 999)	(units) (± 0.2) 7/19 7.23 7.24	C/c&r	2000 P	(mg/L) (± 10%) 0.36 0.30 0,3/ 0,32	(mV) (± 20%) 27.6 34.6 34.8 36.7
(24 hrs) (every 3-5 min) 955 1005 1005 1015	(G/C) 1.5 2.5 3.5 4.5	(± 10%) 20 23 20 13 20 15 20 18	6,62 6.60 6.59 6.59	(μS/cm (± 10% 9 90 988 989 999)	(units) (± 0.2) 7/19 7.23 7.24	C/c&r	2000 P	(mg/L) (± 10%) 0.36 0.30 0,3/ 0,32	(mV) (± 20%) 27.6 34.6 34.8 36.7
(24 hrs) (every 3-5 min) 955 1005 1005 1015	(G/C) 1.5 2.5 3.5 4.5	(± 10%) 20 23 20 13 20 15 20 18	6,62 6.60 6.59 6.59	(μS/cm (± 10% 9 90 988 989 999)	(units) (± 0.2) 7/19 7.23 7.24	C/c&r	2000 P	(mg/L) (± 10%) 0.36 0.30 0,3/ 0,32	(mV) (± 20%) 27.6 34.6 34.8 36.7
(24 hrs) (every 3-5 min) 955 1005 1005 1015	(G/C) 1.5 2.5 3.5 4.5 5.5	(± 10%) 20 23 20 13 20 15 20 18 20 18	6,62 6.60 6.59 6.59	(μS/cm (± 10% 9 90 988 989 999)	(units) (± 0.2) 7.19 7.23 7.24 7.24	C/c&r	2000 P	(mg/L) (± 10%) 0.36 0.30 0,3/ 0,32	(mV) (± 20%) 27.6 34.6 34.8 36.7
(24 hrs) (every 3-5 min) 955 1000 1005 1015 +025	(G (C) 1,5 2,5 3,5 4,5 5,5	(± 10%) 20 23 20 13 20 15 20 18 20 18	6,62 6.60 6.59 6.59	(μS/cm (± 10% 9 90 988 989 999	Pump	(units) (± 0.2) 7.19 7.23 7.24 7.24	C/c 6/c 10 10 10 10 10 10 10 10 10 10 10 10 10	2000 P	(mg/L) (± 10%) 0.56 0.30 0.31 0.32 0,29	(mV) (± 20%) 27.6 34.6 34.8 36.7
(24 hrs) (every 3-5 min) 955 100 b 100 5 101 5 101 5 102 b Liters / Gallon Sampling Time	(G (C) 1.5 2.5 3.5 4.5 5.5 9.5 9.5 9.5 9.5 9.5 9.5 9	(± 10%) 20 23 20,13 20,15 20,18 20,18 20,18	6,62 6.60 6.59 6.59	(µS/cm (± 10% 9 90 988 989 999	Pump	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 D Rate in I	C/c 6/c 10 10 10 10 10 10 10 10 10 10 10 10 10	Sample Tin	(mg/L) (± 10%) 0.56 0.30 0.31 0.32 0.29	(mV) (± 20%) 27.6 34.6 34.8 36.7 36.8
(24 hrs) (every 3-5 min) 955 100 b 100 5	(G (C) 1,5 3,5 4,5 5,5 4,5 5,5 es Purgeo	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 Preserv	6,62 6.60 6.59 6.59 6.59	(μS/cm (± 10%) 990 988 989 990 991	Pump Dupli	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 Cate Sam Duplicate (√) Analy	C/C&/C	Sample Tin	(mg/L) (± 10%) 0.30 0.30 0.32 0.29	(mV) (± 20%) 27.6 34.6 34.8 36.7 36.8
(24 hrs) (every 3-5 min) 955 100 b 100 5 100 5 100 5 100 5 100 T 100 S HOLES HOLES Liters / Gallon Sampling Time Sample Analy (√) Analyte(s): (X) TPH-g, BTE)	(G (C)	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 Preserv	6.62 6.60 6.59 6.59 6.59	(µS/cm (± 10% 990 988 989 990 991	Pump Dupli	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 Cate Sam Duplicate (√) Analy () TOC	L or G /min: ple ID: te Sample Analytics(s):	Sample Tin zed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0.30 0.30 0.32 0,29 ne: EE WORK OR E: Bottles: 2 X 40 mL A	(mV) (± 20%) 27.6 34.6 34.8 36.7 36.8
(24 hrs) (every 3-5 min) 955 100 b 100 5 100 5 100 5 100 5 100 T 100 5 100 T 100 S THE Sampling Time Sample Analy (√) Analyte(s): (X) TPH-g, BTE; () TPH-d & TPH-d	(G (C) 1,5 2,5 3,5 4,5 5,5 s Purged e: / zed For:	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 Preserv	6.62 6.60 6.59 6.59 6.59	(μS/cm (± 10%) 990 988 989 990 991	Pump Dupli	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 Description of the cate Same Duplicate (√) Analy (√) TOC (√) Metha	L or G /min: ple ID: te Sample Analytics(s):	Sample Tin	(mg/L) (± 10%) 0.30 0.30 0.32 0.29	(mV) (± 20%) 27.6 34.6 34.8 36.7 36.8 DER
(24 hrs) (every 3-5 min) 955 100 b 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 6 100 5 100 6 100 6 100 7 100 6 100 7 100 7 100 7 100 7 100 8 100 7	s Purged e: / zed For: X, MTBEmo SO ₄ nese	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 EEE WOR Preserv	6.62 6.60 6.59 6.59 6.59	(µS/cm (± 10% 990 988 989 990 991	Pump Dupli	(units) (± 0.2) 7./ 9 7.2 3 7.2 4 7.2 4 7.2 4 7.2 4 7.2 7 Cate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Alkalir	L or G /min: ple ID: te Sample Analyte(s): ane thalene, Phenol nity, TDS	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI None None	(mg/L) (± 10%) (± 10%) ((mV) (± 20%) 27.6 34.6 34.8 36.7 36.8 DER
(24 hrs) (every 3-5 min) 955 100 b 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 5 100 6 100 5 100 6 100 5 100 6	s Purged e: / zed For: X, MTBEmo SO ₄ nese	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 EE WOR Preserv HO Nor HNO Field-filtere	6.62 6.60 6.59 6.59 6.59 6.59	(µS/cm (± 10% 998 989 999 991 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL	Pump Dupli /OAs abers Poly Poly	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 7.24 Cate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Phosp	L or G /min: ple ID: te Sample Analyte(s): ane thalene, Phenol nity, TDS phorus, TKN	Sample Tin zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	(mg/L) (± 10%) (± 10%) ((mV) (± 20%) 27.6 34.6 34.8 26.7 36.8 DER Amber VOAs /OAs pers Poly
(24 hrs) (every 3-5 min) 955 1000 1005 1005 1005 1005 1005 1005	s Purged e: / zed For: X, MTBEmo SO ₄ nese	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 EEE WOR Preserv HO HO Field-filtere	6.62 6.60 6.59 6.59 6.59 6.59 6.59	(#S/cm (± 10%) 988 989 989 990 991 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 250 mL 1 X 250 mL 2 X Amber V	Pump Dupli /OAs bers Poly Poly /OAs	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 7.24 Cate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Phosp () VOCs	L or G /min: ple ID: te Sample Analyte(s): ane thalene, Phenol nity, TDS chorus, TKN	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI None None	(mg/L) (± 10%) (± 10%) ((mV) (± 20%) 27.6 34.6 34.8 26.7 36.8 DER Amber VOAs /OAs pers Poly
(24 hrs) (every 3-5 min) 955 100 b 100 5 100 5 100 5 100 5 100 5 100 5 100 6 100 5 100 6	s Purged e: / zed For: X, MTBEmo SO ₄ nese	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 EE WOR Preserv HO Nor HNO Field-filtere	6.62 6.60 6.59 6.59 6.59 6.59 6.59	(µS/cm (± 10% 998 989 999 991 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL	Pump Dupli /OAs bers Poly Poly /OAs	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 7.24 Cate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Phosp	L or G /min: ple ID: te Sample Analyte(s): ane thalene, Phenol nity, TDS chorus, TKN	Sample Tin zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	(mg/L) (± 10%) (± 10%) ((mV) (± 20%) 27.6 34.6 34.8 26.7 36.8 DER Amber VOAs /OAs pers Poly
(24 hrs) (every 3-5 min) 955 1000 1005 1005 1005 1005 1005 1005	s Purged e: / zed For: X, MTBEmo SO ₄ nese	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 EEE WOR Preserv HO HO Field-filtere	6.62 6.60 6.59 6.59 6.59 6.59 6.59	(#S/cm (± 10%) 988 989 989 990 991 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 250 mL 1 X 250 mL 2 X Amber V	Pump Dupli /OAs bers Poly Poly /OAs	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 7.24 Cate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Phosp () VOCs	L or G /min: ple ID: te Sample Analyte(s): ane thalene, Phenol nity, TDS chorus, TKN	Sample Tin zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	(mg/L) (± 10%) (± 10%) ((mV) (± 20%) 27.6 34.6 34.8 26.7 36.8 DER Amber VOAs /OAs pers Poly
(24 hrs) (every 3-5 min) 955 100 b 100 5 100 5 100 5 100 5 100 5 100 5 100 6 100 5 100 6	s Purged e: / zed For: X, MTBEmo SO ₄ nese	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 EEE WOR Preserv HO HO Field-filtere	6.62 6.60 6.59 6.59 6.59 6.59 6.59	(#S/cm (± 10%) 988 989 989 990 991 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 250 mL 1 X 250 mL 2 X Amber V	Pump Dupli /OAs bers Poly Poly /OAs	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 7.24 Cate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Phosp () VOCs	L or G /min: ple ID: te Sample Analyte(s): ane thalene, Phenol nity, TDS chorus, TKN	Sample Tin zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	(mg/L) (± 10%) (± 10%) ((mV) (± 20%) 27.6 34.6 34.8 26.7 36.8 DER Amber VOAs /OAs pers Poly
(24 hrs) (every 3-5 min) 955 100 b 100 5 100 5 100 5 100 5 100 5 100 5 100 6 100 5 100 6	s Purged e: / zed For: X, MTBEmo SO ₄ nese	(± 10%) 20 23 20 13 20 15 20 18 20 18 20 18 EEE WOR Preserv HO HO Field-filtere	6.62 6.60 6.59 6.59 6.59 6.59 6.59	(#S/cm (± 10%) 988 989 989 990 991 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 250 mL 1 X 250 mL 2 X Amber V	Pump Dupli /OAs bers Poly Poly /OAs	(units) (± 0.2) 7.19 7.23 7.24 7.24 7.24 7.24 Cate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Phosp () VOCs	L or G /min: ple ID: te Sample Analyte(s): ane thalene, Phenol nity, TDS chorus, TKN	Sample Tin zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	(mg/L) (± 10%) (± 10%) ((mV) (± 20%) 27.6 34.6 34.8 26.7 36.8 DER Amber VOAs /OAs pers Poly

Revised: 5/2/2012

			G	<u>roundwat</u>			ata Sheet			
Project #: / 8	57/	2524	Tack No:			ct Name:			ate: 9 /)8	1112
Site Location:	210	2331	I ask No.		DOITA	iiiioii			ate. / //a	1 1 2-
San Lorenzo				Sa	ample	r(s):	Melan	0		
Well ID: PO	B5-	BI	Depth	to Water (DTW)	(ft): 7	7 / Sampl	e DTW (ft):		
Screen Interva				to Bottom					ferenced to:	тос
Tube/Pump D				iameter (ir				ppm) =		
CALCULATIONS								FF		
Length of the wa	ter columr	:	ft -		ft =		ft	Volume of S	schedule 40 PV	C Pipe
			DTB	DTW		Water Col		Well Diame	eter. I.D	gal/linear ft.
								1.25	1.38	0.08
80% of the water	r level:			+ (-		2	2.067	0.17
		(DTW	Water Col	l	Re	charge water level	3	3.068	0.38
								4	4.026	0.66
Estimated Burgs	Volume /		4	v	v	2	Callana			
Estimated Purge	volume (i	:PV). =	tor ool	gal/lin. ft.	- ^-	Sasina Valuma	Gallons	6	6.065	1.5
		***	ater cor	gainin. it.		asing volunie:	•	8	7.981	2.6
(X)	Low-Flow	/Micro Purg	ging					10	10.02	4.12
()	Purge at	least 3 well	volumes					12	11.938	5.81
()	J								7,,,,,,	
() Ele (X) Per	posable B	Bailer ailer nergible Pum mp	p	() Di () Pe	sposal eristalti	Bail ischarge ble Bailer ic Pump & D	er Dedicated Tubing	(X) Y () M () H () H	ter Quality Kit SI 556 lyron L orriba anna ther:	osea:
Be	gin Purge	at 10	25							
	9, 690	at ju								
Time	Volume	Temn		Specifi Conducti	vity	pH (units)	Color	Odor	DO (mg/l)	Redox Potential
Time (24 hrs)		Temp.	DTW	Conducti (μS/cm	vity ı)	(units)	Color	Odor	(mg/L)	Potential (mV)
Time (24 hrs) (every 3-5 min)	Volume (G (L)	Temp. (C/°F) (± 10%)	DTW	Conducti (μS/cm (± 10%	vity i)	(units) (± 0.2)			(mg/L) (± 10%)	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min)	Volume (G (L)	Temp. (C/ F) (± 10%) 20,29	DTW 7.97	Conducti (μS/cm (± 10%	vity	(units) (± 0.2)	cleur	Faint	(mg/L) (± 10%)	Potential (mV) (± 20%)
Time (24 hrs) (every 3-5 min)	Volume (G (L)	Temp. (C/F) (± 10%) 20.29 20.29	DTW 7.97 7.88	Conducti (μS/cm (± 10% / 264 / 3 / 7	vity	(units) (± 0.2) 7.05 7.07	Cleyr	Faint	(mg/L) (± 10%)	Potential (mV) (± 20%) -50, 4 -20, 8
Time (24 hrs) (every 3-5 min) 1030 1035	Volume (G (L)	Temp. (C) F) (± 10%) 20.29 20.29 20.30	DTW 7.97 7.88 7.92	Conducti (μS/cm (± 10% / 2 6 9 / 3 / 1 / 3 3 2	vity i) /	(units) (± 0.2) 7.05 7.07 7.07	Cleur	Foint	(mg/L) (± 10%) 0.40 0.55	Potential (mV) (± 20%) -50, 4 -20, 8 5, 4
Time (24 hrs) (every 3-5 min) 1030 1035 1040	Volume (G(L) 1, 5 2, 5 3, 5 4, 5	Temp. (C/F) (± 10%) 20.29 20.29 20.30 20.27	7,97 7,88 7,92 7,89	Conducti (μS/cm (± 10% / 26 4 / 3 / 7 / 3 3 2 / 3 3 2	vity i) i	(units) (± 0.2) 7.05 7.07 7.07 7.06	Cleur	Foigh	(mg/L) (± 10%) 0.40 0.55 0.52	Potential (mV) (± 20%) -50,4 -20,8 5,4 17,9
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5	Temp. (C/F) (± 10%) 20.29 20.29 20.30 20.27 20.27	DTW 7.97 7.88 7.92 7.89 7.88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 2 / 3 3 7	vity	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06	Cleur	Foigh	(mg/L) (± 10%) 0.40 0.55 0.52 0.30	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5
Time (24 hrs) (every 3-5 min) 1030 1035 1040	Volume (G(L) 1, 5 2, 5 3, 5 4, 5	Temp. (C/F) (± 10%) 20.29 20.29 20.30 20.27 20.27	7,97 7,88 7,92 7,89	Conducti (μS/cm (± 10% / 26 4 / 3 / 7 / 3 3 2 / 3 3 2	vity	(units) (± 0.2) 7.05 7.07 7.07 7.06	C/e4/ 11 11	Foigh	(mg/L) (± 10%) 0.40 0.55 0.52	Potential (mV) (± 20%) -50,4 -20,8 5,4 17,9
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5	Temp. (C/F) (± 10%) 20.29 20.29 20.30 20.27 20.27	DTW 7.97 7.88 7.92 7.89 7.88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 2 / 3 3 7	vity	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06	C/e4/ 11 11	Foigh	(mg/L) (± 10%) 0.40 0.55 0.52 0.30	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5	Temp. (C/F) (± 10%) 20.29 20.29 20.30 20.27 20.27	DTW 7.97 7.88 7.92 7.89 7.88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 2 / 3 3 7	vity	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06	C/e4/ 11 11	Foigh	(mg/L) (± 10%) 0.40 0.55 0.52 0.30	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045 1050	Volume (G(L) 1, 5 2, 5 3, 5 4, 5 4, 5 6, 5	Temp. (C) F) (± 10%) 20.29 20.29 20.30 20.27 20.24 20.31	DTW 7.97 7.88 7.92 7.89 7.88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 2 / 3 3 7	vity i) / / Z	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06	C/e4/ 11 11	Foigh	(mg/L) (± 10%) 0.40 0.55 0.52 0.30	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045 1055	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5	Temp. (C) F) (± 10%) 20.29 20.29 20.30 20.27 20.31	DTW 7.97 7.88 7.92 7.89 7.88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 2 / 3 3 7	vity i)) / z / Pum	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06	Cleur () () () () () () () () () (Foigh	(mg/L) (± 10%) 0.55 0.40 0.55 0.52 0.30 0.29	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1055 Liters / Gallons	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 6, 5 8 Purgeo	Temp. (C) F) (± 10%) 20.29 20.29 20.27 20.27 20.31	DTW 7,97 7,88 7,92 7,89 7,88 7,88	Conducti (μS/cm (± 10% / 2 6 4 / 3 1 7 / 3 3 5 / 3 3 7 / 3 3 7	vity i)) / z / Pum	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06 7.06 p Rate in licate Sam	C/e4/ ((() () () () () () () () () () () ()	Faight // // // // Sample Tim	(mg/L) (± 10%) 0.55 0.40 0.55 0.30 0.29	Potential (mV) (± 20%) -50, 4 -20, 8 5, 4 17, 9 21, 5 22, 2
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1055 Liters / Gallon Sampling Time	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 6, 5 8 Purgeo	Temp. (£ 10%) 20.29 20.29 20.27 20.27 20.31	7,97 7,88 7,92 7,89 7,88 7,88	Conducti (µS/cm (± 10% / 3 / 7 / 3 3 5 / 3 3 7 / 3 3 7 / 3 3 7	vity i)) / z / Pum	(units) (± 0.2) 7.05 7.07 7.06 7.06 7.06 p Rate in licate Sam	C/eu/ // // // L or G /min: ple ID:	Sample Tin	(mg/L) (± 10%) 0.55 0.52 0.30 0.29	Potential (mV) (± 20%) -50, 4 -20, 8 5, 4 17, 9 21, 5 22, 2
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1055 Liters / Gallon Sampling Time Sample Analyz (√) Analyte(s):	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 6, 5 s Purgeo	Temp. (C) F) (± 10%) 20.29 20.29 20.27 20.3 /	DTW 7,97 7,88 7,92 7,89 7,88 7,88	Conducti (µS/cm (± 10% / 2 6 4 / 3 / 7 / 3 3 5 / 3 3 7 / 3 3 7 / 3 3 7 / 3 3 7	Pum	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06 7.06 Duplicate Sam	C/eu/ // // // L or G /min: ple ID:	Sample Tin	(mg/L) (± 10%) 0.55 0.52 0.52 0.29 ne: E WORK OR	Potential (mV) (± 20%) -50, 4 -20, 8 5, 4 17, 9 21, 5 22, 2
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1055 Liters / Gallon Sampling Time Sample Analyz (√) Analyte(s): (X) TPH-g, BTE)	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 6, 5 s Purgeo	Temp. (£ 10%) 20.29 20.29 20.27 20.27 20.3/	DTW 7,97 7,88 7,92 7,89 7,88 7,88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 8 / 3 3 7 / 3 3 7 / 3 3 9 / 3 3 7 / 3 3	Pum Dupli	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06 7.06 Duplicate Sam	L or G /min: ple ID: e Sample Analyte(s):	Sample Tin yzed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0.40 0.55 0.52 0.30 0.29 ne: E WORK OR: 2 X 40 mL A	Potential (mV) (± 20%) -50, 4/ -20, 8 -5, 4/ 17, 9 21, 5 22, 2 DER
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045 1055 1055 Liters / Gallon Sampling Time Sample Analyz (\(\bar{\}\)) Analyte(s): (\(\bar{\}\)) TPH-d & TPH (\(\)) NO2, NO3 & S	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 s Purgeo e: czed For:	Temp. (C) F) (± 10%) (± 10%) (± 20.29	DTW 7.97 7.88 7.92 7.89 7.88 7.88 7.88	Conducti (µS/cm (± 10% / 2 6 4 / 3 / 7 / 3 3 5 / 3 3 7 / 3 3 7 / 3 3 7 / 3 3 7	Pum Dupli	(units) (± 0.2) 7.05 7.07 7.06 7.06 7.06 p Rate in licate Sam Duplicat (√) Analy () TOC () Metha () Napht	L or G /min: ple ID: te(s):	Sample Tin	(mg/L) (± 10%) 0.40 0.55 0.52 0.30 0.2 9 ne: E WORK OR E Bottles: 2 X 40 mL A 3 X 40 mL A 2 x 1 L Amb	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5 22 - 2 DER
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045 1055 1055 Liters / Gallon Sampling Time Sample Analyz (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 5 e: zed For:	Lemp. (C) F) (± 10%) 20.29 20.29 20.27 20.3	DTW 7.97 7.88 7.92 7.89 7.88 7.88 7.88	Conducti (μS/cm (± 10% / 3 / 7 / 3 / 3 / 3 3 / 7 / 3 3	Pum OAs Poly Poly	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06 7.06 Duplicate Sam Duplicate (√) Analy () TOC () Methal () Napht () Alkalir () Al	L or G /min: ple ID: e Sample Analyte(s): ine halene, Phenol nity, TDS	Sample Tin yzed For: SE Preservative H ₂ SO ₄ HCI None None	(mg/L) (± 10%) 0.40 0.55 0.52 0.29 E WORK OR Bottles: 2 X 40 mL A 3 X 40 mL V 2 x 1 L Amb 1 X 500 mL	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5 22, 2 DER Amber VOAs /OAs ers Poly
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1045 1050 1055 Liters / Gallon Sampling Time (V) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar () Dissolved Iro	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 5 e: zed For:	Temp. (C) F) (± 10%) (± 10%) (± 10%) (± 20.29 (± 20.29 (± 20.30 (± 20.31)	7.97 7.88 7.92 7.89 7.88 7.88 7.88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 2 / 3 3 3 7 / 3	Pum Dupli OAs Poly Poly Poly	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06 7.06 p Rate in l icate Sam Duplicate (√) Analy () TOC () Metha () Napht () Alkalir () Phosp	L or G /min: ple ID: e Sample Analyte(s): ine halene, Phenol hity, TDS phorus, TKN	Sample Tin yzed For: SE Preservative H ₂ SO ₄ HCl None None H ₂ SO ₄	(mg/L) (± 10%) 0.40 0.55 0.52 0.52 0.29 0.29 E WORK OR 2 X 40 mL A 3 X 40 mL A 3 X 40 mL A 1 X 500 mL 1 x 500 mL	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5 22, 2 DER Amber VOAs /OAs lers Poly Poly
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1050 1055 Liters / Gallon: Sampling Time (V) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO2, NO3 & S () Total Mangar () Dissolved Iro () Ferrous Iron	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 5 e: zed For:	Temp. (C) F) (± 10%) 20,29 20,29 20,27 20,3	7,97 7,88 7,92 7,89 7,88 7,88 7,88 2,88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 3 / 3 3 7 / 3 3	Pum Dupl /OAs hbers Poly Poly /OAs	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06 7.06 p Rate in l icate Sam Duplicat (√) Analy () TOC () Metha () Napht () Alkalir () Phosp () VOCs	L or G /min: ple ID: e Sample Analyte(s): ine halene, Phenol hity, TDS shorus, TKN	Sample Tin yzed For: SE Preservative H ₂ SO ₄ HCI None None	(mg/L) (± 10%) 0.40 0.55 0.52 0.29 E WORK OR Bottles: 2 X 40 mL A 3 X 40 mL V 2 x 1 L Amb 1 X 500 mL	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5 22, 2 DER Amber VOAs /OAs lers Poly Poly
Time (24 hrs) (every 3-5 min) 1030 1035 1040 1050 1055 Liters / Gallon Sampling Time (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ NO ₃ & S () Total Mangar () Dissolved Iro	Volume (G (L) 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 5 e: zed For:	Temp. (C) F) (± 10%) (± 10%) (± 10%) (± 20.29 (± 20.29 (± 20.30 (± 20.31)	7,97 7,88 7,92 7,89 7,88 7,88 7,88 2,88	Conducti (μS/cm (± 10% / 3 / 7 / 3 3 2 / 3 3 2 / 3 3 3 7 / 3	Pum Dupl /OAs hbers Poly Poly /OAs	(units) (± 0.2) 7.05 7.07 7.07 7.06 7.06 7.06 p Rate in l icate Sam Duplicate (√) Analy () TOC () Metha () Napht () Alkalir () Phosp	L or G /min: ple ID: e Sample Analyte(s): ine halene, Phenol hity, TDS shorus, TKN	Sample Tin yzed For: SE Preservative H ₂ SO ₄ HCl None None H ₂ SO ₄	(mg/L) (± 10%) 0.40 0.55 0.52 0.52 0.29 0.29 E WORK OR 2 X 40 mL A 3 X 40 mL A 3 X 40 mL A 1 X 500 mL 1 x 500 mL	Potential (mV) (± 20%) -50, 4/ -20, 8 5, 4/ 17, 9 21, 5 22, 2 DER Amber VOAs /OAs lers Poly Poly

Revised: 5/2/2012 Stantec

Project #:				Gı				ata Sheet			
Sam Lorenzo Sampler(s):	Project #: / 8	570	2534	Гаsk No:					D	ate: 7 / /8	112
Well ID: PO B 5 - A Depth to Water (DTW) (ft): 7 5 Sample DTW (ft): 8 C	Site Location:				(2)					_	
Screen Interval (ft): Depth to Bottom (DTB) (ft): Measurements Referenced to: TOC Tube/Pump Depth (ft): Well Diameter (inch): OVM (ppm) =		2 / 1	Α.		Sa	mple	er(s): (Melane	ou		
Tube/Pump Depth (ft): Well Diameter (inch): OVM (ppm) =			1								TOO .
CALCULATIONS: Length of the water column: DTB											100
Length of the water column:				well D	iameter (in	icn):		OVINI (E	ppm) =		
Book of the water level: DTW Fit Conductivity DTW Conductivi	CALCULATIONS	.							7		
Book of the water level: DTW Fit Conductivity DTW Conductivi	Length of the wa	ter column	:	ft -		ft =		ft	Volume of S	chedule 40 PV	C Pipe
1.25	•								Well Diame	ator ID	gal/linear ft
80% of the water level:											
DTW											
Sample Analyzed For: SEE WORK ORDER Sampling Time:	80% of the water	r level:							2	2.067	0.17
Estimated Purge Volume (EPV):				DTW	Water Col		Red	charge water level	3	3.068	0.38
Estimated Purge Volume (EPV):									1 4	4.026	0.66
(x) Low-Flow/Micro Purging () Purge at least 3 well volumes Sampling Equipment: Sampling Equipment: Bailer (x) Pump Discharge (x) Peristaltic Pump (x) Pump Discharge (x) Peristaltic Pump (x) Pump Pate (x) Pump Pa	Estimated Burgo	Volume /	ΕD\Λ· –	4 \	,	~	2 ==	Callona			
(x) Low-Flow/Micro Purging () Purge at least 3 well volumes Sampling Equipment: Sampling Equipment: Bailer (x) Pump Discharge (x) Peristaltic Pump (x) Pump Discharge (x) Peristaltic Pump (x) Pump Pate (x) Pump Pa	Estimated Fulge	volulile (t	-PV). –	ter col	gal/lin ft	一^ ,	Casing Volumes	Gallolis			
Purging Equipment: Sampling Equipment:			710	1101 001	gunini ita	•	Justing Volumes	,	8	7.981	2.6
Purging Equipment: Sampling Equipment: Bailer (X) Pump Discharge (X) YSI 556 (M) Myron L (Electric Submergible Pump (Dibrosable Bailer (X) Peristaltic Pump (Dibrosable Bailer (X) Pump Bodicated Tubing (Dibrosable Bailer (Dibrosable Bailer (X) Pump Bodicated Tubing (Dibrosable Bailer (Dibrosable Baile	(X)	Low-Flow	/Micro Purg	ging					10	10.02	4.12
Purging Equipment: Sampling Equipment: Bailer (X) Pump Discharge (X) YSI 556 (M) Myron L (Electric Submergible Pump (Dibrosable Bailer (X) Peristaltic Pump (Dibrosable Bailer (X) Pump Bodicated Tubing (Dibrosable Bailer (Dibrosable Bailer (X) Pump Bodicated Tubing (Dibrosable Bailer (Dibrosable Baile	()	Purge at	least 3 well	volumes					12	11.938	5.81
Time (24 hrs)	() Dis () Dis () Ele (X) Per () Oth	posable B ectric Subm ristaltic Pul ner:	Bailer ailer iergible Pum mp 	p	() (X) Pu () Di () Pe	sposa eristalt	ischarge ble Bailer ic Pump & D		(X) Y () M () H () H	SI 556 lyron L orriba anna	Used:
Time	DC	giii Furge	at //	00							
(every 3-5 min) (± 10%) (± 10%) (± 10%) (± 0.2) (± 10%) (± 10%) (± 0.2) (± 10%) (± 10%) (± 0.2) (± 10%) (± 10%) (± 0.2) (± 10%) (± 10%) (± 0.2) (± 10%) (± 10%) (± 0.2) (± 10%) (± 10%) (± 0.2) (± 10%		gin Furge		00	Specifi	С					Redox
	Time	Volume	Temp.				рН			DO	
	Time (24 hrs)	Volume	Temp.		Conducti (μS/cm	vity)	(units)	Color	Odor	(mg/L)	Potential (mV)
	Time (24 hrs) (every 3-5 min)	Volume (G /(L)	Temp. (C) °F) (± 10%)	DTW	Conducti (μS/cm (± 10%	vity)	(units) (± 0.2)			(mg/L) (± 10%)	Potential (mV) (± 20%)
Column	Time (24 hrs) (every 3-5 min)	Volume (G /(L)	Temp. (C) F) (± 10%) 21.77	DTW	Conducti (μS/cm (± 10%	vity)	(units) (± 0.2)			(mg/L) (± 10%)	Potential (mV) (± 20%)
Column	Time (24 hrs) (every 3-5 min)	Volume (G / (1)	Temp. (C) F) (± 10%) 21.77 21.70	DTW 7,99 8,08	Conducti (μS/cm (± 10%	vity))	(units) (± 0.2) 6, 93	Cleve	Wod.	(mg/L) (± 10%) 0,37 0,32	Potential (mV) (± 20%) - 77.2
Column	Time (24 hrs) (every 3-5 min) 1 / / O 1 / / S (/ 2 O	Volume (G / (1))	Temp. (C) F) (± 10%) 21.77 21.70 21.76	7,99 8,08 8,06	Conduction (μS/cm) (± 10%) (± 15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	vity))	(units) (± 0.2) 6, 93	Cleve	Wod.	(mg/L) (± 10%) 0,37 0,32 0.31	Potential (mV) (± 20%) 77. 2 77. 6 81. 6
Sample Analyzed For: SEE WORK ORDER Variable Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicat	Time (24 hrs) (every 3-5 min) 1 1 0 11 1 5 1 2 0 1 2 5	Volume (G/Q) 1.5 2.5 3.6 3.5	Temp. (± 10%) 21.77 21.70 21.76 21.66	7,99 8,08 8,06 8,06	Conduction (μS/cm) (± 10%) (± 10%) (± 15%) (±	vity)	(units) (± 0.2) 6.93 6.94 6.95	Cleve	Wod.	(mg/L) (± 10%) 0,37 0,32 0,31	Potential (mV) (± 20%) - 77. 2 - 77. 6 - 87. 6 - 82. 5
Sample Analyzed For: SEE WORK ORDER Variable Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicat	Time (24 hrs) (every 3-5 min) 1 1 0 11 1 5 1 2 0 1 2 5	Volume (G/Q) 1.5 2.5 3.6 3.5	Temp. (± 10%) 21.77 21.70 21.76 21.66	7,99 8,08 8,06 8,06	Conduction (μS/cm) (± 10%) (± 10%) (± 15%) (±	vity)	(units) (± 0.2) 6.93 6.94 6.95	Cleve	Wod.	(mg/L) (± 10%) 0,37 0,32 0,31	Potential (mV) (± 20%) - 77. 2 - 77. 6 - 87. 6 - 82. 5
Sample Analyzed For: SEE WORK ORDER Variable Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicat	Time (24 hrs) (every 3-5 min) 1 1 0 11 1 5 1 2 0 1 2 5	Volume (G/Q) 1.5 2.5 3.6 3.5	Temp. (± 10%) 21.77 21.70 21.76 21.66	7,99 8,08 8,06 8,06	Conduction (μS/cm) (± 10%) (± 10%) (± 15%) (±	vity)	(units) (± 0.2) 6.93 6.94 6.95	Cleve	Wod.	(mg/L) (± 10%) 0,37 0,32 0,31	Potential (mV) (± 20%) - 77. 2 - 77. 6 - 87. 6 - 82. 5
Sample Analyzed For: SEE WORK ORDER Variable Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicate Sample Duplicate Duplicat	Time (24 hrs) (every 3-5 min) 1 1 0 11 1 5 1 2 0 1 2 5	Volume (G/Q) 1.5 2.5 3.6 3.5	Temp. (± 10%) 21.77 21.70 21.76 21.66	7,99 8,08 8,06 8,06	Conduction (μS/cm) (± 10%) (± 10%) (± 15%) (±	vity)	(units) (± 0.2) 6.93 6.94 6.95	Cleve	Wod.	(mg/L) (± 10%) 0,37 0,32 0,31	Potential (mV) (± 20%) - 77. 2 - 77. 6 - 87. 6 - 82. 5
Sample Analyzed For: SEE WORK ORDER Variable Analyzed Analyzed For: SEE WORK ORDER	Time (24 hrs) (every 3-5 min) 1 1 0 11 1 5 1 2 0 1 2 5	Volume (G/Q) 1.5 2.5 3.6 3.5	Temp. (c) F) (± 10%) 21.77 21.70 21.76 21.66	7,99 8,08 8,06 8,06	Conduction (μS/cm) (± 10%) (± 10%) (± 15%) (±	vity)) / / / / / / / / / / / / / / / / /	(units) (± 0.2) 6.93 6.94 6.95	Cleve	Wod.	(mg/L) (± 10%) 0,37 0,32 0,31	Potential (mV) (± 20%) - 77. 2 - 77. 6 - 87. 6 - 82. 5
(√) Analyte(s): Preservative: Bottles: (√) Analyte(s): Preservative: Bottles: (X) TPH-g, BTEX, MTBE HCl 3 X 40 mL VOAs () TOC H₂SO₄ 2 X 40 mL Amber VOAs () TPH-d & TPH-mo HCl 2 x 0.5 L Ambers () Methane HCl 3 X 40 mL VOAs () NO₂, NO₃ & SO₄ None 1 X 500 mL Poly () Naphthalene, Phenol None 2 x 1 L Ambers () Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly () Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly () Ferrous Iron HCl 2 X Amber VOAs () VOCs HCl 3 X 40 mL VOAs () SVOCs None 2 x 1 L Ambers () Other	Time (24 hrs) (every 3-5 min) 1 1 0 11 15 1 2 0 1 2 5 1 3 0	Volume (G/Q) 1.5 2.5 3.6 3.5 4.0	Temp. (C) F) (± 10%) 21.77 21.70 21.76 21.66	7,99 8,08 8,06 8,06	Conduction (μS/cm) (± 10%) (± 10%) (± 15%) (±	vity)) ?	(units) (± 0.2) 6.93 6.95 6.95 6.95	Cleve n n cr	Wod.	(mg/L) (± 10%) 0,37 0,32 0,31	Potential (mV) (± 20%) - 77. 2 - 77. 6 - 87. 6 - 82. 5
(√) Analyte(s): Preservative: Bottles: (√) Analyte(s): Preservative: Bottles: (X) TPH-g, BTEX, MTBE HCl 3 X 40 mL VOAs () TOC H₂SO₄ 2 X 40 mL Amber VOAs () TPH-d & TPH-mo HCl 2 x 0.5 L Ambers () Methane HCl 3 X 40 mL VOAs () NO₂, NO₃ & SO₄ None 1 X 500 mL Poly () Naphthalene, Phenol None 2 x 1 L Ambers () Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly () Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly () Ferrous Iron HCl 2 X Amber VOAs () VOCs HCl 3 X 40 mL VOAs () SVOCs None 2 x 1 L Ambers () Other	Time (24 hrs) (every 3-5 min) 1 1 0 11 1 5 1 2 0 1 2 5 1 3 0	Volume (G /Q) 1.5 2.5 3.6 3.5 4.0	Temp. (c) F) (± 10%) 21.77 21.70 21.76 21.66 21.62	7,99 8,08 8,06 8,06	Conduction (μS/cm) (± 10%) (± 10%) (± 15%) (±	vity)) Pum	(units) (± 0.2) 6.93 6.95 6.95 6.95	e or G /min:	Wod.	(mg/L) (± 10%) 0,37 0,32 0,3/ 0,3/	Potential (mV) (± 20%) - 77. 2 - 77. 6 - 87. 6 - 82. 5
(X) TPH-g, BTEX, MTBE HCI 3 X 40 mL VOAs () TOC H ₂ SO ₄ 2 X 40 mL Amber VOAs () TPH-d & TPH-mo HCI 2 x 0.5 L Ambers () Methane HCI 3 X 40 mL VOAs () NO ₂ , NO ₃ & SO ₄ None 1 X 500 mL Poly () Naphthalene, Phenol None 2 x 1 L Ambers () Dissolved Iron Field-filtered, HNO ₃ 1 X 250 mL Poly () Phosphorus, TKN H ₂ SO ₄ 1 x 500 mL Poly () Ferrous Iron HCI 2 X Amber VOAs () VOCs HCI 3 X 40 mL VOAs () SVOCs None 2 x 1 L Ambers () Other	Time (24 hrs) (every 3-5 min) 1	Volume (G /Q) 1.5 2.5 3.5 4.0	Temp. (C) F) (± 10%) 21.77 21.76 21.66 21.66	7,99 8,08 8,06 8,06 8,06	Conducti (μ\$/cm (± 10%) 1556 154) 1533 1529	vity)) Pum	(units) (± 0.2) 6.93 6.95 6.95 6.95 p Rate in I	or G /min:	Wod.	(mg/L) (± 10%) 0,37 0,32 0,3/ 0,3/ 0,32	Potential (mV) (± 20%) 77. 2 77. 6 87. 6 82. 5 82. 7
() NO ₂ , NO ₃ & SO ₄ None 1 X 500 mL Poly () Naphthalene, Phenol None 2 x 1 L Ambers () Total Manganese HNO ₃ 1 X 250 mL Poly () Alkalinity, TDS None 1 X 500 mL Poly () Phosphorus, TKN H ₂ SO ₄ 1 x 500 mL Poly () Perrous Iron HCl 2 X Amber VOAs () VOCs HCl 3 X 40 mL VOAs () SVOCs None 2 x 1 L Ambers () Other	Time (24 hrs) (every 3-5 min) 1	Volume (G /Q) 1.5 2.5 3.5 4.0	Temp. (C) F) (± 10%) 21.77 21.76 21.66 21.62	7,99 8,08 8,06 8,06 8,06	Conducti (µS/cm (± 10% 1550 154) 1533 1529 1523	vity)) Pum	(units) (± 0.2) 6 9 3 6 9 5 6 9 5 6 9 5 6 9 5 6 9 5 Dip Rate in I	or G /min:	Sample Tinzed For: SE	(mg/L) (± 10%) 0,37 0,32 0,3/ 0,3/ 0,3/	Potential (mV) (± 20%) 77. 2 77. 6 87. 6 82. 5 82. 7
() Total Manganese HNO₃ 1 X 250 mL Poly () Alkalinity, TDS None 1 X 500 mL Poly () Dissolved Iron Field-filtered, HNO₃ 1 X 250 mL Poly () Phosphorus, TKN H₂SO₄ 1 x 500 mL Poly () Ferrous Iron HCl 2 X Amber VOAs () VOCs HCl 3 X 40 mL VOAs () SVOCs None 2 x 1 L Ambers () Other	Time (24 hrs) (every 3-5 min) 1	Volume (G/Q) 1.5 2.5 3.5 4.0 s Purgeo	Temp. (c) F) (± 10%) 21.77 21.76 21.66 21.66 21.62	7,99 8,08 8,06 8,06 8,06	Conducti (μS/cm (± 10%) 1550 154) 1529 1523	Pum Dupl	(units) (± 0.2) 6.93 6.95 6.95 6.95 E.95 Dip Rate in I	or G /min:	Sample Tin	(mg/L) (± 10%) 0,37 0,32 0,3/ 0,3/ 0,32	Potential (mV) (± 20%) - 77-2 - 77-6 - 87-6 - 82-5 - 82-7
() Dissolved Iron Field-filtered, HNO ₃ 1 X 250 mL Poly () Phosphorus, TKN H ₂ SO ₄ 1 x 500 mL Poly () Ferrous Iron HCl 2 X Amber VOAs () VOCs HCl 3 X 40 mL VOAs () SVOCs None 2 x 1 L Ambers () Other	Time (24 hrs) (every 3-5 min) 1	Volume (G/O) 1.5 2.5 3.6 3.5 4.0 s Purgeo	Temp. (c) F) (± 10%) 21.77 21.76 21.76 21.66 21.62 HO SEE WOR Preserv HO HO	7,99 8,08 8,06 8,06 8,06 8,06	Conducti (μS/cm (± 10%) 1556 1547 1533 1529 1523 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am	Pum Dupl	(units) (± 0.2) 6.93 6.94 6.95 6.95 6.95 Duplicate Sam Duplicate (√) Analy () TOC () Methal	or G /min: ple ID: e Sample Analyte(s):	Sample Tin Zed For: SE Preservative H ₂ SO ₄ HCI	(mg/L) (± 10%) 0, 3,7 0, 3,2 0, 3,7 0, 3,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0	Potential (mV) (± 20%) - ₹₹-₹-6 - ₹₹-6 - ₹₹-5 - ₹₹-7 - ₹\$-7 - \$\$-7 - \$\$-
() Ferrous Iron HCI 2 X Amber VOAs () VOCs HCI 3 X 40 mL VOAs () SVOCs None 2 x 1 L Ambers () Other	Time (24 hrs) (every 3-5 min) 1	Volume (G/O) 1.5 2.5 3.5 4.0 s Purgeo e: zed For:	Temp. (± 10%) 21.77 21.70 21.76 21.66 21.62 : 1/30 SEE WOR Preserv HO Nor	7,99 8,08 8,06 8,06 8,06 8,06	Conducti (μS/cm (± 10% / 5 5 6 / 5 4 7 / 5 3 3 / 5 2 9 / 5 2 3 8 Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL	Pum Dupl OAs bers Poly	(units) (± 0.2) 6.93 6.94 6.95 6.95 6.95 Duplicate Sam Duplicate (√) Analy () TOC () Methal () Napht	or G /min: ple ID: e Sample Analyte(s): ne halene, Phenol	Sample Tin zed For: SE Preservative H ₂ SO ₄ HCI None	(mg/L) (± 10%) 0, 3,7 0, 3,2 0, 3,7 0, 3,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0	Potential (mV) (± 20%) ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬
	Time (24 hrs) (every 3-5 min) 1	Volume (G /O) 1.5 2.5 3.6 3.5 4.0 s Purgeo	Temp. (± 10%) 21.77 21.70 21.76 21.66 21.62 : SEE WOR Preserv HO Nor	DTW 7,99 8,06 8,06 8,06 Rore Side Side Side Side Side Side Side Sid	Conducti (μS/cm (± 10% / 5 5 6 / 5 4 7 / 5 3 3 / 5 2 9 / 5 2 5 2	Pum Dupl OAs bers Poly Poly	(units) (± 0.2) 6 93 6 94 6 95 6 95 6 95 6 95 6 95 6 95 7 95 7 95 7 95 7 95 7 95 7 95 7 95 7	or G /min: ple ID: e Sample Analy te(s): ne halene, Phenol nity, TDS	Sample Tin zed For: SE Preservative H ₂ SO ₄ HCI None None	(mg/L) (± 10%) 0, 3,7 0, 3,2 0, 3,7 0, 3,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0	Potential (mV) (± 20%)
Notes:	Time (24 hrs) (every 3-5 min) 1 / / O 11 / S (/ 2 O 11 2 5 1/ 3 O Liters / Gallon Sampling Time (\(\frac{1}{2}\) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar () Dissolved Iro () Ferrous Iron	Volume (G /O) 1.5 2.5 3.6 3.5 4.0 s Purgeo	(± 10%) 21.77 21.70 21.76 21.66 21.62 E SEE WOR Preserv HO HO Field-filtere	DTW 7,99 8,06 8,06 8,06 Stock S	Conducti (μS/cm (± 10%) / 5 5 6 / 5 3 3 / 5 2 9 / 5 2 3 / 5 2 9 / 5 3 3 / 5 2 9 / 5 2 3 / 5 2 9 / 5 2	Pum Dupl OAs bers Poly Poly OAs	(units) (± 0.2) 6 93 6 94 6 95 6 95 6 95 6 95 6 95 6 95 6 95 6 95	or G /min: ple ID: e Sample Analyte(s): ne halene, Phenol nity, TDS shorus, TKN	Sample Tin zed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0, 3,7 0, 3,2 0, 3,7 0, 3,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0	Potential (mV) (± 20%)
	Time (24 hrs) (every 3-5 min) 1 / / O 11 / S (/ 2 O 11 2 5 1/ 3 O Liters / Gallon Sampling Time (\(\frac{1}{2}\) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar () Dissolved Iro () Ferrous Iron	Volume (G /O) 1.5 2.5 3.6 3.5 4.0 s Purgeo	(± 10%) 21.77 21.70 21.76 21.66 21.66 21.62 I: SEE WOR Preserv HO HO HNO Field-filtere HO	DTW 7,99 8,06 8,06 8,06 Stock S	Conducti (μS/cm (± 10%) / 5 5 6 / 5 3 3 / 5 2 9 / 5 2 3 / 5 2 9 / 5 3 3 / 5 2 9 / 5 2 3 / 5 2 9 / 5 2	Pum Dupl OAs bers Poly Poly OAs	(units) (± 0.2) 6 93 6 94 6 95 6 95 6 95 6 95 6 95 6 95 6 95 6 95	or G /min: ple ID: e Sample Analyte(s): ne halene, Phenol nity, TDS shorus, TKN	Sample Tin zed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0, 3,7 0, 3,2 0, 3,7 0, 3,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0	Potential (mV) (± 20%)

Revised: 5/2/2012 Stantec

			G	roundwater S	Sampling D	Data Sheet			
				Pro	ject Name:			92 VO.	24 9 0
Project #: /8		2534 T	ask No:	Bol	nannon		D	ate: 9 / <i> 19</i>	112
Site Location	:	7.5			at sow the				
San Lorenzo						Melauco			
Well ID: /V				to Water (DTV			DTW (ft):		
Screen Interv				to Bottom (DT				erenced to:	100
Tube/Pump D CALCULATION			well D	iameter (inch)	: 2	OVM (p	pm) =		
CALCULATION	5 .								
Length of the wa	iter column	· —	ft -		=	ft	Volume of S	chedule 40 PV	C Pipe
		Į.	DTB	DTW	Water Col		Well Diame	ter. I.D	gal/linear ft.
							1.25	1.38	0.08
80% of the wate	r level:		ft -	+ <u>(</u>	X 0.2) =	ft	2	2.067	0.17
			otw	Water Col	Re	charge water level	3	3.068	0.38
							4	4.026	0.66
5. C	17.1	-D) ()				0			
Estimated Purge	: Volume (I	=PV): =	m 2	gal/lin. ft.	3 =	Gallons	6	6.065	1.5
		vva	iter coi	gai/iiri. it.	Casing volumes	•	8	7.981	2.6
(X)	Low-Flow	/Micro Purg	ging				10	10.02	4.12
()	Purge at	least 3 well	volumes				12	11.938	5.81
() Dis () Ele (X) Pe () Otl	sposable B ectric Subm ristaltic Pu her:	Bailer ailer nergible Pum mp 		() Perista	sable Bailer	ler Dedicated Tubing	(X) YS () M () Ho () Ho	yron L orriba	Used:
H.C	anin Piirae	at //							
В	gin Purge		10	Specific	1		1		Redox
Time		Temp.	10	Specific Conductivity	На			DO	Redox Potential
	Volume	Temn	DTW		pH (units)	Color	Odor	DO (mg/L)	
Time	Volume	Temp.		Conductivity		Color	Odor		Potential
Time ^ (24 hrs)	Volume	Temp.		Conductivity (μS/cm)	(units)	Color	Odor	(mg/L)	Potential (mV)
Time - (24 hrs) (every 3-5 min) 1/45	Volume (G (L))	Temp. (C)°F) (± 10%) 23.48 23.50	DTW 7.41 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 ≤	(units) (± 0.2) 7-11 7-09			(mg/L) (± 10%) 0:55	Potential (mV) (± 20%) -8C-0
Time (24 hrs) (every 3-5 min) 1/45 1/50	Volume (G.L.)	Temp. (c) °F) (± 10%) 23.48 23.50 23.54	7.41 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 /	(units) (± 0.2) 7-// 7-09 7-08	Clear	wod	(mg/L) (± 10%) 0.55 0.7/ 0.30	Potential (mV) (± 20%) -85.0 -79.2 -68.7
Time - (24 hrs) (every 3-5 min) 1/45 1/50 1/55 1/200	Volume (G.L.)	Temp. (C)°F) (± 10%) 23.48 23.50	DTW 7.41 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 ≤	(units) (± 0.2) 7-11 7-09	Clear	wod	(mg/L) (± 10%) 0:55	Potential (mV) (± 20%) -8C-0
Time (24 hrs) (every 3-5 min) 1/45 1/50	Volume (G.L.)	Temp. (c) °F) (± 10%) 23.48 23.50 23.54	7.41 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 /	(units) (± 0.2) 7-// 7-09 7-08	Clear	wod	(mg/L) (± 10%) 0.55 0.7/ 0.30	Potential (mV) (± 20%) -85.0 -79.2 -68.7
Time - (24 hrs) (every 3-5 min) 1/45 1/50 1/55 1/200	Volume (G.L.)	Temp. (c) °F) (± 10%) 23.48 23.50 23.54	7.41 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 /	(units) (± 0.2) 7-// 7-09 7-08	Clear	wod	(mg/L) (± 10%) 0.55 0.7/ 0.30	Potential (mV) (± 20%) -85.0 -79.2 -68.7
Time - (24 hrs) (every 3-5 min) 1/45 1/50 1/55 1/200	Volume (G.L.)	Temp. (c) °F) (± 10%) 23.48 23.50 23.54	7.41 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 /	(units) (± 0.2) 7-// 7-09 7-08	Clear	wod	(mg/L) (± 10%) 0.55 0.7/ 0.30	Potential (mV) (± 20%) -85.0 -79.2 -68.7
Time - (24 hrs) (every 3-5 min) 1/45 1/50 1/55 1/200	Volume (G.L.)	Temp. (c) °F) (± 10%) 23.48 23.50 23.54	7.41 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 /	(units) (± 0.2) 7-// 7-09 7-08	Clear	wod	(mg/L) (± 10%) 0.55 0.7/ 0.30	Potential (mV) (± 20%) -85.0 -79.2 -68.7
Time - (24 hrs) (every 3-5 min) 1/45 1/50 1/55 1/200	Volume (G.(L)) 1,5 2,5 3,5 4,5	Temp. (C) F) (± 10%) 23.48 23.50 23.54 23.61	7.41 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 / / 3 3 2	(units) (± 0.2) 7.11 7.09 7.03	Clear	wod	(mg/L) (± 10%) 0.55 0.7/ 0.30	Potential (mV) (± 20%) -85.0 -79.2 -68.7
Time (24 hrs) (every 3-5 min) 1/ 4 5 1/ 5 0 1/ 5 5 1/ 2 0 0 1/2 0 5	Volume (G LL)	Temp. (± 10%) 23.48 23.50 23.54	7.41 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 / / 3 3 2	(units) (± 0.2) 7.11 7.09 7.03	tr cr cr L or G /min:	wod	(mg/L) (± 10%) 0.55 0.7/ 0.30 0.29	Potential (mV) (± 20%) -85.0 -79.2 -68.7
Time (24 hrs) (every 3-5 min) 1/ 4 5 1/ 5 0 1/ 5 5 1/ 2 0 0 1/ 2 0 5 Liters / Gallon Sampling Tim	Volume (G (L)) 1,5 2,5 3,5 4,5 4,5	Temp. (C)°F) (± 10%) 23.48 23.50 23.54 23.61	7.41 7.37 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 2 / 3 3 2 Pu Du	(units) (± 0.2) 7.09 7.03 mp Rate in	L or G /min:	ice ce	(mg/L) (± 10%) 0.55 0.7/ 0.30 0.29	Potential (mV) (± 20%) -85-0 -79-2 -68-7 -69-5
Time (24 hrs) (every 3-5 min) 1/ 4 5 1/ 5 0 1/ 5 5 1/ 2 0 0 1/ 2 0 5 Liters / Gallon Sampling Tim Sample Analy	Volume (G (L)) 1,5 2,5 3,5 4,5 4,5	Temp. (C)°F) (± 10%) 23.48 23.50 23.54 23.61	7.41 7.37 7.39 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 2 / 3 3 2 Pu Du	(units) (± 0.2) 7.09 7.03 mp Rate in	L or G /min:	ice ce	(mg/L) (± 10%) 0.55 0.4/ 0.30 0.29	Potential (mV) (± 20%) -85-0 -79-2 -68-7 -69-5
Time (24 hrs) (every 3-5 min) 1/ 4 S 1/ 5 O 1/ 5 S 1/ 2 Ø O 1/2 O	Volume (G (L))	Temp. (C) °F) (± 10%) 23.48 23.50 23.54 23.61 SEE WOR Preserv	7.41 7.37 7.39 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 / / 3 3 2 Pu Du R Bottles: 3 X 40 mL VOAs	(units) (± 0.2) ¬ // ¬ / 0 9 ¬ / 0 8 ¬ / 0 8 mp Rate in plicate Sam Duplicate (√) Analy S () TOC	L or G /min: te Sample Analyzite(s):	Sample Tin zed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0.55 0.4/ 0.30 0.29 He: E WORK OR: 2 X 40 mL A	Potential (mV) (± 20%) -87-2 -68-7 -69-5 DER
Time (24 hrs) (every 3-5 min) 1/ 4 S 1/ 5 O 1/ 5 S 1/ 2 Ø O 1/2 O	Volume (G (L)) 1.5 2.5 3.5 4.5 4.5 e: /2 zed For:	Temp. (C) °F) (± 10%) 23.48 23.50 23.54 23.61 SEE WOR Preserv	7.41 7.37 7.39 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 / / 3 3 2 Pu Du R Bottles: 3 X 40 mL VOAs 2 x 0.5 L Ambers	(units) (± 0.2)	L or G /min: te Sample Analyzate(s):	Sample Tin	(mg/L) (± 10%) 0.55 0.7/ 0.30 0.29 The: E WORK OR: 2 X 40 mL A 3 X 40 mL A	Potential (mV) (± 20%) -87-0 -79-2 -68-7 -69-5 DER
Time (24 hrs) (every 3-5 min) 1/ 4 S 1/ 5 O 1/ 5 S 1/ 2 O O 1/2 O S Liters / Gallon Sampling Tim Sample Analy (√) Analyte(s): (X) TPH-g, BTE () TPH-d & TPI () NO ₂ , NO ₃ & 3	Volume (G (L)) /- 5 2.5 3.5 4.5 s Purgeo e: /2 zed For:	Temp. (± 10%) 23.48 23.50 23.54 23.61 SEE WOR Preserv HC Non	DTW 7.41 7.39 7.39 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 / / 3 3 2 Pu Du R Bottles: 3 X 40 mL VOAs 2 x 0.5 L Amber 1 X 500 mL Poly	(units) (± 0.2)	L or G /min: te Sample Analyze te(s): ane thalene, Phenol	Sample Tim zed For: SE Preservative H ₂ SO ₄ HCI None	(mg/L) (± 10%) 0.55 0.7/ 0.30 0.29 1	Potential (mV) (± 20%) -86,-0 -79,-2 -68,-7 -69,-5 DER Amber VOAs /OAs ers
Time (24 hrs) (every 3-5 min) 1/ 4 S 1/ 5 O 1/ 5 S 1/ 2 Ø O 1/2 O	Volume (G (L)) /-5 2.5 3.5 4.5 4.5 e: /2 zed For:	Temp. (C) °F) (± 10%) 23.48 23.50 23.54 23.61 SEE WOR Preserv	DTW 7.41 7.37 7.39 7.39 7.39 8.39 8.39 8.39 8.39 8.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 / / 3 3 2 Pu Du R Bottles: 3 X 40 mL VOAs 2 x 0.5 L Ambers	(units) (± 0.2) 7.09 7.09 7.09 7.09 Plicate Sam Duplicate (√) Analysis () TOC () Naphir () Alkalii	L or G /min: te Sample Analyzate(s):	Sample Tin	(mg/L) (± 10%) 0.55 0.7/ 0.30 0.29 The: E WORK OR: 2 X 40 mL A 3 X 40 mL A	Potential (mV) (± 20%) -31-0 -79-2 -68-7 -69-5 DER Amber VOAs /OAs ers Poly
Time (24 hrs) (every 3-5 min) 1/ 4 5 1/ 5 0 1/ 5 5 1/ 2 0 0 1/ 2 0 1/ 5 5 1/ 2 0 0 1/ 5 5 1/ 2 0 0 1/ 5 5 1/ 5 0 1/ 5 5 1/ 6 0 Liters / Gallon Sampling Tim Sample Analy (√) Analyte(s): (X) TPH-g, BTE. (X) TPH-d &	Volume (G (L)) /-5 2.5 3.5 4.5 4.5 e: /2 zed For:	Temp. (± 10%) 23.48 23.50 23.54 23.61 I: SEE WOR Preserv HC HC HNO HNO Field-filtere	7.41 7.39 7.39 7.39 7.39 7.39 7.39 7.39	Conductivity (μS/cm)	(units) (± 0.2) 7.09 7.09 7.09 mp Rate in plicate Sam Duplicate (√) Analy (s) () Methat (v) () Alkalit (v) () Phosp (v) () VOCs (v) () VOCs (v) () VOCs	L or G /min: te Sample Analyze te Sample Analyze thalene, Phenol nity, TDS chorus, TKN	Sample Tim zed For: SE Preservative H ₂ SO ₄ HCI None None	(mg/L) (± 10%) 0.55 0.7/ 0.30 0.29 E WORK OR : Bottles: 2 X 40 mL A 2 x 1 L Amb 1 X 500 mL	Potential (mV) (± 20%) -85-0 -79-2 -68-7 -69-5 DER Amber VOAs /OAs ers Poly Poly
Time (24 hrs) (every 3-5 min) 1/ 4 S 1/ 5 O 1/ 5 S 1/ 2 O O 1/ 2 O 1/ 3 S 1/ 4 S 1/ 5 O 1/ 5 S 1/ 6 O 1/ 7 S 1/ 8 O 1/ 8 O 1/ 9 O 1/ 1 S 1/ 1 S 1/ 2 O 1/ 2 O 1/ 3 S 1/ 4 S 1/ 5 O 1/ 5	Volume (G (L)) /-5 2.5 3.5 4.5 4.5 e: /2 zed For:	Temp. (± 10%) 23.48 23.50 23.54 23.61 I: SEE WOR Preserv HC HC Non HNC Field-filtere	7.41 7.39 7.39 7.39 7.39 7.39 7.39 7.39	Conductivity (μS/cm) (± 10%) /3 0 6 /3 2 3 / 3 3 / / 3 3 3 2 / 3	(units) (± 0.2) 7.09 7.09 7.09 Plicate Sam Duplicate (√) Analysis () TOC (√) () Methata () () Naphita () () Phospital () Phospital () () () Phospital () () () () () () () () () (L or G /min: te Sample Analyze te Sample Analyze thalene, Phenol nity, TDS chorus, TKN	Sample Tim zed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0.55 0.4/ 0.30 0.29 E WORK OR: E Bottles: 2 X 40 mL A 3 X 40 mL A 2 x 1 L Amb 1 X 500 mL	Potential (mV) (± 20%) -85-0 -79-2 -68-7 -69-5 DER Amber VOAs /OAs ers Poly Poly
Time (24 hrs) (every 3-5 min) 1/ 4 5 1/ 5 0 1/ 5 5 1/ 2 0 0 1/ 2 0 1/ 5 5 1/ 2 0 0 1/ 5 5 1/ 2 0 0 1/ 5 5 1/ 5 0 1/ 5 5 1/ 6 0 Liters / Gallon Sampling Tim Sample Analy (√) Analyte(s): (X) TPH-g, BTE. (X) TPH-d &	Volume (G (L)) /-5 2.5 3.5 4.5 4.5 e: /2 zed For:	Temp. (± 10%) 23.48 23.50 23.54 23.61 I: SEE WOR Preserv HC HC HNO HNO Field-filtere	7.41 7.39 7.39 7.39 7.39 7.39 7.39 7.39	Conductivity (μS/cm)	(units) (± 0.2) 7.09 7.09 7.09 mp Rate in plicate Sam Duplicate (√) Analy (s) () Methat (v) () Alkalit (v) () Phosp (v) () VOCs (v) () VOCs (v) () VOCs	L or G /min: te Sample Analyze te Sample Analyze thalene, Phenol nity, TDS chorus, TKN	Sample Tim zed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0.55 0.4/ 0.30 0.29 E WORK OR: E Bottles: 2 X 40 mL A 3 X 40 mL A 2 x 1 L Amb 1 X 500 mL	Potential (mV) (± 20%) -85-0 -79-2 -68-7 -69-5 DER Amber VOAs /OAs ers Poly Poly
Time (24 hrs) (every 3-5 min) 1/ 4 S 1/ 5 O 1/ 5 S 1/ 2 O O 1/ 2 O 1/ 2 O 1/ 3 S 1/ 4 S 1/ 5 O 1/ 5 S 1/ 6 O 1/ 7 S 1/ 8 O 1/ 9 S Liters / Gallon Sampling Tim Sample Analy (1/) Analyte(s): (X) TPH-g, BTE: (X) TPH-g, BTE: (Y) TPH-d & TPI (Y) NO2, NO3 & S (Y) TOTAL Manga (Y) Dissolved Iron (Y) Ferrous Iron (Y) SVOCs	Volume (G (L)) /-5 2.5 3.5 4.5 4.5 e: /2 zed For:	Temp. (± 10%) 23.48 23.50 23.54 23.61 I: SEE WOR Preserv HC HC HNO HNO Field-filtere	7.41 7.39 7.39 7.39 7.39 7.39 7.39 7.39	Conductivity (μS/cm)	(units) (± 0.2) 7.09 7.09 7.09 mp Rate in plicate Sam Duplicate (√) Analy (s) () Methat (v) () Alkalit (v) () Phosp (v) () VOCs (v) () VOCs (v) () VOCs	L or G /min: te Sample Analyze te Sample Analyze thalene, Phenol nity, TDS chorus, TKN	Sample Tim zed For: SE Preservative H ₂ SO ₄	(mg/L) (± 10%) 0.55 0.4/ 0.30 0.29 E WORK OR: E Bottles: 2 X 40 mL A 3 X 40 mL A 2 x 1 L Amb 1 X 500 mL	Potential (mV) (± 20%) -85-0 -79-2 -68-7 -69-5 DER Amber VOAs /OAs ers Poly Poly

Revised: 5/2/2012 Stantec

			G				Data Sheet			
Destruct H. J.	·~30	5-24	Faala Nias			ct Name:		, n	. 0 110	
Project #: / > Site Location:		2539	ask No:		Boha	nnon		D	ate: 9 1/8	1/2
San Lorenzo	•			Sa	mple	r(s):	Melage			
Well ID: POP	25 - R	2	Depth	to Water (I	DTW)	(ft): 7	9 Sample	DTW (ft):	8-08	
Screen Interva				to Bottom					erenced to:	тос
Tube/Pump D	epth (ft):			Diameter (in			OVM (p	pm) = -		
CALCULATIONS	S:									
Length of the wa	ter column	··	ft	9:0	# -		4	Volume of S	Schedule 40 PV	C Dino
Length of the wa	itei coluiili	171	DTB "	DTW		Water Col	it.			·
								Well Diame	eter. I.D	gal/linear ft.
								1.25	1.38	0.08
80% of the water	r level:			+ (2	2.067	0.17
			DTW	Water Col		Re	charge water level	3	3.068	0.38
								4	4.026	0.66
Estimated Purge	Volume (F	=P\/)· =	ft	X	x	3 =	Gallons	6	6.065	1.5
Estimated Purge	(-	Wa	ter col	gal/lin. ft.	— ^ c	asing Volume	s	8		
(34)		./A.A.:							7.981	2.6
		/Micro Puro						10	10.02	4.12
()	Purge at	least 3 well	volumes					12	11.938	5.81
(X) Ele (X) Per () Oth	posable B	Bailer ailer nergible Pum mp 		() Di: () Pe	sposat eristalti	_Bail scharge ble Bailer c Pump & D	ler Dedicated Tubing	(X) Y: () M () H () H		Used:
Ве	gin Purge	at /		Specifi				1		1 B. J. 1
Time (24 hrs)	Volume (G (Ĺ)	Temp. (°C / °F)	DTW	Conductive (µS/cm	vity	pH (units)	Color	Odor	DO (mg/L)	Redox Potential (mV)
(every 3-5 min)		(± 10%)		(± 10%)	(± 0.2)			(± 10%)	(± 20%)
1210		22.33				7.30	0/80-	4044	0,48	-50.9
1215		22.63	8.38			7.23	"	11	0.38	-43.1
1220		23.23	8.16	1084		7,21	"	11	0,37	-29.8
1225		23.40	8.08	1088		7,21	"	01	0.29	-23.4
1230	4.0	(7:17	8,08	1089		7.21			0,28	-22,3
					-					
				1						
Liters / Gallon	s Purgeo	l:			Pump	Rate in	L or G /min:			
		230				o Rate in l		Sample Tin	ne:	
Sampling Time	e: /2	230	K ORDE	R		cate Sam	ple ID:			DER
Sampling Time Sample Analy: (√) Analyte(s):	e: /2 zed For:	230 SEE WOR	ative:	Bottles:	Dupli	Duplicat	ple ID: te Sample Analy	zed For: SE Preservative	E WORK OR	
Sampling Time Sample Analy: (√) Analyte(s): (X) TPH-g, BTE)	e: /2 zed For:	2 3 0 SEE WOR Preserv	ative:	Bottles: 3 X 40 mL V	Dupli	Duplicat	ple ID: te Sample Analy te(s):	zed For: SE Preservative H ₂ SO ₄	E WORK OR Bottles: 2 X 40 mL A	Amber VOAs
Sampling Time Sample Analyz (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH	e: /2 zed For: X, MTBE	SEE WOR Preserv	ative:	Bottles: 3 X 40 mL V 2 x 0.5 L Am	Dupli OAs bers	Duplicat	ple ID: te Sample Analy te(s):	zed For: SE Preservative H ₂ SO ₄ HCI	E WORK OR Bottles: 2 X 40 mL A 3 X 40 mL \	Amber VOAs /OAs
Sampling Time Sample Analy: (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar	e: /2 zed For: K, MTBE H-mo SO ₄ nese	SEE WOR Preserv HO Nor	ative:	Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL	OAs bers Poly Poly	Duplicat (√) Analy () TOC () Metha () Napht () Alkalii	ple ID: te Sample Analy te(s): ane thalene, Phenol nity, TDS	zed For: SE Preservative H ₂ SO ₄	E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL N 2 x 1 L Amb 1 X 500 mL	Amber VOAs /OAs pers Poly
Sampling Time Sample Analy: (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO₂, NO₃ & § () Total Mangar () Dissolved Iro	e: /2 zed For: K, MTBE H-mo SO ₄ nese	Preserv HO Nor HNO Field-filtere	ative:	Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL	OAs bers Poly Poly	Duplicat \(\forall \) Analy \(\) TOC \(\) Metha \(\) Napht \(\) Alkalin \(\) Phosp	ple ID: te Sample Analy te(s): ane thalene, Phenol hity, TDS bhorus, TKN	zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL N 2 x 1 L Amb 1 X 500 mL 1 x 500 mL	Amber VOAs /OAs pers Poly Poly
Sampling Time Sample Analy: (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar	e: /2 zed For: K, MTBE H-mo SO ₄ nese	SEE WOR Preserv HO Nor	ative:	Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL 2 X Amber V	OAs abers Poly Poly Poly (OAs	Duplicat \(\forall \) Analy () TOC () Metha () Napht () Alkalin () Phosp () VOCs	ple ID: te Sample Analy rte(s): ane thalene, Phenol nity, TDS phorus, TKN	zed For: SE Preservative H ₂ SO ₄ HCI None None	E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL N 2 x 1 L Amb 1 X 500 mL	Amber VOAs /OAs pers Poly Poly
Sampling Time Sample Analy: (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar () Dissolved Iro () Ferrous Iron () SVOCs	e: /2 zed For: K, MTBE H-mo SO ₄ nese	Preserv HC HC Nor HNC Field-filtere	ative:	Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL	OAs abers Poly Poly Poly (OAs	Duplicat \(\forall \) Analy \(\) TOC \(\) Metha \(\) Napht \(\) Alkalin \(\) Phosp	ple ID: te Sample Analy rte(s): ane thalene, Phenol nity, TDS phorus, TKN	zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL N 2 x 1 L Amb 1 X 500 mL 1 x 500 mL	Amber VOAs /OAs pers Poly Poly
Sampling Time Sample Analy: (√) Analyte(s): (X) TPH-g, BTE) () TPH-d & TPH () NO ₂ , NO ₃ & S () Total Mangar () Dissolved Iro () Ferrous Iron () SVOCs	e: /2 zed For: K, MTBE H-mo SO ₄ nese	Preserv HC HC Nor HNC Field-filtere	ative:	Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL 2 X Amber V	OAs abers Poly Poly Poly (OAs	Duplicat \(\forall \) Analy () TOC () Metha () Napht () Alkalin () Phosp () VOCs	ple ID: te Sample Analy rte(s): ane thalene, Phenol nity, TDS phorus, TKN	zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL N 2 x 1 L Amb 1 X 500 mL 1 x 500 mL	Amber VOAs /OAs pers Poly Poly
() NO₂, NO₃ & Ṣ () Total Mangar () Dissolved Iro () Ferrous Iron	e: /2 zed For: K, MTBE H-mo SO ₄ nese	Preserv HC HC Nor HNC Field-filtere	ative:	Bottles: 3 X 40 mL V 2 x 0.5 L Am 1 X 500 mL 1 X 250 mL 1 X 250 mL 2 X Amber V	OAs abers Poly Poly Poly (OAs	Duplicat \(\forall \) Analy () TOC () Metha () Napht () Alkalin () Phosp () VOCs	ple ID: te Sample Analy rte(s): ane thalene, Phenol nity, TDS phorus, TKN	zed For: SE Preservative H ₂ SO ₄ HCI None None H ₂ SO ₄	E WORK OR : Bottles: 2 X 40 mL A 3 X 40 mL N 2 x 1 L Amb 1 X 500 mL 1 x 500 mL	Amber VOAs /OAs pers Poly Poly

Revised: 5/2/2012

CHAIN OF CUSTODY RECORD

	Stantec Stantec Lafayette Office	Stantec C	ompany C	ontac	t(s) fo	r Invoid	e:			Stant	ec Project#		DATE:	9-1	8-1	Z	
	57 Lafayette Circle, 2nd Floor Lafayette, CA 94549 TEL:(925) 299-9300 FAX:(925)299-9302		anager: M son.albrcl							185	702534		PAGE:			/ OF	,
Project Nar	ne:	_	3011.010101	newst.	arriec.	COM				-						OF .	
Address:	Bohanno	n						s) Printed Name:			Laboratory	:		4 4			
	575 Paseo Grande, Sa	ın Lorenzo (CA				Char	les Melancon s) Signature;	-		Lab Use Or	dv.		estAm	erica		
						,											
Turn-aroun	d Time (Business Days):											A THE STATE OF	************		100000000000000000000000000000000000000	15/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/	
10 DAYS [x 5 DAYS 72 HR 48 HR	24	HR.	<24 H	HR 🗌						REQUES	TED A	NALYS	SIS			
□ отн	ER																
							1										
Special In	structions or Notes: Te	emperature L	pon Receip	ot (C):]				ю .					j	
							TPH-g/BTEX by 8260B		1		1						
							× 82					- 1				İ	
							X									1	
	***] E		1 1			- 1					
LAB USE	Field Sample Identification		PLING	MAT- RIX	No. of Cont.	Pre- serve] 문										
ONLY	TB-1	DATE	TIME	-	-		_										_aboratory Notes
	MW-4	4-18-12		W	2	HCL	X		-	_							
			940	\vdash	3	-	-										
	NOBS-Bi		1020	1	\vdash	-	\vdash			_							
	POBS BI		1100	\vdash	\vdash	-	\vdash										
	POBS-A1		1/30	1	₩.	-1-	1										
	MW-2		1200	Ш	Ш		\vdash										
	fOBS-B2		1230														
	MW-3		1310														
	DUP.	V		V	V	V	LV										
	and the same of th			1	1												
Relinguishe	by (Signature)	Date: 9-18-(2	Time:	Flecei	ved by:	ignatura	_				1	9/18/	/17	1/42	<u> </u>		- X
Relinquishe	d by (Signature)	Date:	7723 Time:	Recei	Ved by: (S	ignature)	/				-1	11/6/	14	Time:	<u> </u>		
Relinquishe	d by: (Signature)	Date:	Time;	Recei	ved by: (S	ignature)								Time:	į –		

APPENDIX C Laboratory Analytical Report and Chain-of-Custody for the September 2012 Groundwater Monitoring Event

Third Quarter 2012 Groundwater Monitoring Report
David D. Bohannon Organization
575 Paseo Grande
San Lorenzo, California
Stantec PN: 185702534
December 21, 2012

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-44599-1

Client Project/Site: Bohannon San Lorenzo

For:

Stantec Consulting Corp. 57 Lafayette Circle 2nd Floor Lafayette, California 94549-4321

Attn: Mr. Mason Albrecht

Authorized for release by: 9/26/2012 4:14:43 PM

Afsaneh Salimpour Project Manager I

afsaneh.salimpour@testamericainc.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-44599-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	15
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receint Checklists	21

4

9

11

12

Definitions/Glossary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-44599-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\tilde{\	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

4

5

6

9

10

11

Case Narrative

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-44599-1

Job ID: 720-44599-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-44599-1

Comments

No additional comments.

Receipt

The samples were received on 9/18/2012 2:25 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

No analytical or quality issues were noted.

4

5

6

0

9

10

12

13

5

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-44599-1

Client Sample ID: TB-1 Lab Sample ID: 720-44599-1

No Detections

Client Sample ID: MW-4 Lab Sample ID: 720-44599-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	25		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
								MS	
Ethylbenzene	1.2		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
								MS	
Toluene	4.2		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
								MS	
Xylenes, Total	3.6		1.0		ug/L	1		8260B/CA_LUFT	Total/NA
								MS	
Gasoline Range Organics (GRO)	1400		50		ug/L	1		8260B/CA_LUFT	Total/NA
-C5-C12								MS	

Client Sample ID: NOBS-B1 Lab Sample ID: 720-44599-3

No Detections

Client Sample ID: POBS-B1 Lab Sample ID: 720-44599-4

No Detections

Client Sample ID: POBS-A1 Lab Sample ID: 720-44599-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	1100		5.0		ug/L	10	_	8260B/CA_LUFT MS	Total/NA
Ethylbenzene	8.3		5.0		ug/L	10		8260B/CA_LUFT MS	Total/NA
Toluene	27		5.0		ug/L	10		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	18		10		ug/L	10		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	2600		500		ug/L	10		8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-2 Lab Sample ID: 720-44599-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	4.7		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	410		50		ug/L	1		8260B/CA_LUFT MS	Total/NA

Client Sample ID: POBS-B2 Lab Sample ID: 720-44599-7

No Detections

Client Sample ID: MW-3 Lab Sample ID: 720-44599-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	110		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
Ethylbenzene	0.66		0.50		ug/L	1		MS 8260B/CA_LUFT	Total/NA
Toluene	2.6		0.50		ug/L	1		MS 8260B/CA LUFT	Total/NA
					Ü			MS	

Detection Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-44599-1

Client Sample ID: MW-3 (Continued)

Lab	Sample	e ID:	720	-445	99-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Xylenes, Total	1.2		1.0		ug/L	1	_	8260B/CA_LUFT	Total/NA
								MS	
Gasoline Range Organics (GRO)	480		50		ug/L	1		8260B/CA_LUFT	Total/NA
-C5-C12								MS	

Dil Fac	D	Method	Prep Type
1	_	8260B/CA_LUFT	Total/NA
		MS	
1		8260B/CA_LUFT	Total/NA

Client Sample ID: DUP

Lab Sam	ple	ID:	720-44	599-9

Analyte	Result	Qualifier F	L MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	100	0.8	50	ug/L	1		8260B/CA_LUFT MS	Total/NA
Ethylbenzene	0.62	0.8	50	ug/L	1		8260B/CA_LUFT MS	Total/NA
Toluene	2.4	9.0	50	ug/L	1		8260B/CA_LUFT MS	Total/NA
Xylenes, Total	1.1	1	.0	ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	440	ŧ	50	ug/L	1		8260B/CA_LUFT MS	Total/NA

Client: Stantec Consulting Corp.

TestAmerica Job ID: 720-44599-1

Project/Site: Bohannon San Lorenzo

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Date Received: 09/18/12 14:25								•	44599-1 k: Water
		0 115	-			_			D.: -
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			09/19/12 13:15	1
Ethylbenzene	ND		0.50		ug/L			09/19/12 13:15	1
Toluene	ND		0.50		ug/L			09/19/12 13:15	1
Xylenes, Total	ND		1.0		ug/L			09/19/12 13:15	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			09/19/12 13:15	1
Surrogate %F	Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130			_		09/19/12 13:15	1
1,2-Dichloroethane-d4 (Surr)	103		75 ₋ 138					09/19/12 13:15	1
Toluene-d8 (Surr)	101		70 - 130					09/19/12 13:15	1

Client Sample ID: MW-4							Lab	Sample ID: 720-	44599-2
Date Collected: 09/18/12 09:40								Matrix	c: Water
Date Received: 09/18/12 14:25									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	25		0.50		ug/L			09/19/12 13:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	25		0.50		ug/L			09/19/12 13:44	1
Ethylbenzene	1.2		0.50		ug/L			09/19/12 13:44	1
Toluene	4.2		0.50		ug/L			09/19/12 13:44	1
Xylenes, Total	3.6		1.0		ug/L			09/19/12 13:44	1
Gasoline Range Organics (GRO) -C5-C12	1400		50		ug/L			09/19/12 13:44	1
	Ethylbenzene Toluene Xylenes, Total Gasoline Range Organics (GRO)	Benzene 25 Ethylbenzene 1.2 Toluene 4.2 Xylenes, Total 3.6 Gasoline Range Organics (GRO) 1400	Benzene 25 Ethylbenzene 1.2 Toluene 4.2 Xylenes, Total 3.6 Gasoline Range Organics (GRO) 1400	Benzene 25 0.50 Ethylbenzene 1.2 0.50 Toluene 4.2 0.50 Xylenes, Total 3.6 1.0 Gasoline Range Organics (GRO) 1400 50	Benzene 25 0.50 Ethylbenzene 1.2 0.50 Toluene 4.2 0.50 Xylenes, Total 3.6 1.0 Gasoline Range Organics (GRO) 1400 50	Benzene 25 0.50 ug/L Ethylbenzene 1.2 0.50 ug/L Toluene 4.2 0.50 ug/L Xylenes, Total 3.6 1.0 ug/L Gasoline Range Organics (GRO) 1400 50 ug/L	Benzene 25 0.50 ug/L Ethylbenzene 1.2 0.50 ug/L Toluene 4.2 0.50 ug/L Xylenes, Total 3.6 1.0 ug/L Gasoline Range Organics (GRO) 1400 50 ug/L	Benzene 25 0.50 ug/L Ethylbenzene 1.2 0.50 ug/L Toluene 4.2 0.50 ug/L Xylenes, Total 3.6 1.0 ug/L Gasoline Range Organics (GRO) 1400 50 ug/L	Benzene 25 0.50 ug/L 09/19/12 13:44 Ethylbenzene 1.2 0.50 ug/L 09/19/12 13:44 Toluene 4.2 0.50 ug/L 09/19/12 13:44 Xylenes, Total 3.6 1.0 ug/L 09/19/12 13:44 Gasoline Range Organics (GRO) 1400 50 ug/L 09/19/12 13:44

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	112		67 - 130		09/19/12 13:44	1
1,2-Dichloroethane-d4 (Surr)	109		75 - 138		09/19/12 13:44	1
Toluene-d8 (Surr)	102		70 - 130		09/19/12 13:44	1

Client Sample ID: NOBS-B1	Lab Sample ID: 720-44599-3
Date Collected: 09/18/12 10:20	Matrix: Water

Date	Received:	09/18/12	14:25

Analyte	Result	Qualifier	RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50	u	g/L			09/19/12 15:10	1
Ethylbenzene	ND		0.50	u	g/L			09/19/12 15:10	1
Toluene	ND		0.50	u	g/L			09/19/12 15:10	1
Xylenes, Total	ND		1.0	u	g/L			09/19/12 15:10	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	u	g/L			09/19/12 15:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		67 - 130		09/19/12 15:10	
1,2-Dichloroethane-d4 (Surr)	104		75 - 138		09/19/12 15:10	1
Toluene-d8 (Surr)	101		70 - 130		09/19/12 15:10	1

Client Sample ID: POBS-B1		Lab Sample ID: 720-44599-4
Date Collected: 09/18/12 11:00		Matrix: Water

Date Received: 09/18/12 14:25						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene	ND	0.50	ug/L		09/19/12 15:39	1
Ethylbenzene	ND	0.50	ug/L		09/19/12 15:39	1
Toluene	ND	0.50	ug/L		09/19/12 15:39	1
Xylenes, Total	ND	1.0	ug/L		09/19/12 15:39	1

TestAmerica Job ID: 720-44599-1

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: POBS-B1							Lab	Sample ID: 720-	44599-4
Date Collected: 09/18/12 11:00								-	k: Wate
Date Received: 09/18/12 14:25									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			09/19/12 15:39	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	103		67 - 130			=		09/19/12 15:39	-
1,2-Dichloroethane-d4 (Surr)	105		75 - 138					09/19/12 15:39	
Toluene-d8 (Surr)	101		70 - 130					09/19/12 15:39	
Client Sample ID: POBS-A1							Lab	Sample ID: 720-	44599-
Date Collected: 09/18/12 11:30								Matrix	k: Wate
Date Received: 09/18/12 14:25									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	1100		5.0		ug/L			09/19/12 16:07	10
Ethylbenzene	8.3		5.0		ug/L			09/19/12 16:07	10
Toluene	27		5.0		ug/L			09/19/12 16:07	10
Xylenes, Total	18		10		ug/L			09/19/12 16:07	10
Gasoline Range Organics (GRO) -C5-C12	2600		500		ug/L			09/19/12 16:07	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	102		67 - 130			-		09/19/12 16:07	10
1,2-Dichloroethane-d4 (Surr)	104		75 - 138					09/19/12 16:07	10
Toluene-d8 (Surr)	99		70 - 130					09/19/12 16:07	10
Client Sample ID: MW-2							Lab	Sample ID: 720-	44599-6
Date Collected: 09/18/12 12:00								-	k: Wate

Date Received: 03/10/12 14:25									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	4.7		0.50		ug/L			09/25/12 14:18	1
Ethylbenzene	ND		0.50		ug/L			09/25/12 14:18	1
Toluene	ND		0.50		ug/L			09/25/12 14:18	1
Xylenes, Total	ND		1.0		ug/L			09/25/12 14:18	1
Gasoline Range Organics (GRO) -C5-C12	410		50		ug/L			09/25/12 14:18	1

Surrogate	%Recovery (Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	115		67 - 130	_		09/25/12 14:18	1
1,2-Dichloroethane-d4 (Surr)	100		75 - 138			09/25/12 14:18	1
Toluene-d8 (Surr)	103		70 - 130			09/25/12 14:18	1

Client Sample ID: POBS-B2 Lab Sample ID: 720-44599-7 Date Collected: 09/18/12 12:30 **Matrix: Water**

Date Received: 09/18/12 14:25

Date Received. 05/10/12 14.20									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.50		ug/L			09/19/12 17:05	1
Ethylbenzene	ND		0.50		ug/L			09/19/12 17:05	1
Toluene	ND		0.50		ug/L			09/19/12 17:05	1
Xylenes, Total	ND		1.0		ug/L			09/19/12 17:05	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			09/19/12 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	103		67 - 130			-		09/19/12 17:05	1
1,2-Dichloroethane-d4 (Surr)	105		75 ₋ 138					09/19/12 17:05	1

TestAmerica Job ID: 720-44599-1

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-44599-7

Matrix: Water

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Toluene-d8 (Surr) 100 70 - 130 09/19/12 17:05

Lab Sample ID: 720-44599-8

Matrix: Water

Date Collected: 09/18/12 13:10 Date Received: 09/18/12 14:25 Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed Benzene 110 0.50 ug/L 09/19/12 17:34 Ethylbenzene 0.50 ug/L 09/19/12 17:34 0.66

ug/L 09/19/12 17:34 **Toluene** 2.6 0.50 09/19/12 17:34 **Xylenes, Total** 1.2 1.0 ug/L 50 ug/L 09/19/12 17:34 **Gasoline Range Organics (GRO)** 480

-C5-C12

Client Sample ID: POBS-B2

Client Sample ID: MW-3

Date Collected: 09/18/12 12:30

Date Received: 09/18/12 14:25

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene 104 67 - 130 09/19/12 17:34 106 1,2-Dichloroethane-d4 (Surr) 75 - 138 09/19/12 17:34 Toluene-d8 (Surr) 100 70 - 130 09/19/12 17:34

Client Sample ID: DUP Lab Sample ID: 720-44599-9 Date Collected: 09/18/12 00:00 **Matrix: Water**

Date Received: 09/18/12 14:25

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene 100 0.50 ug/L 09/19/12 18:03 0.50 ug/L 09/19/12 18:03 Ethylbenzene 0.62 0.50 ug/L 09/19/12 18:03 **Toluene** 2.4 09/19/12 18:03 Xylenes, Total 1.1 1.0 ug/L 50 09/19/12 18:03 **Gasoline Range Organics (GRO)** 440 ug/L

-C5-C12

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	DII Fac
4-Bromofluorobenzene	104		67 - 130		09/19/12 18:03	1
1,2-Dichloroethane-d4 (Surr)	106		75 - 138		09/19/12 18:03	1
Toluene-d8 (Surr)	100		70 - 130		09/19/12 18:03	1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-121196/4

Matrix: Water

Analysis Batch: 121196

Client Sample	D: Metho	d Blank
Pre	n Type: T	otal/NA

ı		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Benzene	ND		0.50		ug/L			09/19/12 09:24	1
١	Ethylbenzene	ND		0.50		ug/L			09/19/12 09:24	1
١	Toluene	ND		0.50		ug/L			09/19/12 09:24	1
١	Xylenes, Total	ND		1.0		ug/L			09/19/12 09:24	1
١	Gasoline Range Organics (GRO)	ND		50		ug/L			09/19/12 09:24	1
	-C5-C12									

Limits

67 - 130

75 - 138

70 - 130

MB MB

4-Bromofluorobenzene 101 1,2-Dichloroethane-d4 (Surr) 102 Toluene-d8 (Surr) 100

Dil Fac Prepared Analyzed 09/19/12 09:24 09/19/12 09:24 09/19/12 09:24

Lab Sample ID: LCS 720-121196/5 **Matrix: Water**

Surrogate

Analysis Batch: 121196

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	24.2		ug/L		97	79 - 130	
Ethylbenzene	25.0	24.6		ug/L		99	80 - 120	
Toluene	25.0	24.4		ug/L		97	78 - 120	
m-Xylene & p-Xylene	50.0	50.5		ug/L		101	70 - 142	
o-Xylene	25.0	25.6		ug/L		102	70 - 130	

LCS LCS

%Recovery Qualifier

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	99		75 ₋ 138
Toluene-d8 (Surr)	102		70 - 130

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 121196

Lab Sample ID: LCS 720-121196/7

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	500		ug/L		100	62 - 120	

-C5-C12

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		75 - 138
Toluene-d8 (Surr)	102		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 121196

Matrix: Water

Lab Sample ID: LCSD 720-121196/6

Analysis Baton: 121100								
	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	t D	%Rec	Limits	RPD	Limit
Benzene	25.0	24.2	ug/l		97	79 - 130	0	20
Ethylbenzene	25.0	24.6	ug/l	-	98	80 - 120	0	20
Toluene	25.0	24.3	ug/l	_	97	78 ₋ 120	0	20

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-44599-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-121196/6

Lab Sample ID: LCSD 720-121196/8

Matrix: Water

Analysis Batch: 121196

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Бріке	LCSD	LCSD				%Rec.		KPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	50.0	50.4		ug/L		101	70 - 142	0	20
o-Xylene	25.0	25.4		ug/L		101	70 - 130	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		75 - 138
Toluene-d8 (Surr)	101		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D 500 498 100 62 - 120 20 Gasoline Range Organics (GRO) ug/L -C5-C12

LCSD LCSD Surrogate %Recovery Qualifier Limits 67 - 130 4-Bromofluorobenzene 105 1,2-Dichloroethane-d4 (Surr) 102 75 - 138 Toluene-d8 (Surr) 102 70 - 130

Lab Sample ID: 720-44599-3 MS

Matrix: Water

Analysis Batch: 121196

Lab Sample ID: 720-44599-3 MS						Client Sample ID: NOBS-B1
Matrix: Water						Prep Type: Total/NA
Analysis Batch: 121196						
	Sample	Sample	Spike	MS	MS	%Rec.

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		25.0	24.8		ug/L		99	60 - 140	
Ethylbenzene	ND		25.0	24.4		ug/L		98	60 - 140	
Toluene	ND		25.0	24.4		ug/L		98	60 - 140	
m-Xylene & p-Xylene	ND		50.0	50.0		ug/L		100	60 - 140	
o-Xylene	ND		25.0	25.6		ug/L		102	60 - 140	

	IVIS	IVIS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	98		75 - 138
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: 720-44599-3 MSD Client Sample ID: NOBS-B1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 121196

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		25.0	25.0		ug/L		100	60 - 140	1	20
ND		25.0	24.3		ug/L		97	60 - 140	0	20
ND		25.0	24.3		ug/L		97	60 - 140	0	20
ND		50.0	49.7		ug/L		99	60 - 140	1	20
ND		25.0	25.7		ug/L		103	60 - 140	0	20
	Result ND ND ND ND	ND ND ND	Result Qualifier Added ND 25.0 ND 25.0 ND 25.0 ND 50.0	Result Qualifier Added Result ND 25.0 25.0 ND 25.0 24.3 ND 25.0 24.3 ND 50.0 49.7	Result Qualifier Added Result Qualifier ND 25.0 25.0 ND 25.0 24.3 ND 25.0 24.3 ND 50.0 49.7	Result Qualifier Added Result Qualifier Unit ND 25.0 25.0 ug/L ND 25.0 24.3 ug/L ND 25.0 24.3 ug/L ND 50.0 49.7 ug/L	Result Qualifier Added Result Qualifier Unit D ND 25.0 25.0 ug/L ND 25.0 24.3 ug/L ND 25.0 24.3 ug/L ND 50.0 49.7 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec ND 25.0 25.0 ug/L 100 ND 25.0 24.3 ug/L 97 ND 25.0 24.3 ug/L 97 ND 50.0 49.7 ug/L 99	Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 25.0 25.0 ug/L 100 60 - 140 ND 25.0 24.3 ug/L 97 60 - 140 ND 25.0 24.3 ug/L 97 60 - 140 ND 50.0 49.7 ug/L 99 60 - 140	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ND 25.0 25.0 ug/L 100 60 - 140 1 ND 25.0 24.3 ug/L 97 60 - 140 0 ND 25.0 24.3 ug/L 97 60 - 140 0 ND 50.0 49.7 ug/L 99 60 - 140 1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-44599-3 MSD

Matrix: Water

Analysis Batch: 121196

Client Sample ID: NOBS-B1
Prep Type: Total/NA

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		67 - 130
1,2-Dichloroethane-d4 (Surr)	99		75 - 138
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: MB 720-121566/5

Matrix: Water

-C5-C12

Analysis Batch: 121566

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Result Qualifier Dil Fac Analyte RLMDL Unit D Prepared Analyzed Benzene ND 0.50 ug/L 09/25/12 09:57 Ethylbenzene ND 0.50 09/25/12 09:57 ug/L Toluene ND 0.50 ug/L 09/25/12 09:57 Xylenes, Total ND 1.0 ug/L 09/25/12 09:57 ND 09/25/12 09:57 Gasoline Range Organics (GRO) 50 ug/L

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		09/25/12 09:57	1
1,2-Dichloroethane-d4 (Surr)	101		75 - 138		09/25/12 09:57	1
Toluene-d8 (Surr)	100		70 - 130		09/25/12 09:57	1

Lab Sample ID: LCS 720-121566/6

Matrix: Water

Analysis Batch: 121566

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	25.0	25.7		ug/L		103	79 - 130	
Ethylbenzene	25.0	25.6		ug/L		102	80 - 120	
Toluene	25.0	25.7		ug/L		103	78 - 120	
m-Xylene & p-Xylene	50.0	51.3		ug/L		103	70 - 142	
o-Xylene	25.0	26.6		ug/L		106	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		75 ₋ 138
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCS 720-121566/8

Matrix: Water

Analysis Batch: 121566

Client Sample ID: Lab Control Sample Prep Type: Total/NA

 Analyte
 Added Gasoline Range Organics (GRO)
 500
 504
 Unit Ug/L
 Ug/L
 101
 62 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	99		75 ₋ 138
Toluene-d8 (Surr)	102		70 - 130

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-44599-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-121566/7

Matrix: Water

Analysis Batch: 121566

Client Sample ID: Lab	Control Sample	Dup
	Prep Type: Total	/NA

			%Rec.		RPD
Unit	D	%Rec	Limits	RPD	Limit
ug/L		103	79 - 130	0	20
ug/L		101	80 - 120	1	20
ug/L		103	78 - 120	0	20
		404	70 440		

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	25.0	25.8		ug/L		103	79 - 130	0	20
Ethylbenzene	25.0	25.3		ug/L		101	80 - 120	1	20
Toluene	25.0	25.6		ug/L		103	78 - 120	0	20
m-Xylene & p-Xylene	50.0	50.5		ug/L		101	70 - 142	2	20
o-Xylene	25.0	26.5		ug/L		106	70 - 130	0	20
LCSD LCSD									

LCSD LCSD

Spike

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 99 67 - 130 1,2-Dichloroethane-d4 (Surr) 96 75 - 138 Toluene-d8 (Surr) 102 70 - 130

Lab Sample ID: LCSD 720-121566/9 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 121566

-C5-C12

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit %Rec Limits Limit 500 494 ug/L 99 62 - 120 Gasoline Range Organics (GRO)

LCSD LCSD Surrogate %Recovery Qualifier Limits 67 - 130 4-Bromofluorobenzene 104 1,2-Dichloroethane-d4 (Surr) 101 75 - 138 Toluene-d8 (Surr) 102 70 - 130

QC Association Summary

Client: Stantec Consulting Corp.

Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-44599-1

GC/MS VOA

Analysis Batch: 121196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-44599-1	TB-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-44599-2	MW-4	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-44599-3	NOBS-B1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-44599-3 MS	NOBS-B1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-44599-3 MSD	NOBS-B1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-44599-4	POBS-B1	Total/NA	Water	8260B/CA_LUFT	
	<u></u>	<u>-</u>		MS	
720-44599-5	POBS-A1	Total/NA	Water	8260B/CA_LUFT	
	DODO DO	T		MS	
720-44599-7	POBS-B2	Total/NA	Water	8260B/CA_LUFT	
700 44500 0	MAN O	T-1-1/NIA	\A/=+==	MS	
720-44599-8	MW-3	Total/NA	Water	8260B/CA_LUFT	
720-44599-9	DUP	Total/NA	Water	MS	
720-44099-9	DOP	TOtal/NA	vvalei	8260B/CA_LUFT MS	
LCS 720-121196/5	Lab Control Sample	Total/NA	Water		
200 720-121190/0	Lab Control Gample	Total/TVA	vvater	8260B/CA_LUFT MS	
LCS 720-121196/7	Lab Control Sample	Total/NA	Water	8260B/CA LUFT	
200720 1211007	Lab Control Campio	rotalira	· · · · · · · · · · · · · · · · · · ·	MS	
LCSD 720-121196/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA LUFT	
2005 120 121100.0	zas como campio zap			MS	
LCSD 720-121196/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA LUFT	
	r - r			MS	
MB 720-121196/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	
<u> </u>					

Analysis Batch: 121566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-44599-6	MW-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-121566/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-121566/8	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-121566/7	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-121566/9	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-121566/5	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

2

4

9

10

12

13

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

Client Sample ID: TB-1 Lab Sample ID: 720-44599-1 Date Collected: 09/18/12 09:00

Matrix: Water

Date Received: 09/18/12 14:25

Batch Dilution Prepared Batch Batch Factor or Analyzed Prep Type Type Method Run Number Analyst Lab Total/NA Analysis 8260B/CA LUFTMS 121196 09/19/12 13:15 AC TAL SF

Client Sample ID: MW-4 Lab Sample ID: 720-44599-2

Date Collected: 09/18/12 09:40 **Matrix: Water**

Date Received: 09/18/12 14:25

Batch Batch Dilution Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Analyst Lab Total/NA 8260B/CA_LUFTMS 121196 09/19/12 13:44 AC TAL SF Analysis

Client Sample ID: NOBS-B1 Lab Sample ID: 720-44599-3

Date Collected: 09/18/12 10:20 Matrix: Water

Date Received: 09/18/12 14:25

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 09/19/12 15:10 TAL SF Total/NA Analysis 8260B/CA LUFTMS 121196 AC

Lab Sample ID: 720-44599-4 Client Sample ID: POBS-B1 **Matrix: Water**

Date Collected: 09/18/12 11:00

Date Received: 09/18/12 14:25

Batch Batch Batch Prepared Dilution **Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 121196 09/19/12 15:39 AC TAL SF

Client Sample ID: POBS-A1 Lab Sample ID: 720-44599-5

Date Collected: 09/18/12 11:30 **Matrix: Water**

Date Received: 09/18/12 14:25

Dilution Prepared Batch Batch Batch Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Analysis 8260B/CA LUFTMS 09/19/12 16:07 TAL SE Total/NA 10 121196 AC

Lab Sample ID: 720-44599-6 Client Sample ID: MW-2

Date Collected: 09/18/12 12:00 Matrix: Water

Date Received: 09/18/12 14:25

Batch Batch Dilution Batch Prepared Method Number or Analyzed Prep Type Type Run Factor Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 121566 09/25/12 14:18 AC TAL SF

Client Sample ID: POBS-B2 Lab Sample ID: 720-44599-7

Date Collected: 09/18/12 12:30 **Matrix: Water**

Date Received: 09/18/12 14:25

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260B/CA_LUFTMS 121196 09/19/12 17:05 AC TAL SF Analysis

Lab Chronicle

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo TestAmerica Job ID: 720-44599-1

Lab Sample ID: 720-44599-8

Matrix: Water

Date Collected: 09/18/12 13:10 Date Received: 09/18/12 14:25

Client Sample ID: MW-3

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B/CA_LUFTMS 121196 09/19/12 17:34 AC TAL SF

Client Sample ID: DUP Lab Sample ID: 720-44599-9

Date Collected: 09/18/12 00:00 Matrix: Water

Date Received: 09/18/12 14:25

Batch Batch Dilution Batch Prepared Туре Method Factor Number or Analyzed Prep Type Run Analyst Lab 8260B/CA_LUFTMS 09/19/12 18:03 121196 TAL SF Total/NA Analysis AC

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-44599-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

3

4

E

7

8

10

11

13

Method Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-44599-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL SF
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

4

5

6

0

9

4 4

13

Sample Summary

Client: Stantec Consulting Corp. Project/Site: Bohannon San Lorenzo

TestAmerica Job ID: 720-44599-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-44599-1	TB-1	Water	09/18/12 09:00	09/18/12 14:25
720-44599-2	MW-4	Water	09/18/12 09:40	09/18/12 14:25
720-44599-3	NOBS-B1	Water	09/18/12 10:20	09/18/12 14:25
720-44599-4	POBS-B1	Water	09/18/12 11:00	09/18/12 14:25
720-44599-5	POBS-A1	Water	09/18/12 11:30	09/18/12 14:25
720-44599-6	MW-2	Water	09/18/12 12:00	09/18/12 14:25
720-44599-7	POBS-B2	Water	09/18/12 12:30	09/18/12 14:25
720-44599-8	MW-3	Water	09/18/12 13:10	09/18/12 14:25
720-44599-9	DUP	Water	09/18/12 00:00	09/18/12 14:25

- - -

4

5

7

8

9

10

11

13

Page 20 of 21

CHAIN OF CUSTODY RECORD

	Stantos											•					- / :	408	17	
		Stantec Company Contact(s) for Invoice Project Manager: Mason Albrecht						æ:			Stantec Project #				DATE: 9-18-12					
																•				
	TEL:(925) 299-9300 FAX:(925)299-9302	email: m	ason.albrc	ht@st	antec.	.com					-	1857	0253	4	FAGE			/ OF	: /	
Project Nan	ne: Bohanno	~			***************************************															
Address:	Bollatillo	(E)					٦	r(s) Printe Irles Mel			>		Laborato	ory:		TestAn	aorioo			
	575 Paseo Grande, Sa	n Lorenzo	CA				Sample	r(s) Signat	dre:				Lab Use	Qnly:		i estali	ierica			1111
								and the same of th				-		1			1			
Turn-aroun	d Time (Business Days):	······································									*****		Element.			<u> Annion</u>		यतंत्रतं हिंद्		
10 DAYS	X 5 DAYS 72 HR 48 HR		4 HR	<24	HR 🔲								REQUE	STED	ANALY	SIS				
□ отн	ER						_								-					
Special ins	structions or Notes: Te	mperature	Upon Recei	ot (C):			-						**************************************					***		
					l	***************************************	1 g													
							8260B													
							<u>\$</u>													
							<u>ê</u>													
		SAI	MPLING	MAT-	No. of	Pre-	TPH-g/BTEX by													
Lab USE ONLY	Field Sample Identification	DATE	TIME	RIX	Cont.	serve	HG+						***************************************						Laboratory Notes	
	TB-1	9-18-12	800	W	2	HEL	X						1			1		†	Laboratory Notes	
	MW-4.	1	940	1	3	<u> </u>			 							 				
	NOBS-Bi		1020		1	11										<u> </u>				
	10BS-B/		1100			11		<u> </u>	-					<u> </u>						
	POBS-41		1/30		\Box		11	—						-						
	MW-Z		1200		П		IT	-												
	POBS-B2		1230											<u> </u>		<u> </u>		 		
	MW-3		1310		\sqcap	11		 	<u> </u>			†	<u> </u>	_		 				
	pup.						T					<u> </u>		<u> </u>						
				-	•	"	"		<u> </u>										****	
						 						***************************************				-				
					1															
					 							 								
						<u> </u>	1	-	<u> </u>			<u> </u>				<u> </u>				
					$ \uparrow $	大		<u> </u>							 	<u> </u>				
Relinquished	try (Signature)	Date:	Time:	Feceiv	red by: (6	ignature)			1			<u> </u>		0/10	7	Time	 			**********
Relinquished	by: (Signature)	9-/8-(2 Date:	1425 Time;			ighature)	,	-					T	9/18	112	Time:	7			
						\$								1		1				
- Answerquest ICU	-1. /a	Date:	Time:	receiv	ea by: (S	ignature)							1	1		Time:		į		

Login Sample Receipt Checklist

Client: Stantec Consulting Corp. Job Number: 720-44599-1

Login Number: 44599 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Apostol, Anita

Creator: Apostol, Anita		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

_

9

11

12

APPENDIX D

Chemical Concentration Trends in Groundwater

Third Quarter 2012 Groundwater Monitoring Report
David D. Bohannon Organization
575 Paseo Grande
San Lorenzo, California
Stantec PN: 185702534

December 21, 2012

