CAMBRIA

Marin 100°

PROTECTION AL

Mr. Amir Gholami, Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

3170 3942

Re:

Third Quarter 2000 Monitoring Report

Former ARCO Service Station No. 6002 6235 Seminary Avenue

Oakland, California

Cambria Project #436-1609

Dear Mr. Gholami:

On behalf of ARCO, Cambria Environmental Technology, Inc. (Cambria) is submitting the attached report which presents the results of the third quarter 2000 groundwater monitoring program at former ARCO Service Station No. 6002, located at 6235 Seminary Avenue, Oakland, California. The monitoring program complies with the Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations.

Please call if you have questions.

Sincerely,

Cambria Environmental Technology, Inc.

Darryk Ataide, REA Senior Project Manager

Attachment: Ouarterly Groundwat

Quarterly Groundwater Monitoring Report, Third Quarter 2000

cc: Mr. Paul Supple, ARCO, PO Box 6549 Moraga, CA 94570

Oakland, CA San Ramon, CA Sonoma, CA Portland, OR

Cambria Environmental Technology, Inc.

1144 65th Street Suite B Oakland, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

H: \ARCO\6002\QMR\6002q300.doc

Quarterly Groundwater Monitoring Report

Third Quarter 2000

Former Arco Service Station 6002 6235 Seminary Avenue Oakland, California Cambria Project #436-1609

Prepared For:

Mr. Paul Supple ARCO

October 10, 2000

Prepared By:
Cambria Environmental Technology, Inc.
1144 65th Street, Suite B
Oakland, California 94608

Written by:

Jason D. Olson

Staff Environmental Scientist

Ron Scheele, RG Senior Project Manager No. 6842

Date:

October 10, 2000

Quarter:

3rd Quarter, 2000

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.:	6002	Address:	6235 Seminary Avenue, Oakland, California
ARCO Environm	nental Engineer		Paul Supple
Consulting Co./0	Contact Person:		Cambria Environmental Technology, Inc./Ron Scheele, RG
Consultant Proje	ect No.:		436-1609
Primary Agency/	Regulatory ID No).;	ACHCSA

WORK PERFORMED THIS QUARTER (THIRD - 2000):

- 1. Submitted quarterly groundwater monitoring report for second quarter.
- 2. Performed third quarter groundwater monitoring and sampling on August 17, 2000.

WORK PROPOSED FOR NEXT QUARTER (FOURTH - 2000):

- 1. Prepare and submit quarterly groundwater monitoring report for third quarter 2000.
- 2. Perform quarterly groundwater monitoring and sampling for fourth quarter 2000.

QUARTERLY MONITORING:

Current Phase of Project: Quarterly Groundwater Monitoring Annual (1st Quarter): MW-3, MW-6 Frequency of Sampling: Quarterly: MW-4, MW-5, MW-7, MW-8, VW-1, VW-4 Frequency of Monitoring: Quarterly (groundwater) Is Floating Product (FP) Present On-site: No Bulk Soil Removed to Date: approximately 370 cubic yards of TPH impacted soil Bulk Soil Removed This Quarter: None Water Wells or Surface Waters, None within 2000 ft., impacted by site: Natural Attenuation **Current Remediation Techniques:** Average Depth to Groundwater: 9.56 ft Groundwater Flow Direction and Gradient (Average): 0.087 ft/ft toward West

ATTACHMENTS:

- Figure 1 Groundwater Elevation Contour and Analytical Summary Map
- Table 1 Historical Groundwater Elevation and Analytical Data, Petroleum Hydrocarbons and Their Constituents
- Table 2 Groundwater Flow Direction and Gradient
- Appendix A Sampling and Analysis Procedures
- Appendix B Certified Analytical Reports and Chain-of-Custody Documentation
- · Appendix C Field Data Sheets

Groundwater Elevation Contours

ARCO Service Station 6002 6235 Seminary Avenue Oakland, California

Basemap from IT Corporation

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

		тос	Depth to		Groundwater	TD .	TPH			Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	Water	Thickness	Elevation	Date		Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)
MW-1	03-15-95	247.06	7.37	ND	239.69	03-15-95	13,000	1,200	44	770	1,100				
MW-1	05-30-95	247.06	8.48	ND	238.58	05-30-95	19,000	1,600	30	890	1,400				
MW-1	09-01-95	247.06	9.47	ND	237.59	09-01-95	14,000	1,300	28	480	780	24,000			
MW-1	11-13-95	247.06	8.78	0.01	238.29[1]	11-13-95	11,000	570	1 7	260	410		25,000[2]		
MW-1	02-23-96	247.06	Well was	decommissi	oned on 2-12-96	ó									
MW-2	03-15-95	249.30	8.25	ND	241.05	03-15-95	< 50	< 0.5	< 0.5	< 0.5	< 0.5				
MW-2	05-30-95	249.30	9.93	ND	239.37	05-30-95	<50	<0.5	< 0.5	< 0.5	< 0.5		-		
MW-2	09-01-95	249.30	10.69	ND	238.61	09-01-95	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-2	11-13-95	249.30	10.32	ND	238.98	11-13-95	<50	<0.5	<0.5	< 0.5	<0.5				
MW-2	02-23-96	249.30	Well was	decommissi	oned on 2-12-90	ó									
MW-3	03-15-95	248.35	6.76	ND	241.59	03-15-95	<50	<0.5	<0.5	< 0.5	< 0.5				
MW-3	05-30-95	248.35	7.81	ND	240.54	05-30-95	<50	< 0.5	<0.5	<0.5	< 0.5				
MW-3	09-01-95	248.35	8.65	ND	239.70	09-01-95	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-3	11-13-95	248.35	8.25	ND	240.10	11-13-95	120	45	0.7	<0.5	6.2				
MW-3	02-23-96	248.35	6.64	ND	241.71	03-01-96	<50	< 0.5	< 0.5	0.6	1.9	<3			
MW-3	05-10-96	248.35	7.95	ND	240.40	05-10-96	Not samp	led: well s	ampled ann	ıually, duri	ng the first	quarter			
MW-3	08-09-96	248.35	8.06	ND	240.29	08-09-96	Not samp	led: well s	ampled ann	ually, duri	ng the first	quarter			
MW-3	11-08-96	248.35	Not surve	yed: inacces	sible	11-11-96	Not samp	led: inacce	ssible						
MW-3	03-21-97	248.35	8.21	ND	240.14	03-21-97	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-3	05-27-97	248.35	8.25	ND	240.10	05-27-97	Not samp	led: well s	ampled and	nually, duri	ng the first	quarter			
MW-3	08-05-97	248.35	8.29	ND	240.06	08-05-97	Not samp	led: well s	ampled aor	nually, duri	ng the first	quarter			
MW-3	10-29-97	248.35	8.58	ND	239.77	10-29-97	<50	< 0.5	<0.5	<0.5	<0.5	<3			
MW-3	02-25-98	248.35	7.69	ND	240.66	02-25-98	<50	< 0.5	<0.5	<0.5	< 0.5	<3			
MW-3	05-12-98	248.35	8.20	ND	240.15	05-12-98	Not samp	led: well s	ampled anr	nually, duri	ng the first	quarter			
MW-3	07-28-98	248.35	8.55	ND	239.80	07-28-98	Not samp	led: well s	ampled ant	aually, duri	ng the first	quarter			
MW-3	10-27-98	248.35	8.30	ND	240.05	10-27-98	Not samp	led: well s	ampled anr	nually, duri	ng the first	quarter			
MW-3	02-08-99	248.35	7.90	ND	240.45	02-08-99	<50	< 0.5	<0.5	<0.5	<0.5	<3			
MW-3	06-01-99	248.35	8.40	ND	239.95	06-01-99	Not samp	led: well s	ampled am	nually, duri	ng the first	quarter			
MW-3	08-25-99	248.35	8.49	ND	239.86	08-25-99	Not samp	led: well s	ampled ani	nually, duri	ng the first	quarter		1.67	
MW-3	10-29-99	248.35	8.52	ND	239.83	10-29-99				nually, duri				6.90	
MW-3	02-16-00	248.35	8.03	ND	240.32	02-16-00	< 50	< 0.5	0.8	< 0.5	<1	<3		8.51	NP

H:\ARCO\6002\Data\6002q200.xls 1 of 7

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

	•	TOC	Depth to	FP	Groundwater		TPH			Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)
MW-3	06-23-00	248.35	7.55	ND	240.80	06-23-00	Not samo		ampled ann	ually, duris	ng the first	quarter		2.10	
MW-3	08-17-00	248.35	8.65	ND	239.70	08-17-00			-	-	_	irst quarte	er ·	1.10	
1.2	00 27 00								•	• •	Ü	-			
MW-4	03-15-95	242.91	9.37	ND	233.54	03-15-95	<50	<0.5	<0.5	<0.5	<0.5				
MW-4	05-30-95	242.91	11.47	ND	231.44	05-30-95	<50	< 0.5	< 0.5	< 0.5	<0.5				
MW-4	09-01-95	242.91	12.28	ND	230.63	09-01-95	78	< 0.5	0.7	<0.5	<0.5	<3			
MW-4	11-13-95	242.91	11.75	ND	231.16	11-13-95	< 50	< 0.5	< 0.5	<0.5	< 0.5	- +			
MW-4	02-23-96	242.91	8.51	ND	234.40	03-01-96	59	1.2	7.4	1.6	9.3	3			
MW-4	05-10-96	242.91	11.35	ND	231.56	05-10-96	<50	<0.5	<0.5	<0.5	< 0.5	<3			
MW-4	08-09-96	242.91	9.70	ND	233.21	08-09-96	<50	< 0.5	< 0.5	<0.5	<0.5	<3			
MW-4	11-08-96	242.91	11.79	ND	231.12	11-08-96	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-4	03-21-97	242.91	10.94	ND	231.97	03-21-97	< 50	< 0.5	< 0.5	<0.5	< 0.5	81			
MW-4	05-27-97	242.91	11.51	ND	231.40	05-27-97	<50	< 0.5	<0.5	< 0.5	< 0.5	<3			
MW-4	08-05-97	242.91	11.90	ND	231.01	08-05-97	<50	< 0.5	<0.5	< 0.5	<0.5	<3			
MW-4	10-29-97	242.91	12.00	ND	230.91	10-29-97	<50	<0.5	<0.5	< 0.5	< 0.5	<3			
MW-4	02-25-98	242.91	8.34	ND	234.57	02-25-98	<50	< 0.5	0.9	< 0.5	0.9	4			
MW-4	05-12-98	242.91	10.93	ND	231.98	05-12-98	<50	< 0.5	< 0.5	<0.5	<0.5	<3			
MW-4	07-28-98	242.91	12.08	ND	230.83	07-28-98	< 50	< 0.5	<0.5	<0.5	<0.5	<3			
MW-4	10-27-98	242.91	11.40	ND	231.51	10-27-98	<5,000	<50	<50	160	64	6,400			
MW-4	02-08-99	242.91	8.40	ND	234.51	02-08-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-4	06-01-99	242.91	11.93	ND	230.98	06-01-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3		4.0	NP
MW-4	08-25-99	242.91	12.21	ND	230.70	08-25-99	<50	< 0.5	<0.5	< 0.5	<0.5	<3		1.29	NP
MW-4	10-29-99	242.91	12.37	ND	230.54	10-29-99	<50	<0.5	<0.5	< 0.5	<1	<3		1.50	NP
MW-4	02-16-00	242.91	7.45	ND	235.46	02-16-00	<50	<0.5	<0.5	< 0.5	<1	<3		2.38	NP
MW-4	06-23-00	242.91	12.31	ND	230.60	06-23-00	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		2.80	NP
DUP	08-17-00					08-17-00	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50			
MW-4	08-17-00	242.91	11.92	ND	230.99	08-17-00	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		2.38	NP
MW-5	03-15-95	244.82	11.99	ND	232.83	03-15-95	21,000	870	22	1,600	1,900				
MW-5	05-30-95	244.82	12.97	ND	231.85	05-30-95	17,000	2,100	250	1,000	520				
MW-5	09-01-95	244.82	14.03	ND	230.79	09-01-95	19,000	1,500	25	1,600	880	8,300			
MW-5	11-13-95	244.82	13.65	ND	231.17	11-13-95	21,000	1,300	22	1,400	630				
	11-13-93	244.02	10.00	1112	231.17	11-13-33	21,000	1,500	22	1,100	920				

H:\ARCO\6002\Data\6002q200.xls 2 of 7

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well	Date	TOC Elevation	Depth to Water	FP Thickness	Groundwater Elevation	Date	TPH Gasoline	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE 8021B*	MTBE 8260	Dissolved Oxygen	Purged/ Not Purged
Number	Date Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	Gasonne (μg/L)_	Belizene (μg/L)	(μg/L)	(μg/L)	Aylettes (μg/L)	(μg/L)	6200 (μg/L)	(mg/L)	(P/NP)
				`										\ 	/-·-/
MW-5	05-10-96	244.82	13.05	ND	231.77	05-10-96	17,000	460	21	760	480	1,000			
MW-5	08-09-96	244.82	13.22	ND	231.60	08-09-96	16,000	420	14	870	390	1,500			
MW-5	11-08-96	244.82		yed: inacces		11-11-96	_		accessible		1.500	1 000			
MW-5	03-21-97	244.82	13.24	ND	231.58	03-21-97	18,000	110	<50	730	1,500	1,800			
MW-5	05-27-97	244.82	13.10	ND	231.72	05-27-97	21,000	86	<20	810	610	1,700			
MW-5	08-05-97	244.82	13.14	ND	231.68	08-05-97	340	2.2	<0.5	15	8.8	39	-+		
MW-5	10-29-97	244.82	13.03	ND	231.79	10-29-97	19,000	130	<20	1,400	620	1,700			
MW-5	02-25-98	244.82	11.33	ND	233.49	02-25-98	8,500	19	13	190	100	170			
MW-5	05-12-98	244.82	12.81	ND	232.01	05-12-98	10,000	34	<10	390	220	610			
MW-5	07-28-98	244.82	13.12	ND	231.70	07-28-98	15,000	68	<10	690	620	1,000			
MW-5	10-27-98	244.82	12.90	ND	231.92	10-27-98	15,000	60	<10	77 0	400	890			
MW-5	02-08-99	244.82	11.08	ND	233.74	02-08-99	8,200	23	<10	290	120	<60			
MW-5	06-01-99	244.82	12.95	ND	231.87	06-01-99	11,000	33	3.3	340	180	580		1.0	NP
MW-5	08-25-99	244.82	12.99	ND	231.83	08-25-99	9,200	26	14	420	270	1,100		0.37	NP
MW-5	10-29-99	244.82	13.10	ND	231.72	10-29-99	11,000	19	9.8	260	150	590		1.27	NP
MW-5	02-16-00	244.82	8.21	ND	236.61	02-16-00	12,000	8.1	10	340	160	130		1.42	NP
MW-5	06-23-00	244.82	12.90	ND	231.92	06-23-00	9,680	38.0	<20.0	212	114	930		1.40	NP
MW-5	08-17-00	244.82	13.00	ND	231.82	08-17-00	10,500	15.0	7.98	223	118	430		0.68	NP
MW-6	06-29-95	NR	6.63	ND	NR	06-30-95	<50	<0.5	<0.5	<0.5	< 0.5				
MW-6	09-01-95	NR	Not surve	eyed		09-01-95	Not samp	led							
MW-6	11-13-95	NR	7.70	ND	NR	11-13-95	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-6	02-23-96	NR	9.82	ND	NR	03-01-96	<50	<0.5	0.8	< 0.5	0.6	<3			
MW-6	05-10-96	NR	15.25	ND	NR	05-10-96	Not samp	led: well s	ampled and	ıually, duri	ng the first	quarter			
MW-6	08-09-96	252.20	11.11	ND	241.09	08-09-96	Not samp	led: well s	ampled anı	nually, duri	ng the first	quarter			
MW-6	11-08-96	252,20	9.31	ND	242.89	11-11-96	-		-	ually, duri	_	_			
MW-6	03-21-97	252.20	9.40	ND	242.80	03-21-97	<50	< 0.5	<0.5	<0.5	<0.5	- <3			
MW-6	05-27-97	252.20	7.08	ND	245.12	05-27-97	Not samp	led: well s	ampled ani	nually, duri	ng the first	quarter			
MW-6	08-05-97	252.20	7.12	ND	245.08	08-05-97	-		-	nually, duri	-	-			
MW-6	10-29-97	252.20	7.42	ND	244.78	10-29-97	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-6	02-25-98	252.20	10.35	ND	241.85	02-25-98	<50	<0.5	< 0.5	<0.5	< 0.5	<3			
MW-6	05-12-98	252.20	15.83	ND	236.37	05-12-98				nually, duri		quarter			
MW-6	07-28-98	252.20	11.84	ND	240.36	07-28-98			•	nually, duri	~	-			
141 14 -0	J1-20 90	252.20	11.04	112	2.0.50	3, 20 70			p un.						

H:\ARCO\6002\Data\6002q200.xls 3 of 7

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

		TOC	Depth to	FP	Groundwater		TPH		<u>-</u>	Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Weli	Date	Elevation	Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)
MW-6	10-27-98	252.20	9.73	ND	242.47	10-27-98	Not sampl	led: well sa	ımpled ann	ually, duri	ng the first	quarter			
MW-6	02-08-99	252.20	8.10	ND	244.10	02-08-99	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-6	06-01-99	252.20	17.84	ND	234.36	06-01-99	Not samp	led: well sa	impled ann	ually, duri	ng the first	quarter			
MW-6	08-25-99	252.20	11.00	ND	241.20	08-25-99	Not samp	led: well sa	ampled ann	ually, duri	ng the first	quarter		0.77	
MW-6	10-29-99	252.20	9.03	ND	243.17	10-29-99	Not samp	led: well sa	ampled ann	ually, duri	ng the first	quarter		3.42	
MW-6	02-16-00	252.20	7.71	ND	244.49	02-16-00	< 50	<0.5	< 0.5	< 0.5	<1	<3		2.42	P
MW-6	06-23-00	252.20	6.69	ND	245.51	06-23-00	Not sample	led: well sa	impled ann	ually, duri	ng the first	quarter		2.30	
MW-6	08-17-00	252.20	6.95	ND	245.25	08-17-00	Not samp	led: well s	ampled a	nnually, du	uring the f	ïrst quarte	r	2.51	
MW-7	08-09-96	235.95	Not surve	ved: well wa	s dry	08-09-96	Not sampl	led: well w	as dry						
MW-7	11-08-96	235.95	Not surve	yed: well wa	is dry	11-11-96	Not sample	led: well w	as dry						
MW-7	01-27-97	235.95	NR	ND	NR	01-27-97	2,900	29	<5	<5	580	220			
MW-7	03-21-97	235.95	7.13	ND	228.82	03-21-97	590	3.5	< 0.5	<0.5	1.3	90			
MW-7	05-27-97	235.95	9.02	ND	226.93	05-27-97	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-7	08-05-97	235.95	12.33	ND	223.62	08-05-97	110	0.5	< 0.5	< 0.5	0.8	81			
MW-7	10-29-97	235.95	Not surve	yed: well wa	ıs dry	10-29-97	Not samp	led: well w	as dry						
MW-7	02-25-98	235.95	8.04	ND	227.91	02-25-98	<50	< 0.5	0.6	< 0.5	0.7	<3			
MW-7	05-12-98	235.95	8.88	ND	227.07	05-12-98	<50	<0.5	< 0.5	< 0.5	<0.5	<3			
MW-7	07-28-98	235.95	10.50	ND	225.45	07-28-98	<50	<0.5	< 0.5	<0.5	<0.5	<3			
MW-7	10-27-98	235.95	8.75	ND	227.20	10-27-98	<50	< 0.5	< 0.5	<0.5	<0.5	<3			
MW-7	02-08-99	235.95	9.35	ND	226.60	02-08-99	<50	< 0.5	<0.5	<0.5	< 0.5	<3			
MW-7	06-01-99	235.95	9.85	ND	226.10	06-01-99	250	< 0.5	0.6	<0.5	1.6	18		1.0	NP
MW-7	08-25-99	235.95	11.31	ND	224.64	08-25-99	119	< 0.5	5.7	<0.5	< 0.5	11		0.41	NP
MW-7	10-29-99	235.95	9.08	ND	226.87	10-29-99	<50	<0.5	<0.5	<0.5	<1	<3		1.29	NP
MW-7	02-25-00	235.95	8.02	ND	227.93	02-25-00	<50	<0.5	<0.5	<0.5	<1	38		2.10	NP
MW-7	06-23-00	235.95	10.68	ND	225.27	06-23-00	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	14.4		1.60	NP
MW-7	08-17-00	235.95	11.85	ND	224.10	08-17-00	70.0	<0.500	0.678	<0.500	1.07	14.2		1.59	NP
MW-8	08-09-96	240.37	9.41	ND	230.96	08-09-96	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-8	11-08-96	240.37	9.19	ND	231.18	11-11-96	<50	<0.5	<0.5	<0.5	< 0.5	<3			
MW-8	03-21-97	240.37	8.55	ND	231.82	03-21-97	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3			
MW-8	05-27-97	240.37	11.06	ND	229.31	05-27-97	91	0.6	<0.5	< 0.5	0.6	66			
MW-8	08-05-97	240.37	9.32	ND	231.05	08-05-97	<50	<0.5	<0.5	< 0.5	<0.5	<3			

H:\ARCO\6002\Data\6002q200.xls 4 of 7

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Number	Date Gauged	TOC Elevation (ft-MSL)	Depth to Water (feet)	FP Thickness (feet)	Groundwater Elevation (ft-MSL)	Date Sampled	TPH Gasoline (µg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (µg/L)	Total Xylenes (μg/L)	MTBE 8021Β* (μg/L)	MTBE 8260 (μg/L)	Dissolved Oxygen (mg/L)	Purged/ Not Purged (P/NP)
MW-8	10-29-97	240.37	9.35	ND	231.02	10-29-97	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-8	02-25-98	240.37	7.08	ND	233.29	02-25-98	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-8	05-12-98	240.37	8.61	ND	231.76	05-12-98	<50	<0.5	<0.5	<0.5	<0.5	3			
MW-8	07-28-98	240.37	9,63	ND	230.74	07-28-98	<50	<0.5	<0.5	<0.5	<0.5	4			
MW-8	10-27-98	240.37	9.30	ND	231.07	10-27-98	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-8	02-08-99	240.37	5.56	ND	234.81	02-17-99	<50	<0.5	<0.5	<0.5	<0.5	<3			
MW-8	06-01-99	240.37		yed: inacces		06-01-99			accessible						
MW-8	08-25-99	240.37		yed: inacces		08-25-99			accessible						
MW-8	10-29-99	240.37		yed: inacces		10-29-99	-		accessible						
MW-8	02-16-00	240.37		yed: inacces		02-16-00			accessible						
MW-8	06-23-00	240.37	9.45	ND	230.92	06-23-00	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		1.90	NP
MW-8	08-17-00	240.37	6.40	ND	233.97	08-17-00	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		2.56	NP
1.2 0			***												
AS-1	06-29-95	NR	9.20	ND	NR	06-30-95	<50	1.6	<0.5	0.9	0.9				
VW-1	02-23-96	NR	5.29	ND	NR	03-01-96	21,000	490	57	520	1,500	240			
VW-1	05-10-96	NR	6.80	ND	NR	05-10-96	3,700	61	<5	100	50	200			
VW-1	08-09-96	NR	7.03	ND	NR	08-09-96	970	2.7	<2.5	2.7	3.7	180	* *		
VW-1	11-08-96	NR	Not surve	yed: inacces	sible	11-11-96	Not samp		accessible						
VW-1	03-21-97	NR	7.51	ND	NR	03-21-97	640	<4	<1	1	3	194			
VW-1	05-27-97	NR	7.51	ND	NR	05-27-97	Not samp	led: well s	ampled sen	ni-annually	, during th		hird quarter	\$	
VW-1	08-05-97	NR	7.51	ND	NR	08-05-97	630	<1	<l< td=""><td>3</td><td>2</td><td>120</td><td></td><td></td><td></td></l<>	3	2	120			
VW-1	10-29-97	NR	7.53	ND	NR	10-29-97	600	<0.5	<0.5	< 0.5	1.6	84			
VW -1	02-25-98	NR	6.77	ND	NR	02-25-98	230	<4	<0.7	1.2	0.5	27			
VW-1	05-12-98	NR	7.43	ND	NR	05-12-98	340	<0.5	0.5	2.3	0.8	29			
VW-1	07-28-98	NR	7.00	ND	NR	07-28-98	240	<0.5	< 0.5	< 0.5	1.1	54			
VW-1	10-27-98	NR	7.52	ND	NR	10-27-98	230	< 0.5	<0.5	<0.5	<0.5	65			
VW-1	02-08-99	NR	7.05	ND	NR	02-08-99	<50	<0.5	<0.5	<0.5	<0.5	<3	36[3]		
VW-1	06-01-99	NR	7.55	ND	NR	06-01-99	180	<0.5	<0.5	<0.5	< 0.5	23		1.0	NP
VW-1	08-25-99	NR	7.66	ND	NR	08-25-99	130	<0.5	5.6	< 0.5	<0.5	40		0.39	NP
VW-1	10-29-99	NR	7.59	ND	NR	10-29-99	200	1.0	<0.5	0.6	1.6	36		0.89	NP
VW-1	02-16-00	NR	7.03	ND	NR	02-16-00	210	<0.5	0.9	2.2	1.9	11		1.41	NP
VW-1	06-23-00	NR	7.71	ND	NR	06-23-00	175	1.04	< 0.500	< 0.500	< 0.500	14.4		1.90	NP

5 of 7

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

		TOC	Depth to	FP	Groundwater		TPH			Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	Water	Thickness	Elevation	Date	Gasoline		Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(feet)	(ft-MSL)	Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)
VW-1	08-17-00	NR	7.75	ND	NR	08-17-00	180	< 0.500	< 0.500	0.622	0.760	23.7		0.63	NP
VW-2	02-23-96	NR	6.92	ND	NR	03-01-96	Not sample	ed: well no	t part of sa	mpling pro	gram				
VW-4	05-10-96	NR	8.58	ND	NR	05-10-96	13,000	2,500	41	420	660	43,000			
VW-4	08-09-96	NR	11.70	ND	NR	08-09-96	<50	<0.5	< 0.5	<0.5	<0.5	6,200			
VW-4	11-08-96	NR	9.38	ND	NR	11-08-96	7,800	510	7	180	370	21,000			
VW-4	03-21-97	NR	9.11	ND	NR	03-21-97	10,000	290	10	270	230	8,900			
VW-4	05-27-97	NR	9.34	ND	NR	05-27-97	Not samp	led: well s	ampled sen	ni-annually	, during the	e first and t	hird quarters		
VW-4	08-05-97	NR	9.47	ND	NR	08-05-97	<10,000	180	<100	<100	110	12,000			
VW-4	10-29-97	NR	9.35	ND	NR	10-29-97	9,800	200	69	260	360	4,900			
VW-4	02-25-98	NR	7.08	ND	NR	02-25-98	<50	2.5	< 0.5	< 0.5	0.7	<3			
VW-4	05-12-98	NR	9.17	ND	NR	05-12-98	3,200	<20	22	29	52	2,100			
VW-4	07-28-98	NR	9.55	ND	NR	07-28-98	<10,000	<100	<100	<100	<100	5,100			
VW-4	10-27-98	NR	9.92	ND	NR	10-27-98	< 50	<0.5	< 0.5	<0.5	<0.5	<3			
VW-4	02-08-99	NR	7.50	ND	NR	02-08-99	<2,500	<25	<25	28	<25	2,400	3,100[3]		
VW-4	06-01-99	NR	9.87	ND	NR	06-01-99	2,100	2.5	1.1	2.5	15	3,300		2.0	NP
VW-4	08-25-99	NR	9.78	ND	NR	08-25-99	1,300	4.4	4.9	1.7	2.9	4,600		0.36	NP
VW-4	10-29-99	NR	9.93	ND	NR	10-29-99	1,400	<0.5	1.8	1.6	3.0	4,200		1.18	NP
VW-4	02-16-00	NR	7.45	ND	NR	02-16-00	1,800	< 0.5	2.9	15	10	3,400		1.01	NP
DUP 1	06-23-00					06-23-00	1,260	< 2.00	<2.00	< 2.00	2.73	2,720			
VW-4	06-23-00	NR	9.74	ND	NR	06-23-00	1,360	< 2.00	2.26	< 2.00	2.25	4,900		1.50	NP
VW-4	08-17-00	NR	9.95	ND	NR	08-17-00	2,230	<10.0	<10.0	<10.0	<10.0	5,310		1.13	NP

TPH: Total petroleum hydrocarbons by modified EPA method 8015

BTEX: Benzene, toluene, ethylbenzene, xylenes by EPA method 8021B. (EPA method 8020 prior to 10/29/99).

MTBE: Methyl tert-butyl ether

*: EPA method 8020 prior to 10/29/99

TOC: Top of Casing

ft-MSL: elevation in feet, relative to mean sea level

μg/L: micrograms per liter mg/L: milligrams per liter

ND: none detected

NR: not reported; data not available or not measurable

Table 1 Historical Groundwater Elevation and Analytical Data Petroleum Hydrocarbons and Their Constituents 1995 - Present**

ARCO Service Station 6002 6235 Seminary Avenue, Oakland, California

		TOC	Depth to	FP	Groundwater	•	TPH			Ethyl-	Total	MTBE	MTBE	Dissolved	Purged/
Well	Date	Elevation	Water	Thickness	Elevation	Date	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Gauged	(ft-MSL)	(feet)	(fect)	(ft-MSL)	Sampled	(μg/L)	$(\mu g/L)$	(μg/L)	$(\mu g/L)$	(μg/L)	(μg/L)	(μg/L)	(mg/L)	(P/NP)

^{- -:} not analyzed or not applicable

7 of **7**

<: less than laboratory detection limit stated to the right

^{[1]: [}corrected elevation (Z')] = Z + (h * 0.73) where: Z: measured elevation, h: floating product thickness, 0.73: density ratio of oil to water

^{[2]:} analyzed by EPA method 8240

^{[3]:} also analyzed for fuel oxygenates

^{**:} For previous historical groundwater elevation data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results, ARCO Service Station 6002, Oakland, California, (EMCON, February 23, 1996)

Table 2 Groundwater Flow Direction and Gradient

ARCO Service Station 6002 6235 Seminary Avenue, Oakland, California

Date	Average	Average
Measured	Flow Direction	Hydraulic Gradient
03-15-95	West-Southwest	0.08
05-30-95	West-Southwest	0.08
09-01-95	West-Southwest	0.09
11-13-95	West-Southwest	0.08
02-23-96	West-Southwest	0.08
05-10-96	West-Southwest	0.08
08-09-96	Southwest	0.08
11-08-96	Southwest	0.055
03-21-97	West-Southwest	0.051
05-27-97	West-Southwest	0.069
08-05-97	West	0.076
10-29-97	West-Southwest	0.036
02-25-98	West-Southwest	0.052
05-12-98	West	0.07
07-28-98	West	0.07
10-27-98	West-Southwest	0.06
02-08-99	West-Southwest	0.07
06-01-99	West-Northwest	0.07
08-25-99	West-Southwest	0.07
10-29-99	West	0.07
02-16-00	Southwest	0.05
06-23-00	West	0.042
08-17-00	West	0.087

APPENDIX A SAMPLING AND ANALYSIS PROCEDURES

APPENDIX A

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved.

The following documents have been used as guidelines for developing these procedures:

- Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977
- Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, 3rd edition, November 1986
- Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982
- Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983
- Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989

Sample Collection

Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling.

Equipment Cleaning

Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with tap water. During field sampling, equipment surfaces that were placed in the well or came into contact with groundwater during field sampling were washed with detergent and double rinsed with tap water before the next well was purged or sampled.

Water Level, Floating Hydrocarbon, and Total Well Depth Measurements

Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated after each use. A bottom-filling, clear disposable bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water.

The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon.

Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form.

Well Purging

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged, otherwise non-purge groundwater samples were collected. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or disposable bailer was used to purge standing water in the casing and gravel pack from the monitoring well. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

Groundwater purged from the monitoring wells was transported in a 240-gallon truck-mounted tank to Integrated Waste Management's Milpitas storage facility for disposal.

Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed.

The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet.

Well Sampling

A disposable bailer was the only equipment acceptable for well sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped.

When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the disposable bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded.

Sample Preservation and Handling

The following section specifies sample containers, preservation methods, and sample handling procedures.

Sample Containers and Preservation

Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested.

Sample Handling

Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs or ice until received by the laboratory. At the time of sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory. Samples that required overnight storage prior to shipping to the laboratory were kept cool (4° C) in a refrigerator.

Samples were transferred from Cambria to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from Cambria to laboratories performing the selected analyses routinely occurred within 24 hours of sample collection.

Sample Documentation

The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following:

- Water sample field data sheets to document sampling activities in the field
- Labels to identify individual samples
- Chain-of-custody record sheets for documenting possession and transfer of samples
- Laboratory analysis request sheets for documenting analyses to be performed

Field Logbook

In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected:

- Project number
- Client's name
- Location
- Name of sampler
- Date and time
- Well accessibility and integrity
- Pertinent well data (e.g., casing diameter, depth to water, well depth)

- Calculated and actual purge volumes
- Purging equipment used
- Sampling equipment used
- Appearance of each sample (e.g., color, turbidity, sediment)
- Results of field analyses (temperature, pH, specific conductance)
- General comments

The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator.

Labels

Sample labels contained the following information:

- Project number
- Sample number (i.e., well designation)
- Sample depth

- Sampler's initials
- Date and time of collection
- Type of preservation used (if any)

Sampling and Analysis Chain-of-Custody Record

The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to Cambria with the analytical results.

Groundwater Sampling and Analysis Request Form

A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information:

- Date scheduled
- Site-specific instructions
- Specific analytical parameters

- Well number
- Well specifications
 (expected total depth, depth
 of water, and product
 thickness)

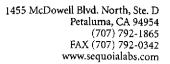
APPENDIX B

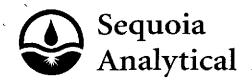
CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY DOCUMENTATION

August 31, 2000

Ron Scheele Cambria Environmental - Oakland 1144 65th St., Suite C Oakland, CA 94608

RE: ARCO/P008459

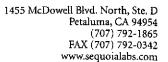

Dear Ron Scheele

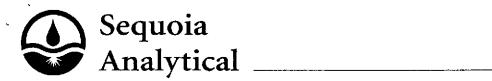

Enclosed are the results of analyses for sample(s) received by the laboratory on August 21, 2000. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Richard Stover Project Manager

CA ELAP Certificate Number 2374

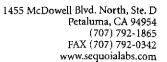



Cambria Environmental - Oakland 1144 65th St., Suite C Oakland, CA 94608 Project: ARCO
Project Number: 6002-Oakland
Project Manager: Ron Scheele

Sampled: 8/17/00 Received: 8/21/00 Reported: 8/31/00

ANALYTICAL REPORT FOR P008459

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
MW-4	P008459-01	Water	8/17/00
MW-5	P008459-02	Water	8/17/00
MW-7	P008459-03	Water	8/17/00
MW-8	P008459-04	Water	8/17/00
VW-I	P008459-05	Water	8/17/00
VW-4	P008459-06	Water	8/17/00
DUP	P008459-07	Water	8/17/00


Cambria Environmental - Oakland	Project:	ARCO	Sampled:	8/17/00
1144 65th St., Suite C	Project Number:	6002-Oakland	Received:	8/21/00
Oakland, CA 94608	Project Manager:	Ron Scheele	Reported:	8/31/00

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M Sequoia Analytical - Petaluma

	Batch	Date	Date	Surrogate	Reporting			
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
		•			•			
<u>MW-4</u>			P0084	<u>59-01</u>			<u>Water</u>	
Gasoline	0080549	8/23/00	8/23/00		50.0	ND	ug/l	
Benzene	10	11	11		0.500	ND	**	
Toluene	**	**	10		0.500	ND	**	
Ethylbenzene	t +	н	II.		0.500	ND	H	
Xylenes (total)	II .	16	D		0.500	ND	н	
Methyl tert-butyl ether	1*	19	11		2.50	ND	24	
Surrogate: a,a,a-Trifluorotoluene	"	ii ii	ff	65.0-135		103	%	
Surrogate: 4-Bromofluorobenzene	u	n	11	65.0-135		92.7	"	
<u>MW-5</u>			P0084	<u>59-02</u>			Water	
Gasoline	0080549	8/23/00	8/23/00	-,	250	10500	ug/l	
Benzene	II	*1	п		2.50	15.0	"	1
Toluene	ıt	**	и		2.50	7.98	•	
Ethylbenzene	II .	+1	п		2.50	223	**	
Xylenes (total)	II	+r	п		2.50	118	**	
Methyl tert-butyl ether	11	**	и		12.5	430	H	
Surrogate: a,a,a-Trifluorotoluene	"	"	u .	65.0-135		95.3	%	
Surrogate: 4-Bromosluorobenzene	n	"	If	65.0-135		92.3	"	
MW-7			P0084	59-03			Water	
Gasoline	0080549	8/23/00	8/23/00		50.0	70.0	ug/l	
Benzene	11	u.	н		0.500	ND	"	
Toluene	п	D	п		0.500	0.678	U	
Ethylbenzene	н	10	н		0.500	ND	e e	
Xylenes (total)	n	10	n .		0.500	1.07	O .	
Methyl tert-butyl ether	п	10	п		2.50	14.2	19	
Surrogate: a,a,a-Trifluorotoluene	п	"	"	65.0-135		101	%	
Surrogate: 4-Bromofluorobenzene	Я	#	п	65.0-135		90.3	H	
MW-8			P0084	<u>59-04</u>			<u>Water</u>	
Gasoline	0080549	8/23/00	8/24/00		50.0	ND	ug/l	
Benzene	п	n.	11		0.500	ND	II.	
Toluene	11	16	•1		0.500	ND	It.	
Ethylbenzene	н	If .	#		0.500	ND	n .	
Xylenes (total)	11	ır	**		0.500	ND	IF	
Methyl tert-butyl ether	n	TE .	н		2.50	ND	н	
Surrogate: a,a,a-Trifluorotoluene	н	ıı,	n	65.0-135		101	%	
Surrogate: 4-Bromofluorobenzene	11	"	"	65.0-135		90.3	"	
<u>VW-1</u>			P0084	<u>59-05</u>			Water	
Gasoline	0080549	8/23/00	8/24/00		50.0	180	ug/l	
							-	

Sequoia Analytical - Petaluma

*Refer to end of report for text of notes and definitions.

Cambria Environmental - Oakland 1144 65th St., Suite C

Oakland, CA 94608

Project: ARCO

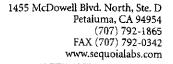
Project Number: 6002-Oakland

Sampled: 8/17/00

Received: 8/21/00 Reported: 8/31/00_

Project Manager: Ron Scheele

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M Sequoia Analytical - Petaluma


	Batch	Date	Date	Surrogate	Reporting		<u> </u>	
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes*
VW-1 (continued)			P0084:	EN NE			Water	
Benzene	0080549	8/23/00	8/24/00	<u> </u>	0.500	ND	Water	
Toluene	0080349	0/23/00	0/24/00		0.500	ND ND	ug/l "	
Ethylbenzene	н	**	lf.		0.500	0.622	*1	
Xylenes (total)	II	н	п		0.500	0.022	H	
Methyl tert-butyl ether	it.	u .	п		2.50	23.7	н	
Surrogate: a,a,a-Trifluorotoluene	"			65.0-135	2,30	101	%	
Surrogate: 4-Bromofluorobenzene	"	"	н	65.0-135		92.7	70 "	
Surrogate. 4-Dromojiuorovenzene				05.0-155		92.7		
<u>VW-4</u>			P0084	59-06			Water	
Gasoline	0080549	8/24/00	8/24/00		1000	2230	ug/l	
Benzene	*1	и			10.0	ND	н	
Toluene	**	п	18		10.0	ND		
Ethylbenzene	14	п	D.		10.0	ND	D	
Xylenes (total)	11	н	71		10.0	ND	it	
Methyl tert-butyl ether	19	11	+		50.0	5310	It	
Surrogate: a,a,a-Trifluorotoluene	· n	<i>n</i>	H	65.0-135	····	101	%	
Surrogate: 4-Bromofluorobenzene	"	"	"	65.0-135		95.7	Jr	
DUP			P00845	59-07			Water	
Gasoline	0080549	8/23/00	8/24/00		50.0	ND	ug/l	
Benzene	II .	†1	n		0.500	ND	"	
Toluene	11	11	II .		0.500	ND	u .	
Ethylbenzene	П		n		0.500	ND	11	
Xylenes (total)	п	II .	11		0.500	ND	**	
Methyl tert-butyl ether	11	11	••		2.50	ND		
Surrogate: a,a,a-Trifluorotoluene	,,	п	"	65.0-135		100	%	
Surrogate: 4-Bromofluorobenzene	n	#	#	65.0-135		91.3	rr .	

Cambria Environmental - Oakland	Project:	ARCO	Sampled:	8/17/00
1144 65th St., Suite C	Project Number:	6002-Oakland	Received:	8/21/00
Oakland, CA 94608	Project Manager:	Ron Scheele	Reported:	8/31/00

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M/Quality Control Sequoia Analytical - Petaluma

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	% Notes*
					_				
Batch: 0080549	Date Prepa		<u>)0</u>		Extrac	tion Method: EP.	A 5030 W	aters	
Blank	0080549-B	<u>LK1</u>							
Gasoline	8/23/00			ND	ug/l	50.0			
Benzene	11			ND	п	0.500			
Toluene	11			ND	II	0.500			
Ethylbenzene	11			ND	11	0.500			
Xylenes (total)	н			ND	11	0.500			
Methyl tert-butyl ether	11			ND	11	2.50			
Surrogate: a,a,a-Trifluorotoluene	n	300		305	n	65.0-135	102		
Surrogate: 4-Bromofluorobenzene	<i>#</i>	300		283	"	65.0-135	94.3		
<u>Blank</u>	0080549-BI	L K2							
Gasoline	8/24/00			ND	ug/l	50.0			
Benzene	*			ND	н	0.500			
Toluene	11			ND	14	0.500			
Ethylbenzene	li .			ND	11	0.500			
Xylenes (total)	lt .			ND	It	0.500			
Methyl tert-butyl ether	R			ND	II	2.50			
Surrogate: a,a,a-Trifluorotoluene	"	300		287	"	65.0-135	95.7		
Surrogate: 4-Bromofluorobenzene	u	300		252	H	65.0-135	84.0		
LCS	0080549-BS	<u> </u>							
Gasoline	8/23/00	1000		952	ug/l	65.0-135	95.2		
Surrogate: 4-Bromofluorobenzene	л	300		290	n.	65.0-135	96.7		
LCS	0080549-BS	S2							
Benzene	8/24/00	100		95.7	ug/l	65.0-135	95.7		
Toluene	O	100		95.5	n	65.0-135	95.5		
Ethylbenzene	н	100		94.8	н	65.0-135	94.8		
Xylenes (total)		300		282	н	65.0-135	94.0		
Methyl tert-butyl ether	10	100		86.3	10	65.0-135	86.3		
Surrogate: a,a,a-Trifluorotoluene	. #	300		294	n	65.0-135	98.0		
Matrix Spike	0080549-M	S1 P(008459-01						
Gasoline	8/23/00	1000	ND	912	ug/l	65.0-135	91.2		
Surrogate: 4-Bromofluorobenzene	п	300		267	"	65.0-135	89.0		
Matrix Spike Dup	0080549-M	SD1 PO	008459-01						
Gasoline	8/23/00	1000	ND	925	ug/l	65.0-135	92.5	20.0	1.42
Surrogate: 4-Bromofluorobenzene	н	300		276	"	65.0-135	92.0	,	

Cambria Environmental - Oakland 1144 65th St., Suite C Oakland, CA 94608 Project: ARCO
Project Number: 6002-Oakland
Project Manager: Ron Scheele

Sampled: 8/17/00 Received: 8/21/00 Reported: 8/31/00

Notes and Definitions

#	Note
1	Results between the primary and confirmation columns varied by greater than 40% RPD.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

Division of Atlantic-Richfield Company Roth 8 Task Order No. 26312.00 ARCO Facility no. 6002 City (Facility) ARCO engineer Chuck Cacma Telephone no. (Consultant) Consultant name Soil Water Other Ice Acid Mulid Mulid Name Soil Water Other Ice Acid Name Soil Water Other Ice Acid Name Consultant Name Consultant Name Consultant Name Consultant Name Soil Water Other Ice Acid Name Soil Water Other Ice Acid Name Consultant Name Consulta	
ARCO engineer Chuck Cacac Telephone no. (Consultant) Signature of the Consultant name Chuck Cacac Telephone no. (Consultant) Signature of the Consultant of	
Consultant name Consul	
Cambria (n. Tech (Consultant) //44 65 th SI Sult & Cald made Ca 436 -16 Matrix Preservation 9	
Matrix Preservation et al. 2008 of shipm of ship	Σ ς
C	ent [®]
1 1 1 1 1 1 1 1 1 1	,
Sample 1.D. Container no. Container no. Sampling time S	
W	
MW4 4 × × 08-17-00 16:15 × POO8459-01 Special detection Limit/reporting	
MW-S 16:45 Lowest	<i>(</i> 2)
MW-7 MW-8 15:55 -03 Special QA/QC WW-1 WW-1 16:35 DUP Remarks	•
MLJ-8 15:55 - O- Special QA/QC	
VW-1 16:25 C - 05	
16:35 V	
DUP & Pemarks	
COOLER CUSTODY SEALS INTACT []	
NOT INTACT Lab number	
COOLER TEMPERATURE 3 C	
Turnaround time	-
Priority Rush 1 Business Day	[]
Condition of sample: Temperature received: Rush	
A-10.	1
Relinquished by sampler Date Time Received by 8-2-0/5-30 Expedited	
Relinquished by Date Time Received by 5 Business Days	(")
Relinquished by Date Time Received by Date Time Standard	_ ()
Time Heceived by Date Time 10 Business Date	s []

Distribution: White copy — Laboratory; Canary copy — ARCO Environmental Engineering; Pink copy — Consultant APC-3292 (2-91)

APPENDIX C FIELD DATA SHEETS

.WELL DEPTH MEASUREMENTS

	Well ID	Time	Top of Screen	DTB	DTP	DTW	DOP	Casing Dia	Comments
2	MW-3	14:45	5'	24.4'	•	8.65		4''	DO=1.10 mg/
5	⁵ MW-4	/5;os	4.5'	24'		11.92		4"	DO= 2.38 mg/L
Z	⁵ MW-5	15;20	5'	24.4'		13.00		4"	DO = 0.68 ms/L
- †	MW-6	14:40	17'	30'		6.95	,	2"	DO= 2.51 hs/L
4	⁵ MW-7	14:58	8.5'	13.3'		11.85		2"	00 = 1.59 mg/L
3	SMW-8	14:53	5.5'	13.9'		6,40		2"	DO = 2.56 mg/L
b	∀VW-1	15:10	6'	14'		7.75		4"	D0 = 0.63 mg/
7	VW-4	15'15	6'	15'		9.95		4"	DO = 1.13 mg/L
					AVAMOV				
İ									
	<u></u>			· .	VARIANTA				
						as.			
						, fer			

Project Name: AR	CO	6002	
-	()	V 0 1	
Measured By:	<u>X</u>		
-	/ I	,,,,	

Project Number: **436-1609**____

Date: 18 ~17-00

Project Name: ARCO 6002	Cambria Mgr: Ron Scheele	Well ID: MW-4	
Project Number: 436 - 1609	Date: 08-17-00	Well Yield:	
Site Address: 6235 Seminary Ave,	Sampling Method:	Well Diameter: "pvc 4"	
Oakland	Disposable bailer	Technician(s): SA	
Initial Depth to Water: //, 9 2	Total Well Depth: 24,00	Water Column Height:	
Volume/ft:	1 Casing Volume:	3 Casing Volumes:	
Purge/No Purge:			
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged:	
Start Purge Time:	Stop Purge Time:	Total Time:	

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.
2"

Well Diam.	Volume/ft (gallons)
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. C	рН	Cond. uS	Comments
			1113		···
		10			
		10 '			
	<u> </u>				

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-4	03.17-00	16:15	4 VOA	HCL	TPHg, BTEX, MTBE	8021B

Project Name: ARCO 6002	Cambria Mgr: Ron Scheele	Well ID: MW-5	
Project Number: 436 - 1609	Date: 03-17-00	Well Yield:	
Site Address: 6235 Seminary Ave, Oakland	Sampling Method:	Well Diameter: "pvc 4//	
Оакіани	Disposable bailer	Technician(s):	
Initial Depth to Water: 13.00	Total Well Depth: 24.40	Water Column Height:	
Volume/ft:	1 Casing Volume:	3 Casing Volumes:	
Purge/No Purge:			
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged:	
Start Purge Time:	Stop Purge Time:	Total Time:	

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.
2"

Well Diam.	Volume/ft (gailons
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. C	рН	Cond. uS	Comments
			C Q 3		
	\bigcap	0 6	3 3		

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-5	08-17-00	16:45	4 VOA	HCL	TPHg, BTEX, MTBE	8021B

Project Name: ARCO 6002	Cambria Mgr: Ron Scheele	Well ID: MW-7
Project Number: 436 - 1609	Date: 0 & (7-00	Well Yield:
Site Address: 6235 Seminary Ave,	Sampling Method:	Well Diameter: "pvc 2"
Oakland	Disposable bailer	Technician(s):
Initial Depth to Water: 11. 85	Total Well Depth: 13.30	Water Column Height:
Volume/ft:	1 Casing Volume:	3 Casing Volumes: /
Purge/No Purge:		
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged:
Start Purge Time:	Stop Purge Time:	Total Time:

 Volume
 Well Diam.
 Volume/ft (gallons)

 1 Casing Volume = Water column height x Volume/ ft.
 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Casing Volume	Temp. C	рН	Cond. uS	Comments
	0.0	Durg	e /		
	(10		/		

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-7	08-17-00	16:05	4 VOA	HCL	TPHg, BTEX, MTBE	8021B

Project Name: ARCO 6002	Cambria Mgr: Ron Scheele	Well ID: Mw-8
Project Number: 436 - 1609	Date: 08-17-00	Well Yield:
Site Address: 6235 Seminary Ave,	Sampling Method:	Well Diameter: "pvc 2 //
Oakland	Disposable bailer	Technician(s): SA
Initial Depth to Water: 6,40	Total Well Depth: 13,90	Water Column Height:
Volume/ft:	1 Casing Volume:	3 Casing Volumes:
Purge/No Purge:		
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged:
Start Purge Time:	Stop Purge Time:	Total Time:

1 Casing Volume = Water column height x Volume/ ft.

en Diam.	votume/it (gailo
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. C	рН	Cond. uS	Comments
		~ 0V	(5)		
	<i>t</i> \	0 1			
		. /			

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
M W-8	08-17-00	5 .55	4 VOA	HCL	TPHg, BTEX, MTBE	8021B

Project Name: ARCO 6002	Cambria Mgr: Ron Scheele	Well ID: VW-1
Project Number: 436 - 1609	Date: 03-17-06	Well Yield:
Site Address: 6235 Seminary Ave,	Sampling Method:	Well Diameter: "pvc 4"
Oakland	Disposable bailer	Technician(s): SG
Initial Depth to Water: 7, 7 S	Total Well Depth: 14.00	Water Column Height:
Volume/ft:	1 Casing Volume:	3 Casing Volumes:
Purge/No Purge:		
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged:
Start Purge Time:	Stop Purge Time:	Total Time:

l Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallon
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. C	pН	Cond. uS	Comments
		10 pu	192		

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
1/W-1	0-8-17-00	16:25	4 VOA	HCL	TPHg, BTEX, MTBE	8021B
·						

D:\TEMPLATE\FORMS\FIELD\WELLSAMP.WPD NSM 5/31/94

Project Name: ARCO 6002	Cambria Mgr: Ron Scheele	Well ID: VW-4	
Project Number: 436 - 1609	Date: 68-17-00	Well Yield:	
Site Address: 6235 Seminary Ave,	Sampling Method:	Well Diameter: "pvc 47	
Oakland	Disposable bailer	Technician(s): SG	
Initial Depth to Water: 9.95	Total Well Depth: 15.00	Water Column Height:	
Volume/ft:	1 Casing Volume:	3 Casing Volumes:	
Purge/No Purge:			
Purging Device: Submersible Pump	Did Well Dewater?:	Total Gallons Purged:	
Start Purge Time:	Stop Purge Time:	Total Time:	

1 Casing Volume = Water column height x Volume/ ft.

Well Diam.	Volume/ft (gallon:
2"	0.16
4"	0.65
6"	1.47

Time	Casing Volume	Temp. C	рН	Cond. uS	Comments
		ha 641	42		
	/	10 1			

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
NW-H	08-17-00	16:35	4 VOA	HCL	TPHg, BTEX, MTBE	8021B