Site Closure Sur Request fr

for 3744 Depot Road Hayward, California

Performed For:

Mr. Amir Gholami Alameda County Dept of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Prepared By:

PIERS Environmental Services, Inc. 1330 S. Bascom Avenue, Suite F San Jose, CA 95128

August 2000

1330 S. Bascom Ave., Suite F San Jose, CA 95128

Tel. (408) 559-1248 Fax (408) 559-1224

Mr. Amir Gholami Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

August 14, 2000

RE: Formal Request for No Further Action Status

3744 Depot Road Hayward, CA

Dear Mr. Gholami,

In reference to the aforementioned site, on behalf of Mr. Eric Freeberg, PIERS Environmental Services, Inc has compiled the accompanying documents for your review and comment. Your last request, dated March 1, 1999, for the site, included the need for one additional round of groundwater sampling at the site (including lab analysis for MTBE) and a clarification of the site's groundwater gradient information.

Over the past year, PIERS completed and submitted documentation for all of the final tasks that you requested in your March 1999 letter. Therefore, we are requesting that a formal Case Closure be granted for the site. Please see the attached "Case Closure Summary" including attachments submitted for your review and comment.

Please call if you have any further questions.

Thank-you for your time in regards to this matter.

Respectfully,

Ben Halsted

PIERS Environmental Services, Inc.

Project Manager

SITE CLOSURE SUMMARY

I. AGENCY INFORMATION

Date: 08/15/2000 Page 1 of 4

Agency Name: Alameda County-Hazmat	Address: 1131 Harbor Bay Pkwy
City/State/Zip: Alameda, CA 94502	Phone: (510) 567-6700
Responsible Staff Person: Amir K. Gholami	Title: Hazardous Materials Specialist

II. SITE INFORMATION

Site Facility A	ddress: 3744 Depot	Road, Hayward, CA 94:	545					
RB/SMS Case	No.: NA	Local or LOP Cas	Local or LOP Case No: Stid 2017/LOP Priority: N/A					
URF Filing D	ate:	SWEEPS No.: NA						
Mr. Eric Free	Parties (include addre berg, Riverbend Prop Rancho Santa Fe, C		Phone: 858-756-6632					
Tank No.	Size in Gallons	Contents Removed		Date				
A	500	Waste oil	Removed	1992				
В	1000	Gasoline	Removed	1992				

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and Type of Release: Leaking Underground Sto	orage Tanks					
Site characterization complete? Yes	Date Approved By Oversight Agency: August 28, 19					
Monitoring wells installed? Yes	Number 2	Proper screened interval? Yes				
Highest GW Depth below top of well casing: 5.74'	Lowest Depth: 8.25'	Flow Direction: Flat, SW and N				
Most Sensitive Current Use: Industrial Process Supply Most Sensitive Potential Use: Domestic or municipal and Probability of Use: Possibly none.	L					
Are drinking water wells affected? No	Aquifer Name:					
Is surface water affected? No	Nearest/Affected SW Na	ame:				
Off-Site Beneficial Use Impacts (Addresses/Locations): None					
Report(s) on file? Yes	Where is report(s) filed?	ACHCSA				

Material	Amount (Include Units)	Action (Treatment or Disposal w/Destination)	Date
Waste Oil Tank	500 Gallons	Unknown; assumed destroyed	1992
Gasoline Tank	1000 Gallons	Unknown; assumed destroyed	1992
No soil or groundwater w	as removed from the site.		_

MAXIMUN	I DOCUM!	FRIED	PULLUTA	NI CONC	ENTRATIONS-	BEFURE A	NUAL	IEK CLEAP	TUP		
	1 Soil (p	pm)	2 Water	(ppb)		3 Soil (pp	m)	4 Water (ppb)			
POLLUTANT	Before	After	Before	After	POLLUTANT	Before	Afte r	Before	After		
TPH (Gas)	7.0ppm	ND	43,000	ND	Xylene	1000ppb	ND	11.000 ppb	ND		
TPH (Diesel)	56ррт	ND	600ррт	ND	Oil & Grease	3300	ND	390ррт	ND		
Benzene	63ррь	ND	300ррь	ND	PCE	N/A	N/A	N/A	N/A		
Toluene	14ppb	ND	360ррь	ND	МТВЕ	N/A	N/A	N/A	9.3 P P		
Ethylbenzene	171ppb	ND	1400ppb	ND	Heavy Metal	43ррт	ND	.085	ND		

NOTES

Impacted soil at site appeared limited to vicinity of former USTs, and product lines. Soil impact was delineated and no further action regarding soil was requested by ACEHD. Monitoring site via two wells since 1996, one additional well in 1995. All reports on file with ACEHD.

Does completed corrective action protect potenti	ial beneficial uses per the Regional Boa	rd Basin Plan? Yes
Does corrective action protect public health for	current land use? Yes	
Site Management Requirements: Proper Well C	Closure	
Should Corrective action be reviewed if land use	e changes? Yes	
	<u> </u>	<u> </u>
Monitoring Wells Decommissioned: NA	Number Decommissioned: NA	Number Retained: NA
List Enforcement Actions Taken: NA		

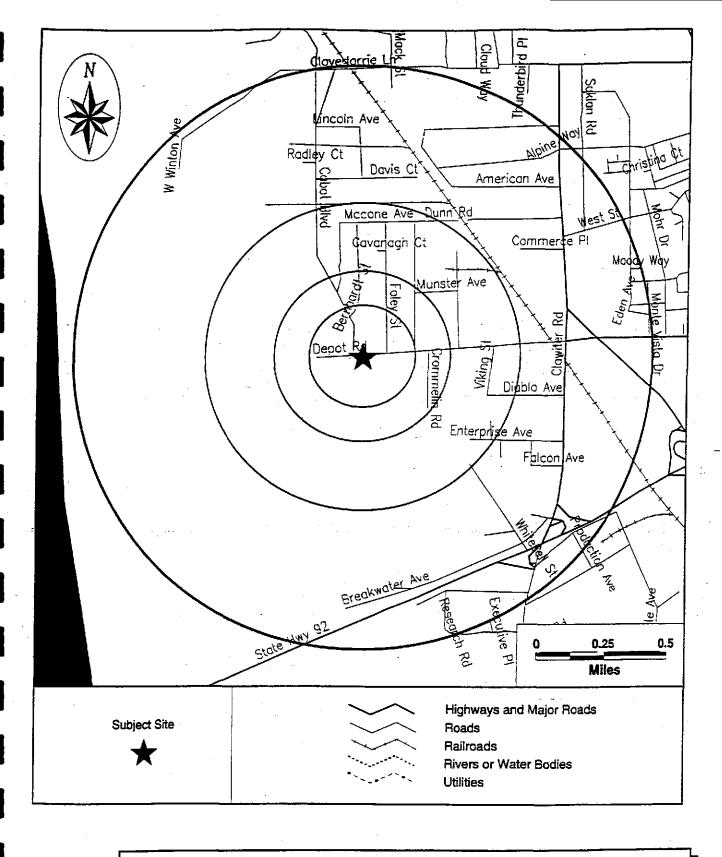
V. LOCAL AGENCY REPRESENTATIVE DATA

Name: Amir K. Gholami	Title: Haz Mat Specialist
Signature:	Date:
Reviewed by	
Name:	Title: Haz Mat Specialist
Signature:	Date:
Name: Thomas Peacock	Title: Supervisor
Signature:	Date:
VI. RWQCB NOTIFICATION	
Date Submitted to RB:	RB Response:
RWQCB Staff Name: Chuck Headlee	Title: AEG
Signature:	Date:

ADDITIONAL COMMENTS, DATA, ETC.

Attached please find the following relevant information:

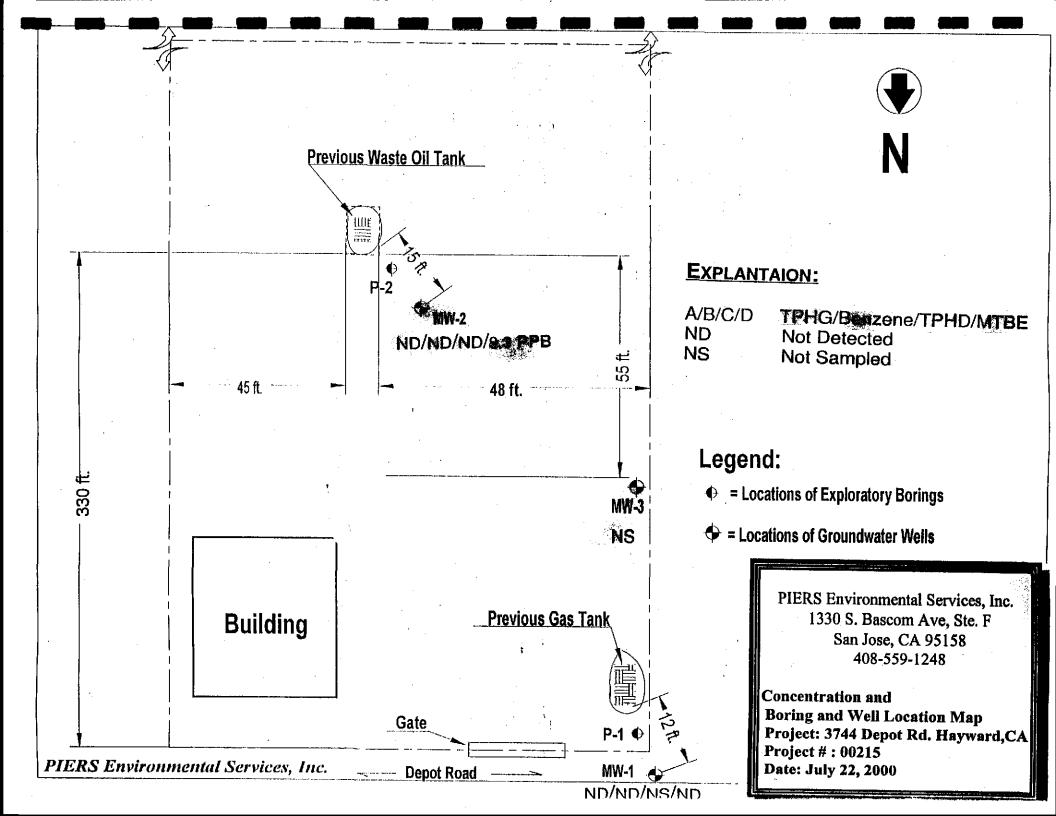
- 1-Maps: Regional, Plot plan and locations where samples where taken
- 2-Tables: Tables of analytical results, History of Groundwater Depth, and Last Quarterly monitoring report


3-Boring Logs and wells	 		
	•		
		·	
			•
		·	

In summary, case closure is recommended because:

- the leak and ongoing sources have been removed;
- the site has been adequately characterized;
- the dissolved plume is not migrating;
- no water wells, surface water, or other sensitive receptors are likely to be
- impacted; and,
- the site presents no significant risk to human health or the environment

MAPS


REGIONAL AND SITE PLAN WITH SAMPLE LOCATIONS

SITE VICINITY MAP

3744 DEPOT ROAD HAYWARD, CALIFORNIA NOT TO SCALE

MONITORING REPORT

LAST MONITORING REPORT

Final 1999 Groundwater Monitoring Well
Sampling Report and Request for
No Further Action Status
of
3744 Depot Road
Hayward, California

Performed For:
Mr. Eric Freeberg
River Bend Properties, Inc.
PO Box 9440
Rancho Santa Fe, CA 92067-4440

Prepared By:
PIERS Environmental Services, Inc.
1330 S. Bascom Avenue, Suite F
San Jose, CA 95128

April 1999

1330 S. Bascom Ave., Suite F San Jose, CA 95128

Tel. (408) 559-1248 Fax (408) 559-1224

April 20, 1999

Mr. Eric Freeberg River Bend Properties, Inc. P.O. Box 9440 Rancho Santa Fe, CA 92067-4440

AND

Mr. Amir Gholami Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Subject:

Final 1999 Groundwater Monitoring Well Sampling Report

and Request for No Further Action Status; 3744 Depot Road, Hayward, California

Please find attached the Groundwater Monitoring Well Sampling Report and Request for a No Further Action Status for 3744 Depot Road, Hayward, California. PIERS is pleased to have been of service to you on this project. If you have any questions, please do not hesitate to call the undersigned.

Very truly yours,

Stuart Solomon Senior Consultant PROFESSIONAL HAIS SOLUTION DATE OF CALLED

Samuel H. Halsted Professional Engineer C.E. No. 14095

TABLE OF CONTENTS

<u>Section</u>	<u>on</u>									ļ	<u>P</u>	ge	2
1.0	INTRO	DDUCTION AND ENVIRONMENTAL HISTORY	•				 	•		٠.	•		1
2.0	FIELD 2.1 2.2 2.3 2.4	SAMPLING AND LABORATORY METHODS Sampling Procedures	• •	 			 		 	• •	•	• •	3 4 5
3.0	CONC	CLUSIONS AND RECOMMENDATIONS				.,	 ••	•			ь •		5
4.0	LIMIT	ATIONS					 	•			•	• •	6
FIGUI	RES:												
	1 - 2 -	Site Vicinity Map Site Plan with Well Locations and Gradient Stu	dy										
APPE	NDICE	is:											
	A. B.	Groundwater Sampling Information Sheets Chemical Analytical Data and Chain-of-Custody	y F	or	m								

1.0 INTRODUCTION AND ENVIRONMENTAL HISTORY

The subject Property at 3744 Depot Road, Hayward, California, is localist in a commercial/industrial district of Hayward, California, and is currently occupied by an automotive recycler. A 500 gallon waste oil tank and a 1000 gallon gasoline tank were apparently excavated and removed from the ground in the late 1900's by a previous tenant without a permit. The tanks were subsequently disposed of by the tenant. No soil samples were retrieved at the time of removal, and no tank closure report submitted. Subsequent to the tank removals, the Alameda County Department of Environmental Health (ACDEH) became aware of the situation, and requested that the property owner collect samples from the tank excavations. An environmental consultant apparently collected the required samples, however, a report on the sample results was not forwarded to the agency. The consultant has since closed the business, and no records were available. The previous tenant and property owners (Patricia and Kenneth Hein) are now (assumed) bankrupt, and the property was foreclosed on by the lender (Jack Lotz and Jesse Allen). The property was then sold to River Bend Properties, Inc., who is the current owner.

PIERS Environmental Services performed a "Limited Phase II Environmental Assessment" on the Property in August 1995. The PIERS report on this assessment is dated September 12, 1995, and is on file with the Alameda County Department of Environmental Health (ACDEH). In the PIERS investigation, five exploratory borings were installed at the site. Soil samples were collected from each boring, and groundwater grab samples were collected from the down-gradient boring at each tank pit. A third groundwater grab sample was collected from a well discovered along the western property line by Amy Leech (ACDEH representative) during her site visit. An overview of the significant findings resulting from laboratory analyses of these soil and groundwater samples is as follows:

- Up to 3300 Parts Per Million (PPM) of Oil and Grease, and 2795 Parts Per Billion (PPB) of Semi-Volatile Organic Compounds (SVOC's) was discovered in soil sampled from the immediate area of the former waste oil tank. 390 PPM of Oil and Grease, and up to 600 PPB of Volatile Organic Compounds (VOC's) were detected in a sample of groundwater collected from the immediate area down-gradient from the former waste oil tank.
- Groundwater sampled in the immediate area down-gradient from the former gasoline tank was found to contain 43,000 PPB of Total Petroleum Hydrocarbons as Gasoline (TPHg), and 300 PPB of Benzene.

In order to meet the requirements of the ACDEH and the Regional Water Quality Control Board (RWQCB), PIERS performed a Preliminary Site Assessment to delineate and assess the extent of soil and groundwater impact, and to formulate a plan for site closure. This work was performed in accordance with a workplan submitted to the ACDEH on July

2, 1996, and included drilling four exploratory borings and converting two of them to groundwater monitoring wells. The scope of work included soil and groundwater grab sampling from the exploratory borings, installation of the two groundwater monitoring wells, development and sampling of the two new wells plus a third existing well located on site, and hydraulic gradient characterization. A report detailing the results of this investigation was prepared by PIERS, and is entitled *Preliminary Site Assessment, Groundwater Well Installation and 1st Quarterly Report.* This report is dated February 10, 1997, and is on file with the ACDEH.

Soil and groundwater sample results from this initial groundwater investigation indicated that there had been little, if any, migration of contaminants outside of the immediate vicinity of both former tanks. PIERS had suggested that over-excavating soils in the immediate vicinity of the two former tank pits should be sufficient to remedy any threat. After reviewing the data contained in the PIERS report, Amy Leech, the case worker at the ACDEH suggested that over-excavation may not be warranted, and recommended evaluating the next sampling event to determine if it was even necessary.

On April 29, 1997, PIERS performed another sampling event of the three groundwater wells located on the site. Samples were tested for chemical constituents as per the requests of Amy Leech. No detectable chemical constituents were present in water from any of the three wells during this sampling event. Amy Leech apparently left the employ of the ACDEH shortly thereafter, and, although she had indicated verbally that based on the latest sampling results, she intended to recommend site closure, she was not able to complete the cycle before leaving. Over the next year, the case was referred to two other oversight employees of the ACDEH, and finally ended up being delivered to Amir Gholami.

During their review of the data presented in each of the sampling events, the ACDEH noted a discrepancy in one of the reported gradient studies. After the initial "Limited Phase II Site Assessment" had been performed in September 1995, the regional gradient was estimated (but not accurately measured) to flow in a northerly direction. Measured gradient during the initial 1997 sampling, by mistake, had estimate the flow to be northerly. On November 3rd, 1998, PIERS submitted an amendment letter to the ACDEH which corrected the gradient to show a southerly flow, calculated to be approximately .002 ft. per foot (relatively flat").

On March 1, 1999, Amir Gholami submitted a letter to the Property owner requesting that an additional round of sampling be performed in order to consider the site for closure. The following reports on this sampling event.

2.0 FIELD SAMPLING AND LABORATORY METHODS

The following table briefly describes the current well status:

Table 1. Monitoring Well Sampling Data

Well No.	Depth Water	Depth to Elev ft.*	Casing	Damage Product	Floating
MW # 1	5.76	4.26	10.02	None	None
MW # 2	5.63	4.82	10.45	None	None
MW # 3	5.33	4.73	10.06	None	None

^{*} Measured to a City of Hayward Bench Mark at Cabot Blvd. and Depot Road

2.1 Sampling Procedures:

On March 30, 1999, the three wells located at the subject Property were purged and sampled in accordance with applicable sampling protocols provided by the Regional Water Quality Control Board and the Alameda County Department of Environmental Health.

The PIERS sample technician proceeded to purge a minimum of four well volumes (a calculation was done for each well following depth to water sounding measurements) of groundwater from each well using a new disposable bailer for MW-1 and MW-2, and a clean 2 inch Whale well-sampling pump for MW-3. The wells were then allowed to re-charge. Between each well volume, conductivity, pH, and water temperature readings were obtained and noted on the **Groundwater Sampling Information Sheets** (See Appendix A). Once the minimum number of well volumes was purged and stabilization of the readings was noted, the sample was collected from the well. Purge water was stored on-site in 55 gallon DOT approved drums. The well sampling information sheets containing data on temperature, conductivity, pH, depth to water, and well volumes purged can be found in Appendix A. A copy of the Chain-of-Custody form and the Laboratory Analysis Results can be found in Appendix B.

A new disposable bailer was used to obtain a groundwater sample from each well. Samples were placed in two 40 milliliter voa clear glass bottles for MW-1 and MW-2, and two 1 liter amber glass bottles for MW-2 and MW-3, leaving no headspace. The containers were immediately labeled and placed on ice for transport to Entech Analytical Laboratories, Inc. in Sunnyvale, California (a State Certified Lab) for the requested analyses under Chain-of-Custody documentation. As per the instructions

from the case worker, Mr. Amir Gholami of the ACDEH, Entech Analytical Labs tested the groundwater samples from MW-1 and MW-2 for Total Petroleum Hydrocarbons quantified as Gasoline (TPHg), and for Benzene, Toluene, Ethyl benzene, and Total Xylenes (BTEX) using EPA Method 8015M/8020. The sample from MW-2 was also tested for Total Recoverable Petroleum Hydrocarbons (TRPH) by EPA Method 418.1. The water sample from MW-2 was also tested for Volatile Organic Compounds (VOC's) by EPA Method 8240, and for Semi-Volatile Organic Compounds (SVOC's) by EPA Method 8270.

2.2 Analytical Laboratory Results:

The analytical results for the groundwater samples revealed the following;

Table 2. Groundwater Sample Analytical Data

TEST .	MW-1	MW-2
TRPH (418.1)	NA	ND
TPHd (8015m)	NA	ND
TPHg (8015m)	ND	ND
Benzene (8020)	ND	9
Toluene (8020)	ND	ND
Ethyl Benzene (8020)	ND	ND
MEBE (8020)	ND	9.3 ppb
Total Xylenes (8020)	ND	ND
tert-Butanol (8240)	NA	ND
MEDE (8240)	NA	MD
Diisopropyl ether (8240)	NA	ND
Ethyl-tert-butyl ether (8240)	NA	ND
tert-Amylmethyl ether (8240)	NA	ND
Bromodichloromethane (8240)	NA	5.5 ppb
Dibromochloromethane (8240)	NA	8.4 ppb
All other 8240 constituents	NA	ND
All Semi-volatile constituents (3510C)	NA	ND

ND - None detected; (see laboratory report for reporting limits)

NA - Not Analyzed

The laboratory analysis reports are presented in Appendix B.

2.3 Discussion of Findings:

MW-1 was found to contain no detectable chemical constituents as tested.

Trace elements of Bromodichloromethane (5.5 PPB) and Dibromochloromethane (8.4 PPB) were detected in water from MW-2. These are both naturally occurring, tri-halomethanes which can form when common halogens (such as chlorine or bromine) and organic materials come into contact. These chemicals are not associated with fuels or solvents, and at trace levels, pose no health or environmental threat. As indicated in the MW-2 well boring log, subsurface sediments in the immediate vicinity contain significant organic materials (OH). This could explain the trace occurrences of these two tri-halomethanes.

MTBE was reported in MW-2 detected at 9.3 by EPA Method 8020. It is common knowledge, however, that this method can and does frequently indicate false positives for this chemical constituent. EPA Method 8240 (VOC's) is the recommended test to verify and quantify MTBE. The 8240 test on MW-2 indicated a Non-Detect for MTBE.

2.4 Groundwater Gradient Data:

The groundwater flow direction was calculated, and estimated to be North Northwesterly at a flow rate of approximately .0017 ft. per foot (nearly a flat gradient). Figure 2 shows the respective locations of the wells, and the gradient calculations.

3.0 CONCLUSIONS AND RECOMMENDATIONS

3744 Depot Road Closure Request

- MW-1 and MW-2 are positioned in the immediate vicinity of and estimated down-gradient from the former gasoline and waste oil tanks. The May, 1997 and the current gradient studies indicate a Northerly groundwater flow. One of the previous gradient studies performed in February, 1997 indicated a Southerly flow. In each study, however, the gradient was found to be relatively flat. Based on this data, it appears that the wells are appropriately positioned with relation to the location of the former tanks.
- ◆ Groundwater samples from MW-1 and MW-2 on site have never been found to contain detectable petroleum constituents. The initial sampling performed in July, 1996 detected 32 PPB of Di-n-butylphthalate in MW-2, which, according to the Merck Index Encylopedia for Chemicals and Drugs is a chemical used in insect repellant. This constituent was not detected in any of the subsequent sampling events. PIERS speculated that the chemical may have come from the sampler's gloves or clothing. As mentioned earlier, these are both naturally occurring, tri-halomethanes which can

Page 5

form when common halogens (such as chlorine or bromine) and organic materials come into contact. These chemicals are not associated with fuels or solvents, and at these trace levels, pose no potential health or environmental threat. As indicated in the MW-2 well boring log, subsurface sediments in the immediate vicinity contain significant organic materials (OH). This could explain the trace occurrences of these two tri-halomethanes.

- ♦ Both of the former tank excavation pits were left open after the tanks had been removed, and allowed to aerate for more than two years. Aromatic fuels, VOC's, or SVOC's in soil and groundwater in the immediate vicinity would likely have dissipated and/or biologically degraded over this extended period of time. Both tank pits were observed and noted to significant contain plants and foliage prior to they're being backfilled indicating significant biological activity.
- ♦ Based on an evaluation of all sampling data presented to date, it does not appear that the previous fuel tanks at this site have posed a significant impact to soil or groundwater in their vicinity. PIERS recommends that this site be granted a no-further-action status, and that the case be closed.

4.0 LIMITATIONS

The sampling and related report for this site were performed using recommended current guidance documents of the Regional Water Quality Control Board. The statements, conclusions, and recommendations are based on present site conditions. PIERS Environmental Services, Inc. is not responsible for laboratory errors and no warranty or guarantee is implied thereon.

If you have any questions regarding this report, please do not hesitate to call PIERS.

Attachments:

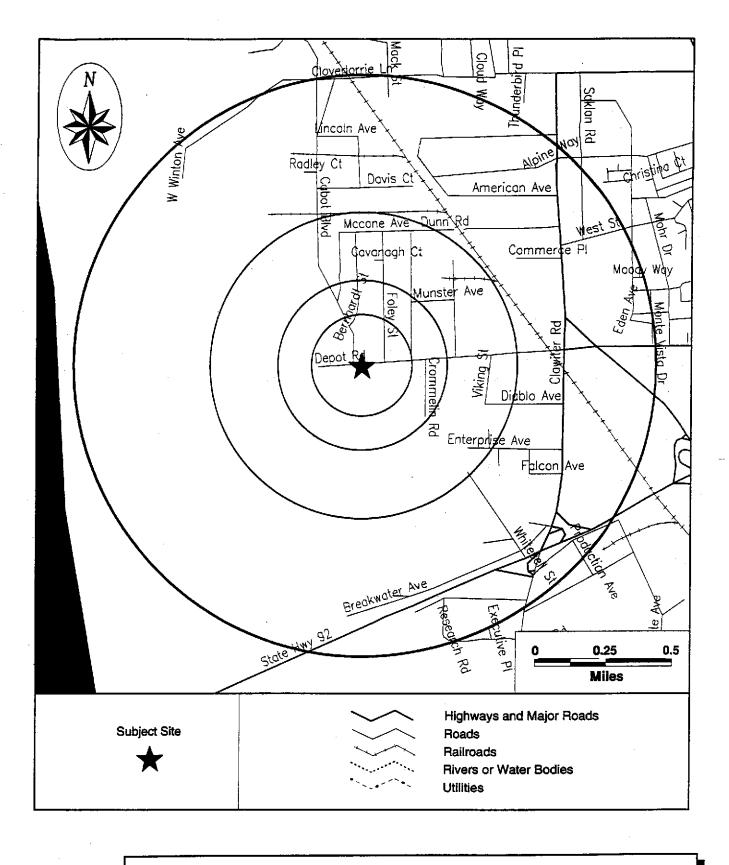

Figure 1. Site Vicinity Map

Figure 2. Site Map with Well Locations and Gradient Study

Appendices: A. Groundwater Sampling Information Sheets

B. Chemical Analytical Data and Chain-of-Custody Form

FIGURE 1
Site Vicinity Map

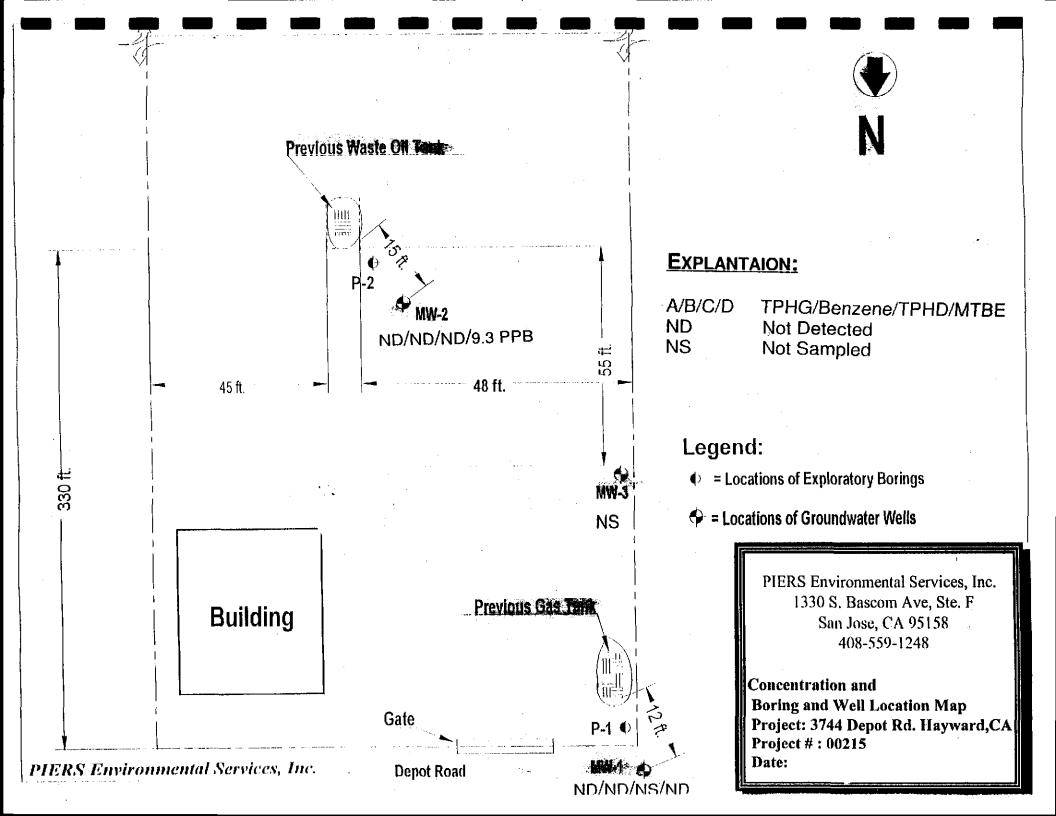


FIGURE 1 SITE VICINITY MAP

3744 DEPOT ROAD HAYWARD, CALIFORNIA NOT TO SCALE APRIL 1999

FIGURE 2

Site Map with Well Locations

APPENDIX A

Groundwater Sampling Information Sheets

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

April 13, 1999

Ben Halsted Piers Environmental Services 1330 South Bascom Avenue San Jose, CA 95128

Subject:

1 Water Sample

Lab #'s:

G8559

Project Name:

Riverbend

Project Number:

Method(s):

EPA 8240

EPA 8270-ATL

Subcontract Lab:

Advanced Technology Laboratories (CAELAP #1838)

Dear Ben Halsted,

Chemical analysis on the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#I-2346). If you have any questions regarding procedures or results, please call me at 408-735-1550.

Sincerely,

Michelle L. Anderson

Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Piers Environmental Services 1330 South Bascom Avenue

San Jose, CA 95128

Attn: Ben Halsted

Date: 4/13/99

Date Received: 4/5/99

Project: Riverbend

PO #:

Sampled By: Client

Certified Analytical Report

Water Sample Analysis:

water Sample Analy	313.							 		
Sample ID	MW1			MW-2		7				
Sample Date	3/30/99			3/30/99						
Sample Time	2:45	-		2:30						
Lab#	G8558			G8559						
	Result	DF	DLR	Result	DF	DLR			PQL	Method
Results in mg/Liter:										
Analysis Date	-			4/7/99						
TRPH	na			ND	1.0	5.0			5.0	418.1
Results in µg/Liter:										
Analysis Date				4/12/99						
TPH-Diesel	na		•	ND	1.0	50			50	8015M
Analysis Date	4/9/99			4/9/99			_			
TPH-Gas	ND	1.0	50	ND	1.0	50:			50	8015M
МТВЕ	na			9.3	1.0	5.0			5.0	8020
Benzene	ND	1.0	0.50	ND	1.0	0.50			0.50	8020
Toluene	ND	1.0	0.50	ND	1.0	0.50			0.50	8020
Ethyl Benzene	ND	1.0	0.50	ND	1.0	0.50			0.50	8020
Xylenes (total)	ND	1.0	0.50	ND	1.0	0.50			0.50	8020
Analysis Date				4/9/99						
tert-Butanol	na			ND	1.0	20	·		20	8240
MTBE	na			19	1.0	5.0			5.0	8240
Diisopropyl ether	na			ND	1.0	5.0			5.0	8240
Ethyl-tert-butyl ether	na			ND	1.0	5.0			5.0	8240
tert-Amylmethyl ether	na			ND	1.0	5.0			5.0	8240

DF=Dilution Factor

ND= None Detected above DLR

PQL=Practical Quantitation Limit

DLR=Detection Reporting Limit

· na: not analyzed

· Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Certified Analytical Report Volatile Organic Compounds by EPA Method 8240

Client: Piers Environmental Services

Date Reported: 4/13/99

Sample Matrix: Water

2:30

Date Received: 4/5/99

Sample Date/Time: 3/30/99

Date Analyzed: 4/9/99

Lab #: G8559

Dilution Factor: 1

Client ID: MW-2

Compound	Value	PQL	DLR	Compound	Value	PQL	DLR
Acetone	ND	20	20	1,1-Dichloroethene	ND	5	5
Allyl Chloride	ND	20	20	trans-1,2-Dichloroethene	ND	5	5
Benzene	ND	5	. 5	1,2-Dichloropropane	ND	5	5
Benzyl Chloride	ND	20	20	cis-1,3-Dichloropropene	ND	5	5
Bromodichloromethane	5.5	5	5	trans-1,3-Dichloropropene	ND	5	5
Bromoform	ND	5	5	Ethyl Benzene	ND	5	, 5
Bromomethane	ND	5	5	2-Hexanone	ND	20	20
2-Butanone	ND	20	20	Iodomethane	ND	5	- 5
Carbon Disulfide	ND	5	5	Methylene Chloride	ND	5	5
Carbon Tetrachloride	ND	5	5	4-Methyl-2-Pentanone	ND	20	20
Chlorobenzene	ND	5	5	Styrene	ND	5	5
Chloroethane	ND	5	5	1,1,1,2-Tetrachloroethane	ND	5	5
Chloroform	ND	5	5	1,1,2,2-Tetrachloroethane	ND	5	5
Chloromethane	ND	5	5	Tetrachloroethene	ND	5	5
Dibromochloromethane	8.4	5	5	Toluene	ND	5	5
1,2-Dibromo 3-Chloropropane	ND	5	5	1,1,1-Trichloroethane	ND	5	5
1,2-Dibromoethane (EDB)	ND	5	5	1,1,2-Trichloroethane	ND	5	5
Dichlorodifluoromethane	ND	5	5	Trichloroethene	ND	5	5
1,2- Dichlorobenzene	ND	5	5	Trichlorofluoromethane	ND	- 5	5
1,3- Dichlorobenzene	ND	5	5	1,2,3-Trichloropropane	ND	5	5
1,4- Dichlorobenzene	ND	5	5	Vinyl Acetate	ND	10	10
1,1-Dichloroethane	ND	5	5	Vinyl Chloride	ND	5	5]
cis-1,2-Dichloroethene	ND	5	5	Xylenes (total)	ND	5	5
1,2-Dichloroethane	ND	5	. 5				

Surrogate Recovery (%)
Dibromofluoromethane 115
Toluene-d8 104
4-Bromofluorobenzene 90

1. Results are reported in ug/Liter (ppb)

2. DLR= DF x PQL

3. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #I-2346)

Michelle L. Anderson, Lab Director

ND: None Detected at or above DLR

PQL: Practical Quantitation Limit

DLR: Detection Reporting Limit

DF: Dilution Factor

April 9, 1999

ELAP No.: 1838

Entech Analytical Labs, Inc. 525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

ATTN:

Michelle Anderson

Client's Project:

Piers

Lab No.:

34685-001

Enclosed are the results for sample(s) received by Advanced Technology Laboratories and tested for the parameters indicated in the enclosed chain of custody.

Thank you for the opportunity to service the needs of your company. Please feel free to call me at (562) 989 - 4045 if I can be of further assistance to your company.

Sincerely,

Cheryl De Los Reyes

Technical Operations Manager

CDR/jh

Enclosures

This cover letter is an integral part of this analytical report.

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited.

Client: Attn:

Entech Analytical Labs, Inc.

Michelle Anderson

Client's Project: Date Received: Matrix:

Piers 04/07/99 Water μg/l 3510C

Units: Extraction Method:

				EPA M	etbod 32	70C							
Lab No.:		Metho	d Blank	34685-0	01								
Client Sample I.D.:		<u></u>		G8559(1	MW2)								
Date Sampled:				03/30/99	9					-			
QC Batch #:		\$9982	70W080	S998270W080								T	
Date Extracted:		04/07/	99	04/07/99									
Date Analyzed:		04/07/99		04/07/99)								
Analyst Initials:		ZL		ZL						1		Ţ.,	
Dilution Factor:		1		1								Ī	
ANALYTE	MDL	DLR	Results	DLR	Results	DLR	Results	DLR	Results	DLR	Regulte	DE.R	Results
Phenol	10		ND		ND						<u></u>		
bis (2-Chloroethyl)ether	10	10	ND	10	ND								
2-Chlorophenol	10	10	ND	10	ND								
1,3-Dichlorobenzene	10	10	ND	10	ND			į			ļ <u></u>		
1,4-Dichlorobenzene	10	10	ND	10	ND								
Benzyl Alcohol	10	10	ND	10	ND						<u> </u>		
1,2-Dichlorobenzene	10	10	ND	10	ND								
2-Methylphenol	10	10	ND	10	ND						<u> </u>		
bis(2-chloroisopropyl)ether	10	10	ND	10	ND								
n-Nitroso-di-n-propylamine	10	10	ND	10	ND								
4-Methylphenol	10	10	ND	10	ND				·		-		
Hexachloroethane	10	10	ND:	10	, ND							ļ	
Nitrobenzene	10	10	. ND	10	ND								
Isophorone	10	10	ND	10	ND								
2-Nitrophenol	10	10	NTD	10	ND					<u> </u>			
2,4-Dimethylphenol	10	10	ND	10	ND								
bis(2-Chloroethoxy)methane	10	10	ND	10	ND								
2,4-Dichlorophenol	10	10	ND	10	ND				-				
Benzoic Acid	50	50	ND	50	ND							!	
1.2,4-Trichkorobenzene	10	10	ND	10	ND								
Naphthalene	10	10	ND	10	ND								
4-Chloroamiline	10	10	ND	10	ND			j					
Hexachlorobutadiene	10	10	ND	10	ND						1		
4-Chloro-3-methylphenol	10	10	ND	10	ND			į					
2-Methylnaphthalene	10	10	ND	10	ND	:							
Hexachlorocyclopentadiene	10	10	ND	10	ND	. !							
2,4,6-Trichlorophenol	10	10	ND	10	ND		. !	٠.	·				
2,4,5-Trichlorophenol	10	10	ND	10	ND								
2-Chloronaphthalene	10	10	ND	10	ND								
2-Nitroaniline	10	10	ND	10	ND								
Dimethylphthalate	10	10	ND	10	ND	-							
Acenaphthylene	10	10	ND	10	ND								
2,6-Dinitrotoluene	10	10	ND	10	ND								
3-Nitroaniline	10	10	ND	10	ND								
MDL = Method Detection Lin													

MDL Method Detection Limit ND Not Detected (Below DLR)

DLR = MDL x Dilution Factor NA

Not Analyzed

The cover letter is an integral part of this analytical report.

Client: Attn: Entech Analytical Labs, Inc.

Michelle Anderson

Client's Project: Date Received: Matrix: Piers 04/07/99 Water

Units: Extraction Method: μg/l 3510C

				EPAI	fethod 82	70C							
Lab No.:		Metho	d Blank	34685-				l 					
Client Sample I.D.:				G8559	(MW2)								
					Resulte	DIR	Results	DLR	Results	DLR	Results	DER	Results
Acenaphthene	10	10	ND	10	ND								<u> </u>
2,4-Dinitrophenol	20	20	ND	20									
Dibenzofuran	10	10	ND	10	ND				1				<u> </u>
4-Nitrophenol	20	20	ND	20	ND								
2,4-Dinitrotoluene	10		ND	10	ND								
Fluorene	10		ND	10	ND								
Diethylphthalate	10	10	ND	10	ND								
4-Chlorophenyl-phenyl ether	10	10	ND	10	ND								
4-Nitroaniline	10	10	ND	10	ND								
4,6-Dinitro-2-methylphenol	20	20	ND	20	ND								
n-Nitrosodiphenylamine	10	10	ND.	10	ND								
4-Bromophenyl-phenyl ether	10	10	ND	10	ND							·	
Hexachlorobenzene	10	10	ND	10	ND							í	
Pentachlorophenol	20	20	ND	20	ND								
Phenanthrene	10	-10	ND	10	ND								
Anthracene	10	10	ND	10	ND								
Di-n-butylphthalate	10	10	ND	10	ND								
Fluoranthene	10	10	ND	10	ND	- "	:						
Pyrene	10	10	ND	10	ND								
Butylbenzylphthalate	10	10	ND	10	ND								
Benzo[a]anthracene	10	10	ND	10	ND								
3,3'-Dichlorobenzidine	20	20	ND	20	ND								
Chrysene	10	10	ND	10	ND							İ	
bis(2-Ethylhexyl)phthalate	10	. 10	· ND	10	ND		.						
Di-n-octylphthalate	10	10	ND	10	ND							i	
Benzo[b]fluoranthene	10	10	ND	10	ND								i
Benzo[k]fluoranthene	10	10	ND	10	ND								
Benzo[a]pyrene	10	10	ND	10	ND				-	-			
Indeno[1,2,3-cd]pyrene	10	10	ND	10	ND								
Dibenz[a,h,]anthracene	10	10	ND	10	ND					-			
Benzo[g,h,i]perylene	10	10	ND	10	ND								
MDI — Method Detection I in				2.0	411					:			

MDL = Method Detection Limit

ND = Not Detected (Below DLR)
DLR = MDL x Dilution Factor

NA = Not Analyzed

Approved/Reviewed By:_

Lée liigvaldson Department Supervisor Date: N 12 cc

The cover letter is an integral part of this analytical report.

Spike Recovery and RPD Summary Report - WATER (ug/L)

Method : D:\HPCHEM\1\METHODS\8270A.M (RTE Integrator) Title : EPA 8270C Advanced Technology Laboratory

Last Update : Mon Apr 05 16:33:19 1999

Response via : Initial Calibration

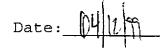
Non-Spiked Sample: SB0407A.D

Spike Spike

Sample Duplicate Sample

File ID : SMS0407A.D

SMD0407A.D WATER MS BLANK e:04/07/99 W080 Sample : WATER MS BLANK e:04/07/99 W080


Acq Time: 7 Apr 1999 7:22 pm 7 Apr 1999 7:58 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Phenol	0.0	200	54	55	 27	27		21	12- 78
2-Chlorophenol	0.0	200	125	124	63	62	1	24	30- 91
1,4-Dichlorobenzene	0.0	100	65	65	65	65	1	18	36- 87
N-Nitroso-di-n-propy		100	84	83	84	83	1	21	31-114
1,2,4-Trichlorobenze		100	72	72	72	72	0	18	38-100
4-Chloro-3-methylphe	0.0	200	154	152	77	76	1	16	35-102
Acenaphthene	0.0	100	75	74	75	74	1	17	46- 94
4-Nitrophenol	0.0	200	69	75	35	37	8	58	10- 91
2,4-Dinitrotoluene	0.0	100	79	79	79	79	1	20	42-115
Pentachlorophenol	0.0	200	237	237	118	119	0	51	8-125
Pyrene	0.0	100	86	85	86	85	1	16	36-114
			- -			. -			

QC Batch # \$998270W080

Reviewed/Approved By:

Lee Ingvaldson Department Supervisor

Advanced Technology Laboratories

METHOD: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Laboratory Control Samples

QC Batch ID: WTRPHIR990401

Matrix: Water

Date Analyzed: 04/07/99

Spiked Sample: Blank Spike

Units: mg/L

PARAMETEI	R SA	SR	SP	SP	SPD	SPD	RPD	QC L	IMITS
	mg/L	mg/L	mg/L	PR	mg/L	PR		RPD	PR
ТКРН	20	0	20	100	22	110	9.5	25	70-130

Definition of Terms:

RPD: Relative Percent Difference (Duplicate Analyses)

SA: Spike Added SR: Sample Result SP: Spike Result SP (PR): Spike % Recovery

SPD: Spike Duplicate Result

SPD (PR): Spike Duplicate % Recovery

METHOD: Gas Chromatography

QC Batch #: GBG2990409

Matrix: Water

Units: µg/L

Date Analyzed: 04/09/99

Quality Control Sample: Blank Spike

5.1163.											
PARAMETER	Method #	MB μg/L	SA μg/L	SR μg/L	SP μg/L	SP % R	SPD -30.83	SPD %R	RPD	QC RPD	LIMITS %R
Benzene	8020	<0.50	40	ND	35	88	40	100	12.4	25	81-115
Toluene	8020	< 0.50	40	ND	35	87	40	99	13.3	25	82-115
Ethyl Benzene	8020	< 0.50	40	ND	35	88	40	100	12.6	25	81-116
Xylenes	8020	<0.50	120	ND	104	86	121	101	15.9	25	83-115
Gasoline	8015	<50.0	500	ND	434	87	433	87	0.3	25	75-125

Note: LCS and LCSD results reported for the following Parameters:

All

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result
SP (%R): Spike % Recovery
SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery
NC: Not Calculated

Volatile Organic Compounds

QC Batch #: WGCMS990408

Date analyzed:

04/08/99

Matrix: Water

Spiked Sample:

Blank Spike

Units: µg/L

PARAMETER	Method #	SA	SR	SP	SP	SPD	SPD	R.P.D	QC	LIMITS
		μg/L	μg/L	μg/L	%R	μg/L	%R		RPD	%R
1,1- Dichloroethene	8240/8260	25	ND	26	105	27	106	1.1	25	50-150
Methyl-tert-butyl eth	8240/8260	25	ND	28	113	27	109	3.2	25	50-150
Benzene	8240/8260	25	ND	27	106	26	104	2.3	25	50-150
Trichloroethene	8240/8260	25	ND	27	109	27	106	3.0	25	50-150
Toluene	8240/8260	25	ND	27	108	26	104	3.4	25	50-150
Chlorobenzene	8240/8260	25	ND	29	115	27	110	5.0	25	50-150
i .		į								

Definition of Terms:

na: Not Analyzed in QC batch

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP Spike Result

SP (%R) Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R) Spike Duplicate % Recovery

NC: Not Calculated

METHOD: Gas Chromatography Laboratory Control Spikes

QC Batch #: DW990404

•

04/09/99

Matrix: Water

Date extracted:

Date analyzed:

04/09/99

Units: µg/L

Quality Control Sample:

Blank Spike

PARAMETER	Method #	MB μg/L	SA μg/L	SR µg/L	SP µg/L	SP %R	SPD μg/L	SPD %R	RPD	QC RPD	LIMITS %R
Diesel	8015M	<50.0	950	ND	892	94	900	95	0.9	25	51-137

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R) Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R) Spike Duplicate % Recovery

NC: Not Calculated

■ Entech Analytical Labs, Inc.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Subcontract Chain of Custody

Subcontract Lab:	<u>.</u>	Date Sent	Project Name:		Due Date:	
716	,	04/06/99	Me	18	04/12/9	9
Sample ID and Source	Matrix	Required Analysis	Date Taken	Time Taken	Containers	Pres
G8539 (mw2)	$\mid \omega \mid$	8270	3/30/99		1×12TR Amb	
		, -	1-1-0111	 	171010 1110	
	-					
						
		· ····································				
.t						
				·		
		•				
		·			*	
		<u> </u>				
Relinquished By:		Received By:		Date:	Time:	
nghazo ria	Cal	Onemight		04/	06/99 6 pr	~ —
Relinquished By D		Received by:	101.	Date:	Time:	
Relinquished By:	· · · · · · · · · · · · · · · · · · ·	_ pune	Ialwan		7-99 10:0	00
conquisten by.		Received By:		Date:	Time:	
			-			
Notes:						
						

Entech Analytical Labs, Inc.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

Purchase Order #:

Sampler/Company:

Client: REES

Project ID: Ruckend

Telephone #: 4وق

359-1246

LAB USE ONLY

Samples arrived chilled and intact:

Ų	Contact:	D. Fraist	<u>i</u>		1166	`				- (()	res	/	No		
Tele	phone #:	69 55	7-1248	Sı	pecial Instruc	tions/C	comments			No	tes:			·······	
	eceived:										No	mase	PUT	540 5	numolo
	Around:	, .				<u> </u>					٥٧	MWI	AA	545 S	ን
			Sample In	ıformation						Re	queste	d Analy	ysis		
Lab #	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Container	TPHY9 BTEX m TBB	TPHE	415.1	8270	8240			
78238 M	wι		www	3/30/99	775		(2) 40N YOA	Х	· · · · · · · · · · · · · · · · · · ·			1			
(1822G	mw2	-		11	2:30		B) 2 1 1/4 A	+	×	+	χ	×			
											<u>.</u>				
ı		<u> </u>				 	_	<u></u>							
	1				2-A										
	Reling, By:					•	Date	4/5	99	Т	Time QUS				
Relinq. By:				Received					Date			Ť	ime		
Relinq/By:	q/ By: Received By:						Date Time								

TABLES OF ANALYTICAL RESULTS

TABLE OF ANALYTICAL RESULTS

MAXIMUM DOCUMENTED POLLUTANT CONCENTRATIONS—BEFORE AND AFTER CLEANUP

	1 Soil (p	pm)	2 Wate	2 Water (ppb)		3 Soil (ppm)		4 Water (ppb)	
POLLUTANT	Before	After	Before	After	POLLUTANT	Before	After	Before	After
TPH (Gas)	7.0ppm	ND	43,000	ND	Xylene	1000ppb	ND	10,000ppb	ND
TPH (Diesel)	56ррт	ND	600ppm	ND	Oil & Grease	3300	ND	390ррт	ND
Benzene	63ppb	ND	300ppb	ND	PCE	N/A	N/A	N/A	N/A
Toluene	14ppb	ND	360ppb	ND	MTBE	N/A	N/A	N/A	9.3 ppb
Ethylbenzene	171ppb	ND	1400ppb	ND	Heavy Metal	43ррт	ND	.085	ND

TABLE OF SOIL AND GROUNDWATER SAMPLE HYDROCARBON ANALYTICAL RESULTS

AMERICAN AUTO DISMANTLERS 3744 DEPOT ROAD HAYWARD, CA

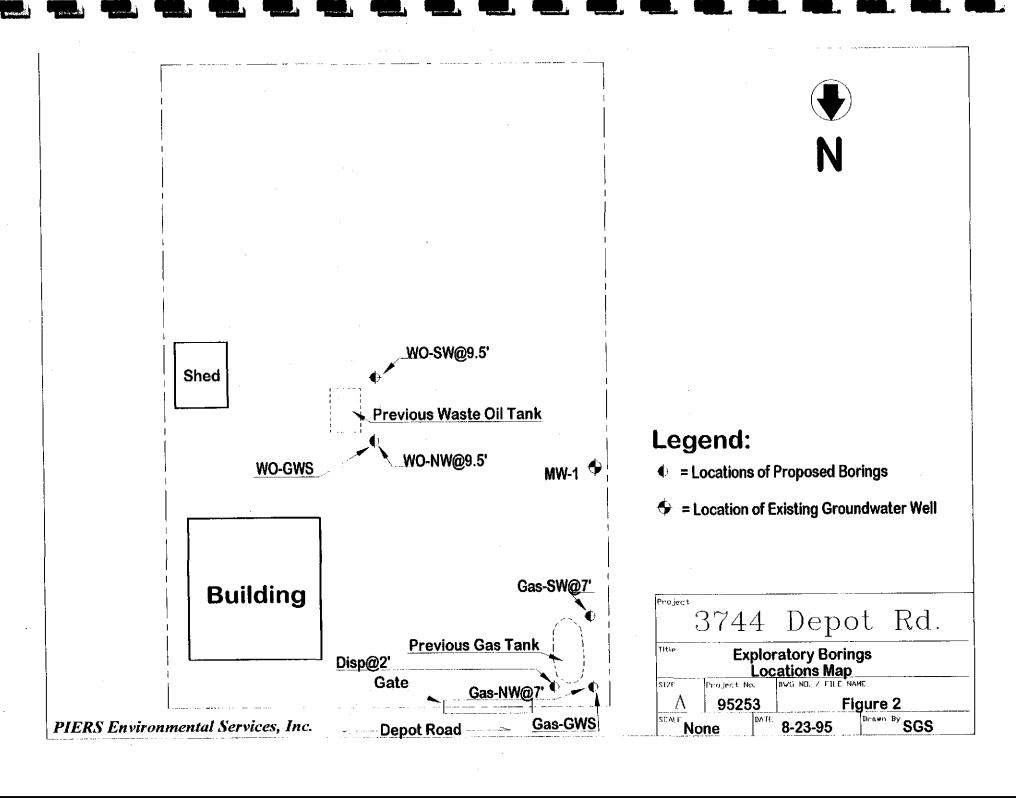
SAMPLE ID	DATE		Mo Mi		EPA METHOD 8020 (UG/L)					
			TPHG	TPHD	TRPH	В	T	E	Х	MTBE
P-1 (Soil)	3/30/99	1	NS	NS	NS	NS	NS	NS	NS	NS
	2/97	2	ND	ND	NS	ND	ND	ND	ND	NA
P-2 (Soil)	3/30/99	1	NS	NS	NS	NS	NS	NS	NS	NS
	2/97	2	ND	ND	NS	ND	ND	ND	ND	NA
MW 1	3/30/99	1	ND	ND	NS	ND	ND	ND	ND	ND
	2/97	2	ND	NA	NS	ND	ND	ND	ND	NA
MW 2	3/30/99	1	ND	ND	ND	ND	ND	ND	ND	9.3 ppb
	2/97	2	ND	NA	NS	ND	ND	ND	ND	NA
MW 3	3/30/99	1	NS	NS	NS	NS	NS	NS	NS	NS
Previously	2/97	2	NS	NS	ND	NS	NS	NS	NS	NS
MW 1 See Attached	9/95 *See attached Phase II table/plot ma	-	ND	ND	2.9 ppm	ND	ND	ND	ND	ND

<u>Notes</u>

NA – Not Analyzed NS – Not Sampled

- 1 Final Groundwater Monitoring Well Sampling Report and Request for No Further Action Status Dated April 1999
- 2- Groundwater Well Installation and 1st Quarterly Report Dated February 1997
- 3- Limited Phase II Site Assessment (Additional Data and Map Attached)
 Dated September 1995

6.0 SUBSURFACE CONDITIONS


Sediments encountered in each boring consisted of primarily, high plasticity dark olive gray clay from approximately 1 ft. below grade surface and black to dark-brown silty organic clay from about 4 ft. below grade to the bottom of the holes. The soil stratification was generally consistent in each of the borings. Groundwater was encountered at a depth of approximately 8.5 ft. To 10.5 ft. BGS. Boring logs are presented in **Appendix 3**.

7.0 ANALYTICAL LAB TEST RESULTS

Table 1:

(ND= Not Detected, at or above, laboratory method reporting limit - NR= Not Run)

***************************************		·, a. o. abo	ve, labol a	COLA INICIA	g nimit - NIX- NOL Kull)				
TEST	89593 Gas- SW@7	89594 Gas- NW@7*	89595 D/sp@2*	89597 WO-SW @7	89598 WO-NW @9.5*	B8595 Gas- GMS	89599 940-GWS	B9500 MM1- GW3	
Sample Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	WATER	WATER	WATER	
TRPH (O&G)	NR	NR	NR	1,100 ppm	3,300 ppm	NR	390 ppm	2.9 ppm	
Semi- Volatiles	NR	NR	NR	ND	2,795 ppb	NR	57 ppb	ND	
Volatiles	NR	NR	NR	9.1 ppb	396.3 ppb	NR	141 ppb	ND	
TPHd	NR	NR	NR	9.4 ppm	56 ppm	NR	600 ppb	ND	
TPHg	ND	7.0 ppm	ND	2 ppm	2 ppm	43,000 ppb	ND	ND	
Benzene	ND	12 ppb	ND	9.1 ppb	63 ppb	300 ppb	103 ppb	ND	
Toluene	ND	14 ppb	ND	ND	9.3 ppb	360 ppb	ND	ND	
Ethyl- Benzene	14 ppb	89 ppb	ND	ND	171 ppb	1,400 ppb	17 ppb	ND	
Xylenes	ND	1000 ppb	73 ppb	ND	55 ppb	10,000 ppb	21 ppb	ND	
Cad.	NR	NR	NR	ND	ND	NR	ND	ND	
Chrom.	NR	NR	NR	24 ppm	27 ppm	NR	ND	ND	
Lead	NR	NR	NR	11 ppm	12 ppm	NR	ND	ND	
Nickel	NR	NR	NR	36 ppm	43 ppm	NR	0.085	ND	
Zinc	NR	NR	NR	37 ppm	34 ppm	NR	ND	ND	

HISTORICAL INFORMATION

GROUNDWATER GRADIENT, DEPTHS, BORING LOGS, WELL INFORMATION

ALAMEDA COUNTY ENVIRONMENTAL HEALTH / HAZARDOUS MATERIALS DIVISION 1131 HARBOR BAY PKWY., RM. 250, ALAMEDA, CA 94502-6577 (510)567-6700 FAX (510) 337-9355

HAZARDOUS WASTE GENERATOR INSPECTION REPORT

STID# 2017 FACILITYNAME: PG. OF MAJELEN	F
SUPPLEMENTAL FORM 3744 DEPOT 20, 117-AND CA	
- ONSITE to DESERVE DEFINAL ROUND OF GLONDWATE	il
monipalist.	
- DUS IS WAS BEN HOUSED OF DIETE LANDON WHAT SEE	12131
Total Control of the	
INC. AS WELL-	
- CAMPONATIA SEE-ROTURBIO 3 MUDO 1. JON MULL	125
Grandwater Level At 5-74 withing	
Alexandre to 6 ATTER A SHANDELAND	
ARNI IL LENIONS -105 PUREEDOUT PRINTS SAMPLING.	· · · · ·
- NELHODIZYO LERASO VECESSANY to LOOK FOR ONTEL	
INCLUDING IN MEET TO MEN OXYGENIA	
- And Ela Million Night Mason & b	
MAR RELEVANCE VA VEL 2 CHASTELLY	
- 2 - 1 8, A-FR 2 (A-FR)	
PRINT NAME: INSPECTED BY:	
Exerc. LISSOL AMIL N. 611 JAMI	
SIGNATURE: DATE: 3/3)199	K

100 N. Winchester Blvd., Suite 240, Santa Clara, CA 95050 (408) 261-6450 • (888) 261-6450 • Fax (408) 261-6455

November 3, 1998

Mr. Eric Freeberg River Bend Properties, Inc. P.O. Box 9440 Rancho Santa Fe, CA 92067-4440

AND

Mr. Amir Gholami and Mr. Scott Seery Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Subject:

Amendment to <u>Preliminary Site Assessment, Groundwater Well</u> <u>Installation and 1st Quarterly Report</u> Dated February 10, 1997 for;

3744 Depot Road, Hayward, California, and

Request to Consider Case Closure

Gentlemen,

A recent review of the subject report revealed a mistake in the calculation of groundwater gradient at the subject site. Our Figure 1 and Appendix "E" maps show the estimated groundwater gradient flowing toward the north, whereas, according to our recalculation, the arrows should be pointed in the opposite direction (southerly). We have attached a corrected Appendix "E" map showing the correction. Please excuse this inadvertent error.

Regardless of the gradient error, we believe that the data presented to date is still adequate to warrant case closure. We believe that the following should also be considered:

- 1) After the initial "Limited Phase II Site Assessment" was performed in September 1995, the regional gradient was estimated (not accurately measured) to flow in a northerly direction. Evaluating the data from the 1995 study, and the available regional data on groundwater flow, Amy Leech (the ACDEH case worker at the time), suggested and approved the positioning of the borings and wells which were installed during the PSA performed in February, 1997.
- 2) Measured gradient during the initial 1997 sampling, by mistake, estimate the flow to be northerly. When corrected to show a southerly flow, the gradient was calculated to be approximately .002 ft. per foot. This gradient is relatively "flat".

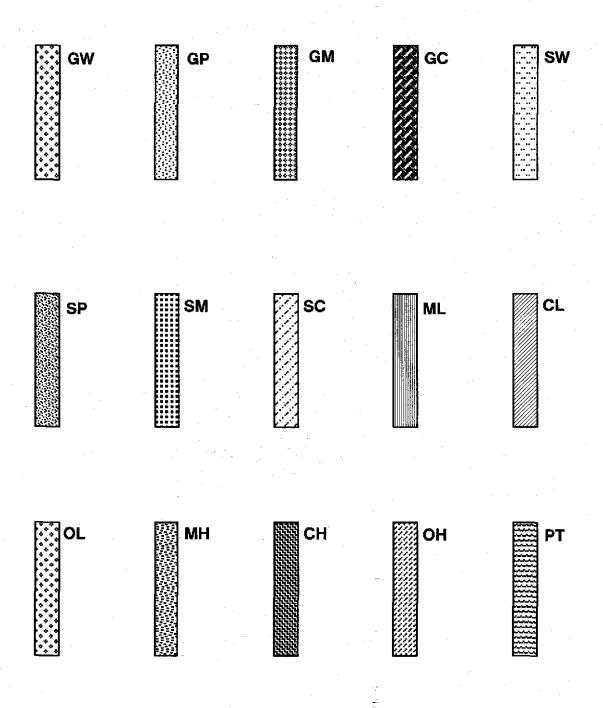
- 3) Measured gradient during the last sampling event in May, 1997 shows the flow to be northerly @ .0009 ft. per foot again a relatively "flat" gradient.
- 4) Boring logs have characterized the shallow subsurface materials to be "high plasticity inorganic clay", also known in this region as "Bay Mud". This clay is known for its innate impermeability.

Given the relatively flat gradient, the impermeable clay material within which the groundwater, and the consistent ND results of the well sampling, it would seem senseless to continue the investigation, as this site appears not to have had a significant impact on groundwater quality. We respectfully request that you consider closing the case.

Please feel free to call if you have any questions whatsoever.

Very traly yours

Stuart G. Solomon Senior Consultant


(408) 341-0205

(408) 378-7098 - Fax

APPENDIX B

Boring Logs

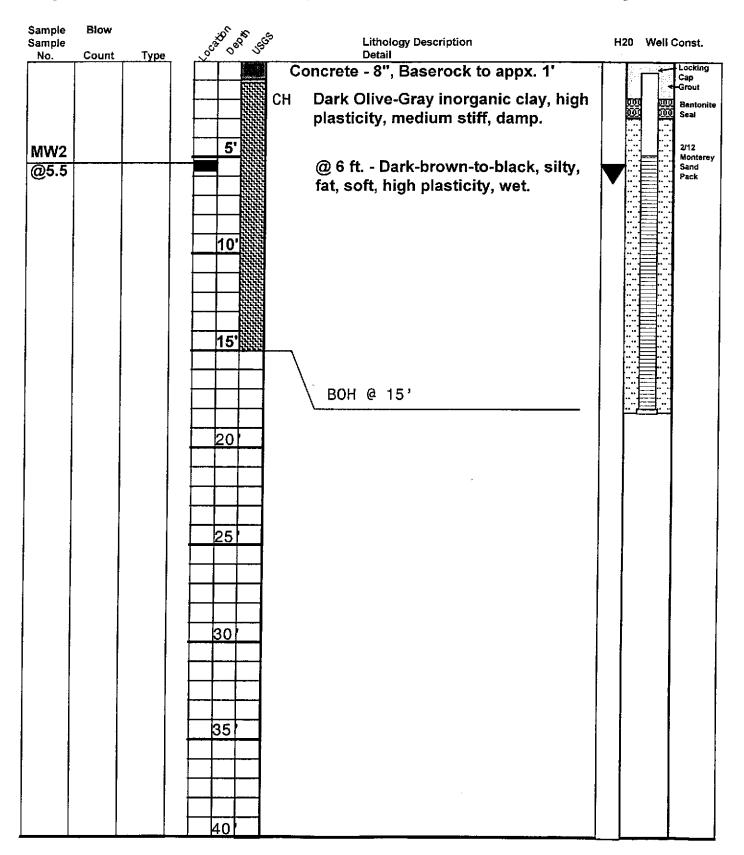
PIERS Environmental USGS Soil Classification Symbols

PIERS Environmental Services Exploratory Boring Log

Project No. 95253 Client: Riverbend Properties Boring # MW-1 Date: 11-4-96

Location: 3744 Depot Rd., Hayward, CA Logged By: B. Halsted

Drilling Method: 8 inch Hollow Stem Auger Permit: Zone 7 Page 1 of 1


Sample Sample No.	Blow Count	Туре	ocato an use	Lithology Description Detail	H20 Well Const.
			15555	Asphalt - 3" to 4", Baserock to appx. 1'	Locking Cap Grout
			12.22.2 12.22.2 12.22.2 12.22.2 12.22.2 12.22.2	CH Dark Olive-Gray inorganic clay, high plasticity, medium stiff, damp.	(10) Bentonite
MW1			5'		2/12 Monterey
@5.5			100 to 10	@ 5 ft Dark-brown-to-black, silty, fat, soft, high plasticity, wet.	Sand Pack
			27.7.7.1 12.1.2.2 27.1.2.2 27.1.2.2 27.1.2.2 27.1.2.2	ta, eet, taga paesa, , tee	
			10'		
			1000		
	į		15'		
				BOH @ 15 '	
			20		
			25		
			30		
			35		
			40		

PIERS Environmental Services Exploratory Boring Log

Project No. 95253 Client: Riverbend Properties Boring # MW-2 Date: 11-4-96 Location: 3744 Depot Rd., Hayward, CA Logged By: B. Halsted

Page 1 of 1

Drilling Method: 8 inch Hollow Stem Auger Permit: Zone 7

Project Name Depot Rd. Address Samplers Name Clavis Solomon	Date 1(125/96 Project No. Sample No. MW#1
Sampling Method Developing Well	Well Location Map
Analyses Request	
	
Number/Types of	
Sample Bottels	
Method of Shipment	
Well Number MWFI	
Well Diameter 2"	(10 to the continue of 0 malfs)
Depth to Water (ft.) 5, 43	2 - inch casing = 0.16 gal/ft
Total Well Depth (ft.) \< 04	4 - inch casing = 0.65 gal/ft
Height of Water (ft)	5 - inch casing = 1.02 gal/ft
	O - more saming - more same
Water Volume in Well (gal) リリリ	6 - inch casing = 1.47 gal/ft

TIME	DEPTH TO WATER	VOLUME WITH - DRAWN	TEMP (F)	рН (S.U)	COND. (mhos/cm)	PURGE VOLUMES	REMARKS
10:11	5,43	1.5	67.1	R. 31	9.30	×Ι	
10:15		3.0	66.2	7,13	(0.74	እጋ	
10:20		4.5	66.1	244	9.72	\ 3	
10:28		6.0	66.1	7.19	4,68	XH	
W:32		7.5	663	7.68	9.84	x 5	
10:34		9.0	65.7	7.14	W 21	X 6	
10.39		10.5	65.4	7.34	4.74	* 7	
10:43		12.0	66.1	7.38	9.34	* 8	
10:44	1	13.5	66.2	7.12	9,12	7	
10 54	6.44		557	7.12	9.47	YIO	ctubel

Address Samplers Name Chris Salamon	Project No. Sample No. MW 42
Sampling Method Developmy Vell Analyses Request	Well Location Map
Number/Types of	
Sample Bottels	
Method of Shipment	
Well Number MWF2	
Well Diameter 2"	2 - inch casing = 0.16 gai/ft
Depth to Water (ft.) 6,94	2 - Holl cashig = 0.10 ga/h
Total Well Depth (ft.) \ \ 、01	4 - inch casing = 0.65 gal/ft
Height of Water (ft)	5 - inch casing = 1.02 gal/ft
Water Volume in Well (gal) ۱, 29ما	6 - inch casing = 1.47 gal/ft

TIME	DEPTH TO WATER	VOLUME WITH - DRAWN	TEMP: (F)	pH (S.U)	COND. (mhos/cm)	PURGE VOLUMES	REMARKS
(1:15	694	1.5	64.4	9,12	10.11	XI	
11:21	/	3.10	70.12	934	11.34	X 2	
11:24		4.5	68.4	9.84	11.12	70 3	
11:28		60	67.2	4.87	11.38	ナイ	
11:31	/	7.5	661	9.72	(1,29	λS	
11:33		9.0	66.3	9.78	10.12	X6	
11:37	7,32	ψ. S	66.4	9.82	10 13	× 7	
11:41	/	12.0	66.3	9.41	10.32	X 8	
11 46		13.5	668	9.81	10.12	XY	
11:59	7.11	15.0	66.9	4. 4	1005	XII)	Stabel

Project Name Depot Rd. Address	Date_//- 24-96 Project No
Samplers Name (hvis Solowou Sampling Method Oce Suiter Analyses Request	Well Location Map
Number/Types of	
Sample Bottels	
Method of Shipment Packed on Ice	
Well Number <u>NU*1</u> Well Diameter 2"	2-inch casing = 0.16 gal/ft
Depth to Water (ft.) S. 96' Total Well Depth (ft.) \ S. 07'	4 - inch casing = 0.65 gal/ft
Total Well Depth (ft.) \ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	5 - inch casing = 1.02 gal/ft
Water Volume in Well (gal) المطالحة المالية ا	6 - inch casing = 1.47 gal/ft

TIME	DEPTH TO WATER	VOLUME WITH - DRAWN	TEMP: (F)	рН (S.U)	COND. (mhos/cm)	PUF VOLU	RGE JMES	REMARKS
	5.96	0	61,2	841	9.12	Χ	Ø	No Oder
		1,5	58.4	791	10.34	¥		
		3.0	57.3	734	991	X	2	turbich
		4.5	58,4	7.11	9:84	Х	3	
	6.40	6.0	56.4	7. 34	9,80	×	4	stuble
								`

Project Name Depot Rd Address	Date 11-26-96 Project No
Samplers Name Chris Solmon Sampling Method Osp. Carley Analyses Request	Well Location Map
Number/Types of	
Sample Bottels	
Method of Shipment Pached on Ice	
Well Number WW#2	
Well Diameter 2"	2 - inch casing = 0.16 gal/ft
Depth to Water (ft.) 7, 111	
Total Well Depth (ft.) 15,26	4 - inch casing = 0.65 gal/ft
Height of Water (ft) 8.15	5 - inch casing = 1.02 gal/ft
Water Volume in Well (gal) ۱۰۲۹ زم	6 - inch casing = 1.47 gal/ft

TIME	DEPTH TO WATER	VOLUME WITH - DRAWN	TEMP. (F)	pH (S.U)	COND. (mhos/cm)	PURGE VOLUMES		REMARKS
	7.11	Ø	68.4	8,41	9.34	X	1	No Oder
		ı.S	69,1	7.34	a.11	*	1	, a *
		3./)	67.3	8, 12	9.34	X	ጊ	
		4.5	61.1	8.02	9.11	X	3	
	8.00'	6.0	60.2	7.01)	9.11	Ϋ́	4	Stable
					-			
			·					
					_			
					-			

WATER-QUALITY SAMPLING INFORMATION

Project Name Address Address	_			Date Project No.	11-26-0	36_
Samplers Name 5. Solomor	<u></u>			Sample No	MW#3	 }
Sampling Location	_				•	
Sampling Method			Well	Location Map		
Analyses Requstd						
Number/Types of						
Sample Bottles						
Method of Shipment						
Groundwater Well Data					•	
Well No. <u>WW - 3</u>						
Well Diameter (in.)			•	•		
Well Head Elevation 10,06						
Depth to Water (Static - ft.) 6.62					•	
Total Well Depth (ft.) 30.51'		-				
Height of Water						
Column (in ft.)						
Water Volume in Well (gal)35,07	2-inch casing =	0.16 gal/ft				
Water in Well Box ?	4-inch casing =	0.65 gal/ft				
Silt Removal Necessary?	5-inch casing =	1.02 gal/ft	:	•• •		
Well Denth After Silt Removal	6-inch casing ≠	1 47 gai/fi		*.		

	TIME	DEPTH TO	VOLUME	TEMP.	рH	Cond.	OTHER		REMARKS
L		WATER (feet)	WITHDRAWN	(F)	(s.u.)	(mhos/cm)	х	Vol.	
		6.62	0	61.4	8.33	9.61	Х	٥	
		/	35	68.1	1.91	9.43	火	1	
			11	680	7.99	9,21	X	2	
		\	105	66.4	8.10	9.20	X	3	
		8.25	140	62.2	8.02	9.21	χ	4	
					·				
									

Project Name Depot Rd. Address	Project No
Samplers Name (Well Location Map
Number/Types of Sample Bottels	
Method of Shipment Packed on I ce	
Well Number NW*1 Well Diameter 2" Depth to Water (ft.) 5, 96' Total Well Depth (ft.) \5,07' Height of Water (ft) 9,11 Water Volume in Well (gal) 1,45 54,1	2 - inch casing = 0.16 gal/ft 4 - inch casing = 0.65 gal/ft 5 - inch casing = 1.02 gal/ft 6 - inch casing = 1.47 gal/ft

DEPTH TO WATER	WITH -	TEMP: (F)	pH (S.U)	COND. (mhos/cm)			REMARKS
5.96	Ø	61,2	841	4.12	Х	Ø	No Oder
	1.5	58.4	791	10.34	¥		
	3.0	57.3	704	991	X	را	turbich
		58.4	7:1	9.84	×	<u>س</u> _	
6.40		58.4	7)4	1,80	×	+	<4able
						Ĭ	
1				<u></u>			
1							
	S.96	WATER WITH- DRAWN	WATER WITH-DRAWN 5.96 Ø 61.2 1.5 58.4 3.0 57.3 4.5 58.4	WATER WITH-DRAWN (F) (S.U) S.96 (D) 61.2 8.41 1.5 58.4 791 3.0 57.3 7.4 4.5 58.4 711	WATER WITH- (F) (S.U) (mhos/cm) S.96 (D) 61.2 841 (4.12 1.5 58.4 791 10.34 3.0 57.3 7.4 (4.61) 4.5 58.4 711 9.84	WATER WITH-DRAWN S.96	WATER WITH-DRAWN S.96

Project Name Depot Rd Address	Project No
Samplers Name Chris Solimon Sampling Method Organization Analyses Request	Well Location Map
Number/Types of Sample Bottels	
Method of Shipment Packed on Ice	
Well Number <u>AW#Z</u>	
Well Diameter 2" Depth to Water (ft.) 7, 11"	2 - inch casing = 0.16 gal/ft
Total Well Depth (ft.) 15.26	4 - inch casing = 0.65 gal/ft
Height of Water (ft) 8.15	5 - inch casing = 1.02 gal/ft
Water Volume in Well (gal <u>) ۱، کا ز</u> م/	6 - inch casing = 1.47 gal/ft

DEPTH TO WATER	WITH-	TEMP: (F)	pH (S.U)	COND. (mhos/cm)	PURGE VOLUME		REMARKS
7.11/	Ø	68.4	8,41	9.34	X	1)	No Oder
	١٠٤	691	7.34	0.11	×	j	
	3./)	67.3	8.12	934	×	2	
/	4.5	41.1	102	0111	Х	1,4	
8.00'	6.0	60.2	7 (21)	9	X	4	Stuhla
			-				
_	/	1.S 3.0 4.5	7.11' Ø 68.4 1.S 69.1 3.0 67.3 4.5 61.1	7.11' Ø 68.4 8.41 1.5 69.1 7.34 3.0 67.3 8.12 4.5 61.1 602	7.11' Ø 68.4 8.41 9.34 1.5 69.1 7.34 9.11 3.0 67.3 8.12 9.34 4.5 61.1 6.02 9.11	7.11' Ø 68.4 8.41 9.34 x 1.5 69.1 7.34 9.11 x 3.0 67.3 X 12 9.34 x 4.5 61.1 7.02 9.11 x	7.11' Ø 68.4 8.41 9.34 x Ø 1.5 69.1 7.34 9.11 x 1 3.0 67.3 X 12 9.34 x 2 4.5 61.1 7.02 9.11 x 3

WATER-QUALITY SAMPLING INFORMATION

Project Name \$\langle POT \overline{POMD}\$ Address \$\langle 744\$	_	Date Project No.	11-26-96
Samplers Name 5. Solomory	_	Sample No	MW#3
Sampling Location	_		
Sampling Method	Well Loc	ation Map	
Analyses Requstd			
Number/Types of			
Sample Bottles			
Method of Shipment	_		
Groundwater Well Data			
Well No			
Well Diameter (In.)			
Well Head Elevation			
Depth to Water (Static - ft.) 6 · 62			
Total Well Depth (ft.) 30.51			
Height of Water			
Column (in ft.)			
Water Volume in Well (gal) 35,07	2-inch casing = 0.16 gal/ft		
Water in Well Box ?	4-inch casing = 0.65 gal/ft		
Silt Removal Necessary?	5-inch casing = 1.02 gal/ft		
Wall Donth After Silt Removal	6-inch casing = 1 47 gal/ft		

TIME	DEPTH TO	VOLUME	TEMP.	рH	Cond.	OTHER		REMARKS
	WATER (feet)	WITHDRAWN	(F)	(s.u.)	(mhos/cm)	Х	Voi.	
	6.62	0	67.4	8.33	9.61	X	٥	
		35	68.1	1.91	9.43	X	d^{-1}	
		11_	1080	7.99	9,21	X	2	
		105	66.4	8.10	9,20	X	3	
	8.25	140	62.2	8.02	9.21	X	4	

		,	NATER-QU	JALITY SA	MPLING	INFORM	ATION	d	, 2	
Project Name Address Samplers Name Sampling Method Analyses Requistd Number/Types of Sample Bottles Method of Shipma	B OAS	MPLING	INFORM	1	F Date Project No Sample N	o MWI ocation Map GATE ()				
Well No. Well Diameter (in. Well Head Elevation Depth to Water (S. Total Well Depth of Height of Water Column (in ft.) Water Volume in Water in Well Box Silf Removal Nec	on fatic - ft.) (ft.) Well (gal)	Ma-1 2 10.0 5. 15.	76		2-Inoh casing 4-inch casing 5-inoh casing	= 0.65 gal/ft = 1.02 gal/ft				- CAG
Well Depth After	TIME	DEPTH TO WATER (feet)	VOLUME WITHDRAWN 6 7.6 4.5 6.0	TEMP. 61.1 60.0 57.9 59.1 59.0 33.1	pH (6.44) 8.13 7.91 7.33 7.30 7.20	cond. (mhas/om). 9.09 9.83 9.81 9.79 9.80	x +- 1- 1-	volumes Vol. B 1 2 3 44	REMARKS NO OLOGY	

WATER-QUALITY SAMPLING INFORMATION

WATER-QUALITY S	AMPLING INFORMATION
Project Name Address Address Samplers Name CALLUSOL Sampling Method ALSP BALCA	Page $\frac{1}{3}$ of $\frac{3}{30/99}$ Date $\frac{1}{30/99}$ Project No. Sample No $\frac{3}{30/99}$
Analyses Requistd 4/8//80/5/80/8246/3570	4
Number/Types of	C Well Location Map
Sample Bottles 2/40acc/2-/LTR	(1100)
Method of Shipmt	
Groundweier Well Data	
Well No. $\mu \omega - 2 -$	
Well Diameter (in.)	
Well Head Elevation 10.45	
Depth to Water (Static - ft.) 5.63	0 mw-2
Total Well Depth (ft.) 5,20	
Height of Water	
Column (in it.)	
Water Volume in Well (gal)	2-inch casing = 0.16 gal/ft
Water in Well Box ?	4-inch casing ≈ 0.65 gal/lt
Slit Removal Necessary?	5-inch casing ≈ 1.02 gal/ft
Well Depth After Slit Removal	5-inch œsing ≈ 1.47 gal/ft

TIME	DEPTH TO	VOLUME	TEMP.	рН	Cend.	Purge \	/olumes	REMARKS
	WATER (feet)			(9.U)	(mhos/cm)	L X	Vol.	X Dans
	3.67	\$	67.0	8.45	9,93	X	0	10000
		105	61,2	7.19	9.80	+		
		30	(000)	7.69	9,61	1	2	
-A		4.5	600	70-23	9.73	t-	3	
	1/10	60	59.8	7.51	9.73	t-		GAMA (
	6.60	1.7.	27,8	100	1,19	t	4.5	JA repair
i de de délicion de seus est estre de seus de services de l'	······································	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
i krit ne winde is here was saye.			THE CONTRACTOR OF THE PARTY OF					
					والمتواند فاوسمه والمساور	 		
	-							

WATER-QUALITY S	AMPLING INFORMATION
Project Name Address Samplers Name ACPTA CAUCE SSC STATE S	Page 7 of 7 Date 7 - 30 - 49 Project No. Sample No 100 - 3
Sampling Method Analyses Requistd Number/Types of	Well Location Map
Sample Bottles Method of Shipmt	
Groundwater Well Data	
Well No.	
Well Diameter (in.)	
Well Head Elevation	
Depth to Water (Static - ft.)	
Total Well Depth (ft)	
Height of Water	
Column (in ft.)	
Water Volume in Well (gal)	2-inch casing ≈ 0.16 gal/ft
Water in Well Box ?	4-inch casing = 0.65 gal/ft
Slit Removal Necessary?	5-inch casing = 1.02 gal/It
Well Depth After Silt Removal	G-inch casing = 1.47 gal/ft

TIME	DEPTH TO	VOLUME	TEMP.	рН	Cond	Purge \	/olumes	REMARKS
	WATER (feet)	WITHDRAWN	(F)	(<u>s.u.)</u>	(mhos/cm)	<u> </u>	Voj.	
nital doubt states								
~** **********************************								, <u>, , , , , , , , , , , , , , , , , , </u>
			THE TAX BEING STREET,					
				·				
Transfer brings								
								
								<u> </u>
P 3-44-4442-4-444-4-4-4-4-4-4-4-4-4-4-4-4-		-						
								
				 				

GEN-TECH	<u>environmi</u>	ENTAL	<u></u>	1936 CAM	DEN AVE	. #1, SAI	V JOSI	, CA :	95124	408-559-1248	
											<u> </u>
			WATER-6	UALITY	SAMPL	NG INF	ORM	ATIO	N		
											_
Project Name	RIVERE	BEND				Project No.	<u>'</u>				
Date	3/30/					Sample No.					1
Samplers Name		AUSTED				Campio 110.					1
		DEPOTR	B II AS	A22					1,		1-
Sampling Location			17. 17AY	WAR	_	ilia	,	ł			
Sampling Method		0 Bail				418.	42.4	<u> </u>			-
Analyses Reques	led	1		-, OTEX	4		824	Ю			-
Number/Types of	Sample Bottles (sed 🚨-	46 ml Joy	3-21	mai	t	 	ļ			-
Method of Shipm	ent	Parce	ع المرح	E	<u> </u>	ļ					<u> </u>
					Ī			,			
GROU	ND WATER		SURFACE V	ATER							_
Well No.		Mw#1	Streem Width				ļ				
Well Diameter (in	.)	2"	Stream Depth								
Depth to Water S	latic (fl.)	5.4	Stream Velocity			<u> </u>		1			
Waler in Well Bo		No	Rained Recently								
Well Depth (ft.)		15.00'	Other		<u> </u>						
			JUNE							•	-
Height of Water		9.261				·					ļ
Column in Well		 		2-inch casing =							
Water Volume in	Well	1:489		4-inch casing =			 		SCALE:		1
Well Head Eleval	ion	Ç.		5-inch casing =	1.02 gal/ft	-					+
Redevelop, Well	Depth	3=-		6-inch casing =	1.47 gal/ft			-			+
Silt Removal								-			+
						ļ	·	-	<u> </u>		4-
·	TIME	BEPTH TO	VOLUME	темр.	ru_	COND.	OI	TER	<u> </u>	REMARKS	. _
		WATED (REET	WITHDRAWN	(P)	(S.U.)	(MHOS/CM)	X	VOL.	:		1
	1:45	5 14 1	1.5		,	(311100/1317	1	1	4		
		1			 		×	 	I VP 6	Plinoon	<u> </u>
	1:50		3.0	<u> </u>	ļ		×	2	ļ <u>.</u>		-
	1:55		4.5				<i>x</i>	<u>څ</u>	1		1_
	1:59		6.0				*	14			
	2:03	5.94		 			1	5	1		7
	-	10 -	 	-			<u> </u>	+	 		
	207	ļ	9.4	1	1		<u> </u>	6	 		- -
	2:10	5.10	195				٧	7			_ _
	2:15	6.00	12.0				X	9			
	2.18		13.5	 	1		/ /	9	ĺ		7
1		F 011		-	+		- 	 	 		
ļ	2:20	5.96	15.0	<u>'</u>	<u> </u>		<u> </u>	10			4
	12.20									1	1
·	220				<u>L</u> _				<u> </u>		_
COMMENTS	220				,		<u> </u>		<u> </u>		

WATER-QUALITY SAMI	PLING INFORMATION
Project Name Address 3744 OPF 20 Samplers Name Bampling Method 115P BACCO	Page 2 of 3 Date 3 /30/99 Project No. Sample No NUW 2
Analyses Requisid 4/8//8015/8020/8240/3570C	Well Location Map
Number/Types of	GAT
Sample Bottles 2 40 auce 2 16th	
Method of Shipmt	
Groundwater Well Data Well No. Well No.	
The state of the s	
Well Diameter (in.) Well Head Elevation Depth to Water (Static - ft.) Total Well Depth (ft.)	0 mw-2
Height of Water	[/
Column (in ft.)	
1/2	11 casing = 0.16 gal/ft
Water in Well Box 7 4-inc	h casing = 0.65 gal/it
Silt Removal Necessary? 5-inc	h casing = 1.02 gal/ft
Well Depth After Silt Removal	h oasing ≈ 1.47 gal/ft

TIME	DEPTH TO	VOLUME	TEMP.	pН	Cond.	Purge V	/olumes	REMARKS
		WITHDRAWN	(F)	(9.41)	(mhos/em)	Χ	Vol	
	5.63	£	67.0	8.4	9,43	X	B	NO 0402
		15	61,2	1.99	9,80	+	1	
		30	605	7.69	9,69	t -	2	
		4.5	600	7,58	9.13	t-	3	
		$\int_{\mathcal{A}} \mathcal{O}_{\mathcal{A}}$	59.9	7.51	9,73	t-	4	
	6.60	7.5	59.8	7.50	9,19	f ~	4.5	SAMPLE
hr himman den samman ann ann ann ann ann ann ann ann an								

		ر من من من المناطقة br>		***************************************				North Holes
				ĺ				

WATER-QUALITY S	AMPLING INFORMATION
Project Name Address Samplers Name ACPTOR PA STATE OF THE STATE OF	Page 7 of 7 Date 7 - 30 - 49 Project No. Sample No
Sampling Method Analyses Requistd MCUSURO CHCG	Well Location Map
Number/Types of Sample Bottles Method of Shipmt	
Groundwater Well Data	
Well No.	
Well Drameter (in.)	
Well Head Elevation	
Depth to Water (Static - ft.)	
Total Well Depth (ft.)	
Height of Water	
Column (in ft.)	
Water Volume in Well (gal)	2-inch casing ≈ 0.16 gal/ft
Water in Well Box ?	4-inch casing ≠ 0.65 gal/ft
Sift Removal Necessary?	5-inch casing = 1.02 gal/lt
Well Depth After Silt Removal	6-inch dasing = 1.47 gal/ft

TIME	DEPTH TO	VOLUME	TEMP.	pH .	Cond	Purge Volumes	REMARKS		
	WATER (feet)	WITHDRAWN	<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	(s.u.)	(mh os/c in)	X			
711 7 7 11 11 11 11 11									

<u></u>									
***							en e		
					•				

						ļ			
g Agus sych and physicial deliberation per State (1) is to									
									
					Carried and Street		 		

Project Name Address Samplers Name Sampling Method Analyses Requestd Number/Types of Sample Bottles Method of Shipmt	3:	144 00 RIC LIS 150 E 8015/	COMO EPOE R BOSOL BOSOLO WIL V			(N.X)	i	Oate Project N Sample I	CANS	3 UG
G)	roundwater	Well Dafa								
Well No.		Ma-1	· · · · · · · · · · · · · · · · · · ·			1				
Well Diameter (in.)		2		يقر ونقصه		1				
Well Head Elevatio	В	10.	02	 -						
Depth to Water (Sta	atic - ft.)		76			- 1				
Total Well Depth (F	E)		0							
Height of Water Column (in ft.)		9,	24							
Water Volume in V	(gal)		7 <i>0</i>		2-inch casing	j ≈ 0.16 gal/ft				
Water in Well Box	7		(å	~~ ~	4-inch casing	= 0.65 g al/f t				
Silt Removal Nece	ssary?		<u>C</u> d		5-inoh casing	r = 1.02 gəl/lt				
Well Depth After Si	lit Removal		and the second s		6-inch casing	= 1.47 gal/ft	}			
Γ	TIME	DEPTH TO	VOLUME:	темр.	pt-l	Cond.		/olumes	REMARKS	
<u></u>	AND AND DESCRIPTION OF THE PARTY OF THE PART	WATER (Red)	WITHDRAWN	(F)	(<u>s.</u> u.)	(mhos/cm)	<u> </u>	Vol. I A	La A.A.	tot
_		5.76	0	61.1	8.13	7.07		0	140 000	-
			1.5	60.0	7.91	19.83	t -	1		_
			3.0	57,9	1.48	9.81	1-	2		
			116	501	100	2-2	١, .			1

7.30 9.80 t-

7.30

7.81

SMURLE

WATER-QUALITY SAMPLING INFORMATION

6.56

ALAMEDA COUNTY ENVIRONMENTAL HEALTH / HAZARDOUS MATERIALS DIVISION 1131 HARBOR BAY PKWY., RM. 250, ALAMEDA, CA 94502-6577 (510)567-6700 FAX (510) 337-9355

HAZARDOUS WASTE GENERATOR INSPECTION REPORT

511D#: 2017 F	ACILITYNAME:	AN AUNO	ismonalian		PG.	OF
SUPPLEMENTAL FORM	3744 DE	put RD, 11	MYMAND CI	2		
· onsile	to 02521	IN THE FILM	el Romo	OF 6.10-	NOWA	tid
My min SRice	<u></u>		*			
- ON 5, M.	-101 BIN	holster o	Pulls 1	VUMBAIM L	JALS	(A Vila)
- W						
W. ATWELL	<u> </u>			·		
					 	
- CAULATO	NATIA SETA	-x01230	3 . 2001 / -	JN MW		
66217	197. (LEW)	1 A= 5-7	مر رزند بها	·		
		procession born	19 6 AT	1 By M.F.	Dist	
N.6	11 60 300 0	IAT PUNEED	productions	nof the		
						
- Hurry	240 158	150 NECASS	MA 1 50 100.	u for one	162012	rs
47 (00,0)	· MIBE	. Min axyo	LAND J			
127	- AN EP	A MELLINDS	Mapt 1) 1x	SAME 10		
113 Az R	Elever	VACUE	1. (20,20,3000)	E/ 10		
<u> </u>	mell Holling	-ED 3 1/2	1100			
	<u></u>		1.0			
	· .	<u>.</u>				
	· · · · · · · · · · · · · · · · · · ·					
PRINT NAME:			INSPECTED BY:	tal 7 La c		
	<u>بالمبارك المام الم</u>		1	W-6/3	<u> </u>	
SIGNATURE:			DATE:	7.17		40

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

April 13, 1999

Ben Halsted Piers Environmental Services 1330 South Bascom Avenue San Jose, CA 95128

Subject:

1 Water Sample

Lab #'s:

G8559

Project Name:

Riverbend

Project Number:

E

Method(s):

EPA 8240 EPA 8270-ATL

Subcontract Lab:

Advanced Technology Laboratories (CAELAP #1838)

Dear Ben Halsted,

Chemical analysis on the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#I-2346). If you have any questions regarding procedures or results, please call me at 408-735-1550.

Sincerely,

Michelle L. Anderson

Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Piers Environmental Services 1330 South Bascom Avenue

San Jose, CA 95128 Attn: Ben Halsted Date: 4/13/99

Date Received: 4/5/99

Project: Riverbend

PO #:

Sampled By: Client

Certified Analytical Report

Water Sample Analysis:

Sample ID	MW1		,	MW-2						
Sample Date	3/30/99			3/30/99						
Sample Time	2:45			2:30						
Lab#	G8558			G8559						
	Result	DF	DLR	Result	DF	DLR			PQL	Method
Results in mg/Liter:										
Analysis Date				4/7/99						
ТКРН	na			ND	1.0	5.0		·	5.0	418.1
Results in µg/Liter:										
Analysis Date				4/12/99						_
TPH-Diesel	na		•	ND	1.0	50			50	8015M
Analysis Date	4/9/99			4/9/99						
TPH-Gas	ND	1.0	50	ND	1.0	50			50	8015M
MTBE	na			9.3	1.0	5.0			5.0	8020
Benzene	ND	1.0	0.50	ND	1.0	0.50			0.50	8020
Toluene	ND	1,0	0.50	ND	1.0	0.50			0.50	8020
Ethyl Benzene	ND	1.0	0.50	ND	1.0	0.50			0.50	8020
Xylenes (total)	ND	1.0	0.50	ND	1.0	0.50			0.50	8020
Analysis Date				4/9/99						
tert-Butanol	na			ND	1.0	20			20	8240
MTBE	na			19	1.0	5.0			5.0	8240
Diisopropyl ether	na			ND	1.0	5.0			5.0	8240
Ethyl-tert-butyl ether	na			ND	1.0	5.0			5.0	8240
tert-Amylmethyl ether	na			ND	1.0	5.0			5.0	8240

DF=Dilution Factor

ND= None Detected above DLR

PQL=Practical Quantitation Limit

DLR=Detection Reporting Limit

· na: not analyzed

· Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #I-2346)

Michelle L. Anderson, Lab Director

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Certified Analytical Report Volatile Organic Compounds by EPA Method 8240

Client: Piers Environmental Services

2:30

Date Reported: 4/13/99

Sample Matrix: Water

Date Received: 4/5/99

Sample Date/Time: 3/30/99

Date Analyzed: 4/9/99

Lab #: G8559

Dilution Factor: 1

Client ID: MW-2

Compound Cheft 1D:	Value	PQL	DLR	Compound	Value	PQL	DLR
Acetone	ND	20		1,1-Dichloroethene	ND	5	5
Allyl Chloride	ND	20	20	trans-1,2-Dichloroethene	ND	5	5
Веплепе	ND	5	5	1,2-Dichloropropane	ND	5	5
Benzyl Chloride	ND	20	20	cis-1,3-Dichloropropene	ND	5	5
Bromodichloromethane	5.5	5	5	trans-1,3-Dichloropropene	ND	5	5
Bromoform	ND	5	5	Ethyl Benzene	ND	5	5
Bromomethane	ND	5	5	2-Hexanone	ND	20	20
2-Butanone	ND	20	20	Iodomethane	ND	5	5
Carbon Disulfide	ND	. 5	5	Methylene Chloride	ND	5	5
Carbon Tetrachloride	ND	5	5	4-Methyl-2-Pentanone	ND	20	20
Chlorobenzene	ND	5		Styrene	ND	5	5
Chloroethane	ND	5		1,1,1,2-Tetrachloroethane	ND	5	. 5
Chloroform	ND	5		1,1,2,2-Tetrachloroethane	ND	5	5
Chloromethane	ND	5		Tetrachloroethene	ND	5	5
Dibromochloromethane	8.4	5	5	Toluene	ND	5	5
1,2-Dibromo 3-Chloropropane	ND	5		1,1,1-Trichloroethane	ND	5	5
1,2-Dibromoethane (EDB)	ND	5		1,1,2-Trichloroethane	ND	5	5
Dichlorodifluoromethane	ND	5	5	Trichloroethene	ND	5	5
1,2- Dichlorobenzene	ND	5	5	Trichlorofluoromethane	ND	5	5
1,3- Dichlorobenzene	ND	5	. 5	1,2,3-Trichloropropane	ND	5	5
1,4- Dichlorobenzene	ND	5	5	Vinyl Acetate	ND	10	10
1,1-Dichloroethane	ND	5	5	Vinyl Chloride	ND	_ 5	5
cis-1,2-Dichloroethene	ND	5	5	Xylenes (total)	ND	5	5
1,2-Dichloroethane	ND	5	5				

Surrogate Recovery (%)
Dibromofluoromethane 115
Toluene-d8 104
4-Bromofluorobenzene 90

- 1. Results are reported in ug/Liter (ppb)
- 2. DLR= DF x PQL

3. Analysis performed by Entech Analytical Labs, Inc. (CAELAP #I-2346)

Michelle L. Anderson, Lab Director

ND: None Detected at or above DLR

PQL: Practical Quantitation Limit

DLR: Detection Reporting Limit

DF: Dilution Factor

April 9, 1999

ELAP No.: 1838

Entech Analytical Labs, Inc. 525 Del Rey Avenue, Suite E Sunnyvale, CA 94086

ATTN:

Michelle Anderson

Client's Project:

Piers

Lab No.:

34685-001

Enclosed are the results for sample(s) received by Advanced Technology Laboratories and tested for the parameters indicated in the enclosed chain of custody.

Thank you for the opportunity to service the needs of your company. Please feel free to call me at (562) 989 - 4045 if I can be of further assistance to your company.

Sincerely,

Cheryl De Los Reyes

Technical Operations Manager

CDR/jh

Enclosures

This cover letter is an integral part of this analytical report.

This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited.

Client: Attn:

Entech Analytical Labs, Inc.

Michelle Anderson

Client's Project: Date Received: Matrix:

Piers 04/07/99 Water

Units: Extraction Method: μg/I 3510C

EAU action vieuco:	33100			EPA I	dethod \$2	70C							
Lab No.:		Metho	d Blank	34685-	******************************		•						
Client Sample I.D.:				G8559	(MW2)		*					_	
Date Sampled:				03/30/9	99							_	
QC Batch #:		89982	70W080	S99827	70W080			-					
Date Extracted:		04/07/9	99	04/07/9									
Date Analyzed:		04/07/	99	04/07/99									
Analyst Initials:		ZL		ZL									
Dilution Factor:		1		1									
ANALYTE	MDL	on R	Remite	DI A	Results	DLK	Results	131.28	Results	ЫR	Results	DI R	Results
Phenol	10	10	ND	10	ND								
bis (2-Chloroethyl)ether	10	10	ND	10	ND								
2-Chlorophenol	10	10	ND	10	ND		}						
1,3-Dichlorobenzene	10	10	ND	10	ND								
1,4-Dichlorobenzene	10	10	ND	10	ND								
Benzyl Alcohol	10	10	ND	10	ND								
1,2-Dichlorobenzene	10	10	ND	10	ND								
2-Methylphenol	10	10	ND	10	ND								
bis(2-chloroisopropyl)ether	10	10	ND	10	ND								
n-Nitroso-di-n-propylamine	10	10	ND	10	ND								
4-Methylphenol	10	10	ND	10	ND								
Hexachloroethane	10	10	ND	10	ND								
Nitrobenzene	10	10	ND	10	ND								
Isophorone	10	10	ND	10	ND								
2-Nitrophenol	10	10	ND	10	ND								
2,4-Dimethylphenol	10	10	ND	10	ND								
bis(2-Chloroethoxy)methane	10	10	ND	10	ND								[j
2,4-Dichlorophenol	10	10	ND	10	ND								
Benzoic Acid	50	50	ND	50	ND								
1,2,4-Trichlorobenzene	10	10	ND	10	ND								
Naphthalene	10	10	ND	10	ND								
4-Chloroaniline	10	10	ND	10	ND								
Hexachlorobutadiene	10	10	ND	10	ND								
4-Chloro-3-methylphenol	10	10	ND	10	ND								
2-Methylnaphthalene	10	10	ND	10	ND								
Hexachlorocyclopentadiene	10	10	ND	10	ND								
2,4,6-Trichlorophenol	10	10	ND	10	ND								
2,4,5-Trichlorophenol	10	10	ND	10	ND								
2-Chloronaphthalene	10	10	ND	10	ND								
2-Nitroaniline	10	10	ND	10	ND								
Dimethylphthalate	10	10	ND	10	ND								
Acenaphthylene	10	10	ND	10	ND								
2,6-Dinitrotoluene	10	10	ND	10	ND								
3-Nitroaniline	10	10	ND	10	ND								

MDL = Method Detection Limit

ND Not Detected (Below DLR) DLR = MDL x Dilution Factor

NΛ Not Analyzed

The cover letter is an integral part of this analytical report.

Client: Attn: Entech Analytical Labs, Inc.

Michelle Anderson

Client's Project: Date Received: Piers 04/07/99 Water

Matrix: Units: Extraction Method:

µgЛ 3510С

				EPA I	fethod 82	70C							
Lab No.:		Metho	d Blank	34685-									
Client Sample I.D.:				G8559	(MW2)					·			,
ANALYTE			Results		Results	DILK	Results	MAK	Results	81018 4 8	Restals	8DBR	Results
Acenaphthene	10	10	ND	10	ND				, ,				
2,4-Dinitrophenol	20	20	ND	20	ND								
Dibenzofuran	10	10	ND	10	ND								
4-Nitrophenol	20	20	ND	20	ND								
2,4-Dinitrotoluene	10	10	ND	10	ND								
Fluorene	10	10	ND	10	ND								
Diethylphthalate	10	10	ND	10	ND								
4-Chlorophenyl-phenyl ether	10	10	ND	10	ND								
4-Nitroaniline	10	10	ND	10	ND								
4,6-Dinitro-2-methylphenol	20	20	ND	20	ND								
n-Nitrosodiphenylamine	10	10	ND	10	ND								
4-Bromophenyl-phenyl ether	10	10	ND	10	ND								
Hexachlorobenzene	10	10	ND	10	ND								
Pentachlorophenol	20	20	ND	20	ND								
Phenanthrene	10	10	ND	10	ND								
Anthracene	10	10	ND	10	ND	,							_
Di-n-butylphthalate	10	10	ND	10	ND								
Fluoranthene	10	10	ND	10	ND								
Pyrene	10	10	ND	10	ND								
Butylbenzylphthalate	10	10	ND	10	ND								
Benzo[a]anthracene	10	10	ND	10	ND								
3,31-Dichlorobenzidine	20	20	ND	20	ND								
Chrysene	10	10	ND	10	ND								
bis(2-Ethylhexyl)phthalate	10	10	ND	10	ND								
Di-n-octylphthalate	10	10	ND	10	ND								
Benzo[b]fluoranthene	10	10	ND	10	ND								
Benzo[k]fluoranthene	10	10	ND	10	ND								
Benzo[a]pyrene	10	10	ND	10	ND								
Indeno[1,2,3-cd]pyrene	10	10	ND	10	ND								
Dibenz[a,b,]anthracene	10	10	ND	10	ND								
Benzo[g,h,i]perylene	10	10	- ND	10	ND				-				
MDI - Method Detection I in											<u> </u>	<u> </u>	

MDL = Method Detection Limit
ND = Not Detected (Below DLR)

DLR = MDL x Dilution Factor NA = Not Analyzed

Approved/Reviewed By:__

Lee Ingvaldson
Department Supervisor

Date:

The cover letter is an integral part of this analytical report.

Spike Recovery and RPD Summary Report - WATER (ug/L)

Method

: D:\HPCHEM\1\METHODS\8270A.M (RTE Integrator)

Title

: EPA 8270C Advanced Technology Laboratory

Last Update : Mon Apr 05 16:33:19 1999

Response via : Initial Calibration

Non-Spiked Sample:

SB0407A.D

Spike

Spike

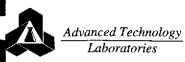
Sample

Duplicate Sample

File ID: SMS0407A.D

Sample : WATER MS BLANK e:04/07/99 W080 Acq Time: 7 Apr 1999 7:22 pm

SMD0407A.D WATER MS BLANK e:04/07/99 W080


7 Apr 1999 7:58 pm

Compound	Sample Conc	Spike Added	Spike Res	Dup Res	Spike %Rec	Dup %Rec	RPD	QC RPD	Limits % Rec
Phenol	0.0	200	54	55	27	27	3	21	12- 78
2-Chlorophenol	0.0	200	125	124	63	62	1	24	30- 91
1,4-Dichlorobenzene	0.0	100	65	65	65	65	1	18	36- 87
N-Nitroso-di-n-propy	0.0	100	84	83	84	83	1	21	31-114
1,2,4-Trichlorobenze	0.0	100	72	72	72	72	0	18	38-100
4-Chloro-3-methylphe	0.0	200	154	152	77	76	1	16	35-102
Acenaphthene	0.0	100	75	74	75	74	1	17	46- 94
4-Nitrophenol	0.0	200	69	75	35	37	8	58	10- 91
2,4-Dinitrotoluene	0.0	100	79	79	79	79	1	20	42-115
Pentachlorophenol	0.0	200	237	237	118	119	0	51	8-125
Pyrene	0.0	100	86	85	86	85	1	16	36-114

QC Batch # S998270W080

Reviewed/Approved By:

Lee Ingvaldson Department Supervisor

METHOD: TOTAL RECOVERABLE PETROLEUM HYDROCARBONS

Laboratory Control Samples

QC Batch ID: WTRPHIR990401

Date Analyzed: 04/07/99

Matrix: Water

Spiked Sample: Blank Spike

Units: mg/L

PARAMETE		SR	SP	SP	SPD	SPD	RPD	•	IMITS
	mg/L	mg/L	mg/L	PR	mg/L	PR		RPD	PR
TRPH	20	0	20	100	22	110	9.5	25	70-130

Definition of Terms:

RPD: Relative Percent Difference (Duplicate Analyses)

SA: Spike Added SR: Sample Result

SP: Spike Result

SP (PR): Spike % Recovery

SPD: Spike Duplicate Result

SPD (PR): Spike Duplicate % Recovery

METHOD: Gas Chromatography

QC Batch #: GBG2990409

Date Analyzed: 04/09/99

Matrix: Water

Quality Control Sample: Blank Spike

Units: μg/L

PARAMETER	Method #	MB μg/L	SA µg/L	SR μg/L	SP µg/L	SP % R	SPD 30.83	SPD %R	RPD	QC RPD	LIMITS %R
Benzene	8020	<0.50	40	ND	35	88	40	100	12.4	25	81-115
Toluene	8020	<0.50	40	ND	35	87	40	99	13.3	25	82-115
Ethyl Benzene	8020	<0.50	40	ND	35	88	40	100	12.6	25	81-116
Xylenes	8020	<0.50	120	ND	104	86	121	101	15.9	25	83-115
Gasoline	8015	<50.0	500	ND	434	87	433	8 7	0.3	25	75-125

Note: LCS and LCSD results reported for the following Parameters:

AII

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank

SA: Spike Added

SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R): Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R): Spike % Recovery

NC: Not Calculated

Volatile Organic Compounds

QC Batch #: WGCMS990408 Date analyzed: 04/08/99
Matrix: Water Spiked Sample: Blank Spike

Units: µg/L

Onits.										
PARAMETER	Method#	SA μg/L	SR μg/L	SP μg/L	SP %R	SPD μg/L	SPD %R	RPD	QC RPD	LIMITS %R
1,1- Dichloroethene	8240/8260	25	ND	26	105	27	106	1.1	25	50-150
Methyl-tert-butyl eth	8240/8260	25	ND	28	113	27	109	3.2	25	50-150
Benzene	8240/8260	25	ND	27	106	26	104	2.3	25	50-150
Trichloroethene	8240/8260	25	ND	27	109	27	106	3.0	25	50-150
Toluene	8240/8260	25	ND	27	108	26	104	3.4	25	50-150
Chlorobenzene	8240/8260	25	ND	29	115	27	110	5.0	25	50-150
					į					

Definition of Terms:

na: Not Analyzed in QC batch

SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP Spike Result

SP (%R) Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R) Spike Duplicate % Recovery

NC: Not Calculated

METHOD: Gas Chromatography Laboratory Control Spikes

QC Batch #: DW990404

Date analyzed:

04/09/99

Matrix: Water

Date extracted:

04/09/99

Units: µg/L

Quality Control Sample:

Blank Spike

PARAMETER	Method #	MB μg/L	SA μg/L	SR μg/L	SP μg/L	SP %R	SPD μg/L	SPD %R	RPD	QC RPD	LIMITS %R
Diesel	8015M	<50.0	950	ND	892	94	900	95	0.9	25	51-137

Definition of Terms:

na: Not Analyzed in QC batch

MB: Method Blank SA: Spike Added SR: Sample Result

RPD(%): Duplicate Analysis - Relative Percent Difference

SP: Spike Result

SP (%R) Spike % Recovery

SPD: Spike Duplicate Result

SPD (%R) Spike Duplicate % Recovery

NC: Not Calculated

Entech Analytical Labs, Inc.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • (408) 735-1550 • Fax (408) 735-1554

Subcontract Chain of Custody

Subcontract Lab:	 	Date Sent	Ducinet Name	I Dua Data					
ATL		04/06/99	Project Name:	15	Due Date; 04//2/9	9			
Sample ID and Source	Matrix	Required Analysis	Date Taken	Time Taken	Containers	Pres?			
G8539 (mw2)	W	8270	3/30/99		1x12TR book				
			, ,						
, , , , , , , , , , , , , , , , , , , ,									
									
			:						
Relinguished By: WThazo wa	Cal	Received By: Onemight			1				
Relinquished By	cae_	Received by:	1 - 1	04/ Date:	06/99 Cop.	<i>~</i>			
Relinquished By:	 -	Received By:	Jaluar	Date:	7-99 10:1	00			
·•				L'ate:	I aric.				
Notes:				<u> </u>		. <u>.</u>			
. 100001									
	· · · · · · · · · · · · · · · · · · ·								

Entech Analytical Labs, Inc.

525 Del Rey Avenue, Suite E • Sunnyvale, CA 94086 • Telephone: (408) 735-1550 (800) 287-1799 • Fax: (408) 735-1554

Chain of Custody/Analysis Work Order

Purchase Order #:

Client: REES

Address: 1330 S. Bescom#

Project ID: Ruckend

LAB USE ONLY

Telep Date R		35 B. Walsh 07 55° 4/5/99 Norm		Sa	umpler/Comp R. Halsked PIER pecial Instruc	oany: / Stions/C	Telep J39 comments	hone #: -\248	408	No	Yes	mrze Mwl	No		
			Sample In	formation						Re	queste	d Analy	sis		
Lab #	Sample ID	Grab/ Composite	Matrix	Date Collected	Time Collected	Pres.	Sample Container	TPHG BTEX MTBB	TPHIC	418.1	8270	8240 +02			
78558 W	W I		water	3/30/99	745		(2) 40N1 YOA				_				
(18726) (18728) M	mw2		(l (2:30		B) 2 1 liter Am	, 4	<u> </u>	†	X	×			
Relinq. By:	(2X) (r	+		Recognise	NU	dst				415	49		ime qu	<u> </u>	
Relinq. By:				Received Received					Date Date				ime		