REPORT OF FINDINGS
FOURTH QUARTER 1993 GROUND WATER MONITORING
HERTZ SERVICE CENTER
NO. 1 AIRPORT DRIVE
OAKLAND, ALAMEDA COUNTY, CALIFORNIA

ESE PROJECT #6-93-5181

PREPARED FOR:

THE HERTZ CORPORATION 225 BRAE BOULEVARD PARK RIDGE, NEW JERSEY 07656-0713

PREPARED BY:

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. 4090 NELSON AVENUE, SUITE J CONCORD, CALIFORNIA 94520

JANUARY 4, 1994

This report has been prepared by Environmental Science & Engineering, Inc. for the exclusive use of The Hertz Corporation as it pertains to their site located at No. 1 Airport Drive, Oakland, California. Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by other geologists and engineers practicing in this field. No other warranty, express or implied, is made as to professional advice in this report.

REPORT PREPARED BY:

Christopher H. Valcheff

Staff Geologist

JAN. 5, 1994

DATE

UNDER THE PRIMARY REVIEW AND SUPERVISION OF:

Michael E. Quillin

Senior Hydrogeologist

California Registered Geologist No. 5315

Jan. 5, 1994. DATE

TABLE OF CONTENTS

			Page				
1.0	INTRO	DDUCTION	. 1				
2.0	GROUND WATER MONITORING						
3.0	RESULTS						
4.0	CONCLUSIONS 5						
5.0	REFEI	RENCES	. 6				
		FIGURES					
	RE 2. RE 3.	SITE PLAN GROUND WATER ELEVATIONS - DECEMBER 2, 1993 CONCENTRATIONS OF PETROLEUM HYDROCARBONS GROUND WATER - DECEMBER 2, 1993 APPROXIMATE EXTENT OF PETROLEUM HYDROCARBONS IN GROUND WATER - DECEMBER 2, 1993					
		TABLE					
TABL	E 1.	SUMMARY OF GROUND WATER ELEVATION AND ANALYTICAL DATA					
		APPENDICES					
APPENDIX A. WELL PURGING AND SAMPLING DATA APPENDIX B. ESE STANDARD OPERATING PROCEDURE NO. 3 FOR GROUND WATER MONITORING AND SAMPLING FROM MONITORING WELLS APPENDIX C. LABORATORY REPORTS AND CHAIN OF CUSTODY							
		DOCUMENTATION FOR GROUND WATER SAMPLES					

1.0 INTRODUCTION

This report presents the results of the Fourth Quarter 1993 ground water monitoring activities conducted by Environmental Science & Engineering, Inc. (ESE) at the Hertz Service Center, No. 1 Airport Drive, Oakland, Alameda County, California ("site"). The site is an active rental car service and fueling facility located at the Oakland International Airport (Figure 1 - Site Plan). Ground water monitoring activities included the collection of depth to ground water measurements and ground water samples from five existing onsite wells (MW-1, MW-2, MW-3, MW-4, and MW-5; Figure 1) and four existing offsite wells (MW-6, MW-7, MW-8, and MW-9; Figure 1).

ESE summarized site investigation background in the August 1991 Quarterly Monitoring Report (ESE, 1991a) and the November 1991 Quarterly Monitoring Report (ESE, 1991b). The results of additional site investigations conducted by ESE, including the installation of ground water monitoring wells MW-4, MW-5, and MW-6 at the site, were summarized in the February 1992 Quarterly Monitoring Report (1992a) and December 1992 Quarterly Monitoring Report (ESE, 1992b), respectively. Three additional wells were installed in May 1993 in association with an additional subsurface investigation. The results of this investigation are summarized in the July 1993 Second Quarter 1993 Ground Water Monitoring and Subsurface Investigation Report (ESE, 1993). ESE has conducted quarterly monitoring activities at the site since August 1991.

During the course of ESE's investigation at the site, two offsite underground storage tanks (USTs), operated by the Port of Oakland and the FAA for emergency fuel storage, were identified. These USTs, of 8000- and 1000-gallon capacity, respectively, are shown in Figure 1. ESE has not been successful in determining if those tanks are routinely tested for integrity.

2.0 GROUND WATER MONITORING

2.1 GROUND WATER ELEVATIONS

On December 2, 1993, ESE measured static water levels in the nine wells using an electric water level tape. Measurements were made relative to the surveyed datum for each well. ESE calculated relative ground water elevations for the purpose of preparing a ground water elevation contour map, from which ESE estimated the general direction and magnitude of the ground water gradient in the vicinity of the site. Field documentation for water level measurements, including well purging results, are presented in Appendix A - Well Purging and Sampling Data.

2.2 GROUND WATER SAMPLING AND ANALYSIS

Ground water samples were collected from each of the wells after they were purged of approximately three casing volumes in accordance with ESE Standard Operating Procedure (SOP) No. 3 for Ground Water Monitoring and Sampling from Monitoring Wells (Appendix B). Samples were analyzed by Sequoia Analytical (Sequoia), a State-certified laboratory, for total petroleum hydrocarbons as gasoline (TPHg) with benzene, toluene, ethylbenzene, and total xylenes (BTEX) distinction using EPA Method 5030/8015/8020, and for total extractable petroleum hydrocarbons (TEPH) using EPA Method 3510/3520/8015. Analysis for TEPH will identify diesel fuels and other non-volatile petroleum hydrocarbons not in the gasoline range.

As a measure of field quality assurance and quality control (QA/QC), ESE collected a duplicate sample from well MW-8 as a means of evaluating sample homogeneity and to provide a check on ESE's sample collection procedures. The duplicate sample also serves as check on analytical laboratory procedures. In addition, a laboratory-supplied trip blank consisting of deionized water was kept and transported to Sequoia in the same cooler with ground water samples for the purpose of evaluating ESE's sample handling and transport procedures.

3.0 RESULTS

3.1 GROUND WATER ELEVATIONS

Table 1 presents a historical summary of ground water elevation data, including that for the current monitoring event. Ground water elevations for the current monitoring event are contoured in Figure 2 - Ground Water Elevations, December 2, 1993. The estimated direction of ground water flow was observed to be to the southwest with a gradient of approximately 100 feet/mile (0.02). The general direction of ground water flow is consistent with previous findings; however, the magnitude of the gradient is generally lower than previously reported.

No free phase product was observed in any of the wells.

3.2 GROUND WATER CHEMISTRY

Current analytical results are summarized with historical data in Table 1 and graphically presented in Figure 3 - Concentrations of Petroleum Hydrocarbons in Ground Water, December 2, 1993. The laboratory report and chain of custody documentation are presented in Appendix C - Laboratory Reports and Chain of Custody Documentation for Ground Water Samples. Based on these results, the inferred extent of petroleum hydrocarbons in ground water in the vicinity of the site is approximated in Figure 4.

The results presented in Table 1 and Figures 3 and 4 indicate that overall concentrations of petroleum hydrocarbons in ground water decreased relative to the last monitoring event (May 27, 1993). The highest concentrations of TPHg, BTEX, and TPHd currently and historically occur in samples from MW-4, which is immediately downgradient of the former fuel USTs and existing fuel dispensers for the site. TPHg and BTEX are also present in the sample from offsite and downgradient well MW-6. As shown in Figure 4, TPHd occurs to a larger extent downgradient of the site, having been detected in wells MW-5, MW-6, MW-8, and MW-9 in addition to MW-4.

3

Referring to the laboratory report presented in Appendix C, it will be noted that TEPH detected in samples collected from wells directly downgradient from the former USTs and existing fuel dispenser at the site (MW-4 and MW-6) were quantified by Sequoia as nondiesel (MW-4) and diesel and non-diesel mixtures (MW-6), indicating that the TEPH fraction in these samples may be dominantly weathered gasoline rather than true diesel fuel. Alternatively, TEPH detected in wells downgradient of the Port of Oakland and FAA diesel USTs (MW-5, MW-8, and MW-9) were quantified by Sequoia as diesel with discrete peaks.

AA diesel tant start sta

4.0 CONCLUSIONS

- Consistent with previous findings, the direction of ground water flow beneath the site is toward the southwest. This will be the general direction of migration for dissolved petroleum hydrocarbons in ground water, which is consistent with the observed plume of hydrocarbons in ground water at the site.
- The reduced gradient noted for the current monitoring period will tend to limit migration of dissolved petroleum hydrocarbons in ground water relative to previous quarters.
- The source for gasoline constituents (TPHg and BTEX) and TEPH quantified as non-diesel mixtures detected in ground water samples from wells MW-4 and MW-6 at the site appears to be the area of the former Hertz USTs and/or the existing fuel dispensers.
- Historical records indicate that Hertz has not stored or dispensed diesel fuel at the site. As a result, the petroleum hydrocarbons quantified as diesel fuel in ground water samples from onsite well MW-5 and offsite wells MW-8 and MW-9 cannot be attributed to the Hertz site. The most likely source or sources for these hydrocarbons are the Port of Oakland and FAA diesel USTs located adjacent to and immediately west of the site.
- Reductions in concentrations of petroleum hydrocarbons noted relative to the previous monitoring event suggest that further downgradient migration of dissolved petroleum hydrocarbons in ground water is not occurring, and that natural attenuation by microbial activity, dilution, and/or dispersion is occurring to a limited degree.

5.0 <u>REFERENCES</u>

FIGURES

ALAN SHEPARD WAY

EXISTING MONITORING WELLS
AND GROUND WATER ELEVATIONS
GROUND WATER ELEVATION
CONTOUR IN FEET (DEC. 2, 1993)

INTERPRETED GENERAL DIRECTION OF GROUND WATER FLOW (DEC. 2, 1993)

A CILCORP Company

Environmental Science & Engineering, Inc.

12/93 REVISED GROUND WATER ELEVATIONS DECEMBER 2, 1993

PRO

HERTZ/OAKLAND AIRPORT OAKLAND, CALIFORNIA 2

FIGURE NO.

PROJ. NO. 6-93-5181

4090 NELSON AVENUE, SUITE J CONCORD, CA 94520

CAD FILE 51814001

ALAN SHEPARD WAY

EXISTING MONITORING WELLS

40 FEET

Environmental Science & Engineering, Inc.

1/94 REVISED

DATE

APPROXIMATE EXTENT OF PETROLEUM HYDROCARBONS IN GROUND WATER DECEMBER 2, 1993

FIGURE NO.

4090 NELSON AVENUE, SUITE J CONCORD, CA 94520

CAD FILE 51814003 HERTZ/OAKLAND AIRPORT OAKLAND, CALIFORNIA

PROJ. NO. 6-93-5181 **TABLE**

TABLE 1
SUMMARY OF GROUND WATER ELEVATION AND ANALYTICAL DATA

HERTZ/OAKLAND AIRPORT OAKLAND, CALIFORNIA

Party of the April 1899		Ground Water Elevation	Metals (ppm)	Oil & Grease	Grease Control of the							Purgeable Halocarbons	Semi- Volatile
Date	Well	(feet above MSL)	Cd Cr Ph Ni Za	(ppm)	as Gasoline	as Kerosene	as Diesel	B				(EPA 8010) (ppb)	Organics (EPA 8270) (ppb)
12/02/93	MW-1	2.91			ND		ND	ND	ND	ND	ND		
	MW-2	4.44			ND		ND	ND	ND	ND	ND		
	MW-3	3,60			ND		ND	ND	ND	ND	ND		
ļ	MW-4	2.39			21,000	ļ	770	3,500	3,800	640	2,000		ļ <u>-</u> -
	MW-5	3.40	Not		NĐ		60	ND	ND	ND	ND		
	MW-6	2.36	Analyzed	**	280	- `	├ ~. 700	11	1.0	65	3.0		
	MW-7	2.15			ND		ND	ND	ND	ND	ND		
	MW-8 ~	1.31			ND		~ 54	ND	ND	ND	ND		
	DUP				ND		ND	ND	ND	ND	ND	-	
	MW-9 >	1.02			ND	-	√ 72	ND	ND	ND	NĐ	·	
	TRIP	**						ND	ND	NĐ	ND		
05/27/93	MW-1	3.31		_	ND		ND	ND	ND	ND	ND		
	MW-2	4.82			ND		ND	ND	ND	ND	ND		i <u> </u>
	MW-3	3.84			ND		55	ND	ND	ND	ND		
	MW-4	2.78			48,000		4,900	6,300	7,200	1,600	6,800		
ľ	MW-5	3.88	Not		ND	\	75	ND	ND	ND	ND		\
	MW-6	2.82	Analyzed		1,300		960	370	ND	87	19		
1	MW-7	2.35			ND		76	ND	ND	ND	ND	-	
	MW-8	1.91			ND		91	ND	ND	ND	ND		
	MW-9	1.58			ND		72	ND	ND	ND	ND		
	DUP	ļ 			ND		85	ND	ND	ND	ND	l <i>-</i> -	
	(MW-9)												<u> </u>
02/03/93	MW-1	3,34			ND			ND	ND	ND	ND		
' '	MW-2	4.84			ND			ND	ND	ND	ND		l <u></u>
	MW-3	4.03		-	ND			ND	ND	ND	ND		
	MW-4	2.89	Not		50,000	<u></u>		4,700	5,000	1,500	6,600		
	MW-5	ļ -	Analyzed		l <u></u>	<u></u>	l					_	
ł	MW-6	2.90	_		330			120	2.8	19	5.3		
	DUP	-			2,100			110	5.2	19	14	,	**
	(MW-6)			1									

TABLE 1 (Continued...)

SUMMARY OF GROUND WATER ELEVATION AND ANALYTICAL DATA

HERTZ/OAKLAND AIRPORT OAKLAND, CALIFORNIA

Eleva		Ground Water Elevation	Elevation			Oil & Grease	Grease Comments of the Comment							Purgeable Halocarbons	Semi- Volatile		
Date	Well	(feet above MSL)	Cđ	Cr	Cr PB NI Za		(ppm)	as Gasoline	as Kerosene	as Diesel	35 p	T	10	*	(EPA 8010) (ppb)	Organics (EPA 8270) (ppb)	
11/05/92	MW-1 MW-2 MW-3 MW-4 MW-5 MW-6 DUP	2.39 4.05 3.07 1.88 3.00 1.89		A	Not Analyze	đ			ND ND ND 24,000 ND 820 14,000	 ND 240	 170 D	ND ND ND 2,600 ND 250 2,100	ND ND ND 3,300 ND ND 1,400	ND ND ND 510 ND 5.9	ND ND ND 2,100 ND ND 1,100		
09/01/92	MW-4) MW-1 MW-2 MW-3 MW-4 DUP (MW-2)	2.55 4.15 3.21 3.14		Not Analyzed		 	ND 56 ND 120,000 68	 		ND 2.0 1.1 8,800 2.8	ND 3.0 1.6 14,000 4.2	ND 0.8 ND 2,100 1.0	ND 3.1 1.9 11,000 4.3	-			
05/13/92	MW-1 MW-2 MW-3 MW-4 DUP TRIP	2.93 4.66 3.64 3.57 		Not Analyzed			ND ND ND 62,000 61,000 ND	 		ND ND ND 3,400 3,300 ND	ND ND ND 5,200 5,200 ND	ND ND ND 990 920 ND	ND ND ND 5,200 5,200 ND	-	 		
02/18/92	MW-1 MW-2 MW-3 MW-4	3.06 3.86 2.92 3.43	Not Analyzed				ND ND ND 6,600		ND ND ND ND	ND ND ND 910	ND ND ND 1,900	ND ND ND 280	ND ND ND 1,700				
11/12/91	MW-1 MW-2 MW-3	3.06 3.86 2.92	ND ND 7.2	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 52+ ND	ND ND ND	ND ND	ND ND ND	ND ND ND	All ND All ND All ND	All ND All ND All ND

1

TABLE 1 (Continued...)

SUMMARY OF GROUND WATER ELEVATION AND ANALYTICAL DATA

HERTZ/OAKLAND AIRPORT OAKLAND, CALIFORNIA

Ground Date	Water Well	Ground Water Elevation (feet above MSL)	Metals (ppm) Cd Cr Ph Ni Zn	Oll & Grease (ppm)	as Gasoline	Totai as Kerosene	Petroleum H as Diesel	ydrocarbo	ns (ppb)		×	Purgeable Halocarbons (EPA 8010) (ppb)	Semi- Volatile Organics (EPA \$270) (ppb)
08/20/91	MW-1	2.30	All ND	ND	ND	ND	ND	ND	ND	ND	ND	All ND	All ND
	MW-2	4.09	All ND	ND	ND	ND	ND	ND	ND	ND	ND	All ND	All ND
	MW-3	3.06	All ND	ND	ND	ND	ND	ND	MD	ND	ND	All ND	All ND

Historical Data Archived in ESE Report of March 1993

Notes:

MSL = Mean Sea Level

ND = Not detected

-- = Not analyzed

ppm = Parts per million

ppb = Parts per billion

B = Benzene

T = Toluene

E = Ethylbenzene

X = Total Xylenes

+ = Detection limit for TPH-D is 50 ppb. Duplicate sample analyzed contained ND or <50 ppb.

D = Diesel range not reported. Quantified as kerosene range.

F:\...\5228\TABLE.1

APPENDIX A

WELL PURGING AND SAMPLING DATA

PROJECT NAME: HERTZ- C PROJECT NO.: 6-93-518 DATE: DECEMBER 2,	AKLAND 1993		SAMPLE LOCATION I.D.: MW-1 SAMPLER: CHRIS VALCHEFF PROJECT MANAGER: MIKE GUILLIN				
CASING DIAMETER	SAMPLE T	YPE		WELL VOLU	MES PER UNIT		
2" <u>X</u>	Ground War Surface Wa Treat. Influe Treat. Efflue Other	ter nt nt		Well Casing I.D. (inches) 2.0 4.0 6.0	Gal/Ft. 0:1632 0.6528 1.4690		
DEPTH TO PRODUCT: MA (ft.) DEPTH TO WATER: 4.34 (ft.) DEPTH OF WELL: 14.88 (ft.)	PRODUCT THIC WATER COLUMI WELL CASING V	N: (0.34	_(ft.)_ <i>((</i> 3' hr. # /\	∧C\∧⋅	LUME このも (gal) RGED: <u>〜</u> (gal)		
Volume TIME (GAL) 1016 © 1013 7.0 1018 5.25	7.48 \$1.52	E.C. (Micromhos) 1,27 1.30 1.36	Temperature (F°) 63.7 63.5 63.6	Turbid. (NTU)	Other CASA SICT		
INSTRUMENT CALIBRATION							
PH/COND./TEMP.: TYPE_#YI TURBIDITY: TYPE	AC UNIT# 7308 UNIT#	BA DATE: DATE:	12-2-93 TIME	: <u>0800</u>	BY: CHV		
PURGE METHOD		•	SAM	PLE METHOD	,		
	Other-DISP. BAIL ubmersible Pump		_Bailer (Teflon K_Bailer (Dispos		Dedicated Other		
SAMPLES COLLECTED			•				
SAMPLE MW-1 DUPLICATE SPLIT FIELD BLANK	TIME 	DATE 12-2-93	SEQUOII	ANALY	SES SEREX/TPH-D		
COMMENTS:							
	<u> </u>						
4090 Nelson Avenue, Suite 1	ancina (A mozio	PROJECT	MANAGER hone (510) 685-4033	M. Chil	V (510) (5-53 ₂ 3		

• •				
PROJECT NAME: HERTZ- O PROJECT NO.: 6-23-218 DATE: DECEMBER 2,	AKLAND	SAMPLE LOCATION	is valche	FF
DATE: DECEMBER 2,	143	PROJECT MANAG	ER: MIKE	GUILLIN
CASING DIAMETER	SAMPLE TYPE	W	ELL VOLUME:	S PER UNIT
2" <u>×</u>	Ground Water 😕	We	ell Casing	
Other	Surface Water	<u>l.D</u>	. (inches)	Gal/Ft.
Ottlet	Treat. Influent Treat. Effluent			0.1632
	Other			0.6528 1.4690
			0.0	1.4090
DEPTH TO PRODUCT: WA (ft.) DEPTH TO WATER: 3.65 (ft.) DEPTH OF WELL: 14.12 (ft.)	PRODUCT THICKNESS: NWATER COLUMN: /6.4 WELL CASING VOLUME:	' (ft.) (3/or 4 WC	W	/ S (got)
		•		,
Volume	pH ¸Ę.C.	Temperature	Turbid.	•
TIME (GAL)	(Units) (Micromhos)	(F°)	(NTU)	Other
0	7.82 1.35	65.8	·	CC-641
0949 <u>20</u> 0953 40	7.52 7.51	<u> </u>		
6756 <u>6-25</u>	7.53 Z.03	<u> </u>		
		03-2		
		<u> </u>		
INSTRUMENT CALIBRATION •				
pH/COND./TEMP.: TYPE HYD TURBIDITY: TYPE	AC UNIT# <u>9308A</u> DAT LINIT# DAT	TE: <u>12-7-93</u> TIME: <u>C</u> TE: TIME:_) <u>800 </u>	Y: <u>CHV</u> Y:
PURGE METHOD	•	SAMPL	E METHOD	
Displacement Pump × C	Other-DISP. BAILER	Bailer (Teflon/P	VC (99)	Dedicated
	ubmersible Pump	Bailer (Disposab		Oedicaled Other
	·			
SAMPLES COLLECTED				
CAMPLE	TIME DAT	_ _	ANALYSE	S .
SAMPLE <u>MW-2</u> DUPLICATE	1136 12-2-1	93 SEQUOLA	TP4-G/B	STEX/TPH-D
SPLIT				
FIELD BLANK				
				
COMMENTS:			***************************************	
. , , , ,	1	~_ 		
SAMPLER: (Lh V W	↓ PROJE	CT MANAGER	n. Duil	l:
4090 Nelson Avenue, Suite l	Concore CV A125	Phone (510) 685-4053	Clax (5)	10+687-5323

PROJECT NAME: HEPTZ- O PROJECT NO.: 6-93-5	AK-AND	SAMPLE LOCATION SAMPLER: <u>CHRUS</u>	I.D.: MI	ы <u>- 3</u>
DATE: DECEMBER 2,	993	PROJECT MANAGER	MIKE G	UILLIN
CASING DIAMETER	SAMPLE TYPE	WEL	L VOLUMES I	PER UNIT
2" X	Ground Water \(\sum_\) Surface Water Treat. Influent Treat. Effluent Other		0 0.1 0 0.6	al <u>/Ft.</u> 1632 3528 1690
DEPTH TO PRODUCT: MA (ft.) DEPTH TO WATER: 4.06 (ft.) DEPTH OF WELL: 14.45 (ft.)	PRODUCT THICKNESS:	NA (ft.) MINIMUM PL 39 (ft.) Øor4WCV) 1.70 (gal) ACTUAL VOL	JRGE VOLUME : <u>よ.09</u> .UME PURGED	(gal) : <u>5, 5, (g</u> al)
Volume TIME (GAL) 0927 © 6930 5.5 0932 3.0	pH (Units) (Micromhos 7.95 7.72 7.59 7.42 5.64	69.7	Turbid. (NTU)	Other
INSTRUMENT CALIBRATION	-			
pH/COND./TEMP.: TYPE_#YI TURBIDITY: TYPE	>AC UNIT# <u>\(\frac{43084}} DA'\</u> UNIT# DA'\	TE: <u>12-2-93</u> TIME: <u>68</u> TE: TIME:	BY:	CHV
PURGE METHOD		SAMPLE	METHOD	
	Other-DISR BAILER ubmersible Pump	Bailer (Teflon/PVCK_Bailer (Disposable	, · · · · · · · · · · · · · · · · · · ·	Dedicated Other
SAMPLES COLLECTED				
SAMPLE MW-3 DUPLICATE SPLIT FIELD BLANK COMMENTS:	1745 12.2-	LAB 93 SEQUOIA	ANALYSES TPH-G/BT	ex/TPH-D
			• • •	
SAMPLER: Same Nume, Suite i	PROJE	ECT MANAGER	Quel:	483-5020

PROJECT NAME: HERTZ-OAK PROJECT NO.: 6-93-5/8/ DATE: DECEMBER 2, 199		SAMPLE LOCATION I.D. SAMPLER: CHRIS V. PROJECT MANAGER: M	ALCHEFF
CASING DIAMETER	SAMPLE TYPE	WELL V	OLUMES PER UNIT
2"X 4" Other	Ground Water Surface Water Treat. Influent Treat. Effluent Other	Well Cas <u>I.D. (inct</u> 2.0 4.0 6.0	
DELIU IO MAIEU: + 10 (III) MA	ATER COLUMN: 5.0	A_(ft.) MINIMUM PURG (ft.) (3 or 4/WCV): 5/(gal) ACTUAL VOLUM	(leal)
Volume TIME (GAL) ((GAL) 0915 (CO) 6916 (CO) 0977 (1.0) (CO) 0918 (CO)	pH E.C. (Micromhos) 7. 22 2.78 6.78 2.79 6.83 2.65	Temperature Tur (F°) (N' 684	TU) Other
INSTRUMENT CALIBRATION			
pH/COND./TEMP.: TYPE HYPAC TYPE TYPE	UNIT# <u>9308A</u> DATE	:: 12-2-93 TIME: 0800 :: TIME:	BY: CHV
PURGE METHOD		SAMPLE ME	ГНОД
	r-DISP. BAILER ersible Pump	Bailer (Teflon/PVC/SSK_Bailer (Disposable)	C)DedicatedOther
SAMPLES COLLECTED			
SAMPLE MW-4 DUPLICATE SPLIT FIELD BLANK	TIME DATE 12-2-9	_ `	NALYSES <u>PH-G/BTEX/TPH-D</u>
COMMENTS:			
SAMPLER: CA JAN AND AND AND AND AND AND AND AND AND A	PROJEC	T MANAGER ASSOCIATION OF SERVICE (\$10) 685-405	Quill-

PROJECT NAME: HERTZ- C PROJECT NO.: 6-93-5/8 DATE: DECEMBER 2		SAMPLE LOCATION I.D.: MW-5 SAMPLER: CHRIS VALCHEFF PROJECT MANAGER: MIKE GUILLIN				
CASING DIAMETER	SAMPLE TYPE	WELL VOL	UMES PER UNIT			
2* <u>X</u> 4* Other	Ground Water X Surface Water Treat. Influent Treat. Effluent Other	Well Casing <u>I.D. (inches)</u> 2.0 4.0 6.0				
DEPTH TO PRODUCT: NA (ft.) DEPTH TO WATER: 436 (ft.) DEPTH OF WELL: 10.84 (ft.)	WATER COLUMN: 6.4	(ft.) MINIMUM PURGE V (ft.) (3 or AWCV): 3.06 (gal) ACTUAL VOLUME P	17 / / / / / / / / / / / / / / / / / / /			
Volume TIME (GAL) 1025 & O 1027 1.00 1029 2.00 1032 3.00	pH F.C. (Units) (Micromhos) 7.93 1.66 7.34 3.16 7.35 3.26	Temperature Turbid (NTU) 66.5 67.2 69.2	Other CLGAR			
pH/COND./TEMP.: TYPE_HY TURBIDITY: TYPE	DAC UNIT# <u>9308A</u> DAT UNIT# DAT	E: <u>12-2-93</u> TIME: <u>0800</u> E: TIME:	BA: GHA			
PURGE METHOD Displacement PumpBailer (Teflon/PVC/SS)S	Other-DISP. BAILER. Submersible Pump	SAMPLE METHOBailer (Teflon/PVC/SS) _K_Bailer (Disposable)	DDDedicatedOther			
SAMPLES COLLECTED SAMPLE SAMPLE DUPLICATE SPLIT FIELD BLANK COMMENTS:	TIME DATE 12.2-0		YSES -G/BTEX/TPH-D			
SAMPLER: White I'	PROJECT CAS 120	CT MANAGER	2 (510) (87-5323			

4000 Nelson, Avenue, Sunte I

SAMPLE COLLECTION LOG

1ax 510-485-5323

Phone (510) 685-4013

PROJECT NAME: HERTZ- (PROJECT NO.: DECEMBER 2,	DAKLAND 1993	SAMPLE LOCATION I.D.: MW-6 SAMPLER: CHRIS VALCHEFF PROJECT MANAGER: MIKE GUILLIN					
CASING DIAMETER	SAMPLE TYPE	WE	LL VOLUME	S PER UNIT			
2*X 4* Other	Ground Water_X_Surface WaterTreat. InfluentOther	<u>I.D.</u> 2 4	I Casing (inches) 2.0 4.0 6.0	Gal/Ft. 0.1632 0.6528 1.4690			
DEPTH TO PRODUCT: NA (ft.) DEPTH TO WATER: 4.81 (ft.) DEPTH OF WELL: 11.85 (ft.)	WATER COLUMN: 7,0	<u>NA</u> (ft.) MINIMUM P → 4 (ft.) (3) or 4/WCV :1-15 (gal) ACTUAL VO	URGE VOLU): <u>3.5</u> LUME PURG	ME (gal)			
Volume (GAL) 0950 0951 0952 0950 35	pH E.C. (Units) (Micromho X1000 17.23 17.23 6.69 7.67 7.67		Turbid. (NTU)	Other			
INSTRUMENT CALIBRATION							
pH/COND./TEMP.: TYPE_#\> TURBIDITY: TYPE	<u>/DAC UNIT#93088</u> DA UNIT# DA	ATE: 12-2-93 TIME: 01 ATE: TIME:	<u>300</u> в	BY: <u>CHV</u>			
PURGE METHOD	·	SAMPLE	METHOD				
	Other-DISP BAILER Submersible Pump	Bailer (Teflon/PV _ <u>K</u> Bailer (Disposable	C/SS) _	Dedicated Other			
SAMPLES COLLECTED ID SAMPLE DUPLICATE SPLIT FIELD BLANK COMMENTS:	TIME DA 1/20 12-2	TE LAB -93 SEQUOIA	ANALYSE TP4-G/	STEX/TPH-D			
SAMPLER: Che KJULL) PRO I	ECT MANAGER M	£	·			

emond CA 94826

PROJECT NAME: HERTZ- O PROJECT NO.: DATE: DECEMBER 2, 1		SAMPLE LOCATION I.D.: MW-7 SAMPLER: CHRIS VALCHEFF PROJECT MANAGER: MIKE GUILLIN				
		· · · · · · · · · · · · · · · · · · ·	n. 19(18-E	OTCCIN		
CASING DIAMETER	SAMPLE TYPE	WEI	L VOLUMES	PER UNIT		
2" X 4" Other	Ground Water \(\sum_{\text{cond}} \) Surface Water \(\text{cond} \) Treat. Influent \(\text{cond} \) Treat. Effluent \(\text{cond} \)	Well <u>I.D.</u> 2 2. 4.	Casing (inches) G .0 0.	<u>al/Ft.</u> 1632 6528 4690		
DEPTH TO PRODUCT: NA (ft.) DEPTH TO WATER: 4.78 (ft.) DEPTH OF WELL: 10.19 (ft.)	PRODUCT THICKNESS: 1 WATER COLUMN: 5.0 WELL CASING VOLUME:	NA (ft.) MINIMUM PU 40 (ft.) (30or 4 WCV)	JRGE VOLUME): て. 6	E H (gal)		
Volume TIME (GAL) 1010	pH E.C. (Micromhos) 8.03 7.12 7.29 7.61 3.70 7.58 3.43		Turbid. (NTU)	Other		
INSTRUMENT CALIBRATION				,		
pH/COND./TEMP.: TYPE_#YC TURBIDITY: TYPE	AC UNIT# <u>93088</u> DAT UNIT# DAT	TE: <u>12-2-9</u> 3 TIME: <u>08</u> TE: TIME:	300 BY:	CHV		
PURGE METHOD	•	SAMPLE	METHOD			
	Other-DISP. BAILER ubmersible Pump	Bailer (Teflon/PVCK_Bailer (Disposable	, ,	Dedicated Other		
SAMPLES COLLECTED						
SAMPLE Mw-) DUPLICATE SPLIT FIELD BLANK	TIME DATE 12-2-		ANALYSES TP4-G/BT	ex/TPH-D		
COMMENTS:						
SAMPLER: January Suite i	PROJE	CT MANAGER Phone (510) 685-4037	Will	085-5023		

PROJECT NAME: HERTZ-C PROJECT NO.: DATE: DECEMBER 2,		SAMPLE LOCATION I.D.: MW-8 SAMPLER: CHRIS VALCHECF PROJECT MANAGER: MIKE GUILLIN							
CASING DIAMETER	SAMPLE TYPE	WELL VOL	UMES PER UNIT						
2" <u>X</u>	Ground Water Surface Water Treat. Influent Other	Well Casing <u>I.D. (inches</u> 2.0 4.0 6.0							
DEPTH TO PRODUCT: MA (ft.) DEPTH TO WATER: 5.44 (ft.) DEPTH OF WELL: 11.55 (ft.)	PRODUCT THICKNESS: 1 WATER COLUMN: 6.11 WELL CASING VOLUME:0	(ft.) MINIMUM PURGE V (ft.) (3)or 4 WCV): 998 (gal) ACTUAL VOLUME F	/OLUME 고 역약 (gal) PURGED: 굿 (gal)						
Volume (GAL) 0970	pH E.C. (Units) (Micromhos) X1000 X170 X170 X1500 X15		• •						
INSTRUMENT CALIBRATION	·								
pH/COND./TEMP.: TYPE_HY TURBIDITY: TYPE_	<u>DAC UNIT# 93088</u> DAT UNIT# DAT	TE:12-7-93 TIME: 0800 TIME:	BY CHV						
PURGE METHOD	•	SAMPLE METH	op .						
	Other-DISP. BAILER Submersible Pump	Bailer (Teflon/PVC/SS) K Bailer (Disposable)	Dedicated Other						
SAMPLES COLLECTED SAMPLE SAMPLE DUPLICATE SPLIT FIELD BLANK COMMENTS:	TIME DATE 12-2-		LYSES L-G/BTEX/TPH-D -G/BTEX/TPH-D						
SAMPLER: WWW. Sinte i	PROJE	CT MANAGER Prove (510) 685-405	12X (510) 685-50_0						

PROJECT NAME: HE'PROJECT NO.: DATE: DECEMBE			SA	SAMPLE LOCATION I.D.: MW-9 SAMPLER: CHRIS VALCHEFF PROJECT MANAGER: MIKE GUILLIN							
CASING DIAMETER		SAMPLE TYPE	•		WELL VOLUM	ES PER UNIT					
2" <u>X</u>		Ground Water_ Surface Water_ Treat. Influent_ Treat. Effluent_ Other			Well Casing I.D. (inches) 2:0 4.0 6.0	,					
DEPTH TO PRODUCT:_ DEPTH TO WATER:_ 5 DEPTH OF WELL:_ 9	<u>₩ A</u> (ft.) PRO .59 (ft.) WAT .13 (ft.) WEL	DUCT THICKNI ER COLUMN:_ L CASING VOL	ESS: <u>NA</u> (1 4,2 UME: <u>0.69</u> (ft.) MINIMUI ft.) (3)or 4 V gal) ACTUAL	M PURGE VOL VCV): <u>2. の</u> VOLUME PUR	UME (gal) GED: こング (gal)					
	•	its) (Mic	E.C. Teromhos)	emperature (F°) 27.10 23.60 23.30	Turbid. (NTU)	Other					
INSTRUMENT CALIBRA	ATION	·									
pH/COND./TEMP.: TURBIDITY:	TYPE <u>HYDAC</u> (TYPE	UNIT# <u>93083</u> UNIT#	DATE: <u>12</u> DATE:	- <u>2-93</u> TIME	: <u>0800</u> :	BY: CH✓ BY:					
PURGE M	ETHOD			SAM	PLE METHOD						
Displacement Pump Bailer (Teflon/PVC/S		DISP. BAILET		Bailer (Teflon Bailer (Dispos		Dedicated Other					
SAMPLES COLLECTED											
SAMPLE DUPLICATE SPLIT FIELD BLANK COMMENTS:	<u>ww.d</u>	TIME))(O	DATE 12-2-93	SEQUOI	ANALYS	GES /BTE*/TPH-D - -					
SAMPLER: July Atomic, Sur	Well	26.00() CA 84.870	PROJECT M	ANAGER ne (510) 685 4057	mon						

APPENDIX B

ESE STANDARD OPERATING PROCEDURE NO. 3 FOR GROUND WATER MONITORING AND SAMPLING FROM MONITORING WELLS

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. CONCORD, CALIFORNIA OFFICE

STANDARD OPERATING PROCEDURE NO. 3 FOR GROUND-WATER MONITORING AND SAMPLING FROM MONITORING WELLS

Environmental Science & Engineering, Inc. (ESE) typically performs ground-water monitoring at project sites on a quarterly basis. As part of the monitoring program an ESE staff member will first gauge the depth to water and free product (if present) in each well, then collect ground-water samples from each well. Depth to water measurements are taken by lowering an electric fiberglass tape measure into the well and recording the occurrence of water in feet below a fixed datum set on the top of the well-casing. If free-phase liquid hydrocarbons (free product) are known or suspected to be present in the well, then an electric oil/water interface probe is used to determine the depth to the occurrence of ground-water and the free product in feet below the fixed datum on the top of the well-casing. Depth to water and depth to product measurements are measured and recorded within an accuracy of 0.005-foot. The electric tape and the electric oil/water interface probe are washed with an Alconox® detergent and tap water solution then rinsed with tap water between uses in different wells.

Ground-water samples are collected from a well subsequent to purging a minimum of three to four well-casing volumes of ground water from the well, if the well bails dry prior to the removal of the required minimum volume, then the samples are collected upon the recovery of the ground water in that well to 80% of its initial static level. Ground water is typically purged from monitoring wells using either a hand-operated positive displacement pump, constructed of polyvinylchloride (PVC); a new (precleaned), disposable polyethylene bailer; or, a variable-flow submersible pump, constructed of stainless steel and Teflon[®]. The hand pumps and the submersible pumps are cleaned between each use with an Alconox[®] detergent and tap water solution followed by a tap water rinse. During the well purging process the conductivity, pH and temperature of the ground water are monitored by the ESE staff member. Ground-water samples are collected from the well subsequent to the stabilization of the of the conductivity, pH and temperature of the purge water, and the removal of four well-casing volumes of ground-water (unless the well bails dry). The parameters are deemed to have stabilized when two consecutive measurements are within 10% of each other, for each respective parameter. The temperature, pH, conductivity and purge volume measurements, and observations of water clarity and sediment content will be documented by the ESE staff member on ESE Ground-Water Sampling Data Forms.

Ground-water samples are collected by lowering a new (precleaned), disposable polyethylene bailer into the well using new, disposable nylon cord. The filled bailer is retrieved, emptied, then filled again. The ground water from this bailer is decanted into appropriate laboratory supplied glassware and/or plastic containers (if sample preservatives are required, they are added to the empty containers at the laboratory prior to the sampling event). The containers are filled carefully so that no headspace is present to avoid volatilization of the sample. The filled sample containers are then labeled and placed in a cooler with ice for transport under chain of custody documentation to the designated analytical laboratory. The ESE staff member will document the time and method of sample collection, and the type of sample containers and preservatives (if any) used. These facts will appear on the ESE Ground-Water Sampling Data Forms. ESE will collect a duplicate ground-water sample from one well for every ten wells sampled at each site. The duplicate will be a blind sample (its well designation will be unknown to the laboratory). The duplicate sample is for Quality Assurance and Quality Control (QA/QC) purposes, and provides a check on ESE sampling procedures and laboratory sample handling procedures. When VOCs are included in the laboratory analyses, ESE will include a trip blank, if required, in the cooler with the ground-water samples for analysis for the identical VOCs. The trip blank is supplied by the laboratory and consists of deionized water. The trip blank is for QA/QC purposes and provides a check on both ESE and laboratory sample handling and storage procedures. Since disposable bailers are used for sample collection, and are not reused, no equipment blank (rinsate) samples are collected.

APPENDIX C

LABORATORY REPORTS AND CHAIN OF CUSTODY DOCUMENTATION FOR GROUND WATER SAMPLES Environmental Science & Engineering, Inc. Client Project ID: 4090 Nelson Ave., Ste J

Concord, CA 94520 Attention: Mike Quillin Hertz-Oakland/6-93-5181

Sample Matrix: Water **Analysis Method:**

First Sample #:

EPA 5030/8015/8020

312-0119

Sampled: Received: Reported:

Dec 2, 1993 Dec 2, 1993

Dec 17, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Analyte Limit μg/L		Sample 1.D. 312-0120 MW-2	Sample 1.D. 312-0121 MW-3	Sample I.D. 312-0122 MW-4	Sample I.D. 312-0123 MW-5	Sample I.D. 312-0124 MW-6
Purgeable Hydrocarbons	50	N.D.	N.D.	N.D.	21,000	N.D.	280
Benzene	0.5	N.D.	N.D.	N.D.	3,500	N.D.	11
Toluene	Toluene 0.5		N.D.	N.D.	3,800	N.D.	1.0
Ethyl Benzene	Ethyl Benzene 0.5		N.D.	N.D.	640	N.D.	65
Total Xylenes	0.5	N.D.	N.D.	N.D.	2,000	N.D.	3.0
Chromatogram Pat	itern:	••			Gasoline		Gasoline
Quality Control Da	Analyte Limit μg/L 1.D. 312-0119 312-0120 312-0121 312-0122 312-0122 312-0123 312-0124 MW-6 1.D. 1.D. 1.D. 312-0121 312-0122 312-0123 312-0123 MW-6 Purgeable Hydrocarbons 50 N.D. N.D. N.D. N.D. 21,000 N.D. 280 Benzene 0.5 N.D. N.D. N.D. N.D. 3,500 N.D. 11 Toluene 0.5 N.D. N.D. N.D. N.D. 3,800 N.D. 1.0 Ethyl Benzene 0.5 N.D. N.D. N.D. N.D. 640 N.D. 65 Total Xylenes 0.5 N.D. N.D. N.D. N.D. 2,000 N.D. 3.0 hromatogram Pattern: Gasoline Gasoline uality Control Data 1.0 1.0 1.0 1.0 1.0 1.0						
Report Limit Multip	lication Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Date Analyzed:		12/10/93	12/10/93	12/10/93	12/11/93	12/10/93	12/10/93
Instrument Identific	ation:	HP-2	HP-2	HP-2	HP-5	HP-2	HP-2
		105	103	105	91	102	107

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Environmental Science & Engineering, Inc. Client Project ID:

4090 Nelson Ave., Ste J Concord, CA 94520

Attention: Mike Quillin

Sample Matrix: Analysis Method: Hertz-Oakland/6-93-5181 Sampled:

Water

EPA 5030/8015/8020

Received: Reported:

Dec 2, 1993 Dec 2, 1993 Dec 17, 1993

First Sample #: 312-0125

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 312-0125 MW-7	Sample I.D. 312-0126 MW-8	Sample I.D. 312-0127 MW-9	Sample I.D. 312-0128 DUP	
Purgeable Hydrocarbons	50	N.D.	N.D.	N.D.	N.D.	
Benzene	0.5	N.D.	N.D.	N.D.	N.D.	
Toluene	0.5	N.D.	N.D.	N.D.	N.D.	
Ethyl Benzene	0.5	N.D.	N.D.	N.D.	N.D.	
Total Xylenes	0.5	N.D.	N.D.	N.D.	N.D.	
Chromatogram Pat	tern:					
Quality Control Da	ata		 		·	
Report Limit Multip	lication Factor:	1.0	1.0	1.0	1.0	
Date Analyzed:		12/10/93	12/10/93	12/11/93	12/10/93	

HP-2

105

HP-5

91

HP-2

102

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

HP-2

103

SEQUOIA ANALYTICAL

Instrument Identification:

Surrogate Recovery, %:

(QC Limits = 70-130%)

Environmental Science & Engineering, Inc. Client Project ID: 4090 Nelson Ave., Ste J Concord, CA 94520 Attention: Mike Quillin

Sample Matrix: Analysis Method:

First Sample #:

Hertz-Oakland/6-93-5181 Water

Sampled: Received: EPA 5030/8020 Reported:

Dec 2, 1993 Dec 2, 1993 Dec 17, 1993

BTEX DISTINCTION

312-0129 Name of the contraction of the c

_	Analyte	Reporting Limit μg/L	Sample I.D. 312-0129 Trip	
	Benzene	0.5	N.D.	
	Toluene	0.5	N.D.	
	Ethyl Benzene	0.5	N.D.	
	Total Xylenes	0.5	N.D.	

Quality Control Data

Report Limit Multiplication Factor: 1.0

Date Analyzed: 12/10/93

Instrument Identification: HP-2

Surrogate Recovery, %: 104

(QC Limits = 70-130%)

Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Environmental Science & Engineering, Inc. Client Project ID: 4090 Nelson Ave., Ste J

Concord, CA 94520

Sample Matrix:

Hertz-Oakland/6-93-5181 Water

Sampled: Received:

Dec 2, 1993 Dec 2, 19933

Attention: Mike Quillin

Analysis Method: First Sample #:

EPA 3510/3520/8015 312-0119

Reported:

Dec 17, 1993

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 312-0119 MW-1	Sample I.D. 312-0120 MW-2	Sample I.D. 312-0121 MW-3	Sample I.D. 312-0122 MW-4	Sample I.D. 312-0123 MW-5	Sample I.D. 312-0124 MW-6
Extractable Hydrocarbons	50	N.D.	N.D.	N.D.	770	60	700
Chromatogram Par	ttern:				Non-Diesel Mixture (< C14)	Diesel and Discrete Peaks	Diesel and Non-Diesel Mixture (<c14)< td=""></c14)<>

Quality Control Data

						_
Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Date Extracted:	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93
Date Analyzed:	12/14/93	12/14/93	12/14/93	12/14/93	12/14/93	12/14/93
Instrument Identification:	НР-ЗА	HP-3A	НР-ЗА	HP-3B	НР-3В	HP-3B
1						

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Environmental Science & Engineering, Inc. Client Project ID:

4090 Nelson Ave., Ste J Concord, CA 94520 🖁 Attention: Mike Quillin

Sample Matrix: Analysis Method: Hertz-Oakland/6-93-5181

Water

EPA 3510/3520/8015

Sampled: Received: Reported:

Dec 2, 1993 Dec 2, 1993 Dec 17, 1993

First Sample #:

312-0125

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 312-0125 MW-7	Sample I.D. 312-0126 MW-8	Sample I.D. 312-0127 MW-9	Sample I.D. 312-0128 DUP	
Extractable Hydrocarbons	50	N.D.	54	72	N.D.	
Chromatogram Pa	ttern:		Diesel and Discrete Peak	Diesel and Discrete Peak		

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0
Date Extracted:	12/8/93	12/8/93	12/8/93	12/8/93
Date Analyzed:	12/14/93	12/14/93	12/14/93	12/14/93
Instrument Identification:	HP-3B	НР-3В	НР-ЗА	НР-ЗА

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

SEQUOIA ANALYT

1900 Bates Avenue • Suite LM • Concord, California 94520 (510) 686-9600 • FAX (510) 686-9689

Environmental Science & Engineering, Inc. Client Project ID:

Perasa a constante en estante a ferma a companio de la prima a constante transferir de la ferma de la ferma de Hertz-Oakland/6-93-5181

4090 Nelson Ave., Ste J Concord, CA 94520

Matrix: Liquid

Attention: Mike Quillin

QC Sample Group: 3120119-29

Reported:

Dec 17, 1993

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	Diesel		
			Benzene	.,,	2.0337.		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 8015		
Analyst:	J.F.	J.F.	J.F.	J.F.	K. Wimer		
<u> </u>							
MS/MSD							
Batch#:	3120455	3120455	3120455	3120455	BLK120893		
Date Prepared:	12/10/93	12/10/93	12/10/93	12/10/93	12/8/93		
Date Analyzed:	12/10/93	12/10/93	12/10/93	12/10/93	12/14/93		
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	НР-3В		
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	300 μg/L		
Matrix Spike							
% Recovery:	100	100	100	100	95		
Matrix Spike							
Duplicate %							
Recovery:	105	95	100	102	92		
Relative %							
Difference:	4.9	5.1	0.0	2.0	3.6		
men representation and the second of the second of the	ti mad etakan "Li tuli te eseka	2-3-2-11 - 2-06-21 - 7 12-13-04 - 7	watteway meeting to be dailed	Control of the Control	error i pue ne espesar o popular i propieta	Sant Sund Sund Millions	AT PAGE
LCS Batch#:	-	-	-	-	BLK120893		
Date Prepared:	-	•	-	-	12/8/93		
Date Analyzed: Instrument I.D.#:	•	-	-	-	12/ 13-14 /93		
msnumem i.D.#:	-	-	-	-	HP-3B		
LCS %							
Recovery:	•	-		-	95		
% Recovery			. <u>. </u>				_
Control Limits:	71-133	72-128	72-130	71-120	28-122		

SEQUOIA ANALYTICAL

Karen L. Enstrom Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

DATE 12-2-93	PAGE	OF	١			CHA	IN	OF	CUS	STOI	Y RE	COF	RD ·		ſ			Envi	ronmental	·
PROJECT NAME HERTZ	-OAK	CLV40		ANA:	LYSI	es T	O F	3E	PERI	FORM	ŒD	N	AT	RIX			Science &		. \	
Address <u>No. 1</u>	11RPOR	I ROAD	_		Ü										йс			Engi	neering, Ind	z.
OAKL	1200 C	<u>.4</u>	-								1		MATRIX		CONTAI:	4090	A CACORP Company Nelson Avenue		Phone (510) 685-	4053·
PROJECT NO. $6-93$			-										Ř		EĀ	Suite Conc	J ord, CA 94520		Fax (510) 685-53	77
	SAMPLED BY CHELS VALCHEFF				م	ı							X		l Ni			·	···	•
	LAB NAME SEQUOLA ANALYTICAL		و ≃ِ ا⊨	1 111	T-1167										O E F R	((RE CONTAINER	MARKS	S ZE, ETC.)	[
SAMPLE # DATE	TIME :	LOCATIO	- 	+								-		RIX						
		OAKLANC		×	メ							_	145	0	3	2101	rs, ILTR	<u> </u>	3120119	A-C
	1130		X	入	上		٠					_			3		 		0120	
	1140		<u>×</u>		<u>></u>							\downarrow	_		3				0121	
	1510		X	×					ļ <u>.</u>			\downarrow	_		3				0122	
MW-S	1500		×	X								_	\dashv		3				0123	
MW-6	1150		×	X	×				_			_	_		3				0124	
MW-7	1100		×	×	X							_	\perp		3	·			0/25	
MW-8	1050		×	X	><				-		_	_ -	_{		3				0126	1
MW-9	1110		×	2	×			<u> </u>	_		_	_			3				0/27	1
	1050		V	>	٠,		<u>-</u>		<u> </u>			1	<u> </u>	/ 	3		<u> </u>		0128	V
TRUP V		7		$ \times $								4		,	2	\$ NO	As		0129	A-1
DEL THOUTCHED BY	/cigna	+11701	RECE	TUE	D B'		· ·		+112		date		ima		32		TAT. MIME	ים חד	CONTAINE	25
RELINQUISHED BY:	(Signa	cure		777	<u>k</u>	, _{AQ}	(/ 4)	911a	CUL	=1	12-2-43	Ī	50p	1	REPOR		SPECIAL			
2.													1	RE	SULTS	TO:	REQUIREM	ENTS		
3.					-									WIL			COLD TR			
4.														@7	اللاله	•	(0000 0)			
5.																	SA	MPLE	RECEIPT	
INSTRUCTIONS TO L	ABORAT	ORY (ha	ndli	ng,	ana	alys	es	, s	tora	age	etc	.)	:				CHAIN OF	CUS	TODY SEAL	3
Cor	~ V 10 V G	الم عن	-							REC'D GOOD CONDIN/COLD										
30	· 2 w w / w									•						· .	CONFORMS	TO	RECORD	