MAY 1992 QUARTERLY MONITORING REPORT
FOR
HERTZ SERVICE CENTER
#1 AIRPORT DRIVE
OAKLAND
ALAMEDA COUNTY
CALIFORNIA

Prepared For:

THE HERTZ CORPORATION
225 BRAE BOULEVARD
PARK RIDGE, NEW JERSEY 07656-0713

* 226°

Prepared By:

ENVIRONMENTAL SCIENCE & ENGINEERING, INC. 4090 NELSON AVENUE, SUITE J CONCORD, CALIFORNIA 94520

PROJECT NO. 6-91-5228

June 4, 1992

This report has been prepared by Environmental Science & Engineering, Inc. for the exclusive use of The Hertz Corporation as it pertains to their site located at #1 Airport Drive, Oakland, California. Our professional services have been performed using that degree of care and skill ordinarily exercised under similar circumstances by other geologists and engineers practicing in this field. No other warranty, express or implied, is made as to professional advice in this report.

REPORT PREPARED BY:

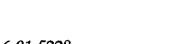
Michael E. Quillin

Senior Project Hydrogeologist

6/8/92

DATE

UNDER THE PRIMARY REVIEW AND SUPERVISION OF:


Susan Wickham

Susan S. Wickham, RG 3851

Senior Geologist

6-8-92

DATE

PROJECT NO. 6-91-5228

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	1
2.0 MAY 1992 MONITORING AND SAMPLING RESULTS	1
2.1 Ground Water Elevations	1 2
3.0 REFERENCES	3
LIST OF TABLES	
Table 1 - Summary of Ground Water and Analytical Data	
LIST OF FIGURES	:
Figure 1 - Site Plan Figure 2 - Ground water Elevations - May 1992 Figure 3 - Concentrations of Petroleum Hydrocarbons in Ground Water - May 199	2
APPENDICES	
Appendix A - Well Purging and Sampling Data Appendix B - Analytical Results and Chain of Custody Documentation	!

1.0 INTRODUCTION

This report presents the results of quarterly ground water monitoring and sampling conducted on May 13, 1991 by Environmental Science & Engineering, Inc. (ESE) at the Hertz Service Center, No. 1 Airport Drive, Oakland, Alameda County, California. The site is an active rental car service and fueling facility located at the Oakland International Airport (See Figure 1 - Site Plan).

ESE Summarized Site Investigation background in the August 1991 Quarterly Monitoring Report (ESE, 1991a) and the November 1991 Quarterly Monitoring Report (ESE, 1991b). The results of additional site investigation conducted by ESE, which included installation of a fourth ground water monitoring well at the site, were summarized in the February 1992 Quarterly Monitoring Report (ESE, 1992).

2.0 MAY 1992 MONITORING AND SAMPLING RESULTS

2.1 Ground Water Elevations

ESE measured ground water levels in site wells and calculated ground water elevations relative to mean sea level (MSL). The results are presented in Table 1 - Summary of Ground Water Elevation and Analytical Data. These data show that ground water elevations rose in three of the four wells (MW-2, MW-3, and MW-4) by as much as 0.8 feet relative to the previous monitoring event. Field documentation for water level measurements, including well purging results, are presented Appendix A - Well Purging and Sampling Data.

Ground water elevations for the current monitoring event are contoured in Figure 2 -Ground Water Elevations. These results demonstrate that the ground water gradient is oriented generally southwest in the vicinity of well MW-2, shifting to a more westerly direction along the southwestern site margin in the vicinity of wells MW-1, MW-3, and MW-

4. Overall, the site gradient is oriented generally west-southwest, with an approximate

magnitude of 80.6 feet/mile (0.015 ft/ft). These findings are generally consistent with historical results.

2.2 Ground Water Chemistry

Ground water samples were collected from each of the wells after they were purged of approximately four casing volumes (See Appendix A). Samples were analyzed by Curtis & Tompkins, Ltd. for Total Petroleum Hydrocarbons as Gasoline (TPH-Gas) and Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) using EPA Method 5030/8020 (modified). Current analytical results are summarized with historical data in Table 1 and graphically presented in Figure 3 - Concentrations of Petroleum Hydrocarbons in Ground Water. The laboratory report and chain of custody documentation are presented as Appendix B - Analytical Results and Chain of Custody documentation. The data presented in Table 1 show that concentrations of petroleum hydrocarbons in Well MW-4 increased significantly relative to February 1992 findings. The concentration of TPH-Gas increased almost 10-fold and the Benzene concentrations increase by a factor of almost four during the interval. Concentrations of petroleum hydrocarbons remained at their historically nondetectable levels for wells MW-1, MW-2, and MW-3. These findings tend to confirm that the origin of petroleum hydrocarbons in ground water is in the vicinity of the fuel dispensers and former product lines, and indicate that hydrocarbons may have been flushed from the capillary zone due to the noted increases in ground water levels near well MW-4. These findings also suggest that, based on the historical preferred direction of ground water flow, there is the potential for off-site migration to the west.

For project quality assurance and quality control (QA/QC) purposes, ESE collected a duplicate sample from well MW-4 and a trip (travel) blank and had them analyzed for TPH-Gas and BTEX. Results for sample MW-4 and its duplicate (DUP; Table 1) can be compared using relative percent differences (RPDs). For TPH-Gas, Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX), the RPDs between the two samples were 1.6, 2.9, 0.0, 7.3, and 0.0, respectively. These results are considered excellent agreement between ground water samples, and indicative that ESE's sample collection procedures were consistent and in accordance with standard practices. The trip blank (TRIP; Table 1),

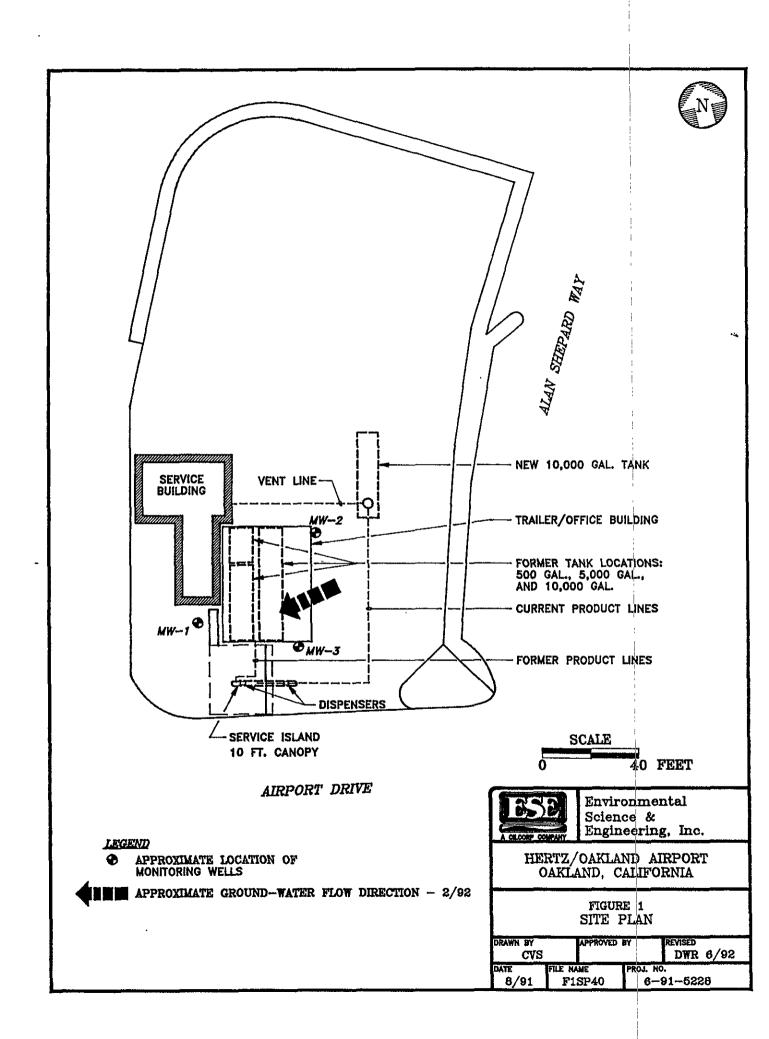
collected as a means of evaluating sample handling and transport procedures, showed nondetectable concentrations for all analytes. This indicates that general sample handling had transport methodology used by ESE and Curtis & Tompkins did not result in contamination of samples with petroleum hydrocarbons.

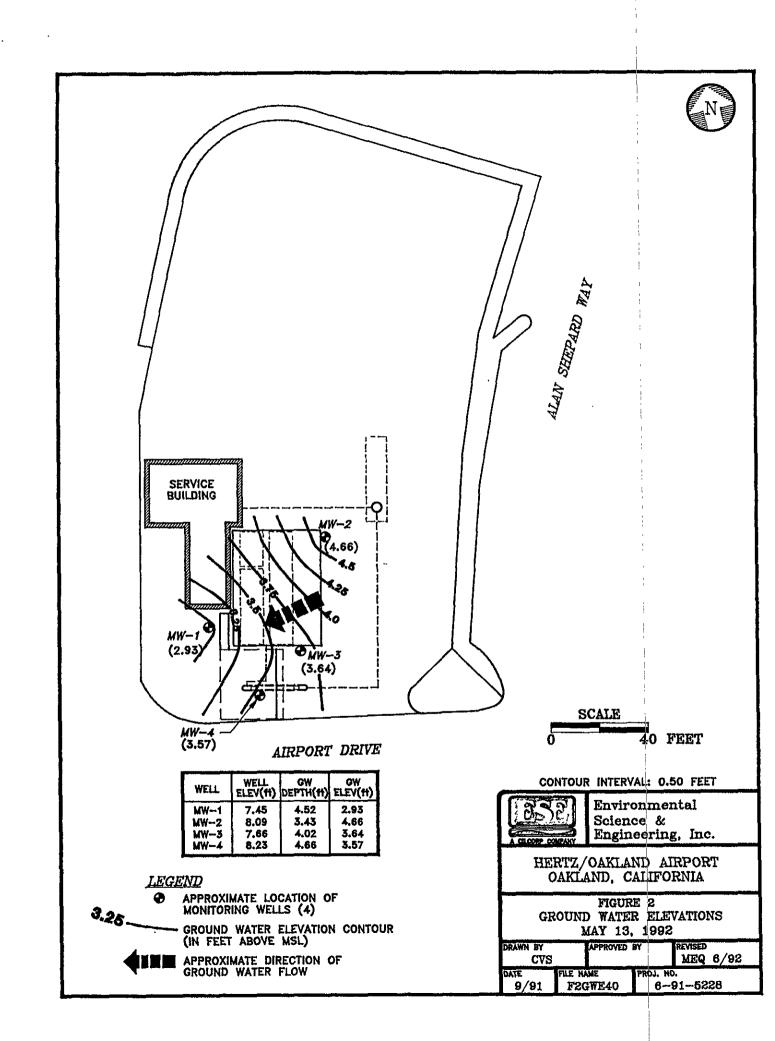
3.0 REFERENCES

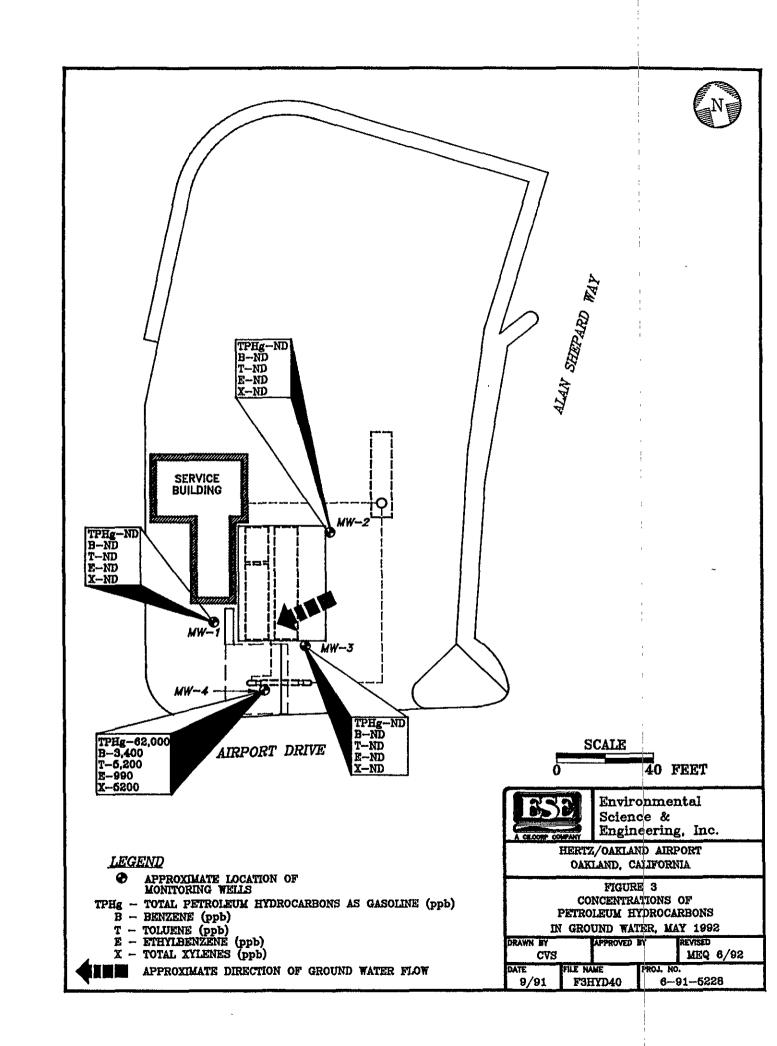
- Environmental Science & Engineering, Inc. (ESE), 1991, August 1991 Quarterly Monitoring Report for Hertz Service Center, #1 Airport Drive, Oakland, Alameda County, California, September 16, 1991.

TABLE 1
SUMMARY OF GROUND-WATER ELEVATION AND ANALYTICAL DATA HERTZ/OAKLAND AIRPORT, OAKLAND, CALIFORNIA

GROUND WATER Ground-		Metals (ppm)		Oil	Total Petroleum Hydrocarbons (ppb)						Purgeable	Semi- Volatile					
Date	Well	Elevation (feet	cq		· ·	_	Zn	&	as Gasoline	as Keros ene	as Diesel	8	T	E	x	Halocarbons (EPA 8010) (ppb)	Organics (EPA 8270) (ppb)
05/13/92	MW-1	2.93							ND			ND	ND	ND	ND		
,,	MV-2	4.66							ON		\	ND	В	NO	ND	ł	
	MW-3	3.64			Not				ND			ND	ND	ND	ND		
	MW-4	3.57] ,	Ana	lyz	ed			62,000			3400		990	5200		
	DUP		i		-				61,000			3300	5200	920	5200		
	TRIP								ND			ND	ND	ND	ND		
02/18/92	MW-1	3.06			,				ND		ND	ND	ND	ND	ND		
	MW-2	3.86	Not				ND		ND	ND	ND	ND	ND				
	MW-3	2.92	Ι.	Analyzed				ND		ND	ND	ND	ND	ND			
	MW-4	3.43							6,600		ND	910	1900	280	1700		
11/12/91	MW-1	3.06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	att ND	all ND
	MW-2	3.86	ND			ND			ND	ND	52 ∔	ND	ND	ND	ND	all ND	all ND
	MW-3	2.92	7.2						ND	ИD	ND.	ND	ND	ND	ND	all ND	all ND
08/20/91	MW-1	2.30		_	all	ND		ND	ND	ND	ND	ND	ND	ND	ND	all ND	all ND
	MW-2	4.09			all	ND		ND	ND	ND	ND	ND	ND	ND	ND	all ND	all ND
	MW-3	3.06		all ND			ND	ND	ND	ND	ND	ND	ND	ND	all ND	all ND	
12/22/89	MW-1	2.9 est.						••	ND		ND	ND	ND	ND	ND	all ND	all ND
	MW-2	3.6 est.							ND		סא	ND	ND	ND	ND	all ND	all ND
	MW-3	2.7 est.	<u> </u>					ND		ND	ND	ND	ND	ND	att ND	all ND	
 11/25/88	Water	r Sample A5	fro	m e	xca	vat	ion		7,400			63	570	250	1900		


NOTES:


ND = Not detected. -- = Not Analyzed or reported. ppm = parts per million (mg/L) ppb = parts per billion (ug/L)


B = Benzene T = Toluene E = Ethylbenzene X = Xylenes

+ = Detection limit for TPH as Diesel is 50 ppb. Duplicate sample analyzed contained ND<50 ppb.

* An open scan reported two "tentatively identified compounds": (iodomethyl) benzene at 30 ppb in MW-1 and 40 ppb in MW-3; and 4-4' butylidenebis [2-(1,1-dimethyl -ethyl) 5-methyl] phenol at 20 ppb in MW-2 and MW-3. The identity and concentrations of these compounds are not considered reliable.

APPENDIX A WELL PURGING AND SAMPLING DATA

PROJECT NA	ME: <u>Herts</u> NAGER: <u>Mik</u>	Pakland	,	DATE:				
SAMPLER:				041401 E 1 0	CATION I.D.	1111:-1		
GROUNDWAT	TER:	ОТН	ER:	S	TART TIME:			
			n: Casii			η		
	ATER (FT): 4/05		OF WELL (FT):		.	10.33		
WATER ELEV	ATION (FT):	CALCU	ILATED WELL VOI	.UME (GAL):	1 o F			
ACTUAL PUR	GE VOLUME (GA	_):	MINIMUM F	URGE VOLU	ME (3 × WV):	5505.		
		FIEL	MEASUREMENT	·s				
TIME	Volume (GAL)	pH (Units)	E.C.	Temp.	Clarity & Color	Other		
2.					Cloudy			
9			*		Cloudy/Blox			
	PURGE METH	OD		SAMI	PLE METHOD	!		
Proumatic	Displacement Pur	nn Other		Bailer (Tefle	on/PVC/SS)De	dicated		
_ ,		•	(<i>/</i> s				
Baller (Teffo	on/PVC/SS)	Subme	rsible Pump	∕"pa⊪er (nisb	osable)Ot	ner		
WELL INTEGI	RITY:			· · · · · · · · · · · · · · · · · · ·		<u> </u>		
REMARKS:								
						 - -		

SIGNATURE;	10 M	2 you -	CHEC	KED BY:		!		
Oldivirion_	-/				1			
	LL CASING DIAMETI PER UNIT LENGTH	ERS		CONVERS	ION FACTORS			
/ WELL CASING	CUBIC		TO CONVERT		INTO	MULTIPLY		
I.D. (inches)	GAL/FT FT/FT		Feet of Water Lbs/Sq. Inch		s/Sq. Inch et of Water	0.4335 2.3070		
2.0	0.1632 0.0218		Cubic Feet		lions	7.4800		
4.0	0.6528 0.0873		Gallons		ers	3.7850		
6.0	1,4690 0.1963		Feet Inches		eters entimeters	0.3048 2.5400		

	OTHER: CLIENT: SAMPLE OTHER: CASING DIAME DEPTH OF WELL (FT): 14.25	DIFFERENCE (FT) 100 82
ACTUAL PURGE VOLUME (GAL):		
Notone to the total to a total to		
	FIELD MEASUREMENTS	
Volume pH (GAL) (Units	E.C. Temp.	Clarity & Color Other Charles Charles
PURGE METHOD Pneumatic Displacement PumpC Bailer (Teflon/PVC/SS)S	OtherBaller (T	AMPLE METHOD effon/PVC/SS)Dedicated Disposable)Other
WELL INTEGRITY:		
REMARKS:		
SIGNATURE: SELECTED WELL CASING DIAMETERS	CHECKED BY:	ERSION FACTORS
VOLUMES PER UNIT LENGTH		
WELL CASHING CUBIC LD. (Inches) GAL/FT FT/FT 2.0 .0.1632 0.0218 4.0 0.6528 0.0873 6.0 1.4690 0.1963	TO CONVERT Feet of Water Lbs/Sq. Inch Cubic Feet Gallons Feet Inches	INTO MULTIPLY Lbs/Sq. Inch 0.4335 Feet of Water 2.3070 Gallons 7.4800 Liters 3.7850 Meters 0.3048 Centimeters 2.5400

PROJECT NAM	ME: Hartz	Oaklan	<u>d</u>	DATE:		
	NAGER: M.G.	Quillin		CLIENT:_	Hesty LOCATION I.D. MY	1/- 3
SAMPLER:	ER:	OTHE	R:	SAMPLE	START TIME:	<u>v-3</u>
anconomin						
CASING ELEV	ATION (FT):				TER: 2" 4" 0	_
DEPTH TO WA	ATER (FT): <u>{/a()</u>	2' DEPTH	OF WELL (FT): <u>/</u>	4,45	DIFFERENCE (FT):	10043
WATER ELEVA	ATION (FT):	CALCUI	ATED WELL VO	LUME (GAL):_ / ₆ 7	
ACTUAL PURC	GE VOLUME (GA	L):	MINIMUM F	PURGE VOI	LUME (3 x WV):\$	w 5
		FIELD	MEASUREMEN	rs		
TIME	Volume (GAL)	pH (Units)	E.C.	Temp.	Clarity & Color	Other
					Veus	
			4			
9					Cloudy / Yellow	
	PURGE METH	OD		SA	MPLE METHOD	
Pneumatic I	Displacement Pu	mpOther		Bailer (Te	eflon/PVC/SS)Dec	licated
Bailer (Teflo	on/PVC/SS)	Submers	sible Pump	Bailer (Di	isposable)Oth	er
WELL INTEGE	RITY:			·,		
REMARKS:						
					,	
						
		•	<u> </u>			
SIGNATURE;	2 the	Mars	CHEC	KED BY:_		! !
	,					i I
	LL CASING DIAMET PER UNIT LENGTH	ERS		CONVE	RSION FACTORS	1
WELL CASING	CUBIC		TO CONVERT		ОТИ	MULTIPLY
I.D. (Inches)	GAL/FT FT/FT		Feet of Water Lbs/Sq. Inch		Lbs/Sq. Inch Feet of Water	0.4335 2.3070
2.0	0.1632 0.0218		Cubic Feet		Gallons	7.4800
4.0	0.6528 0.0873		Gallons		Liters	3.7850
6.0	1.4690 0.1963		Feet Inches		Meters Centimeters	0.3048 2.5400

PROJECT NAME: Harty	Oakland		DATE: CLIENT:_ <i>H</i> .	· —	
PROJECT MANAGÉR: MOKO SAMPLER:	Chaillin			DEATION I.D. M	111-4
GROUNDWATER:	OTHE	R:		TART TIME:	4
CASING ELEVATION (FT):		CASIN			OTHER
DEPTH TO WATER (FT): 466	6 DEPTH	OF WELL (FT):	<u>, 83</u> 1	DIFFERENCE (FT)	3.17
WATER ELEVATION (FT):	CALCUI	LATED WELL VOLU	JME (GAL):	05	
ACTUAL PURGE VOLUME (GA	\L):	MINIMUM PL	JRGE VOLL	ير) JME (3 x WV) :	2.5 5.6
	FIELD	MEASUREMENTS	5		
Volume (GAL)	pH (Units)	E.C.	Temp.	Clarity & Color	Other
				<u> </u>	
3				Black	
PURGE MET	dop		SAM	PLE METHOD	
Pneumatic Displacement Pu	mp _Other		_Bailer (Tefl	on/PVC/SS)D	edicated
Baller (Teflon/PVC/SS)	Submers	sible Pump	Bailer (Disp	oosable)O	ther
WELL INTEGRITY:					
REMARKS: Duplica	te				
<u>, </u>	· · · · · · · · · · · · · · · · · · ·	·····			<u> </u>
					<u> </u>
			<u>,</u>	<u> </u>	<u> </u>
SIGNATURE: 1 QU	Maria	CHECK	ŒD BY:		
SELECTED WELL CASING DIAMET	rers		CONVERS	SION FACTORS	
<i>)</i>		TO CO		4270	A AL II PRIPER CA
/ WELL CASING CUBIC I.D. (inches) GAL/FT FT/FT		TO CONVERT Feet of Water	Lb	INTO s/Sq. Inch	0.4335
	1	Lbs/Sq. Inch	Fe	et of Water	2.3070
2.0 0.1632 0.0218		Cubic Feet Gallons		allons ters	7.4800 3.7850
4.0 0.6528 0.0873 6.0 1.4690 0.1963		Feet		eters	0.3048
		Inches	C	entimeters	2.5400

Curtis & Tompkins, Ltd., Analytical Laboratories,

MAY 2 6 1992

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 480-0900

DATE RECEIVED: 05/13/92 DATE REPORTED: 05/20/92

LABORATORY NUMBER: 107389

CLIENT: ENVIRONMENTAL SCIENCE & ENGINEERING

PROJECT ID: 6-91-5228

LOCATION: HERTZ

RESULTS: SEE ATTACHED

Revi

Berkeley Wilmington

Los Angeles

LABORATORY NUMBER: 107389 DATE SAMPLED: 05/12/92

CLIENT: ENVIRONMENTAL SCIENCE & ENGINEERING DATE RECEIVED: 05/13/92

PROJECT ID: 6-91-5228

LOCATION: HERTZ

DATE ANALYZED: 05/15,18/92

DATE REPORTED: 05/20/92

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions
TVH by California DOHS Method/LUFT Manual October 1989
BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE	BENZENE	TOLUENE	ETHYL BENZENE	TOTAL XYLENES
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
~						• - '
107389-1	MW-1	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
107389-2	MW - 2	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
107389-3	MW-3	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
107389-4	MW - 4	62,000	3,400	5,200	990	5,200
107389-5	DUP	61,000	3,300	5,200	920	5,200
107389-6	TRIP	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY

RPD, % <1
RECOVERY, % 102

DATE ///av / 12/52 PAGE / OF/		CHAIN OF	CUSTO	DY REC	ORD			Environmental
PROJECT NAME HETE	ANALYS	ES TO BE	PERFOR	MED	ED MATRIX			Science &
ADDRESS #/ Hisport Dive.	oline				Ī	ис		Engineering, Inc.
Oakland	50/				M A	M W	f cycent cons	(415) 685-4053
PROJECT NO. 6-5/-5-278					ATRIX	NU M T A I	 4090 Nelson Avenue Suite J Concord, CA 94520 	•
SAMPLED BY Yaul Marshen	100				X	I NH		Fax (415) 645-5323
LAB NAME Curtis + Tompkins	1/2					O E F R	RI	EMARKS
SAMPLE # DATE TIME LOCATION	1/20				MATE	RIX S	(CONTAINE)	R, SIZE, ETC.)
MW-1 5/12 16/6 Cakkand	XX				Wal	45-3	Lac-3	
MW-2 / /621	XX					3		
MW-3 / 1628	XX					3		
MW-4 / 1628 /	XX					3		
1633	XX					2		
750	$\times X$,			
			<u> </u>					
REBINQUISHED BY: (signature) F	RECEIVED B	Y: (signa	ture)	date	time	W	TOTAL NUMB	ER OF CONTAINERS
	7- 61	7151		513/91 51392		REPORT	TO: REQUIRE	SHIPMENT MENTS
26 Heil R. Garrett	JMy-9-4	WMM		3 19 70	12007	Mike	TO. Kagorka	
3.		<u></u>					,	
4				Qui//1		AMPLE RECEIPT		
5.		2311767 7	torace	1 <u> </u>	١.			F CUSTODY SEALS
INSTRUCTIONS TO LABORATORY (har	idillig, an	aries, s	corage	, =	<i>,</i> •	- ,		OOD CONDIN/COLD
	CONFORMS TO RECORD							
		<u> </u>					CONFORM	3 TO KECOKD