

RECEIVED

1:22 pm, Mar 24, 2008

Alameda County
Environmental Health

5900 Hollis Street, Suite A, Emeryville, Calfornia 94608 Telephone: 510·420·0700 Facsimile: 510·420·9170 www.CRAworld.com

February 6, 2008

Mr. Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Subsurface Investigation Report

Shell-branded Service Station 1285 Bancroft Avenue San Leandro, California SAP Code 136017 Incident No. 98996067 ACHCSA file No. RO0000156

Dear Mr. Wickham:

Conestoga-Rovers & Associates, Inc. (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent groundwater and soil investigations at the subject site. CRA followed the scope of work proposed in our May 22, 2007 *Site Investigation Work Plan* which was approved in the Alameda County Health Care Services Agency (ACHCSA) June 15, 2007 correspondence. CRA performed the work in accordance with ACHCSA and San Francisco Bay Regional Water Quality Control Board (SF-RWQCB) guidelines.

The objectives of this work were to:

- Assess residual soil concentrations near the underground storage tank (UST) complex; and
- Further delineate the vertical and horizontal extent of groundwater impact on and off site in the direction of groundwater flow.

EXECUTIVE SUMMARY

• All four proposed CPT borings were completed. One of four proposed soil borings (SB-16) was completed. Three other proposed soil borings could not be completed due to underground utilities, pea gravel, concrete, and/or cobbles obstructing the locations. No other locations in the vicinity of the UST complex are feasible for drilling. Previous borings BH-A (MW-1), BH-B (MW-2), BH-C (MW-3), BH-D, MW-5, and SB-8, along with SB-16, have thoroughly characterized the area surrounding the UST complex.

Equal Employment Opportunity Employer

- Soil samples from SB-16 contained TPHg, ethylbenzene, xylenes and MTBE at concentrations below SF-RWQCB ESLs.
- Groundwater samples were attempted at first-encountered groundwater and at two deeper intervals from each CPT boring.
- Only two of the groundwater grab sampling attempts from the shallow interval (less than 50 fbg) resulted in sample recovery after waiting up to 60 minutes for recharge. The single concentration above non-drinking water SF-RWQCB ESLs was TPHg in on-site boring CPT-2. The laboratory noted that the sample chromatographic pattern for this analysis was not consistent with gasoline.
- Two deeper groundwater samples were collected from each CPT location, resulting in horizontal and adequate vertical groundwater delineation to below non-drinking water SF-RWQCB ESLs.
- Destruction of well MW-3, that screens more than one coarse-grained zone, would be prudent.
- The chloroform and PCE concentrations detected in up-gradient boring CPT-1 and historically in cross-gradient wells MW-7 and MW-8 likely indicate a regional impact with a source up gradient of the site.

SITE DESCRIPTION AND BACKGROUND

Site Location: The operating Shell-branded service station is located at the northwest corner of Bancroft and Estudillo Avenues in San Leandro, California (Figures 1 and 2). There are three underground storage tanks (USTs) on site, two dispenser islands, and one station building with three automobile service bays.

Project History: A detailed chronologic description of historical investigative and remedial activities at this site is provided in Attachment A.

Surrounding Land Use: The area surrounding the site is primarily residential.

Local Topography: The site is approximately 65 feet above mean sea level and slopes very gently to the west, toward San Francisco Bay. San Leandro Creek is located approximately 500 feet northwest of the site.

Local Geology: Sediments beneath the site are Quaternary alluvial deposits derived from sedimentary and igneous rocks of the Diablo Range from the Holocene formation. The Hayward Fault Zone lies approximately one mile east of the site. The site is underlain by low estimated permeability sediments (clay and silt) with interspersed moderate estimated permeability sediments.

Groundwater: Groundwater beneath the site typically flows in a south-southwesterly direction with seasonal variations to both the southwest and northwest. Depth to water beneath the site has historically ranged between 23 and 46 fbg.

INVESTIGATION SUMMARY

A summary of the investigation scope of work is listed below:

- *CPT Investigation:* CRA oversaw the drilling and sampling of cone penetration testing (CPT) borings CPT-1 through CPT-4. CPT provided tip resistance, sleeve friction, and dynamic pore pressure data, which were electronically recorded on a continuous log from which the subsurface lithology and stratigraphy were inferred. The depth and number of discrete groundwater samples collected were based on the CPT data evaluation. The CPT boring locations are presented on Figure 2. CRA's standard field procedures for CPT drilling are included in Attachment B.
- *Hollow-Stem Auger Investigation:* CRA oversaw the drilling and sampling of soil boring SB-16 east of the UST complex. The soil boring location is presented on Figure 2. CRA's standard field procedures for hollow-stem auger drilling and soil sampling are included in Attachment B.

Details of these investigations are provided in the following sections.

INVESTIGATION RESULTS

CRA Personnel Present: CRA field geologists Peter Schaefer and Carmen Rodriguez directed the CPT field activities and Carmen Rodriguez directed the hollow-stem auger (HSA) field activities, under the supervision of California Professional Geologist Ana Friel.

Permits: CRA obtained Alameda County Public Works Agency Water Resources Well Permit W2007-0991 for advancement of CPT and HSA borings. An access agreement was reached with the San Leandro Unified School District for location CPT-1. Attachment C includes a copy of the permit and access agreement.

Drilling Company: Gregg Drilling and Testing, Inc. of Martinez, California (C-57 License #485165).

Drilling Dates: CPT: November 14 and 16, 2007, and January 3, 2008. HSA: November 16, 2007.

Drilling Methods: Direct push CPT and HSA.

Number of Borings: Four CPT borings (CPT-1 through CPT-4) and one hollow-stem auger boring (SB-16) were drilled. An additional three HSA borings were attempted around the UST complex, but were abandoned at less than 3 fbg due to underground utilities, pea gravel, concrete, and/or cobbles obstructing the locations. The boring specifications and soil types encountered are described on the CPT and boring logs contained in Attachment D. The boring locations are shown on Figure 2 and cross sections presented as Figures 3 and 4.

Boring Depths: CPT borings CPT-1 through CPT-4 were advanced to 90 fbg and hollow-stem auger boring SB-16 was advanced to 47 fbg.

Groundwater Sample Intervals: Hydropunch[®] samples were attempted in CPT-1 at 44-48 fbg, 56-60 fbg, and 78-82 fbg; in CPT-2 at 45-49 fbg, 56-60 fbg, and 75-79 fbg; in CPT-3 at 36-40 fbg, 53-57 fbg, and 75-79 fbg; and in CPT-4 at 37-41 fbg, 56-60 fbg, and 79-83 fbg. Groundwater grab sampling attempts from CPT-3 at 36-40 fbg and CPT-4 at 37-41 fbg resulted in no sample recovery after waiting up to 60 minutes for recharge.

Soil Disposal: CRA temporarily stored soil generated during the field activities on site in 55-gallon drums, sampled the soil, and profiled it for disposal. Attachment E includes the laboratory report. Disposal documentation has not yet been received by CRA, but will be available at a later date, upon request.

FINDINGS

Soil: Seven soil samples were collected for chemical analysis from soil boring SB-16 at 10.5, 20, 21.5, 26, 30, 37.5, and 40.5 fbg. The soil sample from 37.5 fbg had the highest concentrations detected during the field investigation activities.

Table 1 summarizes the soil analytical data, TPHg, benzene, and MTBE results are presented on Figure 5, and the laboratory analytical report is presented in Attachment E.

Groundwater: Grab groundwater samples for chemical analysis were collected from CPT borings CPT-1

through CPT-4 at two 4-foot intervals between 53 and 83 fbg. Sampling was attempted at one shallow interval in CPT-1 (44-48 fbg), CPT-2 (45-49 fbg), CPT-3 (36-40 fbg,), and CPT-4 (37-41 fbg,). No water entered the Hydropunch® apparatus at the shallow interval in CPT-3 and CPT-4 and after 20 - 60 minutes and sampling was abandoned.

Tables 2 and 3 summarize the groundwater analytical data, TPHg, benzene, MTBE, and PCE results are presented on Figure 5, and the laboratory analytical report is presented in Attachment E.

CONCLUSIONS

The purpose of this investigation was to determine the horizontal and vertical extent of soil and groundwater impact both on and off the site, and to assess residual soil concentrations near the UST complex. The investigation consisted of advancing four CPT borings for groundwater grab sampling and advancing one HSA boring for soil sampling in the vicinity of the UST complex.

Analyses of soil samples from SB-16 confirm the presence of a small amount of residual source material in vadose-zone soils near the UST complex and are much lower when compared with the data collected from nearby well MW-2 in 1992. All concentrations were below non-drinking water SF-RWQCB Environmental Screening Levels (ESLs, reference SF-RWQCB November 2007 document).

Groundwater grab sample analyses were below SF-RWQCB ESLs with the exception of TPHg in CPT-2 at 45-49 fbg. The laboratory noted that the sample chromatographic pattern for this analysis was not consistent with gasoline.

Based on the results from this investigation, the horizontal extent of petroleum hydrocarbons and fuel oxygenates has been defined at the site, and the vertical extent is adequately defined below SF-RWQCB ESLs.

PCE and chloroform were detected in all of the CPT borings. Historical detections in the majority of onsite and off-site wells (including cross-gradient wells MW-7 and MW-8, see CRA's January 30, 2008 Groundwater Monitoring Report – Fourth Quarter 2007) and in the up-gradient boring CPT-1 indicate a probable regional impact. The consistent westerly groundwater gradient seems to indicate an up-gradient source to the east of the site. Note that none of the volatile organic compounds (VOCs) analytical detections exceed SFRWQCB-ESLs.

CRA notes that monitoring well MW-3 is screened over two coarse-grained intervals and may provide a preferential pathway for contaminant migration.

RECOMMENDATIONS

This investigation succeeded in delineating the horizontal and vertical extent of petroleum hydrocarbons and fuel oxygenates in groundwater and assessing soil impacts in the area of the UST complex. PCE and chloroform impact to groundwater appears to be regional, with a source up gradient of the subject site. No VOC concentrations exceed SF-RWQCB ESLs. No additional investigation is warranted.

CRA recommends that monitoring well MW-3, screened over two coarse-grained intervals which may provide a preferential pathway for contaminant migration, be properly destroyed by pressure grouting. Due to the concentration of utilities and piping in this area it does not appear to be feasible to replace the well.

Upon agency concurrence with these recommendations, CRA will prepare a detailed work plan.

CLOSING

If you have any questions regarding this submittal, please call Peter Schaefer at (510) 420-3319 or Ana Friel at (707) 268-3812.

Sincerely,

Conestoga-Rovers & Associates, Inc.

Peter Schaefer, PG, CEG, CHG

Acting Project Manager

Diane M. Lundquist, P.E. Professional Engineer

40

Figures:

1 - Vicinity Map

2 - Site Plan

3 - Geologic Cross Section A-A'4 - Geologic Cross Section C-C'

5 - Soil and Groundwater Data (November 2007 and January 2008)

Tables:

1 - Historical Soil Analytical Results

2 - Historical Groundwater Grab Sample Analytical Results

3 - Additional VOCs in Groundwater Grab Samples

Attachments:

A - Site History

B - Standard Field Procedures

C - Drilling Permits and Access Agreement

D - CPT Logs and Boring Logs E - Laboratory Analytical Reports

cc:

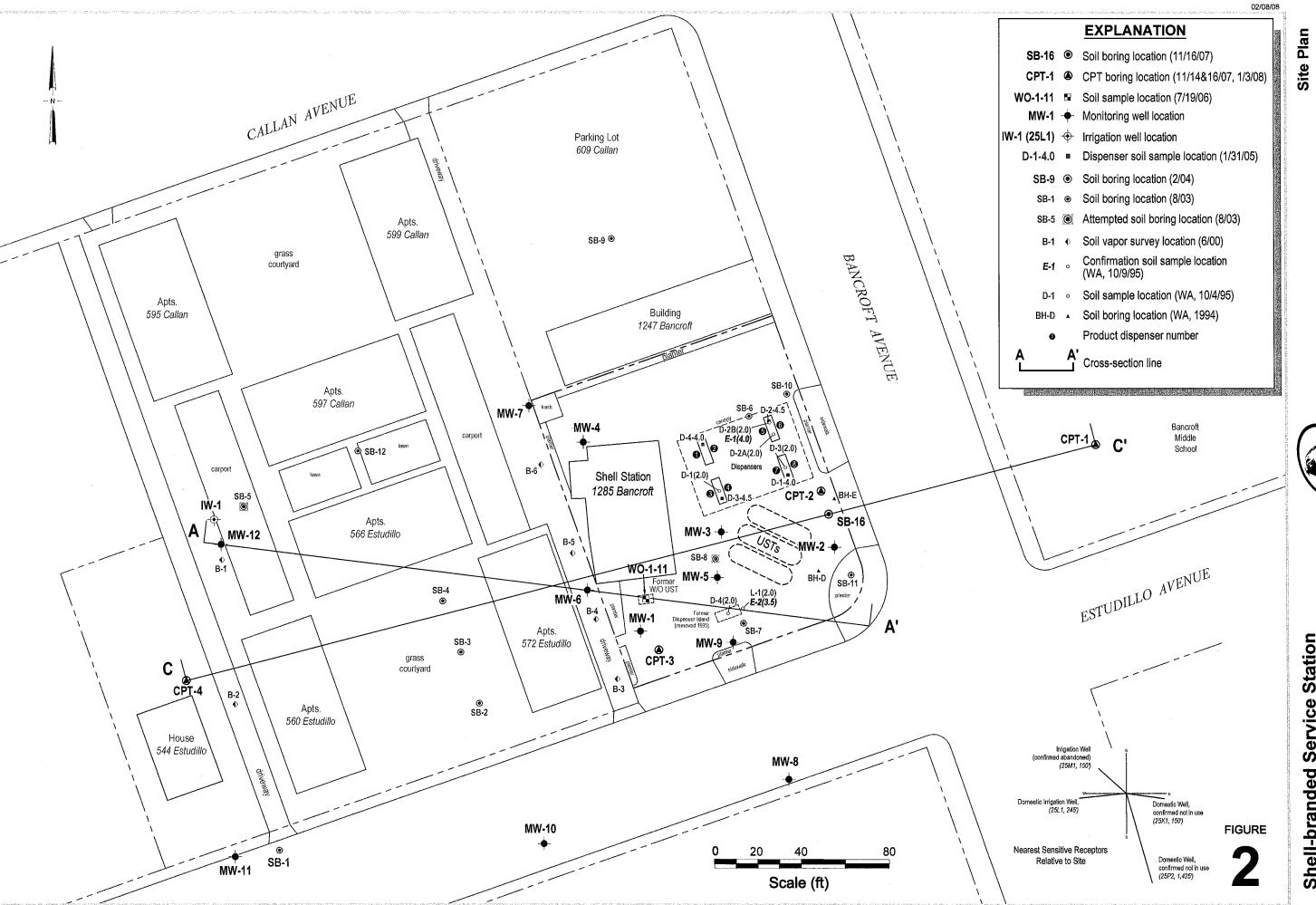
Denis Brown, Shell Oil Products US, 20945 S. Wilmington Ave., Carson, CA 90810 Michael Bakaldin, City of San Leandro, 835 East 14th Street, San Leandro, CA 94577

Ivan G. and Joanne Cornelius, 198 Juana Avenue, San Leandro, CA 94577

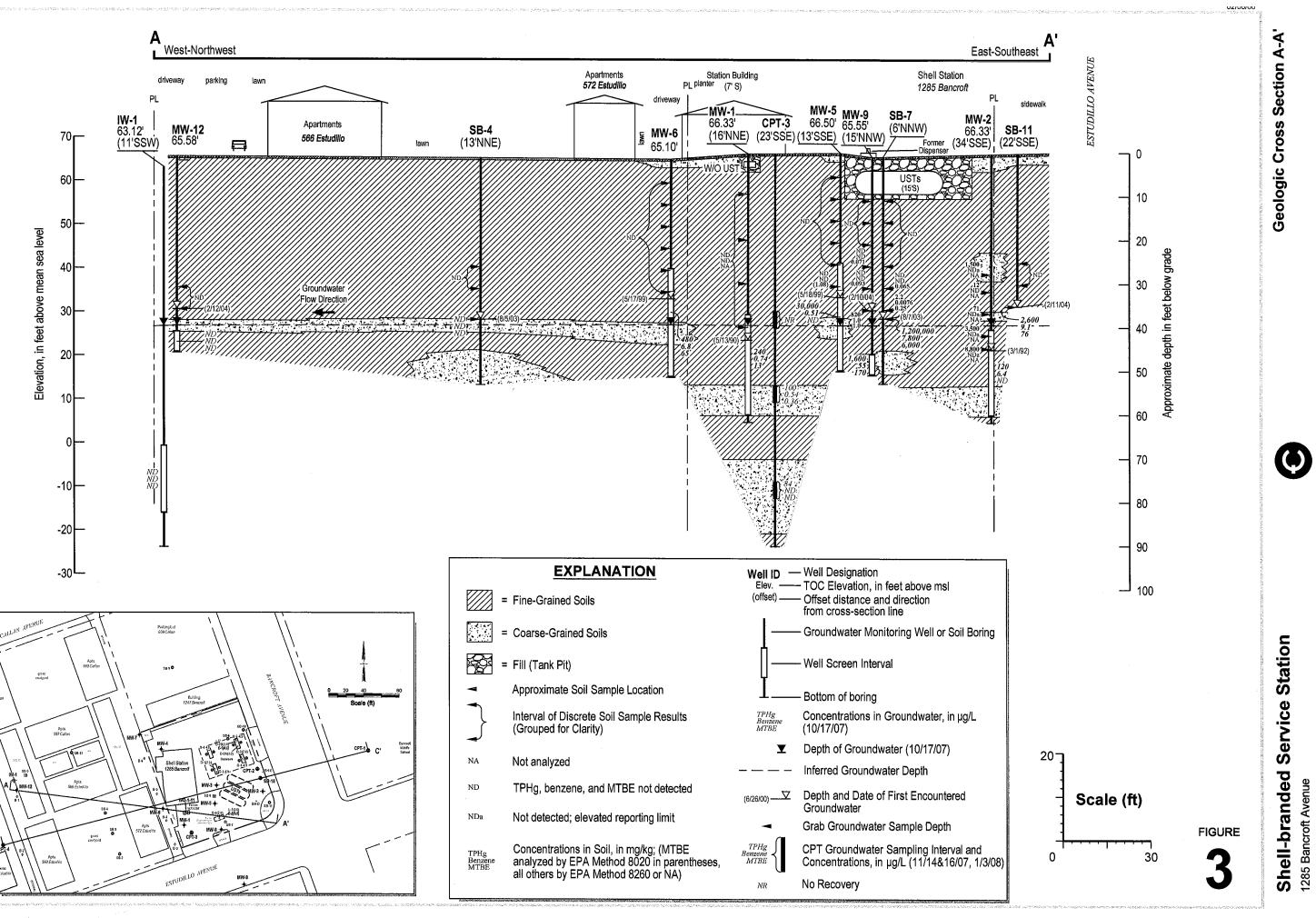
Greg Dyer, San Leandro Unified School District, 14735 Juniper Street, San Leandro, CA 94579

CRA prepared this document for use by our client and appropriate regulatory agencies. It is based partially on information available to CRA from outside sources and/or in the public domain, and partially on information supplied by CRA and its subcontractors. CRA makes no warranty or guarantee, expressed or implied, included or intended in this document, with respect to the accuracy of information obtained from these outside sources or the public domain, or any conclusions or recommendations based on information that was not independently verified by CRA. This document represents the best professional judgment of CRA. None of the work performed hereunder constitutes or shall be represented as a legal opinion of any kind or nature.

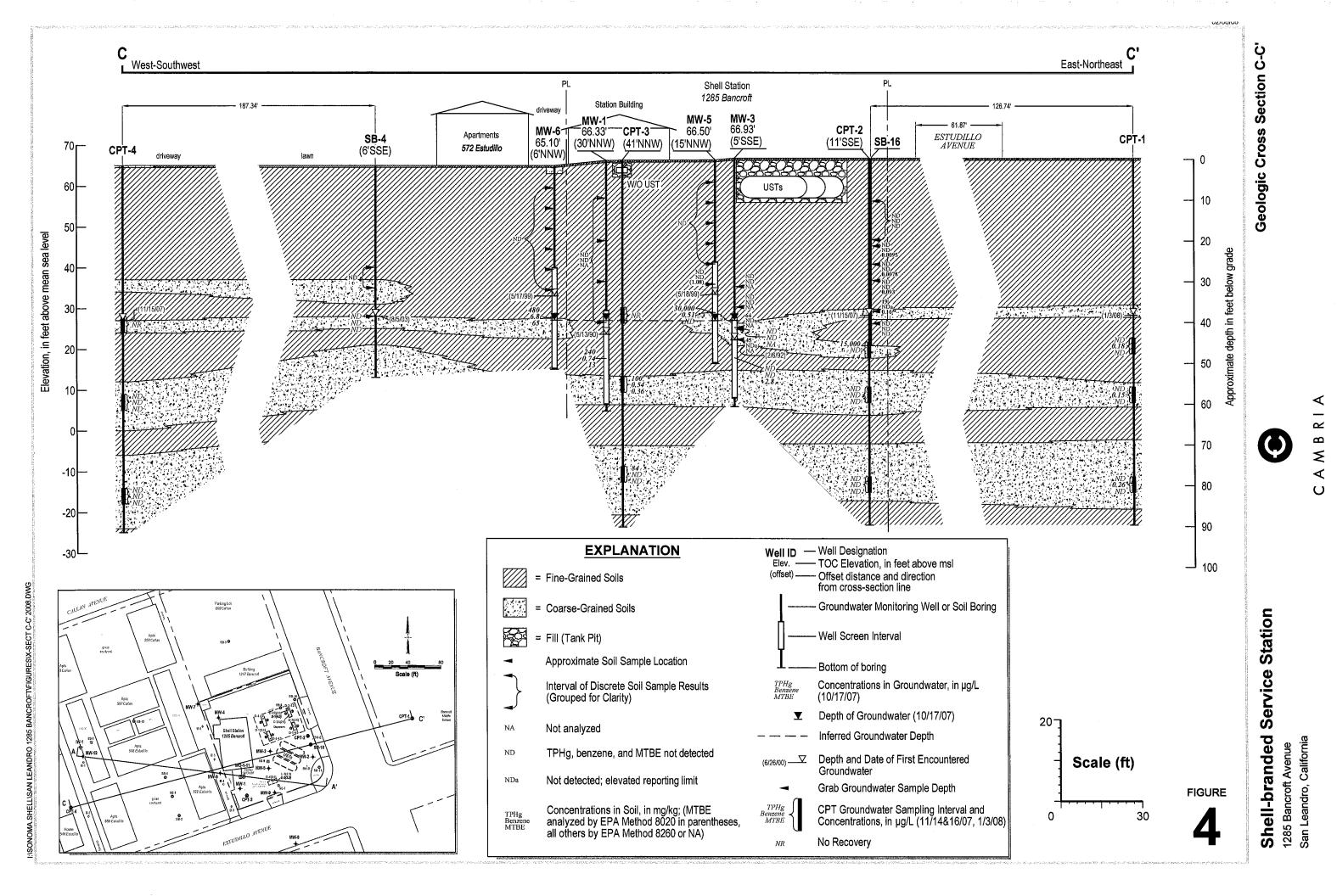
\son-s1\shared\Sonoma.Shell\San Leandro 1285 Bancroft\REPORTS\2007-Nov SIR\08 Jan CPT & HSA Report.doc


Shell-branded Service Station

1285 Bancroft Avenue San Leandro, California


SCALE : 1" = 1/4 MILE

Vicinity Map



Shell-branded Service Station

1285 Bancroft Avenue San Leandro, California

San Leandro, California

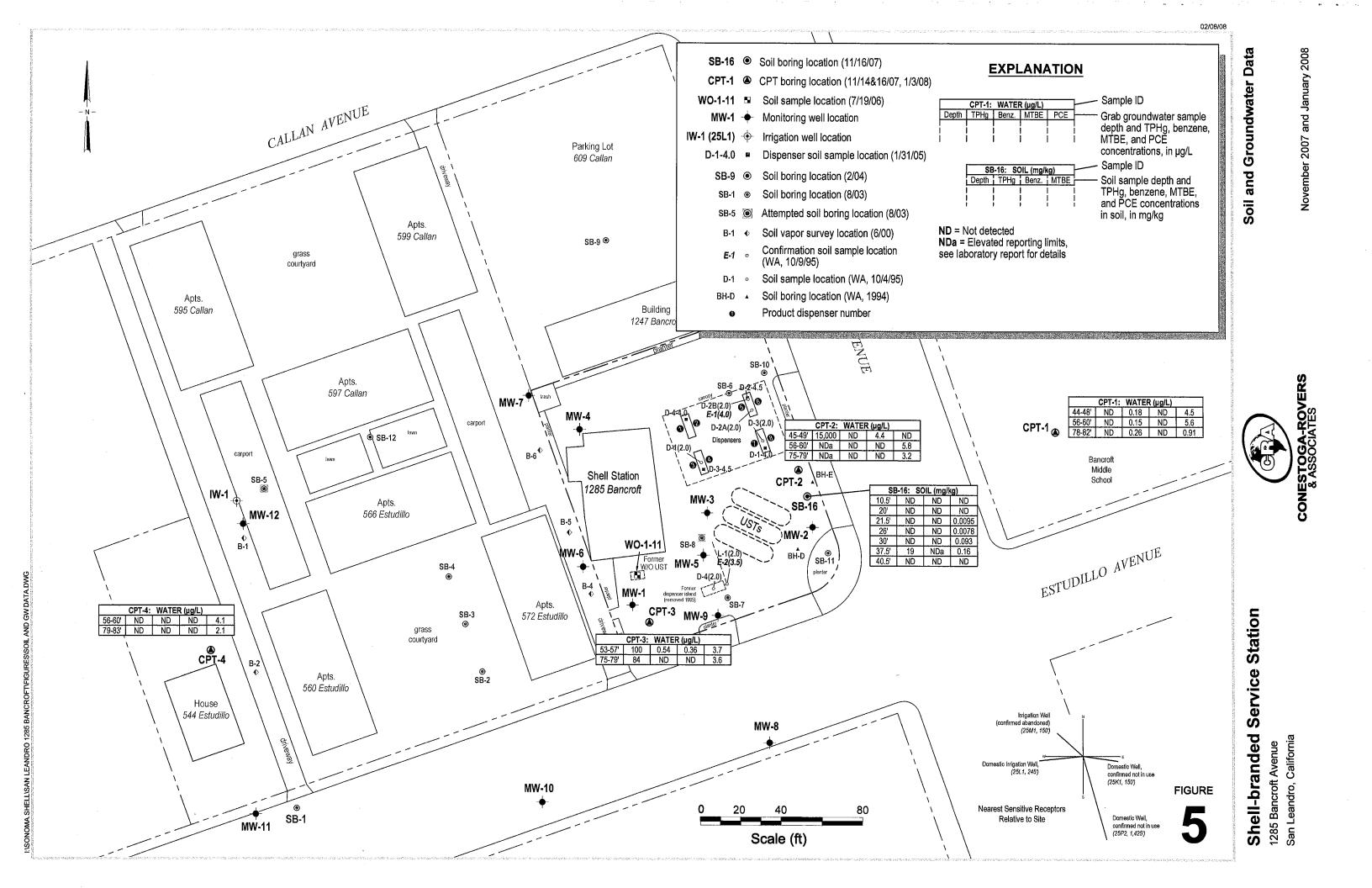


Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE (EPA 8020)	MTBE (EPA 8260)	PCE
		(fbg)					(mg/kg)				0.0020
BH-A (MW-1)	03/06/90	9.2	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			0.0020
BH-A (MW-1)	03/06/90	19.7	<1		< 0.0025	< 0.0025	< 0.0025	<0.0025			<0.0020
BH-A (MW-1)	03/06/90	29.7	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			<0.0020
BH-A (MW-1)	03/06/90	39.7	<1	1.6 ^b	< 0.0025	< 0.0025	< 0.0025	0.0057			<0.0020
BH-A (MW-1)	03/06/90	51.2	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			0.0045
BH-A (MW-1)	03/06/90	61.2	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			0.0043
BH-B (MW-2)	02/06/92	27.5	1,500	1,000°	< 0.25	< 0.25	0.82	6.9			< 0.002
BH-B (MW-2)	02/06/92	31.5	12		< 0.0025	< 0.0025	0.0090	0.058			
BH-B (MW-2)	02/06/92	36.5	71	16ª	< 0.025	< 0.025	0.056	0.21			< 0.002
BH-B (MW-2)	02/06/92	41.5	3,500		<1.25	<1.25	19	46			
BH-B (MW-2)	02/06/92	44.5	8,800	4,500°	<2.5	<2.5	72	170			< 0.002
BH-B (MW-2)	02/06/92	48.5	19		< 0.025	< 0.025	< 0.025	0.092			
BH-C (MW-3)	02/07/92	31.5	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			
BH-C (MW-3)	02/07/92	36.5	<1	<1	< 0.0025	< 0.0025	< 0.0025	< 0.0025			< 0.002
BH-C (MW-3)	02/07/92	41.5	64		< 0.025	< 0.025	< 0.025	0.25			< 0.002
BH-C (MW-3)	02/07/92	44.5	45	29ª	< 0.025	< 0.025	< 0.025	0.25			
BH-C (MW-3)	02/07/92	48.5	15		< 0.0025	< 0.0025	< 0.0025	0.60			
DII D	02/15/94	25.8	<1	<1	< 0.0025	< 0.0025	< 0.0025	< 0.0025			< 0.002
BH-D	02/15/94	27.3	<1	<1	< 0.0025	< 0.0025	< 0.0025	< 0.0025			< 0.002
BH-D					0.0075	< 0.0025	< 0.0025	< 0.0025		. -	< 0.002
вн-е	02/15/94	27.0	<1	<1 <1	0.0073	<0.0025	<0.0025	< 0.0025			< 0.002
BH-E	02/15/94	28.8	<1					'			< 0.002
BH-F (MW-4)	02/16/94	15.5	<1	<1	< 0.0025	< 0.0025	< 0.0025	< 0.0025			< 0.002
BH-F (MW-4)	02/16/94	20.5	<1	<1	10.0025	< 0.0025	< 0.0025	<0.0025			<0.002
BH-F (MW-4)	02/16/94	25.5	<1	<1	< 0.0025	< 0.0025	<0.0025	<0.0025			<0.002
BH-F (MW-4)	02/16/94	30.5	<1	<1	< 0.0025	< 0.0025	<0.0025	<0.0025 <0.0025			<0.002
BH-F (MW-4)	02/16/94	35.5	<1	<1	< 0.0025	< 0.0025	<0.0025	<0.0025 <0.0025			< 0.002
BH-F (MW-4)	02/16/94	40.5	<1	<1	< 0.0025	< 0.0025	<0.0025	<0.0025 <0.0025			< 0.002
BH-F (MW-4)	02/16/94	45.5	<1	<1	< 0.0025	< 0.0025	< 0.0025	~ 0.00∠3			-0.002

Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth	ТРНд	TPHd	Benzene	Toluene	Ethylbenzene (mg/kg)	Xylenes	MTBE (EPA 8020)	MTBE (EPA 8260)	PCE
		(fbg)			<0.0025	<0.0025	<0.0025	<0.0025			<0.002
BH-F (MW-4)	02/16/94	50.5	<1	<1	<0.0025	<0.0025 <0.0025	<0.0025	<0.0025			< 0.002
BH-F (MW-4)	02/16/94	55.5	<1	<1	< 0.0025	<0.0023	\0.0023	<0.0023			.0.002
D-1-2.0	10/04/95	2.0	1.1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			
D-1-2.0 D-2A-2.0	10/04/95	2.0	130		< 0.002	0.33	0.53	4.6			
D-3-2.0	10/04/95	2.0	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			
D-4-2.0	10/04/95	2.0	1.1		< 0.0025	< 0.0025	< 0.0025	0.0063			
L-1-2.0	10/04/95	2.0	10		0.31	0.49	< 0.0025	1.4			
212.0								•			
E-1-4ft	10/09/95	4	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			
E-2-3.5	10/09/95	3.5	<1		< 0.0025	< 0.0025	< 0.0025	< 0.0025			
MW-5-5.5	05/18/99	5.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-5-10.5	05/18/99	10.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-5-15.5	05/18/99	15.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-5-20.5	05/18/99	20.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-5-25.5	05/18/99	25.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-5-30.5	05/18/99	30.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	1.08		
MW-5-35.5	05/18/99	35.5	1.91		0.0475	< 0.00500	0.0172	0.0159	4.68	2.25	
MW-5-40.5	05/18/99	40.5	10.5		0.0279	0.486	0.179	1.02	0.0930		
MW-5-45.5	05/18/99	45.5	6.67		0.0264	0.0346	0.0298	77.0	< 0.0500		
MW-6-5.5	05/17/99	5.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-6-10.5	05/17/99	10.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-6-15.5	05/17/99	15.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-6-20.5	05/17/99	20.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-6-25.5	05/17/99	25.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-6-30.5	05/17/99	30.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500	'	
MW-6-35.5	05/17/99	35.5	273		1.12	1.31	3.10	14.2	2.58	1.31	
MW-6-40.5	05/17/99	40.5	96.1		0.665	1.07	1.25	5.51	1.31		
MW-6-45.5	05/17/99	45.5	1.83		0.0151	0.0173	0.0141	0.0875	1.47		

Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

		Depth (fbg)	TPHg ◆——	ТРНа	Benzene	Toluene	Ethylbenzene ——— (mg/kg) ———	Xylenes	MTBE (EPA 8020)	MTBE (EPA 8260)	PCE
NAXVITEE	05/17/99	5.5	<1.00		< 0.00500	<0.00500	<0.00500	< 0.00500	<0.0500		
MW-7-5.5	05/17/99	3.5 10.5	<1.00		< 0.00500	<0.00500	< 0.00500	< 0.00500	< 0.0500		
MW-7-10.5	05/17/99	10.5	<1.00		< 0.00500	<0.00500	<0.00500	< 0.00500	< 0.0500		
MW-7-15.5	05/17/99	20.5	<1.00		< 0.00500	<0.00500	<0.00500	< 0.00500	< 0.0500		
MW-7-20.5	05/17/99	20.5 25.5	<1.00		< 0.00500	<0.00500	<0.00500	< 0.00500	< 0.0500		
MW-7-25.5		25.5 30.5	<1.00		<0.00500	<0.00500	<0.00500	< 0.00500	< 0.0500		
MW-7-30.5	05/17/99	30.5 35.5	<1.00 <1.00		<0.00500	<0.00500	<0.00500	< 0.00500	< 0.0500		
MW-7-35.5	05/17/99		<1.00		<0.00500	<0.00500	<0.00500	< 0.00500	< 0.0500		
MW-7-40.5	05/17/99	40.5			<0.00500	<0.00500	<0.00500	< 0.00500	< 0.0500		
MW-7-45.5	05/17/99	45.5	<1.00								
MW-8-5.5	05/19/99	5.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050		
MW-8-10.5	05/19/99	10.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050		
MW-8-15.5	05/19/99	15.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050		
MW-8-20.5	05/19/99	20.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050		
MW-8-25.5	05/19/99	25.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050		
MW-8-30.5	05/19/99	30.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050		
MW-8-35.5	05/19/99	35.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.050		
MW-8-40.5	05/19/99	40.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.212	0.210	
MW-8-45.5	05/19/99	45.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0532		
B-1-6.5	06/26/00	6.5	5.33		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
B-1-11.0	06/26/00	11.0	<1.00		< 0.00500	< 0.00500	< 0.00500	0.00820	< 0.0500		
B-1-17.5	06/26/00	17.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
B-1-20.5	06/26/00	20.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
B-1-25.0	06/26/00	25.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
B-1-30.0	06/26/00	30.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500	·	
B-1-35.5	06/26/00	35.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.0500		
B-2-6.0	06/26/00	6.0	<1.00		< 0.00500	< 0.00500	< 0.00500	0.00960	< 0.00500	<u></u>	
B-2-11.0	06/26/00	11.0	<1.00		< 0.00500	< 0.00500	< 0.00500	0.00970	< 0.00500		
B-2-11.0 B-2-15.0	06/26/00	15.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-2-13.0 B-2-21.0	06/26/00	21.0	<1.00		< 0.00500	< 0.00500	< 0.00500	0.00890	< 0.00500		
B-2-25.5	06/26/00	25.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		

Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene (mg/kg)	Xylenes	MTBE (EPA 8020)	MTBE (EPA 8260)	PCE
7.000	0.6/0.6/0.0	(fbg)	<1.00		<0.00500	<0.00500	<0.00500	<0.00500	<0.00500		
B-2-30.0	06/26/00	30.0	<1.00								
B-3-5.0	06/27/00	5.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-3-11.0	06/27/00	11.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-3-15.0	06/27/00	15.0	<1.00	·	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-3-21.0	06/27/00	21.0	< 1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-3-25.0	06/27/00	25.0	<1.00		< 0.00500	0.00730	< 0.00500	< 0.00500	< 0.00500		
B-3-30.0	06/27/00	30.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-3-34.5	06/27/00	34.5	3.03		0.0520	0.0228	0.0523	0.0333	0.436	0.120	
B-4-7.0	06/27/00	7.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-4-11.0	06/27/00	11.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-4-15.0	06/27/00	15.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-4-20.0	06/27/00	20.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-4-25.0	06/27/00	25.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-4-30.0	06/27/00	30.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-4-35.0	06/27/00	35.0	<1.00		0.0422	< 0.00500	0.0152	< 0.00500	0.162	0.243	
B-5-7.0	06/27/00	7.0	<1.00		< 0.00500	0.00750	< 0.00500	< 0.00500	< 0.00500		
B-5-10.5	06/27/00	10.5	21.5		< 0.00500	0.430	< 0.00500	< 0.00500	< 0.00500		
B-5-15.0	06/27/00	15.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-5-21.0	06/27/00	21.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-5-25.0	06/27/00	25.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-5-30.0	06/27/00	30.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-5-34.5	06/27/00	34.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	0.135	0.0425	
B-5-38.5	06/27/00	38.5	2.82		0.0398	0.0142	0.0744	0.299	0.251	0.0536	
B-6-6.5	06/27/00	6.5	<1.00	~	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-6-10.5	06/27/00	10.5	3.92		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-6-16.5	06/27/00	16.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-6-20.5	06/27/00	20.5	<1.00		< 0.00500	0.00950	< 0.00500	0.00700	< 0.00500		
B-6-25.0	06/27/00	25.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-6-30.0	06/27/00	30.0	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
B-6-35.5	06/27/00	35.5	<1.00		< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		

Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth (fbg)	TPHg ◆	TPHd	Benzene	Toluene	Ethylbenzene —— (mg/kg)	Xylenes	MTBE (EPA 8020)	MTBE (EPA 8260)	PCE
	<u></u> ,										
SB-1-31'	08/04/03	31	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-1-33'	08/04/03	33	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-1-35'	08/04/03	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-1-40'	08/04/03	40	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-1-45'	08/04/03	45	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-1-47.5'	08/04/03	47.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-2-25'	08/05/03	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-2-23 SB-2-30'	08/05/03	30	<1.0		<0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-2-32'	08/05/03	32	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-2-35'	08/05/03	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-2-37'	08/05/03	37	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-2-40'	08/05/03	40	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-2-45'	08/05/03	45	<1.0		< 0.0050	0.012	< 0.0050	0.023		0.088	
SB-2-50'	08/05/03	50	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.050	
SB-3-25'	08/05/03	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-3-23 SB-3-30'	08/05/03	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-3-35'	08/05/03	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-3-37'	08/05/03	37	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-3-40'	08/05/03	40	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-3-45'	08/05/03	45	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-3-50'	08/05/03	50	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-4-25'	08/05/03	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-4-25' SB-4-30'	08/05/03	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
		30									
SB-5 ^(c)	08/05/03										
SB-6-15'	08/07/03	15	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-6-20'	08/07/03	20	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-6-25'	08/07/03	25	<1.0		< 0.0050	< 0.0050	< 0.0050	<0.0050		<0.0050	
SB-6-30'	08/07/03	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-6-35'	08/07/03	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.0087	

Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth	ТРНд	TPHd	Benzene	Toluene	Ethylbenzene —— (mg/kg)	Xylenes	MTBE (EPA 8020)	MTBE (EPA 8260)	PCE
		(fbg)				10.0050		<0.0050		<0.0050	
SB-6-37'	08/07/03	37	<1.0		< 0.0050	< 0.0050	<0.0050	<0.0050	 -	<0.0050 0.036	
SB-6-40'	08/07/03	40	5.5		< 0.0050	<0.0050	0.022 <0.0050	<0.0050 <0.0050		0.036	
SB-6-45'	08/07/03	45 5 0	<1.0		<0.0050	<0.0050	<0.0050	<0.0030		< 0.0050	
SB-6-50'	08/07/03	50	<1.0		< 0.0050	< 0.0050					
SB-7-10'	08/07/03	10	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-7-15'	08/07/03	15	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	'
SB-7-20'	08/07/03	20	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-7-25'	08/07/03	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-7-30'	08/07/03	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.065	
SB-7-35'	08/07/03	35	2.2		0.0076	< 0.0050	0.014	0.017		0.25	
SB-7-51.5'	08/07/03	51.5	<1.0		< 0.0050	< 0.0050	< 0.0050	0.016		< 0.0050	
SB-8 ^(c)	08/05/03										
SB-9-30'	02/12/04	30	<1.0	,	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-9-35'	02/12/04	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-10-25'	02/12/04	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-10-30'	02/12/04	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-10-35'	02/12/04	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-11-25'	02/11/04	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-11-30'	02/11/04	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	,
SB-11-35'	02/11/04	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-12-25'	02/13/04	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
SB-12-30'	02/13/04	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
										-0.0050	
MW-9-10'	02/11/04	10	<1.0		< 0.0050	< 0.0050	<0.0050	< 0.0050		<0.0050	
MW-9-15'	02/11/04	15	<1.0		< 0.0050	< 0.0050	<0.0050	<0.0050		<0.0050	
MW-9-20'	02/11/04	20	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		<0.0050 0.071	
MW-9-25'	02/11/04	25	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050			
MW-9-30'	02/11/04	30	<1.0		< 0.0050	< 0.0050	<0.0050	< 0.0050		0.093 1.0	
MW-9-35'	02/11/04	35	820		1.0	2.3	12	84		1.0	

San Leandro 1285 Bancroft Avenue\1285 Bancroft Soil and GW summary.xls

Page 6 of 8

Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth	ТРНд	TPHd	Benzene	Toluene	Ethylbenzene — (mg/kg) —	Xylenes	MTBE (EPA 8020)	MTBE (EPA 8260)	PCE
		(fbg)			-0.0050	10.0050		0.042	<u> </u>	<0.0050	
MW-9-45'	02/11/04	45	<1.0		< 0.0050	< 0.0050	0.0081	0.042 0.049		<0.0050	
MW-9-49.5	02/11/04	19.5	<1.0		< 0.0050	0.0061	0.0093				
MW-10-30'	02/10/04	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-10-35'	02/10/04	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-10-39.5'	02/10/04	39.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.017	
MW-11-30'	02/10/04	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-11-35'	02/10/04	35	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-11-40'	02/10/04	40	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-11-44.5'	02/10/04	44.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-12-30'	02/12/04	30	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-12-35'	02/12/04	35	<1.0	سبب	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-12-39.5	02/12/04	39.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
MW-12-44.5	02/12/04	44.5	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	
D 1 40	01/21/05	4.0	<1.0		< 0.0050	< 0.0050	<0.0050	< 0.0050		< 0.0050	
D-1-4.0	01/31/05	4.0 4.5	<1.0		<0.0050	<0.0050	< 0.0050	< 0.0050		< 0.0050	
D-2-4.5	01/31/05	4.5 4.5	<1.0		<0.0050	<0.0050	< 0.0050	< 0.0050		< 0.0050	
D-3-4.5 D-4-4.0	01/31/05 01/31/05	4.3	<1.0		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.0088	
					.0.050	-0.0050	<0.0050	< 0.0050		<0.0050 ^e	
SB-16-10.5	11/16/07	10.5	< 0.50		< 0.0050	< 0.0050	< 0.0050			<0.0050 e	
SB-16 - 20	11/16/07	20	< 0.50		< 0.0050	< 0.0050	< 0.0050	< 0.0050		<0.0050 e	
SB-16-21.5	11/16/07	21.5	< 0.50		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.0095 ^e	
SB-16-26	11/16/07	26	< 0.50		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.0078 ^e	
SB-16-30	11/16/07	- 30	< 0.50		< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.093 ^e	
SB-16-37.5	11/16/07	37.5	19		< 0.12	< 0.12	0.86	3.1		0.16 ^e	
SB-16-40.5	11/16/07	40.5	<0.50		< 0.0050	< 0.0050	< 0.0050	< 0.0050		<0.0050 ^e	
ESL d			4,200	 ,	11	29	33	420	8.4	8.4	17

Table 1. Historical Soil Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

									MTBE MTBE	E
Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	(EPA 8020) (EPA 82	60) PCE
		(fbg)	.				— (mg/kg) ——		<u> </u>	

Abbreviations:

TPHg = Total petroleum hydrocarbons as gasoline. Prior to August 7, 2003, samples analyzed by modified EPA Method 8015; subsequently analyzed by EPA Method 8260B.

TPHd = Total petroleum hydrocarbons as diesel analyzed by modified EPA Method 8015

MTBE = Methyl tertiary-butyl ether analyzed by EPA Method 8020 or EPA Method 8260B.

PCE = Tetrachloroethene analyzed by EPA Method 8010.

fbg = Feet below grade.

mg/kg = Milligrams per kilogram

 $<_X$ = Not detected at laboratory detection limit of x

--- = Not analyzed.

ESL = Environmental screening level

Notes:

Benzene, toluene, ethylbenzene, and xylene analyzed by EPA Method 8020 prior to August 7, 3003; subsequently analyzed by EPA Method 8260B. Selected samples from soil borings BH-A through BH-F were analyzed for petroeum oil and grease by American Public Health Association (APHA) Standard Method 503E

- a = Laboratory reported that the detected compound is a hydrocarbon lighter than diesel.
- b = no total petroleum hydrocarbons as motor oil detected at modified EPA method 8015 detection limit of 10 ppm
- c = boring attempted however not feasible due to subsurface or overhead obstruction
- d = San Francisco Regional Water Quality Control Board Environmental Screening Levels Table D. Deep soils (>3 m bgs). Groundwater is not a current or potential source of drinking water.
- e = Soil samples also analyzed for fuel oxygenates tertiary-butanol, di-isopropyl ether, ethyl tertiary-butyl ether, and tertiary-amyl-methyl ether. None were detected in any of the soil samples.

Table 2. Historical Groundwater Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE		DIPE	ETBE	TAME	1,2 DCA	EDB	Ethanol	TOG	PCE
		(fbg)								<u> </u>	/L —							
MW-1	03/13/90	42.65	510	130	<0.5	1.1	1.5	8.7									<10,000	35
MW-2	02/24/92	41.94	1.0	0.26 a	0.0043	0.0011	0.012	0.023										0.013
MW-3	02/24/92	42.55	< 0.05	< 0.05	< 0.0005	< 0.0005	< 0.0005	<0.0005										0.011
B-1-W	06/26/00	,	<50		< 0.050	< 0.050	< 0.050	<0.050	<2.50									
B-2-W	06/26/00		<50		< 0.050	< 0.050	<0.050	< 0.050	<2.50									
SB-1-W	08/04/03	37.7	<50		< 0.50	<0.50	< 0.50	<1.0	<0.50	<5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50	<50		
SB-2 - W	08/05/03	38	<5,000		<50	<50	<50	<100	2,000	< 500	<200	<200	<200	<50	<50	<5,000		
SB-3-W	08/05/03	37	63		< 0.50	< 0.50	< 0.50	3.6	3.5	< 5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50	< 50		
SB-4-W	08/05/03	37	< 50		< 0.50	< 0.50	< 0.50	1.7	< 0.50	< 5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50	<50		
SB-6-W	08/07/03	37	3,800		5.1	< 0.50	12	2.1	58	< 5.0	<2.0	<2.0	<2.0	< 0.50	< 0.50	< 50		
SB-7-W	08/07/03	38	1,200,000		7,800	38,000	20,000	130,000	6,000	<10,000	<4,000	<4,000	<4,000	<1,000	<1,000	<1,000,000		
SB-9-W	02/12/04		<50		< 0.50	<0.50	<0.50	<1.0	< 0.50									
SB-10-W	02/12/04		1,100		<2.5	<2.5	<2.5	< 5.0	<2.5									
SB-11-W	02/12/04		2,600		9.1	<5.0	⁻ <5.0	<10	76									
CPT-1-44-48	01/03/08	44-48	<50		0.18 b	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		4.5
CPT-1-56-60	01/03/08	56-60	<50		0.15 b	<1.0	<1.0	<1.0	<1.0	<10	< 2.0	<2.0	<2.0	< 0.50	<1.0	<100		5.6
CPT-1-78 - 82	01/03/08	78-82	<50		0.26 b	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		0.91 b
CPT-2-45-49	11/16/07	45-49	15,000 с		< 0.50	<1.0	17	50	4.4	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		<1.0
CPT-2-56-60	11/16/07	56-60	<50		< 0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	< 2.0	<2.0	< 0.50	<1.0	<100		5.8
CPT-2-75-79	11/16/07	75-79	<50		< 0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		3.2
CPT-3-53-57	11/14/07	53-57	100		0.54	0.56 b	3.5	17	0.36 b	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		3.7
CPT-3-75-79	11/14/07	75-79	84		< 0.50	<1.0	0.97 b	5.1	<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		3.6
CPT-4-56-60	11/16/07	56-60	<50		<0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		4.1
CPT-4-79-83	11/16/07	79-83	<50		< 0.50	<1.0	<1.0	<1.0	<1.0	<10	<2.0	<2.0	<2.0	< 0.50	<1.0	<100		2.1
SSL d			5.000	2,500	540	400	300	5,300	1,800	50,000	NA	NA	NA	200	150	NA	NA	120

Table 2. Historical Groundwater Analytical Results - Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Abbreviations and Notes:

fbg = Feet below grade

ug/L = Micrograms per liter

TPHg = Total petroleum hydrocarbons as gasoline, analyzed by EPA Method 8260B.

TPHd = Total petroleum hydrocarbons as diesel, analyzed by EPA Method 8260B.

BTEX = Benzene, toluene, ethylbenzene, and xylene analyzed by EPA Method 8260B.

MTBE = Methyl tertiary-butyl ether, analyzed by EPA Method 8260B.

TBA = tertiary-butyl-alcohol, analyzed by EPA Method 8260B.

DIPE = Di-isopropyl ether, analyzed by EPA Method 8260B.

ETBE = Ethyl tertiary-butyl ether, analyzed by EPA Method 8260B.

TAME = tertiary-amyl methyl ether, analyzed by EPA Method 8260B.

1,2 DCA = 1,2 Dichloroethane, analyzed by EPA Method 8260B.

EDB = Ethylene dibromide (1,2-dibromoethane), analyzed by EPA Method 8260B.

TOG = total oil and grease

PCE = tetrachloroethylene, analyzed by EPA Method 8260B.

--- = Not analyzed

 $<_X$ = Not detected at laboratory detection limit of x

ESL = Environmental screening level

NA = ESL not listed

a = Results due to hydrocarbon compound lighter than diesel

b = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

c = Sample chromatographic pattern for TPH does not match the chromatographic pattern for the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

d = San Francisco Regional Water Quality Control Board Environmental Screening Levels - Table D. Deep soils (>3 m bgs). Groundwater is not a current or potential source of drinking water.

Table 3. Additional VOCs in Grab Groundwater Samples, Shell-branded Service Station, 1285 Bancroft Avenue, San Leandro, California

Sample ID	Date	Depth	Acetone	sec-Butyl- benzene	Carbon Disulfide	Chloroform	Isopropyl- benzene	PCE	1,3,5-Trimethyl- benzene	1,2,4-Trimethyl- benzene	Naphthalene	n-Propyl- benzene	Methylene Chloride
		(fbg)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)
CPT-1-44-48	01/03/08	44-48	<50	<1.0	<10	2.8	<1.0	4.5	<1.0	<1.0	<10	<1.0	<1.0
CPT-1-56-60	01/03/08	56-60	< 50	<1.0	0.43 c	2.2	<1.0	5.6	<1.0	<1.0	0.75	<1.0	<1.0
CPT-1-78-82	01/03/08	78-82	<50	<1.0	<10	0.37 с	<1.0	0.91 c	<1.0	<1.0	<10	<1.0	4.3 c
CPT-2-45-49	11/16/07	45-49	<50	1.2	<10	<1.0	1.7	<1.0	11	40	<10	5.4	<1.0
CPT-2-56-60	11/16/07	56-60	< 50	<1.0	<10	2.5	<1.0	5.8	<1.0	<1.0	<10	<1.0	<1.0
CPT-2-75-79	11/16/07	75-79	< 50	<1.0	<10	0.55 c	<1.0	3.2	<1.0	<1.0	<10	<1.0	5.2 b,c
CPT-3-53-57	11/14/07	53-57	13 с	<1.0	<10	1.7	<1.0	3.7	1.1	3.1	0.57 с	0.51 с	<1.0
CPT-3-75-79	11/14/07	75-79	8.6 c	<1.0	<10	0.60 c	<1.0	3.6	0.41 c	1.3	<10	0.18 c	<1.0
CPT-4-56 - 60	11/16/07	56-60	<50	<1.0	<10	1.3	<1.0	4.1	<1.0	<1.0	<10	<1.0	<1.0
CPT-4-79-83	11/16/07	79-83	<50	<1.0	<10	<1.0	<1.0	2.1	<1.0	<1.0	<10	<1.0	<1.0
ESL d	 .	-	50,000			330		120			210		2,400

Abbreviations and Notes:

VOCs = Volatile organic compounds analyzed by EPA Method 8260B

PCE = Tetrachloroethene analyzed by EPA Method 8260B

fbg = Feet below grade.

 $\mu g/L = Micrograms per liter$

< x =Not detected at laboratory detection limit of x

ESL = Environmental screening level

--- = ESL not listed

a = Concentration exceeds the calibration range and therefore result is semi-quantitative

b = Analyte was detected in the associated Method Blank at 6.8 μ g/L.

c = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

d = San Francisco Regional Water Quality Control Board Environmental Screening Levels - Table D. Deep soils (>3 m bgs). Groundwater is not a current or potential source of drinking water.

Attachment A
Site History

1285 BANCROFT, SAN LEANDRO, CA SITE HISTORY

November 1986 Waste-Oil Tank Removal: In November 1986, Petroleum Engineering of Santa Rosa, California removed a 550-gallon waste-oil tank and installed a new 550-gallon fiberglass tank in the former tank pit. Immediately following the tank removal, Blaine Tech Services (Blaine) of San Jose, California collected soil samples beneath the former tank location at 8.75 and 9 fbg. The soil samples contained maximum concentrations of 83 parts per million (ppm) petroleum oil and grease and 583 ppm total oil and grease (TOG). After additional excavation, Blaine collected another soil sample at 9.5 fbg, which contained 89.3 ppm TOG. No groundwater was encountered in the tank pit. No report documenting these activities could be located.

March 1990 Well Installation: In March 1990, Weiss Associates (Weiss) of Emeryville, California advanced a soil boring (BH-A) and converted it to groundwater monitoring well MW-1 adjacent to the waste-oil tank. No petroleum constituents were detected in soil samples analyzed from boring BH-A. Tetrachloroethene (PCE) was detected at 35 parts per billion (ppb). The maximum total petroleum hydrocarbons as gasoline (TPHg) concentration in groundwater from well MW-1 was 510 ppb. Weiss' July 31, 1990 Second Quarter 2005 letter report documents these activities.

February 1992 Subsurface Investigation: In February 1992, Weiss advanced two soil borings (BH-B and BH-C) upgradient and downgradient of the existing underground storage tanks (USTs) and converted them into monitoring wells MW-2 and MW-3. A maximum TPHg concentration of 8,800 ppm was detected in boring BH-B, which was converted into monitoring well MW-2. No benzene was detected in this investigation. Weiss' April 27, 1992 Subsurface Investigation letter report documents these activities.

1992 Well Survey: Weiss included a ½-mile radius well survey with the report of the February 1992 subsurface investigation. A total of 21 wells were identified within ½ mile of the site. One domestic supply well was identified approximately ½ mile northeast (cross gradient) of the site. One domestic or irrigation supply well was also identified within 500 feet west (cross and down gradient) and another within 500 feet east (cross and up gradient) of the site. Weiss' April 27, 1992 Subsurface Investigation letter report documents these activities.

February 1994 Subsurface Investigation: In February 1994, Weiss advanced three soil borings (BH-D, BH-E, and BH-F) up gradient and down gradient of the existing USTs. Boring BH-F was converted into monitoring well MW-4. No TPHg was detected in this investigation. A maximum benzene concentration of 0.015 ppm was detected in boring BH-E No report documenting these activities or logs of borings BH-D and BH-E could be located.

October 1995 Dispenser Replacement Sampling: In October 1995, Weiss collected soil samples from beneath the former dispensers. A maximum TPHg concentration of 130 ppm was detected in soil sample D-2A, located 2 fbg beneath the northern dispenser-island. A maximum benzene

concentration of 0.31 ppm was detected in soil sample L-1, located 2 fbg beneath the product piping lines on the south end of the site. Weiss' March 5, 1996 Replacement Sampling Report documents these activities.

September 1998 and July 1999 through September 1999 Mobile Groundwater Extraction: Mobile groundwater extraction (GWE) was performed at the site on September 2, 1998, and weekly GWE events were performed from July 30, 1999 through September 9, 1999, using wells MW-1, MW-3, and MW-5. Approximately 17.9 pounds of liquid-phase TPHg and 0.77 pounds of methyl tertiary-butyl ether (MTBE) were removed during these activities. No report documenting the mobile groundwater extraction events could be located.

May 1999 Well Installation: In May 1999, Cambria Environmental Technology, Inc. (Cambria) installed groundwater monitoring wells MW-5, MW-6, MW-7, and MW-8. Soil samples collected from boring MW-5 contained maximum concentrations of 10.5 ppm TPHg at 40.5 fbg, 0.0475 ppm benzene at 35.5 fbg, and 2.25 ppm MTBE at 35.5 fbg. Cambria's August 29, 1999 Well Installation Report documents these activities.

June 2000 Site Investigation and Risk Based Corrective Action (RBCA) Evaluation: In June 2000, Cambria collected in-situ vapor and physical soil property samples and prepared a RBCA analysis of the potential risk to off-site receptors posed by hydrocarbons originating from the site. Six soil borings (B-1 through B-6) were drilled, and soil, soil vapor, and groundwater samples were collected. Soil sample were collected for physical parameter analysis including organic carbon content, moisture content, bulk density, and porosity. The risk evaluation showed that the calculated excess cancer risk posed by the site was below the target risk level of 1 x 10⁻⁶ and that off-site conditions at the time did not pose a significant risk to off-site occupants directly adjacent to the site. Water was not detected in B-5 and B-6 and groundwater samples could not be collected from B-3 and B-4. Groundwater samples were collected from B-1 and B-2. No TPHg, benzene, or MTBE was detected in the collected groundwater samples. Cambria's June 27, 2001 Investigation Report and Risk-Based Corrective Action Analysis documents these findings.

November 2000 through January 2005 Mobile Dual-Phase Vapor Extraction (DVE): In November 2000, Cambria initiated monthly mobile DVE on wells MW-5 and MW-6 to facilitate hydrocarbon and oxygenate removal from groundwater and the vadose zones. Approximately 131.47 pounds of vapor-phase TPHg and 1.23 pounds of vapor-phase MTBE were removed during these activities. Since UST enhanced-vapor-recovery upgrades occurred in January 2005 and because of the lack of marked effect on concentrations in MW-5 and MW-6, mobile DVE was put on hold following the January 17, 2005 event pending an overall evaluation of the site.

April 2002 Enhanced UST Testing: On April 2 and 3, 2002, Shell voluntarily conducted enhanced testing on the USTs at this site. Enhanced testing included a VacuTect Tank Test of tanks under vacuum conditions. When the VacuTect test indicated a problem with the plus tank, the product was immediately transferred out of tank for investigation, which included tank entry

for visual inspections and further tank tests. No visible cracks were found, but additional layers of fiberglass were added to suspected problem areas. A passing VacuTect test was conducted. Cambria's October 15, 2002 *Subsurface Investigation Work Plan* indicated that the crack was detected in the secondary containment of the tank, but the tank was actually a single-wall vessel and, as previously mentioned, no crack was detected. A problem with the tank was only found during the VacuTect test, which does not necessarily indicate a leak condition.

August 2003 Soil and Water Investigation and Site Conceptual Model: From August 4 through August 7, 2003, Cambria supervised the advancement of six soil borings (SB-1 through SB-4 offsite and SB-6 and SB-7 onsite). The borings were advanced to a total depth of between 48 and 52.5 fbg to define vertical and lateral migration of the contaminate plume and to determine downgradient monitoring well locations. Soil sample results from the investigation indicated neither hydrocarbons nor MTBE impacts to unsaturated soil in the boring locations. However, the groundwater sample results indicated hydrocarbons and MTBE impacts to groundwater, primarily onsite. The site conceptual model was updated and identified one potential downgradient receptor, irrigation well 2S/3W-25L1 located at 566 Estudillo Avenue, which is discussed below. Cambria's November 3, 2003 Soil and Water Investigation Report, Work Plan, and Site Conceptual Model documents these activities.

October 2003 Sensitive Receptor Survey (SRS): In October 2003, Cambria completed a SRS at Shell's request. The SRS targeted the following as potential sensitive receptors: basements within 200 feet, surface water, and sensitive habitats within 500 feet, hospitals, residential care and childcare facilities within 1,000 feet, and water wells within ½ mile. No basements were observed within 200 feet, nor was any surface water or sensitive habitats observed within 500 feet. Hospitals, and educational, childcare and residential care facilities were identified at approximately 140, 345, 650, and 670 feet from the site. Bancroft Middle School (1250 Bancroft Avenue) is located approximately 140 feet from the site. The Shelter for Women and Children (1395 Bancroft Avenue) is located approximately 345 feet from the site. Bancroft Convalescent Hospital (1475 Bancroft Avenue) is located approximately 650 feet from the site. Jones Convalescent Hospital (524 Callan Avenue) is located approximately 670 feet from the site.

To update the 1992 well survey performed by Weiss and updated by Cambria in 1998 and 1999, Cambria researched Department of Water Resources (DWR) records in September 2003, and located no additional well records for locations within ½ mile of the site. In addition to numerous wells listed as "irrigation" wells, a number of DWR records identified wells at residential addresses for which no use was listed. The 1992 WA well survey also reviewed Alameda County Public Works well database records, which also listed many of the wells identified in the DWR records search with unknown uses. In the Alameda County listing, several of the wells were listed as "domestic" type wells. Because "domestic" usage may include drinking-water uses, Cambria investigated all three identified downgradient wells within ½ mile with "domestic"

usage noted in the Alameda County Public Works database report to clarify their actual use and current status.

The closest identified "domestic" water well (25L1) is an 88-foot deep well installed in 1952, approximately 150 feet southwest of the site. This well is the active irrigation well identified at the adjacent property, 560 Estudillo Avenue. Cambria confirmed that the well is used only for landscape irrigation by interviewing the property manager and by inspecting the well. The next nearest "domestic" well is located approximately 390 feet east of the site (25K1). Cambria interviewed the property owner's custodian, who verified the well's presence, but also verified that the well is not used. The next nearest "domestic" well is located approximately 1,425 feet south of the site (25P2). Cambria met the property owner who verified that the well had not been used since the early 1980's when the well pump failed.

February 2004 Investigations: Four monitoring wells (MW-9, MW-10, MW-11, and MW-12) and four borings (SB-9, SB-10, SB-11, and SB-12) were installed in February 2004 to define the lateral and vertical extent of MTBE in groundwater and to provide for ongoing groundwater monitoring downgradient of the site. MTBE, TPHg, and benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in any soil samples collected during the current investigation with the exception of samples from well locations MW-9 and MW-10. TPHg and benzene were detected only in the soil sample from on-site well MW-9 from a depth of 35 fbg at concentrations of 820 ppm and 1.0 ppm, respectively. MTBE was detected in the MW-9 soil samples at depths of 25 fbg, 30 fbg, and 35 fbg at concentrations of 0.071 ppm, 0.093 ppm, and 1.0 ppm, respectively. MTBE was also detected at a concentration of 0.017 ppm in a soil sample from off-site well MW-10 at a depth of 39.5 fbg. Since groundwater was encountered at approximately 35 fbg during the current investigation, all the hydrocarbon and/or MTBE impacted samples were from saturated soils or from within the capillary fringe, so the results may be more indicative of chemical concentrations in groundwater.

TPHg was detected only in the on-site grab groundwater samples SB-10-W and SB-11-W at concentrations of 1,100 and 2,600 ppb, respectively. Benzene and MTBE were detected only in the on-site grab groundwater sample SB-11-W at concentrations of 9.1 and 76 ppb, respectively. No toluene, ethylbenzene, or xylenes were detected in any of the grab groundwater samples. No groundwater was encountered in SB-12.

Additionally, an inspection of the off-site irrigation well (25L2) located downgradient of the site at 566 Estudillo Avenue was to be conducted by video inspection to evaluate total depth and screen intervals. The inside of the casing was heavily coated with fine-grained material, making it impossible to determine the top of the screen interval. No screen perforations were visible at or above the 31-fbg level of the water. Occasional circular depressions, which could be screen perforations, were observed at approximately 64 fbg. Due to fine-grained debris in the bottom of the well casing, the maximum explorable depth of the well was 79 fbg. The results of this

investigation are presented in Cambria's April 29, 2004 Soil and Water Investigation, Monitoring Well Installation, and Irrigation Well Video Inspection Report.

2005 Dispenser Upgrade Sampling: During January and February of 2005, Armer/Norman & Associates. Inc. of Pacheco, California upgraded the station's fuel system, including the UST sumps and fuel dispensers. Cambria collected four soil samples beneath the replaced dispensers at depths from 4 to 4.5 fbg. TPHg and BTEX concentrations were below the laboratory detection limits in all dispenser soil samples. MTBE was detected in one soil sample (D-3-4.5) at a concentration of 0.0088 ppm. No other analytes were detected in excess of their laboratory detection limit. The results of this investigation are presented in Cambria's March 23, 2005 Dispenser Upgrade Sampling Report.

Groundwater Monitoring Program: There are six groundwater monitoring wells (MW-1 through MW-5 and MW-9) on site, six groundwater monitoring wells (MW-6, MW-7, MW-8, MW-10, MW-11, and MW-12) off site, and one monitored irrigation well (IW-1) off site. All 13 wells are sampled quarterly for TPHg, MTBE, and BTEX. During the fourth quarter 2007 sampling event:

- The depth to groundwater measured in the monitoring wells ranged from 36.78 to 40.47 feet below top of well casing. The depth to water in irrigation well IW-1 was measured at 36.42 feet below grade. The groundwater elevations ranged from 26.70 to 27.16 feet above mean sea level.
- Groundwater flows to the southwest at a fairly flat hydraulic gradient of 0.002. This is consistent with previous events for this site.
- TPHg was detected in wells MW-1, MW-2, MW-4, MW-5, MW-6, MW-9, and MW-10. The maximum concentration observed was 30,000 micrograms per liter (μg/l) in MW-5.
- Benzene was detected in wells MW-1, MW-2, MW-5, MW-6, and MW-9, at concentrations up to 55 μ g/l in well MW-9.
- MTBE was detected in wells MW-1, MW-3, MW-4, MW-6, MW-8, MW-9, and MW-10 at concentrations up to 170 μg/l in well MW-9.
- Other volatile organic compounds were reported in various wells. Most are consistent with gasoline fuel; however, some chlorinated hydrocarbons were reported.
 - o Of the chlorinated hydrocarbons detected, tetrachloroethene (PCE) was detected in every well except MW-5, MW-9, and MW-10. The maximum concentration of PCE was 5.6 µg/l in well MW-7; and
 - Chloroform was detected in all wells except MW-5, MW-8, and MW-9. The maximum concentration of chloroform was 18 μg/l in MW-11.
- Irrigation well IW-1 did not contain any constituents of concern with the exception of 0.84 μg/l chloroform and 2.8 μg/l PCE.

Attachment B
Standard Field Procedures

STANDARD FIELD PROCEDURES FOR CONE PENETROMETER TESTING AND SAMPLING

This document describes Conestoga-Rovers & Associates (CRA's) standard field methods for Cone Penetrometer Testing (CPT) and direct-push soil and groundwater sampling. These procedures are designed to comply with Federal, State and local regulatory guidelines.

Use of CPT for logging and soil and groundwater sampling requires separate borings. Typically an initial boring is advanced to estimate soil and groundwater characteristics as described below. To collect soil samples a separate boring must be advanced using a soil sampling device. If groundwater samples are collected, another separate boring must be advanced using a groundwater sampling device. Specific field procedures are summarized below.

Cone Penetrometer Testing (CPT)

Cone Penetrometer Testing is performed by a trained geologist or engineer working under the supervision of a California Professional Geologist (PG) or a Certified Engineering Geologist (CEG). Cone Penetrometer Tests (CPT) are carried out by pushing an integrated electronic piezocone into the subsurface. The piezocone is pushed using a specially designed CPT rig with a force capacity of 20 to 25 tons. The piezocones are capable of recording the following parameters:

Tip Resistance (Qc)
Sleeve Friction (Fs)
Pore Water Pressure (U)
Bulk Soil Resistivity (rho) - with an added module

A compression cone is used for each CPT sounding. Piezocones with rated load capacities of 5, 10 or 20 tons are used depending on soil conditions. The 5 and 10 ton cones have a tip area of 10 sq. cm. and a friction sleeve area of 150 sq. cm. The 20 ton cones have a tip area of 15 sq. cm. and a friction sleeve area of 250 sq. cm. A pore water pressure filter is located directly behind the cone tip. Each of the filters is saturated in glycerin under vacuum pressure prior to penetration. Pore Pressure Dissipation Tests (PPDT) are recorded at 5 second intervals during pauses in penetration. The equilibrium pore water pressure from the dissipation test can be used to identify the depth to groundwater.

The measured parameters are printed simultaneously on a printer and stored on a computer disk for future analysis. All CPTs are carried out in accordance with ASTM D-3441. A complete set of baseline readings is taken prior to each sounding to determine any zero load offsets.

The inferred stratigraphic profile at each CPT location is included on the plotted CPT logs. The stratigraphic interpretations are based on relationships between cone bearing (Qc) and friction ratio (Rf). The friction ratio is a calculated parameter (Fs/Qc) used in conjunction with the cone bearing to identify the soil type. Generally, soft cohesive soils have low cone bearing pressures and high friction ratios. Cohesionless soils (sands) have high cone bearing pressures and low friction ratios. The classification of soils is based on correlations developed by Robertson et al (1986). It is not always possible to clearly identify a soil type based on Qc and Rf alone. Correlation with existing soils information and analysis of pore water pressure measurements should also be used in determining soil type.

CPT and sampling equipment are steam-cleaned or washed prior to work and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent. Groundwater samples are decanted into appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4° C, and transported under chain-of-custody to the laboratory.

After the CPT probes are removed, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate groundwater depth and quality and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist or engineer working under the supervision of a California Professional Geologist (PG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e., sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color,
- Approximate water or separate-phase hydrocarbon saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e., cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Sampling

Soil samples are collected from borings driven using hydraulic push technologies. A minimum of one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples can be collected near the water table and at lithologic changes. Samples are collected using samplers lined with polyethylene or brass tubes driven into undisturbed sediments at the bottom of the borehole. The ground surface immediately adjacent to the boring is used as a datum to measure sample depth. The horizontal location of each boring is measured in the field relative to a permanent on-site reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned or washed prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon⁷ tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

After a soil sample has been collected, soil from the remaining tubing is placed inside a sealed plastic bag and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable photoionization detector measures volatile hydrocarbon vapor concentrations in the bag=s headspace, extracting the vapor through a slit in the plastic bag. The measurements are used along with the field observations, odors, stratigraphy, and groundwater depth to select soil samples for analysis.

Grab Groundwater Sampling

Groundwater samples are collected from the open borehole using bailers, advancing disposable Tygon⁷ tubing into the borehole and extracting groundwater using a diaphragm pump, or using a hydro-punch style sampler with a bailer or tubing. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4° C, and transported under chain-of-custody to the laboratory.

Duplicates and Blanks

Blind duplicate water samples are usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory quality assurance/quality control (QA/QC) blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

F:\TEMPLATE\SOPs\CPT Sampling.doc

STANDARD FIELD PROCEDURES FOR SOIL BORING AND MONITORING WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

SOIL BORINGS

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Professional Geologist (PG).

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe®. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

Water Sampling

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch® type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

Well Construction and Surveying

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two feet above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite and covered by plastic sheeting. At least three individual soil samples are collected from the stockpiles and composited at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples in addition to any analytes required by the receiving disposal facility. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Groundwater removed during development and sampling is typically stored onsite in sealed 55-gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Upon receipt of analytic results, the water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

F:\TEMPLATE\SOPs\SB & MW Installation.doc

Attachment C

Drilling Permits and Access Agreement

Alameda County Public Works Agency - Water Resources Well Permit the limited the

Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/06/2007 By jamesy Application Id:

Site Location: Project Start Date:

1189009662855

09/18/2007

Extension Start Date: Extension Count: Applicant:

1285 Bancroft Avenue, San Leandro, CA 11/12/2007

Permit Numbers: W2007-0991 Permits Valid from 11/12/2007 to 11/16/2007 City of Project Site: San Leandro

Completion Date: 09/25/2007 Extension End Date: 11/16/2007

Extended By: vickyh1

Property Owner:

Kennerknecht

Conestoga-Rovers & Associates - Matthias 5900 Hollis St #A, Emeryville, CA 94608 Shell Oil Products

Client: Contact:

Shell Oil Froducts 20945 S Wilmington Avenue, Carson, CA 90810 ** same as Property Owner ** Carmen Rodriguez

Phone: 510-420-3308

Phone: 707-865-1617

Phone: 510-420-3371 Cell: 510-385-0047

Receipt Number: WR2007-0395

Payer Name: Conestoga-Rovers & Paid By: CHECK

\$200.00 \$200.00 PAID IN FULL

Work Total: \$200.00

Total Amount Paid:

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 8 Boreholes Driller: Gregg Drilling - Lic #: 485165 - Method: other Specifications

Permit

Issued Dt

Number

Expire Dt W2007-09/06/2007 12/17/2007

Boreholes

Hole Diam Max Depth

6.00 in.

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture.

With compacted cuttings: All cuttings remaining or unused shall be containerized and have feet replaced in kind or the site. The containers shall With compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall

Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will works Agency. Water Resources Source Shall be backfilled

Ged approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled to Caltrans Spec or Cording to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or

ermittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend any and a shall indemnify. Save the Alameda County Public Works Agency, its officers, agents, and employees free and Inarmless from any and provided to, Dense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to,

to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required rederal, State, County or City, and follow all City or County Ordinances. No work shall all the permits

---- chall hegin until all the

Alameda County Public Works Agency - Water Resources Well Permit

Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 09/06/2007 By jamesy

Application ld: Site Location:

1189009662855

Project Start Date: Extension Start Date:

1285 Bancroft Avenue, San Leandro, CA 09/18/2007 12/27/2007

Extension Count: Applicant:

Permits Valid from 12/27/2007 to 12/28/2007

City of Project Site:San Leandro

Completion Date:09/25/2007 Extension End Date: 12/28/2007 Extended By: vickyh1

Property Owner:

Kennerknecht

Conestoga-Rovers & Associates - Matthias 5900 Hollis St #A, Emeryville, CA 94608

Client: Contact:

20945 S Wilmington Avenue, Carson, CA 90810 Carmen Rodriguez

Phone: 510-420-3308

Phone: 707-865-1617

Phone: 510-420-3371 Cell: 510-385-0047

Receipt Number: WR2007-0395 Payer Name : Conestoga-Rovers & Paid By: CHECK Total Amount Paid:

\$200.00

Works Requesting Permits:

\$200.**0Q** PAID IN FULL

Work Total: \$200.00

Borehole(s) for Investigation-Contamination Study - 8 Boreholes Driller: Gregg Drilling - Lic #: 485165 - Method: other Specifications

Permit

Issued Dt Number Expire Dt W2007-09/06/2007 0991

12/17/2007

Hole Diam Boreholes

Max Depth

6.00 in.

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or unused shall be containers shall with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will he backfilled need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled coording to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or

Permittee shall assume entire responsibility for all activities and uses under this permit and shall indernnify, defend A save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and expense, cost, liability in connection with or resulting from the exercise of this Permit including, but no

or to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground The permit t Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until ~ # the permits

₽,2

October 31, 2007

San Leandro Unified School District (SLUSD) 14735 Juniper Street San Leandro, CA 94579

> Re: Request for Access to Property Located at 1200 Bancroft Avenue San Leandro, California 94577

Dear Mr. Dyer:

As a result of an ongoing environmental assessment at the Shell branded service station located at 1285 Bancroft Avenue, San Leandro, California, Shell Oil Products US ("SOPUS") has been advised that there may hydrocurbons (gasoline, oil, etc.) in or about the property located at 1200 Bancroft Avenue, San Leandro, California, in the vicinity of the service station. Therefore, on behalf of SOPUS we request permission to enter your property and perform the work outlined below to determine if hydrocurbons originating from the Shell service station are present and remediate such hydrocurbons as may be required by applicable law.

The work to be performed includes drilling a cluster of four cone penetrometer test (CPT) borings to determine lithology, obtain groundwater grab samples, and/or other activities that SOPUS deems necessary to comply with all applicable federal, state and local statutes, regulations, ordinances, directives, orders and standards governing underground storage tank systems and the assessment or remediation of petroleum hydrocarbons. The CPT borings will be drilled in the concrete walkway area adjacent to the main entrance of Bancroft Middle School at the location indicated as CPT-1 on the attached site map. Following drilling and sampling, the borings will be backfilled with Portland coment and topped with concrete to current grade.

A licensed contractor retained by SOPUS will perform the above work. This work is being performed on behalf of SOPUS to comply with the environmental requirements of the State of California.

The work may result in minor disruptions of the normal use of this property. The property will be restored to its approximate former condition as soon as possible after we have ascertained if hydrocarbons from the Shell service station are present and, to the extent required, such hydrocarbons have been remediated. SOPUS agrees to indemnify SLUSD

p. 3

from any and all claims by third parties arising out of the work performed by SOPUS under this agreement.

Please sign below to signify your consent and return this letter with the attachments in the enclosed stamped envelope.

We appreciate your cooperation in this matter and would appreciate your timely response. If you have any questions, please call Ana Friel (707) 286-3812 or Peter Schaefer at (510) 420-3319.

Very truly yours,

SHELL OIL PRODUCTS US

Denis L. Brown Project Manager

I have reviewed your request and I hereby consent to the entry by Equilon Enterprises LLC dba Shell Oil Products US upon the property for the purpose of performing the work described herein. I understand that San Leandro Unified School District may be prevented from using a portion of the property and I agree to the minor disruption of the normal use of the premises as described.

I further represent and warrant that I am authorized by San Leandro Unified School District, the owner of the property located at 1200 Bancroft Avenue, San Leandro, California, to provide the consent given above.

Mr. Greg Dyer

_

May 13.3

Date: 1

11/1/07

parking lot

609 Calter:

1247 Benerall

CPT-2

\$B-9 @

Proposed Boring Location Map

Shell-branded Service Staffon

1285 Bandroff Avenue

EXPLANATION

SB-13 Proposed soll boring CPT-1 Proposed CPT boring

Soll sample location (7/19/06)

Monitoring well location

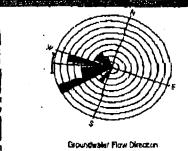
14-1 (25L1) + Imigation walf location

> D-1-4.D Dispenser soil sample totalion (1/31/05)

\$B-9 @ Soil boring location (2/04)

Soil boring location (8/03)

Attempted soil boring location (8/03)


Spil vapor survey focation (6/00)

Confirmation soil sample location (WA, 10/9/95) E.1

Soll sample location (WA, 10/4/95) D-1

Soil boring location (WA, 1994) BH-D

Product dispenser number

(45.82 (MARINEL SISSE)

CPT-1

BANCROFT AVENUE

ESTUDILLO AVENUE

B-WM

FIGURE

Attachment D

CPT Logs and Boring Logs

BORING/WELL LOG

Conestoga-Rovers & Associates 5900 Hollis St., Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME Shell Oil Products Company (US) JOB/SITE NAME Shell-branded service station 1285 Bancroft Avenue, San Leandro, California PROJECT NUMBER 240504-008 DRILLER Gregg Drilling DRILLING METHOD Hollow-stem auger BORING DIAMETER 8" LOGGED BY Carmen Rodriguez REVIEWED BY A. Friel REMARKS Air knifed to 5 fbg.						WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION Not Surveyed SCREENED INTERVALS NA DEPTH TO WATER (First Encountered) 37.0 fbg (16-Nov-07) DEPTH TO WATER (Static) NA					
PID (ppm) BLOW BLOW	SAMPLE ID	EXTENT DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITH	OLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM			
1.LOG (PID) C: UDOCUME-TUGOLDF	SB-16 -20 SB-16 -21.5	- 10	ML.		@ 10' - dark brown @ 10' - dark brown @ 11' - 15% clay, 89 @ 12' - 10% clay, 89 @ 12' - 10% clay, 89 @ 18' - 10% clay, 89 plasticity. @ 20' - dark grayis 10% fine sand. @ 21' - dark grayis 10% clay, 80% clay, 70% fine to medium gray 10% silt, 5% fine sand.	5% silt. 5% silt, 5% fine sand. 3% silt, 5% fine sand, 2% fine gravel. (R 4/3);10% clay, 90% silt. 55% silt, 5% fine gravel; low to medium th brown (10YR 4/2); 5% clay, 85% silt, th brown (2.5Y 4/2); sh gray (Gley 1 3/10Y); 30% silt, 5% fine sand, 5% fine gravel; 5% silt, 15% fine to medium sand, 10%	26.0 28.0	Portland Type			

BORING/WELL LOG

Conestoga-Rovers & Associates 5900 Hollis St., Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products Company (US)	BORING/WELL NAME	SB-16
JOB/SITE NAME	Shell-branded service station	DRILLING STARTED	16-Nov-07
LOCATION	1285 Bancroft Avenue, San Leandro, California	DRILLING COMPLETED	16 -N ov-07

Continued from Previous Page CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW DEPTH U.S.C.S. EXTEN (fbg) LITHOLOGIC DESCRIPTION WELL DIAGRAM SB-16 -30 0.0 silt, 5% fine gravel. @ 30' - olive brown (2.5Y 4/3); dry; 5% clay, 90% silt; 5% fine sand; 5% fine gravel. @ 32' - dark grayish brown (2.5Y 4/2); @ 32.5' - dark grayish brown (10YR 4/2); ML 4.0 @ 35' - 10% clay, 85% silt, 5% fine sand. 7.3 37.0 ∇ Silty SAND with Gravel (SM) dark greenish gray (Gley 1 3/10Y); wet; 15% silt, 65% sand, 20% gravel; low 155 SM plasticity. 39.0 @ 38' - moist; 20% silt, 75% sand, 5% fine gravel. 25 SILT (ML); dark greenish gray (Gley 1 3/10Y); moist; 5% clay, 90% silt; 5% fine sand; low plasticity. 10 SB-16 -40.5 ML @ 42' - dark greenish gray (Gley 1 4/10Y); dry; 20% clay, 43.0 80% silt; medium plasticity. SILT with Sand (ML); dark greenish gray (Gley 1 4/10Y); wet; 80% silt, 20% fine sand; low plasticity. SILT (ML); dark greenish gray (Gley 1 4/10Y); moist; 43.5 8.0 ML 44.0 0.9 ML 44.5 5% clay, 90% silt, 5% fine gravel; low plasticity Silty SAND (SM): dark greenish gray (Gley 1 4/10Y); moist; 5% clay, 20% silt, 75% fine sand; low plasticity. SILT (ML); dark greenish gray (Gley 1 4/10Y); moist; 15% clay, 80% silt, 5% gravel; medium plasticity. ML 0.7 47.0 Bottom of Boring @ 46 fbg WELL LOG (PID) CADOCUME~1/LGOLDF~1/DESKTOP/SNL1285.GPJ DEFAULT.GDT :1/17/08

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

January 4, 2008

CRA

Attn: Peter Schaefer 5900 Hollis Street, Suite A Emeryville, California 94608

Subject:

CPT Site Investigation

1285 Bancroft

San Leandro, California

GREGG Project Number: 08-005MA

Dear Mr. Schaefer:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

ومباوعا والمستهدية			र्जा कर के अंदर्भ के किस क
1	Cone Penetration Tests	(CPTU)	
2	Pore Pressure Dissipation Tests	(PPD)	\boxtimes
3	Seismic Cone Penetration Tests	(SCPTU)	
4	Resistivity Cone Penetration Tests	(RCPTU)	
5	UVIF Cone Penetration Tests	(UVIFCPTU)	
6	Groundwater Sampling	(GWS)	
7	Soil Sampling	(SS)	
8	Vapor Sampling	(VS)	
9	Vane Shear Testing	(VST)	
10	SPT Energy Calibration	(SPTE)	

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

Sincerely, GREGG Drilling & Testing, Inc.

Mary Walden Operations Manager

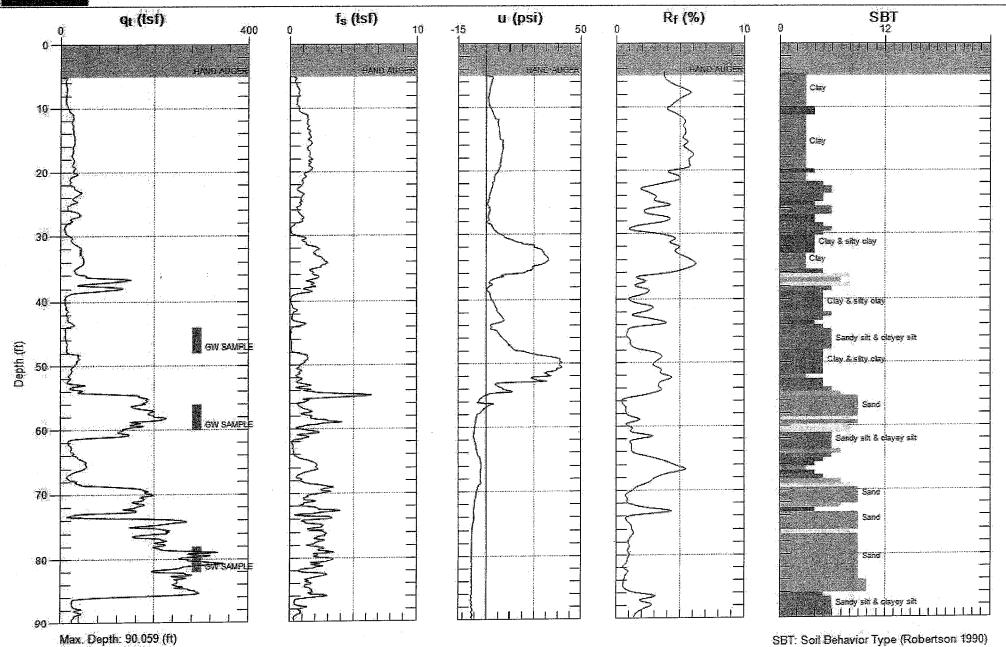
GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Cone Penetration Test Sounding Summary

-Table 1-

CPT Sounding Identification	Date	Termination Depth (Feet)	Depth of Groundwater Samples (Feet)	Depth of Soil Samples (Feet)	Depth of Pore Pressure Dissipation Tests (Feet)
CPT-01	1/03/08	90	48, 60, 82	_	56.1

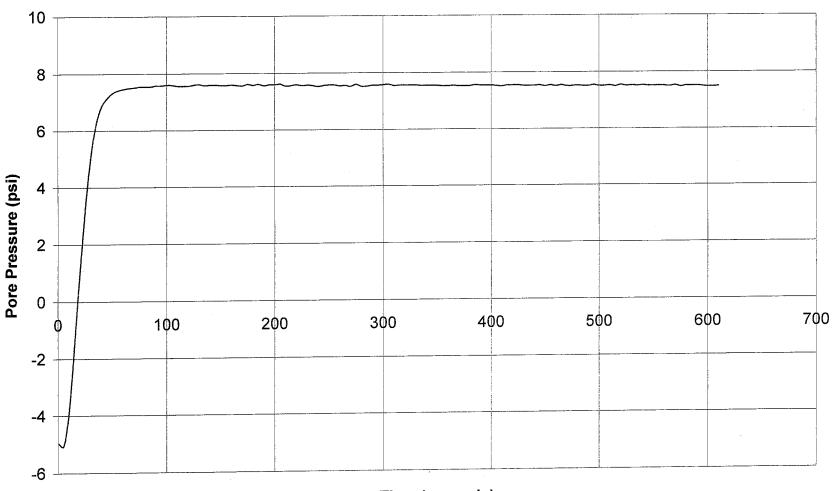

Avg. Interval: 0.656 (ft)

Site: 1285 BANCROFT

Sounding: CPT-01

Engineer: P.SHAEFER

Date: 1/3/2008 08:03


GREGG DRILLING & TESTING

Pore Pressure Dissipation Test

Sounding: CPT-01

Depth: 56.102 Site: 1285 BANCROFT

Engineer: P.SCHAEFER

Time (seconds)

APPENDIX CPT

Cone Penetration Testing Procedure (CPT)

Gregg In Situ, Inc. carries out all Cone Penetration Tests (CPT) using an integrated electronic cone system, *Figure CPT*. The soundings were conducted using a 20 ton capacity cone with a tip area of 15 cm² and a friction sleeve area of 225 cm². The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.85.

The cone takes measurements of cone bearing (q_c) , sleeve friction (f_s) and penetration pore water pressure (u_2) at 5-cm intervals during penetration to provide a nearly continuous hydrogeologic log. CPT data reduction and interpretation is performed in real time facilitating on-site decision making. The above mentioned parameters are stored on disk for further analysis and reference. All CPT soundings are performed in accordance with revised (2000) ASTM standards (D 5778-95).

The cone also contains a porous filter element located directly behind the cone tip (u_2) , Figure CPT. It consists of porous plastic and is 5.0mm thick. The filter element is used to obtain penetration pore pressure as the cone is advanced as well as Pore Pressure Dissipation Tests (PPDT's) during appropriate pauses in penetration. It should be noted that prior to penetration, the element is fully saturated with silicon oil under vacuum pressure to ensure accurate and fast dissipation.

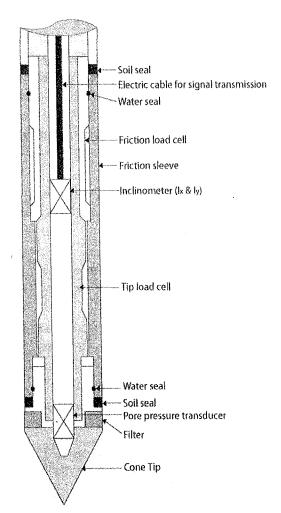


Figure CPT

When the soundings are complete, the test holes are grouted using a Gregg In Situ support rig. The grouting procedures generally consist of pushing a hollow CPT rod with a "knock out" plug to the termination depth of the test hole. Grout is then pumped under pressure as the tremie pipe is pulled from the hole. Disruption or further contamination to the site is therefore minimized.

Cone Penetration Test (CPT) Interpretation

Gregg have recently updated their CPT interpretation and plotting software (2007). The software takes the CPT data and performs basic interpretation in terms of soil behavior type (SBT) and various geotechnical parameters using current published empirical correlations based on the comprehensive review by Lunne, Robertson and Powell (1997). The interpretation is presented in tabular format using MS Excel. The interpretations are presented only as a guide for geotechnical use and should be carefully reviewed. Gregg does not warranty the correctness or the applicability of any of the geotechnical parameters interpreted by the software and does not assume any liability for any use of the results in any design or review. The user should be fully aware of the techniques and limitations of any method used in the software.

The following provides a summary of the methods used for the interpretation. Many of the empirical correlations to estimate geotechnical parameters have constants that have a range of values depending on soil type, geologic origin and other factors. The software uses 'default' values that have been selected to provide, in general, conservatively low estimates of the various geotechnical parameters.

Input:

- Units for display (Imperial or metric) (atm. pressure, pa = 0.96 tsf or 0.1 MPa)
- Depth interval to average results, (ft or m). Data are collected at either 0.02 or 0.05m and can be averaged every 1, 3 or 5 intervals.
- 3 Elevation of ground surface (ft or m)
- Depth to water table, z_w (ft or m) input required
- Net area ratio for cone, a (default to 0.80)
- 6 Relative Density constant, C_{Dr} (default to 350)
- Young's modulus number for sands, α (default to 5)
- 8 Small strain shear modulus number
 - a. for sands, S_G (default to 180 for SBT_n 5, 6, 7)
 - b. for clays, C_G (default to 50 for $SBT_n 1, 2, 3 & 4)$
- 9 Undrained shear strength cone factor for clays, N_{kt} (default to 15)
- 10 Over Consolidation ratio number, k_{ocr} (default to 0.3)
- Unit weight of water, (default to $\gamma_w = 62.4 \text{ lb/ft}^3 \text{ or } 9.81 \text{ kN/m}^3$)

Column

- 1 Depth, z, (m) CPT data is collected in meters
- 2 Depth (ft)
- 3 Cone resistance, q_c (tsf or MPa)
- 4 Sleeve friction, f_s (tsf or MPa)
- 5 Penetration pore pressure, u (psi or MPa), measured behind the cone (i.e. u₂)
- 6 Other any additional data, if collected, e.g. electrical resistivity or UVIF
- 7 Total cone resistance, q_t (tsf or MPa) $q_t = q_c + u$ (1-a)

8	Friction Ratio, R _f (%)	$R_f = (f_s/q_t) \times 100\%$							
9	Soil Behavior Type (non-normalized), SBT	see note							
10	Unit weight, γ (pcf or kN/m³)	based on SBT, see note							
11	Total overburden stress, σ_v (tsf)	$\sigma_{vo} = \gamma z$							
12	Insitu pore pressure, u ₀ (tsf)	$u_0 = \gamma_w (z - z_w)$							
13	Effective overburden stress, σ' _{vo} (tsf)	$\sigma'_{vo} = \sigma_{vo} - u_o$							
14	Normalized cone resistance, Qt1	$Q_{t1} = (q_t - \sigma_{vo}) / \sigma'_{vo}$							
15	Normalized friction ratio, F_r (%)	$F_r = f_s / (q_t - \sigma_{vo}) \times 100\%$							
16	Normalized Pore Pressure ratio, B_{α}	$B_q = u - u_o / (q_t - \sigma_{vo})$							
17	Soil Behavior Type (normalized), SBT _n	see note							
18	SBT _n Index, I _c	see note							
19	Normalized Cone resistance, Q _{tn} (n varies with	Ic) see note							
20	Estimated permeability, k _{SBT} (cm/sec or ft/sec)	see note							
21	Equivalent SPT N ₆₀ , blows/ft	see note							
22	Equivalent SPT (N ₁) ₆₀ blows/ft	see note							
23	Estimated Relative Density, D _r , (%)	see note							
24	Estimated Friction Angle, φ', (degrees)	see note							
25	Estimated Young's modulus, Es (tsf)	see note							
26	Estimated small strain Shear modulus, Go (tsf)	see note							
27	Estimated Undrained shear strength, s _u (tsf)	see note							
28	Estimated Undrained strength ratio	$s_{\rm u}/\sigma_{\rm v}$							
29	Estimated Over Consolidation ratio, OCR	see note							
Notone									
Notes:	Soil Behavior Type (non-normalized), SBT	Lunne et al. (1997)							
-	listed below								
_									
2	Unit weight, γ either constant at 119 pcf or based on Non-normalized SBT								
	(Lunne et al., 1997 and table below)								
3	Soil Behavior Type (Normalized), SBT _n	Lunne et al. (1997)							
3	Son Behavior Type (Normanized), SBTn	Edinie et di. (1997)							
4	SBT _n Index, $I_c = ((3.47 - \log Q_{t1})^2)$	$^{2} + (\log F_{r} + 1.22)^{2})^{0.5}$							
5	Normalized Cone resistance, Q _{tn} (n varies with	Ic)							
	$Q_{tn} = ((q_t - \sigma_{vo})/pa) (pa/(\sigma'_{vo})^n)$ and recalculate I	than iterate							
	Q _{th} = ((Q _t = 0 _{V0})/pa) (pa/(0 _{V0})) and recalculate i	c, then herate.							
	When $I_c < 1.64$, $n = 0.5$ (clean sand)								
	When $I_c > 3.30$, $n = 1.0$ (clays)								
	When $1.64 < I_c < 3.30$, $n = (I_c - 1.64)0.3 + 0$	0.5							
	Iterate until the change in n, $\Delta n < 0.01$								
C	Estimated normality by Chased on Names	ized CDT)							
6	Estimated permeability, k _{SBT} (based on Normal (Lunne et al., 1997 and table below)	izeu SDI _n)							
	(Duffic of al., 1997 and lable below)								

Gregg

7 Equivalent SPT
$$N_{60}$$
, blows/ft Lunne et al. (1997)
$$\frac{(q_i/p_a)}{N_{60}} = 8.5 \left(1 - \frac{I_c}{4.6}\right)$$

- 8 Equivalent SPT $(N_1)_{60}$ blows/ft $(N_1)_{60} = N_{60} C_{N_s}$ where $C_N = (pa/\sigma'_{vo})^{0.5}$
- 9 Relative Density, D_r , (%) $D_r^2 = Q_{tn} / C_{Dr}$ Only $SBT_n 5$, 6, 7 & 8 Show 'N/A' in zones 1, 2, 3, 4 & 9
- 10 Friction Angle, ϕ' , (degrees) $\tan \phi' = \frac{1}{2.68} \left[\log \left(\frac{q_c}{\sigma'_{vo}} \right) + 0.29 \right]$ Only $SBT_n 5$, 6, 7 & 8 Show 'N/A' in zones 1, 2, 3, 4 & 9
- Young's modulus, E_s $E_s = \alpha q_t$ $Only SBT_n 5, 6, 7 & 8$ Show 'N/A' in zones 1, 2, 3, 4 & 9
- 12 Small strain shear modulus, Go
 a. $G_o = S_G (q_t \ \sigma'_{vo} \ pa)^{1/3}$ For $SBT_n \ 5, \ 6, \ 7$ b. $G_o = C_G \ q_t$ For $SBT_n \ 1, \ 2, \ 3 \& \ 4$ Show 'N/A' in zones 8 & 9
- Undrained shear strength, s_u $s_u = (q_t \sigma_{vo}) / N_{kt}$ $Only SBT_n 1, 2, 3, 4 & 9$ Show 'N/A' in zones 5, 6, 7 & 8
- Over Consolidation ratio, OCR OCR = $k_{ocr} Q_{tl}$ Only SBT_n 1, 2, 3, 4 & 9 Show 'N/A' in zones 5, 6, 7 & 8

SBT Zones

SBT_n Zones

The following updated and simplified SBT descriptions have been used in the software:

20101.0			
1	sensitive fine grained	1	sensitive fine grained
2	organic soil	2	organic soil
3	clay	3	clay
4	clay & silty clay	4	clay & silty clay
5	clay & silty clay		
6	sandy silt & clayey silt		
7	silty sand & sandy silt	5	silty sand & sandy silt
8	sand & silty sand	6	sand & silty sand
9	sand		
10	sand	7	sand
11	very dense/stiff soil*	8	very dense/stiff soil*
12	very dense/stiff soil*	9	very dense/stiff soil*
* heav	vily overconsolidated and/or cemented		• .

Track when soils fall with zones of same description and print that description (i.e. if soils fall only within SBT zones 4 & 5, print 'clays & silty clays')

Estimated Permeability (see Lunne et al., 1997)

SBT_n	Permeability (ft/sec)	(m/sec)
1	$3x\ 10^{-8}$	1x 10 ⁻⁸
2	$3x\ 10^{-7}$	1x 10 ⁻⁷
3	1x 10 ⁻⁹	$3x\ 10^{-10}$
4	$3x\ 10^{-8}$	1×10^{-8}
5	$3x\ 10^{-6}$	1x 10 ⁻⁶
6	3×10^{-4}	1x 10 ⁻⁴
7	$3x\ 10^{-2}$	1x 10 ⁻²
8	$3x\ 10^{-6}$	1x 10 ⁻⁶
9	$1x\ 10^{-8}$	$3x \cdot 10^{-9}$

Estimated Unit Weight (see Lunne et al., 1997)

Estimated Cirit Weight (See Buillie of al., 1797)								
SBT	Approximate Unit Weight (lb/ft ³)	(kN/m^3)						
1	111.4	17.5						
2	79.6	12.5						
3	111.4	17.5						
4	114.6	18.0						
5	114.6	18.0						
6	114.6	18.0						
7	117.8	18.5						
8	120.9	19.0						
9	124.1	19.5						
10	127.3	20.0						
11	130.5	20.5						
12	120.9	19.0						

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

November 20, 2007

CRA

Attn: Carmen Rodriguez 5900 Hollis St., Suite A Emeryville, California 94608

Subject:

CPT Site Investigation Shell, 1285 Bancroft Ave. San Leandro, California

GREGG Project Number: 07-341MA

Dear Ms. Rodriguez:

The following report presents the results of GREGG Drilling & Testing's Cone Penetration Test investigation for the above referenced site. The following testing services were performed:

1	Cone Penetration Tests (CPTU)
2	Pore Pressure Dissipation Tests (PPD)
3	Seismic Cone Penetration Tests (SCPTU)
4	Resistivity Cone Penetration Tests (RCPTU)
5	UVIF Cone Penetration Tests (UVIFCPTU)
6	Groundwater Sampling (GWS)
7	Soil Sampling (SS)
8	Vapor Sampling (VS)
9	Vane Shear Testing (VST)
10	SPT Energy Calibration (SPTE)

A list of reference papers providing additional background on the specific tests conducted is provided in the bibliography following the text of the report. If you would like a copy of any of these publications or should you have any questions or comments regarding the contents of this report, please do not hesitate to contact our office at (925) 313-5800.

Sincerely, GREGG Drilling & Testing, Inc.

Mary Walden Operations Manager

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

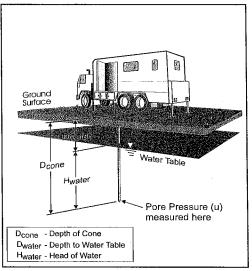
Cone Penetration Test Sounding Summary

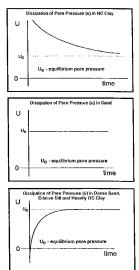
-Table 1-

CPT Sounding Identification	Date	Termination Depth (Feet)	Depth of Groundwater Samples (Feet)	Depth of Soil Samples (Feet)	Depth of Pore Pressure Dissipation Tests (Feet)
CPT-02	11/14/07	28	-	-	
CPT-02a	11/15/07	90	49, 60, 79	_	-
CPT-03	11/14/07	90	40NR, 57, 79	-	54.3
CPT-04	11/15/07	90	41NR, 60, 83	-	64.6, 77.8
1.11.2					
		1			
		-			
***			,		
	4.00				
	-				
	 				
			-		

Pore Pressure Dissipation Tests (PPDT)

Pore Pressure Dissipation Tests (PPDT's) conducted at various intervals measured hydrostatic water pressures and determined the approximate depth of the ground water table. A PPaT is conducted when the cone is halted at specific intervals determined by the field representative. The variation of the penetration pore pressure (u) with time is measured behind the tip of the cone and recorded by a computer system.


Pore pressure dissipation data can be interpreted to provide estimates of:


- Equilibrium piezometric pressure
- Phreatic Purface
- In situ horizontal coefficient of consolidation (c_h)
- In situ horizontal coefficient of permeability (kh)

In order to correctly interpret the equilibrium piezometric pressure and/or the phreatic surface, the pore pressure must be monitored until such time as there is no variation in pore pressure with time, Figure PPDT. This time is commonly referred to as t_{100} , the point at which 100% of the excess pore pressure has dissipated.

A complete reference on pore pressure dissipation tests is presented by Obertson et al. 1992.

A summary of the pore pressure dissipation tests is summarized in Table 1. Pore pressure dissipation data is presented in graphical form in Appendix PPaT.

Water Table Calculation

Dwater = Dcone - Hwater

where Hwater = Ue (depth units)

Useful Conversion Factors:

1psi = 0.704m = 2.31 feet (water)

1tsf = 0.958 bar = 13.9 psi

1m = 3.28 feet

Figure PPDT

APPENDIX GWS

Groundwater Sampling (GWS)

Gregg In Situ, Inc. conducts groundwater sampling using a Hydropunch[®] type groundwater sampler, *Figure GWS*. The groundwater sampler has a retrievable stainless steel or disposable PVC screen with steel drop off tip. This allows for samples to be taken at multiple depth intervals within the same sounding location. In areas of slower water recharge, provisions may be made to set temporary PVC well screens during sampling to allow the drill rig to advance to the next sample location while the groundwater is allowed to infiltrate.

The groundwater sampler operates by advancing 1 3/4 inch hollow push rods with the filter tip in a closed configuration to the base of the desired sampling interval. Once at the desired sample depth, the push rods are retracted; exposing the encased filter screen and allowing groundwater to infiltrate hydrostatically from the formation into the inlet screen. A small diameter bailer (approximately ½ or ¾ inch) is lowered through the push rods into the screen section for sample collection. The number of downhole with the bailer and time trips necessary to complete the sample collection at each depth interval is a function of sampling protocols, volume requirements, and the yield characteristics and storage capacity of Upon completion of the formation. sample collection, the push rods and sampler, with the exception of the PVC screen and steel drop off tip are around retrieved to the surface, decontaminated and prepared for the next sampling event.

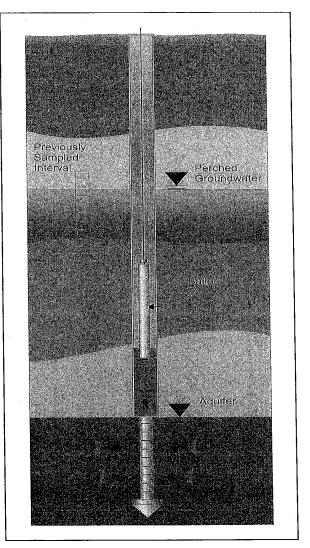


Figure GWS

A summary of the groundwater samples collected, including the sampling date, depth and location identification, is presented in Table 1 and the corresponding CPT plot.

For a detailed reference on direct push groundwater sampling, refer to Zemo et. al., 1992.

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 041923750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47.

Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

Copies of ASTM Standards are available through www.astm.org

GREGG IN SITU, INC.

GEOTECHNICAL AND ENVIRONMENTAL INVESTIGATION SERVICES

Bibliography

Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone Penetration Testing in Geotechnical Practice" E & FN Spon. ISBN 041923750, 1997

Roberston, P.K., "Soil Classification using the Cone Penetration Test", Canadian Geotechnical Journal, Vol. 27, 1990 pp. 151-158.

Mayne, P.W., "NHI (2002) Manual on Subsurface Investigations: Geotechnical Site Characterization", available through www.ce.gatech.edu/~geosys/Faculty/Mayne/papers/index.html, Section 5.3, pp. 107-112.

Robertson, P.K., R.G. Campanella, D. Gillespie and A. Rice, "Seismic CPT to Measure In-Situ Shear Wave Velocity", Journal of Geotechnical Engineering ASCE, Vol. 112, No. 8, 1986 pp. 791-803.

Robertson, P.K., Sully, J., Woeller, D.J., Lunne, T., Powell, J.J.M., and Gillespie, D.J., "Guidelines for Estimating Consolidation Parameters in Soils from Piezocone Tests", Canadian Geotechnical Journal, Vol. 29, No. 4, August 1992, pp. 539-550.

Robertson, P.K., T. Lunne and J.J.M. Powell, "Geo-Environmental Application of Penetration Testing", Geotechnical Site Characterization, Robertson & Mayne (editors), 1998 Balkema, Rotterdam, ISBN 90 5410 939 4 pp 35-47.

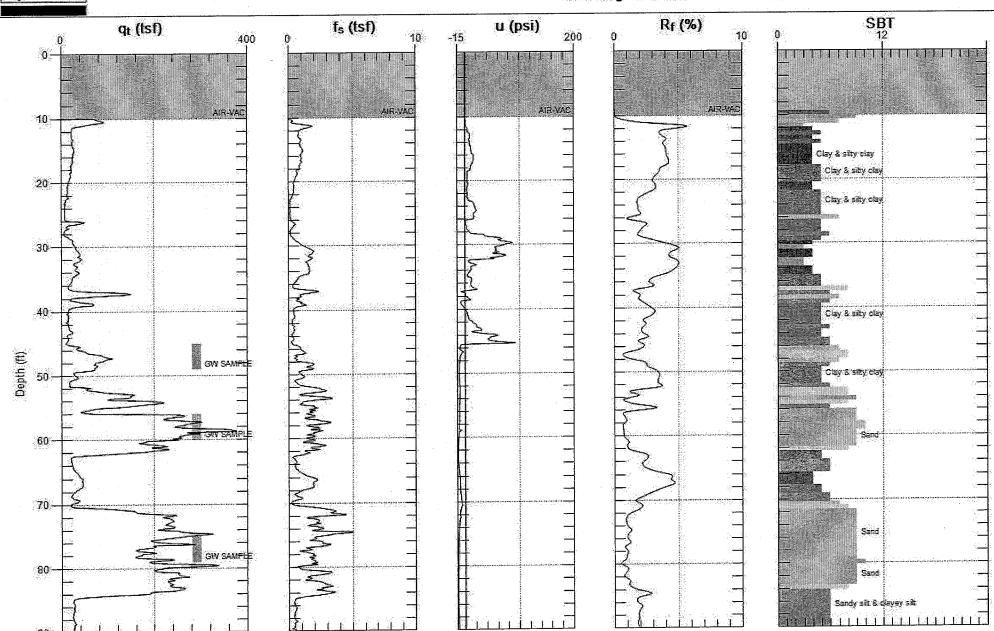
Campanella, R.G. and I. Weemees, "Development and Use of An Electrical Resistivity Cone for Groundwater Contamination Studies", Canadian Geotechnical Journal, Vol. 27 No. 5, 1990 pp. 557-567.

DeGroot, D.J. and A.J. Lutenegger, "Reliability of Soil Gas Sampling and Characterization Techniques", International Site Characterization Conference - Atlanta, 1998.

Woeller, D.J., P.K. Robertson, T.J. Boyd and Dave Thomas, "Detection of Polyaromatic Hydrocarbon Contaminants Using the UVIF-CPT", 53rd Canadian Geotechnical Conference Montreal, QC October pp. 733-739, 2000.

Zemo, D.A., T.A. Delfino, J.D. Gallinatti, V.A. Baker and L.R. Hilpert, "Field Comparison of Analytical Results from Discrete-Depth Groundwater Samplers" BAT EnviroProbe and QED HydroPunch, Sixth national Outdoor Action Conference, Las Vegas, Nevada Proceedings, 1992, pp 299-312.

Copies of ASTM Standards are available through www.astm.org

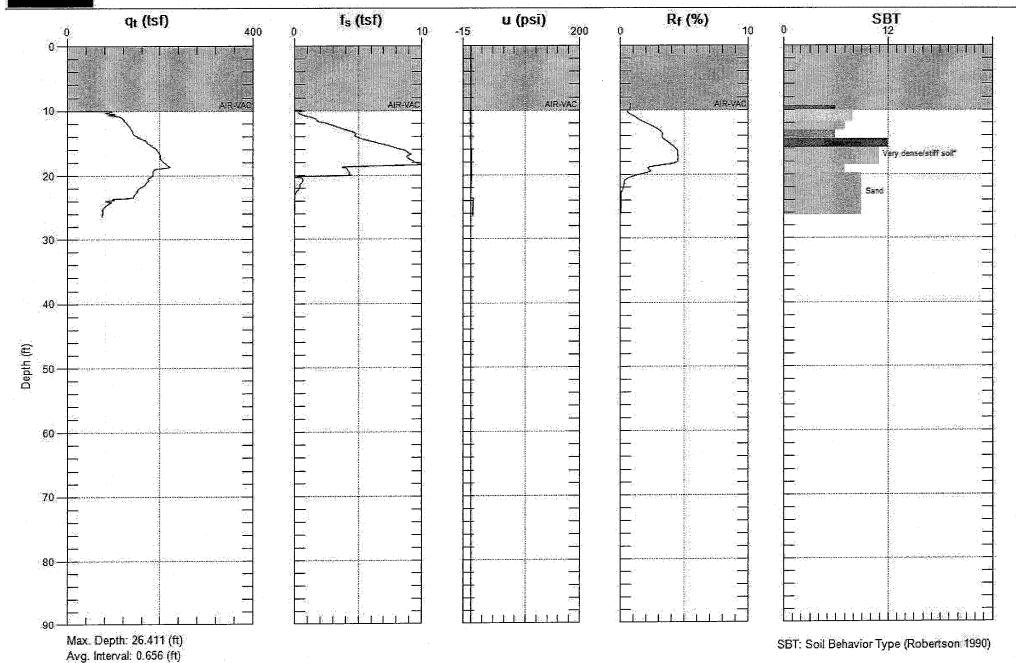


Max. Depth: 90.059 (ft)

Avg. Interval: 0.656 (ft)

Site: SHELL 1285 BANCROFT Engineer: C.RODRIGUEZ
Sounding: CPT-02a Date: 11/15/2007 01:15

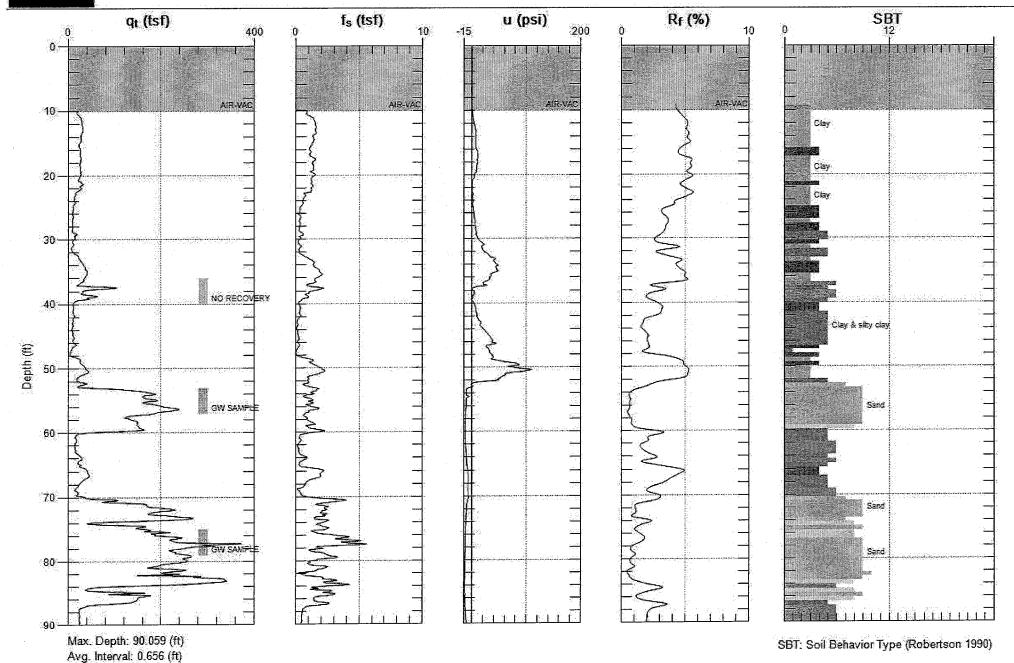
SBT: Soil Behavior Type (Robertson 1990)



Site: SHELL 1285 BANCROFT Engineer: C.RODRIGUEZ

Sounding: CPT-02

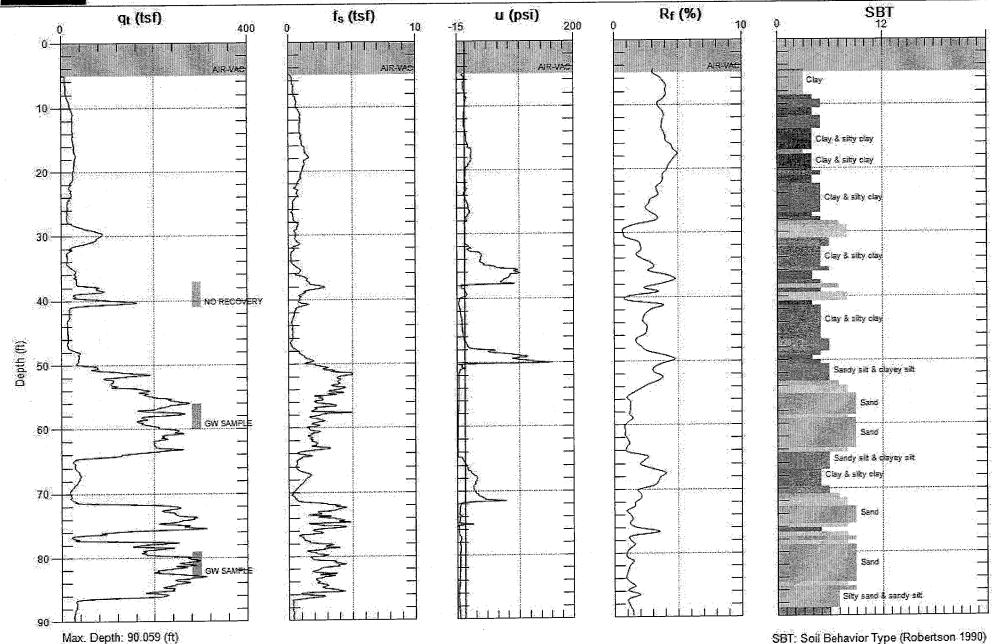
Date: 11/14/2007 08:29



Site: SHELL 1285 BANCROFT Engineer: C.RODRIGUEZ

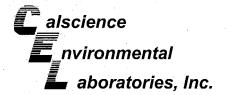
Sounding: CPT-03

Date: 11/14/2007 10:38



Avg. Interval: 0.656 (ft)

Site: SHELL 1285 BANCROFT Engineer: C.RODRIGUEZ


Sounding: CPT-04

Date: 11/15/2007 10:29

Attachment E

Laboratory Analytical Reports

November 28, 2007

Ana Friel Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

07-11-1439

Client Reference:

1285 Bancroft Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/17/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

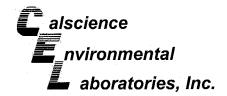
Danilletonice.

Laboratories, Inc.

Danielle Gonsman

Project Manager

Analytical Report



Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1439 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of 1

Project. 1205 Bancion Ave.,	Sali Lealiui	U, UA						
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
CPT-3-53-57'		07-11-1439-1	11/14/07	Aqueous	GC 24	11/19/07	11/19/07	071119B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	100	50	1		ug/L.			•
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	84	38-134						
CPT-3-75-79'		07-11-1439-2	11/14/07	Aqueous	GC 24	11/19/07	11/19/07	071119B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	84	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	84	38-134			•			
Method Blank	The second second	099-12-436-1,155	N/A	Aqueous	GC 24	11/19/07	11/19/07	071119B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	· · · · ·		
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	74	38-134					•	

Analytical Report

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received: Work Order No:

11/17/07 07-11-1439

Preparation:

EPA 5030B

Method: Units:

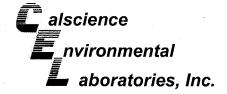
Date

EPA 8260B ug/L

Lab Sample

Page 1 of 3

Project: 1285 Bancroft Ave., San Leandro, CA


Date Analyzed QC Batch ID

Date

Client Sample Number				imple ber	Date Collected Matrix	Instrument	Date Prepared	Dat Analy		C Batch	1D
CPT-3-53-57'		1555	07-11	-1439-1	11/14/07 Aqueous	GC/MS T	11/24/07	11/24	/07 0	71124L0	
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.											
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	MDL	. <u>DF</u>	<u>Qual</u>
Acetone	13	50	6.3	1 J	c-1,3-Dichloropropene		ND	0.50	0.31	1	
Benzene	0.54	0.50	0.14	1	t-1,3-Dichloropropene		ND	0.50	0.49	1	
Bromobenzene	ND.	1.0	0.27	1	Ethylbenzene		3.5	1.0	0.23	. 1	
Bromochloromethane	ND	1.0	0.70	1	2-Hexanone		ND	10	5.4	1	
Bromodichloromethane	ND	1.0	0.24	1	Isopropylbenzene		ND	1.0	0.26	1	
Bromoform	ND	1.0	0.66	. 1	p-Isopropyltoluene		ND	1.0	0.31	1	
Bromomethane	ND	10	5.1	1	Methylene Chloride		ND	10	4.3	1	
2-Butanone	ND	10	6.7	1	4-Methyl-2-Pentanone		ND.	10	3.7	1	
n-Butylbenzene	ND	1.0	0.29	1	Naphthalene		0.57	10	0.50	1	J
sec-Butylbenzene	ND	1.0	0.32	1	n-Propylbenzene		0.51	1.0	0.12	1	J
tert-Butylbenzene	ND	1.0	0.33	1	Styrene		ND ·	1.0	0.29	1	
Carbon Disulfide	ND	10	0.40	1 .	1,1,1,2-Tetrachloroetha	ne	ND	1.0	0.34	. 1	
Carbon Tetrachloride	ND	0.50	0.32	1	1,1,2,2-Tetrachloroetha		ND	1.0	0.30	1	
Chlorobenzene	ND	1.0	0.14	1	Tetrachloroethene	•	3.7	1.0	0.35	1	
Chloroethane	ND	1.0	0.69	1	Toluene		0.56	1.0	0.27	1	J
Chloroform	1.7	1.0	0.24	1	1,2,3-Trichlorobenzene		ND	1.0	0.43	1	
Chloromethane	ND	10	0.63	1	1,2,4-Trichlorobenzene		ND	1.0	0.33	1	
2-Chlorotoluene	ND	1.0	0.18	1	1,1,1-Trichloroethane		ND	1.0	0.26	1	
4-Chlorotoluene	ND	1.0	0.27	1	1,1,2-Trichloro-1,2,2-Tr	ifluoroethane	ND .	10	0.68	1	
Dibromochloromethane	ND.	1.0	0.41	1	1,1,2-Trichloroethane		ND	1.0	0.49	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	· 1	Trichloroethene		ND	1.0	0.37	1	
1.2-Dibromoethane	ND	1.0	0.49	1	Trichlorofluoromethane		ND	10	0.21	1	
Dibromomethane	ND	1.0	0.57	1	1,2,3-Trichloropropane		ND	5.0	1.4	1	
1,2-Dichlorobenzene	ND	1.0	0.33	1	1,2,4-Trimethylbenzene)	3.1	1.0	0.23	. 1	
1.3-Dichlorobenzene	ND	1.0	0.23	1	1,3,5-Trimethylbenzene		1.1	1.0	0.18	. 1	l
1,4-Dichlorobenzene	ND	1.0	0.22	1	Vinyl Acetate		ND	10	3.7	1	ł
Dichlorodifluoromethane	ND	1.0	0.89	1	Vinyl Chloride		ND	0.50	0.36	. 1	ļ
1,1-Dichloroethane	ND	1.0	0.27	1	p/m-Xylene		13	1.0	0.54	. 1	1
1,2-Dichloroethane	ND:	0.50	0.26	1.	o-Xylene		3.6	1.0	0.17	. 1	1
1.1-Dichloroethene	ND	1.0	0.29	. 1	Methyl-t-Butyl Ether (M	TBE)	0.36	1.0	0.26	1	1 ј
c-1,2-Dichloroethene	ND	1.0	0.35	1	Tert-Butyl Alcohol (TB/	•	ND	10	5.4		1
t-1,2-Dichloroethene	ND	1.0	0.38	1	Diisopropyl Ether (DIPE		ND	2.0	0.33	3	1
1,2-Dichloropropane	ND	1.0	0.36	1	Ethyl-t-Butyl Ether (ET	•	ND	2.0	0.18	3	1
1.3-Dichloropropane	ND	1.0	0.26	1	Tert-Amyl-Methyl Ether		ND	2.0	1.1	•	1.
2,2-Dichloropropane	ND	1.0	0.28	1	Ethanol	,	ND	100	86	•	1 .
1,1-Dichloropropene	ND	1.0	0.24	1							
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (%)	Control	Limits		Qual
Dibromofluoromethane	113	74-140			1,2-Dichloroethane-d4		116	74-146			-
Toluene-d8	104	88-112			1,4-Bromofluorobenzer	ne	100	74-110			
i Oluene-uo	104	30-112			1,1 5101101140105011201		.00				

DF - Dilution Factor

Analytical Report

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

11/17/07 07-11-1439

Work Order No: Preparation:

EPA 5030B

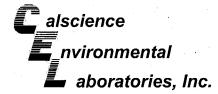
Method:

EPA 8260B

Units:

ug/L

Project: 1285 Bancroft Ave., San Leandro, CA


Page 2 of 3

Client Sample Number	Lab Sample Number				Date Collected Matrix Ins	Matrix Instrument		Date Date pared Analyzed QC Batch ID			
CPT-3-75-79'			07-11-	1439-2		11/14/07 Aqueous G	C/MST	11/24/07	11/24	/07 07	1124L01
Comment(s): -Results were	evaluated to the	MDL, cor	ncentratio	ns >≔ to	the M	IDL but < RL, if found, are qu	alified witl	n a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF C	<u>ual</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u> Qual
Acetone	8.6	50	6.3	1	J	c-1,3-Dichloropropene		ND	0.50	0.31	1
Benzene	ND	0.50	0.14	1		t-1,3-Dichloropropene		ND	0.50	0.49	1
Bromobenzene	ND	1.0	0.27	1		Ethylbenzene		0.97	1.0	0.23	1 J
Bromochloromethane	ND	1.0	0.70	1		2-Hexanone		ND	10	5.4	1
Bromodichloromethane	ND	1.0	0.24	1		Isopropylbenzene		ND	1.0	0.26	. 1
Bromoform	ND	1.0	0.66	1		p-Isopropyltoluene		ND	1.0	0.31	1 .
Bromomethane	ND .	10	5.1	1		Methylene Chloride		ND	10	4.3	1
2-Butanone	ND	10	6.7	1		4-Methyl-2-Pentanone		ND	10	3.7	1
n-Butylbenzene	ND	1.0	0.29	. 1		Naphthalene		ND .	10	0.50	1
sec-Butylbenzene	ND	1.0	0.32	1		n-Propylbenzene		0.18	, 1.0	0.12	1 J
tert-Butylbenzene	ND	1.0	0.33	1		Styrene		ND	1.0	0.29	1
Carbon Disulfide	ND	10	0.40	1		1,1,1,2-Tetrachloroethane		ND	1.0	0.34	1
Carbon Tetrachloride	ND	0.50	0.32	1		1,1,2,2-Tetrachloroethane		ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.14	1		Tetrachloroethene		3.6	1.0	0.35	1
Chloroethane	ND	1.Ó	0.69	1		Toluene		ND	1.0	0.27	1
Chloroform	0.60	1.0	0.24	1	J	1,2,3-Trichlorobenzene		ND	1.0	0.43	1
Chloromethane	ND	10	0.63	1		1,2,4-Trichlorobenzene		ND	1.0	0.33	1
2-Chlorotoluene	ND	1.0	0.18	1		1,1,1-Trichloroethane		ND	1.0	0.26	1
4-Chlorotoluene	ND	1.0	0.27	1 '		1,1,2-Trichloro-1,2,2-Trifluo	roethane	ND	10	0.68	1
Dibromochloromethane	ND	1.0	0.41	1		1,1,2-Trichloroethane		ND .	1.0	0.49	1
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	1		Trichloroethene		ND	1.0	0.37	1
1,2-Dibromoethane	ND	1.0	0.49	.1		Trichlorofluoromethane		ND	10	0.21	1
Dibromomethane	ND .	1.0	0.57	1.		1,2,3-Trichloropropane		ND	5.0	1.4	1
1,2-Dichlorobenzene	ND	1.0	0.33	- 1		1,2,4-Trimethylbenzene		1.3	1.0	0.23	- 1
1,3-Dichlorobenzene	ND	1.0	0.23	1		1,3,5-Trimethylbenzene		0.41	1.0	0.18	1 J
1,4-Dichlorobenzene	ND	1.0	0.22	1		Vinyl Acetate		ND	10	3.7	1 .
Dichlorodifluoromethane	ND	1.0	0.89	- 1		Vinyl Chloride		ND .	0.50	0.36	1
1,1-Dichloroethane	ND	1.0	0.27	1		p/m-Xylene		3.9	1.0	0.54	1
1,2-Dichloroethane	ND	0.50	0.26	. 1		o-Xylene		1.2	1.0	0.17	. 1
1,1-Dichloroethene	ND	1.0	0.29	1		Methyl-t-Butyl Ether (MTBE	E) _	ND	1.0	0.26	1
c-1,2-Dichloroethene	ND	1.0	0.35	1		Tert-Butyl Alcohol (TBA)	-	ND ·	10	5.4	1
t-1,2-Dichloroethene	ND	1.0	0.38	1		Diisopropyl Ether (DIPE)		ND	2.0	0.33	1
1,2-Dichloropropane	ND	1.0	0.36	1		Ethyl-t-Butyl Ether (ETBE)		ND	2.0	0.18	1 .
1,3-Dichloropropane	ND	1.0	0.26	1		Tert-Amyl-Methyl Ether (TA	ME)	ND	2.0	1.1	1 .
2,2-Dichloropropane	ND	1.0	0.28	1		Ethanol		ND	100	86	1
1,1-Dichloropropene	ND	1.0	0.24	1							
Surrogates:	REC (%)	Control I	<u>Limits</u>	9	Qual	Surrogates:		REC (%)	Control	<u>Limits</u>	Qual
Dibromofluoromethane	111	74-140				1,2-Dichloroethane-d4	-	116	74-146		
Toluene-d8	103	88-112				1,4-Bromofluorobenzene		101	74-110		
The second secon		·· -									

DF - Dilution Factor

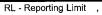
Qual - Qualifiers

Lab Sample

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1439 EPA 5030B

Wethod Units:

Date


EPA 8260B ug/L

Project: 1285 Bancroft Ave., San Leandro, CA

Page 3 of 3

Date

Client Sample Number			Numl	per	Collected Matrix Instrument	Prepared	l Analy	zea 🥨	Batch ID
Method Blank			099-10	-006-23,523	N/A Aqueous GC/MS T	11/24/07	11/24	/07 071	124L01
Comment(s): -Results were ev	valuated to the				IDL but < RL, if found, are qualified wit				
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL	<u>DF</u> Qual	<u>Parameter</u>	<u>Result</u>	<u>RL</u>	MDL -	DF Qual
Acetone	ND	50	6.3	1	c-1,3-Dichloropropene	ND	0.50	0.31	1
Benzene	ND	0.50	0.14	1	t-1,3-Dichloropropene	ND	0.50	0.49	1
Bromobenzene	ND	1.0	0.27	1	Ethylbenzene	ND	1.0	0.23	1
Bromochloromethane	ND	1.0	0.70	1	2-Hexanone	ND	10	5.4	1
Bromodichloromethane	ND	1.0	0.24	1	Isopropylbenzene	ND ·	1.0	0.26	1
Bromoform	ND	1.0	0.66	1	p-Isopropyltoluene	ND	1.0	0.31	1
Bromomethane	ND	10	5.1	1	Methylene Chloride	ND -	10	4.3	1
2-Butanone	ND	10	6.7	1	4-Methyl-2-Pentanone	ND	10	3.7	1
n-Butylbenzene	ND	1.0	0.29	1	Naphthalene	ND	10	0.50	1
sec-Butylbenzene	ND	1.0	0.32	1	n-Propylbenzene	ND	1.0	0.12	1
tert-Butylbenzene	ND	1.0	0.33	1	Styrene	ND	1.0	0.29	1
Carbon Disulfide	ND	10	0.40	1	1,1,1,2-Tetrachloroethane	ND	1.0	0.34	1
Carbon Tetrachloride	ND	0.50	0.32	1	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.14	1 '	Tetrachloroethene	ND	1.0	0.35	. 1
Chloroethane	ND ·	1.0	0.69	1	Toluene	ND	1.0	0.27	1
Chloroform	ND	1.0	0.24	1	1,2,3-Trichlorobenzene	ND	1.0	0.43	1
Chloromethane	ND	10	0.63	1	1,2,4-Trichlorobenzene	ND	1.0	0.33	1
2-Chlorotoluene	ND	1.0	0.18	1	1,1,1-Trichloroethane	ND	1.0	0.26	. 1
4-Chlorotoluene	ND	1.0	0.27	1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.68	1
Dibromochloromethane	ND	1.0	0.41	1	1,1,2-Trichloroethane	ND	1.0	0.49	1
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	1	Trichloroethene	ND	1.0	0.37	1
1,2-Dibromoethane	ND	1.0	0.49	1	Trichlorofluoromethane	ND	10	0.21	1
Dibromomethane	ND	1.0	0.57	. 1	1,2,3-Trichloropropane	ND	5.0	1.4	1
1,2-Dichlorobenzene	ND	1.0	0.33	1	1,2,4-Trimethylbenzene	ND	1.0	0.23	1
1,3-Dichlorobenzene	ND	1.0	0.23	1 ,	1,3,5-Trimethylbenzene	ND	1.0	0.18	1
1,4-Dichlorobenzene	ND	1.0	0.22	1	Vinyl Acetate	ND	10	3.7	1
Dichlorodifluoromethane	ND	1.0	0.89	1	Vinyl Chloride	ND	0.50	0.36	1
1,1-Dichloroethane	ND	1.0	0.27	1	p/m-Xylene	ND	1.0	0.54	1.
1,2-Dichloroethane	ND	0.50	0.26	1	o-Xylene	ND	1.0	0.17	1
1,1-Dichloroethene	ND	1.0	0.29	1	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.26	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	Tert-Butyl Alcohol (TBA)	ND	10	5.4	1
t-1,2-Dichloroethene	ND	1.0	0.38	1	Diisopropyl Ether (DIPE)	ND	2.0	0.33	1 .
1,2-Dichloropropane	ND	1.0	0.36	1	Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.18	1
1,3-Dichloropropane	ND	1.0	0.26	1	Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.1	1
2,2-Dichloropropane	ND	1.0	0.28	1	Ethanol	ND	100	86	1
1,1-Dichloropropene	ND	1.0	0.24	1					
Surrogates:	REC (%)	Control I		Qual	Surrogates:	REC (%)	Control	<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	110	74-140			1,2-Dichloroethane-d4	113	74-146		
Toluene-d8	103	88-112			1.4-Bromofluorobenzene	99	74-110		

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1439 EPA 5030B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-11-1481-1	Aqueous	GC 24	11/19/07	11/19/07	071119801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	L Qualifiers
TPH as Gasoline	96 ·	89	68-122	8 0-18	

RPD - Relative Percent Difference ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1439 EPA 5030B EPA 8260B

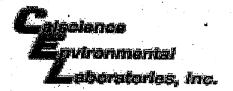
Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-1272-3	Aqueous	GC/MST	11/24/07	A to	11/24/07	071124S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
	and the second					
Benzene	101	103	88-118	1	0-7	
Carbon Tetrachloride	106	106	67-145	1	0-11	
Chlorobenzene	100 .	101	88-118	1	0-7	
1,2-Dibromoethane	99	100	70-130	1	0-30	
1,2-Dichlorobenzene	99	102	86-116	-3	0-8	• .
1,1-Dichloroethene	123	122	70-130	1	0-25	-
Ethylbenzene	106	105	70-130	1	0-30	
Toluene	103	103	87-123	0	0-8	
Trichloroethene	101	103	79-127	1	0-10	
Vinyl Chloride	97	97	69-129	` 0	0-13	
Methyl-t-Butyl Ether (MTBE)	95	100	71-131	5	0-13	*
Tert-Butyl Alcohol (TBA)	117	105	36-168	11	0-45	
Diisopropyl Ether (DIPE)	103	105	81-123	1	0-9	
Ethyl-t-Butyl Ether (ETBE)	94	106	72-126	13	0-12	4
Tert-Amyl-Methyl Ether (TAME)	89	101	72-126	13	0-12	4
Ethanol	141	119	53-149	17	0-31	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1439 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	 Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD B Number	atch
099-12-436-1,155	Aqueous	GC 24	11/19/07	11/19/07	071119B0	1
<u>Parameter</u>	LCS %RE	C LCSD %	KREC %F	REC CL R	PD RPD CL	Qualifiers
TPH as Gasoline	100	100	7	8-120	0 - 10	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1439 EPA 5030B EPA 8260B

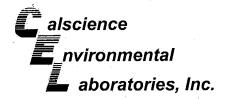
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-10-006-23,523	Aqueous	GC/MS T	11/24/07	11/24/07	071124L01	
<u>Parameter</u>	LCS %I	REC LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
Benzene	103	101	84-12	20 1	0-8	
Carbon Tetrachloride	104	106	63-14	7 1	0-10	
Chlorobenzene	100	100	89-11	9 1	0-7	
1,2-Dibromoethane	102	103	80-12	0 0	0-20	
1,2-Dichlorobenzene	102	101	89-11	9 1	0-9	
1,1-Dichloroethene	104	107	77-12	25 3	0-16	
Ethylbenzene	105	104	80-12	20 1	0-20	
Toluene	103	102	83-12	25 1	0-9	
Trichloroethene	102	101	89-11	19 1	0-8	
Vinyl Chloride	93	97	63-13	35 4	0-13	
Methyl-t-Butyl Ether (MTBE)	104	106	82-11	18 1	0-13	
Tert-Butyl Alcohol (TBA)	105	121	46-1	54 13	0-32	
Diisopropyl Ether (DIPE)	104	104	81-12	23 0	0-11	
Ethyl-t-Butyl Ether (ETBE)	114	117	74-12	22 2	0-12	
Tert-Amyl-Methyl Ether (TAME)	112	112	76-12	24 0	0-10	×
Ethanol	103	109	60-13	38 6	0-32	


Glossary of Terms and Qualifiers

Work Order Number: 07-11-1439

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
. H	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB: 1	Γ Α) :	SH	FI	1	Ch	ai	n ()f (Cu	sto	dv	, R	ec	or	d										_
	vine, California		201176					 -		-	_								CIDE	NIT #	/E9	ONI	<u>~</u>		_				\neg	
	lorgan Hill, California	NAME OF PER	SON TO	BILL:	Denis I	Brown												<u> </u>	IN	CIDE	NI E	(E3		T .		-		/ 1 !	1	
	acramenta, California	☑ ENVIRONMENTAL S	ERVICES.					СНІ	ECK BO	OT XC	/ERIF	Y IF NO	O INCI	DENT #	APPL	ES		9	. 8	9	9	6	0	6	7	_ D	ate: 🄰	"4/	107	.
☐ Calscie	ashville, Tennesee ence	☐ NETWORK DEV / FE		☐ BILL	CONSULTA	NT						РО	#							SAI	or o	CRM	T#] _		1	of _	
Other_		COMPLIANCE		RMT	/CRMT						Т	Τ	Т	Τ	Π											7 1	AGE:	<u>.</u>	OT	
SAMPLING C	OMPANY:		LOG CODE				SITE	ADDR	ESS: S	treet ar	d City			٠.	٠.	<u> </u>		State			GLOB	AL ID N	D.:	1	l	Т				\dashv
Conest	oga-Rovers & Asso	ociates (CRA)	CRAW				12	85 E	3an	crof	t A	ve, S	San	Lea	andı	ro		CA		ŀ	T060	0101	224							
ADDRESS:				-	-		EDF D	ELIVERA	ABLE TO	(Name,	Compar	y, Office	Location	1):		PHONE	NO.;				E-MAIL:							CONSULT	TANT PROJECT NO.	
	Ollis St, Suite A, Em	neryville, CA 94608					Rall	ard I	Falici	ia, CR	PΔS	onor	na			707	933 2	2360		- 1	sono	mae	af@c	rawo	rid.cc	om		240504-0	08	
Ana Fri		iport w.					SAM	PLER NA	AME(S)	Print):	<u>, .</u>	OHO				1					00110		<u>, </u>		_		ONLY			\neg
TELEPHON		FAX:	E-MAIL:				1 _			_	_															1	1-1	117	9	.
707 268		707 268 8180		craworld.			C	arm	en l	Rod	rigu	ez															/ - /	<u>タン</u>		_
		S / RUSH IS CALENDAR DAY 2 DAY 1			RESULTS NE ON WEEKE												RE	QUE	STE	D AN	IAL	/SIS								
T 210	LI S DAT LI 3 L	AI LIZUAT LI	27 (100/03		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	Ι.		Г	_	1 .	Ī	1	т-	T				· 1				T .	_	1	r -			\dashv
□ LA -	RWQCB REPORT FORMA	T UST AGENCY:	<u> </u>]														_							÷		.
SPECIAL	INSTRUCTIONS OR NO	<u>_</u>	EDD NOT							-				280					560)		Zn, Ni	270			ed)		F	FIELD I	NOTES:	
			SHELL CO			5	<u> </u>	\$				(Soc.)	iii	88	1	<u></u>	g g	l j	8)	1	Ž	Creosote 8270	Desolved Solids (160.1)		attached)	ĺ	Co	ntainer/F	reservative	
			☐ STATE RI ☑ RECEIPT				Purgeable (8260 B)	Extractable (8015M)						ğ	1	260	826		ents		r, Pb	oso	5		e a	ā	1	or PID R	-	
		Ł	S KECEIPI	VERTICALI	ON REQUE	אובט	8	9				(a)	18 AM	ig 2		B 9	99		훘	1	Cd, Cr,	Cre	olid	_	se		0	r Laborat	tory Notes	
							렱	fab				(8260B)	E P	윷	087	E E	im o	<u>@</u>	pe	-	ğ	IAs	S	108	sal					
							i iii	Tac	9	98	1 2		9	교	8	loo .	all	1260	ina	ı	Metals	g.	ě	99	isp					1
No carti	al lab reports, send final !	PDF report only.				1 -		ă	828	(82	1 20	je je		late		읥	e e	8	둳	- 1	17 M	PCP, PNAs	Des	5	2					
LAB USE			SAM	PLING	MATRIX	NO. OF	έ	TPH6	BTEX (8260B)	MTBE (8260B)	4	5 Oxygenates (82)	OII & Greese EPA 9070	Chlorinated hydorcarbons 8280	EDB & EDC 8082	1,2-dichloroethane (8260B)	Ethylene dibromide (8260B)	Ethanol (8260B)	Full Chlorinated Solvents (8260)		Cam 1	PCB, I	Total I	Total Iron (6010B)	Test for Disposal (see		TEMPER/	ATURE ON	N RECEIPT C°	\neg
ONLY		Identification	DATE		MAIRIA	CONT.	Ŧ	유	Ē	Ξ	<u> </u>	200	ō	5	묘	=	퓹	ŭ		_	ర	ă	<u>P</u>	۴	ļ.º	╀	 			\dashv
ି - (PT-3-53	-57	11/14	7449	W	6	Х		X			X			ļ				Х							<u> </u>	<u> </u>			
(PT-5- 7	5-74'		1531	W	6	X	1	X	1	1	×	İ						×											
				24 44 6	فسفا						Г																			
	-			7	-377			<u> </u>	<u> </u>	├	├-	╁	+	╁	\vdash		-				\dashv			┢	-	+				
												1	1	1	<u> </u>											<u> </u>	<u> </u>			
												1			1					l	1					1	•			
-+			+	-			-	├┈	 	 	┢	+-	+		1					- 1	\dashv				_	1			<u> </u>	
								<u> </u>						<u> </u>	<u> </u>											<u> </u>				_
$\neg \neg$			-					Ĭ.		1	1		ł							- 1										
	·					 	-	\vdash	 	╁	╁	+	+-	+	1		_		- 1	一十						 				\neg
							<u> </u>			l	1_			<u> </u>	<u> </u>		L				_					_	<u> </u>		· .	
		_													ļ						Ì									
			-			 	 	-		 	╁┈	+	\vdash	1												1				
				<u> </u>			<u> </u>	L	<u> </u>			<u> </u>	1			<u> </u>		L	<u> </u>	Date:					<u>L.</u>	Time:			·	
Relinquish	ed by: (Signature)				۱ 🛕	v: (Signature) \		\leq				0		- 1						٠, ۲۰	<-	7	\supset			841	<i>.</i> 0		
Religation	ed by (Signature)	1			Repeived b	y: (Signature	- X	× _			7				<u>ر</u>				\dashv	Date:		<u>ر</u>	<u> </u>			Time				\dashv
1. onitiquiso	(AACINIA)	Bun				<u> </u>		M	R.	7	L	<u> ୬୯</u>	<u>A</u>	77	0	1	ر									-				
Relinquish	et by: (Signature)		(25)	<u></u>	Received b	y: (Signature									_	lë:	2_			Date:	, /	/7		フフ	,	Time	10	· 2	ð	ļ
$\overline{}$	X VZ	X/ -00	00	<u> </u>					<i>770</i>	0						تع					4		<u> </u>			-		Revision		



WORK ORDER #: **07** - // // - // 4 3 9

Cooler __/_ of _/_

SAMPLE RECEIPT FORM

CLIENT: CRA	DATE: ///17/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other than Calscience Courier): ° C Temperature blank. ° C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not	Intact) : Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

November 28, 2007

Ana Friel Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

07-11-1432

Client Reference:

1285 Bancroft Ave., San Leandro, CA

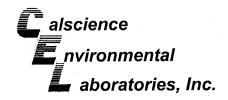
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/17/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Calscience Environmental

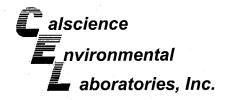
Danilletonica

Laboratories, Inc.

Danielle Gonsman

Project Manager

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8015B (M)


Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of 2

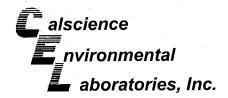
Project: 1285 Bancroft Ave., Sa	ali Lealiui	U, UA		•				aye i oi z
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
SB-16-10.5		07-11-1432-1	11/16/07	Solid	GC 18	11/20/07	11/20/07	071120B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND:	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	99	42-126						
SB-16-20		07-11-1432-2	11/16/07	Solid	GC 18	11/20/07	11/20/07	071120B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	. 1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	100	42-126						
SB-16-21.5		07-11-1432-3	11/16/07	Solid	GC 18	11/20/07	11/20/07	071120B01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg	1 ,		
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	103	42-126						
SB-16-26		07-11-1432-4	11/16/07	Sølid	GC 18	11/20/07	11/20/07	071120B01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>	i.		
TPH as Gasoline	ND	0.50	1		mg/k	g		
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	103	42-126						

RL - Reporting Limit

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA


Page 2 of 2

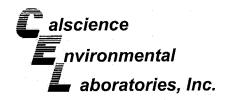
FAX: (714) 894-7501

Project: 1285 Bancroπ Ave., Sa	an Leanur	U, CA			•			age z or z
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
SB-16-30		07-11-1432-5	11/16/07	Solid	GC 18	11/20/07	11/20/07	071120B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				·
1,4-Bromofluorobenzene - FID	103	42-126	٠.					
SB-16-37,5		07-11-1432-6	11/16/07	Solid	GC 18	11/20/07	11/20/07	071120B01
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	19	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	125	42-126						
SB-16-40.5		07-11-1432-7	11/16/07	Solid	GC 18	11/20/07	11/20/07	071120B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg	ļ, .		
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	89	42-126						
Method Blank		099-12-279-1,32	0 N/A	Solid	GC 18	11/20/07	11/20/07	071120B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg	9		
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	104	42-126				•		

RL - Reporting Limit

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8015B (M)

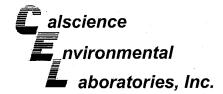

Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of 2

Project: 1265 bancion Ave., 3	all Lealiul	U, CA					1 49	0 1 01 2
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed Q0	Batch ID
CPT-4-56-60'	He has all	07-11-1432-8	11/16/07	Aqueous	GC 30	11/20/07	11/20/07 07	1120B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	<u>,</u> 1		ug/L		•	
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	80	38-134						
CPT-4-79-83'		07-11-1432-9	11/16/07	Aqueous	GC 30	11/20/07	11/20/07 07	1120B01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	Units			
TPH as Gasoline	ND	50	1 ,		ug/L		•	
Surrogates:	REC (%)	Control Limits		Qual			,	
1,4-Bromofluorobenzene	80	38-134						
CPT-2-45-49'		07-11-1432-10	11/16/07	Aqueous	GC 29	11/26/07	11/26/07 0	
Comment(s): -The sample chroma of the unknown hydro	tographic patter ocarbon(s) in the <u>Result</u>	n for TPH does not a e sample was based <u>RL</u>	match the chro upon the spec <u>DF</u>	matographio ified standa <u>Qual</u>	pattern of th rd. <u>Units</u>		standard. Quar	ititation
TPH as Gasoline	15000	1200	25		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	106	38-134						
CPT-2-56-60'		07-11-1432-11	11/16/07	Aqueous	GC 30	11/20/07	11/20/07 0	71120B01
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	<u>i</u>		
TPH as Gasoline	ND ₁	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	78	38-134					•	

RL - Reporting Limit ,

DF - Dilution Factor


Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

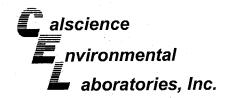
11/17/07 07-11-1432 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Page 2 of 2

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
Method Blank		099-12-436-1,161	N/A	Aqueous	GC 30	11/20/07	11/20/07	071120B01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	84	38-134						
Method Blank		099-12-436-1,176	N/A	Aqueous	GC 29	11/26/07	11/26/07	071126B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1 .		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	75	38-134						
								4

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 11/17/07 07-11-1432 EPA 5030B EPA 8260B ug/L

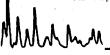

Project: 1285 Bancroft Ave., San Leandro, CA

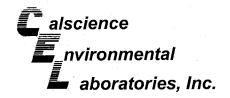
Page 1 of 7

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d Q(C Batch ID
CPT-4-56-60'			07-11-	1432-8	11/16/07	Aqueous	GC/MS T	11/24/07	11/24/0	7 07	1124L01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Acetone	ND -	50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichloro	propene		ND	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone	-		ND	10	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyltoli	uene		ND .	1.0	1	
Bromomethane	ND	10	1		Methylene Ch	loride		ND	10	1	
2-Butanone	ND	10	1		4-Methyl-2-Pe	entanone		ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ene		ND	1.0	1	
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	i		1,1,1,2-Tetrac	hloroethane		ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hloroethane		ND	1.0	1 -	
Chlorobenzene	ND	1.0	1		Tetrachloroeti	nene		4.1	1.0	.1	
Chloroethane	ND	1.0	1		Toluene			ND	1.0	1	
Chloroform	1.3	1.0	1		1,2,3-Trichlor	obenzene		ND	1.0	1	
Chloromethane	ND	10	1		1,2,4-Trichlor	obenzene		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichlor	oethane		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor		uoroethane	ND	10	1	
Dibromochloromethane	ND	1.0	1		1,1,2-Trichlor			ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroethe			ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		Trichlorofluor			ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor			ND	5.0	1	
1,2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimeth			ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimeth			ND	1.0	1	
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate	•		ND	10	1	
Dichlorodifluoromethane	ND ND	1.0	. 1		Vinyl Chloride			ND	0.50	1	
1,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		o-Xvlene			ND	1.0	1	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Buty	l Ether (MTF	RF)	ND	1.0	1	
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Ald	•	,	ND	10	· 1	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl E			ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl		, .	ND	2.0	1	
	ND	1.0	1		Tert-Amyl-Me			ND	2.0	1	
1,3-Dichloropropane	ND.	1.0	1		Ethanol	y. = a.o. (1	,	ND	100	1	
2,2-Dichloropropane	ND.	1.0	1		Litiatio			, AID	100	•	
1,1-Dichloropropene		Control	. 1	Qual	Surrogates:			REC (%)	Control		Qual
Surrogates:	<u>REC (%)</u>	Limits		Qual	<u>Surrogales.</u>			1101/01	Limits		<u>~,uui</u>
Dibromofluoromethane	117	74-140			1.2-Dichloroe	thane-d4		127	74-146		*
Toluene-d8	105	88-112			1,4-Bromoflu			99	74-110		
i oluene-do	100	00-112			1,4-DIOIII0IIu	GI GOOGI IZONE		30	, -T-110		

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 11/17/07 07-11-1432 EPA 5030B EPA 8260B ug/L


Project: 1285 Bancroft Ave., San Leandro, CA


Page 2 of 7

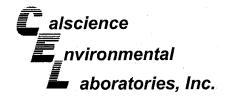
Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	ed Q	Batch ID
CPT-4-79-83'		1 1	07-11-1	4-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	11/16/07	Aqueous	GC/MS T	11/24/07	11/24/0	7 07	1124L01
Parameter	Result	RL,	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichloro	oropene		ND	0.50	1	
Bromobenzene	ND	1.0	1 -		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10 .	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyltoli	uene		ND .	1.0	1	
Bromomethane	ND	10	1		Methylene Ch	loride		ND	10	1	
2-Butanone	ND	10	1		4-Methyl-2-Pe	entanone		ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenzo	ene		ND	1.0	1	
tert-Butylbenzene	ND:	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	i		1,1,1,2-Tetrac	hloroethane		ND	1.0	1	
Carbon Tetrachloride	ND -	0.50	1		1,1,2,2-Tetra			ND	1.0	1	
Calibor Tellacriloride Chlorobenzene	ND	1.0	1		Tetrachloroet			2.1	1.0	1	
Chloroethane	ND	1.0	1.		Toluene	7		ND .	1.0	1	
	ND	1.0	1		1,2,3-Trichlor	obenzene		ND	1.0	1	
Chloroform	ND	10	1		1,2,4-Trichlor			ND	1.0	1	
Chloromethane	ND	1.0	1	*	1,1,1-Trichlor			ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor		uoroethane	ND	10	1	
4-Chlorotoluene		1.0	1		1,1,2-Trichlor			ND	1.0	1	
Dibromochloromethane	ND		1		Trichloroethe			ND	1.0	1	
1,2-Dibromo-3-Chloropropane	, ND	5.0	1		Trichlorofluor			ND	10	1	
1,2-Dibromoethane	ND	1.0	1		1,2,3-Trichlo			ND	5.0	1	
Dibromomethane	ND	1.0	•		1,2,3-11ichloi			ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	. 1		1,2,4-11ineti			ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1	·	Vinyl Acetate	•		ND	10	1	
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Chlorid			ND	0.50	1	
Dichlorodifluoromethane	ND	1.0	1		*	5		ND	1.0	1	
1,1-Dichloroethane	ND .	1.0	1		p/m-Xylene			ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		o-Xylene	4 Ethan (NAT)	DE)	ND	1.0	. 1	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Buty		36)				
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Al			ND ·	10	- 1	
t-1,2-Dichloroethene	ŅD	1.0	1		Diisopropyl E		_,	ND	2.0	. 1.	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl			ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-M	etnyl ⊨ther (ı AIVI⊏)	ND	2.0	1	
2,2-Dichloropropane	ND .	1.0	1		Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1					(0/:			01
Surrogates:	REC (%)	Control Limits	-	Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	115	74-140			1,2-Dichloro	ethane-d4		125	74-146		
Toluene-d8	105	88-112			1,4-Bromoflu	ıorobenzene	ı	99	74-110		

RL - Reporting Limit

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:


11/17/07 07-11-1432 EPA 5030B EPA 8260B

ug/L

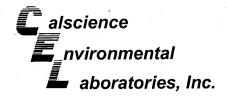
Units:

		,,	Lah	Sample	Date			Date	Date	~~) D-4-5-15
Client Sample Number	·			umber	Collected	Matrix	Instrument	Prepared	Analyzed	QC	Batch ID
CPT-2-45-49'			07-11-14	132-10	11/16/07	Aqueous	GC/MST	11/27/07	11/27/07	07	1127L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL I	<u>DF</u>	<u>Qual</u>
Acetone	ND	50	1		c-1,3-Dichlorop	ropene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichlorop	ropene		ND	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			17	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenze	ne		1.7	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyltolu	ene	**	ND	1.0	1	
3romomethane	ND	10	1		Methylene Chlo	oride		ND	10	1	
2-Butanone	ND	10	1		4-Methyl-2-Per	ntanone		ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	1.2	1.0	1		n-Propylbenzer	ne		5.4	1.0	1	
ert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND.	10	1		1,1,1,2-Tetracl	nloroethane		ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetracl	nloroethane		ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroeth	ene		ND	1.0	1	
Chloroethane	ND	1.0	1		Toluene			ND	1.0	1	*
Chloroform	ND	1.0	1		1,2,3-Trichloro	benzene		ND	1.0	1	
Chloromethane	ND	10	1		1,2,4-Trichloro	benzene		ND .	1.0	1	
2-Chlorotoluene	ŃD	1.0	1		1,1,1-Trichlord	ethane		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlord	-1,2,2-Triflu	uoroethane	ND	10	1	
Dibromochloromethane	ND	1.0	1		1,1,2-Trichlord	ethane		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroethen	e		ND	1.0	1	
1,2-Dibromoethane	ND .	1.0	1		Trichlorofluoro	methane		ND	10	1.	•
Dibromomethane	ND	1.0	1		1,2,3-Trichlord	propane		ND ·	5.0	1	
1.2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimethy	/lbenzene		40	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimethy	/lbenzene		11	1.0	1	
1.4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND	10	1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride			NĎ	0.50	1	
1.1-Dichloroethane	ND	1.0	1		p/m-Xylene			40	1.0	1	
1.2-Dichloroethane	ND	0.50	1		o-Xylene			10	1.0	1	
1,1-Dichloroethene	ND .	1.0	1		Methyl-t-Butyl	Ether (MTE	BE)	4.4	1.0	1	
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Alc		•	ND	10	1	
t-1,2-Dichloroethene	ND	1.0	· i		Diisopropyl Et	, ,		ND	2.0	1.	
1,2-Dichloropropane	ND	1.0	· i		Ethyl-t-Butyl E		<u>:</u>)	ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Me			ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
Ourrogates.	112 (10)	Limits							<u>Limits</u>		
Dibromofluoromethane	110	74-140			1,2-Dichloroe	thane-d4		116	74-146		

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 11/17/07 07-11-1432 EPA 5030B EPA 8260B

Page 4 of 7


ug/L

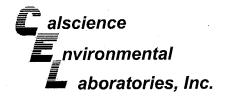
Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Number				o Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	j Q	C Batch ID
CPT-2-56-60'			07-11-1	432-11	11/16/07	Aqueous	GC/MS T	11/24/07	11/25/0	7 07	1124L02
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Acetone	ND	50	1		c-1,3-Dichloro	nropene		ND	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichloro			ND .	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene	proporto		ND	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyltol			ND	1.0	1	
Bromomethane	ND	10	1		Methylene Ch			ND	10	1	
2-Butanone	ND	10	1		4-Methyl-2-Pe			ND	10	1	
	ND	1.0	1		Naphthalene	intariorio		ND	10	1	
n-Butylbenzene	ND	1.0	1		n-Propylbenze	ana		ND ·	1.0	1	
sec-Butylbenzene	ND	1.0	1		Styrene	5110		ND	1.0	1	
tert-Butylbenzenè	ND	10	1		1,1,1,2-Tetrac	hloroethane		ND	1.0	1	
Carbon Disulfide	ND	0.50	1.		1,1,2,2-Tetrac			ND	1.0	1	
Carbon Tetrachloride			4		Tetrachloroeti			5.8	1.0	1	
Chlorobenzene	ND	1.0	1		Toluene	iene .		ND .	1.0	1	
Chloroethane	ND	1.0	1		1,2,3-Trichlor	ohonzono	•	ND	1.0	1	
Chloroform	2.5	1.0	1 .					ND	1.0	1	
Chloromethane	ND	10	1		1,2,4-Trichlor			ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichlor		araathana	ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor		oroemane	ND ND	. •	1	
Dibromochloromethane	ND	1.0	1		1,1,2-Trichlor				1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroethe			ND	1.0	1	
1,2-Dibromoethane	ND	1.0	1		Trichlorofluor			ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor			ND	5.0	1	
1,2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimeth			ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimeth	ylbenzene		ND	1.0	1	
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND .	10	1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride	•		ND	0.50	1	
1,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		o-Xylene			ND	1.0	1	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Buty	•	E)	ND .	1.0	1	
c-1,2-Dichloroethene	ND	1.0	- 1		Tert-Butyl Ald			ND	10	_ 1	
t-1,2-Dichloroethene	. ND	1.0	1		Diisopropyl E	ther (DIPE)		ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl	Ether (ETBE))	ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1								
Surrogates:	REC (%)	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Dibromofluoromethane	115	74-140			1,2-Dichloroe	ethane-d4		121	74-146		
Toluene-d8	104	88-112			1,4-Bromoflu			100	74-110		

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: Units:


11/17/07 07-11-1432 **EPA 5030B** EPA 8260B ug/L

Project: 1285 Bancroft Ave., San Leandro, CA

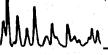
Page 5 of 7

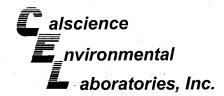
Client Sample Number				o Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	ed Q	C Batch ID
Method Blank		11.73	099-10-	006-23,52	3 N/A	Aqueous	GC/MS T	11/24/07	11/24/0	7 07	1124L01
<u>Parameter</u>	Result	RL.	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Acetone	ND	50	• 1		c-1,3-Dichloro	propene		ND .	0.50	1	
Benzene	ND	0.50	1		t-1,3-Dichlorop	oropene		ND	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND -	1.0	1		p-Isopropyltoli	iene		ND	1.0	1	
Bromomethane	ND	10	1		Methylene Ch	oride		ND	10	1	1.0
2-Butanone	ND	10	1		4-Methyl-2-Pe	ntanone		ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ene		ND	1.0	1	
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac	hloroethane		ND -	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hloroethane		ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroeth	nene		ND	1.0	1	
Chloroethane	ND	1.0	1		Toluene			ND	1.0	- 1	
Chloroform	ND	1.0	1		1,2,3-Trichlor	obenzene		ND	1.0	1	
Chloromethane	ND	10	1		1,2,4-Trichlor			ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichlor	oethane		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor	o-1,2,2-Trifl	ıoroethane	ND	10	.1	
Dibromochloromethane	ND .	1.0	1		1,1,2-Trichlor	oethane		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND:	5.0	1		Trichloroether	ne		ND	1.0	1	
1.2-Dibromoethane	ND	1.0	1		Trichlorofluor	omethane		ND	10	. 1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor	opropane		ND	5.0	1	
1.2-Dichlorobenzene	ND	1.0	1		1,2,4-Trimeth	ylbenzene		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimeth	ylbenzene		ND	1.0	1	
1.4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND .	10	1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride	•		ND	0.50	1	
1.1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	1.0	1	
1,2-Dichloroethane	ND.	0.50	1		o-Xylene			ND ·	1.0	1	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Buty	I Ether (MT	BE)	ND	1.0	1	
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Ald	cohol (TBA)		ND	10	1	
t-1.2-Dichloroethene	ND	1.0	1		Diisopropyl E			ND	2.0	. 1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl	Ether (ETBE	.)	ND	2.0	1	
1,3-Dichloropropane	ND	1.0	- 1		Tert-Amyl-Me	ethyl Ether (AME)	ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1								
Surrogates:	REC (%)	Control		Qual	Surrogates:	•		REC (%)	Control		<u>Qual</u>
		Limits							<u>Limits</u>		
Dibromofluoromethane	110	74-140			1,2-Dichloroe			113	74-146		
Toluene-d8	103	88-112			1,4-Bromoflu	orobenzene		99	74-110		

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 11/17/07 07-11-1432 EPA 5030B EPA 8260B

ug/L


Project: 1285 Bancroft Ave., San Leandro, CA


Page 6 of 7

Client Sample Number				Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d Q	C Batch ID
Method Blank			099-10-	006-23,54	l6 N/A	Aqueous	GC/MST	11/24/07	11/25/0	7 07	1124L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	50	. 1		c-1,3-Dichloro	propene		ND	0.50	1	
Benzene	ND .	0.50	1		t-1,3-Dichloro	propene		ND:	0.50	1,	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND .	1.0	1		2-Hexanone			ND	10	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyltoli	iene .		ND	1.0	1	
Bromomethane	ND	10	1		Methylene Ch	loride		. ND	10	1	,
2-Butanone	ND	10	1		4-Methyl-2-Pe	ntanone		ND	10	1	
n-Butylbenzene	ND ·	1.0	. 1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ene		ND	1.0	1	
tert-Butylbenzene	· ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac			ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac	hloroethane		ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroeth	nene		.ND	1.0	1	
Chloroethane	ND .	1.0	1		Toluene			ND	1.0	1	
Chloroform	ND	1.0	1		1,2,3-Trichlor	obenzene		ND	1.0	- 1	
Chloromethane	ND ·	10	1		1,2,4-Trichlor	obenzene		ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,1-Trichlor	oethane		ND	1.0	1	
4-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor	o-1,2,2-Triflu	ioroethane	ND	10	1	
Dibromochloromethane	ND	1.0	1		1,1,2-Trichlor	oethane		ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	1		Trichloroethe	ne		ND	1.0	1	
1,2-Dibromoethane	ND .	1.0	1		Trichlorofluor	omethane		ND	10	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor	opropane		ND	5.0	1	
1.2-Dichlorobenzene	ND	1.0	1.		1,2,4-Trimeth	ylbenzene		ND	1.0	_ 1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimeth	ylbenzene		ND.	1.0	1	
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND	10	- 1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride	•		ND	0.50	1	
1,1-Dichloroethane	ND	1.0	1		p/m-Xylene			ND	1.0	1	
1,2-Dichloroethane	ND	0.50	1		o-Xylene			ND	1.0	1	
1.1-Dichloroethene	ND	1.0	1		Methyl-t-Buty	l Ether (MTE	E)	ND	1.0	- 1	
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Ald	ohol (TBA)		ND	10	1	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl E	ther (DIPE)		ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl	Ether (ETBE)	ND	2.0	1	
1,3-Dichloropropane	ND	1.0	1		Tert-Amyl-Me	ethyl Ether (1	AME)	ND -	2.0	1	
2,2-Dichloropropane	ND	1.0	1		Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1								
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:		•	REC (%)	Control		Qual
		<u>Limits</u>			4.0 Diala	.41 1.4		101	<u>Limits</u> 74-146		
Dibromofluoromethane	113	74-140			1,2-Dichloroe			121 98	74-146 74-110		
Toluene-d8	103	88-112			1,4-Bromoflu	orobenzene		90	74-110		

RL - Reporting Limit

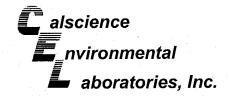
DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: Units:

07-11-1432 EPA 5030B

EPA 8260B ug/L


Project: 1285 Bancroft Ave., San Leandro, CA

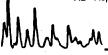
Page 7 of 7

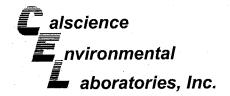
Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d Q	C Batch ID
Method Blank			THE STREET	-006-23,5	56 N/A	Aqueous	GC/MS T	11/27/07	11/27/0	7 07	1127L01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Acetone	ND	50	1		c-1,3-Dichloro	propene		ND	0.50	1	
Benzene	ND	0.50	. 1		t-1,3-Dichlorop	ropene		ND	0.50	1	
Bromobenzene	ND	1.0	1		Ethylbenzene			ND	1.0	1	
Bromochloromethane	ND	1.0	1		2-Hexanone			ND	10	1	
Bromodichloromethane	ND	1.0	1		Isopropylbenz	ene		ND	1.0	1	
Bromoform	ND	1.0	1		p-Isopropyltolu	iene		ND	1.0	1	
Bromomethane	ND	10	1		Methylene Chl	oride		ND	10	1	
2-Butanone	ND .	10	1		4-Methyl-2-Pe			ND	10	1	
n-Butylbenzene	ND	1.0	1		Naphthalene			ND	10	1	
sec-Butylbenzene	ND	1.0	1		n-Propylbenze	ene		ND	1.0	1	
tert-Butylbenzene	ND	1.0	1		Styrene			ND	1.0	1	
Carbon Disulfide	ND	10	1		1,1,1,2-Tetrac	hloroethane		ND	1.0	1	
Carbon Tetrachloride	ND	0.50	1		1,1,2,2-Tetrac			ND	1.0	1	
Chlorobenzene	ND	1.0	1		Tetrachloroeth			ND	1.0	1	
Chloroethane	ND	1.0	1		Toluene	101.0		ND	1.0	1	
Chloroform	ND	1.0	1		1,2,3-Trichlor	henzene		ND	1.0	1	•
Chloromethane	ND	10	1		1,2,4-Trichlor			ND	1.0	1	
-	ND	1.0	1		1,1,1-Trichlor			ND	1.0	1	
2-Chlorotoluene	ND	1.0	1		1,1,2-Trichlor		ioroethane	ND	10	1	-
4-Chlorotoluene	ND	1.0	1		1.1.2-Trichlor		dorocti idric	ND	1.0	1	
Dibromochloromethane			1		Trichloroether			ND	1.0	1	
1,2-Dibromo-3-Chloropropane	ND	5.0			Trichlorofluor			ND	10	1	
1,2-Dibromoethane	ND	1.0	. 1		1,2,3-Trichlor			ND	5.0	1	
Dibromomethane	ND	1.0	1		1,2,3-Trichlor 1,2,4-Trimeth			ND	1.0	1	
1,2-Dichlorobenzene	ND	1.0	1			•		ND	1.0	1	
1,3-Dichlorobenzene	ND	1.0	1		1,3,5-Trimeth	yibenzerie			1.0	1	
1,4-Dichlorobenzene	ND	1.0	1		Vinyl Acetate			ND ND	0.50	1	
Dichlorodifluoromethane	ND	1.0	1		Vinyl Chloride	•				•	
1,1-Dichloroethane	ND .	1.0	1		p/m-Xylene			ND	1.0	1,	
1,2-Dichloroethane	ND	0.50	1		o-Xylene	. = 0	\ - \	ND	1.0	•	
1,1-Dichloroethene	ND	1.0	1		Methyl-t-Buty		SE)	ND	1.0	1	
c-1,2-Dichloroethene	ND	1.0	1		Tert-Butyl Alc			.ND	10	•	
t-1,2-Dichloroethene	ND	1.0	1		Diisopropyl E			ND	2.0	1	
1,2-Dichloropropane	ND	1.0	1		Ethyl-t-Butyl I			ND	2.0	1	
1,3-Dichloropropane	ND	1.0	_ 1		Tert-Amyl-Me	thyl Ether (AME)	ND	2.0	1	
2,2-Dichloropropane	ND	1.0	1	-	Ethanol			ND	100	1	
1,1-Dichloropropene	ND	1.0	1								
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>						440	<u>Limits</u>		
Dibromofluoromethane	110	74-140			1,2-Dichloroe			116	74-146		
Toluene-d8	104	88-112			1,4-Bromoflu	orobenzene		100	74-110		

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 11/17/07 07-11-1432 EPA 5030B EPA 8260B

mg/kg


Project: 1285 Bancroft Ave., San Leandro, CA


Page	1	of	3
i ago	•	O,	•

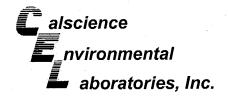
Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	d Q	C Batch ID
SB-16-10.5			07-11-1	432-1	11/16/07	Solid	GC/MS Z	11/19/07	11/20/07	7 07	1119L03
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Methyl-t-Butyl E	Ether (MTB	E)	ND .	0.0050	1	
Ethylbenzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
Toluene	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
o/m-Xvlene	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)	ND	0.010	1	
o-Xylene	ND	0.0050	1		Tert-Amyl-Meth			ND ·	0.010	1	•
Surrogates:	REC (%)	Control	•	Qual	Surrogates:	,		REC (%)	<u>Control</u>		<u>Qual</u>
ourrogates.	1120 (10)	Limits							<u>Limits</u>		
Dibromofluoromethane	104	73-139	-		1,2-Dichloroeth	nane-d4		104	73-145		
Toluene-d8	97	90-108			1,4-Bromofluor			97	71-113		
SB-16-20			07-11-	1432-2	11/16/07	Solid	GC/MSZ	11/19/07	11/20/0	7 0	71119L03
Developed	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
<u>Parameter</u>				<u>Quai</u>	Methyl-t-Butyl	Ethor /MTE	E)	ND	0.0050	1	
Benzene	ND	0.0050	1		Tert-Butyl Alco		,L)	ND	0.050	1	
Ethylbenzene	ND	0.0050	1					ND	0.030	1	•
Toluene	ND	0.0050	1		Diisopropyl Eth		`	ND	0.010	4	
p/m-Xylene	ND	0.0050	1		Ethyl-t-Butyl E			ND	0.010	1	
o-Xylene	ND	0.0050	. 1	0 1	Tert-Amyl-Met	nyi⊏unei (i	AIVIC)	REC (%)	Control	'	Qual
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			KEC (70)	Limits		<u>Quai</u>
	405	<u>Limits</u>			1,2-Dichloroet	hane d/l		105	73-145		
Dibromofluoromethane	105	73-139			1.4-Bromofluo			97	71-113		
Toluene-d8	98	90-108	10 min - 1 min	enforcement at 30 ACT to	1,4-Bromonuo	Iopenzene		no Albania de Santa		- 12 TA	3000 0000
SB-16-21.5		ESS	07-11-	1432-3	11/16/07	Solid	GC/MS Z	11/19/0	7 11/20/0	7 0	71119L03
Param <u>eter</u>	Result	RL	DF	<u>Qual</u>	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl	Ether (MTI	3E) .	0.0095	0.0050	1	
Ethylbenzene	ND	0.0050	1		Tert-Butyl Alc			ND	0.050	1	
Toluene	ND	0.0050	1		Diisopropyl Et	•		ND	0.010	1	
p/m-Xylene	ND	0.0050	1		Ethyl-t-Butyl E		€)	ND .	0.010	1	
o-Xylene	ND	0.0050	1		Tert-Amyl-Me			ND	0.010	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:	- '	•	REC (%)	Control		Qual
<u>ourrogates.</u>	1120 (10)	Limits		,=,====					<u>Limits</u>		
Dibromofluoromethane	107	73-139			1,2-Dichloroel	thane-d4		105	73-145		
Toluene-d8	99	90-108			1,4-Bromofluc	robenzene		95	71-113		
. 0.00											

RL - Reporting Limit

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:
Units:

11/17/07 07-11-1432 EPA 5030B EPA 8260B mg/kg


Project: 1285 Bancroft Ave., San Leandro, CA

Page 2 of 3

Client Sample Number				Sample lumber	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	Q	C Batch ID
SB-16-26			07-11-1	432-4	11/16/07	Solid	GC/MSZ	11/19/07	11/20/07	07	1119L03
Parameter	Result	RL	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Berizene	ND	0.0050	1		Methyl-t-Butyl I	Ether (MTB	E)	0.0078	0.0050	1	
Ethylbenzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND -	0.050	1	
Toluene	ND	0.0050	1		Diisopropyl Eth			ND	0.010	1	
o/m-Xylene	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE))	ND	0.010	1	
o-Xylene	ND	0.0050	1		Tert-Amyl-Metl	hyl Ether (T	AME)	ND	0.010	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:		·	REC (%)	Control		Qual
<u> </u>		Limits							<u>Limits</u>		
Dibromofluoromethane	105	73-139			1,2-Dichloroeth	nane-d4		107	73-145		
Toluene-d8	98	90-108			1,4-Bromofluo	robenzene		98	71-113		
SB-16-30			07-11-1	432-5	11/16/07	Solid	GC/MS Z	11/19/07	11/20/07	0	71119L03
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
	ND	0.0050	1		Methyl-t-Butyl	Ether (MTR	E)	0.093	0.0050	1	
Benzene	ND	0.0050	1		Tert-Butyl Alco	•	·_,	ND	0.050	1	
Ethylbenzene	ND	0.0050	1		Diisopropyl Etl			ND	0.010	1	
Toluene p/m-Xylene	ND	0.0050	1		Ethyl-t-Butyl E	, ,	1	ND	0.010	1	
, ,	ND	0.0050	1		Tert-Amyl-Met	•	•	ND	0.010	1	
o-Xylene	REC (%)	Control	'	Qual.	Surrogates:	ilyi Etiloi (1	, (IVIL)	REC (%)	Control	•	Qual
Surrogates:	KEQ (70)	Limits		<u>Qual</u>	<u>Surrogates.</u>			1120 (70)	Limits		35.00
Dibromofluoromethane	108	73-139			1,2-Dichloroet	hane-d4		106	73-145		
Toluene-d8	100	90-108			1,4-Bromofluo			97	71-113		
SB-16-37.5		1115	07-11-1	1432-6	11/16/07	Solid	GC/MS W	1 11/19/0	7 11/20/0	7 0	71120L02
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	Qual
	ND	0.12	25	~~~	Methyl-t-Butyl	Ether (MTF	RE)	0.16	0.12	25	
Benzene	0.86	0.12	25 25		Tert-Butyl Alc	,	<i>,</i> _,	ND	1.2	25	
Ethylbenzene	ND	0.12	25		Diisopropyl Et	, ,		ND	0.25	25	
Toluene	2.3	0.12	25 25		Ethyl-t-Butyl E		:)	ND	0.25	25	
p/m-Xylene	2.3 0.82	0.12	25 25		Tert-Amyl-Me			ND	0.25	25	
o-Xylene	0.62 REC (%)	Control	20	Qual	Surrogates:	ary Eurol (,	REC (%)	Control	20	Qual
Surrogates:	<u>REC (%)</u>	Limits		<u>Quai</u>	Guirogates.			1,501,01	Limits		
Dibromofluoromethane	99	73-139			1,2-Dichloroe	thane-d4		100	73-145		
	100	90-108			1.4-Bromofluo			98	71-113		
Toluene-d8	100										

RL - Reporting Limit

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method: Units: 11/17/07 07-11-1432 EPA 5030B

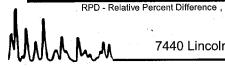
EPA 8260B mg/kg

Project: 1285 Bancroft Ave., San Leandro, CA

Page 3 of 3

Project: 1285 Bancro	π Ave., San L	_eandr	o, CA							aye	3 01 3
Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prèpared	Date Analyze	d Q	C Batch ID
SB-16-40.5			07-11-1	432-7	11/16/07	Solid	GC/MS Z	11/19/07	11/20/0	7 07	71119L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	Parameter			Result	<u>RL</u>	DF ·	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl E	ther (MTE	E)	ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		Tert-Butyl Alcoh	hol (TBA)		ND	0.050	. 1	
Toluene	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
p/m-Xylene	ND	0.0050	1		Ethyl-t-Butyl Etl	her (ETBE)	ND	0.010	. 1	
o-Xylene	ND	0.0050	. 1		Tert-Amyl-Meth	yl Ether (T	AME)	ND	0.010	. 1	
Surrogates:	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		Qual
		Limits		_					<u>Limits</u>		
Dibromofluoromethane	109	73-139			1,2-Dichloroeth	ane-d4		109	73-145		
Toluene-d8	99	90-108			1,4-Bromofluor	obenzene		98	71-113		
Method Blank			099-10	-005-15,1	09 N/A	Solid	GC/MSZ	11/19/07	7 11/20/0	7 0	71119L03
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene		0.0050	1		Methyl-t-Butyl E	=ther (MTE	BE)	ND	0.0050	1	
Ethylbenzene		0.0050	1		Tert-Butyl Alco			ND	0.050	1	
Toluene		0.0050	1		Diisopropyl Eth			ND	0.010	1	
p/m-Xylene		0.0050	1		Ethyl-t-Butyl Et	, ,	<u> </u>	ND	0.010	1	
o-Xylene		0.0050	1		Tert-Amyl-Meth	•	•	ND	0.010	1	
Surrogates:	REC (%)	Control	'	Qual	Surrogates:	.,	,, <u>–</u> ,	REC (%)	Control	-	Qual
Surrogates.	1120 (70)	Limits		Quui	<u>ourrogatoo.</u>				Limits		
Dibromofluoromethane	109	73-139			1.2-Dichloroeth	nane-d4		116	73-145		
Toluene-d8	99	90-108			1,4-Bromofluor	robenzene		97	71-113		
Method Blank			099-10	-005-15,1	12 N/A	Solid	GC/MS W	1 11/20/0	7 11/20/0)7 0	71120L02
Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.12	<u>=-</u> 25		Methyl-t-Butyl	Ether (MT	BE)	ND .	0.12	25	
Ethylbenzene	ND	0.12	25 25		Tert-Butyl Alco			ND	1.2	25	
Ethylbenzene Toluene	ND	0.12	25		Diisopropyl Eth			ND	0.25	25	
p/m-Xylene	ND	0.12	25		Ethyl-t-Butyl E			ND	0.25	25	
, ,	ND	0.12	25		Tert-Amyl-Met			ND	0.25	25	
o-Xylene	REC (%)	Control	- 23	Qual	Surrogates:	, (REC (%)	Control		Qual
Surrogates:	NEC (70)	Limits		Quai	<u>Carrogatos.</u>			11-0 (10)	<u>Limits</u>		-1
Dibromofluoromethane	98	73-139			1.2-Dichloroetl	hane-d4		100	73-145		•
Toluene-d8	98	90-108			1.4-Bromofluo		!	94	71-113		
I OIGOHO-GO	. 50	30-100			.,						

RL - Reporting Limit


DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
SB-16-10.5	Solid	GC 18	11/20/07	11/20/07	071120801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	L Qualifiers
TPH as Gasoline	81	81	48-114	0 0-23	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

11/17/07 07-11-1432 **EPA 5030B** EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Matrix Instrument		Date Analyzed	MS/MSD Batch Number
07-11-1313-4	Aqueo	us GC 30	11/20/07	11/20/07	071120S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD	CL Qualifiers
TPH as Gasoline	94	94	68-122	0 0-1	8

RPD - Relative Percent Difference,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		/IS/MSD Batch Number
07-11-1771-1	Aqueous	GC 29	11/26/07	11/26	(07	071126S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	94	93	68-122	1	0-18	

RPD - Relative Percent Difference , 7440 Lincoln

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepare	d A	Date nalyzed	MS/MSD Batch Number
07-11-1272-3	Aqueo	us GC/MST	11/24/07	1	1/24/07	071124S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	101	103	88-118	1	0-7	
Carbon Tetrachloride	106	106	67-145	1	0-11	
Chlorobenzene	100	101	88-118	1	0-7	
1,2-Dibromoethane	99	100	70-130	1	0-30	
1,2-Dichlorobenzene	99	102	86-116	3	0-8	
1,1-Dichloroethene	123	122	70-130	1	0-25	
Ethylbenzene	106	105	70-130	1	0-30	
Toluene	103	103	87-123	0	0-8	
Trichloroethene	101	103	79-127	1	0-10	
Vinyl Chloride	97	97	69-129	0	0-13	
Methyl-t-Butyl Ether (MTBE)	95	100	71-131	5	0-13	
Tert-Butyl Alcohol (TBA)	117	105	36-168	11	0-45	
Diisopropyl Ether (DIPE)	103	105	81-123	1	0-9	
Ethyl-t-Butyl Ether (ETBE)	94	106	72-126	13	0-12	4
Tert-Amyl-Methyl Ether (TAME)	89	101	72-126	13	0-12	4
Ethanol	141	119	53-149	17	0-31	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		IS/MSD Batch Number
07-11-1452-1	Aqueous	GC/MS T	11/24/07	11/25/	07	071124802
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
			•			
Benzene	104	105	88-118	0	0-7	
Carbon Tetrachloride	110	112	67-145	1	0-11	
Chlorobenzene	101	102	88-118	0	0-7	•
1,2-Dibromoethane	102	104	70-130	2	0-30	
1,2-Dichlorobenzene	101	101	86-116	0	0-8	
1,1-Dichloroethene	 116	128	70-130	9	0-25	
Ethylbenzene	108	107	70-130	0	0-30	
Toluene	104	106	87-123	2	0-8	
Trichloroethene	104	106	79-127	2	0-10	
Vinyl Chloride	104	105	69-129	0	0-13	
Methyl-t-Butyl Ether (MTBE)	97	103	71-131	6	0-13	
Tert-Butyl Alcohol (TBA)	91	. 101	36-168	10	0-45	
Diisopropyl Ether (DIPE)	107	111	81-123	4	0-9	
Ethyl-t-Butyl Ether (ETBE)	102	108	72-126	6	0-12	
Tert-Amyl-Methyl Ether (TAME)	96	102	72-126	7	0-12	. *
Ethanol	117	125	53-149	7	0-31	
			,-	•		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-1900-3	Aqueous	GC/MST	11/27/07		11/27/07	071127501
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD C	L Qualifiers
				1 .		
Benzene	101	102	88-118	1	0-7	
Carbon Tetrachloride	109	111	67-145	1	0-11	
Chlorobenzene	100	100	88-118	0	0-7	
1,2-Dibromoethane	94	93	70-130	1	0-30	
1,2-Dichlorobenzene	98	102	86-116	3	- 0-8	
1,1-Dichloroethene	111	123	70-130	10	0-25	
Ethylbenzene	104	106	70-130	2	0-30	
Toluene	101	103	87-123	2	0-8	
Trichloroethene	99	101	79-127	2	0-10	
Vinyl Chloride	 101	101	69-129	0	0-13	
Methyl-t-Butyl Ether (MTBE)	100	101	71-131	1	. 0-13	
Tert-Butyl Alcohol (TBA)	118	122	36-168	3	0-45	
Diisopropyl Ether (DIPE)	104	107	81-123	3	0-9	
Ethyl-t-Butyl Ether (ETBE)	103	106	72-126	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	101	72-126	4	0-12	
Ethanol	138	141	53-149	2	0-31	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1432 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number	
SB-16-10.5	Solid	GC/MS Z	11/19/07	11/20/07	071119802	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	L Qualifiers	
Benzene	87	85	79-115	2 0-13		
Carbon Tetrachloride	86	84	55-139	2 0-15		
Chlorobenzene	89	88	79-115	1 0-17		
1,2-Dibromoethane	91	91	70-130	0 0-30		
1,2-Dichlorobenzene	81	84	63-123	4 0-23		
1,1-Dichloroethene	90	87	69-123	4 .0-16		
Ethylbenzene	87	86	70-130	2 0-30		
Toluene	89	87	79-115	2 0-15		
Trichloroethene	90	85	66-144	6 0-14		
Vinyl Chloride	78	75	60-126	3 0-14		
Methyl-t-Butyl Ether (MTBE)	98	98	68-128	0 0-14		
Tert-Butyl Alcohol (TBA)	77	75	44-134	2 0-37		
Diisopropyl Ether (DIPE)	96	97	75-123	0 0-12		
Ethyl-t-Butyl Ether (ETBE)	97	98	75-117	0 0-12		
Tert-Amyl-Methyl Ether (TAME)	97	96	79-115	2 0-12		
Ethanol	80	75	42-138	6 0-28		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

11/17/07 07-11-1432 **EPA 5030B** EPA 8260B

		Matrix Instrument		Date Prepared		MS/MSD Batch Number	
07-11-1510-1	Solid	GC/MS W	11/20/07		11/20/07	071120\$01	
					• .		
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Benzene	86	87	79-115	- 2	0-13		
Carbon Tetrachloride	79	82	55-139	4	0-15		
Chlorobenzene	84	84	79-115	1	0-17		
1,2-Dibromoethane	85	84	70-130	1	0-30		
1,2-Dichlorobenzene	83	83	63-123	1	0-23		
1,1-Dichloroethene	82	82	69-123	0	0-16		
Ethylbenzene	84	84	70-130	0 .	0-30		
Toluene	84	86	79-115	. 3	0-15		
Trichloroethene	85	88	66-144	4	0-14		
Vinyl Chloride	68	71	60-126	5	0-14		
Methyl-t-Butyl Ether (MTBE)	73	75	68-128	3	0-14		
Tert-Butyl Alcohol (TBA)	90	94	44-134	4	0-37		
Diisopropyl Ether (DIPE)	88	90	75-123	2	0-12		
Ethyl-t-Butyl Ether (ETBE)	. 85	87	75-117	2	0-12		
Tert-Amyl-Methyl Ether (TAME)	. 87	88	79-115	1	0-12	-	
Ethanol	82	88	42-138	7	0-28		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1432 EPA 5030B EPA 8015B (M)

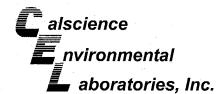
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ıd	LCS/LCSD Batc Number	h
099-12-279-1,320	Solid	GC 18	11/20/07	11/20/07	7	071120B01	
<u>Parameter</u>	LCS %RE	EC LCSD	%REC %1	REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	98	102	!	70-124	5	0-18	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1432 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Matrix Instrument		Date Analyze		LCS/LCSD Bato Number	h
099-12-436-1,161	Aqueous	GC 30	11/20/07	11/20/0	7 🖟 🖟 🖟	071120B01	
<u>Parameter</u>	LCS %RE	C LCSD 9	<u>%REC</u> %R	EC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline	95	95	7	8-120	1	0-10	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1432 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batch Number	
099-12-436-1,176	Aqueous	GC 29	11/26/07	11/26/07	071126B01	
<u>Parameter</u>	LCS %F	REC LCSD	<u>%REC</u> <u>%R</u>	EC CL RPD	RPD CL Qu	ıalifiers
TPH as Gasoline	96	96	7	8-120 0	0-10	


Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

Method:

N/A 07-11-1432 **EPA 5030B EPA 8260B**

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD Bate Number	ch
099-10-006-23,523	Aqueous	GC/MS T	11/24/07	11/24	1/07	071124L01	
		,		/			
Parameter	LCS %RE	C LCSD %RI	<u>EC %R</u>	EC CL	RPD	RPD CL	Qualifiers
Benzene	103	101	84	4-120	1	0-8	
Carbon Tetrachloride	104	106	6	3-147	1	0-10	
Chlorobenzene	100	100	. 8	9-119	1	0-7	
1,2-Dibromoethane	102	103	- 8	0-120	0	0-20	
1,2-Dichlorobenzene	102	101	8:	9-119	1	0-9	
1,1-Dichloroethene	104	107	7	7-125	3	0-16	
Ethylbenzene	105	104	8	0-120	1 -	0-20	
Toluene	103	102	8	3-125	1	0-9	
Trichloroethene	102	101	8	9-119	1	0-8	
Vinyl Chloride	93	97	6	3-135	4	0-13	
Methyl-t-Butyl Ether (MTBE)	104	106	8:	2-118	1	0-13	
Tert-Butyl Alcohol (TBA)	105	121	4	6-154	13	0-32	
Diisopropyl Ether (DIPE)	104	104	. 8	1-123	0	0-11	
Ethyl-t-Butyl Ether (ETBE)	114	117	7	4-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	112	112	7	6-124	0	0-10	
Ethanol	103	109	6	0-138	6	0-32	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1432 EPA 5030B EPA 8260B

Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
Aqueous	GC/MS T	11/24/07	11/24/07	071124L02	
LCS 9	%REC LCSD %	<u> «REC %RE</u>	CCL RPD	RPD CL	Qualifiers
102	2 103	. 84	-120 1	0-8	
111	109	63	-147 2	0-10	
100	101	89	-119 1	0-7	
101	102	80	-120 1	0-20	
103	3 102	89	-119 0	0-9	
113	3 113	77	-125 0	0-16	
105	106	80	-120 2	0-20	
103	3 104	83	-125 0	0-9	,
10 1	102	- 89	-119 1	0-8	
104	102	63	-135 2	0-13	
103	3 103	. 82	-118 0	0-13	
99	101	46	-154 2	0-32	
110	108	81	-123 2	0-11	
109	110	74	-122 1	0-12	
101	104	76	-124 3	0-10	
118	3 112	60	-138 5	0-32	
	Aqueous LCS 9 102 111 100 101 103 113 105 103 99 110 105 106 107	Aqueous GC/MS T LCS %REC LCSD % 102 103 111 109 100 101 101 102 103 102 113 113 105 106 103 104 101 102 104 102 103 103 99 101 110 108 109 110 101 104	Matrix Instrument Prepared Aqueous GC/MS T 11/24/07 LCS %REC LCSD %REC %RE 102 103 84 111 109 63 100 101 89 101 102 80 103 102 89 113 113 77 105 106 80 103 104 83 101 102 89 104 102 63 103 103 82 99 101 46 110 108 81 109 110 74 101 104 76	Matrix Instrument Prepared Analyzed Aqueous GC/MS T 11/24/07 11/24/07 LCS %REC LCSD %REC %REC CL RPD 102 103 84-120 1 111 109 63-147 2 100 101 89-119 1 101 102 80-120 1 103 102 89-119 0 113 113 77-125 0 105 106 80-120 2 103 104 83-125 0 101 102 89-119 1 104 102 63-135 2 103 103 82-118 0 99 101 46-154 2 110 108 81-123 2 109 110 74-122 1 101 104 76-124 3	Matrix Instrument Prepared Analyzed Number Aqueous GC/MS T 11/24/07 11/24/07 071124L02 LCS %REC LCSD %REC %REC CL RPD RPD CL 102 103 84-120 1 0-8 111 109 63-147 2 0-10 100 101 89-119 1 0-7 101 102 80-120 1 0-20 103 102 89-119 0 0-9 113 113 77-125 0 0-16 105 106 80-120 2 0-20 103 104 83-125 0 0-9 101 102 89-119 1 0-8 104 102 89-119 1 0-8 104 102 89-119 1 0-8 104 102 63-135 2 0-13 99 101 46-154 2

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1432 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		ate lyzed	LCS/LCSD Bar Number	ch
099-10-006-23,556	Aqueous	GC/MS T	11/27/07	11/2	7/07	071127L01	
		·					
Parameter	LCS %F	REC LCSD %	6REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	99	100		84-120	1	0-8	
Carbon Tetrachloride	107	106		63-147	1	0-10	
Chlorobenzene	98	98		89-119	0	0-7	
1,2-Dibromoethane	100	99		80-120	1	0-20	
1,2-Dichlorobenzene	101	101		89-119	0	0-9	
1,1-Dichloroethene	105	105		77-125	1	0-16	
Ethylbenzene	103	104		80-120	1	0-20	
Toluene	101	102		83-125	1	0-9	
Trichloroethene	98	100		89-119	1	0-8	
Vinyl Chloride	94	93	7	63-135	1	0-13	
Methyl-t-Butyl Ether (MTBE)	108	106		82-118	3	0-13	
Tert-Butyl Alcohol (TBA)	122	119		46-154	3	0-32	
Diisopropyl Ether (DIPE)	. 105	104		81-123	1,	0-11	
Ethyl-t-Butyl Ether (ETBE)	120	117		74-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	115	116		76-124	0	0-10	
Ethanol	110	110		60-138	1 .	0-32	

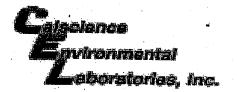
Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1432 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da I Anal		LCS/LCSD Bate Number	ch
099-10-005-15,109	Solid	GC/MS Z	11/19/07	11/19	/07	071119L03	
<u>Parameter</u>	LCS %RE	C LCSD %I	REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	89	86		84-114	3 .	0-7	
Carbon Tetrachloride	87	. 83	1.0	66-132	4	0-12	
Chlorobenzene	93	90		87-111	4	0-7	
1,2-Dibromoethane	96	93		80-120	3 .	0-20	
1,2-Dichlorobenzene	92	91		79-115	1	0-8	
1,1-Dichloroethene	89	84		73-121	6	0-12	
Ethylbenzene	92	86		80-120	6	0-20	•
Toluene	91	86		78-114	5.	0-7	
Trichloroethene	88	87		84-114	1	0-8	
Vinyl Chloride	79	75		63-129	5	0-15	
Methyl-t-Butyl Ether (MTBE)	99	100		77-125	- 1	0-11	
Tert-Butyl Alcohol (TBA)	79	79		47-137	1	0-27	
Diisopropyl Ether (DIPE)	99	97		76-130	3	0-8	
Ethyl-t-Butyl Ether (ETBE)	100	98		76-124	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	99	98		82-118	0	0-11	
Ethanol	79	80		59-131	2	0-21	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1432 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-10-005-15,112	Solid	GC/MS W	11/20/07	11/20/07	071120L02	10 A
<u>Parameter</u>	LCS %F	EC LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
Benzene	100	100	84-11	4 0	0-7	
Carbon Tetrachloride	101	99	66-13	2 2	0-12	
Chlorobenzene	99	102	87-11	1 3	0-7	
1,2-Dibromoethane	98	100	80-12	0 2	0-20	
1,2-Dichlorobenzene	95	101	79-11	5 6	0-8	
1,1-Dichloroethene	98	96	73-12	1 2	0-12	
Ethylbenzene	102	101	80-12	0 0 -	0-20	
Toluene	99	99	78-11	4 0	0-7	
Trichloroethene	99	98	84-11	4 0	8-0	
Vinyl Chloride	95	92	63-12	9 3	0-15	
Methyl-t-Butyl Ether (MTBE)	78	83	77-12	5 6	0-11	
Tert-Butyl Alcohol (TBA)	110	120	47-13	7 9	0-27	÷
Diisopropyl Ether (DIPE)	100	100	76-13	0 0	0-8	
Ethyl-t-Butyl Ether (ETBE)	94	97	76-12	4 3	0-12	
Tert-Amyl-Methyl Ether (TAME)	96	98	82-11	8 2	0-11	
Ethanol	109	101	59-13	1 7	0-21	

Glossary of Terms and Qualifiers

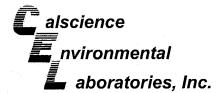


Work Order Number: 07-11-1432

Qualifier		<u>Definition</u>
*		See applicable analysis comment.
1		Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2		Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3		Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	•	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5		The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α		Result is the average of all dilutions, as defined by the method.
В		Analyte was present in the associated method blank.
C ?		Analyte presence was not confirmed on primary column.
·E		Concentration exceeds the calibration range.
, Н		Sample received and/or analyzed past the recommended holding time.
J		Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N		Nontarget Analyte.
ND		Parameter not detected at the indicated reporting limit.
Q ,		Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U		Undetected at the laboratory method detection limit.
Х		% Recovery and/or RPD out-of-range.
Z		Analyte presence was not confirmed by second column or GC/MS analysis.

_AB: TA		-		\	<u>٠</u>	. – .		~ .							_		À	*		<u>, 2 </u>						
TA - Irvine, California				7 -	5 F		_L	Ch	aır	1 C	JT (٠US	STO	ay	Re	cor	a									
TA - Morgan Hill, California	NAME OF PER	SON TO BILL	: Denis	Brown											T	Ìľ	CIDE	NT#	(ES	ONL	۲) T					
TA - Sacramenta, California	☑ ENVIRONMENTAL S			o .		Пп	ECK BC	v to v	EDTEV	TE NO	INCID	FNT #	A DDI TE	:c								7	_	22/	16/0	17
TA - Nashville, Tennesee			au Prisa da la		l 	- CA		, 10 v	ERGF	IF NO	INCID	CIVI #	AFFLI			9 8			6		6		Date:	11/	, , v	′ •
2 Calscience	NETWORK DEV / F		LL CONSULT	ANT						PO#	#			٠			SA	P or 4	CRM	T#			PAGE	. 1	of 7	_
Other	COMPLIANCE:		MT/CRMT.											\Box									PAGE	··	or _ _	
AMPLING COMPANY:		LOG CODE:			SIT	E ADDR	EŠŠ: S	treet an	d City	٠			1		Stat	ia	Щ	GLOB	L ID N	D.:		Щ.				
onestoga-Rovers & Ass	sociates (CRA)	CRAW			12	85 E	3an	crof	t Av	re. S	San	Lea	ndr	o	CA			T060	0101	224						
ADDRESS:			*								ocation):			PHONE N		`		E-MAIL:					:	CON	SULTANT PROJEC	T NO.:
900 Hollis St, Suite A, E	•	·			1.			-						707.0			ŀ						_			
PROJECT CONTACT (Hardcopy or PDF	Report to):				SAN	IAFO, IPLER N	ME(S) (a, CR Print):	A, 50	onom	ia .		1	707 9.	3 2360	<u>, </u>	1	sono	паес	IT(Q)Cr	awor	ld.cor	USE ONL		04-008	
TELEPHONE:	FAX:	E-MAIL:			1																	1 :	1111		. –	
07 268 3812	707 268 8180	afriel@crawor	ld.com		C	arm	en f	Rodr	igue	ez													//-	143	>_	
TAT (STD IS 10 BUSINESS DA			RESULTS N							7.					REQU	IEST	·Λ Δ*	1A! \	/SIS							
☑ STD ☐ 5 DAY ☐ 3	DAY 2 DAY	24 HOURS	ON WEEK	END	L													*/~L	<u> </u>							
LA - RWQCB REPORT FORM	AT I UST AGENCY:							ĺ																		
PECIAL INSTRUCTIONS OR N		EDD NOT NEEDEL			1]					ا		. [Ξ				₽ I		EIEI	D NOTES:	
	L L	SHELL CONTRACT		:S	1					<u> </u>		826			<u>.</u>			Ž,	8270	9		attached)				
	· · · · · · · · · · · · · · · · · · ·	STATE REIMB RA	E APPLIES		8	Extractable (8015M)	i			ETBE)	_	ous		99	(8260B)	1.		Cr, Pb,	sote	Solids (160.1)		atta			er/Preservati D Readings	ive
	. [I RECEIPT VERIFIC	TION REQUE	STED	88	8				a 별	02	ar		8	<u>\$</u>			ပ်	e l	g					oratory Note:	:5
					<u>§</u>	를				8260	A	dord	22	aue	ğ c	.		g	وو	Sol	<u>e</u>) jg				
					geal	act	<u>6</u>	<u>6</u>	~	es (9 E	, h	8	ま				Metals	N N	ved	601	Disposal (see				
Ale and the second second from					Purgeable (8260	Ext	(8260B)	826(260E	enates FBA, DI	90	atec	EDC 8082	를	5 <u>8</u>	.		Re	PCP, PNAs Creosote	Desolved	Iron (6010B)					
No partial lab reports, send fina		SAMPLING	T	NO. OF	5	÷	×	MTBE (8260B)	TBA (8260B)	5 Oxygenates (8280B) (MTBE, TBA, DIPE, TAM	Oll & Greese EPA 9070	Chlorinated hydorcarbons 8260	∞	1,2-dichloroethane (8260B)	Ethylene dibromide Ethanol (8260B)			n 17		a D	声	it for	TEN	PERATURE	ON RECEIPT	C°
USE Field Sampl	e Identification	DATE TIME	MATRIX	CONT.	표	TPHd	втех	M	TB/	S §	ō	동	EDB	1,2				Cam	PCB,	Total	Total	Test				
1 3B-16	-10.5	11/12 BO	SOIL	1	x		х			X	. :															
2 58-16.	10	182	1	1	1																					
3 SR-16	21.5	1 Re			П																					
V 50 W	> 7.6	Ru	- 1		Н														.				-			
/ 15·16	- 3.5	0~				<u> </u>						-	-	\dashv		+	\dashv	\dashv	-	\dashv	_	\dashv		 -		
7 3 B - 10	13 -	103	1	+	╫	-						+	-	+	+	+		\dashv	\dashv		\dashv		+			
2 JB-6.	J7.]	77	1-1	+ 1	H	-					}	-	\dashv		+		\dashv		-	\dashv	\dashv				· -	
1 38-16	- 40.5	1050		1	4	<u> </u>	V			5		\dashv		-	+	1			\dashv	\dashv				· ·		
	·		1	<u> </u>		<u> </u>									\bot		\perp	_	_							
					_										1			\dashv	_			ļ				
. 1	:				L														Ц					·		
Constitution (Signature)	rigues	$\sqrt{}$	Received i	oy: (Signature	35	Service Servic	\leq		-		(1 F	1	, 	٠.		Date;	- 1	6	- ر	5	7	Time:	50	3	
elinquished by Signature	-yrg	50	Received 1	y: (Signature)		$\overline{}$	7						6	7		Date:	<u> </u>	//-	7//	<u>, </u>	,	Time:	10:	70	
1 11 2		1//	1	(0:				17	γLE								D=1=1	_/_		10			Time:			
elinquished by (Signature)		_	Received I	y: (Signature	,											I	Date;	/		•		- 1	tatio.			

LAB:	TA						SH	IEL	L	Ch	ai	n (Of (Cu:	sto	dv	, R	ec	or	ď										÷
	Irvine, California	LANE OF BED	00N T		اسا							•		_			-				ENIT :	# /ES	ONI	V)		Т				
	Morgan Hill, California	NAME OF PER) BILL:	Denis	Brown												-	1r	ICID	ENI:	# (E3	ONL	1)		-				
	Sacramenta, California Nashville, Tennesee	☑ ENVIRONMENTAL	ERVICES					□сн	ECK BO	י סד.אכ	VERIF	Y IF N	O INCI	ENT#	APPL)	ES		9	8	9	9	6	0	6	7] [Date:			
☐ (also		☐ NETWORK DEV / F		☐ BILL	CONSULTA	NT						PO	#		!					SA	P or	CRM	Т#	٠,	:		4	7	•	
Othe		COMPLIANCE		RMT	/CRMT				Ī		Τ	T.	Τ							<u> </u>						F	PAGE: _		of	<u> </u>
SAMPLING	COMPANY:		LOG CODE	3			1			Street ar			-					State			GLO	AL ID N	0.:							
Cones	stoga-Rovers & Ass	ociates (CRA)	CRAW	!						crof					and	PHONE	NO.:	CA			T06	010	224					CONS	ULTANT PROJ	ECT NO.:
5900 H	iollis St, Suite A, En			·				land I	Ealla!	· - C	3 A G					707	022.2	360					1f@_		rld on			24050	4 000	
Ana Fi	CT CONTACT (Hardcopy or PDF R	eport to):					SAN	I ard,	ME(S)	ia, CF	₹А, ₹	sonor	na			707	933 <u>2</u>	2360			Sono	mae	пас	rawu	rld.co		ONLY	240504	4-008	
TELEPHO		FAX:	E-MAIL:		 		1																		***			111	77	
1.0	8 3812	707 268 8180		craworld.	com	•	C	arm	en l	Rod.	rigu	ıez														- /	<u>//</u>	<u> 19.</u>	32	
•	STD IS 10 BUSINESS DAY				RESULTS NE												RE	QUE	STE	DΑ	NAL	YSIS								
□ LA	- RWQCB REPORT FORMA	T UST AGENCY:			_									-													Γ			
	L INSTRUCTIONS OR NO		EDD NOT	NEEDED			1							8					60		Z	02			ह	}		FIELD	NOTE	s:
			_	ONTRACT RA		S	_	€					Ü	82(<u></u>	ê		(82		Cd, Cr, Pb, Zn, Ni	Creosote 8270	0.1)		attached)				r/Preserva	
				EIMB RATE			Purgeable (8260 B)	(8015M)						ğ	١.	260E	3260	ll	ants		٠ <u>.</u>	sot	Desolved Solids (160.1)				"		Reading	1
1			J] RECEIPI	VERIFICATI	ON REQUE	SIED	8	8				(g)	90	Car		e (8)) ep		No.		Ö	Crec	şpik	_	(se			or Labo	ratory No	tes
						•	를	Extractable		_		(82,6	A A	ğ	82	han	omic	<u>a</u>	s pa		ပိ		ğ	108	Sall					
							ğ	trac	908	99	وَ	ates 2	989	a a	EDC 8082	roet	dibr	3260	lnat		etal	Ę.	olve	09)	ş		**			ı
No par	rtial lab reports, send final	PDF report only.	-				<u>-</u>		(826	(82	2000	gena	i i	nate	8	chlo	aue (🖁	hlor		7	PCP, PNAS	Des	Iron (6010B)	P C					
LAB USE ONLY	Field Sample	Identification	SAM DATE	TIME	MATRIX	NO. OF CONT.	тРН 9-	ТРН	BTEX (8260B)	MTBE (8260B)	TBA (8360B)	5 Oxygenates (8260B)	Oil & Greese EPA 9070	Chlorinated hydorcarbons 8260	EDB 8	1,2-dichloroethane (8260B)	Ethylene dibromide (8260B)	Ethanol (8260B)	Full Chlorinated Solvents (8260)		Cam 17 Metals	PCB,	Total	Total	Test for Disposal (see		TEMPE	RATURE	ON RECEIF	PT C°
8	CPT- 4-	56-60	11/1	085	T _w	6	х		X			х							X											
9	CPT- V-	74-83'	1	Med	1	6																			٠.				·	
10	CPT- Z-	45-44	11/1			6	П																				٠			
11	COT. 7.	- 56 - 60	1.	142			I		1			1							J											
	(27-2-	-54-40																												
	01 1	70 00	 																•											
			-										\vdash			-														
					·		┢		<u> </u>	_		1																		
							_	1	-		<u> </u>	1		-						\dashv	-									
				-				-			 	+-			<u> </u>					\dashv						 			<u> </u>	
Pol!	shed by: (Signature)	<u> </u>		1	Raceivada	y: (Siggature	ل	Ц_		<u> </u>	<u></u>	ــِـــ	<u> </u>		لـــا					Date:						Time	 			
)	um		_ '.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NOT)		ا ا	=								1	(- (6	0	7			{	20,	5	>
Relinquis	shler by (Signature)	65	\supset		·	y: (Signature			_7/	4lo			 -			ĺĊ	2			Date;	11/	17	10	<u>'</u> Z		Time		10:	20	>
Relinquis	sher by (Signature)			_	Received b	y: (Signature)		•	•										Date:	/					Time			<u>.</u>	
		· · · · · · · · · · · · · · · · · · ·																				-					05/02/	06 Revision	n	



WORK ORDER #: 07 - 1 1 4 3 2

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT: CRA	DATE:	11/17/07
TEMPERATURE - SAMPLES RECEIVED BY:		
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	LABORATORY (Other 3.4 °C Temperature °C IR thermome Ambient temper	eter.
CUSTODY SEAL INTACT:		
Sample(s): Cooler: No (Not Ir	ntact) :	Not Present:
Chain-Of-Custody document(s) received with samples. Sampler's name indicated on COC. Sample container label(s) consistent with custody papers. Sample container(s) intact and good condition. Correct containers and volume for analyses requested. Proper preservation noted on sample label(s).		
VOA viai(s) tree of neadspace.		
Tedlar bag(s) free of condensation		Initial:
COMMENTS:		

November 29, 2007

Ana Friel Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

07-11-1553

Client Reference:

1285 Bancroft Ave., San Leandro, CA

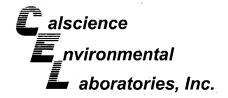
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/20/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

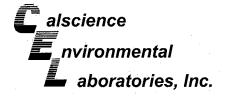

Calscience Environmental

Danilletonic-

Laboratories, Inc.

Danielle Gonsman

Project Manager



Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

11/20/07 07-11-1553 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

	Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
	07-11-1553-1-D	11/16/07	Aqueous	GC 1	11/21/07	11/21/07	071121B01
Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ND :	50	.1 .		ug/L			
REC (%)	Control Limits		<u>Qual</u>				
105	38-134						
The Court of the Part of the Court of the Co	099-12-436-1,165	N/A	Aqueous	GC 1	11/21/07	11/21/07	071121B01
Result	<u>RL</u>	DF	Qual	<u>Units</u>			
ND	50	1		ug/L			
REC (%)	Control Limits		Qual				
88	38-134						
	ND REC (%) 105 Result ND REC (%)	Result RL ND 50 REC (%) Control Limits 105 38-134 Result RL ND 50 Result RL ND 50 REC (%) Control Limits	Number Collected 07-11-1553-1-D 11/16/07 Result RL DF ND 50 1 REC (%) Control Limits 105 105 38-134 N/A Result RL DF ND 50 1 REC (%) Control Limits L	Number Collected Matrix 07-11-1553-1-D 11/16/07 Aqueous Result RL DF Qual ND 50 1 Qual 105 38-134 Qual Aqueous Result RL DF Qual ND 50 1 Qual ND 50 1 Qual REC (%) Control Limits Qual	Number Collected Matrix Instrument 07-11-1553-1-D 11/16/07 Aqueous GC 1 Result RL DF Qual Units ND 50 1 ug/L REC (%) Control Limits Qual Qual 105 38-134 Aqueous GC 1 Result RL DF Qual Units ND 50 1 ug/L REC (%) Control Limits Qual Qual	Number Number Number Collected Collected Collected Matrix Instrument Instrument Instrument Prepared Prepared 07-11-1553-1-D 11/16/07 Aqueous GC 1 11/21/07 Result RL DF Qual Units ND 50 1 ug/L REC (%) Control Limits Qual GC 1 11/21/07 Result RL DF Qual Units ND 50 1 ug/L ND 50 1 ug/L REC (%) Control Limits Qual Units	Number Number Collected Collected Officer Collected Number Matrix Instrument Instrument Prepared Prepared Analyzed Analyzed Analyzed Analyzed Instrument 07-11-1553-1-D 11/16/07 Aqueous GC 1 11/21/07 Result RL DE Qual ug/L ND 50 1 ug/L REC (%) Control Limits Qual GC 1 11/21/07 105 38-134 Aqueous GC 1 11/21/07 11/21/07 Result RL DF Qual Units ND 50 1 ug/L ND 50 1 ug/L REC (%) Control Limits Qual

Lab Sample

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

11/20/07 07-11-1553

Work Order No: Preparation:

EPA 5030B

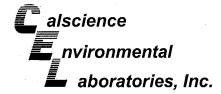
Method:

EPA 8260B

Units:

Date

ug/L


Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of 2

Date

Client Sample Number			. Nun			Collected Matrix Instrume	nt Prepare	d Anal		C Batch ID
CPT-2-75-79	1 2		07-11	-1553-1-	E	11/16/07 Aqueous GC/MS	S 11/28/0	7 11/28	3/07 07	1128L01
Comment(s): -Results were	evaluated to the	MDL, cor	centrat	ions >= t	o the N	ADL but < RL, if found, are qualified	with a "J" flag			
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF	Qual	<u>Parameter</u>	Result	RL	<u>MDL</u>	DF Qual
Acetone	ND.	50	6.3	1		c-1,3-Dichloropropene	ND	0.50	0.31	1
Benzene	ND	0.50	0.14	1		t-1,3-Dichloropropene	ND	0.50	0.49	1
Bromobenzene	ND	1.0	0.27	1		Ethylbenzene	ND	1.0	0.23	1 .
Bromochloromethane	ND	1.0	0.70	1		2-Hexanone	ND	10 .	5.4	1
Bromodichloromethane	ND -	1.0	0.24	1		Isopropylbenzene	ND	1.0	0.26	1
Bromoform	ND	1.0	0.66	1		p-Isopropyltoluene	ND	1.0	0.31	1
Bromomethane	ND	10	5.1	1		Methylene Chloride	5.2	10	4.3	1 J,B
2-Butanone	ND	10	6.7	1		4-Methyl-2-Pentanone	ND	10	3.7	1
n-Butylbenzene	ND	1.0	0.29	1		Naphthalene	ND	10	0.50	. 1
sec-Butylbenzene	ND	1.0	0.32	1		n-Propylbenzene	ND	1.0	0.12	1
tert-Butylbenzene	ND	1.0	0.33	1		Styrene	ND	1.0	0.29	1
Carbon Disulfide	ND	10	0.40	1		1,1,1,2-Tetrachloroethane	ND	1.0	0.34	1
Carbon Tetrachloride	ND	0.50	0.32	1		1,1,2,2-Tetrachloroethane	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.14	1		Tetrachloroethene	3.2	1.0	0.35	1
Chloroethane	ND	1.0	0.69	1		Toluene	ND	1.0	0.27	1
Chloroform	0.55	1.0	0.24	1	J	1,2,3-Trichlorobenzene	ND	1.0	0.43	1
Chloromethane	ND	10	0.63	1		1,2,4-Trichlorobenzene	ND	1.0	0.33	1
2-Chlorotoluene	ND	1.0	0.18	1		1,1,1-Trichloroethane	ND	1.0	0.26	1
4-Chlorotoluene	ND	1.0	0.27	1		1,1,2-Trichloro-1,2,2-Trifluoroetha		10	0.68	1
Dibromochloromethane	ND	1.0	0.41	1		1,1,2-Trichloroethane	ND	1.0	0.49	1
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	1		Trichloroethene	ND	1.0	0.37	1
1,2-Dibromoethane	ND	1.0	0.49	1		Trichlorofluoromethane	ND	10	0.21	1
Dibromomethane	ND	1.0	0.57	1		1,2,3-Trichloropropane	ND	5.0	1.4	1
1,2-Dichlorobenzene	ND	1.0	0.33	1		1,2,4-Trimethylbenzene	ND	1.0	0.23	1
1,3-Dichlorobenzene	ND	1.0	0.23	1		1,3,5-Trimethylbenzene	ND	1.0	0.18	1
1,4-Dichlorobenzene	ND	1.0	0.22	1		Vinyl Acetate	ND	10	3.7	1
Dichlorodifluoromethane	ND	1.0	0.89	. 1		Vinyl Chloride	ND	0.50	0.36	1
1,1-Dichloroethane	ND	1.0	0.27	1		p/m-Xylene	ND	1.0	0.54	1
1,2-Dichloroethane	ND	0.50	0.26	1		o-Xylene	ND	1.0	0.17	1
1,1-Dichloroethene	ND -	1.0	0.29	1		Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.26	1
c-1,2-Dichloroethene	ND	1.0	0.35	1		Tert-Butyl Alcohol (TBA)	ND	10	5.4	1
t-1,2-Dichloroethene	ND	1.0	0.38	1		Diisopropyl Ether (DIPE)	ND	2.0	0.33	1
1,2-Dichloropropane	ND	1.0	0.36	1		Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.18	1
1,3-Dichloropropane	ND	1.0	0.36	1		Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.1	1
	ND	1.0	0.28	1		Ethanol	ND	100	86	1
2,2-Dichloropropane	ND	1.0	0.24	1		Eq (CITO)	110	100		•
1,1-Dichloropropene Surrogates:	REC (%)	Control I			Qual	Surrogates:	REC (%)	Control	Limits	Qual
-		74-140				1,2-Dichloroethane-d4	124	74-146		<u> ~~~~</u>
Dibromofluoromethane	118						124 89	74-140		
Toluene-d8	98	88-112				1,4-Bromofluorobenzene	Oa	74-110		
						and the second s				

Lab Sample

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

Work Order No: 07-11-1553 Preparation: **EPA 5030B**

Date

Method: Units:

EPA 8260B ug/L

11/20/07

Date

Page 2 of 2

Project: 1285 Bancroft Ave., San Leandro, CA

	Date		
	Analyzed	QC Batch ID	

Client Sample Number			Lab Sa Num		Date Collected Matrix Instrumen	Date≀ t Prepared	Date I Analyz	_	C Batch	ID -
Method Blank			099-1	0-006-23,565	N/A Aqueous GC/MS S	11/28/07	7 11/28/	07 07	'1128L01	
Comment(s): -Results were	evaluated to the	MDL, cor	ncentrati	ons >= to the M	IDL but < RL, if found, are qualified w	ith a "J" flag.				,
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	DF Qual		Result	<u>RL</u>	<u>MDL</u>	DF	Qual
Acetone	ND	50	6.3	1.	c-1,3-Dichloropropene	ND	0.50	0.31	1	
Benzene	ND	0.50	0.14	1	t-1,3-Dichloropropene	ND	0.50	0.49	1	
Bromobenzene	ND	1.0	0.27	1	Ethylbenzene	ND	1.0	0.23	1	
Bromochloromethane	ND	1.0	0.70	1	2-Hexanone	ND	10	5.4	1	
Bromodichloromethane	ND	1.0	0.24	1	Isopropylbenzene	ND	1.0	0.26	1	
Bromoform	ND	1.0	0.66	1	p-Isopropyltoluene	ND	1.0	0.31	1	
Bromomethane	ND	10	5.1	1	Methylene Chloride	6.8	10	4.3	1	J
2-Butanone	ND	10	6.7	1	4-Methyl-2-Pentanone	ND	10	3.7	1	
n-Butylbenzene	ND	1.0	0.29	1	Naphthalene	ND	10	0.50	1	
sec-Butylbenzene	ND	1.0	0.32	1	n-Propylbenzene	ND	1.0	0.12	1	
tert-Butylbenzene	ND .	1.0	0.33	1	Styrene	ND	1.0	0.29	1	
Carbon Disulfide	ND	10	0.40	1	1,1,1,2-Tetrachloroethane	ND	1.0	0.34	1	
Carbon Tetrachloride	ND	0.50	0.32	1	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	1	
Chlorobenzene	ND	1.0	0.14	1	Tetrachloroethene	ND	1.0	0.35	- 1	
Chloroethane	ND	1.0	0.69	1	Toluene	ND	1.0	0.27	. 1	. ,
Chloroform	ND	1.0	0.24	1	1,2,3-Trichlorobenzene	ND	1.0	0.43	1	
Chloromethane	ND	10	0.63	1	1,2,4-Trichlorobenzene	ND	1.0	0.33	1	
2-Chlorotoluene	ND	1.0	0.18	1	1,1,1-Trichloroethane	ND	1.0	0.26	1	
4-Chlorotoluene	ND.	1.0	0.27	i	1,1,2-Trichloro-1,2,2-Trifluoroethan		10	0.68	1	
Dibromochloromethane	ND	1.0	0.41	1	1,1,2-Trichloroethane	ND	1.0	0.49	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	1	Trichloroethene	ND.	1.0	0.37	1	
1,2-Dibromoethane	ND	1.0	0.49	1	Trichlorofluoromethane	ND	10	0.21	1	
Dibromomethane	ND	1.0	0.57	1	1,2,3-Trichloropropane	ND	5.0	1.4	1	
1,2-Dichlorobenzene	ND	1.0	0.33	1	1,2,4-Trimethylbenzene	ND	1.0	0.23	1	
1,3-Dichlorobenzene	ND	1.0	0.33	1	1,3,5-Trimethylbenzene	ND.	1.0	0.18	1	
1,4-Dichlorobenzene	ND	1.0	0.23	1	Vinyl Acetate	ND.	10	3.7	1	
Dichlorodifluoromethane	ND	1.0	0.89	1	Vinyl Chloride	ND	0.50	0.36	1	
	ND	1.0	0.03	1	p/m-Xylene	ND	1.0	0.54	1	
1,1-Dichloroethane		0.50	0.27	1	o-Xylene	ND	1.0	0.17	1	ı
1,2-Dichloroethane	ND .	1.0	0.20	1	Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.26	1	
1,1-Dichloroethene	ND	1.0	0.29	. 1		ND	10	5.4	1	
c-1,2-Dichloroethene	ND		0.38	1	Tert-Butyl Alcohol (TBA)	ND	2.0	0.33	1	
t-1,2-Dichloroethene	ND	1.0		, 1	Diisopropyl Ether (DIPE)		2.0	0.33	1	
1,2-Dichloropropane	ND	1.0	0.36	1	Ethyl-t-Butyl Ether (ETBE)	ND	2.0	1.1	1	
1,3-Dichloropropane	ND	1.0	0.26	•	Tert-Amyl-Methyl Ether (TAME)	ND		86	1	
2,2-Dichloropropane	ND	1.0	0.28	1 .	Ethanol	ND	100	00		
1,1-Dichloropropene	ND ND	1.0	0.24	T 01	Company	DEC (9/1	Control	imite		Qual
Surrogates:	REC (%)	Control	LIMITS	Qual	Surrogates:	REC (%)	Control L	IIIIIIS		<u>uual</u>
Dibromofluoromethane	111	74-140			1,2-Dichloroethane-d4	115	74-146			
Toluene-d8	99	88-112			1,4-Bromofluorobenzene	87	74-110			

DF - Dilution Factor

Quality Control - Spike/Spike Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/20/07 07-11-1553 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
07-11-1542-1-E	Aqueous	GC 1	11/21/07	11/21/07	071121S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	<u>L</u> <u>Qualifiers</u>
TPH as Gasoline	91	85	68-122	6 0-18	

Quality Control - Spike/Spike Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/20/07 07-11-1553 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	A	Date nalyzed	MS/MSD Batch Number
CPT-2-75-79-E	Aqueous	GC/MS S	11/28/07	1	1/28/07	071128S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	106	110	88-118	4	0-7	
Carbon Tetrachloride	104	109	67-145	4	0-11	
Chlorobenzene	99	104	88-118	5	0-7	
1,2-Dibromoethane	109	114	70-130	4	0-30	
1,2-Dichlorobenzene	101	106	86-116	5	8-0	
1,1-Dichloroethene	106	109	70-130	2	0-25	
Ethylbenzene	104	109	70-130	4	0-30	
Toluene	105	109	87-123	3	0-8	
Trichloroethene	101	106	79-127	, 5	0-10	
Vinyl Chloride	102	109	69-129	6	0-13	
Methyl-t-Butyl Ether (MTBE)	122	124	71-131	1	0-13	
Tert-Butyl Alcohol (TBA)	109	110	36-168	0	0-45	
Diisopropyl Ether (DIPE)	124	128	81-123	3	0-9	3
Ethyl-t-Butyl Ether (ETBE)	117	123	72-126	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	114	121	72-126	6	0-12	
Ethanol	117	114	53-149	3	0-31	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1553 EPA 5030B EPA 8015B (M)

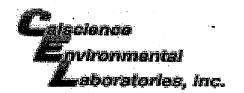
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch
099-12-436-1,165	Aqueous	GC1	11/21/07	11/21/07	071121B01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %RE	EC CL RPI	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	80	81	78	-120 1	0-10	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 07-11-1553 **EPA 5030B EPA 8260B**

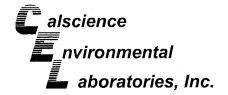
Quality Control Sample ID	Matrix	Instrument		Date nalyzed	LCS/LCSD Bat Number	ch
099-10-006-23,565	Aqueous	GC/MS S	11/28/07 11	/28/07	071128L01	
<u>Parameter</u>	<u>LCS %F</u>	REC LCSD %RE	C %REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	105	107	84-120	2	0-8	
Carbon Tetrachloride	107	109	63-147	2	0-10	
Chlorobenzene	101	102	89-119	1	0-7	
1,2-Dibromoethane	105	108	80-120	3	0-20	
1,2-Dichlorobenzene	99	104	89-119	5	0-9	
1,1-Dichloroethene	106	109	77-125	3	0-16	
Ethylbenzene	107	109	80-120	2	0-20	
Toluene	104	106	83-125	1	0-9	
Trichloroethene	106	104	89-119	2	0-8	
Vinyl Chloride	110	108	63-135	2	0-13	
Methyl-t-Butyl Ether (MTBE)	106	110	82-118	3	0-13	
Tert-Butyl Alcohol (TBA)	108	115	46-154	6	0-32	
Diisopropyl Ether (DIPE)	111	116	81-123	4	0-11	
Ethyl-t-Butyl Ether (ETBE)	104	108	74-122	4	0-12	
Tert-Amyl-Methyl Ether (TAME)	106	107	76-124	1	0-10	
Ethanol	110	127	60-138	15	0-32	


Glossary of Terms and Qualifiers

Work Order Number: 07-11-1553

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB: TA TA - Irvine, California					•	SH	EL	.L. 1	Cn	aır	1 C)† (Jus	sto	dy	'R	ec	ord							
TA - Morgan Hill, California	NAME OF PER	SON TO	BILL:	Denis E	Brown						*							INC	IDEN'	# (E	S ON	LY)			
TA - Sacramenta, California	Z ENVIRONMENTAL S	ERVICES				ļ	□ с не	CK BC	X TO V	ERIFY	IF NO	INCID	ENT#	APPLIE	ES	٠. [9	8	9	9 6	s o	6	7	Date:	116107
TA - Nashville, Tennesee	NETWORK DEV / FE	Eugest as 1	BILL	CONSULTA	NT	Г		-			PO#	 ¥	-			_	-		SAP o						
✓ Calscience Other	COMPLIANCE							T		Γ -	T	, 									T	Т	i	PAGE:	of
	COMPLIANCE	<u>: H (1.5)</u>	RMI	/CRMT																					· .
SAMPLING COMPANY:		LOG CODE				1			breet and	_	_					- 1	State		ı	OBAL ID					
Conestoga-Rovers & Ass	sociates (CRA)	CRAW							Croft					ındr	O PHONE		CA		T0	60010	1224			<u> </u>	CONSULTANT PROJECT NO.:
5900 Hollis St, Suite A, E	meryville, CA 94608									,															
PROJECT CONTACT (Hardcopy or PDF	Report to):					Ball	ard, f	elici	a, CR	A, Sc	nom	ıa		j	707 9	33 23	360		so	nomae	edf@d	crawo	rld.co		240504-008
Ana Friel TELEPHONE:	FAX:	E-MAIL:				SAM	PLEK NA	m=(≎) (riantj.														LA	B USE ONLY	
707 268 3812	707 268 8180	1	craworld	.com		Ιc	arm	en F	Rodr	igue	ez													- n	- 15 <i>53</i>
TAT (STD IS 10 BUSINESS DA		DAYS):		RESULTS NE	EDED		<u></u>	-					-			25		CTE b	ANIA	VCI				1.1	
☑ STD ☐ 5 DAY ☐ 3	DAY 2 DAY	24 HOURS	ť	ON WEEKE	ND											KE	QUE	21EF	ANA	LYSI	• —				·
☐ LA - RWQCB REPORT FORM	IAT UST AGENCY:																					'			
SPECIAL INSTRUCTIONS OR N		DEDD NOT	NEEDED			1							00				.	6	ĮΞ	2			Đ.	,	FIELD NOTES:
	·	3 CHEIT CO	INTRACT R		5		<u>\$</u>				ETBE)		\$ 82(<u></u>	<u>a</u>		(82	Ž	e 82	0.1		attached)		ntainer/Preservative
		STATE RE				9 B	015						pour		260E	3260		ents	8	Sot	Solids (160.1)		att	"	or PID Readings
		RECEIPT	VERIFICAT	ION REQUES	STED	88	8				AME	907	rcarl		8	9		No.	ြင်	Įž	ig is	_	se		r Laboratory Notes
•					,	gg P	tabl		_		(826 7E. T	EPA	ydoi	982	than	omic V	<u>@</u>	ed	ပိုင်	As	N S	108	sai		
						I ge	trac) (90 (90 (10)	E0B	(<u>B</u>	ates	ase	y pe	8 2	roel	db	8260	rlnat	etal	٠ و	olve	8	jsp		·
No partial lab reports, send fina	PDF report only.					1 4 -	ŭ	(87	(82	8260	TB/del	Gre	inat	2 E	chlo	ene	ᅙ	Chlorinated Solvents (8260)	17	P.S.	Des	<u> </u>	lo C		7 15 01 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
USE Field Sampi	e Identification	SAM	PLING	MATRIX	NO. OF CONT.	TPH g- Purgeable (8260 B)	TPHd - Extractable (8015M)	BTEX (8260B)	MTBE (8260B)	TBA (8260B)	5 Oxygenates (8260B) (MTBE, TBA, DIPE, TAME,	Oil & Greese EPA 9070	Chlorinated hydorcarbons 8260	EDB & EDC 8082	1,2-dichloroethane (8260B)	Ethylene dibromide (8260B)	Ethanol (8260B)	E	Cam 17 Metals Cd. Cr. Pb. Zn. Ni	PCB, PCP, PNAs Creosote 8270	Total Desolved	Total Iron (6010B)	Test for Disposal (see	TEMPER	ATURE ON RECEIPT C°
ONLY						x	-	×	-	-	X		-		-			x	Ť	╁	Ė				· · · · · · · · · · · · · · · · · · ·
CPT- Z-	12-14	W//L	133	9 w	6	<u> ^</u>	-	^			_			\vdash			-+	^ +	+	+	-	 	1		
					! .	ı	1													1		_			
						П										-							1		
		+				├-			-		-			\dashv			_	\dashv	\vdash	+-			 		
					<u> </u>	_										-		-		┼	-	\vdash	-		·
	7														_	_ [_			\bot					
						Π										\sqcap									
		-	1			\vdash	-		_			Н		\vdash	\dashv	- +	\dashv	\dashv	+	+	1-	\vdash	\vdash	 	
	<u> </u>		<u> </u>													\perp	\dashv	_ _	_	igspace	_	_	\sqcup		
- 	 		 			t	<u> </u>										$\neg \uparrow$		\top	T	1				
	·	<u> </u>	ļ	·	<u> </u>	\vdash	<u> </u>							_		-	\dashv		+	+	-	-		 	
						Ą	1	1												L		<u> </u>			·
Relinquished by: (Signature)				Received b	y: (Signature)]	1				J.J.								ate:					Time: 1(17/	
Carry Hodies	us.	-					10	1	_			·						4.	ate:	19/	01			1426 Time:	
Relinquished by (Signature)	Mil			Received b	y: (Signature	۱ <u>.</u>	Had	1		-								. "	"ii/	19/	57			1426	
Relinquished by: (Signature)	1 P	/ 3		Received b	y: (Signature	Ý I							1	7))	Z		-	ate:	7/	<u></u>	7		Time:	<u> </u>
lo-	N/ (to	(150)		1.		•	•					n	NX I	9/	Q()	てナ		1	11/3	OII	<u>y 1</u>	`		b5/02/06	



WORK ORDER #: 07	_	1	1 -	1	5	5	3
		ت				للبنيا	

Cooler ____ of ___

SAMPLE RECEIPT FORM

CLIENT: CRA	DATE: 11/20 07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	ORATORY (Other than Calscience Courier): C C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not Intact) : _	Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples Sampler's name indicated on COC Sample container label(s) consistent with custody papers Sample container(s) intact and good condition Correct containers and volume for analyses requested Proper preservation noted on sample label(s) VOA vial(s) free of headspace. Tedlar bag(s) free of condensation	
COMMENTS:	

January 14, 2008

Ana Friel Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

08-01-0300

1285 Bancroft Ave., San Leandro, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 1/5/2008 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Danilletonic-

Laboratories, Inc.

Danielle Gonsman

Project Manager


NELAP ID: 03220CA

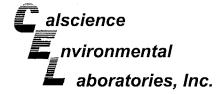
CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 •

FAX: (714) 894-7501

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 01/05/08 08-01-0300 EPA 5030B EPA 8015B (M)


Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of 1

		Lab Sample	Date			Date	Date/Time	
Client Sample Number	7 - 100 - 13 - 13 - 10 No.	Number	Collected	Matrix	Instrument	Prepared	Analyzed	QC Batch ID
CPT-1-44-48		08-01-0300-1-D	01/03/08	Aqueous	GC 29	01/07/08	01/07/08 20:34	080107B01
Parameter	Result	RL	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1	<u> </u>	ug/L			
			ı		ug/L		-	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	46	38-134						
CPT-1-56-60		08-01-0300-2-D	01/03/08	Aqueous	GC 29	01/07/08	01/07/08 21:08	080107B01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			· · · · · ·
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	68	38-134						
GPT-1-78-82		08-01-0300-3-D	01/03/08	Aqueous	GC 29	01/07/08	01/07/08 21:42	080107B01
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	70	38-134						
Method Blank	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	099-12-436-1,329	N/A	Aqueous	GC 29	01/07/08	01/07/08 9:49	080107B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	79	38-134						

RL - Reporting Limit

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

Work Order No: Preparation:

Method:

Units:

01/05/08

08-01-0300

EPA 5030B EPA 8260B

// UZUUL

ug/L

Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of 4

Client Sample Number			Lab Sa Num		Date Collected Matrix	Instrument	Date Prepared	Date/ I Anal		QC Batch ID
CPT-1-44-48			08-01-0)300-1-A	01/03/08 Aqueous	GC/MST	01/08/08		9/08 :24	080108L02
Comment(s): -Results were	evaluated to the	e MDL, co	ncentratio	ons >= to the N	ADL but < RL, if found, are	e qualified wit	h a "J" flag.			
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u> Qual	<u>Parameter</u>		Result	<u>RL</u>	MDL	DF Qual
Acetone	ND	50	6.3	1	c-1,3-Dichloropropene		ND	0.50	0.31	1
Benzene	0.18	0.50	0.14	1 J	t-1,3-Dichloropropene		ND	0.50	0.49	1
Bromobenzene	ND .	1.0	0.27	1	Ethylbenzene		ND	1.0	0.23	1
Bromochloromethane	NĐ	1.0	0.70	1	2-Hexanone		ND	10	5.4	1
Bromodichloromethane	ND	1.0	0.24	1	Isopropylbenzene		ND	1.0	0.26	1
Bromoform	ND	1.0	0.66	1	p-Isopropyltoluene		ND	1.0	0.31	1
Bromomethane	ND	10	5.1	1	Methylene Chloride		ND	10	4.3	1
2-Butanone	ND	10	6.7	1	4-Methyl-2-Pentanone		ND	10	3.7	1
n-Butylbenzene	ND	1.0	0.29	1	Naphthalene		ND.	10	0.50	1
sec-Butylbenzene	ND	1.0	0.32	1	n-Propylbenzene		ND	1.0	0.12	1
tert-Butylbenzene	ND	1.0	0.33	1	Styrene		ND	1.0	0.29	1
Carbon Disulfide	ND	10	0.40	1	1,1,1,2-Tetrachloroetha	ne	ND	1.0	0.34	1
Carbon Tetrachloride	ND	0.50	0.32	1	1,1,2,2-Tetrachloroetha	ne	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.14	1	Tetrachloroethene		4.5	1.0	0.35	1
Chloroethane	ND	1.0	0.69	1	Toluene		ND	1.0	0.27	1
Chloroform	2.8	1.0	0.24	1	1,2,3-Trichlorobenzene		ND	1.0	0.43	1
Chloromethane	ND	10	0.63	1	1,2,4-Trichlorobenzene		ND	1.0	0.33	1
2-Chlorotoluene	ND	1.0	0.18	1	1,1,1-Trichloroethane		ND	1.0	0.26	1
4-Chlorotoluene	ND	1.0	0.27	1	1,1,2-Trichloro-1,2,2-Tr	ifluoroethane	ND	10	0.68	1
Dibromochloromethane	ND	1.0	0.41	1	1,1,2-Trichloroethane		ND	1.0	0.49	1
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	1	Trichloroethene		ND	1.0	0.37	1
1,2-Dibromoethane	ND	1,0	0.49	1	Trichlorofluoromethane		ND	10	0.21	1
Dibromomethane	ND	1.0	0.57	1	1,2,3-Trichloropropane		ND	5.0	1.4	1
1,2-Dichlorobenzene	ND	1.0	0.33	1	1,2,4-Trimethylbenzene		ND .	1.0	0.23	1
1,3-Dichlorobenzene	ND	1.0	0.23	1	1,3,5-Trimethylbenzene		ND	1.0	0.18	
1,4-Dichlorobenzene	ND	1.0	0.22	1	Vinyl Acetate		ND	10	3.7	1
Dichlorodifluoromethane	ND	1.0	0.89	1	Vinyl Chloride		ND	0.50	0.36	1
1,1-Dichloroethane	ND	1.0	0.27	1	p/m-Xylene		ND	1.0	0.54	
1,2-Dichloroethane	ND	0.50	0.26	1	o-Xylene		ND	1.0	0.17	
1,1-Dichloroethene	ND	1.0	0.29	1	Methyl-t-Butyl Ether (M	ГВЕ)	ND	1.0	0.26	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	Tert-Butyl Alcohol (TBA	.)	ND	10	5.4	1
t-1,2-Dichloroethene	ND	1.0	0.38	1	Diisopropyl Ether (DIPE	:)	ND	2.0	0.33	
1,2-Dichloropropane	ND .	1.0	0.36	1	Ethyl-t-Butyl Ether (ETE	3E)	ND	2.0	0.18	1
1,3-Dichloropropane	ND	1.0	0.26	1	Tert-Amyl-Methyl Ether	(TAME)	ND	2.0	1.1	1
2,2-Dichloropropane	ND	1.0	0.28	1	Ethanol		ND	100	86	1
1,1-Dichloropropene	NĐ	1.0	0.24	1						
Surrogates:	<u>REC (%)</u>	Control	<u>Limits</u>	<u>Qual</u>	Surrogates:		REC (%)	Control	<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	119	74-140			1,2-Dichloroethane-d4		110	74-146		
Toluene-d8	103	88-112			1,4-Bromofluorobenzen	е	91	74-110		

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

08-01-0300 EPA 5030B

01/05/08

Units:

EPA 8260B ug/L

Project: 1285 Bancroft Ave., San Leandro, CA

Page 2 of 4

Client Sample Number			Lab Sa Numl			Date Collected	Matrix	Instrument	Date Prepared		Time yzed	QC Batch ID
CPT-1-56-60		20 27 2	08-01-0	0300-2-A		01/03/08	Aqueous	GC/MS T	01/08/08		9/08 :55	080108L02
Comment(s): -Results were	evaluated to the	MDL, co	ncentratio	ons >= to	the N	ИDL but < RL	, if found, are	qualified wit	h a "J" flag.			
<u>Parameter</u>	Result	<u>RL</u>	MDL	DF C	Qual	<u>Parameter</u>			Result	<u>RL</u>	MDL	DF Qual
Acetone	ND	50	6.3	1		c-1,3-Dichl	oropropene		ND	0.50	0.31	1
Benzene	0.15	0.50	0.14	1	J	t-1,3-Dichlo	ropropene		ND	0.50	0.49	1
Bromobenzene	ND	1.0	0.27	1		Ethylbenze	ne		ND	1.0	0.23	1
Bromochloromethane	ND	1.0	0.70	1		2-Hexanon)		ND	10	5.4	1
Bromodichloromethane	ND	1.0	0.24	1		Isopropylbe	nzene		ND	1.0	0.26	1
Bromoform	ND	1.0	0.66	1		p-Isopropyl	toluene		ND	1.0	0.31	1
Bromomethane	ND	10	5.1	1		Methylene (Chloride		ND	10	4.3	1
2-Butanone	ND	10	6.7	1		4-Methyl-2-	Pentanone		ND	10	3.7	1
n-Butylbenzene	ND	1.0	0.29	1		Naphthalen	е		0.75	10	0.50	1 J
sec-Butylbenzene	ND	1.0	0.32	1		n-Propylbei	nzene		ND	1.0	0.12	1
tert-Butylbenzene	ND	1.0	0.33	1		Styrene			ND	1.0	0.29	1
Carbon Disulfide	0.43	10	0.40	1	J	1,1,1,2-Tet	rachloroethar	ne	ND	1.0	0.34	1
Carbon Tetrachloride	ND	0.50	0.32	1		1,1,2,2-Tet	rachloroethar	ne	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.14	1		Tetrachloro	ethene .		5.6	1.0	0.35	1
Chloroethane	ND	1.0	0.69	1		Toluene			ND	1.0	0.27	1
Chloroform	2.2	1.0	0.24	1		1,2,3-Tri¢h	orobenzene		ND	1.0	0.43	1
Chloromethane	ND	10	0.63	1			orobenzene		ND	1.0	0.33	1
2-Chlorotoluene	ND	1.0	0.18	1		1,1,1-Trich			ND	1.0	0.26	1
4-Chlorotoluene	ND	1.0	0.27	1				fluoroethane		10	0.68	1
Dibromochloromethane	ND	1.0	0.41	1		1,1,2-Trich			ND	1.0	0.49	1
1,2-Dibromo-3-Chloropropane	, ND	5.0	3.2	1		Trichloroetl			ND	1.0	0.37	1
1,2-Dibromoethane	ND	1.0	0.49	1			oromethane		ND	10	0.21	1
Dibromomethane	ND	1.0	0.57	1			loropropane		ND	5.0	1.4	1
1,2-Dichlorobenzene	ND	1.0	0.33	1			ethylbenzene		ND	1.0	0.23	1
1,3-Dichlorobenzene	ND .	1.0	0.23	1			ethylbenzene		ND	1.0	0.18	1
1,4-Dichlorobenzene	ND	1.0	0.22	1		Vinyl Aceta			ND	10	3.7	1
Dichlorodifluoromethane	ND	1.0	0.89	1		Vinyl Chlor			ND	0.50	0.36	1
1,1-Dichloroethane	ND	1.0	0.27	1		p/m-Xylene			ND	1.0	0.54	
1,2-Dichloroethane	ND	0.50	0.26	1		o-Xylene			ND	1.0	0.17	1
1,1-Dichloroethene	ND	1.0	0.29	1		•	ityl Ether (M7		ND	1.0	0.26	1
c-1,2-Dichloroethene	ND	1.0	0.35	1			Alcohol (TBA	•	ND	10	5.4	1
t-1,2-Dichloroethene	ND	1.0	0.38	1			Ether (DIPE	•	ND	2.0	0.33	
1,2-Dichloropropane	ND	1.0	0.36	1		•	/I Ether (ETE	•	ND	2.0	0.18	
1,3-Dichloropropane	ND	1.0	0.26	1		•	Methyl Ether	(TAME)	ND	2.0	1.1	1
2,2-Dichloropropane	ND	1.0	0.28	1 1		Ethanol			ND	100	86	1
1,1-Dichloropropene	ND	1.0	0.24	•		Crime			DEC /0/ \	Control	l lma!4-	2
Surrogates:	REC (%)	Control I	LITTIKS	<u>(</u>	<u>Qual</u>	Surrogates:			REC (%)	Control	LIMIŢŞ	<u>Qual</u>
Dibromofluoromethane	115	74-140					oethane-d4		106	74-146		
Toluene-d8	104	88-112				1,4-Bromo	luorobenzen	9	93	74-110		

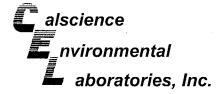
RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: Units: 01/05/08 08-01-0300 EPA 5030B EPA 8260B

ug/L Page 3 of 4

Project: 1285 Bancroft Ave., San Leandro, CA


Client Sample Number	Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CPT-1-78-82	08-01-0300-3-A	01/03/08	Aqueous	GC/MST	01/08/08	01/09/08 5:25	080108L02

		androven a sub-	. New York Control of		2.552.00227			<u>, , , , , , , , , , , , , , , , , , , </u>	25	10 P
Comment(s): -Results were ev	aluated to the					${\sf MDL}$ but < ${\sf RL}$, if found, are qualified wit	h a "J" flag.			
<u>Parameter</u>	<u>Result</u>	RL	MDL	<u>DF</u>	Qual	Parameter	Result	<u>RL</u>	MDL	<u>DF</u> Qual
Acetone	ND	50	6.3	1		c-1,3-Dichloropropene	ND	0.50	0.31	1
Benzene	0.26	0.50	0.14	1	J	t-1,3-Dichloropropene	ND	0.50	0.49	1
Bromobenzene	ND	1.0	0.27	1		Ethylbenzene	ND	1.0	0.23	1
Bromochloromethane	ND	1.0	0.70	1		2-Hexanone	ND	10	5.4	1
Bromodichloromethane	ND	1.0	0.24	1		Isopropylbenzene	ND	1.0	0.26	1
Bromoform	ND	1.0	0.66	1		p-Isopropyltoluene	ND	1.0	0.31	1
Bromomethane	ND	10	5.1	1		Methylene Chloride	4.3	10	4.3	1 J
2-Butanone	ND	10	6.7	1		4-Methyl-2-Pentanone	ND	10	3.7	1
n-Butylbenzene	ND	1.0	0.29	1		Naphthalene	ND	10	0.50	1
sec-Butylbenzene	ND	1.0	0.32	1		n-Propylbenzene	ND	1.0	0.12	1
tert-Butylbenzene	ND	1.0	0.33	1		Styrene	ND	1.0	0.29	1
Carbon Disulfide	ND	10	0.40	1		1,1,1,2-Tetrachloroethane	ND	1.0	0.34	1
Carbon Tetrachloride	ND	0.50	0.32	1		1,1,2,2-Tetrachloroethane	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.14	1		Tetrachloroethene	0.91	1.0	0.35	1 J
Chloroethane	ND	1.0	0.69	1		Toluene	ND	1.0	0.27	1
Chloroform	0.37	1.0	0.24	1	J	1,2,3-Trichlorobenzene	ND	1.0	0.43	1
Chloromethane	ND	10	0.63	1		1,2,4-Trichlorobenzene	ND	1.0	0.33	1
2-Chlorotoluene	ND	1.0	0.18	1		1,1,1-Trichloroethane	ND	1.0	0.26	1
4-Chlorotoluene	ND	1.0	0.27	1		1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	10	0.68	1
Dibromochloromethane	ND	1.0	0.41	1		1,1,2-Trichloroethane	ND	1.0	0.49	1
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	1		Trichloroethene	ND	1.0	0.37	1
1,2-Dibromoethane	ND	1.0	0.49	1		Trichlorofluoromethane	ND	10	0.21	1
Dibromomethane	ND	1.0	0.57	1		1,2,3-Trichloropropane	ND	5.0	1.4	1
1,2-Dichlorobenzene	ND	1.0	0.33	1		1,2,4-Trimethylbenzene	ND	1.0	0.23	1
1,3-Dichlorobenzene	ND .	1.0	0.23	1		1,3,5-Trimethylbenzene	ND	1.0	0.18	1
1,4-Dichlorobenzene	ND	1.0	0.22	1		Vinyl Acetate	ND	10	3.7	1
Dichlorodifluoromethane	ND	1.0	0.89	1		Vinyl Chloride	ND	0.50	0.36	1
1,1-Dichloroethane	ND	1.0	0.27	1		p/m-Xylene	ND	1.0	0.54	1
1,2-Dichloroethane	ND	0.50	0.26	1		o-Xylene	ND	1.0	0.17	1
1.1-Dichloroethene	ND	1.0	0.29	1		Methyl-t-Butyl Ether (MTBE)	ND	1.0	0.26	1
c-1,2-Dichloroethene	ND	1.0	0.35	1		Tert-Butyl Alcohol (TBA)	ND	10	5.4	1
t-1,2-Dichloroethene	ND	1.0	0.38	1		Diisopropyl Ether (DIPE)	ND	2.0	0.33	1
1,2-Dichloropropane	ND	1.0	0.36	1		Ethyl-t-Butyl Ether (ETBE)	ND	2.0	0.18	1
1,3-Dichloropropane	ND	1.0	0.26	1		Tert-Amyl-Methyl Ether (TAME)	ND	2.0	1.1	1
2,2-Dichloropropane	ND	1.0	0.28	1		Ethanol	ND	100	86	1
1,1-Dichloropropene	ND	1.0	0.24	1		*				
Surrogates:	REC (%)	Control			Qual	Surrogates:	REC (%)	Control	<u>Limits</u>	Qua
Dibromofluoromethane	119	74-140				1.2-Dichloroethane-d4	110	74-146		
Toluene-d8	103	88-112				1,4-Bromofluorobenzene	93	74-110		

RL - Reporting Limit ,

DF - Dilution Factor ,

Lab Sample

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

01/05/08 08-01-0300

Work Order No:

J8-01-0300

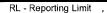
Preparation: Method:

EPA 5030B EPA 8260B

Units:

Date

ug/L


Project: 1285 Bancroft Ave., San Leandro, CA

Page 4 of 4

Date/Time

Date

Client Sample Number			Lab Sa Num		Date Collected	Matrix	Instrument	Date Prepared		Time yzed	QC Batch ID
Method Blank			099-10	-006-24,023	N/A	Aqueous	GC/MS T	01/08/08	01/0	up (1 to 1 t	080108L02
Comment(s): -Results were	evaluated to the	MDL, co	ncentrati	ons >= to the N	MDL but < RL,	if found, are	qualified wit	h a "J" flag.			The second secon
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF Qual	<u>Parameter</u>			Result	<u>RL</u>	MDL	DF Qual
Acetone	ND	50	6.3	1	c-1,3-Dichlo	ropropene		ND	0.50	0.31	1
Benzene	ND	0.50	0.14	1	t-1,3-Dichlo			ND	0.50	0.49	1
Bromobenzene	ND	1.0	0.27	1	Ethylbenzer			ND	1.0	0.23	1
Bromochloromethane	ND	1.0	0.70	1	2-Hexanone			ND	10	5.4	1
Bromodichloromethane	ND	1.0	0.24	1	Isopropylbei	nzene		ND	1.0	0.26	1
Bromoform	ND	1.0	0.66	1	p-Isopropylt	oluene		ND	1.0	0.31	1
Bromomethane	ND	10	5.1	1	Methylene C	Chloride		ND	10	4.3	1
2-Butanone	ND	10	6.7	1	4-Methyl-2-f	entanone		ND	10	3.7	1
n-Butylbenzene	ND	1.0	0.29	1	Naphthalene	e		ND	10	0.50	1
sec-Butylbenzene	ND	1.0	0.32	1	n-Propylben	zene		ND	1.0	0.12	1
tert-Butylbenzene	ND	1.0	0.33	1	Styrene			ND	1.0	0.29	1
Carbon Disulfide	ND	10	0.40	1	1,1,1,2-Tetr	achloroethar	ne	ND	1.0	0.34	1
Carbon Tetrachloride	ND ·	0.50	0.32	1	1,1,2,2-Tetr	achloroethar	ne	ND	1.0	0.30	1
Chlorobenzene	ND	1.0	0.14	1	Tetrachloro	ethene		ND	1.0	0.35	1
Chloroethane	ND	1.0	0.69	1	Toluene			ND	1.0	0.27	1
Chloroform	ND	1.0	0.24	1	1,2,3-Trichle	orobenzene		ND	1.0	0.43	1
Chloromethane	ND	10	0.63	1	1,2,4-Trichle	orobenzene		ND	1.0	0.33	1
2-Chlorotoluene	ND	1.0	0.18	1	1,1,1-Trichle	oroethane		ND	1.0	0.26	1
4-Chlorotoluene	ND	1.0	0.27	1	1,1,2-Trichle	oro-1,2,2-Tri	fluoroethane	ND	10	0.68	1
Dibromochloromethane	ND	1.0	0.41	1	1,1,2-Trichle	oroethane		ND	1.0	0.49	1
1,2-Dibromo-3-Chloropropane	ND	5.0	3.2	1	Trichloroeth	ene		ND	1.0	0.37	1
1,2-Dibromoethane	ND	1.0	0.49	, 1	Trichlorofluc	oromethane		ND	10	0.21	1
Dibromomethane	ND	1.0	0.57	1	1,2,3-Trichle	oropropane		ND	5.0	1.4	1
1,2-Dichlorobenzene	ND	1.0	0.33	1 .	1,2,4-Trime	thylbenzene		ND	1.0	0.23	1
1,3-Dichlorobenzene	ND	1.0	0.23	1	1,3,5-Trime	thylbenzene		ND	1.0	0.18	1
1,4-Dichlorobenzene	ND	1.0	0.22	1	Vinyl Acetat	ie .		ND	10	3.7	1
Dichlorodifluoromethane	ND	1.0	0.89	1	Vinyl Chlori	de		ND	0.50	0.36	1
1,1-Dichloroethane	ND	1.0	0.27	1	p/m-Xylene			ND	1.0	0.54	1
1,2-Dichloroethane	ND	0.50	0.26	1	o-Xylene			ND	1.0	0.17	1
1,1-Dichloroethene	ND	1.0	0.29	1	Methyl-t-Bu	tyl Ether (M	ГВЕ)	ND	1.0	0.26	1
c-1,2-Dichloroethene	ND	1.0	0.35	1	Tert-Butyl A	Icohol (TBA)	ND	10	5.4	1
t-1,2-Dichloroethene	ND	1.0	0.38	1	Diisopropyl	Ether (DIPE	.)	ND	2.0	0.33	1
1,2-Dichloropropane	ND	1.0	0.36	1	Ethyl-t-Buty	l Ether (ETE	BE)	ND	2.0	0.18	. 1
1,3-Dichloropropane	ND	1.0	0.26	1 1	Tert-Amyl-N			ND	2.0	1.1	1
2,2-Dichloropropane	ND	1.0	0.28	1	Ethanol			ND	100	86	1
1,1-Dichloropropene	ND	1.0	0.24	1							
Surrogates:	REC (%)	Control	Limits	Qual	Surrogates:			REC (%)	Control	<u>Limits</u>	<u>Qual</u>
Dibromofluoromethane	121	74-140			1,2-Dichlor	oethane-d4		112	74-146		
Toluene-d8	103	88-112			•	luorobenzen	е	91	74-110		

Quality Control - Spike/Spike Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 01/05/08 08-01-0300 EPA 5030B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-01-0295-1	Aqueous	GC 29	01/07/08		01/07/08	080107S01
Parameter	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	107	106	68-122	1	0-18	

MM MM_

Quality Control - Spike/Spike Duplicate

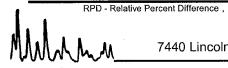
Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 01/05/08 08-01-0300 EPA 5030B EPA 8260B

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
08-01-0294-1	Aqueous	GC/MST	01/08/08		01/09/08	080108502
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	116	113	88-118	3	0-7	
Carbon Tetrachloride	110	102	67-145	8	0-11	
Chlorobenzene	113	112	88-118	1	0-7	
1,2-Dibromoethane	114	108	70-130	5	0-30	
1,2-Dichlorobenzene	110	109	86-116	1	0-8	
1,1-Dichloroethene	117	105	70-130	10	0-25	
Ethylbenzene	120	118	70-130	1	0-30	
Toluene	118	117	87-123	1	0-8	
Trichloroethene	108	105	79-127	2	0-10	
Vinyl Chloride	95	89	69-129	6	0-13	
Methyl-t-Butyl Ether (MTBE)	102	95	71-131	7	0-13	
Tert-Butyl Alcohol (TBA)	72	66	36-168	9	0-45	
Diisopropyl Ether (DIPE)	105	98	81-123	7	0-9	
Ethyl-t-Butyl Ether (ETBE)	102	96	72-126	7	0-12	
Tert-Amyl-Methyl Ether (TAME)	99	97	72-126	3	0-12	
Ethanol	87	75	53-149	14	0-31	

RPD - Relative Percent Difference ,

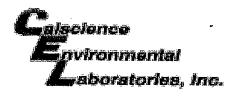
Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 08-01-0300 EPA 5030B EPA 8015B (M)


Quality Control Sample ID	Matrix	Instrume	Da ent Prep		Date Analyzed	LCS/LCSD Bat Number	ch
099-12-436-1,329	Aqueous GC 2		01/0	7/08	01/07/08	080107B01	The state of the s
<u>Parameter</u>	LCS %	REC L	CSD %REC	%REC (CL RPD	RPD CL	Qualifiers
TPH as Gasoline	106		106	78-120	1	0-10	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 08-01-0300 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Bate Number	ch
099-10-006-24,023	Aqueous	GC/MS T	01/08/08	01/09	9/08	080108L02	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %	REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	112	112		84-120	0	0-8	
Carbon Tetrachloride	101	102		63-147	2	0-10	
Chlorobenzene	114	115		89-119	1	0-7	
1,2-Dibromoethane	113	112		80-120	0	0-20	
1,2-Dichlorobenzene	109	109		89-119	1	0-9	
1,1-Dichloroethene	107	107		77-125	0	0-16	
Ethylbenzene	120	121		80-120	1	0-20	X
Toluene	117	116		83-125	0	0-9	
Trichloroethene	105	106	•	89-119	0	0-8	
Vinyl Chloride	86	88		63-135	2	0-13	
Methyl-t-Butyl Ether (MTBE)	97	95		82-118	2	0-13	
Tert-Butyl Alcohol (TBA)	71	70		46-154	2	0-32	
Diisopropyl Ether (DIPE)	98	97		81-123	1	0-11	
Ethyl-t-Butyl Ether (ETBE)	96	94		74-122	2	0-12	
Tert-Amyl-Methyl Ether (TAME)	100	96		76-124	4	0-10	
Ethanol	87	86		60-138	1	0-32	

Glossary of Terms and Qualifiers

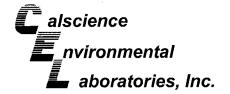


Work Order Number:

08-01-0300

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB: TA) ;	SH	EL	L	Ch	ıai	n (Of (Cu	sto	ody	y R	lec	or	d				((25	500)
TA - Morgan Hill, California	NAME OF PERS	ON TO	BILL:	Denis I	Brown			•										in	ICIDI	ENT a	# (ES	ONI	Y)		1	
TA - Sacramenta, California	ENVIRONMENTAL SE	RVICES		•			□сн	ECK BO	י סד גכ	VERIF	Y IF NO	O INCI	DENT#	APPLI	ES		9	8	9	9	6	0	6	7	7,	Date:
TA - Nashville, Tennesee	NETWORK DEV / PE			CONSULTA	NT						PO						1		•	P or		<u> </u>	1 0		7	
☑ Calscience ☐ Other	[0.00000000000000000000000000000000000	.]	Last to	entragentituse et assas entragentitus				т —	Τ	_	1	#	1	_			_	·	JA	r oi		T	1	т -	- F	PAGE: of
	COMPLIANCE		RMO	/CRMT							.]			Ĺ												
SAMPLING COMPANY:		LOG CODE:				1			treet ar				•				State				AL IO N					
Conestoga-Rovers & Asset	ociates (CRA)	CRAW			· · · · · · · · · · · · · · · · · · ·	12	85 E	Bane TO	Crof	Compa	ve,	San	Lea	and	PHONE	E NO.:	CA			T060	0101	224				CONSULTANT PROJECT NO.:
5900 Hollis St, Suite A, En	neryville, CA 94608								(1.14	,	,															
PROJECT CONTACT (Hardcopy or PDF R	Seport to):	15	12/11/	N - 22	ia	Ball	ard,	Felici	ia, CF	RA, S	onor	na			707	933 2	2360	<u> </u>		sono	тае	df@c	rawo	rld.co		240504-008 E ONLY
Ana Friel / CT CA	- SCHARPER	E-MAIL: P	SCHALL	120/	PALHOPLE	.00						_														-01-0300
707 268 3812	FAX: (510) 420- 707 268 8180 5170	afriel@	craworld.	com		<u>e</u>		en l	Rod	rig t	le z	f	£	er		5دبر	4 42 4	<u> </u>	MZ					1.0	<u> 8</u>	-01-0500
TAT (STD IS 10 BUSINESS DAT	YS / RUSH IS CALENDAR D	DAYS):	☐ F	ESULTS NE	EDED											R	EQUE	ESTF	D A	NAL'	YSIS					
☑ STD ☐ S DAY ☐ 31	DAY L 2 DAY L 2	4 HOURS		ON WEEKE	ND				,	, -	.,		,	7		,			• •			,				
LA - RWQCB REPORT FORMA	T UST AGENCY: _																									
SPECIAL INSTRUCTIONS OR NO	OTES:	EDD NOT				1							99					69		Zn, Ni	2			9		FIELD NOTES:
,				TE APPLIES	5		€				يُ ا	1 1 1 1 1	s 82		e e	<u>B</u>		(82		, Zn	Creosote 8270	90.1)		ache		Container/Preservative
			IMB RATE	APPLIES ON REQUES		8	3015					4 0	poq		260	8260		enta		Cr, Pb,	oso	3 (16		e att		or PID Readings
	Ľ	RECEIPT 1	VERIFICATI	ON REQUES	SIED	(82	<u> </u>				60B)	196	rcar		9 ei	ge		Solv		Cd, C		olid		(se		or Laboratory Notes
						able	ctab				8 (82		y do	1082	thar	E O	<u>6</u>	ted		S	NAs	Spa	108	osa		· [
						Purgeable (8260 B)	Extractable (8015M)	80B	909;	1	late o	ese	led ted	ည္မ	ļ ē	₽ E	826(rina		Metals	<u>a</u>	Fotal Desolved Solids (160.1)	9	Oisp		
No partial lab reports, send final	PDF report only.			·	,	<u>а</u>	. E	88	E (8)	1836	yger	5	rinat	- 3	ich	ene	9	Chlo		17	2	De.	2	for		TEMPERATURE ON RECEIPT C°
USE Field Sample	Identification	DATE	PLING	MATRIX	NO. OF	표	TPHd.	BTEX (8260B)	MTBE (8260B)	Į į	5 Oxygenates (8260B)	Oil & Greese EPA 9070	Chlorinated hydorcarbons 8260	EDB & EDC 8082	1,2-dichloroethane (8260B)	Ethylene dibromide (8260B)	Ethanol (8260B)	Full Chlorinated Solvents (8260)		Cam 17	PCB, PCP, PNAs	Tota	Total Iron (6010B)	Test for Disposal (see attached)		TEMPERATURE ON NECEIP 1 C
ONLY	<u> </u>	 	 		1.	Х		X	-	Η.	X	Ť	Ť	_	<u>``</u>	_	-	×					Ϋ́	Ė		
1 CPT-1-4		1/3/00		W	(0		_	 		├-	+	-	-	_										-	-	
2 CPT-1-5 3 CPT-1-3	6-60	1/3/08	1135	W	6	×		X			×							メ							<u> </u>	
3 CRT-1-3	78-82	43/08	1255	W	6	×		×			14							X							ľ	
, , , ,		1 - 700	1-,5							T	_															
					 				<u> </u>	1-	┼─	┢	-				\vdash		\dashv						-	-
							<u>L</u> .			<u> </u>		ļ							_					_	<u> </u>	
										İ	İ	ł							ı							
						Г					1															
						<u> </u>	ļ			-	+-	├	 	\vdash			H		\dashv		\dashv				\vdash	
									<u> </u>	L	_	<u> </u>						ļ	_						<u></u>	
				-							}											į				02
		_				 	\vdash			\vdash	+-	\vdash							\dashv	一					t	86-97
B.F. school by (Circuit)	· · · · · · · · · · · · · · · · · · ·	L	L	Received h	y: (Signature)				<u> </u>	L.,.		<u> </u>				L	L		Date:	$\overline{/}$				<u> </u>	Time	080 Graphic (7.1) 888-5702
Relinguished by: (Signature)	0				y. (Signature)		12	\ c #	471	5×	J								1)	3/	Ð	8			1	1530
Relinquished by: Signature)		0			y: (Signature)		H	14	_	_								1	Date:	7.1					Time	e: or or or or or or or or or or or or or
Coulde	i m	-		Received h	y: (Signature)		10	K)											Date:	1 .	08	1.	<u>C</u>		Time	KK S
Relinquished by: (Signature)	2-12 (7	SD		. vocesved by	Da	ИИ	61	0		\subseteq	Œ	し)							l	/0	55/	0	5			
``	~~~~~						~																			05/02/06 Revision



WORK ORDER #: 08 - 0 7 - 0 3 0 0

Cooler _ / of _ /

SAMPLE RECEIPT FORM

CLIENT: Conestoga-Rovers	DATE: 1/05/08									
TEMPERATURE - SAMPLES RECEIVED BY:										
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature.	LABORATORY (Other than Calscience Courier): C Temperature blank. C IR thermometer. Ambient temperature.									
°C Temperature blank.	Initial:									
CUSTODY SEAL INTACT:										
Sample(s): Cooler: No (Not In	ntact) : Not Present: Initial:									
SAMPLE CONDITION:										
Chain-Of-Custody document(s) received with samples										
COMMENTS:										

November 30, 2007

Ana Friel Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Subject:

Calscience Work Order No.:

Client Reference:

07-11-1440

1285 Bancroft Ave., San Leandro, CA

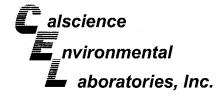
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/17/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Calscience Environmental

Danille Jane

Laboratories, Inc.

Danielle Gonsman

Project Manager

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230

Sonoma, CA 95476-6955

Date Received:

11/17/07

Work Order No:

ND

ND

ND

0.750

0.250

1.00

07-11-1440

Preparation:

EPA 3050B / EPA 7471A Total

Method:

EPA 6010B / EPA 7471A

Units:

mg/kg

Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of

Project: 128	35 Bancroft Ave	., San Lean	dro, CA						Pag	ge 1 of	<u>1</u>
Client Sample Nu	mber		Lab Sample Number		Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batc	h ID
D-6		1451	07-11-1440-1		11/14/07	Solid	ICP 5300	11/20/07	11/20/07	071120L	01
Comment(s):	-Mercury was analyze	ed on 11/20/2007	5:33:43 PM with	batch 0	71120L03						
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Result	<u>RL</u>		<u>DF</u>	Qual
Antimony	ND	0.750	1		Mercury		0.151	0.083	55	1	
Arsenic	4.55	0.750	1		Molybdenum		ND	0.250)	1	
Barium	1110	0.500	1		Nickel		72.8	0.250		1	
Beryllium	0.413	0.250	1		Selenium		ND ·	0.750		1	
Cadmium	ND	0.500	1		Silver		ND	0.250		1	
Chromium	38.1	0.250	1		Thallium		ND	0.750		1	
Cobalt	21.3	0.250	1		Vanadium		43.6	0.250)	1	
Copper	165	0.500	1		Zinc		85.3	1.00		1	
Lead	29.4	0.500	11								
Method Blank			099-04-007-5	5,132	N/A	Solid:	Mercury	11/20/07	11/20/07	071120L	.03
Parameter Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>							
Mercury	ND	0.0835	1								
Method Blank			097-01-002-1	10,102	N/A	Solid	ICP 5300	11/20/07	11/20/07	071120L	.01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qual</u>
Antimony	ND	0.750	1		Lead		ND	0.50)	1	
Arsenic	ND	0.750	1		Molybdenum	1	ND	0.25	0	1	
Barium	ND	0.500	1		Nickel		ND	0.25	0	1	
Beryllium	ND	0.250	1		Selenium		ND	0.75		1	
Cadmium	ND	0.500	1		Silver		ND	0.25	0	1	
								0.75	^		

Thallium

Zinc

Vanadium

RL - Reporting Limit ,

ND

ND

ND

DF - Dilution Factor

0.250

0.250

0.500

Qual - Qualifiers

1

Chromium

Cobalt

Copper

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 T22.11.5.AII EPA 6010B

Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Number		Lab Sample Number 07-11-1440-1	Date Collected	Matrix Solid	Instrument	Date Prepared	Date Analyzed	QC Batch ID 071126L06A
D-6		07-11-1440-1	11/14/07	- 30llu	ICF 3300	11/24/01	11127101	OTTIZOLOGA
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Barium	401	0.100	1		mg/L			
Method Blank		097-05-006-3,828	N/A	Solid	ICP 5300	11/24/07	11/27/07	071126L06A
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Barium	ND	0.100	1		mg/L			

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 EPA 3550B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-6		07-11-1440-1	11/14/07	Solid	GC 23	11/21/07	11/22/07	071121B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	1400	500	20		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	67	61-145						
Method Blank		099-12-254-334	N/A	Solid	GC 23	11/21/07	11/21/07	071121B07
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	111	61-145						

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No:

07-11-1440 EPA 3550B

11/17/07

Method:

Preparation:

EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Numb	er		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-6		1111	07-11-1440-1	11/14/07	Solid	GC 23	11/21/07	11/22/07	071121B06
Comment(s):	-The sample chromatogr of the unknown hydrocar						specified st	andard. Qu	antitation
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Diesel		270	100	20		mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		67	61-145						

Method Blank		099-12-275-1,193	N/A	Solid	GC 23 11/21/07	11/21/07 071121B06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	
TPH as Diesel	ND	5.0	1		mg/kg	
Surrogates:	REC (%)	Control Limits		Qual	•	
Decachlorobiphenyl	111	61-145				

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-6		07-11-1440-1	11/14/07	Solid	GC 18	11/19/07	11/19/07	071119B01
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	91	42-126						
Method Blank		099-12-279-1,318	N/A	Solid	GC 18	11/19/07	11/19/07	071119B01
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	Units			
TPH as Gasoline	ND	0.50	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	103	42-126						



Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 DHS LUFT DHS LUFT

Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-6		07-11-1440-1	11/14/07	Solid -	FLAA	11/29/07	11/29/07	071129L05
Parameter	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Organic Lead	ND	1.00	1		mg/kg			
Method Blank		099-10-020-776	N/A	Solid	FLAA	11/29/07	11/29/07	071129L05
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Organic Lead	ND	1.00	1		mg/kg			

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: Units: 11/17/07 07-11-1440 EPA 5030B

EPA 8260B mg/kg

Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Number				b Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyze	_j Q	C Batch ID
D-6	1551	Hai	07-11-1	440-1	11/14/07	Solid	GC/MS X	11/19/07	11/19/0	' 0	71119L01
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.0050	1		Methyl-t-Butyl E	Ether (MTB	E)	ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
Toluene	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
p/m-Xylene	ND	0.0050	1		Ethyl-t-Butyl Et	her (ETBE)	•	ND	0.010	1	
o-Xylene	ND	0.0050	1		Tert-Amyl-Meth	nyl Ether (T	,	ND	0.010	1	
Surrogates:	<u>REC (%)</u>	Control		Qual	Surrogates:			REC (%)	<u>Control</u>		Qual
		<u>Limits</u>							<u>Limits</u>		
Dibromofluoromethane	102	73-139			1,2-Dichloroeth			104	73-145		
Toluene-d8	97	90-108	Andrew State (State (Street Street)	ACCIPE PERSONNEL CONTROL	1,4-Bromofluor	obenzene	~~~~	96	71-113		
Method Blank	5.5		099-10	-005-15,1	IO N/A	Solid	GC/MS X	11/19/07	11/19/0	7 0	71119L01
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Methyl-t-Butyl 1	Ether (MTB	E)	ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		Tert-Butyl Alco	hol (TBA)		ND	0.050	1	
Toluene	ND	0.0050	1		Diisopropyl Eth	er (DIPE)		ND	0.010	1	
p/m-Xylene	ND	0.0050	1		Ethyl-t-Butyl Et	ther (ETBE)	ND	0.010	1	
o-Xylene	ND	0.0050	1		Tert-Amyl-Metl	nyl Ether (T	AME)	ND	0.010	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	100	73-139			1,2-Dichloroeth	nane-d4		103	73-145		
Toluene-d8	98	90-108			1,4-Bromofluor	obenzene		95	71-113		

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

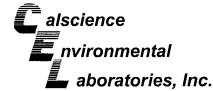
Date Received: Work Order No: Preparation: Method:

11/17/07 07-11-1440 **EPA 3050B EPA 6010B**

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date nalyzed	MS/MSD Batch Number	
07-11-1532-7	Solid	ICP 5300	11/20/07	1	1/20/07	071120S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Antimony	32	31	50-115	2	0-20	3	
Arsenic	102	100	75-125	2	0-20		
Barium	9	4	75-125	2	0-20	3	
Beryllium	103	100	75-125	3	0-20		
Cadmium	104	101	75-125	2	0-20		
Chromium	106	100	75-125	4	0-20		
Cobalt	105	102	75-125	2	0-20		
Copper	96	93	75-125	2	0-20		
Lead	104	99	75-125	4	0-20		
Molybdenum	98	95	75-125	4	0-20		
Nickel	105	101	75-125	2	0-20		
Selenium	85	83	75-125	1	0-20		
Silver	99	97	75-125	2	0-20		
Thallium	97	94	75-125	3	0-20		
Vanadium	102	97	75-125	3	0-20		
Zinc	66	61	75-125	3	0-20	3	

RPD - Relative Percent Difference,



Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 T22.11.5.All EPA 6010B

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
07-11-1518-1	Solid	ICP 5300	11/20/07		11/27/07	071126S06
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Barium	94	105	75-125	7	0-20	

RPD - Relative Percent Difference ,

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 EPA 3550B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-1431-7	Solid	GC 23	11/26/07		11/27/07	071121807
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	79	81	64-130	2	0-15	

AMAMA_

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 EPA 3550B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
07-11-1429-5	Solid	GC 23	11/21/07		11/21/07	071121806
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	99	103	64-130	4	0-15	

RPD - Relative Percent Difference ,

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 EPA 5030B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-1339-2	Solid	GC 18	11/19/07	N. S.	11/19/07	071119801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	74	83	48-114	10	0-23	

All Marie Ma

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 DHS LUFT DHS LUFT

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
07-11-1431-6	Solid	FLAA	11/29/07	1 1	11/29/07	071129S05
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Organic Lead	57	58	22-148	2	0-18	

AMAM_

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 EPA 7471A Total EPA 7471A

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
07-11-1515-4	Solid	Mercury	11/20/07		11/20/07	071120S03
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Mercury	103	104	84-138	1	0-7	

RPD - Relative Percent Difference ,

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1440 EPA 5030B EPA 8260B

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
D-6.	Solid	GC/MS X	11/19/07		11/19/07	071119S01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	83	82	79-115	2	0-13	
Carbon Tetrachloride	68	68	55-139	1	0-15	
Chlorobenzene	73	68	79-115	7	0-17	3
1,2-Dibromoethane	81	79	70-130	2	0-30	
1,2-Dichlorobenzene	55	52	63-123	6	0-23	3
1,1-Dichloroethene	85	82	69-123	4	0-16	
Ethylbenzene	74	68	70-130	8	0-30	3
Toluene	79	76	79-115	4	0-15	3
Trichloroethene	79	74	66-144	7	0-14	
Vinyl Chloride	74	71	60-126	4	0-14	
Methyl-t-Butyl Ether (MTBE)	90	87	68-128	3	0-14	
Tert-Butyl Alcohol (TBA)	79	83	44-134	4	0-37	
Diisopropyl Ether (DIPE)	92	89	75-123	2	0-12	
Ethyl-t-Butyl Ether (ETBE)	92	89	75-117	3	0-12	
Tert-Amyl-Methyl Ether (TAME)	92	91	79-115	2	0-12	
Ethanol	96	81	42-138	18	0-28	

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 07-11-1440 EPA 3050B EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	d	LCS/LCSD Bate Number	h
097-01-002-10,102	Solid	ICP 5300	11/20/07	11/20/07		071120L01	11111
				.,			
<u>Parameter</u>	LCS %RE	C LCSD %F	REC %RE	C CL	RPD	RPD CL	Qualifiers
Antimony	102	102	80-	-120	0	0-20	
Arsenic	96	95	80-	-120	1	0-20	
Barium	99	102	80-	-120	3	0-20	
Beryllium	93	94	80-	-120	1	0-20	
Cadmium	99	100	80-	-120	1	0-20	
Chromium	99	102	80-	-120	3	0-20	
Cobalt	100	100	80	-120	0	0-20	
Copper	93	90	80	-120	3	0-20	
Lead	100	101	80	-120	1	0-20	
Molybdenum	99	99	80	-120	0	0-20	
Nickel	104	103	80	-120	1	0-20	
Selenium	91	91	80	-120	1	0-20	
Silver	95	93	80	-120	2	0-20	
Thallium	97	96	80	-120	1	0-20	
Vanadium	95	96	80	-120	0	0-20	
Zinc	102	105	80	-120	4	0-20	

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 07-11-1440 T22.11.5.All EPA 6010B

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba Number	tch
097-05-006-3,828	Solid	ICP 5300	11/24/07	11/27/07	071126L06A	
Parameter	LCS %	REC LCSD	%REC %R	EC CL RP	<u>D</u> <u>RPD CL</u>	Qualifiers
Barium	99	98	8	0-120 1	0-20	

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955

Date Received: Work Order No: Preparation: Method:

N/A 07-11-1440 **EPA 3550B** EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-254-334	Solid	GC 23	11/21/07	11/22/07	071121B07	
<u>Parameter</u>	LCS %RE	EC LCSD %	<u> </u>	EC CL RF	PD RPD CL	Qualifiers
TPH as Motor Oil	76	83	79	5-123 9	0-12	

RPD - Relative Percent Difference,

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 07-11-1440 EPA 3550B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		S/LCSD Batcl Number	h
099-12-275-1,193	Solid	GC 23	11/21/07	11/21/07		071121B06	
Parameter	LCS %RE	EC LCSD %	REC %F	REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	107	116	7	75-123	8	0-12	

RPD - Relative Percent Difference ,

7440 Lincoln

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 07-11-1440 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba Number	tch
099-12-279-1;318	Solld	GC 18	11/19/07	11/19/07	071119B01	Mary Mary Daves
<u>Parameter</u>	LCS %	REC LCSD	<u>%REC</u>	REC CL RE	PD RPD CL	Qualifiers
TPH as Gasoline	94	99	7	'0-124	0-18	

RPD - Relative Percent Difference ,

7440 Lincoln

alscience nvironm

nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 07-11-1440 DHS LUFT DHS LUFT

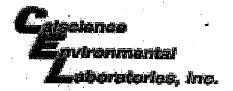
Quality Control Sample ID	Matrix	Instrument	Date Analyze	d Lab File	ID L	CS Batch Number
099-10-020-776	Solid	FLAA	11/29/07	NONE		071129L05
<u>Parameter</u>	Co	nc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Organic Lead		12.5	12.4	99	72-126	

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 07-11-1440 EPA 7471A Total EPA 7471A

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	-	.CS/LCSD Batcl Number)
099-04-007-5,132	Solid	Mercury	11/20/07	11/20/07	1.11	071120L03	4
<u>Parameter</u>	LCS %RE	EC LCSD	%REC %R	REC CL	<u>RPD</u>	RPD CL	Qualifiers
Mercury	100	100) 8	37-117	1	0-3	

Conestoga-Rovers & Associates 19449 Riverside Drive, Suite 230 Sonoma, CA 95476-6955 Date Received: Work Order No: Preparation: Method: N/A 07-11-1440 EPA 5030B EPA 8260B

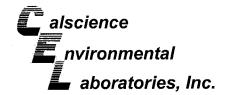
Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Batc Number	h
099-10-005-15,110	Solid	GC/MS X	11/19/07	11/19/)7	071119L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %R	EC CL	RPD	RPD CL	Qualifiers
Benzene	89	88	8	4-114	2	0-7	
Carbon Tetrachloride	84	85	6	6-132	1	0-12	
Chlorobenzene	89	89	8	7-111	0	0-7	
1,2-Dibromoethane	87	90	8	0-120	3	0-20	
1,2-Dichlorobenzene	87	88	7	9-115	1	0-8	
1,1-Dichloroethene	96	91	7	3-121	5	0-12	
Ethylbenzene	93	93	8	0-120	0	0-20	
Toluene	90	89	7	8-114	2	0-7	
Trichloroethene	88	87	8	4-114	1	0-8	
Vinyl Chloride	79	78	6	3-129	1	0-15	
Methyl-t-Butyl Ether (MTBE)	83	87	7	7-125	4	0-11	
Tert-Butyl Alcohol (TBA)	78	93	4	7-137	17	0-27	
Diisopropyl Ether (DIPE)	89	. 89	7	6-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	85	89	7	6-124	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	87	90	8	2-118	4	0-11	
Ethanol	83	97	5	9-131	16	0-21	


Glossary of Terms and Qualifiers

Work Order Number: 07-11-1440

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Η,	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

The Margar Pin, California The Margarania Th	LAB:					1	SH	EL	L	Ch	air	n C	of (Cus	sto	dy	R	ec	or	d									3
The Secretary Confidence	TA - Irvine, California	NAME OF PER	SON TO	BILL	Bill Me					_						-					ENT :	# (ES	ONL	Y)					
Commonstage Reviews & Associates Cartifold State Cartifold S		<u></u>			Dill Wo	Oriant		П ~	FCK B		/E01E	V 75 AV	n thirt	DENT :	# ADDI	TEC					_		Ī	T	Ι.,	1	1	n Janea	
Commonstage Reviews & Associates Cartifold State Cartifold S	TA - Nashville, Tennesee	ENVIRONMENTAL		<u> </u>				LLI CH	ECK BO	יטו אכ	VERIF	Y II- N	O INCI	DENI :	# APPL	152		9	8	9	9	6	U	6	7	D	ATE:	1/14/01	7'
Company Comp	☑ Calscience	☐ NETWORK DEV / F	E	☐ BILL	CONSULTA	NT				***	von madele v	PO#	#					: : :		SA	P or	CRM	T#		:	1		1 of	1
TO PERFORM Strong, Sonoma, CA, 96476 TO PERFORM Strong, Sonoma, CA, 96476 TO PERFORM Strong, Sonoma, CA, 96476 TO PERFORM Strong, Sonoma, CA, 96476 TO REAL CONTROL PLANT STRONG STR	Other	COMPLIANCE		☐ RMT	/CRMT				Γ	100 100 100 100 100 100 100 100 100 100		T	Ī					10000	1	A	٩		1	•	1	ן ר	AGE	_' "	_'
TO PERKINS Street, Sonoma, CA, 95476 RICHER CONTROL (PARTING AT PROPERTY) FEBRUARS STREET, SONOMA, CA, 95476 RICHER CONTROL (PARTING AT PROPERTY) FEBRUARS STREET, SONOMA, CA, 95476 FEBRUARS STREET, SONOMA,	SAMPLING COMPANY:		LOG CODE	:			SITE	ADDR	ESS: S	treet an	d City					<u> </u>		State	-		GLO	BAL ID N	10.:			-			
TO PERKINS Street, Sonoma, CA, 95476 RICHER CONTROL (PARTING AT PROPERTY) FEBRUARS STREET, SONOMA, CA, 95476 RICHER CONTROL (PARTING AT PROPERTY) FEBRUARS STREET, SONOMA, CA, 95476 FEBRUARS STREET, SONOMA,	Conestoga-Rovers & As	ssociates	CETS				12	85 E	Bane	crof	t A	veni	ue.	San	Le	and	ro		CA	1285	то	600	101	1224	1				
Fields Ballard Fine Fine Fine Fine Fine Fine Fine Fine	ADDRESS:				<u>-</u>																				_			CONSULTANT PROJE	ECT NO.:
TO 728 3 1810 TO 728						-	l									707	02E /	IOEO					46Q-		rld o			040504 000	
TAY SEE SEED TO 288 8180 SEED SEED SEED SEED SEED SEED SEED SEE		F Report to):							allar	a						707	935 4	1000			SON	mae	uiœc	lawo			ONLY	240504-008	
TAY (STOIL ST DE SINGESS DAY FINDER IS CALENARD DAYS) STO 5 DAY 3 DAY 2 DAY 2 HOURS ON WEEKEND STOIL STATE TOWN TO I SHOW SHOW IN THE STRUCTIONS OR NOTES: STOIL STATE TOWN TO I SHOW I S		FAX:	E-MAIL:				-	_																				11110	
REQUESTED ANALYSIS LA - RIVINGER REPORT FORMAT UST AGENCY: LED NOT NEEDED USAGE REPORT FORMAT UST AGENCY: LED NOT NEEDED USAGE REPORT FORMAT UST AGENCY: LED NOT NEEDED USAGE REPORT FORMAT UST AGENCY: LED NOT NEEDED USAGE REPORT FORMAT UST AGENCY: LED NOT NEEDED USAGE REPORT FORMAT USAGE REPORT	707 268 3812	i i	1 '	craworld.	<u>com</u>			Co	m	en		Doe	dvi.	n Ur	07											11	-1	990	sancar aust
LA - RWOGE REPORT FORMAT UST AGENCY. COLOR NOT NEEDED STARL LONTROCT RATE APPLIES CONTINUENCE PORT OF PID Readings or Laboratory Notes Containing Trees and Start Long and Continuence Port Research Por	TAT (STD IS 10 BUSINESS D	AYS / RUSH IS CALENDAR	DAYS):		RESULTS NE	EDED							i	/	-			OUE	CTI	-D A	MAI	Veid	, -						
FIELD NOTES: DED NOT NEEDED SHELL CONTINUE REPORT PRINTED REPORTS FOR PRINTED REP	☑ STD ☐ 5 DAY ☐	3 DAY 2 DAY	24 HOURS		ON WEEKE	ND	L	,_			,						K	QUE	:016	U A	NAL	131	,	т	,				
SHELL CORMECT RATE PAPELS STATE REDIES AFTE REDIES AFTE REDIES RECEIPT VERIFICATION REQUESTED RECEIPT VERIFICATION REQUESTE	☐ LA - RWQCB REPORT FOR	UMAT UST AGENCY:								1															_				
SHELL CONTRACT FATE PAPERS STATE REPRES ATE PAPELS STATE REPRES A	SPECIAL INSTRUCTIONS OR	NOTES:	EDD NOT	NEEDED			1					1											뒫	2	뒫	8		FIELD NOTE	S:
C: Tobias Schroeder at tschroeder@craworld.com; Phil Sellers at psellers@craworld.com Phil Sellers at psellers@craworld.com SAMPLING DATE TIME MATRX NO.0F AND MATRX NO.0F						5	1	 _			<u> </u>														_	s(82	C	ontainer/Preserva	ative
C: Tobias Schroeder at tschroeder@craworld.com; Phil Sellers at psellers@craworld.com Phil Sellers at psellers@craworld.com SAMPLING DATE TIME MATRX NO.0F AND MATRX NO.0F		_						15M)													ပ္ပ	ျဉ္		Ę,	vent			
C: Tobias Schroeder at tschroeder@craworld.com; Phil Sellers at psellers@craworld.com Phil Sellers at psellers@craworld.com SAMPLING DATE TIME MATRX NO.0F CONT. 144 E 18 8 98 99 94 00 00 00 00 00 00 00 00 00 00 00 00 00		Ł	✓ RECEIPT	VERIFICAT	ON REQUE	STED	1	8	3260	ŀ	(a) 4											827						or Laboratory Not	tes
Field Sample Identification DATE TIME DATE TIME DATE TIME ANTIX NO.0F H H H H H H H H H H H H H H H H H H H	cc: Tobias Schroeder	r at tschroeder@cra	world.co	om;			€) je (8		826						6		a	(W)	æ	s by	ı		ot a	ated			
Field Sample Identification DATE TIME DATE TIME DATE TIME ANTIX NO.0F H H H H H H H H H H H H H H H H H H H		· ·		·			1 6	a S	eap	8	tes o	9	a	6	80	0B)	260	<u>@</u>	260	801	1260	tiles	1			틸	ł		
Field Sample Identification DATE TIME DATE TIME DATE TIME ANTIX NO.0F H H H H H H H H H H H H H H H H H H H	Phil :	Sellers at psellers@	ncraworl	d.com			🖁	X X	g n	826	ena Ta	88	260	3260	(82e	826	A (8	260	8	lou (by 8	/ola	103	1		្នុ			
D-6 My NATE S-1 2 X X X X Date	78.70%		SAM	PLING	MATRIX	NO. OF	Ħ Ħ	H.	F.	TEX (Oxyg	MTBE	BA (8) HE	TAIME	TBE	,2 DC	8) BCE	than	Wethai	/ocs	Seml-\	read	UFTS	CAMI	Full Lis	TEMPER	ATURE ON RECEIF	PT C [®]
Secured by (Signature) Companied by (Signat					C .3	1						1=	 	_		_	Ì		_	_				-	X	_			
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:	<u> </u>		774	10.00	Jan 1	-3	-	7	Ļ	<u> </u>	<u> </u>	├—	 							_				-	<u> </u>	-		· · · · · · · · · · · · · · · · · · ·	
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:							l	1			İ		1					1											
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:				1								П																	
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:			_				╂—	├		<u> </u>	-	┼	├					-						-	├	 			
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:								1					L															····	
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:							Г																						
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:				-			 					 -	 				-												
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:			 -			-	┢	 		-	-	┼						-						_					
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:			-				<u> </u>	_					_									_		<u> </u>		_			···
Received by: (Signature) Can Nothing Received by: (Signature) Con Nothing Received by: (Signature) Con Nothing Received by: (Signature) Date: Time: Date: Time: Date: Time:							<u> </u>																						
Colinguis ded by: (Signature) Received by: (Signature) Colinguis (ed by: (Signature) Colin																						1							
Colinguis ded by: (Signature) Received by: (Signature) Colinguis (ed by: (Signature) Colin	* \$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																												
Colinguis ded by: (Signature) Received by: (Signature) Colinguis (ed by: (Signature) Colin	Relinquished by: (Signature)		<u> </u>	<u> </u>	Received by	r: (Signature			L			$\overline{}$	_											_	<u> </u>	Time	. (^	$\overline{}$	
Colinquis(ed by: (Signature) AU (WWW) Date: Time: Time: Time:	h	li arina			\ /	1	X	-		$\overline{}$,		E	ンし	_				ł	1	1-1	5-7	07				140	\mathcal{O}	
Alulum full	Rolinguis led by: (Signature)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i	Received b	(Signature)	1_	7	<u> </u>																Time	:		
Winduighood Dy: (Signature)	Klyamin	MWV	<u></u>		T (20EE	61.F	-6	1	٥۔ر	C	77	41	N						Date		,-		,		Time			
	Relinquished by: (Signature)	5 TI 651)		received by	r. (Signature	ı		Ш					-		1	E			/	11/	17	//	27	>		10		
05/02/08 Revision		<u></u>							74												7		/				05/02/0	6 Revision	



WORK ORDER #: **07** - // // - // 4 4 0

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT: CRA	DATE: ///17/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet ice. Ambient temperature. C Temperature blank.	C Temperature blank. C IR thermometer. Ambient temperature.
CUSTODY SEAL INTACT: Sample(s): Cooler: No (Not i	ntact) : Not Present: Initial:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	

November 30, 2007

Ana Friel Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

07-11-1431

1285 Bancroft Ave., San Leandro, CA

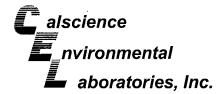
Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 11/17/2007 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,


Calscience Environmental

Danille Jane

Laboratories, Inc.

Danielle Gonsman

Project Manager

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

11/17/07

Work Order No:

07-11-1431

Preparation:

EPA 3050B / EPA 7471A Total

Method:

EPA 6010B / EPA 7471A

Units:

mg/kg

Project: 1285 Bancroft Ave., San Leandro, CA

Page 1 of 1

Client Sample Nu	ımber		Lab Sample Number		Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch	ı ID
D-B			07-11-1431-	6	11/16/07	Solid	ICP 5300	11/20/07	11/20/07	071120L0)1
Comment(s):	-Mercury was analyze	ed on 11/20/2007	5:38:12 PM with	batch 0	71120L01						
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	Qual
Antimony	ND	0.750	1		Mercury		ND	0.08	35	1	
Arsenic	3.48	0.750	1		Molybdenum		1.40	0.25	0	1	
Barium	208	0.500	1		Nickel		2.91	0.25	0	1	
Beryllium	1.19	0.250	1		Selenium		ND	0.75	0	1	
Cadmium	ND	0.500	1		Silver		ND	0.25	0	1	
Chromium	0.574	0.250	1		Thallium		ND	0.75	0	1	
Cobalt	1.53	0.250	1		Vanadium		3.33	0.25	0	1	
Copper	2.29	0.500	1		Zinc		33.6	1.00		1	
Lead	23.3	0.500	1								
D-A			07-11-1431-	7	11/16/07	Solid	ICP 5300	11/20/07	11/20/07	071120L	01
Comment(s):	-Mercury was analyze	ed on 11/20/2007	5:40:24 PM with	n þatch (71120L01						
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Result	RL		DF	<u>Qual</u>
Antimony	ND	0.750	1		Mercury		ND	0.08	35	1	
Arsenic	1.37	0.750	1		Molybdenum		ND	0.25	0	1	
Barium	147	0.500	1		Nickel		50.6	0.25	0	1	
Beryllium	0.495	0.250	1		Selenium		ND	0.75	0	1	
Cadmium	ND	0.500	1		Silver		ND	0.25	0	1	
Chromium	36.5	0.250	1		Thallium		ND	0.75	0	1	
Cobalt	10.5	0.250	1		Vanadium		28.1	0.25	0	1	
Copper	19.8	0.500	1		Zinc		44.7	1.00)	1	
Lead	8.91	0.500	1						•		
Method Blank			099-04-007-	5,130	N/A	Solid	Mercury	11/20/07	11/20/07	071120L	01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>							
Mercury	ND	0.0835	1		trons a recommendad de la commencia de la comm	a. Convention of the Conventio		AND AND AND AND AND AND AND AND AND AND	School Section (ACASSES) IN SEC.	nettenetiosolilaete	CONTROL OF THE STREET
Method Blank			097-01-002	10,102	N/A	Solid	ICP 5300	11/20/07	11/20/07	071120L	01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		Result	RL		<u>DF</u>	<u>Qual</u>
Antimony	ND	0.750	1		Lead		ND	0.50		1	
Arsenic	ND	0.750	1		Molybdenum	l	ND	0.25		1	
Barium	ND	0.500	1		Nickel		ND	0.25		1	
Beryllium	ND	0.250	1		Selenium		ND	0.75		1	
Cadmium	ND	0.500	1		Silver		ND	0.25		1	
Chromium	ND	0.250	1		Thallium		ND	0.75		1	
Cobalt	ND	0.250	1		Vanadium		ND	0.2		1	
Copper	ND	0.500	1		Zinc		ND	1.00)	1	
	ND ND	0.250	1				ND	1.00		1	

RL - Reporting Limit ,

DF - Dilution Factor

Qual - Qualifiers

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

11/17/07 07-11-1431 **EPA 3550B** EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

1 Tojoot. 1200 Ballolott /	Wo., Our Louridi	0, 0, 1						490 1 01 1
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-B		07-11-1431-6	11/16/07	Solid	GC 23	11/21/07	11/22/07	071121B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	1100	50	2		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	89	61-145						
D-A		07-11-1431-7	11/16/07	Solid	GC 23	11/21/07	11/22/07	071121B07
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Motor Oil	55	25	1		mg/kg	ı		
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	97	61-145						
Method Blank		099-12-254-334	N/A	Solid	GC 23	11/21/07	11/21/07	071121B07
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg)		
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	111	61-145						

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

11/17/07 07-11-1431 EPA 3550B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

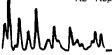
Client Sample Numb	er		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-B		90 80	07-11-1431-6	11/16/07	Solid	GC 23	11/21/07	11/22/07	071121B06
Comment(s):	-The sample chromatog of the unknown hydroca -The sample extract wa	arbon(s) in the	sample was based	upon the specif	ied standa	•	specified s	tandard. Qı	uantitation
<u>Parameter</u>		Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Diesel		370	10	2		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		89	61-145						
D-A		14.41	07-11-1431-7	11/16/07	Solid	GC 23	11/21/07	11/22/07	071121B06
Comment(s):	-The sample chromatog of the unknown hydroca	arbon(s) in the		upon the specif		•	e specified s	tandard. Q	uantitation

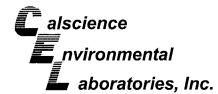
-The sample extract wa	as subjected to	o Silica Gel treatmer	nt prior to analysis		
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>
TPH as Diesel	5.2	5.0	1 .		mg/kg
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	
Decachlorobiphenyl	97	61-145			

Method Blank		099-12-275-1,193	N/A	Solid	GC 23 11/21/07	11/21/07 071121B06
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>	
TPH as Diesel	ND -	5.0	1 .		mg/kg	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>		
Decachlorobiphenyl	111	61-145				

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

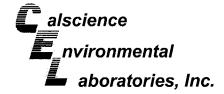

Page 1 of 1


1 Toject. 1200 Dancion Ave., 0	an Loanai	0, 0, 1						age 1 of 1
Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-B		07-11-1431-6	11/16/07	Solid	GC 18	11/19/07	11/19/07	071119B01
<u>Parameter</u>	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg			
<u>Surrogates:</u>	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	105	42-126						
D-A		07-11-1431-7	11/16/07	Solid	GC 18	11/19/07	11/19/07	071119B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	48	12	25		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	106	42-126						
Method Blank		099-12-279-1,318	N/A	Solld	GC 18	11/19/07	11/19/07	071119B01
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	0.50	1		mg/kg	I		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene - FID	103	42-126						
Method Blank		099-12-279-1,319	Ñ/A	Solid	GC 18	11/19/07	11/19/07	071119B02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Gasoline	ND	5.0	10		mg/kg	1		
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene - FID	104	42-126						

RL - Reporting Limit ,

DF - Dilution Factor ,

Qual - Qualifiers



Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 DHS LUFT DHS LUFT

Project: 1285 Bancroft Ave., San Leandro, CA

Client Sample Number		Lab Sample Number	Date Collected	Matrix	Instrument	Date Prepared	Date Analyzed	QC Batch ID
D-B		07-11-1431-6	11/16/07	Solid	FLAA	11/29/07	11/29/07	071129L05
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
Organic Lead	ND	1.00	1		mg/kg			
Method Blank		099-10-020-776	N/A	Solid	FLAA	11/29/07	11/29/07	071129L05
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Organic Lead	ND	1.00	1		mg/kg	I		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

Work Order No:

Preparation: Method:

Units:

11/17/07

07-11-1431

EPA 5030B EPA 8260B

mg/kg

Client Sample Number		, ,		ab Sample Number	Date Collected Matri	ix Instrument	Date Prepared	Date Analyze	_d Q	C Batch ID
D-B	519		07-11-	1431-6	11/16/07 Solid	d GC/MSX	11/19/07	11/19/0	7 07	71119L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		p/m-Xylene		ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		o-Xylene		ND	0.0050	1	
Toluene	ND	0.0050	1							
Surrogates:	REC (%)	<u>Control</u>		<u>Qual</u>	Surrogates:		REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>						<u>Limits</u>		
Dibromofluoromethane	102	73-139			1,2-Dichloroethane-d4			73-145		
Toluene-d8	99	90-108			1,4-Bromofluorobenze	ene	99	71-113		
D-A	1285	145	07-11-	1431-7	11/16/07 Soli	d GC/MS X	11/20/07	11/20/0	7 0	71120L01
<u>Parameter</u>	Result	<u>RL</u>	<u>D</u> E	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		p/m-Xylene		0.033	0.0050	1	
Ethylbenzene	0.011	0.0050	1		o-Xylene		0.014	0.0050	1	
Toluene	ND	0.0050	1		•					
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (%)	Control		<u>Qual</u>
-		<u>Limits</u>						<u>Limits</u>		
Dibromofluoromethane	104	73-139			1,2-Dichloroethane-d4		104	73-145		
Toluene-d8	98	90-108			1,4-Bromofluorobenze	ene	97	71-113		
Method Blank			099-10)-005-15,1	10 N/A Soli	id GC/MSX	11/19/07	11/19/0	7 0	71119L01
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		p/m-Xylene		ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		o-Xylene		ND	0.0050	1	
Toluene	ND	0.0050	1							
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>						<u>Limits</u>		
Dibromofluoromethane	100	73-139			1,2-Dichloroethane-d4		103	73-145		
Toluene-d8	98	90-108			1,4-Bromofluorobenze	ene	95	71-113		
Method Blank		5 1.5	099-10)-005-15,1	13 N/A Soli	id GC/MS X	11/20/07	7 11/20/0)7 0	71120L01
<u>Parameter</u>	Result	RL	DF	Qual	<u>Parameter</u>		Result	RL	<u>DF</u>	Qual
Benzene	ND	0.0050	1	_	p/m-Xylene		ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		o-Xylene		ND	0.0050	1	
Toluene	ND	0.0050	1		•					
Surrogates:	REC (%)	Control		Qual	Surrogates:		REC (%)	Control		Qual
		Limits						<u>Limits</u>		
Dibromofluoromethane	102	73-139			1,2-Dichloroethane-d4	4	102	73-145		
Toluene-d8	96	90-108			1,4-Bromofluorobenze	ene	95	71-113		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 3050B EPA 6010B

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number
07-11-1532-7	Solid	ICP 5300	11/20/07		11/20/07	071120801
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Antimony	32	31	50-115	2	0-20	3
Arsenic	102	100	75-125	2	0-20	-
Barium	9	4	75-125	2	0-20	3
Beryllium	103	100	75-125	3	0-20	
Cadmium	104	101	75-125	2	0-20	
Chromium	106	100	75-125	4	0-20	
Cobalt	105	102	75-125	2	0-20	
Copper	96	93	75-125	2	0-20	
Lead	104	99	75-125	4	0-20	
Molybdenum	98	95	75-125	4	0-20	
Nickel	105	101	75-125	2	0-20	
Selenium	85	83	75-125	1	0-20	
Silver	99	97	75-125	2	0-20	
Thallium	97	94	75-125	3	0-20	
Vanadium	102	97	75-125	3	0-20	
Zinc	66	61	75-125	3	0-20	3

Mulhan_

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 3550B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date ment Prepared		Date Analyzed	MS/MSD Batch Number
D-A	Solid	GC 23	11/26/07		11/27/07	071121S07
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	79	81	64-130	2	0-15	

MANA_

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 3550B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-1429-5	Solid	GC 23	11/21/07		11/21/07	071121S06
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Diesel	99	103	64-130	4	0-15	

RPD - Relative Percent Difference,

CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 5030B EPA 8015B (M)

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-1339-2	Solid	GC 18	11/19/07		11/19/07	071119801
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Gasoline	74	83	48-114	10	0-23	

RPD - Relai

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 DHS LUFT DHS LUFT

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
D-B	Solid	FLAA	11/29/07	11/29/07	071129805
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RPD C	<u>Qualifiers</u>
Organic Lead	57	58	22-148	2 0-18	

RPD - Rela

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 7471A Total EPA 7471A

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	_	ate llyzed	MS/MSD Batch Number	
07-11-1532-7	Solid	Mercury	11/20/07	11/	20/07	071120501	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers	
Mercury	90	90	84-138	1	0-7	• 1	

RPD - Rela

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 5030B EPA 8260B

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		MS/MSD Batch Number	
07-11-1440-1	Solid	GC/MS X	11/19/07	11/19/07		071119801	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>	
Benzene	83	82	79-115	2	0-13		
Carbon Tetrachloride	68	68	55-139	1	0-15		
Chlorobenzene	73	68	79-115	7	0-17	3	
1,2-Dibromoethane	81	79	70-130	2	0-30		
1,2-Dichlorobenzene	55	52	63-123	6	0-23	3	
1,1-Dichloroethene	85	82	69-123	4	0-16		
Ethylbenzene	74	68	70-130	8	0-30	3	
Toluene	79	76	79-115	4	0-15	3	
Trichloroethene	79	. 74	66-144	7	0-14		
Vinyl Chloride	74	71	60-126	4	0-14		
Methyl-t-Butyl Ether (MTBE)	90	87	68-128	3	0-14		
Tert-Butyl Alcohol (TBA)	79	83	44-134	4	0-37		
Diisopropyl Ether (DIPE)	92	89	75-123	2	0-12		
Ethyl-t-Butyl Ether (ETBE)	92	89	75-117	3	0-12		
Tert-Amyl-Methyl Ether (TAME)	92	91	79-115	2	0-12		
Ethanol	96	81	42-138	18	0-28		

Mulhan

Quality Control - Spike/Spike Duplicate

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 11/17/07 07-11-1431 EPA 5030B EPA 8260B

Project 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
07-11-1471-1	Solid	GC/MS X	11/20/07		11/20/07	071120S01
	,					
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	95	96	79-115	1	0-13	
Carbon Tetrachloride	91	91	55-139	0	0-15	
Chlorobenzene	94	96	79-115	2	0-17	
1,2-Dibromoethane	95	97	70-130	2	0-30	
1,2-Dichlorobenzene	92	94	63-123	2	0-23	
1,1-Dichloroethene	98	91	69-123	7	0-16	
Ethylbenzene	98	99	70-130	1	0-30	
Toluene	96	99	79-115	3	0-15	

97

95

99

98

100

102

104

99

66-144

60-126

68-128

44-134

75-123

75-117

79-115

42-138

0

0

6

1

1

0-14

0-14

0-14

0-37

0-12

0-12

0-12

0-28

97

97

99

104

99

102

100

104

RPD - Relat

Trichloroethene

Methyl-t-Butyl Ether (MTBE)

Tert-Butyl Alcohol (TBA)

Diisopropyl Ether (DIPE)

Ethyl-t-Butyl Ether (ETBE)

Tert-Amyl-Methyl Ether (TAME)

Vinyl Chloride

Ethanol

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

07-11-1431 **EPA 3050B EPA 6010B**

N/A

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Bate Number	ch
097-01-002-10,102	Solid	ICP 5300	11/20/07	11/20)/07	071120L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %	REC CL	RPD	RPD CL	Qualifiers
Antimony	102	102		80-120	0	0-20	
Arsenic	96	95		80-120	1	0-20	
Barium	99	102		80-120	3	0-20	
Beryllium	93	94		80-120	1	0-20	
Cadmium	99	100		80-120	1	0-20	
Chromium	99	102		80-120	3	0-20	
Cobalt	100	100		80-120	0	0-20	
Copper	93	90		80-120	3	0-20	
Lead	100	101		80-120	1	0-20	
Molybdenum	99	99		80-120	0	0-20	
Nickel	104	103		80-120	1	0-20	
Selenium	91	91		80-120	1	0-20	
Silver	95	93		80-120	2	0-20	
Thallium	97	96		80-120	1	0-20	
Vanadium	95	96		80-120	0	0-20	
Zinc	102	105		80-120	4	0-20	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 07-11-1431 **EPA 3550B** EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCS Num	
099-12-254-334	Solid	GC 23	11/21/07	11/22/07	07112	1B07
Parameter	LCS %RE	EC LCSD 9	<u> KREC %R</u>	EC CL R	IPD RPD	CL Qualifiers
TPH as Motor Oil	76	83	7	5-123	9 0-1	2

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1431 EPA 3550B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-275-1,193	Solid	GC 23	11/21/07	11/21/07	071121B06	
<u>Parameter</u>	LCS %RE	C LCSD %F	REC %REG	CCL RPD	RPD CL	Qualifiers
TPH as Diesel	107	116	75-	123 8	0-12	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1431 EPA 5030B EPA 8015B (M)

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bat Number	ch
099-12-279-1,319	Solid	GC 18	11/19/07	11/19/07	071119B02	
<u>Parameter</u>	LCS %RE	EC LCSD %	<u>%REC</u> <u>%R</u>	EC CL RPD	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	94	99	7	0-124 5	0-18	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1431 EPA 5030B EPA 8015B (M)

Project: 1285 Bancroft Ave., San Leandro, CA

Quality Control Sample ID	Matrix Solid	Instrument GC 18	Date Prepared 11/19/07	Date Analyzed 11/19/07	LCS/LCSD Batc Number 071119B01	h
<u>Parameter</u>	LCS %RE	C LCSD %	REC %REC	CL RPD	RPD CL	Qualifiers
TPH as Gasoline	94	99	70-12	24 5	0-18	

RPD - Relative Percent Difference , 7440 Lincoln

alscience nvironmental **Quality Control - Laboratory Control Sample** aboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

07-11-1431 **DHS LUFT DHS LUFT**

N/A

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File ID	LCS Batch Number
099-10-020-776	Solid	FLAA	11/29/07	NONE	071129L05
<u>Parameter</u>	Conc	Added Conc	Recovered L	CS %Rec	%Rec CL Qualifiers
Organic Lead	12	2.5	12.4	99	72-126

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 07-11-1431 EPA 7471A Total EPA 7471A

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSI Numb	
099-04-007-5,130	Solld	Mercury	11/20/07	11/20/07	071120)L01
<u>Parameter</u>	LCS %	REC LCSD	%REC %F	EC CL R	PD RPD	CL Qualifiers
Mercury	96	95	8	7-117	1 . 0-3	3

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

07-11-1431 **EPA 5030B EPA 8260B**

N/A

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Bate Number	ch
099-10-005-15,110	Solid	GC/MS X	11/19/07	11/19	9/07	071119L01	
<u>Parameter</u>	LCS %RE	C LCSD %	REC %	REC CL	RPD	RPD CL	<u>Qualifiers</u>
Benzene	89	88		84-114	2	0-7	
Carbon Tetrachloride	84	85		66-132	1	0-12	
Chlorobenzene	89	89		87-111	0	0-7	
1,2-Dibromoethane	87	90	•	80-120	3	0-20	
1,2-Dichlorobenzene	87	88		79-115	1	0-8	
1,1-Dichloroethene	96	91		73-121	5	0-12	
Ethylbenzene	93	93		80-120	0	0-20	
Toluene	90	89		78-114 2		0-7	
Trichloroethene	88	87		84-114	1	0-8	
Vinyl Chloride	79	78		63-129	1	0-15	
Methyl-t-Butyl Ether (MTBE)	83	87		77-125	4	0-11	
Tert-Butyl Alcohol (TBA)	78	93		47-137	17	0-27	
Diisopropyl Ether (DIPE)	89	89		76-130	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	85	89		76-124	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	87	90		82-118	4	0-11	
Ethanol	83	97		59-131	16	0-21	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

07-11-1431 **EPA 5030B EPA 8260B**

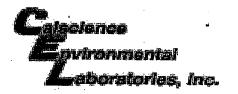
N/A

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Numb	
099-10-005-15,113	Solid	GC/MS X	11/20/07	11/20/07	0711201	L01
						·
Parameter	LCS %RE	C LCSD %	REC %RE	CCL R	PD RPD C	<u>Qualifiers</u>
Benzene	97	93	84-	114	4 0-7	
Carbon Tetrachloride	99	99	66-	132	0 0-12	
Chlorobenzene	97	94	87-	111 :	3 0-7	
1,2-Dibromoethane	96	95	80-	120	1 0-20	
1,2-Dichlorobenzene	99	95	79-	115	4 0-8	
1,1-Dichloroethene	98	95	73-	121	3 0-12	
Ethylbenzene	100	97	80-	120	3 0-20	
Toluene	99	95	78-	114	4 0-7	
Trichloroethene	97	92	84-	114	6 0-8	
Vinyl Chloride	90	94	63-	129	4 0-15	
Methyl-t-Butyl Ether (MTBE)	101	98	77-	125	2 0-11	
Tert-Butyl Alcohol (TBA)	101	108	47-	137	6 0-27	
Diisopropyl Ether (DIPE)	101	100	76-	130	1 0-8	
Ethyl-t-Butyl Ether (ETBE)	103	102	76-	124	1 0-12	
Tert-Amyl-Methyl Ether (TAME)	104	101	82-	118	3 0-11	
Ethanol	95	91	59-	131	4 0-21	

Glossary of Terms and Qualifiers

Work Order Number: 07-11-1431

<u>Qualifier</u>	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
. 3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
X	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.


TA - Norgan HI, California Ta - Norgan HI, California Ta - Norgan HI	LAB: TA TA - Irvine, California)	Sŀ	IEL	_L	Ch	ai	n C	Of (Cu	sto	ody	/ R	ec	or	d					1	
TA - Successor Control TA - Substitution Tax T		NAME OF PERS	SON TO	BILL:	Denis													Ι			ENT #	# (ES	ONL	Y)	1	
TA - NAVICE REPORT FORMY SAP OF CRIMT SAL CONSISTANTS PO # SAP OF CRIMT # PAGE of	_	1			20			⊟cu	ECV D	0V TO 1	/CDTE	ov te No	N TRICTI	NEATT #	ADDIT	EC						<u> </u>		T	1_	1
Construct Constitution Constit	TA - Nashville, Tennesee				90.2010	<u>, 10</u> 8 11 (4)	Guide Box to telef if no incident written				8					б	14	Date: 11/15/67								
Secretary Company Secr	✓ Calscience	INETWORK DEV / FE		LL BILL	CONSULTA	INT.						PO:	#		11					SA	P or	CRM	Τ#			PAGE:
Constaga-Rovers & Associates (CRA) CRAW 1285 Bancroft Ave, San Leandro CA T0600101224 CORBULTANT PROJECT NO. ACCRESS CORBULT AND PROJECT NO. ACCRESS CORBULT NO. ACCRESS CORBUSTOR NO. ACCRESS CORBUST NO.	Other	GOMPLIANCE		☐ RMT	/CRMT					7			Ţ												П	FAGE. UI
SOPECIAL INSTRUCTIONS OR NOTES: COMMUNICATION CONTINUE TIME CONTINUE TI	SAMPLING COMPANY:	1	LOG CODE				SIT	E ADDR	ESS: S	Street ar	ıd City	,		<u> </u>	Ц	<u>. </u>	<u> </u>	State			GLOB	AL ID N	D.:	L		
Septiment Sept		ociates (CRA)	CRAW	•											andi			CA					224			
## Ballard, Felicia, CRA, Sonoma TOT 903 2360		nervville. CA 94608					EDF	DELIVER	ABLE TO) (Name, I	Compa	ny, Office	Location):		PHONE	NO.				E-MAIL:					CONSULTANT PROJECT NO.:
TREPPINE TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 3812 TOT 268 8180 TOT 268 3812 TOT 268 8180 Striel@craworld.com TOT 268 3812 TOT 268 3							Bai	lard,	Felic	ia, CR	ZA, S	Sonon	na			707	933 2	2360			sono	mae	f@c	rawo	rld.con	n 240504-008
TOT 268 8180 Africal (Bosses)							SAN	PLER N	AME(S)	(Print):															LAB	USE ONLY
REQUESTED ANALYSIS STATE REPORT FORMAT UST AGENCY: EDD NOT NEEDED SHELL CONTRACT RATE APPLIES STATE REPORT FORMAT STATE REPORT FORMAT UST AGENCY: FIELD NOT RECEIPT VERIFICATION REQUESTED STATE REPORT REPORT FORMAT UST AGENCY: UST A	707 268 3812	707 268 8180	afriel@	craworld.	com		c	arm	en	Rod	rigu	ıez														11-1431
LA - RWQCB REPORT FORMAT UST AGENCY: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: SPECIAL INSTRUCTIONS OR NOTES: STATE RECEIPT VERIFICATION REQUESTED No partial lab reports, send final PDF report only. LAB USE SOUND ATTENDED TIME SAMPLING DATE TIME MATRIX NO.0F CONT. AND PARTIAL POPULATION REQUESTED SAMPLING DATE TIME MATRIX NO.0F CONT. AND PARTIAL POPULATION REQUESTED SAMPLING DATE TIME SOUND ATTENDED TO SOUND AND AND AND AND AND AND AND AND AND A																	RE	QUI	STE	D A	VAL'	rsis				
No partial lab reports, send final PDF report only. No partial lab reports, send final PDF report only. Sample Sa						· -	\vdash		,	T	Т	7	ı		· · · ·			ı						!	1	
No partial lab reports, send final PDF report only. No partial lab reports, send final PDF report only. Sample Sa					====		-	9	þ										\$	•						
No partial lab reports, send final PDF report only. No partial lab reports, send final PDF report only. Sample Sa	SPECIAL INSTRUCTIONS OR NO				ATE APPLIE	5	1	1 3				_ ا]	260					5		r,	1270	=		g	FIELD NOTES:
No partial lab reports, send final PDF report only. No partial lab reports, send final PDF report only. Sample Sa		-	_			•	â	(NS)				#		2		(8)	30B)		1		, a	e e	180.		ttac	
No partial lab reports, send final PDF report only. No partial lab reports, send final PDF report only. Sample Sa		<u> </u>	RECEIPT	VERIFICATI	ON REQUES	STED	260	8				1 -		ļģ.		826	(82		3		5	eos	sp (· ·
Field Sample Identification SAMPLING DATE TIME MATRIX NO. OF CONT. A B B B B B B B B B							e (8	음				260E	4 9	orc.	2	ane (nide)		Sd,	ပ်	Soli	â	s) la	Ci Laboratory Notes
Field Sample Identification SAMPLING DATE TIME MATRIX NO. OF CONT. A B B B B B B B B B							eab	acta	<u>a</u>	<u>6</u>	_ ا	es (8		hyc.	808	eth	oron	80B)	9			ANC	Ved	010	bos	
Field Sample Identification SAMPLING DATE TIME MATRIX NO. OF CONT. A B B B B B B B B B							Į į	Xtra	260	3260	908	BA at	98	ated	ည္က	loro	e dit	(82	_3		Met	ă.	sod	on (6	Sig	
/ D-9 B	LAB		SAM	PLING		NO DE	- 6	1 .	S X	, H	8	S S E	į	orin	3 & E	gich	ylen	anol	=		7	g,	<u> </u>	al irc	fo	TEMPERATURE ON RECEIPT C°
2 D-10 B - 100 Composite 3 D-13 A 11/161030 Samples 4 D-14 A D-B	USE Field Sample	Identification			MATRIX	CONT.	Ē	币	BTE	MTE	Ĕ	\$ E	ō	S C	EDE	1,2.	Ħ.	먑	E		å	<u>8</u>	T of	Tot	Tes	
2 D-10 B 3 D-13 A 11/16 1030 4 D-14 A 5 D-13 A D-13 A D-13 A	/ D- 9		4/11	124	SOIL	1	х	X	х		L								X		X					Please call
4 D - 14 A D - B	2 0-10	3	•	1230	1	4			1				L.													
4 D - 14 A D - B	3 0- 13/	4	11/1	1030									:													samples
7 D. 17 A	4 D - 14	A																	1		H					D-B
	5 D-17	\$	T	L	T	J	J	7	J					**					1		J					and D-A
			•																							
															\exists											
		· · · · · · · · · · · · · · · · · · ·					ऻ									_				+					十	
	· · · · · · · · · · · · · · · · · · ·						}—					+					-		\dashv	\dashv	\dashv		\dashv		\dashv	
			<u> </u>				<u> </u>				<u> </u>									_	_	_	\dashv			9702
							abla	ارا																	_	808-
Relinquished by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: 10 2 0 Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)		•			Received b	y: (Signature)			X					(1,6	11				Date:	1_	11	ترب	<u></u>	51	Time:
Received by: (Signature) Received by: (Signature) Received by: (Signature)		(4 7)			Received b	v: (Signature)	M.	X	1	\geq	111	_		_			_		\dashv	Date:	1_	110			1	Time:
1/17/07 1020 30		> 13 65	20						_(-/	U)					le	5			1	<u> </u>	17	10	<u>'7</u>		1020 B
Relinquished by (Signature) Received by (Signature) Dafe: Time:	Relinquished by (Signature)				Received by	y: (Signature))			77										Date:	/					Time:
05/02/06 Revision								_									_									05/02/06 Revision

Page 27 of 28

Contingent analyses for composite samples

- Organic lead required if TTLC lead ≥ 13 mg/kg
- Aquatic bioassay required if any TPH (gasoline, diesel, or motor oil) ≥ 5,000 mg/kg
- TCLP benzene required if benzene ≥ 10 mg/kg
- TCLP and STLC required for metals per table below

Metal	Trigger level TTLC (mg/kg)	Requirement
Antimony	150	STLC required if TTLC ≥ 150 mg/kg
Arsenic	50/100	STLC required if TTLC ≥ 50 mg/kg; STLC and TCLP required if TTLC ≥ 100 mg/kg
Barium	1,000/2,000	STLC required if TTLC ≥ 1,000 mg/kg; STLC and TCLP required if TTLC ≥ 2,000 mg/kg
Beryllium	7.5	STLC required if TTLC ≥ 7.5 mg/kg
		STLC required if TTLC ≥ 10 mg/kg;
Cadmium	10/20	STLC and TCLP required if TTLC ≥ 20 mg/kg
		STLC required if TTLC ≥ 50 mg/kg;
Chromium	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg
Cobalt	800	STLC required if TTLC ≥ 800 mg/kg
Copper	250	STLC required if TTLC ≥ 250 mg/kg
		STLC required if TTLC ≥ 50 mg/kg;
Lead	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg
		STLC required if TTLC ≥ 2 mg/kg;
Mercury	2/4	STLC and TCLP required if TTLC ≥ 4 mg/kg
Molybdenum	350	STLC required if TTLC ≥ 350 mg/kg
Nickel	200	STLC required if TTLC ≥ 200 mg/kg
		STLC required if TTLC ≥ 10 mg/kg;
Selenium	10/20	STLC and TCLP required if TTLC ≥ 20 mg/kg
		STLC required if TTLC ≥ 50 mg/kg;
Silver	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg
Thallium	70	STLC required if TTLC ≥ 70 mg/kg
Vanadium	240	STLC required if TTLC ≥ 240 mg/kg
Zinc	2,500	STLC required if TTLC ≥ 2,500 mg/kg

WORK ORDER #: **07** - // // - // // 3 //

Cooler __/_ of __/_

SAMPLE RECEIPT FORM

CLIENT: C.RA	DATE: ///17/07
TEMPERATURE - SAMPLES RECEIVED BY:	
CALSCIENCE COURIER: Chilled, cooler with temperature blank provided. Chilled, cooler without temperature blank. Chilled and placed in cooler with wet ice. Ambient and placed in cooler with wet lce. Ambient temperature.	LABORATORY (Other than Calscience Courier): 3 · / ° C Temperature blank. ° C IR thermometer. Ambient temperature.
C Temperature blank.	Initial:
CUSTODY SEAL INTACT:	
Sample(s): Cooler: No (Not In	Not Present:
SAMPLE CONDITION:	
Chain-Of-Custody document(s) received with samples	
COMMENTS:	