Fax: 510-547-5043 Phone: 510-450-6000

Scott Seery
Alameda County Department
of Environmental Health
80 Swan Way, Room 200
Oakland, California 94621-1426

Re: Shell Service Station
WIC #204-6852-0703
1285 Bancroft Avenue
San Leandro, California 94577
WA Job #81-423-203

Dear Mr. Seery:

This letter describes recently completed and anticipated activities at the Shell service station referenced above (Figure 1). This status report satisfies the quarterly reporting requirements prescribed by California Administrative Code Title 23 Waters, Chapter 3, Subchapter 16, Article 5, Section 265.d. Included below are descriptions and results of activities performed in the second quarter 1993 and proposed work for the third quarter 1993.

Second Quarter 1993 Activities:

- Blaine Tech Services, Inc. (BTS) of San Jose, California measured ground water depths and collected ground water samples from the three site wells. BTS' report describing these activities and the analytic report for the ground water samples are included as Attachment A.
- Weiss Associates (WA) compiled the ground water elevation and analytic data (Tables 1 and 2) and prepared a ground water elevation contour map (Figure 2).

Anticipated Third Ouarter 1993 Activities:

WA will submit a report presenting the results of the third quarter 1993 ground water sampling and ground water depth measurements. The report will include tabulated chemical analytic results and a ground water elevation contour map.

2

Scott Seery July 15, 1993

Conclusions and Recommendations:

Ground water elevations have decreased approximately two feet compared to the previous quarter, but ground water is still about seven ft higher than during the fourth quarter of 1992. However, despite two quarters of elevated ground water, hydrocarbon concentrations are consistent with previous results.

WA recommends that all site wells be sampled semi-annually during the first and third quarters of each year. This recommendation is based on the following facts:

- All site wells have been sampled for at least six consecutive quarters with no increase in hydrocarbon concentrations despite a recent rise in ground water elevation.
- Petroleum hydrocarbon concentrations detected in ground water are near or below Department of Toxic Substances Control (DTSC) maximum contaminant levels for drinking water (MCLs),
- Ground water has consistently flowed northwestward placing well MW-3 downgradient of the underground fuel storage tanks, and
- The Constant and Andrews (Constant of the Constant of the Co

Scott Seery July 15, 1993

We will implement semi-annual sampling at this site unless notified otherwise.

Please call if you have any questions or comments.

No. 5747

Sincerely,

Weiss Associates

J. Michael Asport Technical Assistant

N. Scott MacLeod, R.G. Project Geologist

JMA/NSM:jma

J:\SHELL\400\423QMJY3.WP2

Attachments: A - Ground Water Monitoring Report and Analytic Report

cc: Dan Kirk, Shell Oil Company, P.O. Box 5278, Concord, California 94520-9998
Lester Feldman, California Regional Water Quality Control Board - San Francisco Bay
Region, 2101 Webster Street, Oakland, California 94612

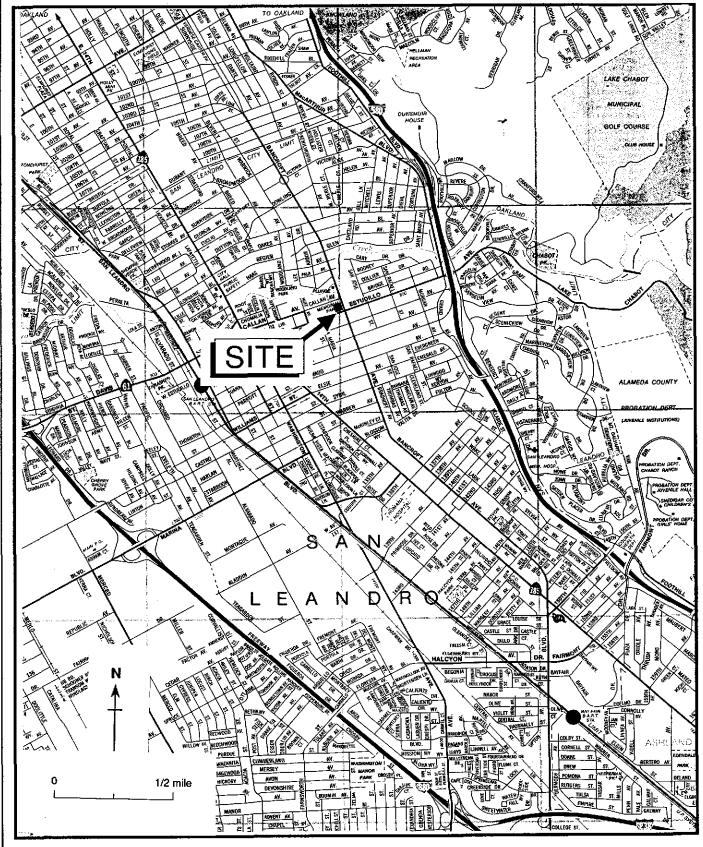


Figure 1. Site Location Map - Shell Service Station WIC #204-6852-0703, 1285 Bancroft Avenue, San Leandro, California

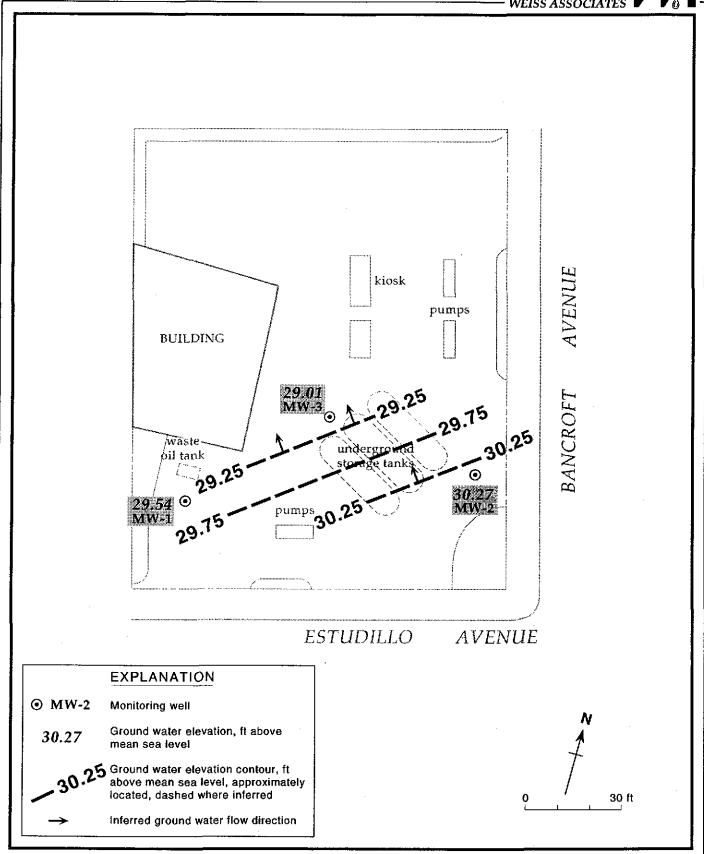


Figure 2. Monitoring Well Locations and Ground Water Elevation Contours - June 22, 1993 - Shell Service Station WIC #204-6852-0703, 1285 Bancroft Avenue, San Leandro, California

Table 1. Ground Water Elevations, Shell Service Station WIC #204-6852-0703, 1285 Bancroft Avenue, San Leandro, California

Well ID	Date	Top-of-Casing Elevation (ft above msl)	Depth to Water (ft)	Ground Water Elevation (ft above msl)
MW-1	03/13/90	66.29	42.65	23.64
141 44 1	06/12/90	00.29	43.14	23.15
	09/13/90		44.71	21.58
	12/18/90		45.23	21.06
	03/07/91		43.32	22.97
	06/07/91		42.18	24.11
	09/17/91		44.85	21.44
	03/01/92		41.56	24.73
	06/03/92		40.74	25.55
	09/01/92		43.05	23.24
	12/07/92		44.19	22.10
	03/01/93		34.96	31.33
	06/22/93		36.75	29.54
	00122133		30.73	43.57
MW-2	03/01/92	66.91	41.57	25.34
141 41 2	06/03/92	00.91	40.56	26.35
	09/01/92		42.94	23.97 ·
	12/07/92		44.13	22.78
	03/01/93		34.82	32.09
	06/22/93		36.64	30.27
	00122135		JU.U4	JV.27
MW-3	03/01/92	66.31	42.00	24.31
212 11 5	06/03/92	00.51	44.30	22.01
	09/01/92		43.62	22.69
	12/07/92		44.77	21.54
	03/01/93		35.50	30.81
	05/01/93		37.30	29.01
	VUI 221 73		31.30	27.UI

Well	Date	Depth to Water	TPH-G	TPH-D	В	E	τ	X
ID	Sampled	(ft)	<u> </u>		parts per mill	ion (mg/L)		>
	09/17/91	44.85	0.05	0.16 ^b	<0.0005	<0.0005	<0.0005	<0.0005
	03/01/92	41.56	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005
**.	06/03/92	40.74	<0.05		0.0008	0.0009	<0.0005	<0.0005
	09/01/92	43.05	<0.05	***	<0.0005	0.0053	0.0058	0.0072
	12/07/92	44.19	0.068		<0.0005	<0.0005	0.0008	0.0012
	03/01/93	34.96	<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	03/01/93 ^{dup}	-4170	<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	06/22/93	36.75	<0.05	 -	<0.0005	<0.0005	<0.0005	<0.0005
.	03/01/92	41.57	0.91	<0.05	0.011	0.050	0.0052	0.140
	06/03/92	40.56	1.4		0.033	0.15	0.016	0.24
-	09/01/92	42.94	0.23		0.0052	0.015	0.0041	0.019
	09/01/92 ^{dup}	46.74	0.32		0.0056	0.018	0.0050	0.22
	12/07/92	44.13	0.24		0.0015	0.0095	0.0013	0.0099
	12/07/92 ^{dup}	44.12	<0.05		Q-0017	0.013	0.0010	0.0077
	03/01/93	34.82			9.260	0.013	0.310	0.066
	06/22/93	34.62 36.64			0.018	0.027	0.0034	0.0052
	06/22/93**	20.01			0.029	0.0036	0.0048	0.0032
	<i>W. 22.</i> 7.5				U.U.Y	Value		0.0001
663	03/01/92	42.00	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005
. *	06/03/92	44.30	<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	09/01/92	43.62	<0.05		<0.0005	0.0011	<0.0005	0.0032
	12/07/92	44.77	0.052		<0.0005	<0.0005	<0.0005	0.0005
	03/01/93	35.50	<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	06/22/93	37.30	<0.05	****	<0.0005	<0.0005	<0,0005	≪0.0005
Bailer	09/01/92		<0.05	***	<0.0005	<0.0005	<0.0005	0.0010
Blank	12/07/92		<0.05		<0.0005	<0.0005	<0.0005	<0.0005
rip	09/17/91		<0.05	•••	<0.0005	<0.0005	<0.0005	<0.0005
llank	03/01/92		<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	06/03/92		<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	09/01/92		<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	12/07/92		<0.05	•••	<0.0005	<0.0005	<0.0005	<0.0005
	03/01/93		<0.05		<0.0005	<0.0005	<0.0005	<0.0005
	06/22/93		⊲.05		<0.0005	<0.0005	<0.0005	40,0005
TSC MCLs			NE	NE	0.001	0.680	0.10°	1.750

Table 2. Analytical Results for Ground Water - Shell Service Station WIC #204-6852-0703, 1285 Bancroft Avenue, San Leandro, California (continued)

Abbreviations:

TPH-G = Total petroleum hydrocarbons as gasoline by Modified EPA Method 8015

TPH-D = Total petroleum hydrocarbons as diesel by Modified EPA Method 8015

B = Benzene by EPA Method 8020

E = Ethylbenzene by EPA Method 8020

T = Toluene by EPA Method 8020

X = Xylenes by EPA Method 8020

dup = Duplicate sample

NE = Not established

DTSC MCLs = California Department of Toxic Substances Control maximum contaminant levels for drinking water

--- = Not analyzed

<n = Not detected at detection limits of n ppm</pre>

Notes:

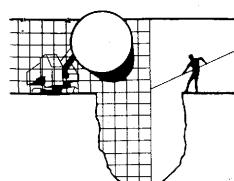
- a = Result due to a non-gasoline hydrocarbon compound
- b = Result due to a non-diesel hydrocarbon compound
- c = DTSC recommended action level; MCL not established

Weiss Associates

dell ID	Date Sampled	Depth to Water	TCE <	TOG	PCE	Chloroform	cis-1,2-DCE	trans-1,2-D0
1 11 -1	03/08/90	42.65		<10	0.035	0.0063		
	06/12/90	43.14		<10	0.0019	0.063	•••	
	09/13/90	44.71		<10	0.026	0.0090		
	12/18/90	45.23	•••	<10	<0.0004	0.0053	* * •	
	03/07/91	43.32			0.023	0.0037		•••
	06/07/91	42.18			0.021	0.0066		
	09/17/91	44.85	***		0.023	0.0074		
	03/01/92	41.56	<0.0004		0.021	0.0063		<0.0004
	06/03/92	40.74	0.017		<0.0005	0.0067	<0.0005	<0.0005
	09/01/92	43.05	0.012		<0.0005	0.0058	<0.0005	<0.0005
	12/07/92	44.19	<0.0005		0.017	0.009	<0.0005	
	03/01/93	34.96	<0.0005		0.022	0.009	<0.0005	<0.0005
	03/01/93 ^{dup}	37.70	<0.0005					<0.0005
		36.75			0-022	0.013	<0.0005	<0.0005
	06/23/93	30.13	<0.0005				<0.0005	<0.0005
W-2	03/01/92	41.57	<0.0004		0.011	0.0089		<0.0004
	06/03/92	40.56	0.0074		<0.0005	<0.0005	0.00076	0.0063
	09/01/92	42.94	0.0084	•••	<0.0005	0.0091	<0.0005	<0.0005
	09/01/92 ^{dup}		0.0084		<0.0005	0.0081	<0.0005	<0.0005
	12/07/92	44.13	<0.0005		0.010	0.010	<0.0005	<0.0005
	12/07/92 ^{dup}		<0.0005		0.010	0.009	<0.0005	<0.0005
	03/01/93	34.82	<0.0005	***	<u><0</u> _0005	<0.0005	<0.0005	<0.0005
	06/22/93	36.64	<0.0005	eae			×0.0005	<0.0005
	06/22/93 ⁴⁴		<0,0005		1666	* 18.55	<0,0005	<0.0005
W-3	03/01/92	42.00	<0.0004		0.0088	0.0024		<0.0004
	06/03/92	44.30	0.0030		<0.0005	0.0015	<0.0005	<0.0005
	09/01/92	43.62	0.0088		<0.0005	0.0023	<0.0005	<0.0005
	12/07/92	44.77	<0.0005		0.010	0.003	<0.0005	<0.0005
	03/01/93	35.50	<0.0005		0_0002	0_0004	<0.0005	<0.0005
	06/22/93	37.30	<0.0005		33.103		<0.0005	<0.0005
_:1	20 (21 (22							
ailer	09/01/92		<0.0005	•••	<0.0005	<0.0005	<0.0005	<0.0005
lank	12/07/92		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
rip	09/01/92		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
lank	12/07/92"		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
	03/01/93		<0.0005		<0.0005	<0.0005	<0.0005	<0.0005
	06/22/93		<0.0005	***	<0.0005	40.0005	<0.0005 <0.0005	<0.0005

Table 2B. Analytic Reports for Ground Water - Non-Fuel Compounds - Shell Service Station WIC #204-6852-0703, 1285 Bancroft Avenue, San Leandro, California (continued)

Abbreviations:

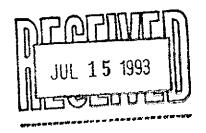

DTSC MCLs = Department of Toxic Substances Control maximum contaminant levels for drinking water

NE = DTSC MCL not established

<u>Notes</u>:

- a = Sample contained 0.014 mg/L of 1,3-Dichlorobenzene.
- b = Although 0.0014 ppm methylene chloride was detected in one of the ground water samples from well MW-2, the laboratory indicated that this was within normal laboratory background concentrations.

ATTACHMENT A GROUND WATER MONITORING REPORT AND ANALYTIC REPORT


BLAINE TECH SERVICES INC.

985 TIMOTHY DRIVE SAN JOSE, CA 95133 (408) 995-5535 FAX (408) 293-8773

June 28, 1993

Attn: Daniel T. Kirk

SITE: Shell WIC # 204-6852-0703 1285 Bancroft Avenue San Leandro, California

QUARTER: 2nd quarter of 1993

QUARTERLY GROUNDWATER SAMPLING REPORT 930622-N-1

This report contains data collected during routine inspection, gauging and sampling of groundwater monitoring wells performed by Blaine Tech Services, Inc. in response to the request of the consultant who is overseeing work at this site on behalf of our mutual client, Shell Oil Company. Data collected in the course of our field work is presented in a TABLE OF WELL GAUGING DATA. The field information was collected during our preliminary gauging and inspection of the wells, the subsequent evacuation of each well prior to sampling, and at the time of sampling.

Measurements taken include the total depth of the well and the depth to water. The surface of the water was further inspected for the presence of immiscibles which may be present as a thin film (a sheen on the surface of the water) or as a measurable free product zone (FPZ). At intervals during the evacuation phase, the purge water was monitored with instruments that measure electrical conductivity (EC), potential hydrogen (pH), temperature (degrees Fahrenheit), and turbidity (NTU). In the interest of simplicity, fundamental information is tabulated here, while the bulk of the information is turned over directly to the consultant who is making professional interpretations and evaluations of the conditions at the site.

TABLE OF WELL GAUGING DATA

WELL I.D.	WELL DIAMETER (inches)	DATA COLLECTION DATE	Measurements Referenced To	QUALITATIVE OBSERVATIONS (sheen)	DEPTH TO FIRST IMMISCIBLE LIQUID (FPZ) (feet)	THICKNESS OF IMMISCIBLE LIQUID ZONE (feet)	VOLUME OF IMMISCIBLES REMOVED (ml)	DEPTH TO WATER (feet)	DEPTH TO WELL BOTTOM (feet)
MW-1	4	06-22-93	TOC		NONE			36.75	59.33
MW-2 *	4	06-22-93	тос		NONE			36.64	59.28
MW-3	4	06-22-93	TOC		NONE			37.30	58.02

^{*} Sample "DUP" was a duplicate sample taken from well MW-2.

STANDARD PROCEDURES

Evacuation

Groundwater wells are thoroughly purged before sampling to insure that the sample is collected from water that has been newly drawn into the well from the surrounding geologic formation. The selection of equipment to evacuate each well is based on the physical characteristics of the well and what is known about the performance of the formation in which the well has been installed. There are several suitable devices which can be used for evacuation. The most commonly employed devices are air or gas actuated pumps, electric submersible pumps, and hand or mechanically actuated bailers. Our personnel frequently employ USGS/Middleburg positive displacement pumps or similar air actuated pumps which do not agitate the water standing in the well.

Normal evacuation removes three case volumes of water from the well. More than three case volumes of water may be removed in cases where more evacuation is needed to achieve stabilization of water parameters. Less than three case volumes of water may be obtained in cases where the well dewaters and does not recharge to 80% of its original volume within two hours and any additional time our personnel have reason to remain at the site. In such cases, our personnel return to the site within twenty four hours and collect sample material from the water which has recharged into the well case.

Decontamination

All apparatus is brought to the site in clean and serviceable condition. The equipment is decontaminated after each use and before leaving the site.

Free Product Skimmer

The column headed, VOLUME OF IMMISCIBLES REMOVED (ml) is included in the TABLE OF WELL GAUGING DATA to cover situations where a free product skimming device must be removed from the well prior to gauging. Skimmers are installed in wells with a free product zone on the surface of the water. The skimmer is a free product recovery device which often prevents normal well gauging and free product zone measurements. The 2.0" and 3.0" PetroTraps fall into the category of devices that obstruct normal gauging. In cases where the consultant elects to have our personnel pull the skimmers out of the well and gauge the well, our personnel perform the additional task of draining the accumulated free product out of the PetroTrap before putting it back in the well. This recovered free product is measured and logged in the VOLUME OF IMMISCIBLES REMOVED column. Gauging at such site is performed in accordance with specific directions from the professional consulting firm overseeing work at the site on Shell's behalf.

Sample Containers

Sample material is collected in specially prepared containers which are provided by the laboratory that performs the analyses.

Sampling

Sample material is collected in stainless steel bailer type devices normally fitted with both a top and a bottom check valve. Water is promptly decanted into new sample containers in a manner which reduces the loss of volatile constituents and follows the applicable EPA standard for handling volatile organic and semi-volatile compounds.

Following collection, samples are promptly placed in an ice chest containing prefrozen blocks of an inert ice substitute such as Blue Ice or Super Ice. The samples are maintained in either an ice chest or a refrigerator until delivered into the custody of the laboratory.

Sample Designations

All sample containers are identified with a site designation and a discrete sample identification number specific to that particular groundwater well. Additional standard notations (e.g. time, date, sampler) are also made on the label. Either the requested analyses or the specific analytes are written on the sample label (e.g. TPH-G, BTEX).

Chain of Custody

Samples are continuously maintained in an appropriate cooled container while in our custody and until delivered to the laboratory under a standard Shell Oil Company chain of custody. If the samples are taken charge of by a different party (such as another person from our office, a courier, etc.) prior to being delivered to the laboratory, appropriate release and acceptance records are made on the chain of custody (time, date, and signature of the person releasing the samples followed by the time, date and signature of the person accepting custody of the samples).

Hazardous Materials Testing Laboratory

The samples obtained at this site were delivered to Anametrix, Inc. in San Jose, California. Anametrix, Inc. is a California Department of Health Services certified Hazardous Materials Testing Laboratory and is listed as DOHS HMTL #1234.

Objective Information Collection

Blaine Tech Services, Inc. performs specialized environmental sampling and documentation as an independent third party. In order to avoid compromising the objectivity necessary for the proper and disinterested performance of this work, Blaine Tech Services, Inc.

performs no consulting and does not become involved in the marketing or installation of remedial systems of any kind. Blaine Tech Services, Inc. is concerned only with the generation of objective information, not with the use of that information to support evaluations and recommendations concerning the environmental condition of the site. Even the straightforward interpretation of objective analytical data is better performed by interested regulatory agencies, and those engineers and geologists who are engaged in the work of providing professional opinions about the site and proposals to perform additional investigation or design remedial systems.

Reportage

Submission of this report and the attached laboratory report to interested regulatory agencies is handled by the consultant in charge of the project. Any professional evaluations or recommendations will be made by the consultant under separate cover.

Please call if we can be of any further assistance.

Richard C. Blaine

RCB/cdk

attachments: chain of custody

certified analytical report

cc: Weiss Associates 5500 Shellmound Street Emeryville, CA 94608-2411 ATTN: Michael Asport

	·					-4	10			93	Oφ) =	344	4					4	(18)		-	
	SHELL O	VIRO	MEN.	TAL E	NGIN	EERIN			iT .			СН		lai N		UST	10	Ϋ́	REC	ORD	Dalo: Pago	- * / * - 1, t	13
	Site Address: 1285 BANCRO WICK:	ET /	₩E.	SAN	LEA	JOR	0 C	+			And	ilys	s Re	equi	rec	1				LAB: ANA	ME	TRIX	
	MICI: 204-68	352	- · 0	70	3															CHECK OHE (1) FOX OHLY	C1/01	IT DHUORA HRUT	JMI
ŀ	Shell Engineer:				hone	No.: 4	/ 0													Quadety Montoring	6441	24 hours 🔲	.
-	DAN KIR	-12		F	ax #:	575 6	168						0	-						\$8 a investigation	ни .	44 hours 🔲	
ļ	Consultant Name & Ac	dress:	BTS	98	5 T	IMO	rty						802					į		_	6442	il dayı 🔲 💯 🗸	effroi)
}	SAN JOS Consultant Contact: JIM RE		77	1 5 1	hone	No.:	وسا اعتما		خ		6		BTEX 8020							_	ш,	Olyet [] _	
1	JIM RE	LE	72_	. ,	ax #:			Gas)	Dleset).		A 82		₀୪								F44.5	HOTE: Holfly Lob	, ou
	Commenis:								Ž.	623	E G		8015							O & M		soon as Paulble (24/45 hm, TAI,	•'
	Sampled by		2-02-04	~				8015 Mod.	2 W	20/6	뚩	ğ	HE C				a	Used	Ϋ́	Other			
	Printed Name: NA	1	- OV	€R Soll	Mel		No, ol	1PH (\$A 801	PH (EPA 8015 Mod.	BTEX (EPA 8020/602)	Volaille Organics (EPA 8240)	Test for Disposal	Combination IPH	109		Asbestos	Contolner Size	Preparation Used	Composite	MATERIAL DESCRIPTION		SAMPLE CONDITION COMMENT	
(1	i	6/22/93			X		6	•			-	:	X	X			40 00	HKL	N	GROUNDWATER	+	· · · · · · · · · · · · · · · · · · ·	
(2	J MW Z	1											X	X			1		1				
$\overline{}$	J										-		X	X					\prod				
(3)	DUP.											_	X	X	-	•		\sqcap	#				
Ξ		4						-	 			-					+	╫	╫	Ta va P ve	+		, ·
(5		¥			4		2	<u> </u>	-	 			<u> ^ </u>		ļ	_	*	4	4	TRIP BLANK	-		
							<u> </u>												L]
																					1.		,
																							•
-	Relinguished By (sonature)	; ; ;	Printe	d Nam	"OVE	-RM	CYC	201						ngtur		m	-	2	Printe	d Name: NYS, GUEZZ	254	Dolo:6-24	<u>-98</u>
	Relinquished By (signature)	: "	Pilnie	Non	: G	20120		Dol	o:Z-	50	47	0 10	d jelo	naluje	图:					Plani Bar		0019; <2/2	24/9
,	Relinquished By (Abnaluse)	:	Printe	о Мол	14;			Dol	0;_		Rec	eVe	व (अव	nohite	50				Printe	d Name;	J	Dole:	
				E LABO	RAIORY	MUSIP	ROYIDE			F THIS	CHA	О-И	F-CUS	IODY	WITH	INVC	ICE /	ND I	ESUL)	's		THE PARTY	

1961 Concourse Drive San Jose, CA 95131 Tel: 408-432-8192 Fax: 408-432-8198

MR. JIM KELLER BLAINE TECH 985 TIMOTHY DRIVE SAN JOSE, CA 95133 Workorder # : 9306344 Date Received: 06/24/93

Project ID : 204-6852-0703

Purchase Order: MOH-B813

The following samples were received at Anametrix, Inc. for analysis:

ANAMETRIX ID	CLIENT SAMPLE ID
9306344- 1	MW-1
9306344- 2	MW-2
9306344- 3	MW-3
9306344- 4	DUP
9306344- 5	TB

This report consists of 19 pages not including the cover letter, and is organized in sections according to the specific Anametrix laboratory group or section which performed the analysis(es) and generated the data. The Report Summary that precedes each section will help you determine which Anametrix group is responsible for those test results, and will bear the signatures of the department supervisor and the chemist who have reviewed the analytical data. Please refer all questions to the department supervisor who signed the form.

Anametrix is certified by the California Department of Health Services (DHS) to perform environmental testing under Certificate Number 1234. A detailed list of the approved fields of testing can be obtained by calling our office, or the DHS Environmental Laboratory Accreditation Program at (415)540-2800.

If you have any further questions or comments on this report, please give us a call as soon as possible. Thank you for using Anametrix.

Sarah Schoen, Ph

Laboratory Director

ANAMETRIX REPORT DESCRIPTION

GC

Organic Analysis Data Sheets (OADS)

OADS forms contain tabulated results for target compounds. The OADS are grouped by method and, within each method, organized sequentially in order of increasing Anametrix ID number.

Surrogate Recovery Summary (SRS)

SRS forms contain quality assurance data. An SRS form will be printed for each method, \underline{if} the method requires surrogate compounds. They will list surrogate percent recoveries for all samples and any method blanks. Any surrogate recovery outside the established limits will be flagged with an "*", and the total number of surrogates outside the limits will be listed in the column labelled "Total Out".

Matrix Spike Recovery Form (MSR)

MSR forms contain quality assurance data. They summarize percent recovery and relative percent difference information for matrix spikes and matrix spike duplicates. This information is a statement of both accuracy and precision. Any percent recovery or relative percent difference outside established limits will be flagged with an "*", and the total number outside the limits will be listed at the bottom of the page. Not all reports will contain an MSR form.

Qualifiers

Anametrix uses several data qualifiers (Q) in its report forms. These qualifiers give additional information on the compounds reported. They should help a data reviewer to verify the integrity of the analytical results. The following is a list of qualifiers and their meanings:

- U Indicates that the compound was analyzed for, but was not detected at or above the specified reporting limit.
- B Indicates that the compound was detected in the associated method blank.
- J Indicates that the compound was detected at an amount below the specified reporting limit. Consequently, the amount should be considered an approximate value. Tentatively identified compounds will always have a "J" qualifier because they are not included in the instrument calibration.
- E Indicates that the reported amount exceeded the linear range of the instrument calibration.
- D Indicates that the compound was detected in an analysis performed at a secondary dilution.

Absence of a qualifier indicates that the compound was detected at a concentration at or above the specified reporting limit.

REPORTING CONVENTIONS

- Due to a size limitation in our data processing step, only the first eight (8) characters of your project ID and sample ID will be printed on the report forms. However, the report cover letter and report summary pages display up to twenty (20) characters of your project and sample IDs.
- Amounts reported are gross values, i.e., not corrected for method blank contamination.

dm/3426 - Disk 20D

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MR. JIM KELLER BLAINE TECH

985 TIMOTHY STREET SAN JOSE, CA 95133

Workorder # : 9306344
Date Received : 06/24/93
Project ID : 204-6852-0703
Purchase Order: MOH-B813
Department : GC

Sub-Department: VOA

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9306344- 1	MW-1	WATER	06/22/93	8010
9306344- 2	MW-2	WATER	06/22/93	8010
9306344- 3	MW-3	WATER	06/22/93	8010
9306344- 4	DUP	WATER	06/22/93	8010

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MR. JIM KELLER BLAINE TECH 985 TIMOTHY STREET SAN JOSE, CA 95133

Workorder # : 9306344 Date Received: 06/24/93 Project ID : 204-6852-0703

Purchase Order: MOH-B813

Department : GC Sub-Department: VOA

QA/QC SUMMARY :

- The amount of methylene chloride reported in sample MW-2 is within normal laboratory background levels.
- In the matrix spike/matrix spike duplicate of sample MW-2, the percent recent reported of 1,3-diches for FDN Mathed 2010 outside of Anametrix control limits for EPA Method 8010.

Department Supervisor

emarzadeh

Anametrix ID : 9306344-01 : 204-6852

Project ID Sample ID : MW-1 Analyst :TM Matrix : WATER Supervisor ťρ.

Date Sampled Date Analyzed 1.0

: 6/22/93 : 6/29/93 : HP24 Dilution Factor : Conc. Units : Instrument ID : ug/L

CAS No.	COMPOUND NAME	REPORTING LIMIT	AMOUNT DETECTED	Q
75-71-8 74-87-3 75-01-4	Dichlorodifluoromethane Chloromethane Vinyl chloride	1.0 1.0 .50	ND ND ND	U U
74-83-9 75-00-3 75-69-4	Bromomethane Chloroethane Trichlorofluoromethane	.50 .50	ND ND	ם ח
76-13-1 75-35-4 75-09-2 156-60-5	Trichlorotrifluoroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethene	.50 .50 1.0 .50	ND ND ND ND	U U U
75-34-3 156-59-2 67-66-3	1,1-Dichloroethane cis-1,2-Dichloroethene Chloroform	.50 .50	ND ND 8.0	U U
71-55-6 56-23-5 107-06-2 79-01-6	1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloroethane Trichloroethene	.50 .50 .50	ND ND ND ND	U U U
78-87-5 75-27-4 110-75-8	1,2-Dichloropropane Bromodichloromethane 2-Chloroethylvinylether	.50 .50 1.0	ND ND ND	U U
.0061-01-5 .0061-02-6 .79-00-5 .127-18-4	cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene	.50 .50 .50	ND ND ND 18.	ם ח
124-48-1 108-90-7 75-25-2	Dibromochloromethane Chlorobenzene Bromoform	.50	ND ND ND	U U U
79-34-5 541-73-1 106-46-7 95-50-1	1,1,2,2-Tetrachloroethane	1.0 1.0 1.0	ND ND ND ND	U U U

Anametrix ID : 9306344-02

Project ID Sample ID : 204-6852 : MW-2 Analyst :TM Matrix : WATER Supervisor

Date Sampled Date Analyzed Dilution Factor: 1.0

: 6/22/93 : 6/29/93 : HD24 Instrument ID : HP24 Conc. Units : ug/L

i ——————————	<u> </u>	i		
CAS No.	COMPOUND NAME	REPORTING LIMIT	AMOUNT DETECTED	Q
75-71-8	Dichlorodifluoromethane	1.0	ND	U
74-87-3	Chloromethane	1.0	ND	Ū
75-01-4	Vinyl chloride	.50	ND	Ŭ
74-83-9	Bromomethane	.50	ND	Ιŭ
75-00-3	Chloroethane	.50	ND	Ιŭ
75-69-4	Trichlorofluoromethane	.50	ND	Ū
76-13-1	Trichlorotrifluoroethane	.50	ND	υ
75-35-4	1,1-Dichloroethene	.50	ND	U
75-09-2	Methylene chloride	1.0	1.4	j
156-60-5	trans-1,2-Dichloroethene	.50	ND	Ū
75-34-3	1,1-Dichloroethane	.50	ND	U
156-59-2	cis-1,2-Dichloroethene	.50	ND	U
67-66-3	Chloroform	.50	7.9	
71-55-6	1,1,1-Trichloroethane	.50	ND	U
56-23-5	Carbon tetrachloride	.50	ND	U
107-06-2	1,2-Dichloroethane	.50	ND	U
79-01-6	Trichloroethene	.50	ND	U
78-87-5	1,2-Dichloropropane	.50	ND	U
75-27-4	Bromodichloromethane	.50	ND	Ū
110-75-8	2-Chloroethylvinylether	1.0	ND	U
10061-01-5	cis-1,3-Dichloropropene	.50	ND	U
10061-02-6	trans-1,3-Dichloropropene	.50	ND	U
79-00-5	1,1,2-Trichloroethane	.50	ND	U
127-18-4	Tetrachloroethene	.50	13.	
124-48-1	Dibromochloromethane	.50	ND	U
108-90-7	Chlorobenzene	.50	ND	U
75-25-2	Bromoform	.50	ND	U
79-34-5	1,1,2,2-Tetrachloroethane	.50	ND	U
541-73-1	1,3-Dichlorobenzene	1.0	ND	U
106-46-7	1,4-Dichlorobenzene	1.0	ND	U
95-50-1	1,2-Dichlorobenzene	1.0	ND	Ū
		l i		l

: 204-6852 : 9306344-03 Anametrix ID

Project ID
Sample ID
Matrix
Date Sampled
Date Analyzed : MW-3 Analyst MT: : WATER Supervisor : CP

: 6/22/93 : 6/29/93 Dilution Factor : 1.0

Instrument ID Conc. Units : ug/L : HP24

CAS No.	COMPOUND NAME	REPORTING LIMIT	AMOUNT DETECTED	Q
75-71-8 74-87-3 75-01-4 74-83-9 75-00-3 75-69-4 76-13-1 75-35-4 75-09-2 156-60-5 75-34-3 156-59-2 67-66-3 71-55-6 56-23-5 107-06-2 79-01-6 78-87-5 75-27-4 110-75-8 10061-01-5 10061-01-5 10061-02-6 79-00-5 127-18-4 124-48-1 108-90-7 75-25-2 79-34-5 541-73-1 106-46-7 95-50-1	Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Trichlorotrifluoroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloroethane Trichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane 2-Chloroethylvinylether cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene Dibromochloromethane Tetrachloroethene Dibromochloromethane 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.0 0.0 1.50 0.550	多 9 9 7 8 8 8 8 8 8 8 8 8 8 8 8 8	ממממממ ממממממממממ ממממממממממ
			· 	

: 204-6852

Project ID Sample ID Anametrix ID : 9306344-04 Analyst : TM Supervisor : CP Sample ID : DUP
Matrix : WATER
Date Sampled : 6/22/93
Date Analyzed : 6/29/93
Instrument ID : HP24

1.0

Dilution Factor : Conc. Units : ug/L

CAS No.	COMPOUND NAME	REPORTING LIMIT	AMOUNT DETECTED	Q
75-71-8 74-87-3 75-01-4 74-83-9 75-00-3 75-69-4 76-13-1 75-35-4 75-09-2 156-60-5 75-34-3 156-59-2 67-66-3 71-55-6 56-23-5 107-06-2 79-01-6 78-87-5 75-27-4 110-75-8 10061-01-5 10061-02-6 79-00-5 127-18-4 124-48-1 108-90-7 75-25-2 79-34-5 541-73-1 106-46-7 95-50-1	Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane Trichlorotrifluoroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Carbon tetrachloride 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Bromodichloromethane 2-Chloroethylvinylether cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene Dibromochloromethane Chlorobenzene Bromoform 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	1.0 1.0 .50 .50 .50 .50 .50 .50 .50 .50 .50	多 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	מפספספס ססספסססססססססס
l				l

: 204-68 : BLK629 : 24B0629H01 : TM Anametrix ID

Project ID Sample ID Matrix Analyst : WATER Supervisor : Cb

Date Sampled Date Analyzed 1.0

: 0/ 0/ 0 : 6/29/93 : HP24 Dilution Factor : Conc. Units : : ug/L Instrument ID

				
CAS No.	COMPOUND NAME	REPORTING LIMIT	AMOUNT DETECTED	Q
75-71-8	Dichlorodifluoromethane	1.0	ND	U
74-87-3	Chloromethane	1.0	ND	Ŭ
75-01-4	Vinyl chloride	.50	ND	Ü
74-83-9	Bromomethane	.50	ND	Ιŭ
75-00-3	Chloroethane	.50	ND	ប៊ែ
75-69-4	Trichlorofluoromethane	.50	ND	ប៊
76-13-1	Trichlorotrifluoroethane	.50	ND	Ιŭ
75-35-4	1,1-Dichloroethene	.50	ND	Ιŭ
75-09-2	Methylene chloride	1.0	ND	Ŭ
156-60-5	trans-1,2-Dichloroethene	.50	ND	Ŭ
75-34-3	1,1-Dichloroethane	.50	ND	ΰ
156-59-2	cis-1,2-Dichloroethene	.50	ND	Ŭ
67-66-3	Chloroform	.50	ND	Ŭ
71-55-6	1,1,1-Trichloroethane	.50	ND	ĺΰ
56-23-5	Carbon tetrachloride	.50	ND	ϋ
107-06-2	1,2-Dichloroethane	.50	ND	Ŭ
79-01-6	Trichloroethene	.50	ND	ΙŬ
78-87-5	1,2-Dichloropropane	.50	ND	ΙŬ
75-27-4	Bromodichloromethane	.50	ND	ĬŬ.
110-75-8	2-Chloroethylvinylether	1.0	ND	lΰ
10061-01-5	cis-1,3-Dichloropropene	.50	ND	Ū
10061-02-6	trans-1,3-Dichloropropene	.50	ND	Ū
79-00-5	1,1,2-Trichloroethane	.50	ND	ΙŪ
127-18-4	Tetrachloroethene	.50	ND	U
124-48-1	Dibromochloromethane	.50	ND	Ū
108-90-7	Chlorobenzene	.50	ND	U
75-25-2	Bromoform	.50	ND	U
79-34-5	1,1,2,2-Tetrachloroethane	.50	ND	Ū
541-73-1	1,3-Dichlorobenzene	1.0	ND	U
106-46-7	1,4-Dichlorobenzene	1.0	ND	U
95-50-1	1,2-Dichlorobenzene	1.0	ND	Ū
			_	
	I 	· 		· ———

SURROGATE RECOVERY SUMMARY -- EPA METHOD 8010 ANAMETRIX, INC. (408)432-8192

Project ID : 204-6852 Matrix : LIQUID

Anametrix ID: 9306344

Analyst :TM Supervisor :CP

-	SAMPLE ID	SU1	SU2	SU3
234	BLK629 MW-1 MW-2 MW-2 MS	105 105 96 112		
12345678901234567	MW-2 MSD MW-3 DUP	107 102 104		
9				
12		<u> </u>		
15 16				
17 18 19				
18 19 21 22 23 24 25 26 27 28				
24 25 26				
29				
30				

QC LIMITS

SU1 = Chlorofluorobenzene

(51-136)

* Values outside of Anametrix QC limits

MATRIX SPIKE RECOVERY FORM -- EPA METHOD 8010 ANAMETRIX, INC. (408)432-8192

Project ID

: 204-6852

Anametrix ID

: 9306344-02

Sample ID Matrix

: MW-2

Analyst : 1 W Supervisor : 60

: WATER

Date Sampled Date Analyzed

: 6/22/93 : 6/29/93 : HP24

Instrument ID

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC	%REC LIMITS
Trichlorotrifluoroethan	10.0	0	10.5	105	28-127
1,1-Dichloroethene	10.0	.0	9.8	98	47-119
trans-1,2-Dichloroethen	10.0	.0	10.4	104	46-112
1,1-Dichloroethane	10.0	.0	11.0	110	57-124
cis-1,2-Dichloroethene_	10.0	.0	10.2	102	70-139
1,1,1-Trichloroethane _	10.0	.0	10.6	106	57-125
Trichloroethene	10.0	.0	10.8	108	61-133
Tetrachloroethene	10.0	13.2	24.8	116	61-132
Chlorobenzene	10.0	.0	11.5	115	81-120
1,3-Dichlorobenzene	10.0	.0	11.8	118 ्*	56-113
1,4-Dichlorobenzene	10.0	.0	11.7	117	62-119
1,2-Dichlorobenzene	10.0	.0	12.1	121 *	69-116

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC	% RPD	RPD LIMITS	%REC LIMITS
Trichlorotrifluoroethan 1,1-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethane cis-1,2-Dichloroethene 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene Chlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.4 10.5 10.6 11.1 10.0 10.3 10.9 23.0 11.2 11.4 11.7	104 105 106 111 100 103 109 99 112 114 * 117 *	1 7 2 0 1 3 16 3 0 3	25 25 25 25 25 25 25 25 25 25 25 25 25	28-127 47-119 46-112 57-124 70-139 57-125 61-133 61-132 81-120 56-113 62-119 69-116

^{*} Value is outside of Anametrix QC limits

0 out of

12 outside limits

Spike Recovery: 4 out of 24 outside limits

GC/VOA - PAGE 9

LABORATORY CONTROL SAMPLE EPA METHOD 601/8010 ANAMETRIX, INC. (408)432-8192

Project/Case : LABORATORY CONTROL SAMPLE

Anametrix I.D.: W0062993 Analyst: TM Supervisor: C Matrix : WATER SDG/Batch : N/A Date analyzed : 06/29/93 Instrument I.D.: HP24

COMPOUND	SPIKE AMOUNT (ug/L)	AMOUNT RECOVERED (ug/L)	PERCENT RECOVERY	%RECOVERY LIMITS
FREON 113 1,1-DICHLOROETHENE trans-1,2-DICHLOROETHENE 1,1-DICHLOROETHANE cis-1,2-DICHLOROETHENE 1,1,1-TRICHLOROETHANE TRICHLOROETHENE TETRACHLOROETHENE CHLOROBENZENE 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	10 10 10 10 10 10 10 10 10	8.4 8.1 8.3 9.2 8.1 8.5 8.8 9.0 9.1 9.1 9.5	84% 81% 83% 92% 81% 85% 88% 90% 91% 91% 95%	34 - 128 63 - 133 55 - 145 49 - 121 66 - 168 72 - 143 63 - 147 60 - 133 70 - 148 49 - 139 70 - 133 69 - 140

^{*} Limits based on data generated by Anametrix, Inc., August, 1992.

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MR. JIM KELLER BLAINE TECH

985 TIMOTHY DRIVE SAN JOSE, CA 95133

Workorder # : 9306344

Date Received : 06/24/93

Project ID : 204-6852-0703

Purchase Order: MOH-B813

Department : GC Sub-Department: TPH

SAMPLE INFORMATION:

ANAMETRIX SAMPLE ID	CLIENT SAMPLE ID	MATRIX	DATE SAMPLED	METHOD
9306344- 1	MW-1	WATER	06/22/93	трндвтех
9306344- 2	MW-2	WATER	06/22/93	TPHgBTEX
9306344- 3	MW-3	WATER	06/22/93	TPHgBTEX
9306344- 4	DUP	WATER	06/22/93	ТРНЭВТЕХ
9306344- 5	TB	WATER	06/22/93	TPHgBTEX

REPORT SUMMARY ANAMETRIX, INC. (408)432-8192

MR. JIM KELLER BLAINE TECH 985 TIMOTHY DRIVE SAN JOSE, CA 95133 Workorder # : 9306344
Date Received : 06/24/93
Project ID : 204-6852-0703
Purchase Order: MOH-B813

Department : GC Sub-Department: TPH

QA/QC SUMMARY :

- No QA/QC problems encountered for these samples.

Department Supervisor

Kamel 2. Kamel 719/13

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS (GASOLINE WITH BTEX) ANAMETRIX, INC. - (408) 432-8192

Project Number: 204-6852-0703 Date Released: 07/09/93 Anametrix W.O.: 9306344

Matrix WATER

Date Sampled: 06/22/93

	Reporting Limit	Sample I.D.# MW-1	Sample I.D.# MW-2	Sample I.D.# MW-3	Sample I.D.# DUP	Sample I.D.# TB
COMPOUNDS	(ug/L)	-01	-02	-03	-04	-05
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline % Surrogate Rece Instrument I.1 Date Analyzed		ND ND ND ND ND 109% HP8 07/01/93	18 3.4 3.6 5.2 220 118% HP8 07/06/93	ND ND ND ND ND 108% HP8 07/01/93	29 4.8 4.2 6.1 320 117% HP8 07/06/93	ND ND ND ND ND 108% HP8 07/01/93

ND - Not detected at or above the practical quantitation limit for the method.

RLMF - Reporting Limit Multiplication Factor.

Anametrix control limits for surrogate p-Bromofluorobenzene recovery are 61-139%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

mel C. Kamel

TPHg - Total Petroleum Hydrocarbons as gasoline is determined by GCFID using modified EPA Method 8015 following sample purge and trap by EPA Method 5030.

BTEX - Benzene, Toluene, Ethylbenzene, and Total Xylenes are determined by modified EPA Method 8020 following sample purge and trap by EPA Method 5030.

ANALYSIS DATA SHEET - TOTAL PETROLEUM HYDROCARBONS (GASOLINE WITH BTEX) ANAMETRIX, INC. - (408) 432-8192

Sample

Anametrix W.O.: 9306344

Project Number: 204-6852-0703

Matrix : WATER

Date Released : 07/09/93

Sample

Date Sampled : N/A

	Reporting Limit	I.D.#	I.D.# BL0201E3		
COMPOUNDS	(ug/L)	BLANK	BLANK	BLANK	
Benzene Toluene Ethylbenzene Total Xylenes TPH as Gasoline	0.5 0.5 0.5 0.5 50	ND ND ND ND	ND ND ND ND	ND ND ND ND	·
<pre>% Surrogate Recovery Instrument I.D. Date Analyzed RLMF</pre>		99% HP8 07/01/93	104% HP8 07/02/93	114% HP8 07/06/93	

Sample

- ND Not detected at or above the practical quantitation limit for the method.
- TPHg Total Petroleum Hydrocarbons as gasoline is determined by GCFID using modified EPA Method 8015 following sample purge and trap by EPA Method 5030.
- BTEX Benzene, Toluene, Ethylbenzene, and Total Xylenes are determined by modified EPA Method 8020 following sample purge and trap by EPA Method 5030.
- RLMF Reporting Limit Multiplication Factor.

Anametrix control limits for surrogate p-Bromofluorobenzene recovery are 61-139%.

All testing procedures follow California Department of Health Services (Cal-DHS) approved methods.

Kumil (r. Kumil 7/9/73 Analyst Date

Cheyl Balmer 7/9/93 Supervisor Date

TOTAL VOLATILE HYDROCARBON MATRIX SPIKE REPORT EPA METHOD 5030 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Sample I.D. : 204-6852-0703 MW-1

: WATER

Matrix Date Sampled: 06/22/93 Date Analyzed: 07/01/93

Anametrix I.D. : 06344-01

Analyst

Supervisor : 07/09/93 Date Released

Instrument ID : HP8

COMPOUND	SPIKE AMT (ug/L)	SAMPLE AMT (ug/L)	REC % MS (ug/L)	REC MS	REC MD (ug/L)	% REC MD	RPD	% REC LIMITS
GASOLINE	500	0	310	62%	. 380	76%	20%	48-149
P-BFB				105%		100%		61-139

Limits established by Anametrix, Inc.

TOTAL VOLATILE HYDROCARBON LABORATORY CONTROL SAMPLE REPORT EPA METHOD 5030 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Sample I.D. : LAB CONTROL SAMPLE

Matrix : WATER

Date Sampled : N/A
Date Analyzed : 07/01/93

Anametrix I.D.: ML0101E1

Analyst : K

Supervisor : 75
Date Released : 07/09/93

Instrument I.D.: HP8

COMPOUND	SPIKE AMT. (ug/L)	REC LCS (ug/L)	%REC LCS	% REC LIMITS
GASOLINE	500	460	92%	67-127
p-BFB			111%	61-139

^{*} Quality control established by Anametrix, Inc.

TOTAL VOLATILE HYDROCARBON LABORATORY CONTROL SAMPLE REPORT EPA METHOD 5030 WITH GC/PID ANAMETRIX, INC. (408) 432-8192

Sample I.D. : LAB CONTROL SAMPLE Anametrix I.D.: ML0201E3

Matrix : WATER

Analyst

Date Sampled : N/A
Date Analyzed : 07/02/93

Supervisor : 07/08/93

Instrument I.D.: HP8

COMPOUND	SPIKE AMT. (ug/L)	LCS (ug/L)	REC LCS	%REC LIMITS
Benzene Toluene Ethylbenzene TOTAL Xylenes	20.0 20.0 20.0 20.0	22.1 23.7 24.0 23.9	111% 119% 120% 119%	52-133 57-136 56-139 61-139
P-BFB			120%	61-139

^{*} Limits established by Anametrix, Inc.

TOTAL VOLATILE HYDROCARBON LABORATORY CONTROL SAMPLE REPORT EPA METHOD 5030 WITH GC/FID ANAMETRIX, INC. (408) 432-8192

Sample I.D. : LAB CONTROL SAMPLE

Anametrix I.D.: ML0601E1 Analyst :

Supervisor :

Matrix : WATER
Date Sampled : N/A
Date Analyzed : 07/06/93

Date Released: 07/09/93

Instrument I.D.: HP8

COMPOUND	SPIKE AMT. (ug/L)	REC LCS (ug/L)	%REC LCS	% REC LIMITS
GASOLINE	500	410	82%	67-127
p-BFB			91%	61-139

^{*} Quality control established by Anametrix, Inc.