

By Alameda County Environmental Health 11:28 am, Jan 12, 2018

December 27, 2017

Mr. Keith Nowell, PG, CHG Alameda County Department of Environmental Health Local Oversight Program for Hazardous Materials Releases 1131 Harbor Bay Parkway Alameda, CA 94502

Subject: Well Redevelopment, Sampling, and Conceptual Site Model Update

Dreyer's Grand Ice Cream 5929 College Avenue Oakland, California

Dear Mr. Nowell:

Under my authorization, Haley & Aldrich, Inc. (Haley & Aldrich) has prepared the attached *Well Redevelopment, Sampling, and Conceptual Site Model Update* on behalf of Nestlé USA, Inc. (Nestlé), describing monitoring well maintenance, surveying, and groundwater sampling conducted at the request of Alameda County Department of Environmental Health (ACDEH) at the subject property. Please contact me (information is below) or Michael Calhoun at Haley & Aldrich at 510-879-4554 if you have any questions.

I have read and acknowledge the content, recommendations, and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's Geotracker website.

Sincerely,

Sven Vetter

Corporate Environmental Sustainability Manager

Nestlé USA, Inc.

585-330-3110

WELL REDEVELOPMENT, SAMPLING, AND CONCEPTUAL SITE MODEL UPDATE DREYER'S GRAND ICE CREAM 5929 COLLEGE AVENUE OAKLAND, CALIFORNIA

by Haley & Aldrich, Inc. Oakland, California

for Nestlé USA, Inc. Glendale, California

File No. 130654-003 December 2017

27 December 2017 File No. 130654-003

Alameda County Health Care Services Department of Environmental Health Local Oversight Program for Hazardous Materials Releases 1131 Harbor Bay Parkway Alameda, California 94502

Attention: Mr. Keith Nowell, PG, CHG

Subject: Well Redevelopment, Sampling, and Conceptual Site Model Update

Dreyer's Grand Ice Cream 5929 College Avenue Oakland, California 9461

Dear Mr. Nowell:

Haley & Aldrich, Inc., prepared this Well Redevelopment, Sampling, and Conceptual Site Model Update (Report) on behalf of Nestlé USA, Inc., for the Dreyer's Grand Ice Cream Site located at 5929 College Avenue, in Oakland, California. This Report was prepared to document the monitoring well maintenance, surveying, and groundwater sampling tasks described in the Work Plan submitted to Alameda County Health Care Services, Department of Environmental Health (ACDEH) on 24 August 2017. Upon approval by ACDEH, this report and all associated water level, analytical laboratory, and survey data will be uploaded to the State's GeoTracker database and the ACDEH FTP site.

Please contact the undersigned if you have any questions regarding this Report or need additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Cheyenne Waldman, PG Assistant Project Manager

CA PG #9182

Peter Bennett, PG, CHG Principal Hydrogeologist CA PG #7902, CA CHG #921 Michael Calhoun, PG, CHG Associate Hydrogeologist CA PG #8525, CA CHG #976

cc: Nestlé USA, Inc.; Attn: Sven Vetter
Alameda County Department of Environmental Health; Attn: Dilan Roe

Table of Contents (continued)

(cont	inued)		Page					
	of Tab of Figu		ii ii					
1.	Intr	Introduction						
	1.1	SITE SETTING AND HISTORY	1					
	1.2	SITE GEOLOGY AND HYDROLOGY	2					
2.	Inve	estigation Methods	3					
	2.1	FIELD PREPARATION	3					
	2.2	WELL REDEVELOPMENT	3					
	2.3	WELL SAMPLING	3					
	2.4	LABORATORY ANALYSIS	4					
	2.5 2.6	WELL SURVEYING DECONTAMINATION AND WASTE MANAGEMENT	4 4					
3.	Resi	ults	5					
	3.1	GROUNDWATER ELEVATIONS	5					
	3.2	GROUNDWATER ANALYTICAL RESULTS	5					
		3.2.1 Quality Assurance/Quality Control	5					
		3.2.2 Total Petroleum Hydrocarbons	5					
		3.2.3 Volatile Organic Compounds	6					
		3.2.4 Polycyclic Aromatic Hydrocarbons	6					
4.	Con	ceptual Site Model	7					
	4.1	REGIONAL GEOLOGY AND HYDROGEOLOGY	7					
	4.2	LOCAL GEOLOGY AND HYDROGEOLOGY	7					
	4.3	SITE CHEMICALS OF CONCERN	7					
		4.3.1 Soil	7					
	4.4	4.3.2 Groundwater	8					
	4.4 4.5	NATURAL ATTENUATION	8					
	4.5 4.6	RECEPTORS LOW-THREAT CASE CLOSURE EVALUATION	9					
	4.0	4.6.1 General Criteria	10					
		4.6.2 Groundwater-Specific Criteria	10					
		4.6.3 Vapor Intrusion to Indoor Air Criteria	10					
		4.6.4 Direct Contact / Outdoor Air Criteria	10					
5.	Sum	nmary and Recommendations	12					
Refe	erence	es s	13					

Table of Contents (continued)

Tables

Figures

Appendix A – Field Forms

Appendix B – Analytical Laboratory Report

Appendix C – Survey Data

Appendix D – Historical Groundwater Elevation Data

Appendix E – Historical Analytical Data

Appendix F – Quality Assurance / Quality Control Data

Appendix G – Low-Threat Case Closure Evaluation

List of Tables

Table No.	Title
1	Well Construction Details
2	Groundwater Elevation Data – 31 October 2017
3	Groundwater Analytical Results for Organic Compounds – 31 October 2017
4	Groundwater Analytical Results for Natural Attenuation Parameters – 31 October 2017

List of Figures

Figure No.	Title
1	Site Location Map
2	Site Layout and Monitoring Well Locations
3	Groundwater Elevations and Hydraulic Gradient, October 2017
4	Analytical Results for Select Compounds, 31 October 2017
5	Concentration Trends for MW-1
6	Concentration Trends for MW-2
7	Concentration Trends for MW-3
8	Concentration Trends for MW-4
9	Concentration Trends for MW-5
10	Concentration Trends for MW-6

1. Introduction

Haley & Aldrich, Inc., (Haley & Aldrich) prepared this Well Redevelopment, Sampling, and Conceptual Site Model Update (Report) on behalf of Nestlé USA, Inc., for the Dreyer's Grand Ice Cream facility located at 5929 College Avenue in Oakland, California ([Site]; Figure 1). The work described in this Report was performed in accordance with the "Work Plan for Well Redevelopment and Sampling" ([Work Plan]; Haley & Aldrich, 2017) submitted to Alameda County Health Care Services, Department of Environmental Health (ACDEH) on 24 August 2017. The Work Plan was submitted to ACDEH in response to its 26 May 2016 letter, which requested that Site monitoring wells be redeveloped and sampled.

This Report includes a Conceptual Site Model (CSM) that summarizes Site conditions in context of the State Water Resources Control Board's Low-Threat Underground Storage Tank (UST) Case Closure Policy (Low-Threat Closure Policy).

1.1 SITE SETTING AND HISTORY

The Site is located at 5929 College Avenue in Oakland, California, approximately 0.25 mile north of California Highway 24 and approximately 0.25 mile south of the Berkeley City limits (Figure 1). The property is occupied by a large building (the Dreyer's facility), two large asphalt-covered parking areas, and small landscaping areas near the perimeter of the property. The two-acre property is bounded by Claremont Avenue to the northwest, College Avenue to the east, and Chabot Road to the south. Ground surface slopes gently to the southwest with an elevation of approximately 192 feet relative to the North American Vertical Datum of 1988 (NAVD88). The land use in the area is residential and commercial; the commercial properties are concentrated along College Avenue.

The property was developed as a commercial building and parking lot and serves as the headquarters of Dreyer's Grand Ice Cream. Between December 1989 and February 1990, seven underground fuel and waste oil storage tanks¹ and approximately 500 to 550 cubic yards of impacted soil were removed from the Site (CET Environmental Services [CET], 1995); the locations and former contents of each tank are shown on Figure 2.

Since source removal, multiple soil and groundwater investigations have been conducted (e.g., Aqua Terra Technologies [ATT], 1992 and 1993; CET 1999). Groundwater monitoring wells MW1, MW2, and MW3 were installed in July 1991 as part of these investigations (ATT, 1992). Three additional wells—MW4, MW5, and MW6—were installed in August 1993 (CET, 1995). Site monitoring well locations are shown on Figure 2; well construction information is provided in Table 1. All wells were routinely monitored either monthly or quarterly from their installation up until the last recorded sampling event in June 1999 (CET, 1999).

When ATT installed groundwater monitoring wells MW1, MW2, and MW3 in July 1991, soil samples were collected from the borings at depths of 10 to 15 feet below ground surface (bgs) and analyzed for total petroleum hydrocarbons quantified as gasoline (TPHg) and diesel (TPHd), benzene, toluene, ethylbenzene, and xylenes, collectively referred to as BTEX (ATT, 1992). No detections of these compounds were reported for samples collected from MW1. The soil sample collected from MW2

ALDRICH

1

¹ One 1,000-gallon and one 8,000-gallon gasoline tank; one 2,000-gallon and two 4,000-gallon diesel tanks; and two 1,000-gallon waste oil tanks.

contained 25 milligrams per kilogram (mg/kg) of TPHg, 23 mg/kg TPHd, 0.083 mg/kg benzene, 0.280 mg/kg toluene, 0.320 mg/kg ethyl benzene, and 1.7 mg/kg xylenes. The soil sample collected from MW3 contained 490 mg/kg TPHg, 110 mg/kg TPHd, 0.390 mg/kg benzene, <0.0025 mg/kg toluene, 2.1 mg/kg ethyl benzene, and 2.2 mg/kg xylenes. The boring log for MW3 indicated that the well may have been drilled within the limits of the former excavation, which was reported to have been potentially backfilled with excavated material (ATT, 1992) and may not be indicative of undisturbed soil conditions beneath the majority of the Site.

1.2 SITE GEOLOGY AND HYDROLOGY

The Site geologic and hydrogeologic conditions are described in the conceptual site model (CSM) presented in Section 4 of this Report.

2. Investigation Methods

Six on-Site monitoring wells were redeveloped, sampled, and surveyed in October 2017; the sections below describe the methods used to complete the scope of work.

2.1 FIELD PREPARATION

Haley & Aldrich coordinated Site access with Nestlé and contracted with the field sampling, laboratory, and waste disposal subcontractors prior to the field work. On 18 July 2017, Haley & Aldrich performed an initial Site visit to locate the existing monitoring wells, assess their present condition, including well box integrity, and measure total depth inside the casing.

2.2 WELL REDEVELOPMENT

Haley & Aldrich subcontracted with Field Solutions, Inc. (FSI) to perform the well redevelopment, and each well was redeveloped on 23 October 2017. The screen interval of each well was surged with a surge block, and the suspended sediment was removed with a bailer. Each well was then purged using a bailer or submersible pump while measuring and recording water quality parameters (temperature, pH, specific conductivity, oxidation-reduction potential [ORP], and dissolved oxygen [DO]).

Three of the wells (MW1, MW4, and MW5) were constructed with 2-inch diameter well casing and purged a minimum of 10 casing volumes as per the Work Plan. The other three wells (MW2, MW3, and MW6) were constructed with 4-inch well casing and initially purged dry but water levels did not recover in time to allow for purging 10 casing volumes. This apparently slow water level recovery is attributed in part to the much larger storage volume of the 4-inch diameter well casing and filter pack compared to the 2-inch wells. Given that the primary objective of this well redevelopment is to clear potential scale from the screen and remove any sediment buildup in the well, the groundwater volumes purged from the 4-inch wells (28 to 63 gallons) were deemed adequate to provide representative groundwater samples. Field records are provided in Appendix A.

2.3 WELL SAMPLING

Haley & Aldrich subcontracted with FSI to collect depth to water measurements and groundwater samples from each monitoring well on 31 October 2017. Prior to sampling, the wells were purged using low-flow methods with a peristaltic pump and new, disposable low-density polyethylene tubing while monitoring water quality parameters with a YSI water quality probe. The wells were purged until water quality parameters stabilized. After purging, groundwater samples were collected from the pump effluent into laboratory-provided sample containers. Samples were then labeled, sealed in plastic bags, placed in an ice-cooled chest and shipped to the analytical laboratory under standard chain of custody procedures.

Quality assurance/quality control (QA/QC) samples were collected and included one blind field duplicate and one equipment blank. A laboratory-provided trip blank sample was also submitted with the sample shipment. The field duplicate sample was collected using the same methods described above. The equipment blank sample was collected by pumping laboratory-prepared deionized water into laboratory-provided sample containers using the same groundwater sampling pump and new disposable tubing.

2.4 LABORATORY ANALYSIS

Groundwater samples were analyzed by Test America Inc., a California-certified analytical laboratory, for the following:

- TPHg and the full list of volatile organic compounds (VOCs) using U.S. Environmental Protection Agency (EPA) Method 8260B;
- TPHd and TPH as motor oil (TPHmo) using EPA Method 8015M; and
- Priority pollutant polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8270C.

The samples were also analyzed for the following geochemical parameters to aid in assessing natural attenuation processes to develop the CSM:

- Nitrate and sulfate using EPA Method 300.0;
- Dissolved iron and manganese using EPA Method 6010B; and
- Alkalinity using Standard Method 2320B.

The laboratory analytical report is provided in Appendix B.

2.5 WELL SURVEYING

The groundwater monitoring well locations were previously surveyed to a local datum, and the top of casing elevations were measured relative to mean sea level. Current State of California requirements specify that locations and elevations be surveyed relative to the North American Datum of 1983 and NAVD88, respectively. Haley & Aldrich subcontracted with Kister, Savio, and Rei, a California-licensed land surveying company, to survey the location and elevation of each well on 23 October 2017. The survey data are included as Appendix C.

2.6 DECONTAMINATION AND WASTE MANAGEMENT

Reused downhole equipment (such as the electric sounder and submersible pump) were decontaminated using a wash of Liquinox® detergent and distilled water, followed by a distilled water rinse. Decontamination water and purged groundwater were contained in Department of Transportation-rated 55-gallon drums and temporarily stored on-Site pending profiling and disposal at an appropriate facility.

3. Results

The sections below discuss the results of the groundwater monitoring event conducted on 31 October 2017.

3.1 GROUNDWATER ELEVATIONS

The depth to water measured in Site monitoring wells ranged from 9.58 to 13.12 feet below top of casing, corresponding to groundwater elevations between 179.43 and 183.02 feet NAVD88, as shown on Table 2 and Figure 3. The horizontal hydraulic gradient is to the southwest, with a magnitude ranging from approximately 0.02 to 0.04. A rose diagram indicating historical directions of hydraulic gradient was prepared using the EPA's online hydraulic gradient calculating tool², and is provided on Figure 3. Groundwater elevations and the inferred direction of the hydraulic gradient are generally consistent with reported historical results (e.g., CET, 1995 and 1999) and is consistent with the regional groundwater flow direction (San Francisco Bay Regional Water Quality Control Board [RWQCB], 1999); historical groundwater elevation data are provided in Appendix D.

3.2 GROUNDWATER ANALYTICAL RESULTS

The sections below describe the analytical results for groundwater samples collected on 31 October 2017. The results for organic compounds in groundwater are summarized in Table 3 and Figure 4; the results for natural attenuation parameters are summarized in Table 4. Historical analytical data are presented in Appendix E.

3.2.1 Quality Assurance/Quality Control

Haley & Aldrich performed a QA/QC evaluation on the laboratory analytical data in accordance with the National Functional Guidelines for Inorganic Superfund Methods Data Review (EPA, 2017a) and the National Functional Guidelines for Organic Superfund Methods Data Review (EPA, 2017b). The QA/QC results are summarized in Appendix F.

Overall, the laboratory quality control sample analyses indicate that the test results in this report are of sufficient quality to support the presented conclusions and the results are valid and usable.

3.2.2 Total Petroleum Hydrocarbons

TPHg and TPHd were detected in three of the six Site monitoring wells (MW2, MW3, and MW5). Where detected, TPHg concentrations ranged from 3,400 micrograms per liter (μ g/L; in MW3) to 4,500 μ g/L (in MW2); TPHd concentrations ranged from 930 μ g/L (in MW3) to 1,300 μ g/L (in MW2). TPHmo was not detected above the laboratory reporting limits in any sample collected during this sampling event. Petroleum hydrocarbons were not detected at well MW4, located the farthest downgradient from the southern cluster of former USTs.

In general, TPHg and TPHd concentrations were consistent with, or lower than, historical concentrations (Figures 5 through 10, and Appendix E). Concentrations in some wells have decreased by one to two

HALEY ALDRICH

5

² https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/gradient4plus-ns.html

orders of magnitude from historical high concentrations. For example, MW4 historically contained TPHg concentrations in excess of 10,000 μ g/L, but no TPHg was detected in the most recent sampling event.

3.2.3 Volatile Organic Compounds

Aromatic hydrocarbons commonly associated with gasoline and diesel (BTEX compounds, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, sec-butylbenzene, p-isopropyltoluene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, and tert-butylbenzene) were detected above the laboratory reporting limit in samples collected from Site monitoring wells (Table 3). Chloroform is widely recognized as a disinfectant byproduct present in municipal water supply. Its detection at MW1 may be related to leaks from water distribution lines and/or landscape irrigation.

BTEX compounds are commonly detected in groundwater at fuel release sites. The analytical results for BTEX compounds are summarized below.

- Benzene concentrations ranged from 3.3 μ g/L in MW2 to 130 μ g/L in MW3. Benzene was not detected above the laboratory reporting limit in wells MW1, MW4, and MW6.
- Toluene concentrations ranged from 1.1 μ g/L in MW2 to 5.0 μ g/L in MW3. Toluene was not detected above the laboratory reporting limit in wells MW1, MW4, and MW6.
- Ethylbenzene concentrations ranged from 2.9 μ g/L in MW3 to 42 μ g/L in MW5. Ethylbenzene was not detected above the laboratory reporting limit in wells MW1, MW4, and MW6.
- Total xylene concentrations ranged from 6.3 μ g/L in MW2 to 13 μ g/L in MW3. Total xylene was not detected above the laboratory reporting limit in wells MW1, MW4, and MW6.

Similar to TPH, the BTEX compound concentrations reported in Table 3 were generally much lower than historical concentrations (Figures 5 through 10, and Appendix E). Concentrations of certain constituents in wells MW2 and MW5 decreased by three orders of magnitude from historical high concentrations.

Naphthalene analysis is included in both the volatile (8260) and semi-volatile (8270) analytical lists. The naphthalene concentration analyzed using EPA Method 8260 were consistently higher than the concentrations using EPA Method 8270. Low naphthalene concentrations (up to $4.4 \mu g/L$; analyzed by EPA Method 8260) were reported in the groundwater samples collected from MW2, MW3, and MW5.

3.2.4 Polycyclic Aromatic Hydrocarbons

Low acenaphthene concentrations (up to $0.31~\mu g/L$) and fluorene concentrations (up to $0.24~\mu g/L$) were detected in wells MW2 and MW5. Low naphthalene concentrations (up to $2.7~\mu g/L$) analyzed by EPA Method 8270) were detected in wells MW2, MW3, and MW5.

4. Conceptual Site Model

In accordance with the Low-Threat Closure Policy, a CSM was developed for the Site to describe the Site's hydrogeologic and environmental conditions and the nature and extent of impacts.

4.1 REGIONAL GEOLOGY AND HYDROGEOLOGY

The Site is within an upland portion of the Oakland sub-area in the East Bay Plain, a northwest trending alluvial plane bounded by San Pablo Bay to the north, the Franciscan bedrock of the Oakland hills to the east, the Niles Cone Groundwater Basin to the south, and San Francisco Bay to the west (Figuers, 1998). The Oakland sub-area contains a sequence of alluvial fans up to 700 feet thick that overlies the Franciscan bedrock (Figuers, 1998). Groundwater yields are low in this upland area because of the low recharge potential (RWQCB, 1999). Harwood Creek runs in an engineered drainage beneath College Avenue east of the Site and south of the Site along Chabot Road (Sowers, 2000). The closest, downgradient major surface water body is the San Francisco Bay, located approximately 2.5 miles to the west.

Site groundwater is unlikely to be used as drinking water since the Site lies in the service area of the East Bay Municipal Utility District, which sources water from the Mokelumne River Watershed, located in the Sierra Nevada and approximately 90 miles east of the Site.

4.2 LOCAL GEOLOGY AND HYDROGEOLOGY

The native alluvial soils underlying the Site are generally composed of silty to sandy clay to an average depth of 30 feet bgs with occasional saturated lenses of sand and/or gravel present at depths below 10 feet bgs. These lenses do not appear to be laterally continuous across the Site. The depth to water measured in wells ranged between approximately 9 and 13 feet bgs in the most recent monitoring event; the direction of the horizontal hydraulic gradient is generally to the south or southwest (Figure 3). Based on the fine-grained nature of the shallow subsurface, groundwater velocities are expected to be low.

4.3 SITE CHEMICALS OF CONCERN

The chemicals of concern (COCs) at the Site are fuel-related compounds such as TPHg, TPHd, and BTEX compounds. Other fuel-related VOCs, including naphthalene, have also been detected, but generally at lower concentrations than TPH and benzene. Potential sources for these COCs in groundwater include leaks from the seven former USTs (gasoline, diesel, and waste oil) shown on Figure 2 and upgradient fuel releases. The seven former USTs, along with up to 550 cubic yards of impacted soils, were removed between December 1989 and February 1990. The excavation of the tanks and impacted soils are believed to have removed the primary source of impacts to the subsurface; there has been no documented residual non-aqueous phase liquid to act as an ongoing source of COCs to groundwater.

4.3.1 Soil

Limited post-excavation soil analytical data are available; however, soil samples collected between 10 and 15 feet bgs when installing wells MW1, MW2, and MW3 (ATT, 1992) indicated TPHg and TPHd concentrations up to 490 and 110 mg/kg, respectively, in areas near the former USTs. Benzene was

detected at concentrations up to 0.39 mg/kg. No COCs were detected in soil at upgradient well MW1. The boring log for MW3 indicated the well may have been drilled within the limits of the former excavation (potentially backfilled with previously excavated materials), and the concentrations detected in soil at MW3 may therefore not be representative of undisturbed soil at the Site. TPHd and TPHg concentrations in the other locations sampled in 1991 were at or below 25 mg/kg. The detected concentrations at all soil sampling locations are below the Environmental Screening Levels ([ESLs]; RWQCB, 2016) for direct contact (commercial) and leaching to groundwater. Since these soil data were collected in 1991 it is likely that the concentrations are now lower because of the natural attenuation processes.

4.3.2 Groundwater

Groundwater COCs were detected during the most recent monitoring event in wells located downgradient of the two clusters of former USTs (MW2, MW3, and MW5); COCs were not detected in wells located upgradient, cross-gradient, or farther downgradient of the former USTs (MW1, MW4, and MW6; Figure 3). For the most recent (October 2017) monitoring event, the highest TPHg and TPHd concentrations (4,500 J and 1,300 μ g/L) were reported in the samples from MW2, located downgradient of the former waste oil USTs; the highest benzene concentration (130 μ g/L) was detected at MW3, located approximately 10 feet downgradient of the former UST excavation limits. Where detected, other benzene concentrations ranged from 3.0 μ g/L (MW2) to 7.4 (MW5). No COCs were detected at MW4, located farther downgradient of MW3. This is an indication that the COCs related to the former UST excavation area attenuate rapidly in short distance from this area because of a combination of successful source removal and natural attenuation. As shown on Figures 5 through 10 and in Appendix E, COC concentrations in groundwater have generally decreased from historical maximum values, in some cases by several orders of magnitude. This is an indication that natural attenuation processes are degrading COCs in situ, as described further below.

4.4 NATURAL ATTENUATION

TPHg, TPHd, and BTEX concentrations have greatly decreased since the previous sampling event conducted at the Site in 1999 (Appendix E). For example, TPHg concentrations in well MW2 ranged from 91,000 μ g/L in 1991 to 21,000 μ g/L in 1999 and have now decreased to 4,500 μ g/L in 2017. TPHg concentrations in well MW-5 ranged from 31,000 μ g/L in 1993 to 23,000 μ g/L in 1999 and have now decreased to 3,500 μ g/L in 2017. Similarly, benzene was detected at a concentration of 8,300 μ g/L in well MW2 in 1991; the concentration detected in 2017 was 3.3 μ g/L. TPH and BTEX concentration plots in monitoring wells versus time display an overall decreasing trend in COC concentrations following source removal (Figures 5 through 10). The decreasing concentrations in these wells since the last sampling event is an indicator that natural attenuation of COCs is occurring at the Site.

Petroleum hydrocarbon COCs are readily degraded aerobically and anaerobically through microbial processes. Indigenous microbes present in groundwater consume petroleum hydrocarbons as a "food source" and consume oxygen, if present in groundwater, as part of an aerobic respirative process. The consumption of oxygen creates an anaerobic environment in the subsurface characterized by low DO values. Indigenous microbes continue to consume petroleum hydrocarbons after DO is depleted. As anaerobic conditions prevail, COCs are destroyed by anaerobic microbes that reduce nitrate, sulfate, iron, and manganese in place of oxygen to facilitate metabolism. This results in a decrease in nitrate and sulfate concentrations and an increase in dissolved iron and manganese concentrations in groundwater. As shown in Table 4, monitoring well samples located upgradient, cross-gradient, or farther

downgradient of the former USTs where TPH concentrations were non-detected (MW1, MW4, and MW6) contained relatively higher DO concentration, ORP values, and somewhat higher nitrate and sulfate concentrations compared to MW2, MW3 and MW5. This indicates that Site COCs are biodegraded through aerobic and anaerobic microbially-mediated processes.

Based on current concentration trends in Site wells, the Tier 1 ESL of 100 μ g/L for both TPHg and TPHd is expected to be achieved through natural attenuation within the near future. Tier 1 ESLs for benzene and ethylbenzene (1 μ g/L and 40 μ g/L, respectively) could also feasibly be achieved in most wells through natural attenuation in the near future (toluene and xylenes already meet Tier 1 ESLs).

Because of the relatively low permeability Site soils and generally low groundwater flow gradient, the natural attenuation process has proven to be sufficient to break down residual petroleum hydrocarbon COCs at the Site to levels close to or below the Water Board's Tier 1 ESLs for most COCs near former source areas and to non-detect at the downgradient Site boundary (MW4). While certain COCs (such as benzene, ethylbenzene, and naphthalene) exceeded the Tier 1 ESL during the last sampling event at locations very close to the former source areas, benzene and naphthalene will continue to degrade over time. The decreasing trend of COCs at MW4 from concentrations greater than 1,000 μ g/L in 1994 to non-detect levels in 2017 is an indication that the extent of COCs in groundwater has receded over this time frame, and the COCs are therefore not moving downgradient.

4.5 RECEPTORS

As previously discussed, the groundwater beneath the Site is not likely to be used as a drinking water source in the near or distant future. There are also no surface water bodies located within one mile downgradient of the Site. Based on a review of the State's GeoTracker GAMA database, there are no public water supply wells within one mile of the Site. A 2015 report for the Sheaffs Garage site located across the Street from the Site (Golden Gate Environmental, 2015) indicated that there is one domestic supply well located downgradient of the Site, at 5629 Vincent Street (approximately 0.5 mile away). Haley & Aldrich has not confirmed the existence or status of this well given its distance from the Site.

Another potential exposure pathway for Site COCs is via vapor intrusion. Except for benzene at well MW3 (which may have been installed within the former excavation backfill), all COC concentrations in groundwater are below their respective Groundwater Vapor Intrusion Human Health Risk ESLs for commercial/industrial properties (Table 3). COCs in Site groundwater are therefore not expected to be a vapor intrusion concern.

4.6 LOW-THREAT CASE CLOSURE EVALUATION

Haley & Aldrich evaluated the Site conditions relative to the general and specific criteria for low-threat closure described in the Low-Threat Closure Policy. That evaluation is presented in tabular form in Appendix G.

Based on the evaluation, although data gaps have been identified, Haley & Aldrich believes there are sufficient lines of evidence to determine that the Site meets the criteria for low-threat case closure. These lines of evidence are summarized below.

4.6.1 General Criteria

As shown in Appendix G, the general criteria of the Low Threat Closure Policy have all been met.

4.6.2 Groundwater-Specific Criteria

As shown in Appendix G, the groundwater criteria of the Low Threat Closure Policy have been met with the assumption that MW4 is representative of the downgradient monitoring wells. Monitoring well MW5 reported TPHg, TPHd, benzene, ethyl benzene and naphthalene concentrations above Tier 1 ESLs and is cross-gradient of MW4. Although MW5 has no monitoring well farther downgradient of its location, the rapid attenuation with distance observed between MW3 and MW4 provides empirical evidence that dissolved COCs are not likely to extend far beyond MW5. The current and historical data clearly indicate decreasing concentration trends of TPH and BTEX in groundwater over time. Based on the trends, water quality objectives can likely be achieved in most wells within a reasonable time frame. Geochemical conditions and analytical results presented in this report indicate that natural attenuation of petroleum hydrocarbons is occurring at the Site. The generally fine-grained nature of the subsurface and low yields of monitoring wells suggests that groundwater velocities (and mass flux of COCs) is likely to be low. Finally, there is little risk to human health (via direct contact or vapor intrusion, as discussed in greater detail below), or to the environment (as there are no surface water bodies near the Site). Haley & Aldrich therefore believes that the groundwater-specific criteria of the Low Threat Closure Policy are satisfied; however, the determination for whether the Site meets these criteria is reserved for ACDEH.

4.6.3 Vapor Intrusion to Indoor Air Criteria

As shown in Appendix G, Haley & Aldrich believes that Scenario 3a of the Low Threat Closure Policy is satisfied for the vapor intrusion criteria. The average depth to water for current and historical groundwater monitoring events is greater than 10 feet bgs across the Site, as shown in Appendix D. Except for MW3, benzene concentrations in groundwater are below 100 μ g/L, and TPH concentrations in soil are below 100 μ g/kg.

Haley & Aldrich acknowledges that post-remediation soil samples are only available from the installation of MW1, MW2, and MW3 in 1991. It is also noted that benzene in groundwater at MW3 slightly exceeds $100~\mu g/L$ ($130~\mu g/L$ in the October 2017 monitoring event), and soil at this location contained greater than 100~m g/k g in the sample collected in 1991. However, as previously discussed, this well was potentially drilled within the limits of the former excavation (potentially backfilled with excavated soil), and may not represent subsurface conditions present across the Site. Moreover, soil concentrations have likely decreased since 1991, and benzene concentrations in groundwater have continued to decrease, because of natural attenuation. It is likely that groundwater concentrations in MW3 will soon meet the criteria set forth in the Low Threat Closure Policy.

Lastly, while a Site-specific risk assessment has not been completed for the Site, an initial screening of groundwater concentrations against Groundwater Vapor Intrusion Human Health Risk ESLs (Table 3) indicates that concentrations in all wells are below the applicable ESLs, except for MW3 as noted above.

4.6.4 Direct Contact / Outdoor Air Criteria

As shown in Appendix G, although data gaps in soil data exist, Haley & Aldrich believes that the Site potentially meets Criteria A of the Low Threat Closure Policy for direct contact and outdoor air exposure.

As described above, the only soil analytical data available for the Site are limited to the samples collected in 1991 from MW1, MW2, and MW3 up to depths of 10 feet bgs . However, the available data indicate that benzene and ethylbenzene concentrations are below the criteria in Table 1 of the of the Low Threat Closure Policy, even for the sample collected from well MW3. Post-remediation analytical results for naphthalene and other PAHs are not available; however, based on the low PAH concentrations detected in groundwater (less than 5 μ g/L; Table 3), significant PAH impacts are not likely to be present at the Site.

5. Summary and Recommendations

In October 2017, Haley & Aldrich completed additional well redevelopment, well gauging, sampling, and well surveying at the Site at the request of ACDEH. The results of the groundwater monitoring event indicated that in general, COC concentrations in groundwater have decreased significantly (by several orders of magnitude in some wells) from historical high concentrations. The results also indicate that natural attenuation of petroleum hydrocarbons is occurring at the Site and concentrations are likely to continue to decrease over time. Water quality objectives (results were initially compared to Tier 1 ESLs) can likely be met in a reasonable time frame via natural attenuation.

Although data gaps may exist (for example, the soil data is from 1991), multiple lines of evidence indicate that the Site likely meets the closure criteria specified in the Low-Threat Closure Policy and does not pose an unacceptable risk to human health and the environment. Haley & Aldrich therefore requests that the Site be considered for closure, and welcomes the opportunity to discuss the findings and conclusions of this report with ACDEH at their earliest convenience.

References

- 1. Aqua Terra Technologies (ATT), 1992. Groundwater Investigation, 5929 College Avenue, Oakland, California (ATT Project No. 9126), February.
- 2. ATT, 1993. First Quarter 1993 Groundwater Monitoring Report and Subsurface Investigation, Dreyer's Grand Ice Cream, 5929 College Avenue, Oakland, California (Project No. 919313), April.
- CET Environmental Services (CET), 1995. Second Quarter 1995 Groundwater Monitoring Report, Dreyer's Grand Ice Cream, 5929 College Avenue, Oakland, California (CET Project Number 3534-001), August.
- 4. CET, 1999. Second Quarter 1999 Groundwater Monitoring, Geoprobe Investigation Results and Work Plan for Bioindicator Sampling, November.
- 5. Figuers, S., 1998. Groundwater Study and Water Supply History of the East Bay Plain, Alameda and Contra Costa Counties, CA, June.
- 6. Golden Gate Environmental, 2015. Data Gap Investigation Work Plan, Sheaffs Service garage, 5930 College Avenue, Oakland, California, January.
- 7. GGTR, 2016. Data Gap Investigation Report, Alameda County LOP Case # R00000377, March.
- 8. Haley & Aldrich, 2017. Work Plan for Well Redevelopment and Sampling Dreyer's Grand Ice Cream, 5929 College Avenue, Oakland, California. August.
- 9. San Francisco Bay Regional Water Quality Control Board, 1999. East Bay Plain Groundwater
 Basin Beneficial Use Evaluation Report, Alameda and Contra Costa Counties, CA., California
 Regional Water Quality Control Board, San Francisco Bay Region Groundwater Committee, June.
- 10. San Francisco Bay Regional Water Quality Control Board, 2016. Environmental Screening Levels, Rev. 3, February.
- 11. Sowers, 2000. Creek & Watershed Map of Oakland & Berkeley, Oakland Museum of California, ISBN: 1-882140-11-7
- 12. U.S. Environmental Protection Agency, 2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review. April.
- 13. U.S. Environmental Protection Agency, 2017b. National Functional Guidelines for Organic Superfund Methods Data Review. April.

G:\Nestle\Nestle Dreyer's project\DELIVERABLES\Well Sampling Report\2017-1215-HAI-Nestle_RIReport_D.docx

TABLE 1
WELL CONSTRUCTION DETAILS
DREYERS GRAND ICE CREAM
5929 COLLEGE AVENUE

OAKLAND, CALIFORNIA

Well ID	Installation Date	Well Diameter (inches)	Well Material	Top of Casing Elevation (feet NAVD88)	Screen Interval (feet bgs)	Reported Total Well Depth (feet bgs)
MW1	7/16/1991	2	PVC	194.49	10 - 30	30
MW2	7/17/1991	4	PVC	191.15	8 - 28	28
MW3	7/18/1991	4	PVC	190.57	7 - 27	27
MW4	8/20/1993	2	PVC	190.13	7 - 27	27
MW5	8/20/1993	2	PVC	190.14	9 - 29	29
MW6	8/20/1993	4	PVC	192.60	9 - 29	29

Abbreviations:

bgs = below ground surface

PVC = polyvinyl chloride

NAVD88 = North American Vertical Datum of 1988

TABLE 2
GROUNDWATER ELEVATION DATA - 31 OCTOBER 2017

DREYERS GRAND ICE CREAM 5929 COLLEGE AVENUE OAKLAND, CALIFORNIA

		Top of Casing		Groundwater
		Elevation	Depth to Water	Elevation
Well Name	Date	(feet NAVD88)	(feet BTOC)	(feet NAVD88)
MW1	10/31/2017	194.49	13.12	181.37
MW2	10/31/2017	191.15	11.03	180.12
MW3	10/31/2017	190.57	10.56	180.01
MW4	10/31/2017	190.13	10.70	179.43
MW5	10/31/2017	190.14	10.27	179.87
MW6	10/31/2017	192.60	9.58	183.02

Abbreviations:

NAVD88 = North American Vertical Datum of 1988

BTOC = below top of casing

TABLE 3
GROUNDWATER ANALYTICAL RESULTS FOR ORGANIC COMPOUNDS - 31 OCTOBER 2017

DREYER'S GRAND ICE CREAM 5929 COLLEGE AVENUE OAKLAND, CALIFORNIA

Location	2016 Tier 1	2016 Vapor	MW1	MW2	MW2	MW3	MW4	MW5	MW6
Sample Date	ESL	Intrusion	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017
Sample Type	ESL	ESL	Primary	Primary	Duplicate	Primary	Primary	Primary	Primary
Total Petroleum Hydrocarbons (μg/L)									
Total Petroleum Hydrocarbons (C4-C12) Gasoline	100	1	< 50	4,500 J	2,600 J	3,400 J	< 50	3,500 J	< 50
Total Petroleum Hydrocarbons (C10-C28) DRO	100	1	< 51	1,100	1,300	930	< 50	1,200	< 50
Volatile Organic Compounds (μg/L)									
Benzene	1.0	9.7	< 0.50	3.3	3.0	130	< 0.50	7.4	< 0.50
Toluene	40	30,000	< 0.50	1.1	1.0	5.0	< 0.50	1.4	< 0.50
Ethylbenzene	13	110	< 0.50	9.6	8.9	2.9	< 0.50	42	< 0.50
Xylene (total)	20	11,000	< 1.0	6.3	6.1	13	< 1.0	5.7	< 1.0
Naphthalene	0.17	170	< 1.0	1.2	1.3	1.6	< 1.0	4.4	< 1.0
1,2,4-Trimethylbenzene	1	1	< 0.50	0.75	0.78	0.52	< 0.50	0.75	< 0.50
1,3,5-Trimethylbenzene	ı	ı	< 0.50	2.5	2.5	0.98	< 0.50	2.5	< 0.50
2-Phenylbutane (sec-Butylbenzene)	ı	ı	< 1.0	< 1.0	9.2 J	9.7 J	< 1.0	16 J	< 1.0
Chloroform (Trichloromethane)	2.3	20	3.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Cymene (p-Isopropyltoluene)	-	-	< 1.0	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 1.0
Isopropylbenzene (Cumene)	1	-	< 0.50	26	25	58	< 0.50	78	< 0.50
n-Butylbenzene	1	-	< 1.0	18	19	9.8	< 1.0	29	< 1.0
n-Propylbenzene	ı	ı	< 1.0	49	47	74	< 1.0	150	< 1.0
tert-Butylbenzene	ı	ı	< 1.0	43	45	2.0	< 1.0	44	< 1.0
Polycyclic Aromatic Hydrocarbons (µg/L)									
Acenaphthene	20	1	< 0.10	0.26	0.31	< 0.10	< 0.10	0.28	< 0.10
Fluorene	3.9	-	< 0.10	0.21	0.24	< 0.10	< 0.10	0.23	< 0.10
Naphthalene	0.12	170	< 0.10	1.0	1.2	1.3	< 0.10	2.7	< 0.10

Notes:

Only those compounds detected in one or more samples are shown; for a complete list of analytes, see the laboratory report (Appendix B)

Results in **bold** indicate the compound was detected in the sample.

Total Petroleum Hydrocarbons Gasoline Range Organic (GRO) and Volatile Organic Compounds (VOCs) analyzed uisng USEPA Method 8260f

Total Petroleum Hydrocarbons Diesel Range Organic (DRO) and Motor Oil analyzed uisng USEPA Method 8015E

Polycyclic Aronmatic Hydrocarbons (PAHs) analyzed using USEPA Method SW8270SIM

Abbreviations:

μg/L = micrograms per liter

ESL = Environmental Screening Levels (Water Board, 2016).

[&]quot;<" indicates the compound was not detected in the sample above the laboratory reporting limit shown.

[&]quot;J" indicates the result is approximate; see the QA/QC results presented in Appendix F.

TABLE 4
GROUNDWATER ANALYTICAL RESULTS FOR NATURAL ATTENUATION PARAMETERS - 31 OCTOBER 2017

DREYER'S GRAND ICE CREAM 5929 COLLEGE AVENUE OAKLAND, CALIFORNIA

Location	MW1	MW2	MW2	MW3	MW4	MW5	MW6	
Sample Date	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	10/31/2017	
Sample Type	Primary	Primary	Duplicate	Primary	Primary	Primary	Primary	
Anions (mg/L)								
Nitrate (as N)	5.2	< 0.23	< 0.23	< 0.23	0.53	< 0.23	< 0.23	
Nitrite (as N)	0.36	0.89	0.91	0.35	< 0.30	0.96	< 0.30	
Sulfate	19	< 1.0	< 1.0	5.0	11	< 1.0	6.5	
Alkalinity (mg/L)								
Alkalinity, Hydroxide	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Alkalinity, Bicarbonate (as CaCO3)	160	370	370	550	430	380	320	
Alkalinity, Carbonate	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Alkalinity, Total (as CaCO3)	160	370	370	550	430	380	320	
Dissolved Metals (mg/L)								
Iron	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Manganese	< 0.020	6.4	6.2	4.4	0.92	7.1	0.99	
Dissolved Oxygen (mg/L) - measured in the field								
Dissolved Oxygen	2.27	0.58	-	0.16	0.24	0.14	2.27	

Notes:

"<" indicates the compound was not detected in the sample above the laboratory reporting limit shown.

Results in **bold** indicate the compound was detected in the sample.

Anions (Nitrate, Nitrite, and Sulfate) analyzed using USEPA Method E300.0

Alkalinity analyzed using Standard Method 2320B

Dissolved Metals (Iron and Manganese) analyzed using USEPA Method SW6010B

Abbreviations:

mg/L = milligrams per liter

- TPHg
- TPHd
- Benzene
- Toluene
- Ethylbenzene
- Xylenes

Notes:

1. Open circles indicate the compound was not detected; value shown is the associated reporting limit.

Abbreviations:

TPHd = Total Petroleum Hydrocarbons as diesel

TPHg = Total Petroleum Hydrocarbons as gasoline

μg/L = micrograms per liter

NESTLÉ USA, INC.
DREYER'S GRAND ICE CREAM
5929 COLLEGE AVENUE
OAKLAND, CALIFORNIA

CONCENTRATION TRENDS FOR MW-6

DECEMBER 2017

FIGURE 10

APPENDIX A

Field Forms

VING SOLIDS/WATER Start Time (2400 Hr):						WELL II	o: My	-1_	
INFORMATION - Gallons per linear ft for casing diameter of: 2" = 0.163 4" = 0.653 4.5" = 0.83 6" = 1.5 8" = 2.6 Depth to liquid (ft): 17.90 Well depth (ft): 20.4 One casing volume (gal) 1.25 Wetted screen length (ft): 18.8 End time (2400 Hr): 1	JECT NO	D.:	- 411			SAMPLI	E ID:/\(\begin{array}{cccccccccccccccccccccccccccccccccccc	(1)	
INFORMATION - Gallons per linear ft for casing diameter of: 2" = 0.163 4" = 0.653 4.5" = 0.83 6" = 1.5 8" = 2.6 diameter (in): Depth to liquid (ft): 12.90 Well depth (ft): 20.4 One casing volume (gal) 1.28 diameter (in): Solids (ft): 20.4 One casing volume (gal) 1.28 diameter (ft):	DJECT N	AME: NC	STIL.			DATE	EVELOPED:	10-	23-17
INFORMATION - Gallons per linear ft for casing diameter of: 2" = 0.163 4" = 0.653 4.5" = 0.83 6" = 1.5 8" = 2.6 diameter (in): Depth to liquid (ft): 12.90 Well depth (ft): 20.4 One casing volume (gal) 1.28 diameter (in): Solids (ft): 20.4 One casing volume (gal) 1.28 diameter (ft):	CATION:	<u> Dakb</u>	ind_						
Depth to liquid (ft): Wetted screen length (ft):					. 3:		163 4" = 0.	653 4.5" =	= 0.83 6" = 1.5 8" = 2.6
Depth to liquid (ft): Wetted screen length (ft):	ELL INFO	ORMATION	– Gallons p	er linear ft fo	or casing aid	O Wall donth (A	204	One casing	g volume (gal)
VING SOLIDS/WATER Start Time (2400 Hr):	sing diam	eter (in): 🔼	De	pth to liquid	(y): 1771	_ wen deput (n	ma)	. •	
VING SOLIDS/WATER Start Time (2400 Hr):	eened into	erval (ft):	7-20	Wetted s	creen length	(ii): _/ ///)		
repth following solids/water removal (ft): 28.4 Hard bottom reached (Y/N) Pump Rate (gpm) 19 e purged: 38.2 (gal) Solids/water disposal: 19 Volume (gal) iters (ft) (°C) (std. units) (μS@25°C) (NTU) Solids (i.e. color/odor) 29 20 10 10 10 10 10 10 10 10 10		l	,0-50		,	210	E 14i (7	400 He).	1738
epth following solids/water removal (ft): 28.4 Hard bottom reached (Y/N) Pump Rate (gpm) 19 e purged: 38.2 (gal) Solids/water disposal: Drung on 5/H Volume DTW Temp pH (std. units) (µS@25°C) (NTU) Settable Solids (i.e. color/odor) Hr) (gal) iters) (ft) (°C) (std. units) (µS@25°C) (NTU) Settable Solids (i.e. color/odor) 2.2	MOVIN	G SOLIDS/W	ATER S	tart Time (24	100 Hr): _ _	3/8	End time (2	400 III)	Hand auger
eputh following solids/water removal (ft): 28.4 Hard bottom reached (Y/N) Pump Rate (gpm) 1.9 e purged: 38.2 (gal) Solids/water disposal: DY uns on 51 h Volume (gal-liters) DTW Temp (std. units) PH (std. units) (µS@25°C) Turbidity Solids (%) Solids (%) (gal-liters) (ft) (°C) (std. units) (µS@25°C) (NTU) Solids (%) 2 20 100 24.9 (6.69 502 688.2 5 Brown nome of the control of	-submers	ible 🗶 G	rundfos-sub	mersible	_ Centrifu	gal X PVC	bailer	Stainiess da	ilet 11min mg
e purged: 38.2 (gal) Solids/water disposal: Dy unc on 51 h. EVolume (gal-liters) (ft) Temp (°C) (std. units) (μS@25°C) Turbidity (NTU) Solids (i.e. color/odor) 2 20 MJ 249 6.69 502 686.2 5 βroun noru 2 4.0 MD 20.7 6.40 404 298.4 βrann noru 5 23.20 MD 20.7 6.48 4/2 298.4 βrann noru 6 23.20 MD 20.7 6.48 4/2 298.4 βrann noru 7 1.5 23.20 MD 20.7 6.18 4/2 298.4 βrann noru							~		. 1.9
e purged: 38.2 (gal) Solids/water disposal: Dy unc on 51 h. EVolume (gal-liters) (ft) Temp (°C) (std. units) (μS@25°C) Turbidity (NTU) Solids (i.e. color/odor) 2 20 MJ 249 6.69 502 686.2 5 βroun noru 2 4.0 MD 20.7 6.40 404 298.4 βrann noru 5 23.20 MD 20.7 6.48 4/2 298.4 βrann noru 6 23.20 MD 20.7 6.48 4/2 298.4 βrann noru 7 1.5 23.20 MD 20.7 6.18 4/2 298.4 βrann noru	ell denth	following solic	ls/water rem	noval (ft): 🚣	28.6	Hard bottom rea	ched (Y/N) F	ump Rate (gpm)
Volume (gal livers) PTW (ft) Temp (°C) (std. units) (μS@25°C) Turbidity (NTU) Settable Solids (i.e. color/odor) 3 20 MJ 249 (6.69 502 686.2 5 βρομη Λογι 3 4.0 MJ 20.7 6.40 404 298.4 βραμη Λογι 5 23.50 MA 20.7 (6.18 4/2) 35./ 4// βραμη Λογι 5 23.50 MA 20.7 (6.18 4/2) 35./ 4// βραμη Λογι 6 10 10 10 10 10 10 10 10 10 10 10 10 10									
Volume (gal livers) PTW (ft) Temp (°C) (std. units) (μS@25°C) Turbidity (NTU) Settable Solids (i.e. color/odor) 3 20 MJ 249 (6.69 502 686.2 5 βρομη Λογι 3 4.0 MJ 20.7 6.40 404 298.4 βραμη Λογι 5 23.50 MA 20.7 (6.18 4/2) 35./ 4// βραμη Λογι 5 23.50 MA 20.7 (6.18 4/2) 35./ 4// βραμη Λογι 6 10 10 10 10 10 10 10 10 10 10 10 10 10	olume nui	rged: 28.0	(gal) Sol	lids/water di	sposal: DX	rung e	on 51	<u> </u>	
(c) (std. units) (μS@25°C) (NTU) Solids (l.e. tolorosol) 2 20 W 249 (6.69 502 686.2 5° βρουη Λογι 3 4.0 (//) 20.7 (6.40 404 298.4 1 βγουη Λογι 5 23.50 (//) 20.7 (6.18 4//) 35./ 4// βγουη Λογι 5 23.50 (//) (1/4 60.3 0) (//)							Turbidity	Settable	
2 20 NJ 249 6.69 502 686.2 5 Brown nom 2 4.0 ND 20.7 6.40 404 298.4 1 Brown nom 5 23.0 NA 20.7 6.18 4/2 305.1 4/1 Brown nom	Time 2400 Hr)		1			(μS@25°C)	(NTU)		(I.e. color/odor)
3 4.0 MD 20.7 6.40 404 298.4 1 Brand, none 5 23.00 MD 20.7 6.40 404 298.4 1 Brand, none 5 23.00 MD 20.7 6.18 4/2 305.1 4/1 Blown nom	,		-141	24.0	110	502	1086.2		Brown nom
5 23.D /22 20,2 6.18 4/2 305.1 4// Rlown nom	322	20	fy)		6.69			_	Right som
\$ 38.0 M1 20.0 (0.33 4/4 50.3 0 Ten-none	1330		WIN			(1/2)		111	Rlam nom
8 38.3 141 20.0 (0.0) 477 77.0	1335		107	<u> </u>		1110	20.3	7	Ren- none
	1338	38,0	M	20.0	(01)	9/7	7-12		9
							+		
				<u> </u>					
		 							
				 					
				 					
					-				
				+					
					 			1	
	DEM A D	KS: TVI	1001	ins ins	de la	ath_			
TARKS: TVL , 100 to inside with	WENTON.	······································							
MARKS: Tree roots inste with									
MARKS: Tree rook inste with									
MARKS: Tree roots inste with			MC	11.00	120	ues			Reviewed by:
		1.1							
eloped by (print): Maches / famora Reviewed by: nature.	Develop	ed by (print):	11/16	1/290	1 7	CEEL-(-			Page of

	PROJECT	г no.: г name: <u>Л</u> on: <u>Oak</u>	Jest land	C			L ID: PLE ID: DEVELOP		-2 -23-1	
	Casing dia	ameter (in): _		Depth to liqu	uid (ft): 10,	diameter of: 2" = 97 Well depth (gth (ft):	(ft): 26.4	= 0.653 4.5 9 One ca	5" = 0.83 6' sing volume (" = 1.5 8" = 2.6 (gal) (O, YO
	REMOVI ES-subme	I NG SOLID S	S/WATER Grundfos-si	Start Time	(2400 Hr):_/ Centri	fugal PVC	End time	(2400 Hr): Stainless	/ <i>Y</i> _ bailer	3 & Hand auger
						Hard bottom rea		Pump Rate	: (gpm)	2. 0
	Time (2400 Hr)	Volume (gal)liters)	DTW (ft)	Temp (°C)	pH (std. units)	EC (μS@25°C)	Turbidity (NTU)	Settable Solids (%)	Comments (i.e. color/od	dor)
43	1409	21.0	14.17	22.4	6.39	800	29.5 21.5 4.4	000	Clear.	strong Strong
-	1450	51.0		21.4	6.27	¥15 ¥23	73.7 14.4	0	Black, Clear.	Strong Strong Strong
ŀ	DEMARKS	s. IMM	-/a.		0 =					
•	Then	Cond	ous.	Lo fu	var	1 gg/ons.	ut	cent 1	VeCo	harpe
1	Developed b	y (print)	1 Calley	18/1	Gueve	19			Reviewed b	py:
•									Page	_ of

PROJECT	Γ NO.:				WELL	ID: M	W+3	
PROJECT	NAME:	Vestl	L	····		 LE ID:	N TA	
LOCATIO	DN: (D) C	, Klan	<u> </u>		_ DATE	DEVELOPE	D: [0	-23-17
WELL IN Casing dia Screened	NFORMATION Ameter (in):interval (ft):	DN - Gallon. <u> </u>	per linear job Depth to liques of the Mette	fi for casing and (ft):	diameter of: 2" = 53 Well depth (gth (ft): 16.	0.163 4" = ft):	0.653 4.5 <u>Y</u> One cas	" = 0.83 6" = 1.5 8" = 2.6 ing volume (gal) 10.84
REMOVI ES-subme	NG SOLIDS	/WATER Grundfos-su	Start Time ((2400 Hr): Centri	1151 1958 PVC	End time ((2400 Hr): _ Stainless b	vailer Hand auger
				- 1.0				(gpm) <u>0.</u> <u>(</u>
Volume pu	urged: <u>46.</u>	O(gal) So	olids/water d	lisposal: I	rums	on :	sita	
Time (2400 Hr)	Volume (gal-liters)	DTW (ft)	Temp (°C)	pH (std. units)	EC (μS@25°C)	Turbidity (NTU)	Settable Solids (%)	Comments (i.e. color/odor)
1212	11.0	M	226	6.40	988	820	0	Cloudy, Strong
1224		NA	24.1	6.34	972	168.8	0	clathe strong
1508	33.2	M	21.7	6.24	952	23.1	0	clear strong
REMARK Sha	S: Wy Contra	dua us to	fund purc	Lorry L. Tru	purging	in u	<u>u.u.(</u> ~\t	Achargs Refugned to
Condin	n pro	ing LL	. 10.3	2. 14:87) .			
Developed	by (print): M	1. Call	73/R	gurves				Reviewed by:
ignature:	////	2						Page of

PROJECT	NO.:				_ WELL	ID: //	1W-	<u> </u>
PROJECT	NAME: Y	Vist	h		SAMP	LE ID:	Wr.)
LOCATIO	n: Oak	land						10-23-17
WELL IN	FORMATIO	N – Gallons	s per linear f	for casing a	liameter of: 2" =	0.163 4"=	0.653 4.5	" = 0.83 6" = 1.5 8" = 2.6
Casing dia	meter (in): 🚅	<u>3.0</u> 1	Depth to liqu	id (ft) bi	Well depth (A): <u>20,3</u>	One cas	ing volume (gal) 1.57
Screened in	nterval (ft): <u>7</u>	o-jation	Wetted	d screen leng	th (ft):	<u>+1</u> 4.38		
REMOVII	NG SOLIDS/	WATER	Start Time (2400 Hr):	1054	End time ((2400 Hr): ₋	1137
ES-submer	sible	Grundfos-su	ıbmersible _	Centrif	fugal PVC	bailer	Stainless b	pailer Hand auger
Well depth	following sol	ids/water re	moval (ft): _	26.9	Hard bottom rea	ched N)	Pump Rate	(gpm) 0.4
Volume pu	rged: 20.0) (gal) So	olids/water d	isposal: <u>D</u>	rums or	1 Sit	L	
Time (2400 Hr)	Volume (gal liters)	DTW (ft)	Temp (°C)	pH (std. units)	EC (μS@25°C)	Turbidity (NTU)	Settable Solids (%)	Comments (i.e. color/odor)
057	2.0	pus		6.44		814.4	40	Brown non
1133	10.0	Ma		6-78		2/000	30	Brown - non
1137	200	MA	228	6.64	821	7/000	10	Brown non
					<u>. </u>	-		
					· · · · · · · · · · · · · · · · · · ·			
							-	
								
					·- · · · · · · · · · · · · · · · · · ·			
	· · ·	, ,						
REMARK	s: Sunt	cont SI	H 10	putero	Watch-	hough	or p	stging
	-··			-				- ,
		1 0-11-	- 100					
Developed —	by (print): M	LOGING	<u>s / Kinu</u>	wave				Reviewed by:
Signature.		<u> </u>						Page of

PROJECT	NO.:				WELI	_ ID: /	1W-4	5	
PROJECT	NAME:	Nc st	<u>e</u>			PLE ID:	- 4	4	
LOCATIO	N: OAL	KLAND						23-17	1
WELL IN	FORMATIO	ON – Gallons	s per linear j	ft for casing	diameter of: 2" =	= 0 163 4" =	= 0.653 A S	" = /1 92 K" -	- 15 0" - æ
Casing dia	meter (in):	2.0 1	epth to liau	id (ft):10.	14 Well depth ((A): 2 to 1	One ee	· - 0.03 0 =	1.3 8 = 09
Screened in	nterval (ft):_	9-29	Wette	d screen leng	gth (ft):	5.94		sing volume (g	ai)
REMOVII	NG SOLIDS	/WATER	Start Time ((2400 Hr): "4	0818	End time	(2400 H-).	090	4
ES-submer	sible <u>X</u>	Grundfos-su	bmersible _	Centri	fugal PVC	bailer	Stainless l	pailer F	land auger
Well depth	following so	olids/water re	noval (ft): _	24.1	Hard bottom rea	nched (N)	Pump Rate	(gpm)	0.4
Volume pui	rged: 30,	2 (gal) So	lids/water d	isposal:)YUMS	on :	sita		
Time (2400 Hr)	Volume (gal-liters)	DTW (ft)	Temp (°C)	pH (std. units)	EC (μS@25°C)	Turbidity (NTU)	Settable Solids (%)	Comments (i.e. color/odo	or)
000	3.0	22,30	18.3			27.3	0.0	Char	Street
0828		NA	17.8	6.14		380.9	2-/-	cloudy.	Strong Control
0845	15.0		18.3	6.22	8:27	87.4	0%	cloudy	Strong
0847	20,0		18.5	6.23	831	4393	0	رامار	Strong
0854	25.0	M	185	6.25	827	429.1	0	clarer.	5+575
7904	30,0	NA	18.5	6.24	817	392.4	0	cloulx	Strong
EMARKS	-5ig	nifrea	4 41	au d	oun de	wine a	Purgi	n s. 54	uL
Broke	n be	to 6	t un	11 re	charge of	conto	Be	7. 1	Purg.
				,					
eveloped b	y (print):	11. Gal	1995/	Kgu	vara			Reviewed by	·:
ignature:		12						Page	_ of

PROJECT	NO.:				WELL	ID:	1W-	4	
PROJECT	NAME:	ust h	<u>.</u>		SAMPI	LE ID:	M	? 	
LOCATIO	N: Oak	land			DATE	DEVELOPE	D: <u>/0</u>	-23-17	
Casing diar	neter (in):	4,0 D	epth to liqu	id (ft): 	iameter of: 2" =	<i>0.163 4"</i> = ft): 29.3	0.653 4.5	" = 0.83 6" = 1.5 ing volume (gal)	8" = 2.6 291
REMOVII ES-submer	NG SOLIDS/	WATER :	Start Time (bmersible _	2400 Hr): Centrif	0 945 Jugal X PVC	End time (2400 Hr): _. Stainless t	pailer Hand	auger
Well depth	following sol	ids/water rer	noval (ft): 🛓	<u> 29.3</u>	Hard bottom rea	iched (ON)	Pump Rate	(gpm) <u>29</u>	3
Volume pu	rged: <u>28</u>	(gal) So	lids/water d	isposal:	rums	on Si	h		
Time (2400 Hr)	Volume (gal-liters)	DTW (ft)	Temp (°C)	pH (std. units)	EC (μS@25°C)	Turbidity (NTU)	Settable Solids (%)	Comments (i.e. color/odor)	
9949	13.0	1730	20,5	4.56	587	203,5	0	Brown, NO	برطوه
1000	28.0	28.41	20.3	6.44	607	8.2	_O	Clear, no	odor
							-		
REMARK Below DTL	as: [NU ma /0 0 15:15	1) de 1 40 in 5 24.51	the 4	ed de	to cont	ng rug.	s/ou	- richory	
Developed	by (print):	M. Ga	1/19-5	RES	vevan	<u>-</u> .		Reviewed by: _	
Signature:				,				Pageo	ı

Drum ID	Source	Amount generated this event	Amount in drum	Drum Size
A	Purge weter	55	55 gals	55
В	Purge wester Purge waser	55	55.9els	55
C	Purque waser	55	55.7415	55
D		55	55 996	22
E	Pereze water	40	40 gals	55

Sketch locations of drums, include SITE ADDRESS

Stored or location designated by Tyler of HdA, near MW-5. Dhims need to be labeled. Condition of drums: NEW USED (circle one)

Number of drums onsite generated by FSI 13 on 517 5 PSZ.

Dreyers Grand Ice Cream

START DATE: 0.2|-1END DATE: 0.2|-1

October 2017 Sampling Request

	W/all ID	Diameter	lotal Depti	Screen Interval	i ubing intake	
		(inches)	(ft BTOC)	(ft BTOC)	(ft below TOC)	Comments
vi		ditaranta	E. 100 C O			
		Model Company and property of the company of the co	A CONTRACTOR OF THE CONTRACTOR	programme to the control of the cont	AND AND THE THE PROPERTY OF TH	
	Micronurge	e and sample the two	two wells listed helow aft	elow after dedicating	herictal	ame in each well After Havid land debilitation accordance
-00	D. L. L.	· Air Arduma him	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	מוסא מונכו מכתוכמנוול	, periorative taying ayar	de taonis systems in each well. After hydia fevel stadilization, fecord temperature, ph. specific conductance, DO, and ORP
01.00	at remilar in	terwale until ctab	ility has be achiev	ned for three concept	China magazina	at regular intervals until stability has be achieved for three concentrity more and the concentration of the conce

at regular intervals until stability has be achieved for three consecutive measurements. Contain the purge water in a 55-gallon drum (Drum E). Deliver the remaining samples to Test America in Pleasanton the same day they are collected.

Micropurg	e the wells at a ra	te of 100-500 mV	'min. Collect all VO.	4 samples at a rate	Micropurge the wells at a rate of 100-500 m1/min. Collect all VOA samples at a rate of 100 ml per minute or less.	Test America - Deliver to Pleasanton
f MW-1	2.0	30.0	10-30	20.0		(EPA 8260B)
4-MW-2	4.0	28.0	8-28	20.0	Collect duplicate at this well (ID = MW-10)	3-VOAs w/HCL
MW-3	4.0	27.0	7-27	20.0		
X MW-4	2.0	27.0	7-27	20.0		TPHd/MO (EPA 8015M)
, MW-5	2.0	29.0	9-29	20.0		2 - Liter Amber NP
2-MIM-6	4.0	29.0	9-29	20.0		
						PAHs (EPA 8270C)
					VV.	2 - Liter Amber NP
OCCUPATION OF THE PARTY OF THE						
\$ -0.000 miles						Sulfate/Nitrate (EPA 300.0); Alkalinity (SM2320B)
200000						1 - 500 poly NP
TOTAL AND						
						Iron and Manganese (EPA 6010B Filtered in Lab)
- Annual Colonial State of the Colonial Stat						1 - 250 ml poly NP
DUP	Collect a blind	duplicate at well	Collect a blind duplicate at well MW-2 label it MW-10 and add 5 minutes to sample time	10 and add 5 minut	es to sample time	
FB-1	Pour a field bla	ink at any well us	Pour a field blank at any well using water provided by laboratory	y laboratory		
€TB-1	Relinquish trip	blank with samp	Relinquish trip blank with samples submitted to to Test America	est America		
Onwell and the second s						I
9000 CCC CO. D. C. S.	# 000000000000000000000000000000000000	Control of the Contro	CONTROL TO CO. C.	Control of the Contro	10000000000000000000000000000000000000	Town

Drum ID	Source	Amount generated this event	Amount in drum	Drum Size
A	Purge weder	55	55 gab	55
B	Purge weder Purge water	55	55.9015	55
C	Puren water	55	55.7415	55
D	forezi water	55	55 9915	22
>E	Purge waser	40	40 gals	55 \SW
) E	purpueter	8	485915	55-6
Combin	ed			

Sketch locations of drums, include SITE ADDRESS

Stored or location designated by Tyler of H&A, near MW-5. Dhims need to be labeled. Condition of drums: NEW/ USED (circle one)

Number of drums onsite generated by FSI 13 on Silver

Development water + Purse water from went Sampling event

El Covirgamental Instrument

CERTIFICATE OF CALIBRATION

CESTOMER NAME: FIELD SOLUTIONS

Y51 Model 556 SERIAL#: 14J102256 SOLUTION METER RESPONSE P1, 4 4.02 F14 7 7.01 14111 9.92 1413 1413 Ustem OKP W 25 C 240 0.0. Temp. 16.3 Barometer Pressure.

SERVICE TECH

SIGNATURE

DATE

Miguel Mata

War Thomas

10/26/2017

CERTIFICATE OF CALIBRATION

CUSTOMER NAME: FIELD SOLUTIONS

VSt Model 556	SERIAL#; 05F1981
SOLUTION	METER RESPONSE
1 × 2 × × ×	
191 7	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1413 Uskan	
ORP # 25 C	Value common to the property of the second common to the second common t
().().	
\$ 1370 ps.	S C C C C C C C C C C C C C C C C C C C
Berometer Pressure	. Marie Control (1990) And Annual Control (1990) Annual A

SERVICE TECH

Miguel Mate

SIGNATURE

DATE

10/25/2017

PROJECT	`NO.:				WELL	ID:)-1	
PROJECT	NAME: <u>Dr</u>	yers			SAMPL	E ID: <u>/////</u>	<u> </u>	
CLIENT:	Haley & Ald	rich			DATE I	PURGED:	213116	7
SITE LOC	CATION: <u>Oa</u>	kland, Califo	ornia		DATE S	SAMPLED:	10/31/13	
Casing dia Wetted scr	meter (in): _	<u>A.O</u> De (ft): <u>[CB</u>	pth to liqui Dedic	d (ft): 13 .1 ated tubing int	diameter of: 0.75" Well depth (final ake from TOC (ft): 00 Hr): 0857 (ml) Pure	20.0 s	creened interval	(ft): 10-30
Purge wate	er disposal: <u>C</u>	Contained in	55-gallon d	lrum onsite				
Time	Volume	DTW	Temp	pH (atd posits)	EC (CO2500)	DO	ORP	Color
(2400 Hr)	(ml)	(ft)	(°C)	(std. units)	(μS@25°C)	(mg/l)	(mV)	(Visual)
017	2,450	13.17	16.5	6.62	1112	3.35	1111	clear
MONC	3050	13.17		6.81	417	721	238	Clean
10019	4450	12 17	16.6	10.81	417	22	236	Cler
6 116	400	17.17	1 73 - 13	U.D.	L L Leave	S(> 1° - 7)	Les 2 40	
				± 1.0	± 3%	± 10%	± 10 mV	
Equipment QC sample REMARK	used: Perista	altic pump w t well:	ows	Way u	ng mples filtered throu	igh 0.45μm filter	NOWE	s with acids (Y/N)
				# 14 14 1	3 H Myes	collectes		
Meter Calil	oration: Date	·	Time: _		Location of calibration	ation:	YSI 556	#
рН 4: (/	@	°C)	pH 7: (/	°C) pH 10:	(/	@°C)
					EC (/			
					·			_
								~ 2
Purged and	sampled by	(print):	d.au	enur			Review	red by A
Signature:		DR)	•			Page_	V C
		y - v					^ "5° _	

PROJECT NO.:				WELL ID:							
PROJECT	NAME: <u>Dr</u>	yers			SAMPLE ID: WW-Z						
CLIENT:	Haley & Ald	lrich			DATE	PURGED:	0/2015				
SITE LOC	CATION: <u>Oa</u>	kland, Calif	ornia	******		SAMPLED:					
Casing dia Wetted scr WELL PU Stabilized Purge wate (2400 Hr)	meter (in):	Peristaltic Profit: 11.13	Dedicump Solution Control Cont	ated tubing int Start Time (24) the purged: Irum onsite pH (std. units) 6.88 6.87	diameter of: 0.75° Well depth (fake from TOC (ft)) 00 Hr): 100 (ml) Pure EC (μS@25°C) 183 183 183	n): 28.3 : 20. 0	Time (2400 Hr) ORP (mV)	1 (ft): <u>8-28</u>): <u>1021</u>			
1018	2420	11.13	20.5 20.4	6.87	167	0.58	1115	Clear			
Equipment QC sample	used: Perista s collected a	altic pump w	vith dedicate		ng mples filtered throu	ιgh 0.45μm filter	Now	ets with acids (Y (N))			
					vani)				
Meter Calil	oration: Date	:	Time: _		Location of calibr	ration:	YSI 556	#			
oH 4: (/		°C)	pH 7: (/	°C) pH 10	:(/_	@°C)			
D.O. (/	%)	D.O. (ppm) (E	CC (/	μS@	25°C)				
	//							~ 0			
Purged and	#	(print):	a 👎	019			Reviev	000			

PROJECT	NO.:				WELL ID: MW-3						
PROJECT	NAME: <u>Dr</u> y	/ers			SAMPL	WELL ID:					
CLIENT: I	Haley & Ald	rich		·	_ DATE P	URGED:	0-31-1	7			
SITE LOC	ATION: <u>Oa</u> l	kland, Califo	ornia		DATE SAMPLED: 10-31-17						
Casing diameter Wetted scr	meter (in): _	$\frac{\sqrt{0}}{(ft)}$ De $\frac{\sqrt{5}}{2}$	pth to liquio	d (ft): $10,5$	ake from TOC (ft):): <u>26,4</u> so 20	creened interval	(ft):]- I			
Stabilized 1	RGING: 1	Peristaltic Pu	volum	start Time (240 e purged: 😤	00 Hr): <u>U 5 7 7</u> <u>1 5 (</u> ml) Pum	p Rate O.	Fime (2400 Hr):	<u>0907</u> in)			
Purge wate	r disposal: <u>C</u>	Contained in	55-gallon d	rum onsite							
Time (2400 Hr)	Volume (ml)	DTW (ft)	Temp (°C)	pH (std. units)	EC (μS@25°C)	DO (mg/l)	ORP (mV)	Color (Visual)			
0859	77 11	1047	20.0	12.46	995	0.18	13	Clear			
0903		1047	200	4.68	994	0.16	12	Creak			
0907	3,250	10/14/	20.2	6.47	794	0.14	5	Orcat			
											
				± 1.0	± 3%	± 10%	± 10 mV				
Equipment	used: Perista	altic pump w	ith dedicate	ed Teflon tubin			_	s with acids (Y(N))			
REMARK	S:										
			J	411 5	emples	Collec	i de d				
				····	7						
Meter Calib	oration: Date	: 10/30	//	and the second s	Location of calibra	ation: Academ	YSI 556	# 05F/9E/			
pH 4: (/	@	°C)	рН 7: (/@	°C) pH 10:	(/	@°C)			
D.O. (/	%)	D.O. (ppm) (E	C (/_	μS@2	25°C)				
	/										
				Jalka	- T		-	N/m			
Purged and	sampled by	(print):	-10/16/10/10	your May			Review	ed by:			
Signature:		7					Page _	200			

PROJECT	NO.:				WELL ID: MW-4 SAMPLE ID: MW-4						
PROJECT	NAME: <u>Dry</u>	ers									
	Haley & Ald				DATE F	DATE PURGED: /0-3/-/-					
SITE LOC	ATION: <u>Oal</u>	kland, Califo	rnia		DATE SAMPLED: 10-31-17						
Casing dia	meter (in): 💆	De	oth to liqui	d (ft): 10, 1	diameter of: 0.75" Well depth (ft ake from TOC (ft):): <u>203</u> so	163 4.0" = 0.6 creened interval	553 6" = 1.5 (ft):			
Stabilized	liquid level (ft): <u>10</u>	Volum	e purged: 🚽	00 Hr): <u>0 955</u> <u>\$500</u> (ml) Pun	End T	Time (2400 Hr):	osoš nin)			
Purge wate	er disposal: <u>C</u>	ontained in	55-gallon d	rum onsite	·····						
Time (2400 Hr)	Volume (ml)	DTW (ft)	Temp (°C)	pH (std. units)	EC (μS@25°C)	DO (mg/l)	ORP (mV)	Color (Visual)			
0502		10.78		6.54	760	0.27	51	Clear			
0405	2,200	10.74		6.55	853	0,29	48	Creat			
050%	2,800		128	6.54	841	0.24	45	CLEAN			
¥											
				± 1.0	± 3%	± 10%	± 10 mV				
Equipment		altic pump w	ith dedicate	ed Teflon tubir				s with acids (Y (N)			
REMARK	S:			AIN	Samples	Act to My					
e All	there	p-41	ka 145	cu k	reka no	- L Prop	1. Cruz 11	604			
						····		# 05F1981			
pH 4: (/		°C)	pH 7: (/	°C) pH 10:	/	@°C)			
D.O. (/	<u> </u>	D.O. (ppm) (E	EC (/_	μS@2	25°C)				
ORP (/	1	mV @	°C				$\bigcirc A$			
Purged and	sampled by	(print): _/	Janes.	ed Calles	503		Reviev	ved by:			
Signature:							Page _	of 4			

PROJECT NO.:					WELL ID: MW-5 SAMPLE ID: MW-5					
PROJECT	NAME: <u>Dry</u>	ers			_ SAMPL	E ID:	W-5			
CLIENT:]	Haley & Ald	rich						31-17		
SITE LOC	ATION: <u>Oal</u>	kland, Califo	rnia		DATE S	AMPLED:	10-	31-17		
Casing dia	meter (in): _	De _l	oth to liqui	d (ft): 10, 2	diameter of: 0.75" Well depth (ft ake from TOC (ft):): <u>Ila. </u> s	.163 4.0" = 0.0 creened interval	653 6'' = 1.5 (ft): $9 - 261$		
Stabilized	J RGING : F liquid level (er disposal: <u>C</u>	ft): <u>1 <i>O U</i></u>	7_Volum	e purged: 📆	00 Hr): <u> </u>	End D	Time (2400 Hr):	: <u>/@ 2 3</u> nin)		
Time	Volume	DTW			EC	DO	ORP	Color		
(2400 Hr)	(ml)	(ft)	Temp (°C)	pH (std. units)	(μS@25°C)	(mg/l)	(mV)	(Visual)		
1011	1,700	10.42	18.3	la latel	631	0.18	73	Clear		
1015	2,200	10:42		10.63	Solly	0.20	60	Clear		
	2,300	10.42		19.62	824	0.18	22	CIEGA		
1023	3,200	10.1.12	18.3	4.63	724	0.14	5/	Clear		
				± 1.0	± 3%	± 10%	± 10 mV			
Equipment QC sample REMARK	used: Perista	altic pump w t well:	ith dedicate 3-1 (104	San	ng mples filtered throu U.5. Filty	gh 0.45μm filter	:			
M A	11 The	is ho	145	books	off o	er tool	* Lex	9		
Meter Cali	bration: Date	19/3/10	Time:		Location of calibra	ation: Pacfo	<u>۲۰۰</u> YSI 556	# <u>05F178</u> /		
pH 4: (/		°C)	pH 7: (/	°C) pH 10:	· (/	@°C)		
D.O. (/	%)	D.O. (ppm) (E	EC (/_	μS@	25°C)			
	/							$\sim \Lambda_h$		
			Pane	al Gal	45:05		Reviev	wed by:		
Signature.		4	>				Page	5 of 6		

PROJECT NO.:	WELL ID:	MW-6					
PROJECT NAME: Dryers	SAMPLE ID:	WELL ID: WW-6 SAMPLE ID: WG-6					
CLIENT: Haley & Aldrich							
SITE LOCATION: Oakland, California							
WELL INFORMATION – Gallons per linear ft for casing of Casing diameter (in): Depth to liquid (ft): Dedicated tubing into Well Purging: Peristaltic Pump Start Time (240) Stabilized liquid level (ft): Volume purged:	Well depth (ft): $\frac{\sqrt{1}}{\sqrt{2}}$ where from TOC (ft): $\frac{\sqrt{2}}{\sqrt{2}}$	Screened interval	(ft): 9-29				
Purge water disposal: Contained in 55-gallon drum onsite							
Time (2400 Hr) Volume (ml) (ft) Temp (°C) (std. units)	(μS@25°C) (DO ORP (mV)	Color (Visual)				
0008 4750 10.15 16.7 6.99		30 202	den				
0513 5,050 10.15 16.3 6.97	512 a	.27 209	dean				
# 1.0 WELL SAMPLING: Start Time (2400 Hr): Equipment used: Peristaltic pump with dedicated Teflon tubin QC samples collected at well: Sam REMARKS:	mples filtered through 0.45	836 Sample reac 5μm filter: (ON)					
Meter Calibration: Date:Time: pH 4: (/	/@°C	рн 10: (/					
Purged and sampled by (print): Ragunary		Review	wed by:				

APPENDIX B

Analytical Laboratory Report

2

3

Ė

7

10

12

14

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-82853-1

Client Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Revision: 1

For:

Haley & Aldrich, Inc. 1956 Webster Street Suite 300 Oakland, California 94612

Attn: Michael Calhoun

San a. arm

Authorized for release by: 11/7/2017 6:06:19 PM

Sarah Arney, Project Manager I (602)659-7664

sarah.arney@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
	4
Detection Summary	5
Client Sample Results	8
	33
	35
	51
Lab Chronicle	55
Certification Summary	59
Method Summary	60
Sample Summary	61
	62
Receipt Checklists	63

Definitions/Glossary

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Qualifiers

GC/MS Semi VOA

Qualifier Qu	alifier Description

 $\overline{\mathsf{X}}$ Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid

CNF Contains No Free Liquid DER

Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Case Narrative

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Job ID: 720-82853-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-82853-1

Comments

Report revised 11/7/2017 to include corrected list of metals (Fe and Mn only).

No additional comments.

Receipt

The samples were received on 10/31/2017 12:17 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.6° C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270C SIM: Surrogate recovery for the following sample was outside control limits: MW-10 (720-82853-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

TestAmerica Job ID: 720-82853-1

TestAmerica Job ID: 720-82853-1

Client Sample ID: TB-1

Lab Sample ID: 720-82853-1

No Detections.

Client Sample ID: FB-1 Lab Sample ID: 720-82853-2

No Detections.

Client Sample ID: MW-1 Lab Sample ID: 720-82853-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Chloroform	3.6	1.0	ug/L	1	8260B	Total/NA
Nitrate as N	5.2	2.3	mg/L	10	300.0	Total/NA
Sulfate	19	10	mg/L	10	300.0	Total/NA
Nitrate Nitrite as N	5.7	0.23	mg/L	1	300.0	Total/NA
Nitrite as N	0.36	0.30	mg/L	1	300.0	Total/NA
Alkalinity	160	5.0	mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	160	5.0	mg/L	1	SM 2320B	Total/NA

Client Sample ID: MW-2 Lab Sample ID: 720-82853-4

- Analyte	Result Q	ualifier RL	MDL Un	nit	Dil Fac	D	Method	Prep Type
Benzene	3.3	0.50	ug			-	8260B	Total/NA
n-Butylbenzene	18	1.0	ug	/L	1		8260B	Total/NA
tert-Butylbenzene	43	1.0	ug	/L	1		8260B	Total/NA
Ethylbenzene	9.6	0.50	ug	/L	1		8260B	Total/NA
Isopropylbenzene	26	0.50	ug	/L	1		8260B	Total/NA
Naphthalene	1.2	1.0	ug	/L	1		8260B	Total/NA
N-Propylbenzene	49	1.0	ug	/L	1		8260B	Total/NA
Toluene	1.1	0.50	ug	/L	1		8260B	Total/NA
1,2,4-Trimethylbenzene	0.75	0.50	ug	/L	1		8260B	Total/NA
1,3,5-Trimethylbenzene	2.5	0.50	ug	/L	1		8260B	Total/NA
Xylenes, Total	6.3	1.0	ug	/L	1		8260B	Total/NA
Gasoline Range Organics (GRO) -C4-C12	4500	250	ug	/L	5		8260B	Total/NA
Acenaphthene	0.26	0.10	ug	/L	1		8270C SIM	Total/NA
Fluorene	0.21	0.10	ug	/L	1		8270C SIM	Total/NA
Naphthalene	1.0	0.10	ug	/L	1		8270C SIM	Total/NA
Diesel Range Organics [C10-C28]	1100	53	ug	/L	1		8015B	Total/NA
Nitrate Nitrite as N	0.89	0.23	mg	g/L	1		300.0	Total/NA
Nitrite as N	0.89	0.30	mg	g/L	1		300.0	Total/NA
Manganese	6.4	0.020	mg	g/L	1		6010B	Dissolved
Alkalinity	370	5.0	mg	g/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	370	5.0	mg	g/L	1		SM 2320B	Total/NA

Client Sample ID: MW-3 Lab Sample ID: 720-82853-5

Analyte	Result Qua	alifier RL	MDL Unit	Dil Fac	Method	Prep Type
Benzene	130	0.50	ug/L		8260B	Total/NA
n-Butylbenzene	9.8	1.0	ug/L	1	8260B	Total/NA
sec-Butylbenzene	9.7	1.0	ug/L	1	8260B	Total/NA
tert-Butylbenzene	2.0	1.0	ug/L	1	8260B	Total/NA
Ethylbenzene	2.9	0.50	ug/L	1	8260B	Total/NA
Isopropylbenzene	58	0.50	ug/L	1	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

11/7/2017 (Rev. 1)

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Client Sample ID: MW-3 (Continued) Lab Sample ID: 720-82853-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
4-Isopropyltoluene	1.1		1.0		ug/L		8260B	Total/NA
Naphthalene	1.6		1.0		ug/L	1	8260B	Total/NA
N-Propylbenzene	74		1.0		ug/L	1	8260B	Total/NA
Toluene	5.0		0.50		ug/L	1	8260B	Total/NA
1,2,4-Trimethylbenzene	0.52		0.50		ug/L	1	8260B	Total/NA
1,3,5-Trimethylbenzene	0.98		0.50		ug/L	1	8260B	Total/NA
Xylenes, Total	13		1.0		ug/L	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C4-C12	3400		250		ug/L	5	8260B	Total/NA
Naphthalene	1.3		0.10		ug/L	1	8270C SIM	Total/NA
Diesel Range Organics [C10-C28]	930		50		ug/L	1	8015B	Total/NA
Sulfate	5.0		1.0		mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	0.35		0.23		mg/L	1	300.0	Total/NA
Nitrite as N	0.35		0.30		mg/L	1	300.0	Total/NA
Manganese	4.4		0.020		mg/L	1	6010B	Dissolved
Alkalinity	550		5.0		mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	550		5.0		mg/L		SM 2320B	Total/NA

Client Sample ID: MW-4 Lab Sample ID: 720-82853-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	O Method	Prep Type
Nitrate as N	0.53	0.23	mg/L		300.0	Total/NA
Sulfate	11	1.0	mg/L	1	300.0	Total/NA
Nitrate Nitrite as N	0.78	0.23	mg/L	1	300.0	Total/NA
Manganese	0.92	0.020	mg/L	1	6010B	Dissolved
Alkalinity	430	5.0	mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	430	5.0	mg/L	1	SM 2320B	Total/NA

Client Sample ID: MW-5 Lab Sample ID: 720-82853-7

Analyte	Result (Qualifier RL	MDL Unit	Dil Fac I	O Method	Prep Type
Benzene	7.4	0.50	ug/L		8260B	Total/NA
n-Butylbenzene	29	1.0	ug/L	1	8260B	Total/NA
sec-Butylbenzene	16	1.0	ug/L	1	8260B	Total/NA
tert-Butylbenzene	44	1.0	ug/L	1	8260B	Total/NA
Ethylbenzene	42	0.50	ug/L	1	8260B	Total/NA
Isopropylbenzene	78	0.50	ug/L	1	8260B	Total/NA
Naphthalene	4.4	1.0	ug/L	1	8260B	Total/NA
N-Propylbenzene	150	1.0	ug/L	1	8260B	Total/NA
Toluene	1.4	0.50	ug/L	1	8260B	Total/NA
1,2,4-Trimethylbenzene	0.75	0.50	ug/L	1	8260B	Total/NA
1,3,5-Trimethylbenzene	2.5	0.50	ug/L	1	8260B	Total/NA
Xylenes, Total	5.7	1.0	ug/L	1	8260B	Total/NA
Gasoline Range Organics (GRO) -C4-C12	3500	250	ug/L	5	8260B	Total/NA
Acenaphthene	0.28	0.10	ug/L	1	8270C SIM	Total/NA
Fluorene	0.23	0.10	ug/L	1	8270C SIM	Total/NA
Naphthalene	2.7	0.10	ug/L	1	8270C SIM	Total/NA
Diesel Range Organics [C10-C28]	1200	52	ug/L	1	8015B	Total/NA
Nitrate Nitrite as N	0.96	0.23	mg/L	1	300.0	Total/NA
Nitrite as N	0.96	0.30	mg/L	1	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

11/7/2017 (Rev. 1)

Detection Summary

Client: Haley & Aldrich, Inc.

Client Sample ID: MW-6

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Client Sample ID: MW-5 (Continued)

Lab	Sampl	le ID:	720-8	2853-7

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac I	Method	Prep Type
Manganese	7.1		0.020	mg/L	1	6010B	Dissolved
Alkalinity	380		5.0	mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	380		5.0	mg/L	1	SM 2320B	Total/NA

Lab Sample ID: 720-82853-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Sulfate	6.5	1.0	mg/L		300.0	Total/NA
Manganese	0.99	0.020	mg/L	1	6010B	Dissolved
Alkalinity	320	5.0	mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	320	5.0	mg/L	1	SM 2320B	Total/NA

Client Sample ID: MW-10 Lab Sample ID: 720-82853-9

Analyte	Result	Qualifier	RL	MDL (Unit	Dil Fac	D I	Method	Prep Type
Benzene	3.0		0.50		ug/L		- 1	8260B	Total/NA
n-Butylbenzene	19		1.0	ι	ug/L	1		8260B	Total/NA
sec-Butylbenzene	9.2		1.0	ι	ug/L	1	1	8260B	Total/NA
tert-Butylbenzene	45		1.0		ug/L	1		8260B	Total/NA
Ethylbenzene	8.9		0.50	ι	ug/L	1		8260B	Total/NA
Isopropylbenzene	25		0.50	ι	ug/L	1	1	8260B	Total/NA
Naphthalene	1.3		1.0		ug/L	1		8260B	Total/NA
N-Propylbenzene	47		1.0	ι	ug/L	1		8260B	Total/NA
Toluene	1.0		0.50	ι	ug/L	1	;	8260B	Total/NA
1,2,4-Trimethylbenzene	0.78		0.50		ug/L	1		8260B	Total/NA
1,3,5-Trimethylbenzene	2.5		0.50	ι	ug/L	1		8260B	Total/NA
Xylenes, Total	6.1		1.0	ι	ug/L	1		8260B	Total/NA
Gasoline Range Organics (GRO) -C4-C12	2600		250	l	ug/L	5		8260B	Total/NA
Acenaphthene	0.31		0.10	ı	ug/L	1		8270C SIM	Total/NA
Fluorene	0.24		0.10	ι	ug/L	1	1	8270C SIM	Total/NA
Naphthalene	1.2		0.10		ug/L	1		8270C SIM	Total/NA
Diesel Range Organics [C10-C28]	1300		51	ι	ug/L	1		8015B	Total/NA
Nitrate Nitrite as N	0.91		0.23	ı	mg/L	1	;	300.0	Total/NA
Nitrite as N	0.91		0.30		mg/L	1	;	300.0	Total/NA
Manganese	6.2		0.020	ı	mg/L	1	(6010B	Dissolved
Alkalinity	370		5.0	1	mg/L	1	;	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	370		5.0		mg/L	1	;	SM 2320B	Total/NA

This Detection Summary does not include radiochemical test results.

11/7/2017 (Rev. 1)

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Lab Sample ID: 720-82853-1

TestAmerica Job ID: 720-82853-1

Matrix: Water

Date Collected: 10/31/17 00:00 Date Received: 10/31/17 12:17

Client Sample ID: TB-1

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND ND	0.50	ug/L		11/06/17 15:15	
Acetone	ND	50	ug/L		11/06/17 15:15	
Benzene	ND	0.50	ug/L		11/06/17 15:15	
Dichlorobromomethane	ND	0.50	ug/L		11/06/17 15:15	
Bromobenzene	ND	1.0	ug/L		11/06/17 15:15	
Chlorobromomethane	ND	1.0	ug/L		11/06/17 15:15	
Bromoform	ND	1.0	ug/L		11/06/17 15:15	
Bromomethane	ND	1.0	ug/L		11/06/17 15:15	
2-Butanone (MEK)	ND	50	ug/L		11/06/17 15:15	
n-Butylbenzene	ND	1.0	ug/L		11/06/17 15:15	
sec-Butylbenzene	ND	1.0	ug/L		11/06/17 15:15	
tert-Butylbenzene	ND	1.0	ug/L		11/06/17 15:15	
Carbon disulfide	ND	5.0	ug/L		11/06/17 15:15	
Carbon tetrachloride	ND	0.50	ug/L		11/06/17 15:15	
Chlorobenzene	ND	0.50	ug/L		11/06/17 15:15	
Chloroethane	ND	1.0	ug/L		11/06/17 15:15	
Chloroform	ND	1.0	ug/L		11/06/17 15:15	
Chloromethane	ND	1.0	ug/L		11/06/17 15:15	
2-Chlorotoluene	ND	0.50			11/06/17 15:15	
4-Chlorotoluene	ND	0.50	ug/L ug/L		11/06/17 15:15	
Chlorodibromomethane	ND	0.50			11/06/17 15:15	
1,2-Dichlorobenzene	ND	0.50	ug/L		11/06/17 15:15	
	ND ND	0.50	ug/L			
1,3-Dichlorobenzene	ND ND		ug/L		11/06/17 15:15	
1,4-Dichlorobenzene	ND	0.50	ug/L		11/06/17 15:15	
1,3-Dichloropropane		1.0	ug/L		11/06/17 15:15	
1,1-Dichloropropene	ND	0.50	ug/L		11/06/17 15:15	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/06/17 15:15	
Ethylene Dibromide	ND	0.50	ug/L		11/06/17 15:15	
Dibromomethane	ND	0.50	ug/L		11/06/17 15:15	
Dichlorodifluoromethane	ND	0.50	ug/L		11/06/17 15:15	
1,1-Dichloroethane	ND	0.50	ug/L		11/06/17 15:15	
1,2-Dichloroethane	ND	0.50	ug/L		11/06/17 15:15	
1,1-Dichloroethene	ND	0.50	ug/L		11/06/17 15:15	
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 15:15	
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 15:15	
1,2-Dichloropropane	ND	0.50	ug/L		11/06/17 15:15	
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/06/17 15:15	
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/06/17 15:15	
Ethylbenzene	ND	0.50	ug/L		11/06/17 15:15	
Hexachlorobutadiene	ND	1.0	ug/L		11/06/17 15:15	
2-Hexanone	ND	50	ug/L		11/06/17 15:15	
Isopropylbenzene	ND	0.50	ug/L		11/06/17 15:15	
4-Isopropyltoluene	ND	1.0	ug/L		11/06/17 15:15	
Methylene Chloride	ND	5.0	ug/L		11/06/17 15:15	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/06/17 15:15	
Naphthalene	ND	1.0	ug/L		11/06/17 15:15	
N-Propylbenzene	ND	1.0	ug/L		11/06/17 15:15	
Styrene	ND	0.50	ug/L		11/06/17 15:15	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/06/17 15:15	

TestAmerica Pleasanton

Page 8 of 63

Client: Haley & Aldrich, Inc. TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: TB-1 Lab Sample ID: 720-82853-1

Date Collected: 10/31/17 00:00 **Matrix: Water** Date Received: 10/31/17 12:17

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/06/17 15:15	1
Tetrachloroethene	ND		0.50		ug/L			11/06/17 15:15	1
Toluene	ND		0.50		ug/L			11/06/17 15:15	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/06/17 15:15	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/06/17 15:15	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/06/17 15:15	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/06/17 15:15	1
Trichloroethene	ND		0.50		ug/L			11/06/17 15:15	1
Trichlorofluoromethane	ND		1.0		ug/L			11/06/17 15:15	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/06/17 15:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/06/17 15:15	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/06/17 15:15	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/06/17 15:15	1
Vinyl acetate	ND		10		ug/L			11/06/17 15:15	1
Vinyl chloride	ND		0.50		ug/L			11/06/17 15:15	1
Xylenes, Total	ND		1.0		ug/L			11/06/17 15:15	1
2,2-Dichloropropane	ND		0.50		ug/L			11/06/17 15:15	1
Gasoline Range Organics (GRO) -C4-C12	ND		50		ug/L			11/06/17 15:15	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130		11/06/17 15:15	1
1,2-Dichloroethane-d4 (Surr)	109		72 - 130		11/06/17 15:15	1
Toluene-d8 (Surr)	103		70 - 130		11/06/17 15:15	1

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Lab Sample ID: 720-82853-2

TestAmerica Job ID: 720-82853-1

Matrix: Water

Date Collected: 10/31/17 10:05 Date Received: 10/31/17 12:17

Client Sample ID: FB-1

Analyte	Result Qualifier	RL	MDL Unit	D Prepare	d Analyzed	Dil Fa
Methyl tert-butyl ether	ND	0.50	ug/L		11/06/17 15:45	
Acetone	ND	50	ug/L		11/06/17 15:45	
Benzene	ND	0.50	ug/L		11/06/17 15:45	
Dichlorobromomethane	ND	0.50	ug/L		11/06/17 15:45	
Bromobenzene	ND	1.0	ug/L		11/06/17 15:45	
Chlorobromomethane	ND	1.0	ug/L		11/06/17 15:45	
Bromoform	ND	1.0	ug/L		11/06/17 15:45	
Bromomethane	ND	1.0	ug/L		11/06/17 15:45	
2-Butanone (MEK)	ND	50	ug/L		11/06/17 15:45	
n-Butylbenzene	ND	1.0	ug/L		11/06/17 15:45	
sec-Butylbenzene	ND	1.0	ug/L		11/06/17 15:45	
tert-Butylbenzene	ND	1.0	ug/L		11/06/17 15:45	
Carbon disulfide	ND	5.0	ug/L		11/06/17 15:45	
Carbon tetrachloride	ND	0.50	ug/L		11/06/17 15:45	
Chlorobenzene	ND	0.50	ug/L		11/06/17 15:45	
Chloroethane	ND	1.0	ug/L		11/06/17 15:45	
Chloroform	ND	1.0	ug/L		11/06/17 15:45	
Chloromethane	ND	1.0	ug/L		11/06/17 15:45	
2-Chlorotoluene	ND	0.50	ug/L		11/06/17 15:45	
4-Chlorotoluene	ND	0.50	ug/L		11/06/17 15:45	
Chlorodibromomethane	ND	0.50	ug/L		11/06/17 15:45	
1,2-Dichlorobenzene	ND	0.50	ug/L		11/06/17 15:45	
1,3-Dichlorobenzene	ND	0.50	ug/L		11/06/17 15:45	
1,4-Dichlorobenzene	ND	0.50	ug/L		11/06/17 15:45	
1,3-Dichloropropane	ND	1.0	ug/L		11/06/17 15:45	
1,1-Dichloropropene	ND	0.50	ug/L		11/06/17 15:45	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/06/17 15:45	
Ethylene Dibromide	ND	0.50	ug/L		11/06/17 15:45	
Dibromomethane	ND	0.50	ug/L		11/06/17 15:45	
Dichlorodifluoromethane	ND	0.50	ug/L		11/06/17 15:45	
1,1-Dichloroethane	ND	0.50	ug/L		11/06/17 15:45	
1,2-Dichloroethane	ND	0.50	ug/L		11/06/17 15:45	
1,1-Dichloroethene	ND	0.50	ug/L		11/06/17 15:45	
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 15:45	
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 15:45	
1,2-Dichloropropane		0.50			11/06/17 15:45	
cis-1,3-Dichloropropene	ND ND	0.50	ug/L ug/L		11/06/17 15:45	
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/06/17 15:45	
Ethylbenzene	ND ND	0.50	ug/L		11/06/17 15:45	
Hexachlorobutadiene					11/06/17 15:45	
	ND ND	1.0 50	ug/L		11/06/17 15:45	
2-Hexanone	ND	0.50	ug/L		11/06/17 15:45	
Isopropylbenzene			ug/L			
4-Isopropyltoluene	ND ND	1.0	ug/L		11/06/17 15:45	
Methylene Chloride	ND ND	5.0	ug/L		11/06/17 15:45	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/06/17 15:45	
Naphthalene	ND	1.0	ug/L		11/06/17 15:45	
N-Propylbenzene	ND	1.0	ug/L		11/06/17 15:45	
Styrene	ND	0.50	ug/L		11/06/17 15:45	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/06/17 15:45	

TestAmerica Pleasanton

Page 10 of 63

Client: Haley & Aldrich, Inc.

TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Toluene-d8 (Surr)

Client Sample ID: FB-1 Lab Sample ID: 720-82853-2

Date Collected: 10/31/17 10:05

Date Received: 10/31/17 12:17

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/06/17 15:45	1
Tetrachloroethene	ND		0.50		ug/L			11/06/17 15:45	1
Toluene	ND		0.50		ug/L			11/06/17 15:45	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/06/17 15:45	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/06/17 15:45	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/06/17 15:45	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/06/17 15:45	1
Trichloroethene	ND		0.50		ug/L			11/06/17 15:45	1
Trichlorofluoromethane	ND		1.0		ug/L			11/06/17 15:45	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/06/17 15:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/06/17 15:45	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/06/17 15:45	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/06/17 15:45	1
Vinyl acetate	ND		10		ug/L			11/06/17 15:45	1
Vinyl chloride	ND		0.50		ug/L			11/06/17 15:45	1
Xylenes, Total	ND		1.0		ug/L			11/06/17 15:45	1
2,2-Dichloropropane	ND		0.50		ug/L			11/06/17 15:45	1
Gasoline Range Organics (GRO) -C4-C12	ND		50		ug/L			11/06/17 15:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130			-		11/06/17 15:45	1
1,2-Dichloroethane-d4 (Surr)	111		72 - 130					11/06/17 15:45	1

70 - 130

101

TestAmerica Pleasanton

11/06/17 15:45

3

4

6

8

40

1 0

12

13

15

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Lab Sample ID: 720-82853-3

TestAmerica Job ID: 720-82853-1

Matrix: Water

Client Sample ID: MW-1 Date Collected: 10/31/17 09:19

Date Received: 10/31/17 12:17

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	0.50	ug/L		11/06/17 16:15	-
Acetone	ND	50	ug/L		11/06/17 16:15	•
Benzene	ND	0.50	ug/L		11/06/17 16:15	•
Dichlorobromomethane	ND	0.50	ug/L		11/06/17 16:15	
Bromobenzene	ND	1.0	ug/L		11/06/17 16:15	•
Chlorobromomethane	ND	1.0	ug/L		11/06/17 16:15	
Bromoform	ND	1.0	ug/L		11/06/17 16:15	
Bromomethane	ND	1.0	ug/L		11/06/17 16:15	•
2-Butanone (MEK)	ND	50	ug/L		11/06/17 16:15	
n-Butylbenzene	ND	1.0	ug/L		11/06/17 16:15	
sec-Butylbenzene	ND	1.0	ug/L		11/06/17 16:15	•
tert-Butylbenzene	ND	1.0	ug/L		11/06/17 16:15	
Carbon disulfide	ND	5.0	ug/L		11/06/17 16:15	
Carbon tetrachloride	ND	0.50	ug/L		11/06/17 16:15	
Chlorobenzene	ND	0.50	ug/L		11/06/17 16:15	
Chloroethane	ND	1.0	ug/L		11/06/17 16:15	
Chloroform	3.6	1.0	ug/L		11/06/17 16:15	
Chloromethane	ND	1.0	ug/L		11/06/17 16:15	
2-Chlorotoluene	ND	0.50	ug/L		11/06/17 16:15	
4-Chlorotoluene	ND	0.50	ug/L		11/06/17 16:15	
Chlorodibromomethane	ND	0.50	ug/L		11/06/17 16:15	
1,2-Dichlorobenzene	ND	0.50	ug/L		11/06/17 16:15	
1,3-Dichlorobenzene	ND	0.50	ug/L		11/06/17 16:15	
1,4-Dichlorobenzene	ND	0.50	ug/L		11/06/17 16:15	
1,3-Dichloropropane	ND	1.0	ug/L		11/06/17 16:15	
1,1-Dichloropropene	ND	0.50	ug/L		11/06/17 16:15	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/06/17 16:15	
Ethylene Dibromide	ND	0.50	ug/L		11/06/17 16:15	
Dibromomethane	ND	0.50	ug/L		11/06/17 16:15	
Dichlorodifluoromethane	ND	0.50	ug/L		11/06/17 16:15	
1,1-Dichloroethane	ND	0.50	ug/L		11/06/17 16:15	
1,2-Dichloroethane	ND	0.50	ug/L		11/06/17 16:15	•
1,1-Dichloroethene	ND	0.50	ug/L		11/06/17 16:15	•
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 16:15	
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 16:15	
1,2-Dichloropropane	ND	0.50	ug/L		11/06/17 16:15	
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/06/17 16:15	
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/06/17 16:15	•
Ethylbenzene	ND	0.50	ug/L		11/06/17 16:15	•
Hexachlorobutadiene	ND	1.0	ug/L		11/06/17 16:15	
2-Hexanone	ND	50	ug/L		11/06/17 16:15	•
Isopropylbenzene	ND	0.50	ug/L		11/06/17 16:15	
4-Isopropyltoluene	ND	1.0	ug/L		11/06/17 16:15	
Methylene Chloride	ND	5.0	ug/L		11/06/17 16:15	•
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/06/17 16:15	
Naphthalene	ND	1.0	ug/L		11/06/17 16:15	
N-Propylbenzene	ND	1.0	ug/L		11/06/17 16:15	
Styrene	ND	0.50	ug/L		11/06/17 16:15	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/06/17 16:15	1

TestAmerica Pleasanton

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-3

Matrix: Water

C	lie	nt	Sa	ım	pl	е		D:	M	W- 1	I
_		_				-	_				

Date Collected: 10/31/17 09:19 Date Received: 10/31/17 12:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/06/17 16:15	1
Tetrachloroethene	ND		0.50		ug/L			11/06/17 16:15	1
Toluene	ND		0.50		ug/L			11/06/17 16:15	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/06/17 16:15	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/06/17 16:15	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/06/17 16:15	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/06/17 16:15	1
Trichloroethene	ND		0.50		ug/L			11/06/17 16:15	1
Trichlorofluoromethane	ND		1.0		ug/L			11/06/17 16:15	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/06/17 16:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/06/17 16:15	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/06/17 16:15	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/06/17 16:15	1
Vinyl acetate	ND		10		ug/L			11/06/17 16:15	1
Vinyl chloride	ND		0.50		ug/L			11/06/17 16:15	1
Xylenes, Total	ND		1.0		ug/L			11/06/17 16:15	1
2,2-Dichloropropane	ND		0.50		ug/L			11/06/17 16:15	1
Gasoline Range Organics (GRO) -C4-C12	ND		50		ug/L			11/06/17 16:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130			•		11/06/17 16:15	1

Method: 8270C SIM - Semivola	atile Organic Compou Result Qualifier	nds (GC/MS SIM) RL MDL Unit	D	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	70 - 130			11/06/17 16:15	1
1,2-Dichloroethane-d4 (Surr)	112	72 - 130			11/06/17 16:15	1
4-Bromofluorobenzene	102	67 - 130	-		11/06/17 16:15	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Acenaphthylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Benzo[a]anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Benzo[a]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Benzo[b]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Benzo[g,h,i]perylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Benzo[k]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Chrysene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Dibenz(a,h)anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Fluorene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Indeno[1,2,3-cd]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Naphthalene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Phenanthrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 00:27	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	72	29 - 120			11/06/17 14:25	11/07/17 00:27	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
2-Fluorobiphenyl	72		29 - 120	11/06/17 14:25 11/07/17 00:	<u>7</u> 1
Terphenyl-d14	62		45 - 120	11/06/17 14:25 11/07/17 00:	:7 1

Method: 8015B - Diesel Range	Organics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diocol Pango Organico (C10 C28)	ND -	<u> 51</u>	ua/l		11/01/17 15:51	11/01/17 21:20	

TestAmerica Pleasanton

Client: Haley & Aldrich, Inc. TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Lab Sample ID: 720-82853-3 **Client Sample ID: MW-1**

Date Collected: 10/31/17 09:19 **Matrix: Water** Date Received: 10/31/17 12:17

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Analyte	Result	Qualifier	KL	MDL	Unit D	Prepared	Anaiyzea	DII Fac
Motor Oil Range Organics [C24-C36]	ND		100		ug/L	11/01/17 15:51	11/01/17 21:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
p-Terphenyl	87		23 - 156			11/01/17 15:51	11/01/17 21:28	1

Method: 300.0 - Anions, Id	on Chromatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	5.2	2.3	mg/L			10/31/17 21:52	10
Sulfate	19	10	mg/L			10/31/17 21:52	10
Nitrate Nitrite as N	5.7	0.23	mg/L			10/31/17 21:34	1
Nitrite as N	0.36	0.30	mg/L			10/31/17 21:34	1

Method: 6010B - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 11:49	1
Manganese	ND		0.020		mg/L		11/03/17 09:16	11/06/17 11:49	1

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	160	5.0	mg/L			10/31/17 16:04	1
Bicarbonate Alkalinity as CaCO3	160	5.0	mg/L			10/31/17 16:04	1
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L			10/31/17 16:04	1
Hydroxide Alkalinity	ND	5.0	mg/L			10/31/17 16:04	1

Client: Haley & Aldrich, Inc. Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-2 Lab Sample ID: 720-82853-4 Date Collected: 10/31/17 10:22 **Matrix: Water**

Date Received: 10/31/17 12:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50		ug/L		-	11/06/17 16:45	
Acetone	ND		50		ug/L			11/06/17 16:45	
Benzene	3.3		0.50		ug/L			11/06/17 16:45	
Dichlorobromomethane	ND		0.50		ug/L			11/06/17 16:45	
Bromobenzene	ND		1.0		ug/L			11/06/17 16:45	
Chlorobromomethane	ND		1.0		ug/L			11/06/17 16:45	
Bromoform	ND		1.0		ug/L			11/06/17 16:45	
Bromomethane	ND		1.0		ug/L			11/06/17 16:45	
2-Butanone (MEK)	ND		50		ug/L			11/06/17 16:45	
n-Butylbenzene	18		1.0		ug/L			11/06/17 16:45	
ec-Butylbenzene	ND		1.0		ug/L			11/06/17 16:45	
ert-Butylbenzene	43		1.0		ug/L			11/06/17 16:45	
Carbon disulfide	ND		5.0		ug/L			11/06/17 16:45	
Carbon tetrachloride	ND		0.50		ug/L			11/06/17 16:45	
Chlorobenzene	ND		0.50		ug/L			11/06/17 16:45	
Chloroethane	ND		1.0		ug/L			11/06/17 16:45	
Chloroform	ND		1.0		ug/L			11/06/17 16:45	
Chloromethane	ND		1.0		ug/L			11/06/17 16:45	
2-Chlorotoluene	ND		0.50		ug/L			11/06/17 16:45	
I-Chlorotoluene	ND		0.50		ug/L			11/06/17 16:45	
Chlorodibromomethane	ND		0.50		ug/L			11/06/17 16:45	
,2-Dichlorobenzene	ND		0.50		ug/L			11/06/17 16:45	
,3-Dichlorobenzene	ND		0.50		ug/L			11/06/17 16:45	
,4-Dichlorobenzene	ND		0.50		ug/L			11/06/17 16:45	
,3-Dichloropropane	ND		1.0		ug/L			11/06/17 16:45	
,1-Dichloropropene	ND		0.50		ug/L			11/06/17 16:45	
,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			11/06/17 16:45	
Ethylene Dibromide	ND		0.50		ug/L			11/06/17 16:45	
Dibromomethane	ND		0.50		ug/L			11/06/17 16:45	
Dichlorodifluoromethane	ND		0.50		ug/L			11/06/17 16:45	
,1-Dichloroethane	ND		0.50		ug/L			11/06/17 16:45	
, 1-Dichloroethane	ND		0.50		ug/L			11/06/17 16:45	
,1-Dichloroethene	ND		0.50		ug/L			11/06/17 16:45	
sis-1,2-Dichloroethene	ND		0.50		ug/L			11/06/17 16:45	
rans-1,2-Dichloroethene	ND ND		0.50		ug/L			11/06/17 16:45	
,2-Dichloropropane	ND		0.50		ug/L			11/06/17 16:45	
sis-1,3-Dichloropropene	ND		0.50					11/06/17 16:45	
rans-1,3-Dichloropropene	ND		0.50		ug/L			11/06/17 16:45	
• •					ug/L			11/06/17 16:45	
Ethylbenzene Lavashlarahutadiana	9.6		0.50		ug/L				
Hexachlorobutadiene	ND		1.0		ug/L			11/06/17 16:45	
2-Hexanone	ND		50		ug/L			11/06/17 16:45	
sopropylbenzene	26 ND		0.50		ug/L			11/06/17 16:45	
I-Isopropyltoluene	ND		1.0		ug/L			11/06/17 16:45	
Methylene Chloride	ND		5.0		ug/L			11/06/17 16:45	
l-Methyl-2-pentanone (MIBK)	ND		50		ug/L			11/06/17 16:45	
laphthalene · -	1.2		1.0		ug/L			11/06/17 16:45	
N-Propylbenzene	49		1.0		ug/L			11/06/17 16:45	
Styrene	ND		0.50		ug/L			11/06/17 16:45	

TestAmerica Pleasanton

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-4

TestAmerica Job ID: 720-82853-1

Matrix: Water

Client Sample ID: MW-2

Terphenyl-d14

Date Collected: 10/31/17 10:22 Date Received: 10/31/17 12:17

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/06/17 16:45	1
Tetrachloroethene	ND		0.50		ug/L			11/06/17 16:45	1
Toluene	1.1		0.50		ug/L			11/06/17 16:45	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/06/17 16:45	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/06/17 16:45	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/06/17 16:45	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/06/17 16:45	1
Trichloroethene	ND		0.50		ug/L			11/06/17 16:45	1
Trichlorofluoromethane	ND		1.0		ug/L			11/06/17 16:45	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/06/17 16:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/06/17 16:45	1
1,2,4-Trimethylbenzene	0.75		0.50		ug/L			11/06/17 16:45	1
1,3,5-Trimethylbenzene	2.5		0.50		ug/L			11/06/17 16:45	1
Vinyl acetate	ND		10		ug/L			11/06/17 16:45	1
Vinyl chloride	ND		0.50		ug/L			11/06/17 16:45	1
Xylenes, Total	6.3		1.0		ug/L			11/06/17 16:45	1
2,2-Dichloropropane	ND		0.50		ug/L			11/06/17 16:45	1
Gasoline Range Organics (GRO) -C4-C12	4500		250		ug/L			11/07/17 12:45	5

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	113	67 - 130	11/06/17 16:45	1
4-Bromofluorobenzene	112	67 - 130	11/07/17 12:45	5
1,2-Dichloroethane-d4 (Surr)	110	72 - 130	11/06/17 16:45	1
1,2-Dichloroethane-d4 (Surr)	101	72 - 130	11/07/17 12:45	5
Toluene-d8 (Surr)	105	70 - 130	11/06/17 16:45	1
Toluene-d8 (Surr)	101	70 - 130	11/07/17 12:45	5

Method: 8270C SIM - Sei Analyte		Qualifier	` RL	 Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.26		0.10	 ug/L		11/06/17 14:25	11/07/17 00:50	1
Acenaphthylene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Anthracene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Benzo[a]anthracene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Benzo[a]pyrene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Benzo[b]fluoranthene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Benzo[g,h,i]perylene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Benzo[k]fluoranthene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Chrysene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Dibenz(a,h)anthracene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Fluoranthene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Fluorene	0.21		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Indeno[1,2,3-cd]pyrene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Naphthalene	1.0		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Phenanthrene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Pyrene	ND		0.10	ug/L		11/06/17 14:25	11/07/17 00:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	70		29 - 120			11/06/17 14:25	11/07/17 00:50	1

TestAmerica Pleasanton

11/06/17 14:25 11/07/17 00:50

45 - 120

46

Client: Haley & Aldrich, Inc. TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-2 Lab Sample ID: 720-82853-4

Date Collected: 10/31/17 10:22 **Matrix: Water**

Date Received: 10/31/17 12:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1100		53		ug/L		11/01/17 15:51	11/01/17 21:53	1
Motor Oil Range Organics [C24-C36]	ND		110		ug/L		11/01/17 15:51	11/01/17 21:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	98		23 - 156				11/01/17 15:51	11/01/17 21:53	1
Method: 300.0 - Anions, Ion C	hromatogra	phy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.23		mg/L		-	10/31/17 22:43	1
Sulfate	ND		1.0		mg/L			10/31/17 22:43	1
Nitrate Nitrite as N	0.89		0.23		mg/L			10/31/17 22:43	1
Nitrite as N	0.89		0.30		mg/L			10/31/17 22:43	1
Method: 6010B - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 11:53	1
Manganese	6.4		0.020		mg/L		11/03/17 09:16	11/06/17 11:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	370		5.0		mg/L			10/31/17 16:16	1
Bicarbonate Alkalinity as CaCO3	370		5.0		mg/L			10/31/17 16:16	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			10/31/17 16:16	1
Hydroxide Alkalinity	ND		5.0		mg/L			10/31/17 16:16	1

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Lab Sample ID: 720-82853-5

TestAmerica Job ID: 720-82853-1

Matrix: Water

Client Sample ID: MW-3
Date Collected: 10/31/17 09:08
Date Received: 10/31/17 12:17

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND -	0.50		ug/L	— - ·		11/06/17 17:15	
Acetone	ND	50		ug/L			11/06/17 17:15	
Benzene	130	0.50		ug/L			11/06/17 17:15	
Dichlorobromomethane	ND	0.50		ug/L			11/06/17 17:15	
Bromobenzene	ND	1.0		ug/L			11/06/17 17:15	
Chlorobromomethane	ND	1.0		ug/L			11/06/17 17:15	
Bromoform	ND	1.0		ug/L			11/06/17 17:15	
Bromomethane	ND	1.0		ug/L			11/06/17 17:15	
2-Butanone (MEK)	ND	50		ug/L			11/06/17 17:15	
n-Butylbenzene	9.8	1.0		ug/L			11/06/17 17:15	
sec-Butylbenzene	9.7	1.0		ug/L			11/06/17 17:15	
ert-Butylbenzene	2.0	1.0		ug/L			11/06/17 17:15	
Carbon disulfide	ND	5.0		ug/L			11/06/17 17:15	
Carbon tetrachloride	ND	0.50		ug/L			11/06/17 17:15	
Chlorobenzene	ND	0.50		ug/L			11/06/17 17:15	
Chloroethane	ND	1.0		ug/L ug/L			11/06/17 17:15	
Chloroform	ND ND	1.0		ug/L ug/L			11/06/17 17:15	
Chloromethane	ND	1.0		ug/L			11/06/17 17:15	
2-Chlorotoluene	ND	0.50					11/06/17 17:15	
I-Chlorotoluene	ND ND	0.50		ug/L			11/06/17 17:15	
				ug/L				
Chlorodibromomethane	ND	0.50		ug/L			11/06/17 17:15	
,2-Dichlorobenzene	ND	0.50		ug/L			11/06/17 17:15	
,3-Dichlorobenzene	ND	0.50		ug/L			11/06/17 17:15	
,4-Dichlorobenzene	ND	0.50		ug/L			11/06/17 17:15	
,3-Dichloropropane	ND	1.0		ug/L			11/06/17 17:15	
,1-Dichloropropene	ND	0.50		ug/L			11/06/17 17:15	
,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			11/06/17 17:15	
Ethylene Dibromide	ND	0.50		ug/L			11/06/17 17:15	
Dibromomethane	ND	0.50		ug/L			11/06/17 17:15	
Dichlorodifluoromethane	ND	0.50		ug/L			11/06/17 17:15	
1,1-Dichloroethane	ND	0.50		ug/L			11/06/17 17:15	
1,2-Dichloroethane	ND	0.50		ug/L			11/06/17 17:15	
1,1-Dichloroethene	ND	0.50		ug/L			11/06/17 17:15	
cis-1,2-Dichloroethene	ND	0.50		ug/L			11/06/17 17:15	
rans-1,2-Dichloroethene	ND	0.50		ug/L			11/06/17 17:15	
1,2-Dichloropropane	ND	0.50		ug/L			11/06/17 17:15	
cis-1,3-Dichloropropene	ND	0.50		ug/L			11/06/17 17:15	
rans-1,3-Dichloropropene	ND	0.50		ug/L			11/06/17 17:15	
Ethylbenzene	2.9	0.50		ug/L			11/06/17 17:15	
lexachlorobutadiene	ND	1.0		ug/L			11/06/17 17:15	
2-Hexanone	ND	50		ug/L			11/06/17 17:15	
sopropylbenzene	58	0.50		ug/L			11/06/17 17:15	
I-Isopropyltoluene	1.1	1.0		ug/L			11/06/17 17:15	
Methylene Chloride	ND	5.0		ug/L			11/06/17 17:15	
-Methyl-2-pentanone (MIBK)	ND	50		ug/L			11/06/17 17:15	
Naphthalene	1.6	1.0		ug/L			11/06/17 17:15	
N-Propylbenzene	74	1.0		ug/L			11/06/17 17:15	
Styrene	ND	0.50		ug/L			11/06/17 17:15	
1,1,1,2-Tetrachloroethane	ND	0.50		ug/L			11/06/17 17:15	

TestAmerica Pleasanton

2

5

5

7

9

10

12

14

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-3 Lab Sample ID: 720-82853-5

Date Collected: 10/31/17 09:08 **Matrix: Water** Date Received: 10/31/17 12:17

Method: 8260B - Volat	ile Organic Compounds (GC/MS)) (Continue	ed)
Analyte	Result Qualifier	RL	M

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/06/17 17:15	1
Tetrachloroethene	ND		0.50		ug/L			11/06/17 17:15	1
Toluene	5.0		0.50		ug/L			11/06/17 17:15	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/06/17 17:15	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/06/17 17:15	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/06/17 17:15	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/06/17 17:15	1
Trichloroethene	ND		0.50		ug/L			11/06/17 17:15	1
Trichlorofluoromethane	ND		1.0		ug/L			11/06/17 17:15	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/06/17 17:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/06/17 17:15	1
1,2,4-Trimethylbenzene	0.52		0.50		ug/L			11/06/17 17:15	1
1,3,5-Trimethylbenzene	0.98		0.50		ug/L			11/06/17 17:15	1
Vinyl acetate	ND		10		ug/L			11/06/17 17:15	1
Vinyl chloride	ND		0.50		ug/L			11/06/17 17:15	1
Xylenes, Total	13		1.0		ug/L			11/06/17 17:15	1
2,2-Dichloropropane	ND		0.50		ug/L			11/06/17 17:15	1
Gasoline Range Organics (GRO)	3400		250		ug/L			11/07/17 13:14	5

-C4-C12

Surrogate

2-Fluorobiphenyl

Terphenyl-d14

Surrogate	%Recovery Qu	alifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	116	67 - 130		11/06/17 17:15	1
4-Bromofluorobenzene	115	67 - 130		11/07/17 13:14	5
1,2-Dichloroethane-d4 (Surr)	109	72 - 130		11/06/17 17:15	1
1,2-Dichloroethane-d4 (Surr)	99	72 - 130		11/07/17 13:14	5
Toluene-d8 (Surr)	106	70 - 130		11/06/17 17:15	1
Toluene-d8 (Surr)	100	70 - 130		11/07/17 13:14	5

%Recovery Qualifier

65

52

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Acenaphthylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Benzo[a]anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Benzo[a]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Benzo[b]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Benzo[g,h,i]perylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Benzo[k]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Chrysene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Dibenz(a,h)anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Fluorene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Indeno[1,2,3-cd]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Naphthalene	1.3	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Phenanthrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1
Pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 01:14	1

TestAmerica Pleasanton

Analyzed

11/06/17 14:25 11/07/17 01:14

11/06/17 14:25 11/07/17 01:14

Prepared

Limits

29 - 120

45 - 120

Dil Fac

Client: Haley & Aldrich, Inc. TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-3 Lab Sample ID: 720-82853-5

Date Collected: 10/31/17 09:08 Matrix: Water

Date Received: 10/31/17 12:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	930		50		ug/L		11/01/17 15:51	11/01/17 22:17	1
Motor Oil Range Organics [C24-C36]	ND		99		ug/L		11/01/17 15:51	11/01/17 22:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	91		23 - 156				11/01/17 15:51	11/01/17 22:17	1
Method: 300.0 - Anions, Ion Cl	nromatogra	vhq							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.23		mg/L			10/31/17 23:17	1
Sulfate	5.0		1.0		mg/L			10/31/17 23:17	1
Nitrate Nitrite as N	0.35		0.23		mg/L			10/31/17 23:17	1
Nitrite as N	0.35		0.30		mg/L			10/31/17 23:17	1
Method: 6010B - Metals (ICP) -	Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 11:57	1
Manganese	4.4		0.020		mg/L		11/03/17 09:16	11/06/17 11:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	550		5.0		mg/L			10/31/17 16:23	1
Bicarbonate Alkalinity as CaCO3	550		5.0		mg/L			10/31/17 16:23	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			10/31/17 16:23	1
Hydroxide Alkalinity	ND		5.0		mg/L			10/31/17 16:23	1

Client: Haley & Aldrich, Inc.

Client Sample ID: MW-4

Date Collected: 10/31/17 07:56

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-6

Matrix: Water

Date Received: 10/31/17 12:17

Analyte	Result Qualifier	RL _	MDL Unit	D Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND	0.50	ug/L		11/06/17 17:45	
Acetone	ND	50	ug/L		11/06/17 17:45	
Benzene	ND	0.50	ug/L		11/06/17 17:45	
Dichlorobromomethane	ND	0.50	ug/L		11/06/17 17:45	
Bromobenzene	ND	1.0	ug/L		11/06/17 17:45	
Chlorobromomethane	ND	1.0	ug/L		11/06/17 17:45	
Bromoform	ND	1.0	ug/L		11/06/17 17:45	
Bromomethane	ND	1.0	ug/L		11/06/17 17:45	
2-Butanone (MEK)	ND	50	ug/L		11/06/17 17:45	
n-Butylbenzene	ND	1.0	ug/L		11/06/17 17:45	
sec-Butylbenzene	ND	1.0	ug/L		11/06/17 17:45	
tert-Butylbenzene	ND	1.0	ug/L		11/06/17 17:45	
Carbon disulfide	ND	5.0	ug/L		11/06/17 17:45	
Carbon tetrachloride	ND	0.50	ug/L		11/06/17 17:45	
Chlorobenzene	ND	0.50	ug/L		11/06/17 17:45	
Chloroethane	ND	1.0	ug/L		11/06/17 17:45	
Chloroform	ND	1.0	ug/L		11/06/17 17:45	
Chloromethane	ND	1.0	ug/L		11/06/17 17:45	
2-Chlorotoluene	ND	0.50	ug/L		11/06/17 17:45	
4-Chlorotoluene	ND	0.50	ug/L		11/06/17 17:45	
Chlorodibromomethane	ND	0.50	ug/L		11/06/17 17:45	
1.2-Dichlorobenzene	ND	0.50	ug/L		11/06/17 17:45	
1,3-Dichlorobenzene	ND	0.50	ug/L		11/06/17 17:45	
1,4-Dichlorobenzene	ND	0.50	ug/L		11/06/17 17:45	
1,3-Dichloropropane	ND	1.0	ug/L		11/06/17 17:45	
1,1-Dichloropropene	ND	0.50	ug/L		11/06/17 17:45	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/06/17 17:45	
Ethylene Dibromide	ND	0.50	ug/L		11/06/17 17:45	
Dibromomethane	ND	0.50	ug/L		11/06/17 17:45	
Dichlorodifluoromethane	ND	0.50	ug/L		11/06/17 17:45	
1,1-Dichloroethane	ND	0.50	ug/L		11/06/17 17:45	
1,2-Dichloroethane	ND	0.50	ug/L		11/06/17 17:45	
1,1-Dichloroethene	ND	0.50	ug/L		11/06/17 17:45	
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 17:45	
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/06/17 17:45	
1,2-Dichloropropane	ND	0.50	ug/L		11/06/17 17:45	
cis-1,3-Dichloropropene	ND	0.50			11/06/17 17:45	
trans-1,3-Dichloropropene	ND	0.50	ug/L ug/L		11/06/17 17:45	
Ethylbenzene	ND	0.50	ug/L		11/06/17 17:45	
Hexachlorobutadiene	ND	1.0			11/06/17 17:45	
2-Hexanone	ND	50	ug/L ug/L		11/06/17 17:45	
	ND	0.50	=		11/06/17 17:45	
Isopropylbenzene	ND		ug/L		11/06/17 17:45	
4-Isopropyltoluene Methylene Chloride	ND	1.0 5.0	ug/L		11/06/17 17:45	
Methylene Chloride			ug/L			
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/06/17 17:45	
Naphthalene	ND	1.0	ug/L		11/06/17 17:45	
N-Propylbenzene	ND	1.0	ug/L		11/06/17 17:45	
Styrene 1,1,1,2-Tetrachloroethane	ND ND	0.50 0.50	ug/L ug/L		11/06/17 17:45 11/06/17 17:45	

TestAmerica Pleasanton

7

6

9

44

12

14

2-Fluorobiphenyl

Terphenyl-d14

TestAmerica Job ID: 720-82853-1

Client Sample ID: MW-4 Lab Sample ID: 720-82853-6 Date Collected: 10/31/17 07:56 Date Received: 10/31/17 12:17

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/06/17 17:45	1
Tetrachloroethene	ND		0.50		ug/L			11/06/17 17:45	1
Toluene	ND		0.50		ug/L			11/06/17 17:45	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/06/17 17:45	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/06/17 17:45	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/06/17 17:45	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/06/17 17:45	1
Trichloroethene	ND		0.50		ug/L			11/06/17 17:45	1
Trichlorofluoromethane	ND		1.0		ug/L			11/06/17 17:45	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/06/17 17:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/06/17 17:45	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/06/17 17:45	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/06/17 17:45	1
Vinyl acetate	ND		10		ug/L			11/06/17 17:45	1
Vinyl chloride	ND		0.50		ug/L			11/06/17 17:45	1
Xylenes, Total	ND		1.0		ug/L			11/06/17 17:45	1
2,2-Dichloropropane	ND		0.50		ug/L			11/06/17 17:45	1
Gasoline Range Organics (GRO) -C4-C12	ND		50		ug/L			11/07/17 12:17	1

Surrogate %Recovery Qualifier Limits Prepared Analyzed 4-Bromofluorobenzene 11/06/17 17:45 106 67 - 130 4-Bromofluorobenzene 100 67 - 130 11/07/17 12:17 1,2-Dichloroethane-d4 (Surr) 112 72 - 130 11/06/17 17:45 1,2-Dichloroethane-d4 (Surr) 101 72 - 130 11/07/17 12:17 Toluene-d8 (Surr) 103 70 - 130 11/06/17 17:45 Toluene-d8 (Surr) 70 - 130 11/07/17 12:17 92

65

59

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Acenaphthylene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Anthracene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Benzo[a]anthracene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Benzo[a]pyrene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Benzo[b]fluoranthene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Benzo[g,h,i]perylene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Benzo[k]fluoranthene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Chrysene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Dibenz(a,h)anthracene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Fluoranthene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Fluorene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Indeno[1,2,3-cd]pyrene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Naphthalene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Phenanthrene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Pyrene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 01:38	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Pleasanton

11/06/17 14:25 11/07/17 01:38

11/06/17 14:25 11/07/17 01:38

29 - 120

45 - 120

Client: Haley & Aldrich, Inc.

TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-4 Lab Sample ID: 720-82853-6

Matrix: Water

Date Collected: 10/31/17 07:56 Date Received: 10/31/17 12:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		50		ug/L		11/01/17 15:51	11/01/17 22:41	1
Motor Oil Range Organics [C24-C36]	ND		99		ug/L		11/01/17 15:51	11/01/17 22:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	90		23 - 156				11/01/17 15:51	11/01/17 22:41	1
Method: 300.0 - Anions, Ion C	hromatogra	vha							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	0.53		0.23		mg/L			10/31/17 23:51	1
Sulfate	11		1.0		mg/L			10/31/17 23:51	1
Nitrate Nitrite as N	0.78		0.23		mg/L			10/31/17 23:51	1
Nitrite as N	ND		0.30		mg/L			10/31/17 23:51	1
Method: 6010B - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 12:09	1
Manganese	0.92		0.020		mg/L		11/03/17 09:16	11/06/17 12:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	430		5.0		mg/L			10/31/17 16:31	1
Bicarbonate Alkalinity as CaCO3	430		5.0		mg/L			10/31/17 16:31	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			10/31/17 16:31	1
Hydroxide Alkalinity	ND		5.0		mg/L			10/31/17 16:31	1

TestAmerica Pleasanton

2

3

5

-

8

10

11

12 12

14

Client: Haley & Aldrich, Inc.

Project/Site: Nestle Driver's Grand Ice Cream, Gla

Client Sample ID: MW-5

Date Collected: 10/31/17 10:24

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-7

Matrix: Water

Date Received: 10/31/17 12:17

Method: 8260B - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		11/07/17 13:44	1
Acetone	ND	50	ug/L		11/07/17 13:44	1
Benzene	7.4	0.50	ug/L		11/07/17 13:44	1
Dichlorobromomethane	ND	0.50	ug/L		11/07/17 13:44	1
Bromobenzene	ND	1.0	ug/L		11/07/17 13:44	1
Chlorobromomethane	ND	1.0	ug/L		11/07/17 13:44	1
Bromoform	ND	1.0	ug/L		11/07/17 13:44	1
Bromomethane	ND	1.0	ug/L		11/07/17 13:44	1
2-Butanone (MEK)	ND	50	ug/L		11/07/17 13:44	1
n-Butylbenzene	29	1.0	ug/L		11/07/17 13:44	1
sec-Butylbenzene	16	1.0	ug/L		11/07/17 13:44	1
tert-Butylbenzene	44	1.0	ug/L		11/07/17 13:44	1
Carbon disulfide	ND	5.0	ug/L		11/07/17 13:44	1
Carbon tetrachloride	ND	0.50	ug/L		11/07/17 13:44	1
Chlorobenzene	ND	0.50	ug/L		11/07/17 13:44	1
Chloroethane	ND	1.0	ug/L		11/07/17 13:44	1
Chloroform	ND	1.0	ug/L		11/07/17 13:44	1
Chloromethane	ND	1.0	ug/L		11/07/17 13:44	1
2-Chlorotoluene	ND	0.50	ug/L		11/07/17 13:44	
4-Chlorotoluene	ND	0.50	ug/L		11/07/17 13:44	1
Chlorodibromomethane	ND	0.50	ug/L		11/07/17 13:44	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/07/17 13:44	· · · · · · · · · · · · · · · · · · ·
1,3-Dichlorobenzene	ND	0.50	ug/L		11/07/17 13:44	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/07/17 13:44	1
1,3-Dichloropropane	ND	1.0	ug/L		11/07/17 13:44	
1,1-Dichloropropene	ND	0.50	ug/L		11/07/17 13:44	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/07/17 13:44	1
Ethylene Dibromide	ND	0.50	ug/L		11/07/17 13:44	
Dibromomethane	ND ND	0.50	ug/L		11/07/17 13:44	1
Dichlorodifluoromethane	ND ND	0.50	ug/L		11/07/17 13:44	1
1.1-Dichloroethane	ND	0.50	.		11/07/17 13:44	
1,2-Dichloroethane	ND ND	0.50	ug/L		11/07/17 13:44	1
•			ug/L			1
1,1-Dichloroethene	ND	0.50	ug/L		11/07/17 13:44	
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/07/17 13:44	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/07/17 13:44	1
1,2-Dichloropropane	ND	0.50	ug/L		11/07/17 13:44	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/07/17 13:44	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/07/17 13:44	1
Ethylbenzene	42	0.50	ug/L		11/07/17 13:44	1
Hexachlorobutadiene	ND	1.0	ug/L		11/07/17 13:44	1
2-Hexanone	ND	50	ug/L		11/07/17 13:44	1
Isopropylbenzene	78	0.50	ug/L		11/07/17 13:44	1
4-Isopropyltoluene	ND	1.0	ug/L		11/07/17 13:44	1
Methylene Chloride	ND	5.0	ug/L		11/07/17 13:44	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/07/17 13:44	
Naphthalene	4.4	1.0	ug/L		11/07/17 13:44	1
N-Propylbenzene	150	1.0	ug/L		11/07/17 13:44	1
Styrene	ND	0.50	ug/L		11/07/17 13:44	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/07/17 13:44	1

TestAmerica Pleasanton

4

6

<u>۾</u>

9

11

16

TestAmerica Job ID: 720-82853-1

Client Sample ID: MW-5

Date Collected: 10/31/17 10:24 Date Received: 10/31/17 12:17 Lab Sample ID: 720-82853-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/07/17 13:44	1
Tetrachloroethene	ND		0.50		ug/L			11/07/17 13:44	1
Toluene	1.4		0.50		ug/L			11/07/17 13:44	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/07/17 13:44	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/07/17 13:44	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/07/17 13:44	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/07/17 13:44	1
Trichloroethene	ND		0.50		ug/L			11/07/17 13:44	1
Trichlorofluoromethane	ND		1.0		ug/L			11/07/17 13:44	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/07/17 13:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/07/17 13:44	1
1,2,4-Trimethylbenzene	0.75		0.50		ug/L			11/07/17 13:44	1
1,3,5-Trimethylbenzene	2.5		0.50		ug/L			11/07/17 13:44	1
Vinyl acetate	ND		10		ug/L			11/07/17 13:44	1
Vinyl chloride	ND		0.50		ug/L			11/07/17 13:44	1
Xylenes, Total	5.7		1.0		ug/L			11/07/17 13:44	1
2,2-Dichloropropane	ND		0.50		ug/L			11/07/17 13:44	1
Gasoline Range Organics (GRO) -C4-C12	3500		250		ug/L			11/07/17 15:15	5

-C4-C12

2-Fluorobiphenyl

Terphenyl-d14

Surroga	te	%Recovery	Qualifier	Limits	Prej	pared	Analyzed	Dil Fac	
4-Bromo	fluorobenzene	112		67 - 130			11/07/17 13:44	1	
4-Bromo	fluorobenzene	102		67 - 130			11/07/17 15:15	5	
1,2-Dichi	loroethane-d4 (Surr)	103		72 - 130			11/07/17 13:44	1	
1,2-Dichi	loroethane-d4 (Surr)	104		72 - 130			11/07/17 15:15	5	
Toluene-	-d8 (Surr)	105		70 - 130			11/07/17 13:44	1	
Toluene-	-d8 (Surr)	98		70 - 130			11/07/17 15:15	5	

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

61

51

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.28	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Acenaphthylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Benzo[a]anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Benzo[a]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Benzo[b]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Benzo[g,h,i]perylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Benzo[k]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Chrysene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Dibenz(a,h)anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Fluorene	0.23	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Indeno[1,2,3-cd]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Naphthalene	2.7	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Phenanthrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:01	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Pleasanton

11/06/17 14:25 11/07/17 02:01

11/06/17 14:25 11/07/17 02:01

29 - 120

45 - 120

4

6

8

10

12

13

14

Client: Haley & Aldrich, Inc. TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-5 Lab Sample ID: 720-82853-7

Date Collected: 10/31/17 10:24 Matrix: Water

Date Received: 10/31/17 12:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1200		52		ug/L		11/01/17 15:51	11/01/17 23:05	1
Motor Oil Range Organics [C24-C36]	ND		100		ug/L		11/01/17 15:51	11/01/17 23:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	109		23 - 156				11/01/17 15:51	11/01/17 23:05	1
Method: 300.0 - Anions, Ion C	hromatogra	vhq							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.23		mg/L			11/01/17 01:00	1
Sulfate	ND		1.0		mg/L			11/01/17 01:00	1
Nitrate Nitrite as N	0.96		0.23		mg/L			11/01/17 01:00	1
Nitrite as N	0.96		0.30		mg/L			11/01/17 01:00	1
Method: 6010B - Metals (ICP)	- Dissolved								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 12:13	1
Manganese	7.1		0.020		mg/L		11/03/17 09:16	11/06/17 12:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	380		5.0		mg/L			10/31/17 16:37	1
Bicarbonate Alkalinity as CaCO3	380		5.0		mg/L			10/31/17 16:37	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			10/31/17 16:37	1
Hydroxide Alkalinity	ND		5.0		mg/L			10/31/17 16:37	1

Client: Haley & Aldrich, Inc.

Project/Site: Neetle Driver's Grand Ice Cream, Glory

Client Sample ID: MW-6

Date Collected: 10/31/17 08:14

Date Received: 10/31/17 12:17

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-8

Matrix: Water

Method: 8260B - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		11/07/17 14:12	1
Acetone	ND	50	ug/L		11/07/17 14:12	1
Benzene	ND	0.50	ug/L		11/07/17 14:12	1
Dichlorobromomethane	ND	0.50	ug/L		11/07/17 14:12	1
Bromobenzene	ND	1.0	ug/L		11/07/17 14:12	1
Chlorobromomethane	ND	1.0	ug/L		11/07/17 14:12	1
Bromoform	ND	1.0	ug/L		11/07/17 14:12	1
Bromomethane	ND	1.0	ug/L		11/07/17 14:12	1
2-Butanone (MEK)	ND	50	ug/L		11/07/17 14:12	1
n-Butylbenzene	ND	1.0	ug/L		11/07/17 14:12	1
sec-Butylbenzene	ND	1.0	ug/L		11/07/17 14:12	1
tert-Butylbenzene	ND	1.0	ug/L		11/07/17 14:12	1
Carbon disulfide	ND	5.0	ug/L		11/07/17 14:12	1
Carbon tetrachloride	ND	0.50	ug/L		11/07/17 14:12	1
Chlorobenzene	ND	0.50	ug/L		11/07/17 14:12	1
Chloroethane	ND	1.0	ug/L		11/07/17 14:12	1
Chloroform	ND	1.0	ug/L		11/07/17 14:12	1
Chloromethane	ND	1.0	ug/L		11/07/17 14:12	1
2-Chlorotoluene	ND	0.50	ug/L		11/07/17 14:12	
4-Chlorotoluene	ND	0.50	ug/L		11/07/17 14:12	1
Chlorodibromomethane	ND	0.50	ug/L		11/07/17 14:12	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/07/17 14:12	
1,3-Dichlorobenzene	ND	0.50	ug/L		11/07/17 14:12	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/07/17 14:12	1
1,3-Dichloropropane	ND	1.0	ug/L		11/07/17 14:12	
1,1-Dichloropropene	ND	0.50	ug/L		11/07/17 14:12	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/07/17 14:12	1
Ethylene Dibromide	ND	0.50	ug/L		11/07/17 14:12	
Dibromomethane	ND ND	0.50	ug/L		11/07/17 14:12	1
Dichlorodifluoromethane	ND ND	0.50	ug/L		11/07/17 14:12	1
1,1-Dichloroethane	ND	0.50	ug/L		11/07/17 14:12	
1,2-Dichloroethane	ND ND	0.50	ug/L		11/07/17 14:12	1
1.1-Dichloroethene	ND ND	0.50	ug/L		11/07/17 14:12	1
cis-1,2-Dichloroethene	ND	0.50			11/07/17 14:12	
trans-1,2-Dichloroethene	ND ND	0.50	ug/L ug/L		11/07/17 14:12	1 1
·	ND ND	0.50	-			1
1,2-Dichloropropane	ND	0.50	ug/L		11/07/17 14:12 11/07/17 14:12	
cis-1,3-Dichloropropene			ug/L			_
trans-1,3-Dichloropropene	ND ND	0.50	ug/L		11/07/17 14:12 11/07/17 14:12	1
Ethylbenzene	ND	0.50	ug/L			1
Hexachlorobutadiene	ND ND	1.0	ug/L		11/07/17 14:12	1
2-Hexanone	ND ND	50	ug/L		11/07/17 14:12	1
Isopropylbenzene	ND	0.50	ug/L		11/07/17 14:12	1
4-Isopropyltoluene	ND ND	1.0	ug/L		11/07/17 14:12	1
Methylene Chloride	ND ND	5.0	ug/L		11/07/17 14:12	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/07/17 14:12	1
Naphthalene	ND	1.0	ug/L		11/07/17 14:12	1
N-Propylbenzene	ND	1.0	ug/L		11/07/17 14:12	1
Styrene	ND	0.50	ug/L		11/07/17 14:12	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/07/17 14:12	1

TestAmerica Pleasanton

2

4

6

8

4.0

12

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Lab Sample ID: 720-82853-8

TestAmerica Job ID: 720-82853-1

Matrix: Water

Client Sample ID: MW-6

Date Collected: 10/31/17 08:14 Date Received: 10/31/17 12:17

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L			11/07/17 14:12	1
Tetrachloroethene	ND	0.50		ug/L			11/07/17 14:12	1
Toluene	ND	0.50		ug/L			11/07/17 14:12	1
1,2,3-Trichlorobenzene	ND	1.0		ug/L			11/07/17 14:12	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			11/07/17 14:12	1
1,1,1-Trichloroethane	ND	0.50		ug/L			11/07/17 14:12	1
1,1,2-Trichloroethane	ND	0.50		ug/L			11/07/17 14:12	1
Trichloroethene	ND	0.50		ug/L			11/07/17 14:12	1
Trichlorofluoromethane	ND	1.0		ug/L			11/07/17 14:12	1
1,2,3-Trichloropropane	ND	0.50		ug/L			11/07/17 14:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50		ug/L			11/07/17 14:12	1
1,2,4-Trimethylbenzene	ND	0.50		ug/L			11/07/17 14:12	1
1,3,5-Trimethylbenzene	ND	0.50		ug/L			11/07/17 14:12	1
Vinyl acetate	ND	10		ug/L			11/07/17 14:12	1
Vinyl chloride	ND	0.50		ug/L			11/07/17 14:12	1
Xylenes, Total	ND	1.0		ug/L			11/07/17 14:12	1
2,2-Dichloropropane	ND	0.50		ug/L			11/07/17 14:12	1
Gasoline Range Organics (GRO) -C4-C12	ND	50		ug/L			11/07/17 15:44	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130	11/07/17 14:	12 1
4-Bromofluorobenzene	99		67 - 130	11/07/17 15:	14 1
1,2-Dichloroethane-d4 (Surr)	102		72 - 130	11/07/17 14:	12 1
1,2-Dichloroethane-d4 (Surr)	99		72 - 130	11/07/17 15:	14 1
Toluene-d8 (Surr)	98		70 - 130	11/07/17 14:	12 1
Toluene-d8 (Surr)	99		70 - 130	11/07/17 15:	14 1

Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Acenaphthylene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Anthracene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Benzo[a]anthracene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Benzo[a]pyrene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Benzo[b]fluoranthene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Benzo[g,h,i]perylene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Benzo[k]fluoranthene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Chrysene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Fluoranthene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Fluorene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Naphthalene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Phenanthrene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Pyrene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 02:25	1
Surrogate	%Recovery Q	ualifier L	.imits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	65		29 - 120	11/06/17 14:25	11/07/17 02:25	1
Terphenyl-d14	55		45 - 120	11/06/17 14:25	11/07/17 02:25	1

TestAmerica Pleasanton

Client: Haley & Aldrich, Inc. TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-6 Lab Sample ID: 720-82853-8

Date Collected: 10/31/17 08:14 Matrix: Water Date Received: 10/31/17 12:17

Method: 8015B - Diesel Range Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		50		ug/L		11/01/17 15:51	11/01/17 23:29	1
Motor Oil Range Organics [C24-C36]	ND		99		ug/L		11/01/17 15:51	11/01/17 23:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	91		23 - 156				11/01/17 15:51	11/01/17 23:29	1
Method: 300.0 - Anions, Ion C	hromatogra	phy							

Wethod: 300.0 - Anions, ion Chr	omatogra	ipny							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.23		mg/L			11/01/17 01:34	1
Sulfate	6.5		1.0		mg/L			11/01/17 01:34	1
Nitrate Nitrite as N	ND		0.23		mg/L			11/01/17 01:34	1
Nitrite as N	ND		0.30		mg/L			11/01/17 01:34	1

Method: 6010B - Metals (ICP) -	- Dissolved								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 12:18	1
Manganese	0.99		0.020		mg/L		11/03/17 09:16	11/06/17 12:18	1

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	320	5.0	mg/L		-	10/31/17 16:43	1
Bicarbonate Alkalinity as CaCO3	320	5.0	mg/L			10/31/17 16:43	1
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L			10/31/17 16:43	1
Hydroxide Alkalinity	ND	5.0	mg/L			10/31/17 16:43	1

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-9

Matrix: Water

Client Sample ID: MW-10
Date Collected: 10/31/17 10:27
Date Received: 10/31/17 12:17

1,1,1,2-Tetrachloroethane

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	0.50	ug/L		11/07/17 14:41	
Acetone	ND	50	ug/L		11/07/17 14:41	•
Benzene	3.0	0.50	ug/L		11/07/17 14:41	•
Dichlorobromomethane	ND	0.50	ug/L		11/07/17 14:41	
Bromobenzene	ND	1.0	ug/L		11/07/17 14:41	•
Chlorobromomethane	ND	1.0	ug/L		11/07/17 14:41	
Bromoform	ND	1.0	ug/L		11/07/17 14:41	
Bromomethane	ND	1.0	ug/L		11/07/17 14:41	
2-Butanone (MEK)	ND	50	ug/L		11/07/17 14:41	
n-Butylbenzene	19	1.0	ug/L		11/07/17 14:41	
sec-Butylbenzene	9.2	1.0	ug/L		11/07/17 14:41	
tert-Butylbenzene	45	1.0	ug/L		11/07/17 14:41	
Carbon disulfide	ND	5.0	ug/L		11/07/17 14:41	•
Carbon tetrachloride	ND	0.50	ug/L		11/07/17 14:41	
Chlorobenzene	ND	0.50	ug/L		11/07/17 14:41	
Chloroethane	ND	1.0	ug/L		11/07/17 14:41	
Chloroform	ND	1.0	ug/L		11/07/17 14:41	
Chloromethane	ND	1.0	ug/L		11/07/17 14:41	
2-Chlorotoluene	ND	0.50	ug/L		11/07/17 14:41	
4-Chlorotoluene	ND	0.50	ug/L		11/07/17 14:41	
Chlorodibromomethane	ND	0.50	ug/L		11/07/17 14:41	
1,2-Dichlorobenzene	ND	0.50	ug/L		11/07/17 14:41	
1,3-Dichlorobenzene	ND	0.50	ug/L		11/07/17 14:41	
1,4-Dichlorobenzene	ND	0.50	ug/L		11/07/17 14:41	
1,3-Dichloropropane	ND	1.0	ug/L		11/07/17 14:41	
1,1-Dichloropropene	ND	0.50	ug/L		11/07/17 14:41	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/07/17 14:41	
Ethylene Dibromide	ND	0.50	ug/L		11/07/17 14:41	
Dibromomethane	ND	0.50	ug/L		11/07/17 14:41	
Dichlorodifluoromethane	ND	0.50	ug/L		11/07/17 14:41	
1,1-Dichloroethane	ND	0.50	ug/L		11/07/17 14:41	
1,2-Dichloroethane	ND	0.50	ug/L		11/07/17 14:41	
1,1-Dichloroethene	ND	0.50	ug/L		11/07/17 14:41	
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/07/17 14:41	
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/07/17 14:41	
1,2-Dichloropropane	ND	0.50	ug/L		11/07/17 14:41	
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/07/17 14:41	
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/07/17 14:41	
Ethylbenzene	8.9	0.50	ug/L		11/07/17 14:41	
Hexachlorobutadiene	ND	1.0	ug/L		11/07/17 14:41	
2-Hexanone	ND	50	ug/L		11/07/17 14:41	
Isopropylbenzene	25	0.50	ug/L		11/07/17 14:41	
4-Isopropyltoluene	ND	1.0	ug/L		11/07/17 14:41	
Methylene Chloride	ND	5.0	ug/L		11/07/17 14:41	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/07/17 14:41	
Naphthalene	1.3	1.0	ug/L		11/07/17 14:41	
N-Propylbenzene	47	1.0	ug/L		11/07/17 14:41	
Styrene	ND	0.50	ug/L		11/07/17 14:41	
1 1 1 2 Totrochloroothono	ND	0.50	ug/L		11/07/17 14:41	

TestAmerica Pleasanton

11/07/17 14:41

0.50

ug/L

_

Ē

6

8

9

11

14

2-Fluorobiphenyl

Terphenyl-d14

TestAmerica Job ID: 720-82853-1

Client Sample ID: MW-10

Lab Sample ID: 720-82853-9

Matrix: Water

Date Collected: 10/31/17 10:27 Date Received: 10/31/17 12:17

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			11/07/17 14:41	1
Tetrachloroethene	ND	0.50	ug/L			11/07/17 14:41	1
Toluene	1.0	0.50	ug/L			11/07/17 14:41	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			11/07/17 14:41	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			11/07/17 14:41	1
1,1,1-Trichloroethane	ND	0.50	ug/L			11/07/17 14:41	1
1,1,2-Trichloroethane	ND	0.50	ug/L			11/07/17 14:41	1
Trichloroethene	ND	0.50	ug/L			11/07/17 14:41	1
Trichlorofluoromethane	ND	1.0	ug/L			11/07/17 14:41	1
1,2,3-Trichloropropane	ND	0.50	ug/L			11/07/17 14:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			11/07/17 14:41	1
1,2,4-Trimethylbenzene	0.78	0.50	ug/L			11/07/17 14:41	1
1,3,5-Trimethylbenzene	2.5	0.50	ug/L			11/07/17 14:41	1
Vinyl acetate	ND	10	ug/L			11/07/17 14:41	1
Vinyl chloride	ND	0.50	ug/L			11/07/17 14:41	1
Xylenes, Total	6.1	1.0	ug/L			11/07/17 14:41	1
2,2-Dichloropropane	ND	0.50	ug/L			11/07/17 14:41	1
Gasoline Range Organics (GRO) -C4-C12	2600	250	ug/L			11/07/17 16:12	5

Surrogate	%Recovery Qualifier	Limits	Prepared Analy	zed Dil Fac
4-Bromofluorobenzene	111	67 - 130	11/07/17	14:41 1
4-Bromofluorobenzene	101	67 - 130	11/07/17	16:12 5
1,2-Dichloroethane-d4 (Surr)	100	72 - 130	11/07/17	14:41 1
1,2-Dichloroethane-d4 (Surr)	96	72 - 130	11/07/17	16:12 5
Toluene-d8 (Surr)	106	70 - 130	11/07/17	14:41 1
Toluene-d8 (Surr)	100	70 - 130	11/07/17	16:12 5

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.31	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Acenaphthylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Benzo[a]anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Benzo[a]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Benzo[b]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Benzo[g,h,i]perylene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Benzo[k]fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Chrysene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Dibenz(a,h)anthracene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Fluoranthene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Fluorene	0.24	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Indeno[1,2,3-cd]pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Naphthalene	1.2	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Phenanthrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Pyrene	ND	0.10	ug/L		11/06/17 14:25	11/07/17 02:49	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Pleasanton

11/06/17 14:25 11/07/17 02:49

11/06/17 14:25 11/07/17 02:49

29 - 120

45 - 120

66

43 X

3

5

6

8

10

12

TestAmerica Job ID: 720-82853-1 Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-10 Lab Sample ID: 720-82853-9

Date Collected: 10/31/17 10:27 Matrix: Water

Date Received: 10/31/17 12:17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1300		51		ug/L		11/01/17 15:51	11/01/17 23:54	1
Motor Oil Range Organics [C24-C36]	ND		100		ug/L		11/01/17 15:51	11/01/17 23:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
p-Terphenyl	98		23 - 156				11/01/17 15:51	11/01/17 23:54	1
Method: 300.0 - Anions, Ion Cl	nromatogra	phy							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.23		mg/L			11/01/17 02:09	1
Sulfate	ND		1.0		mg/L			11/01/17 02:09	1
Nitrate Nitrite as N	0.91		0.23		mg/L			11/01/17 02:09	1
Nitrite as N	0.91		0.30		mg/L			11/01/17 02:09	1
Method: 6010B - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 12:22	1
Manganese	6.2		0.020		mg/L		11/03/17 09:16	11/06/17 12:22	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	370		5.0		mg/L			10/31/17 17:02	1
Bicarbonate Alkalinity as CaCO3	370		5.0		mg/L			10/31/17 17:02	1
Carbonate Alkalinity as CaCO3	ND		5.0		mg/L			10/31/17 17:02	1
Hydroxide Alkalinity	ND		5.0		mg/L			10/31/17 17:02	

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		BFB	12DCE	TOL	•
Lab Sample ID	Client Sample ID	(67-130)	(72-130)	(70-130)	
720-82853-1	TB-1	102	109	103	
720-82853-2	FB-1	102	111	101	
720-82853-3	MW-1	102	112	101	
720-82853-4	MW-2	113	110	105	
720-82853-4	MW-2	112	101	101	
720-82853-5	MW-3	116	109	106	
720-82853-5	MW-3	115	99	100	
720-82853-6	MW-4	106	112	103	
720-82853-6	MW-4	100	101	92	
720-82853-7	MW-5	112	103	105	
720-82853-7	MW-5	102	104	98	
720-82853-8	MW-6	98	102	98	
720-82853-8	MW-6	99	99	99	
720-82853-9	MW-10	111	100	106	
720-82853-9	MW-10	101	96	100	
LCS 720-233432/6	Lab Control Sample	101	104	102	
LCS 720-233432/8	Lab Control Sample	103	108	103	
LCS 720-233527/5	Lab Control Sample	96	93	98	
LCS 720-233527/7	Lab Control Sample	99	96	99	
LCSD 720-233432/7	Lab Control Sample Dup	100	103	101	
LCSD 720-233432/9	Lab Control Sample Dup	103	107	103	
LCSD 720-233527/6	Lab Control Sample Dup	97	96	96	
LCSD 720-233527/8	Lab Control Sample Dup	101	101	98	
MB 720-233432/5	Method Blank	101	111	101	
MB 720-233527/4	Method Blank	100	104	95	

Surrogate Legend

BFB = 4-Bromofluorobenzene

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Matrix: Water Prep Type: Total/NA

		FBP	Percent Surrogate Recove	ry (Acceptance Limits)
₋ab Sample ID	Client Sample ID	(29-120)	15-120)	
720-82853-3	MW-1	72	62	
720-82853-4	MW-2	70	46	
720-82853-5	MW-3	65	52	
720-82853-6	MW-4	65	59	
720-82853-7	MW-5	61	51	
720-82853-8	MW-6	65	55	
720-82853-9	MW-10	66	43 X	
CS 720-233482/2-A	Lab Control Sample	80	87	
CSD 720-233482/3-A	Lab Control Sample Dup	75	87	
MB 720-233482/1-A	Method Blank	77	74	

TestAmerica Pleasanton

Page 33 of 63

11/7/2017 (Rev. 1)

2

Λ

5

7

9

11

12

14

Surrogate Summary

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

TPH = Terphenyl-d14

Method: 8015B - Diesel Range Organics (DRO) (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		PTP1	
Lab Sample ID	Client Sample ID	(23-156)	
720-82853-3	MW-1	87	
720-82853-4	MW-2	98	
720-82853-5	MW-3	91	
720-82853-6	MW-4	90	
720-82853-7	MW-5	109	
720-82853-8	MW-6	91	
720-82853-9	MW-10	98	
LCS 720-233244/2-A	Lab Control Sample	102	
MB 720-233244/1-A	Method Blank	88	
Surrogate Legend			

TestAmerica Pleasanton

RL

0.50

MDL Unit

ug/L

D

Prepared

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

ND

Result Qualifier

Lab Sample ID: MB 720-233432/5

Matrix: Water

Methyl tert-butyl ether

Hexachlorobutadiene

Isopropylbenzene

4-Isopropyltoluene

Methylene Chloride

4-Methyl-2-pentanone (MIBK)

2-Hexanone

Naphthalene

Styrene

N-Propylbenzene

Analyte

Analysis Batch: 233432

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed

11/06/17 09:14

Metriyi tert-butyi etrier	ND	0.50	ug/L	11/06/17 09.14	ı
Acetone	ND	50	ug/L	11/06/17 09:14	1
Benzene	ND	0.50	ug/L	11/06/17 09:14	1
Dichlorobromomethane	ND	0.50	ug/L	11/06/17 09:14	1
Bromobenzene	ND	1.0	ug/L	11/06/17 09:14	1
Chlorobromomethane	ND	1.0	ug/L	11/06/17 09:14	1
Bromoform	ND	1.0	ug/L	11/06/17 09:14	1
Bromomethane	ND	1.0	ug/L	11/06/17 09:14	1
2-Butanone (MEK)	ND	50	ug/L	11/06/17 09:14	1
n-Butylbenzene	ND	1.0	ug/L	11/06/17 09:14	1
sec-Butylbenzene	ND	1.0	ug/L	11/06/17 09:14	1
tert-Butylbenzene	ND	1.0	ug/L	11/06/17 09:14	1
Carbon disulfide	ND	5.0	ug/L	11/06/17 09:14	1
Carbon tetrachloride	ND	0.50	ug/L	11/06/17 09:14	1
Chlorobenzene	ND	0.50	ug/L	11/06/17 09:14	1
Chloroethane	ND	1.0	ug/L	11/06/17 09:14	1
Chloroform	ND	1.0	ug/L	11/06/17 09:14	1
Chloromethane	ND	1.0	ug/L	11/06/17 09:14	1
2-Chlorotoluene	ND	0.50	ug/L	11/06/17 09:14	1
4-Chlorotoluene	ND	0.50	ug/L	11/06/17 09:14	1
Chlorodibromomethane	ND	0.50	ug/L	11/06/17 09:14	1
1,2-Dichlorobenzene	ND	0.50	ug/L	11/06/17 09:14	1
1,3-Dichlorobenzene	ND	0.50	ug/L	11/06/17 09:14	1
1,4-Dichlorobenzene	ND	0.50	ug/L	11/06/17 09:14	1
1,3-Dichloropropane	ND	1.0	ug/L	11/06/17 09:14	1
1,1-Dichloropropene	ND	0.50	ug/L	11/06/17 09:14	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	11/06/17 09:14	1
Ethylene Dibromide	ND	0.50	ug/L	11/06/17 09:14	1
Dibromomethane	ND	0.50	ug/L	11/06/17 09:14	1
Dichlorodifluoromethane	ND	0.50	ug/L	11/06/17 09:14	1
1,1-Dichloroethane	ND	0.50	ug/L	11/06/17 09:14	1
1,2-Dichloroethane	ND	0.50	ug/L	11/06/17 09:14	1
1,1-Dichloroethene	ND	0.50	ug/L	11/06/17 09:14	1
cis-1,2-Dichloroethene	ND	0.50	ug/L	11/06/17 09:14	1
trans-1,2-Dichloroethene	ND	0.50	ug/L	11/06/17 09:14	1
1,2-Dichloropropane	ND	0.50	ug/L	11/06/17 09:14	1
cis-1,3-Dichloropropene	ND	0.50	ug/L	11/06/17 09:14	1
trans-1,3-Dichloropropene	ND	0.50	ug/L	11/06/17 09:14	1
Ethylbenzene	ND	0.50	ug/L	11/06/17 09:14	1

TestAmerica Pleasanton

11/06/17 09:14

11/06/17 09:14

11/06/17 09:14

11/06/17 09:14

11/06/17 09:14

11/06/17 09:14

11/06/17 09:14

11/06/17 09:14

11/06/17 09:14

1.0

50

0.50

1.0

5.0

50

1.0

1.0

0.50

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Dil Fac

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-233432/5

Matrix: Water

Analysis Batch: 233432

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			11/06/17 09:14	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			11/06/17 09:14	1
Tetrachloroethene	ND		0.50	ug/L			11/06/17 09:14	1
Toluene	ND		0.50	ug/L			11/06/17 09:14	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			11/06/17 09:14	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			11/06/17 09:14	1
1,1,1-Trichloroethane	ND		0.50	ug/L			11/06/17 09:14	1
1,1,2-Trichloroethane	ND		0.50	ug/L			11/06/17 09:14	1
Trichloroethene	ND		0.50	ug/L			11/06/17 09:14	1
Trichlorofluoromethane	ND		1.0	ug/L			11/06/17 09:14	1
1,2,3-Trichloropropane	ND		0.50	ug/L			11/06/17 09:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			11/06/17 09:14	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			11/06/17 09:14	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			11/06/17 09:14	1
Vinyl acetate	ND		10	ug/L			11/06/17 09:14	1
Vinyl chloride	ND		0.50	ug/L			11/06/17 09:14	1
Xylenes, Total	ND		1.0	ug/L			11/06/17 09:14	1
2,2-Dichloropropane	ND		0.50	ug/L			11/06/17 09:14	1
Gasoline Range Organics (GRO) -C4-C12	ND		50	ug/L			11/06/17 09:14	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 67 - 130 11/06/17 09:14 4-Bromofluorobenzene 101 1,2-Dichloroethane-d4 (Surr) 111 72 - 130 11/06/17 09:14 Toluene-d8 (Surr) 70 - 130 101 11/06/17 09:14

Lab Sample ID: LCS 720-233432/6

Matrix: Water

Analysis Batch: 233432

Analysis Batch: 233432							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	28.4	-	ug/L		114	70 - 130
Acetone	125	151		ug/L		121	58 - 147
Benzene	25.0	28.2		ug/L		113	84 - 130
Dichlorobromomethane	25.0	29.4		ug/L		118	81 - 130
Bromobenzene	25.0	26.4		ug/L		105	84 - 130
Chlorobromomethane	25.0	26.0		ug/L		104	81 - 130
Bromoform	25.0	26.1		ug/L		105	79 - 127
Bromomethane	25.0	19.7		ug/L		79	65 - 151
2-Butanone (MEK)	125	141		ug/L		113	66 - 133
n-Butylbenzene	25.0	30.2		ug/L		121	86 - 134
sec-Butylbenzene	25.0	29.5		ug/L		118	85 - 134
tert-Butylbenzene	25.0	28.5		ug/L		114	85 - 135
Carbon disulfide	25.0	25.8		ug/L		103	60 - 159
Carbon tetrachloride	25.0	29.0		ug/L		116	79 - 133
Chlorobenzene	25.0	27.3		ug/L		109	85 - 130
Chloroethane	25.0	21.8		ug/L		87	62 - 148
Chloroform	25.0	27.1		ug/L		109	82 - 130

TestAmerica Pleasanton

Page 36 of 63

1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-233432/6

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 233432	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	25.0	19.5	-	ug/L		78	46 - 147	- —
2-Chlorotoluene	25.0	29.0		ug/L		116	83 - 130	
4-Chlorotoluene	25.0	29.3		ug/L		117	85 - 130	
Chlorodibromomethane	25.0	27.8		ug/L		111	77 - 133	
1,2-Dichlorobenzene	25.0	26.2		ug/L		105	85 - 130	
1,3-Dichlorobenzene	25.0	26.4		ug/L		106	86 - 130	
1,4-Dichlorobenzene	25.0	26.7		ug/L		107	86 - 130	
1,3-Dichloropropane	25.0	28.1		ug/L		112	77 - 130	
1,1-Dichloropropene	25.0	29.4		ug/L		117	83 - 130	
1,2-Dibromo-3-Chloropropane	25.0	26.9		ug/L		108	70 - 136	
Ethylene Dibromide	25.0	27.8		ug/L		111	80 - 130	
Dibromomethane	25.0	27.7		ug/L		111	79 ₋ 130	
Dichlorodifluoromethane	25.0	11.8		ug/L		47	18 - 173	
1,1-Dichloroethane	25.0	27.7		ug/L		111	77 - 130	
1,2-Dichloroethane	25.0	28.2		ug/L		113	66 - 132	
1,1-Dichloroethene	25.0	22.9		ug/L		92	64 - 128	
cis-1,2-Dichloroethene	25.0	27.9		ug/L		112	77 - 130	
trans-1,2-Dichloroethene	25.0	26.0		ug/L		104	79 - 130	
1,2-Dichloropropane	25.0	28.6		ug/L		115	79 - 130	
cis-1,3-Dichloropropene	25.0	27.8		ug/L		111	82 - 130	
trans-1,3-Dichloropropene	25.0	27.8		ug/L		111	76 - 129	
Ethylbenzene	25.0	29.0		ug/L		116	87 - 127	
Hexachlorobutadiene	25.0	26.3		ug/L		105	78 - 140	
2-Hexanone	125	148		ug/L		119	57 - 140	
Isopropylbenzene	25.0	29.5		ug/L		118	90 - 130	
4-Isopropyltoluene	25.0	28.5		ug/L		114	88 - 130	
Methylene Chloride	25.0	26.4		ug/L		106	75 - 128	
4-Methyl-2-pentanone (MIBK)	125	155		ug/L		124	58 - 140	
Naphthalene	25.0	28.5		ug/L		114	81 - 130	
N-Propylbenzene	25.0	30.7		ug/L		123	84 - 130	
Styrene	25.0	29.1		ug/L		116	84 - 130	
1,1,1,2-Tetrachloroethane	25.0	27.9		ug/L		111	88 - 130	
1,1,2,2-Tetrachloroethane	25.0	28.7		ug/L		115	70 - 130	
Tetrachloroethene	25.0	26.1		ug/L		104	81 - 130	
Toluene	25.0	27.8		ug/L		111	85 - 120	
1,2,3-Trichlorobenzene	25.0	27.3		ug/L		109	87 - 130	
1,2,4-Trichlorobenzene	25.0	26.7		ug/L		107	88 - 130	
1,1,1-Trichloroethane	25.0	28.7		ug/L		115	81 - 130	
1,1,2-Trichloroethane	25.0	29.0		ug/L		116	80 - 130	
Trichloroethene	25.0	25.8		ug/L		103	85 - 130	
Trichlorofluoromethane	25.0	22.8		ug/L		91	75 - 132	
1,2,3-Trichloropropane	25.0	29.5		ug/L		118	77 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.9		ug/L		95	70 ₋ 145	
ne	20.0	20.0		~g, L		00	. 0 - 1 10	
1,2,4-Trimethylbenzene	25.0	29.0		ug/L		116	87 - 132	
1,3,5-Trimethylbenzene	25.0	29.4		ug/L		118	87 - 130	
Vinyl acetate	25.0	30.9		ug/L		124	43 - 146	
Vinyl chloride	25.0	20.8		ug/L		83	50 - 156	

TestAmerica Pleasanton

2

6

8

10

12

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-233432/6

Matrix: Water

Analysis Batch: 233432

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	28.5		ug/L		114	86 - 126	
o-Xylene	25.0	28.9		ug/L		116	86 - 130	
2,2-Dichloropropane	25.0	31.5		ug/L		126	80 - 140	
	m-Xylene & p-Xylene o-Xylene	Analyte Added m-Xylene & p-Xylene 25.0 o-Xylene 25.0	Analyte Added m-Xylene & p-Xylene Result 25.0 28.5 o-Xylene 25.0 28.9	Analyte Added m-Xylene & p-Xylene Result 25.0 Qualifier 28.5 o-Xylene 25.0 28.5	Analyte Added m-Xylene & p-Xylene Result 25.0 Qualifier 28.5 Unit ug/L ug/L o-Xylene 25.0 28.5 ug/L	Analyte Added m-Xylene & p-Xylene Result 25.0 Qualifier 28.5 Unit ug/L ug/L D ug/L o-Xylene 25.0 28.9 ug/L ug/L	Analyte Added mesult graph Qualifier ug/L Unit ug/L D ug/L %Rec m-Xylene & p-Xylene 25.0 28.5 ug/L 114 o-Xylene 25.0 28.9 ug/L 116	Analyte Added m-Xylene & p-Xylene Result gualifier Qualifier ug/L Unit ug/L D was result ug/L Limits result as 6 - 126 o-Xylene 25.0 28.5 ug/L 116 86 - 130

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 101 67 - 130 104 72 - 130 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 102 70 - 130

Lab Sample ID: LCS 720-233432/8

Matrix: Water Prep Type: Total/NA Analysis Batch: 233432 Spike LCS LCS %Rec.

Added Result Qualifier Unit D %Rec Limits 500 488 ug/L 98 77 - 130 Gasoline Range Organics (GRO)

-C4-C12

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	108		72 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: LCSD 720-233432/7

Matrix: Water

Analysis Batch: 233432									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	28.2		ug/L		113	70 - 130	1	20
Acetone	125	150		ug/L		120	58 - 147	1	30
Benzene	25.0	28.4		ug/L		114	84 - 130	1	20
Dichlorobromomethane	25.0	29.1		ug/L		116	81 - 130	1	20
Bromobenzene	25.0	26.7		ug/L		107	84 - 130	1	20
Chlorobromomethane	25.0	26.0		ug/L		104	81 - 130	0	20
Bromoform	25.0	26.2		ug/L		105	79 - 127	0	20
Bromomethane	25.0	20.4		ug/L		82	65 - 151	3	20
2-Butanone (MEK)	125	136		ug/L		109	66 - 133	4	20
n-Butylbenzene	25.0	30.7		ug/L		123	86 - 134	2	20
sec-Butylbenzene	25.0	30.4		ug/L		122	85 - 134	3	20
tert-Butylbenzene	25.0	29.1		ug/L		117	85 - 135	2	20
Carbon disulfide	25.0	26.0		ug/L		104	60 - 159	1	20
Carbon tetrachloride	25.0	29.2		ug/L		117	79 - 133	1	20
Chlorobenzene	25.0	27.3		ug/L		109	85 - 130	0	20
Chloroethane	25.0	22.3		ug/L		89	62 - 148	2	20
Chloroform	25.0	27.3		ug/L		109	82 - 130	1	20
Chloromethane	25.0	20.4		ug/L		82	46 - 147	5	20
2-Chlorotoluene	25.0	29.4		ug/L		118	83 - 130	1	20
4-Chlorotoluene	25.0	29.8		ug/L		119	85 - 130	2	20
Chlorodibromomethane	25.0	27.7		ug/L		111	77 - 133	0	20

Page 38 of 63

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-233432/7

Matrix: Water

Analysis Batch: 233432

Client Sample ID: Lab	Control Sample Dup
	Pren Type: Total/NA

LCSD LCSD **RPD** Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 26.6 1.2-Dichlorobenzene 25.0 ug/L 106 85 - 130 20 1.3-Dichlorobenzene 25.0 27.0 ug/L 108 86 - 130 2 20 25.0 26.8 107 20 1.4-Dichlorobenzene ug/L 86 - 130n 1,3-Dichloropropane 25.0 27.7 ug/L 111 77 - 130 20 1,1-Dichloropropene 25.0 29.5 ug/L 118 83 - 13020 1,2-Dibromo-3-Chloropropane 25.0 27.0 ug/L 108 70 - 136 0 20 Ethylene Dibromide ug/L 25.0 110 20 27.5 80 - 130Dibromomethane 25.0 27.7 ug/L 111 79 - 130 0 20 Dichlorodifluoromethane 25.0 12.2 ug/L 49 18 - 173 3 20 25.0 28.0 77 - 130 1,1-Dichloroethane ug/L 112 20 1,2-Dichloroethane 25.0 28.3 ug/L 113 66 - 132 20 25.0 93 20 1,1-Dichloroethene 23.2 ug/L 64 - 128 20 cis-1,2-Dichloroethene 25.0 28.0 ug/L 112 77 - 130trans-1,2-Dichloroethene 25.0 26.1 105 79 - 130 20 ug/L 0 1,2-Dichloropropane 25.0 29.0 ug/L 116 79 - 130 20 20 cis-1,3-Dichloropropene 25.0 27 7 ug/L 111 82 - 130n trans-1,3-Dichloropropene 25.0 ug/L 76 - 129 20 27.7 111 0 25.0 29.2 ug/L 87 - 127 20 Ethylbenzene 117 Hexachlorobutadiene 25.0 26.3 ug/L 105 78 - 140 0 20 125 20 2-Hexanone 143 ug/L 114 57 - 140Isopropylbenzene 25.0 29.8 ug/L 119 90 - 130 20 ug/L 4-Isopropyltoluene 25.0 29.1 116 88 - 130 2 20 Methylene Chloride 25.0 26.6 ug/L 106 75 - 128 20 4-Methyl-2-pentanone (MIBK) 125 150 ug/L 120 58 - 140 20 25.0 20 Naphthalene 28.8 ug/L 115 81 - 130 N-Propylbenzene 25.0 31.3 ug/L 125 84 - 130 20 84 - 130 Styrene 25.0 28.9 ug/L 116 20 1,1,1,2-Tetrachloroethane 25.0 27.7 ug/L 111 88 - 130 20 1.1.2.2-Tetrachloroethane 25.0 28.9 20 ug/L 116 70 - 130Tetrachloroethene 25.0 26.2 ug/L 105 81 - 130 20 Toluene 25.0 28.3 113 20 ug/L 85 - 1201,2,3-Trichlorobenzene 25.0 27.7 ug/L 111 87 - 130 20 ug/L 1,2,4-Trichlorobenzene 25.0 26.7 107 88 - 130 0 20 1,1,1-Trichloroethane 25.0 29.0 ug/L 116 81 - 130 20 1,1,2-Trichloroethane 25.0 28.5 ug/L 114 80 - 130 2 20 25.0 26.2 Trichloroethene ug/L 105 85 - 1302 20 Trichlorofluoromethane 25.0 23.9 ug/L 95 75 - 13220 1,2,3-Trichloropropane 25.0 29 2 ug/L 117 20 77 - 1301 25.0 24.2 ug/L 97 70 - 145 20 1,1,2-Trichloro-1,2,2-trifluoroetha 1,2,4-Trimethylbenzene 25.0 29.6 ug/L 118 87 - 132 2 20 1,3,5-Trimethylbenzene 25.0 30.0 120 87 - 130 2 20 ug/L Vinyl acetate 25.0 30.7 ug/L 123 43 - 146 20 Vinyl chloride 25.0 21.3 ug/L 85 50 - 156 20 m-Xylene & p-Xylene 25.0 28.6 ug/L 115 86 - 12620 o-Xylene 25.0 29.2 ug/L 117 86 - 130 20 2,2-Dichloropropane 127 20 25.0 31.7 ug/L 80 - 140

TestAmerica Pleasanton

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-233432/7

Matrix: Water

Analysis Batch: 233432

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 720-233432/9 **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 233432

Prep Type: Total/NA Spike LCSD LCSD %Rec. **RPD**

Result Qualifier Unit Added Limits RPD Limit D %Rec 500 490 98 77 - 130 Gasoline Range Organics (GRO) ug/L 0

-C4-C12

Analyte

LCSD LCSD

Surrogate	%Recovery Qu	alifier Limits	
4-Bromofluorobenzene	103	67 - 130	
1,2-Dichloroethane-d4 (Surr)	107	72 - 130	
Toluene-d8 (Surr)	103	70 - 130	

Lab Sample ID: MB 720-233527/4 Client Sample ID: Method Blank

Matrix: Water

Analysis Ratch: 233527

Prep Type: Total/NA

Analysis Batch: 233527									
	MB	MB							
Analyte		Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/07/17 11:48	1
Acetone	ND		50		ug/L			11/07/17 11:48	1
Benzene	ND		0.50		ug/L			11/07/17 11:48	1
Dichlorobromomethane	ND		0.50		ug/L			11/07/17 11:48	1
Bromobenzene	ND		1.0		ug/L			11/07/17 11:48	1
Chlorobromomethane	ND		1.0		ug/L			11/07/17 11:48	1
Bromoform	ND		1.0		ug/L			11/07/17 11:48	1
Bromomethane	ND		1.0		ug/L			11/07/17 11:48	1
2-Butanone (MEK)	ND		50		ug/L			11/07/17 11:48	1
n-Butylbenzene	ND		1.0		ug/L			11/07/17 11:48	1
sec-Butylbenzene	ND		1.0		ug/L			11/07/17 11:48	1
tert-Butylbenzene	ND		1.0		ug/L			11/07/17 11:48	1
Carbon disulfide	ND		5.0		ug/L			11/07/17 11:48	1
Carbon tetrachloride	ND		0.50		ug/L			11/07/17 11:48	1
Chlorobenzene	ND		0.50		ug/L			11/07/17 11:48	1
Chloroethane	ND		1.0		ug/L			11/07/17 11:48	1
Chloroform	ND		1.0		ug/L			11/07/17 11:48	1
Chloromethane	ND		1.0		ug/L			11/07/17 11:48	1
2-Chlorotoluene	ND		0.50		ug/L			11/07/17 11:48	1
4-Chlorotoluene	ND		0.50		ug/L			11/07/17 11:48	1
Chlorodibromomethane	ND		0.50		ug/L			11/07/17 11:48	1
1,2-Dichlorobenzene	ND		0.50		ug/L			11/07/17 11:48	1
1,3-Dichlorobenzene	ND		0.50		ug/L			11/07/17 11:48	1
1,4-Dichlorobenzene	ND		0.50		ug/L			11/07/17 11:48	1
1,3-Dichloropropane	ND		1.0		ug/L			11/07/17 11:48	1
1,1-Dichloropropene	ND		0.50		ug/L			11/07/17 11:48	1

TestAmerica Pleasanton

Page 40 of 63

11/7/2017 (Rev. 1)

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 720-233527/4

Matrix: Water

Analysis Batch: 233527

Client Sample ID: Method Blank Prep Type: Total/NA

	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
							-	Diriac
ND		1.0		ıg/L			11/07/17 11:48	1
ND		0.50		ıg/L			11/07/17 11:48	1
				-				1
								1
ND		0.50	U	ıg/L			11/07/17 11:48	1
		0.50	U	ıg/L			11/07/17 11:48	1
		0.50	U	ıg/L			11/07/17 11:48	1
ND		0.50	U	ıg/L			11/07/17 11:48	1
ND		0.50	U	ıg/L			11/07/17 11:48	1
ND		0.50	U	ıg/L			11/07/17 11:48	1
ND		0.50	U	ıg/L			11/07/17 11:48	1
ND		0.50	U	ıg/L			11/07/17 11:48	1
ND		0.50	U	ıg/L			11/07/17 11:48	1
ND		1.0	U	ıg/L			11/07/17 11:48	1
ND		50	u	ıg/L			11/07/17 11:48	1
ND		0.50	u	ıg/L			11/07/17 11:48	1
ND		1.0	U	ıg/L			11/07/17 11:48	1
ND		5.0	U	ıg/L			11/07/17 11:48	1
ND		50	U	ıg/L			11/07/17 11:48	1
ND		1.0	U	ıg/L			11/07/17 11:48	1
ND		1.0	U	ıg/L			11/07/17 11:48	1
ND		0.50		-			11/07/17 11:48	1
ND		0.50					11/07/17 11:48	1
ND		0.50	u	ıg/L			11/07/17 11:48	1
ND		0.50		-			11/07/17 11:48	1
ND		0.50					11/07/17 11:48	1
ND		1.0		-			11/07/17 11:48	1
ND		1.0		-			11/07/17 11:48	1
ND		0.50					11/07/17 11:48	1
ND		0.50					11/07/17 11:48	1
ND		0.50		-			11/07/17 11:48	1
								1
								1
				-				1
								· · · · · · · · · · · · · · · · · · ·
								1
								1
								1
				-				1
	ND N	ND N	ND 0.50 ND 1.0 ND 50 ND 1.0 ND 50 ND 1.0 ND 5.0 ND 1.0 ND 1.0 ND 0.50 ND 0.50	ND 0.50	ND 0.50 ug/L ND 0.50	ND 0.50 ug/L ND 0.50	ND 0.50 ug/L ND 0.50	ND 0.50 ug/L 11/07/17 11:48

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130	 1	11/07/17 11:48	1
1,2-Dichloroethane-d4 (Surr)	104		72 - 130	1	11/07/17 11:48	1
Toluene-d8 (Surr)	95		70 - 130	1	11/07/17 11:48	1

TestAmerica Pleasanton

2

6

8

9

11

13

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-233527/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 233527	Spike	1.09	LCS			%Rec.
Analyte	Added		Qualifier	Unit	D %Rec	///Nec. Limits
Methyl tert-butyl ether	25.0	23.8		ug/L	$-\frac{2}{95}$	70 - 130
Acetone	125	119		ug/L	95	58 - 147
Benzene	25.0	24.7		ug/L	99	84 - 130
Dichlorobromomethane	25.0	25.6		ug/L	102	81 - 130
Bromobenzene	25.0	24.6		ug/L	98	84 - 130
Chlorobromomethane	25.0	24.6		ug/L ug/L	98	81 - 130
Bromoform	25.0	26.8		ug/L	107	79 - 127
Bromomethane	25.0	25.0		ug/L ug/L	100	65 ₋ 151
2-Butanone (MEK)	125	116		ug/L ug/L	93	66 - 133
n-Butylbenzene	25.0	29.8		ug/L	119	86 - 134
sec-Butylbenzene	25.0	29.3		ug/L ug/L	117	85 ₋ 134
tert-Butylbenzene	25.0	28.7		ug/L ug/L	115	85 ₋ 135
Carbon disulfide	25.0	25.8		ug/L	103	60 - 159
Carbon distillide Carbon tetrachloride	25.0	27.4			110	79 ₋ 133
	25.0 25.0	24.8		ug/L	99	79 - 133 85 - 130
Chlorobenzene				ug/L		
Chloroform	25.0	26.1		ug/L	104	62 - 148
Chloroform	25.0	25.1		ug/L	100	82 - 130
Chloromethane	25.0	25.4		ug/L	101	46 - 147
2-Chlorotoluene	25.0	27.1		ug/L	109	83 - 130
4-Chlorotoluene	25.0	26.4		ug/L	106	85 - 130
Chlorodibromomethane	25.0	24.8		ug/L	99	77 - 133
1,2-Dichlorobenzene	25.0	24.9		ug/L	100	85 - 130
1,3-Dichlorobenzene	25.0	25.4		ug/L	101	86 - 130
1,4-Dichlorobenzene	25.0	25.2		ug/L	101	86 - 130
1,3-Dichloropropane	25.0	22.3		ug/L	89	77 - 130
1,1-Dichloropropene	25.0	26.4		ug/L	106	83 - 130
1,2-Dibromo-3-Chloropropane	25.0	23.5		ug/L	94	70 - 136
Ethylene Dibromide	25.0	22.0		ug/L	88	80 - 130
Dibromomethane	25.0	23.6		ug/L	95	79 - 130
Dichlorodifluoromethane	25.0	26.0		ug/L	104	18 - 173
1,1-Dichloroethane	25.0	25.8		ug/L	103	77 - 130
1,2-Dichloroethane	25.0	23.3		ug/L	93	66 - 132
1,1-Dichloroethene	25.0	24.6		ug/L	98	64 - 128
cis-1,2-Dichloroethene	25.0	25.6		ug/L	102	77 - 130
trans-1,2-Dichloroethene	25.0	25.1		ug/L	100	79 - 130
1,2-Dichloropropane	25.0	24.7		ug/L	99	79 - 130
cis-1,3-Dichloropropene	25.0	23.9		ug/L	96	82 - 130
trans-1,3-Dichloropropene	25.0	24.5		ug/L	98	76 - 129
Ethylbenzene	25.0	27.1		ug/L	109	87 - 127
Hexachlorobutadiene	25.0	26.1		ug/L	105	78 - 140
2-Hexanone	125	122		ug/L	98	57 ₋ 140
Isopropylbenzene	25.0	28.4		ug/L	114	90 - 130
4-Isopropyltoluene	25.0	29.2		ug/L	117	88 - 130
Methylene Chloride	25.0	21.2		ug/L	85	75 - 128
4-Methyl-2-pentanone (MIBK)	125	131		ug/L	105	58 - 140
Naphthalene	25.0	26.4		ug/L	105	81 - 130
N-Propylbenzene	25.0	29.2		ug/L	117	84 - 130
Styrene	25.0	26.4		ug/L ug/L	106	84 - 130

TestAmerica Pleasanton

2

O

Ω

9

11

13

TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-233527/5

Matrix: Water

Analysis Batch: 233527

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Allalysis Datcii. 200021	Omiles	1.00	1.00				0/ Dag	
	Spike		LCS		_	~ -	%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	27.3		ug/L		109	88 - 130	
1,1,2,2-Tetrachloroethane	25.0	26.3		ug/L		105	70 - 130	
Tetrachloroethene	25.0	24.0		ug/L		96	81 - 130	
Toluene	25.0	26.2		ug/L		105	85 - 120	
1,2,3-Trichlorobenzene	25.0	25.7		ug/L		103	87 - 130	
1,2,4-Trichlorobenzene	25.0	26.2		ug/L		105	88 - 130	
1,1,1-Trichloroethane	25.0	27.1		ug/L		109	81 - 130	
1,1,2-Trichloroethane	25.0	22.6		ug/L		91	80 - 130	
Trichloroethene	25.0	24.8		ug/L		99	85 - 130	
Trichlorofluoromethane	25.0	25.8		ug/L		103	75 - 132	
1,2,3-Trichloropropane	25.0	24.5		ug/L		98	77 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.5		ug/L		102	70 ₋ 145	
ne								
1,2,4-Trimethylbenzene	25.0	28.3		ug/L		113	87 - 132	
1,3,5-Trimethylbenzene	25.0	28.4		ug/L		114	87 - 130	
Vinyl acetate	25.0	25.2		ug/L		101	43 - 146	
Vinyl chloride	25.0	28.1		ug/L		112	50 ₋ 156	
m-Xylene & p-Xylene	25.0	26.9		ug/L		107	86 - 126	
o-Xylene	25.0	27.3		ug/L		109	86 - 130	
2,2-Dichloropropane	25.0	29.7		ug/L		119	80 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	93		72 - 130
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: LCS 720-233527/7

Matrix: Water

Analysis Batch: 233527

Allalysis Datcii. 20021								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	475		ug/L		95	77 - 130	

-C4-C12

	LCS I	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCSD 720-233527/6

Matrix: Water

Analysis Batch: 233527

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	25.4		ug/L		102	70 - 130	7	20
Acetone	125	131		ug/L		105	58 - 147	9	30
Benzene	25.0	25.2		ug/L		101	84 - 130	2	20
Dichlorobromomethane	25.0	26.5		ug/L		106	81 - 130	4	20

TestAmerica Pleasanton

Page 43 of 63

11/7/2017 (Rev. 1)

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-233527/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 233527	Omiles	1.000	1 000				0/ Dan		חחם
Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Bromobenzene		25.0	Qualifier	ug/L		100	84 ₋ 130	2	20
Chlorobromomethane	25.0	25.6		ug/L		102	81 - 130	4	20
Bromoform	25.0	27.7		ug/L		111	79 - 127	3	20
Bromomethane	25.0	24.8		ug/L		99	65 - 151	1	20
2-Butanone (MEK)	125	123		ug/L		98	66 - 133	6	22
n-Butylbenzene	25.0	28.9		ug/L		116	86 - 134	3	20
sec-Butylbenzene	25.0	29.1		ug/L		116	85 - 134	1	20
tert-Butylbenzene	25.0	28.7		ug/L		115	85 - 135	0	20
Carbon disulfide	25.0	25.6		ug/L		102	60 - 159	1	20
Carbon tetrachloride	25.0	26.9		ug/L		108	79 - 133	2	20
Chlorobenzene	25.0	24.8		ug/L		99	85 - 130	0	20
Chloroethane	25.0	25.4		ug/L		102	62 - 148	3	20
Chloroform	25.0	25.9		ug/L		104	82 - 130	3	20
Chloromethane	25.0	25.0		ug/L		100	46 - 147	1	20
2-Chlorotoluene	25.0	27.1		ug/L		109	83 - 130	0	20
4-Chlorotoluene	25.0	26.2		ug/L		105	85 - 130	1	20
Chlorodibromomethane	25.0	25.9		ug/L		103	77 - 133	4	20
1,2-Dichlorobenzene	25.0	25.7		ug/L		103	85 - 130	3	20
1,3-Dichlorobenzene	25.0	25.6		ug/L		102	86 - 130	1	20
1,4-Dichlorobenzene	25.0	25.4		ug/L		102	86 - 130	1	20
1,3-Dichloropropane	25.0	23.0		ug/L		92	77 - 130	3	20
1,1-Dichloropropene	25.0	25.9		ug/L		104	83 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	24.1		ug/L		96	70 - 136	3	20
Ethylene Dibromide	25.0	22.8		ug/L		91	80 - 130	3	20
Dibromomethane	25.0	24.2		ug/L		97	79 - 130	2	20
Dichlorodifluoromethane	25.0	24.6		ug/L		98	18 - 173	6	20
1,1-Dichloroethane	25.0	26.3		ug/L		105	77 - 130	2	20
1,2-Dichloroethane	25.0	24.2		ug/L		97	66 - 132	4	20
1,1-Dichloroethene	25.0	24.6		ug/L		98	64 - 128	0	20
cis-1,2-Dichloroethene	25.0	26.3		ug/L		105	77 - 130	3	20
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	79 - 130	0	20
1,2-Dichloropropane	25.0	25.0		ug/L		100	79 - 130	1	20
cis-1,3-Dichloropropene	25.0	24.5		ug/L		98	82 - 130	3	20
trans-1,3-Dichloropropene	25.0	25.3		ug/L		101	76 - 129	3	20
Ethylbenzene	25.0	26.6		ug/L		107	87 - 127	2	20
Hexachlorobutadiene	25.0	25.7		ug/L		103	78 - 140	2	20
2-Hexanone	125	129		ug/L		103	57 ₋ 140	5	24
Isopropylbenzene	25.0	28.0		ug/L		112	90 - 130	1	20
4-Isopropyltoluene	25.0	29.0		ug/L		116	88 - 130	1	20
Methylene Chloride	25.0	22.0		ug/L		88	75 - 128	4	20
4-Methyl-2-pentanone (MIBK)	125	136		ug/L		109	58 - 140	4	21
Naphthalene	25.0	27.8		ug/L		111	81 - 130	5	20
N-Propylbenzene	25.0	28.5		ug/L		114	84 - 130	2	20
Styrene	25.0	26.5		ug/L		106	84 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	28.1		ug/L		113	88 - 130	3	20
1,1,2,2-Tetrachloroethane	25.0	27.3		ug/L		109	70 - 130	4	20
Tetrachloroethene	25.0	23.5		ug/L		94	81 - 130	2	20
Toluene	25.0	25.9		ug/L		103	85 - 120	1	20

TestAmerica Pleasanton

Page 44 of 63

11/7/2017 (Rev. 1)

9

5

9

10

12

14

TestAmerica Job ID: 720-82853-1

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-233527/6

Matrix: Water

Analysis Batch: 233527

Client Sample ID: Lab	Control Sample Dup
	Pren Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3-Trichlorobenzene	25.0	26.8		ug/L		107	87 - 130	4	20
1,2,4-Trichlorobenzene	25.0	26.3		ug/L		105	88 - 130	0	20
1,1,1-Trichloroethane	25.0	27.0		ug/L		108	81 - 130	0	20
1,1,2-Trichloroethane	25.0	23.5		ug/L		94	80 - 130	4	20
Trichloroethene	25.0	24.9		ug/L		100	85 - 130	0	20
Trichlorofluoromethane	25.0	25.1		ug/L		100	75 - 132	3	20
1,2,3-Trichloropropane	25.0	25.1		ug/L		100	77 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.0		ug/L		100	70 - 145	2	20
ne									
1,2,4-Trimethylbenzene	25.0	28.5		ug/L		114	87 - 132	1	20
1,3,5-Trimethylbenzene	25.0	28.6		ug/L		115	87 - 130	1	20
Vinyl acetate	25.0	26.1		ug/L		104	43 - 146	3	20
Vinyl chloride	25.0	27.2		ug/L		109	50 - 156	3	20
m-Xylene & p-Xylene	25.0	26.4		ug/L		105	86 - 126	2	20
o-Xylene	25.0	27.4		ug/L		110	86 - 130	0	20
2,2-Dichloropropane	25.0	28.6		ug/L		115	80 - 140	4	20

LCSD LCSD %Recovery Qualifier Limits Surrogate 67 - 130 4-Bromofluorobenzene 97 1,2-Dichloroethane-d4 (Surr) 96 72 - 130 Toluene-d8 (Surr) 96 70 - 130

Lab Sample ID: LCSD 720-233527/8

Matrix: Water

Analysis Batch: 233527

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	462		ug/L		92	77 - 130	3	20
-C4-C12									

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 101 67 - 130 1,2-Dichloroethane-d4 (Surr) 101 72 - 130 Toluene-d8 (Surr) 98 70 - 130

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM)

Lab Sample ID: MB 720-233482/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Prep Batch: 233482 Analysis Batch: 233515 MB MB

Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Acenaphthylene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Anthracene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Benzo[a]anthracene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Benzo[a]pyrene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Benzo[b]fluoranthene	ND	0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1

Page 45 of 63

TestAmerica Job ID: 720-82853-1

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: MB 720-233482/1-A

Matrix: Water

Analysis Batch: 233515

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 233482

, , , , , , , , , , , , , , , , , , , ,	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[g,h,i]perylene	ND -		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Benzo[k]fluoranthene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Chrysene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Dibenz(a,h)anthracene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Fluoranthene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Fluorene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Indeno[1,2,3-cd]pyrene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Naphthalene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Phenanthrene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1
Pyrene	ND		0.10		ug/L		11/06/17 14:25	11/07/17 00:03	1

MB MB

Surrogate	%Recovery Q	Qualifier L	imits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	77		29 - 120	11/06/17 14:25	11/07/17 00:03	1
Terphenyl-d14	74	4	¹⁵ - 120	11/06/17 14:25	11/07/17 00:03	1

Lab Sample ID: LCS 720-233482/2-A

Matrix: Water

Analysis Batch: 233515

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 233482

7 , 0.10 2000 10	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthene	10.0	7.48		ug/L		75	24 - 120
Acenaphthylene	10.0	7.74		ug/L		77	24 - 120
Anthracene	10.0	7.31		ug/L		73	44 - 120
Benzo[a]anthracene	10.0	7.54		ug/L		75	48 - 120
Benzo[a]pyrene	10.0	8.17		ug/L		82	43 - 120
Benzo[b]fluoranthene	10.0	7.97		ug/L		80	42 - 120
Benzo[g,h,i]perylene	10.0	5.83		ug/L		58	35 - 120
Benzo[k]fluoranthene	10.0	7.47		ug/L		75	42 - 120
Chrysene	10.0	7.28		ug/L		73	47 - 120
Dibenz(a,h)anthracene	10.0	6.76		ug/L		68	33 - 120
Fluoranthene	10.0	7.91		ug/L		79	43 - 120
Fluorene	10.0	7.90		ug/L		79	27 - 120
Indeno[1,2,3-cd]pyrene	10.0	6.53		ug/L		65	36 - 120
Naphthalene	10.0	7.58		ug/L		76	19 - 120
Phenanthrene	10.0	7.61		ug/L		76	31 - 120
Pyrene	10.0	7.56		ug/L		76	47 - 120

LCS LCS

Surrogate	%Recovery Qualif	ier Limits
2-Fluorobiphenyl	80	29 - 120
Terphenyl-d14	87	45 - 120

Lab Sample ID: LCSD 720-233482/3-A

Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 233515							Prep Ba	itch: 23	33482
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthene	 10.0	7.03		ug/L		70	24 - 120	6	35
Acenaphthylene	10.0	7.27		ug/L		73	24 - 120	6	35

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample Dup

Page 46 of 63

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: 8270C SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Lab Sample ID: LCSD 720-233482/3-A

Matrix: Water

Analysis Batch: 233515

Client Sample ID: Lab Control Sample Dup

75

75

Prep Type: Total/NA Prep Batch: 233482

Alialysis Dalcii. 2000 10							Fieb De	ucii. Z	33402
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Anthracene	10.0	7.14		ug/L		71	44 - 120	2	35
Benzo[a]anthracene	10.0	7.46		ug/L		75	48 - 120	1	35
Benzo[a]pyrene	10.0	7.98		ug/L		80	43 - 120	2	35
Benzo[b]fluoranthene	10.0	7.78		ug/L		78	42 - 120	2	35
Benzo[g,h,i]perylene	10.0	5.82		ug/L		58	35 - 120	0	35
Benzo[k]fluoranthene	10.0	7.48		ug/L		75	42 - 120	0	35
Chrysene	10.0	7.34		ug/L		73	47 - 120	1	35
Dibenz(a,h)anthracene	10.0	6.76		ug/L		68	33 - 120	0	35
Fluoranthene	10.0	7.87		ug/L		79	43 - 120	1	35
Fluorene	10.0	7.44		ug/L		74	27 - 120	6	35
Indeno[1,2,3-cd]pyrene	10.0	6.49		ug/L		65	36 - 120	1	35
Naphthalene	10.0	7.11		ug/L		71	19 - 120	6	35

7.47

7.49

ug/L

ug/L

10.0

10.0

LCSD LCSD

%Recovery Qualifier Surrogate Limits 2-Fluorobiphenyl 29 - 120 75 45 - 120 Terphenyl-d14 87

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-233244/1-A

Matrix: Water

Phenanthrene

Pyrene

Analysis Batch: 233190

Client Sample ID: Method Blank Prep Type: Total/NA

31 - 120

47 - 120

Prep Batch: 233244

2

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		50		ug/L		11/01/17 15:51	11/02/17 02:52	1
Motor Oil Range Organics [C24-C36]	ND		99		ug/L		11/01/17 15:51	11/02/17 02:52	1
	MB	MB							

Limits Prepared Surrogate %Recovery Qualifier Analyzed Dil Fac p-Terphenyl 88 23 - 156 <u>11/01/17 15:51</u> <u>11/02/17 02:52</u>

Lab Sample ID: LCS 720-233244/2-A

Matrix: Water

Analysis Batch: 233190

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 233244 %Rec.

LCS LCS Spike Analyte Added Result Qualifier Unit D %Rec Limits 2500 2230 ug/L 89 34 - 115 **Diesel Range Organics**

[C10-C28]

LCS LCS

%Recovery Qualifier Limits Surrogate p-Terphenyl 102 23 - 156

TestAmerica Pleasanton

35

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-1

Client Sample ID: MW-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 720-233176/29

Matrix: Water

Analysis Batch: 233176

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Sulfate 1.0 ND mg/L 10/31/17 18:31

Lab Sample ID: LCS 720-233176/30

Matrix: Water

Analysis Batch: 233176

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec Sulfate 10.0 10.3 mg/L 103 90 - 110

Lab Sample ID: 720-82853-3 MS

Matrix: Water

Analysis Batch: 233176

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	19		100	123		mg/L		104	80 - 120	

Lab Sample ID: 720-82853-3 MSD

Matrix: Water

Analysis Batch: 233176

7 maryolo Batom 200170	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	19		100	122		mg/L	 _	103	80 - 120	1	20

Lab Sample ID: MB 720-233177/29

Matrix: Water

Analysis Batch: 233177

MB MB

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	ND		0.23	mg/L			10/31/17 18:31	1
Nitrate Nitrite as N	ND		0.23	mg/L			10/31/17 18:31	1
Nitrite as N	ND		0.30	mg/L			10/31/17 18:31	1

Lab Sample ID: LCS 720-233177/30

Matrix: Water

Analysis Ratch: 233177

Allalysis Datell. 200111									
_	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	2.26	2.33		mg/L		103	90 - 110		-
Nitrate Nitrite as N	5.30	5.48		mg/L		103	90 - 110		
Nitrite as N	3.04	3.14		mg/L		103	90 - 110		

Lab Sample ID: 720-82853-3 MS

Matrix: Water

Analysis Batch: 233177											
_	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	5.2		22.6	28.2		mg/L		102	80 - 120	 	-
Nitrate Nitrite as N	5.2		53.0	60.5		mg/L		104	80 - 120		
Nitrite as N	ND		30.4	32.3		mg/L		106	80 - 120		

TestAmerica Pleasanton

Client Sample ID: MW-1

Prep Type: Total/NA

Page 48 of 63

TestAmerica Job ID: 720-82853-1

Client: Haley & Aldrich, Inc. Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 720-82853-3 MSD

Matrix: Water

Analysis Batch: 233177

Client Sample ID: MW-1 **Prep Type: Total/NA**

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	5.2		22.6	27.5		mg/L		99	80 - 120	2	20
Nitrate Nitrite as N	5.2		53.0	60.8		mg/L		105	80 - 120	1	20
Nitrite as N	ND		30.4	33.3		mg/L		110	80 - 120	3	20

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-233366/1-A

Matrix: Water

Analysis Batch: 233477

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 233366

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		1.0		mg/L		11/03/17 09:16	11/06/17 11:22	1
Manganese	ND		0.020		mg/L		11/03/17 09:16	11/06/17 11:22	1

Lab Sample ID: LCS 720-233366/2-A

Matrix: Water

Analysis Batch: 233477

Chent Sample ID: Lab Control Sample
Prep Type: Total Recoverable
Pron Batch: 233366

%Rec.

Spike LCS LCS Added Analyte Result Qualifier Unit D %Rec Limits 10.0 9.28 Iron mg/L 93 80 - 120 Manganese 1.00 0.992 mg/L 99 80 - 120

MB MB

MR MR

Lab Sample ID: MB 720-233280/1-B

Matrix: Water

Analysis Batch: 233477

Client Sample ID: Method Blank Prep Type: Dissolved

Prep Batch: 233366

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND	1.0	mg/L		11/03/17 09:16	11/06/17 11:30	1
Manganese	ND	0.020	mg/L		11/03/17 09:16	11/06/17 11:30	1

Lab Sample ID: 720-82853-3 MS **Matrix: Water**

Analysis Batch: 233477

Client Sample ID: MW-1 **Prep Type: Dissolved** Prep Batch: 233366 Snika

	Sample	Sample	Бріке	IVIS	M2				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Īron	ND		10.0	8.97		mg/L		90	75 - 125	
Manganese	ND		1.00	0.956		mg/L		95	75 ₋ 125	

Lab Sample ID: 720-82853-3 MSD

Matrix: Water

Analysis Batch: 233477

Client Sample ID: MW-1 **Prep Type: Dissolved** Prep Batch: 233366

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Iron	ND		10.0	9.25		mg/L		93	75 - 125	3	20
Manganese	ND		1.00	0.978		mg/L		97	75 - 125	2	20

TestAmerica Pleasanton

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 720-233172/2

Matrix: Water

Analysis Batch: 233172

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-1

Prep Type: Total/NA

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity	ND	5.0	mg/L			10/31/17 15:46	1
Bicarbonate Alkalinity as CaCO3	ND	5.0	mg/L			10/31/17 15:46	1
Carbonate Alkalinity as CaCO3	ND	5.0	mg/L			10/31/17 15:46	1
Hydroxide Alkalinity	ND	5.0	mg/L			10/31/17 15:46	1

Lab Sample ID: LCS 720-233172/3

Matrix: Water

Analysis Batch: 233172

 Analyte
 Added Alkalinity
 Result 250
 Qualifier mg/L
 Unit mg/L
 D v/Rec Limits

Lab Sample ID: LCSD 720-233172/4

Matrix: Water

Analysis Batch: 233172

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec Alkalinity 250 252 101 80 - 120 mg/L

Lab Sample ID: 720-82853-3 DU

Matrix: Water

Analysis Batch: 233172

Allalysis Batoli. 200112								
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Alkalinity	160		156		mg/L		 0	20
Bicarbonate Alkalinity as CaCO3	160		156		mg/L		0	20
Carbonate Alkalinity as CaCO3	ND		ND		mg/L		NC	20
Hydroxide Alkalinity	ND		ND		mg/L		NC	20

2

3

4

6

Ω

9

11

12

14

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

GC/MS VOA

Analysis Batch: 233432

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-1	TB-1	Total/NA	Water	8260B	_
720-82853-2	FB-1	Total/NA	Water	8260B	
720-82853-3	MW-1	Total/NA	Water	8260B	
720-82853-4	MW-2	Total/NA	Water	8260B	
720-82853-5	MW-3	Total/NA	Water	8260B	
720-82853-6	MW-4	Total/NA	Water	8260B	
MB 720-233432/5	Method Blank	Total/NA	Water	8260B	
LCS 720-233432/6	Lab Control Sample	Total/NA	Water	8260B	
LCS 720-233432/8	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-233432/7	Lab Control Sample Dup	Total/NA	Water	8260B	
LCSD 720-233432/9	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 233527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-4	MW-2	Total/NA	Water	8260B	
720-82853-5	MW-3	Total/NA	Water	8260B	
720-82853-6	MW-4	Total/NA	Water	8260B	
720-82853-7	MW-5	Total/NA	Water	8260B	
720-82853-7	MW-5	Total/NA	Water	8260B	
720-82853-8	MW-6	Total/NA	Water	8260B	
720-82853-8	MW-6	Total/NA	Water	8260B	
720-82853-9	MW-10	Total/NA	Water	8260B	
720-82853-9	MW-10	Total/NA	Water	8260B	
MB 720-233527/4	Method Blank	Total/NA	Water	8260B	
LCS 720-233527/5	Lab Control Sample	Total/NA	Water	8260B	
LCS 720-233527/7	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-233527/6	Lab Control Sample Dup	Total/NA	Water	8260B	
LCSD 720-233527/8	Lab Control Sample Dup	Total/NA	Water	8260B	

GC/MS Semi VOA

Prep Batch: 233482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Total/NA	Water	3510C	_
720-82853-4	MW-2	Total/NA	Water	3510C	
720-82853-5	MW-3	Total/NA	Water	3510C	
720-82853-6	MW-4	Total/NA	Water	3510C	
720-82853-7	MW-5	Total/NA	Water	3510C	
720-82853-8	MW-6	Total/NA	Water	3510C	
720-82853-9	MW-10	Total/NA	Water	3510C	
MB 720-233482/1-A	Method Blank	Total/NA	Water	3510C	
LCS 720-233482/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 720-233482/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 233515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Total/NA	Water	8270C SIM	233482
720-82853-4	MW-2	Total/NA	Water	8270C SIM	233482
720-82853-5	MW-3	Total/NA	Water	8270C SIM	233482
720-82853-6	MW-4	Total/NA	Water	8270C SIM	233482

TestAmerica Pleasanton

Page 51 of 63

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

GC/MS Semi VOA (Continued)

Analysis Batch: 233515 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-7	MW-5	Total/NA	Water	8270C SIM	233482
720-82853-8	MW-6	Total/NA	Water	8270C SIM	233482
720-82853-9	MW-10	Total/NA	Water	8270C SIM	233482
MB 720-233482/1-A	Method Blank	Total/NA	Water	8270C SIM	233482
LCS 720-233482/2-A	Lab Control Sample	Total/NA	Water	8270C SIM	233482
LCSD 720-233482/3-A	Lab Control Sample Dup	Total/NA	Water	8270C SIM	233482

GC Semi VOA

Analysis Batch: 233190

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Total/NA	Water	8015B	233244
720-82853-4	MW-2	Total/NA	Water	8015B	233244
720-82853-5	MW-3	Total/NA	Water	8015B	233244
720-82853-6	MW-4	Total/NA	Water	8015B	233244
720-82853-7	MW-5	Total/NA	Water	8015B	233244
720-82853-8	MW-6	Total/NA	Water	8015B	233244
720-82853-9	MW-10	Total/NA	Water	8015B	233244
MB 720-233244/1-A	Method Blank	Total/NA	Water	8015B	233244
LCS 720-233244/2-A	Lab Control Sample	Total/NA	Water	8015B	233244

Prep Batch: 233244

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Total/NA	Water	3510C	_
720-82853-4	MW-2	Total/NA	Water	3510C	
720-82853-5	MW-3	Total/NA	Water	3510C	
720-82853-6	MW-4	Total/NA	Water	3510C	
720-82853-7	MW-5	Total/NA	Water	3510C	
720-82853-8	MW-6	Total/NA	Water	3510C	
720-82853-9	MW-10	Total/NA	Water	3510C	
MB 720-233244/1-A	Method Blank	Total/NA	Water	3510C	
LCS 720-233244/2-A	Lab Control Sample	Total/NA	Water	3510C	

HPLC/IC

Analysis Batch: 233176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Total/NA	Water	300.0	
720-82853-4	MW-2	Total/NA	Water	300.0	
720-82853-5	MW-3	Total/NA	Water	300.0	
720-82853-6	MW-4	Total/NA	Water	300.0	
720-82853-7	MW-5	Total/NA	Water	300.0	
720-82853-8	MW-6	Total/NA	Water	300.0	
720-82853-9	MW-10	Total/NA	Water	300.0	
MB 720-233176/29	Method Blank	Total/NA	Water	300.0	
LCS 720-233176/30	Lab Control Sample	Total/NA	Water	300.0	
720-82853-3 MS	MW-1	Total/NA	Water	300.0	
720-82853-3 MSD	MW-1	Total/NA	Water	300.0	

TestAmerica Pleasanton

Page 52 of 63

2

3

Ī

7

8

40

11

13

14

QC Association Summary

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

HPLC/IC (Continued)

Analysis Batch: 233177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Total/NA	Water	300.0	
720-82853-3	MW-1	Total/NA	Water	300.0	
720-82853-4	MW-2	Total/NA	Water	300.0	
720-82853-5	MW-3	Total/NA	Water	300.0	
720-82853-6	MW-4	Total/NA	Water	300.0	
720-82853-7	MW-5	Total/NA	Water	300.0	
720-82853-8	MW-6	Total/NA	Water	300.0	
720-82853-9	MW-10	Total/NA	Water	300.0	
MB 720-233177/29	Method Blank	Total/NA	Water	300.0	
LCS 720-233177/30	Lab Control Sample	Total/NA	Water	300.0	
720-82853-3 MS	MW-1	Total/NA	Water	300.0	
720-82853-3 MSD	MW-1	Total/NA	Water	300.0	

Metals

Filtration Batch: 233280

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Dissolved	Water	FILTRATION	
720-82853-4	MW-2	Dissolved	Water	FILTRATION	
720-82853-5	MW-3	Dissolved	Water	FILTRATION	
720-82853-6	MW-4	Dissolved	Water	FILTRATION	
720-82853-7	MW-5	Dissolved	Water	FILTRATION	
720-82853-8	MW-6	Dissolved	Water	FILTRATION	
720-82853-9	MW-10	Dissolved	Water	FILTRATION	
MB 720-233280/1-B	Method Blank	Dissolved	Water	FILTRATION	
720-82853-3 MS	MW-1	Dissolved	Water	FILTRATION	
720-82853-3 MSD	MW-1	Dissolved	Water	FILTRATION	

Prep Batch: 233366

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Dissolved	Water	3005A	233280
720-82853-4	MW-2	Dissolved	Water	3005A	233280
720-82853-5	MW-3	Dissolved	Water	3005A	233280
720-82853-6	MW-4	Dissolved	Water	3005A	233280
720-82853-7	MW-5	Dissolved	Water	3005A	233280
720-82853-8	MW-6	Dissolved	Water	3005A	233280
720-82853-9	MW-10	Dissolved	Water	3005A	233280
MB 720-233280/1-B	Method Blank	Dissolved	Water	3005A	233280
MB 720-233366/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 720-233366/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
720-82853-3 MS	MW-1	Dissolved	Water	3005A	233280
720-82853-3 MSD	MW-1	Dissolved	Water	3005A	233280

Analysis Batch: 233477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Dissolved	Water	6010B	233366
720-82853-4	MW-2	Dissolved	Water	6010B	233366
720-82853-5	MW-3	Dissolved	Water	6010B	233366
720-82853-6	MW-4	Dissolved	Water	6010B	233366
720-82853-7	MW-5	Dissolved	Water	6010B	233366

TestAmerica Pleasanton

3

4

5

7

q

10

11

13

14

QC Association Summary

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Metals (Continued)

Analysis Batch: 233477 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-8	MW-6	Dissolved	Water	6010B	233366
720-82853-9	MW-10	Dissolved	Water	6010B	233366
MB 720-233280/1-B	Method Blank	Dissolved	Water	6010B	233366
MB 720-233366/1-A	Method Blank	Total Recoverable	Water	6010B	233366
LCS 720-233366/2-A	Lab Control Sample	Total Recoverable	Water	6010B	233366
720-82853-3 MS	MW-1	Dissolved	Water	6010B	233366
720-82853-3 MSD	MW-1	Dissolved	Water	6010B	233366

General Chemistry

Analysis Batch: 233172

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-82853-3	MW-1	Total/NA	Water	SM 2320B	_
720-82853-4	MW-2	Total/NA	Water	SM 2320B	
720-82853-5	MW-3	Total/NA	Water	SM 2320B	
720-82853-6	MW-4	Total/NA	Water	SM 2320B	
720-82853-7	MW-5	Total/NA	Water	SM 2320B	
720-82853-8	MW-6	Total/NA	Water	SM 2320B	
720-82853-9	MW-10	Total/NA	Water	SM 2320B	
MB 720-233172/2	Method Blank	Total/NA	Water	SM 2320B	
LCS 720-233172/3	Lab Control Sample	Total/NA	Water	SM 2320B	
LCSD 720-233172/4	Lab Control Sample Dup	Total/NA	Water	SM 2320B	
720-82853-3 DU	MW-1	Total/NA	Water	SM 2320B	

TestAmerica Job ID: 720-82853-1

Lab Chronicle

Client: Haley & Aldrich, Inc.

Client Sample ID: TB-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-1

Matrix: Water

Date Collected: 10/31/17 00:00 Date Received: 10/31/17 12:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			233432	11/06/17 15:15	JRM	TAL PLS

Client Sample ID: FB-1 Lab Sample ID: 720-82853-2 Date Collected: 10/31/17 10:05

Matrix: Water

Date Received: 10/31/17 12:17

Dilution Batch **Batch Batch** Prepared **Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab 233432 11/06/17 15:45 JRM TAL PLS Total/NA 8260B Analysis

Client Sample ID: MW-1 Lab Sample ID: 720-82853-3

Date Collected: 10/31/17 09:19 **Matrix: Water**

Date Received: 10/31/17 12:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	233432	11/06/17 16:15	JRM	TAL PLS
Total/NA	Prep	3510C			233482	11/06/17 14:25	BRR	TAL PLS
Total/NA	Analysis	8270C SIM		1	233515	11/07/17 00:27	MQL	TAL PLS
Total/NA	Prep	3510C			233244	11/01/17 15:51	BRR	TAL PLS
Total/NA	Analysis	8015B		1	233190	11/01/17 21:28	JXL	TAL PLS
Total/NA	Analysis	300.0		1	233177	10/31/17 21:34	ECB	TAL PLS
Total/NA	Analysis	300.0		10	233176	10/31/17 21:52	ECB	TAL PLS
Total/NA	Analysis	300.0		10	233177	10/31/17 21:52	ECB	TAL PLS
Dissolved	Filtration	FILTRATION			233280	11/02/17 10:03	JNG	TAL PLS
Dissolved	Prep	3005A			233366	11/03/17 09:16	JNG	TAL PLS
Dissolved	Analysis	6010B		1	233477	11/06/17 11:49	BKR	TAL PLS
Total/NA	Analysis	SM 2320B		1	233172	10/31/17 16:04	TNL	TAL PLS

Client Sample ID: MW-2 Lab Sample ID: 720-82853-4

Date Collected: 10/31/17 10:22 **Matrix: Water** Date Received: 10/31/17 12:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			233432	11/06/17 16:45	JRM	TAL PLS
Total/NA	Analysis	8260B		5	233527	11/07/17 12:45	JRM	TAL PLS
Total/NA	Prep	3510C			233482	11/06/17 14:25	BRR	TAL PLS
Total/NA	Analysis	8270C SIM		1	233515	11/07/17 00:50	MQL	TAL PLS
Total/NA	Prep	3510C			233244	11/01/17 15:51	BRR	TAL PLS
Total/NA	Analysis	8015B		1	233190	11/01/17 21:53	JXL	TAL PLS
Total/NA	Analysis	300.0		1	233176	10/31/17 22:43	ECB	TAL PLS
Total/NA	Analysis	300.0		1	233177	10/31/17 22:43	ECB	TAL PLS
Dissolved	Filtration	FILTRATION			233280	11/02/17 10:03	JNG	TAL PLS
Dissolved	Prep	3005A			233366	11/03/17 09:16	JNG	TAL PLS

TestAmerica Pleasanton

Page 55 of 63

Lab Chronicle

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TAL PLS

TestAmerica Job ID: 720-82853-1

Client Sample ID: MW-2

Lab Sample ID: 720-82853-4 Date Collected: 10/31/17 10:22

Matrix: Water

Date Received: 10/31/17 12:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	6010B		1	233477	11/06/17 11:53	BKR	TAL PLS
Total/NA	Analysis	SM 2320B		1	233172	10/31/17 16:16	TNL	TAL PLS

Client Sample ID: MW-3 Lab Sample ID: 720-82853-5

Matrix: Water

Date Collected: 10/31/17 09:08 Date Received: 10/31/17 12:17

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA 8260B 233432 11/06/17 17:15 TAL PLS Analysis JRM Total/NA 8260B 5 Analysis 233527 11/07/17 13:14 JRM TAL PLS Total/NA 3510C 233482 11/06/17 14:25 BRR TAL PLS Prep Total/NA Analysis 8270C SIM 1 233515 11/07/17 01:14 MQL TAL PLS Total/NA Prep 3510C 233244 11/01/17 15:51 BRR TAL PLS Total/NA Analysis 8015B 1 233190 11/01/17 22:17 JXL TAL PLS Total/NA Analysis 300.0 1 233176 10/31/17 23:17 ECB TAL PLS Total/NA Analysis 300.0 1 233177 10/31/17 23:17 ECB TAL PLS Dissolved Filtration 233280 11/02/17 10:03 JNG TAL PLS **FILTRATION** Dissolved Prep 3005A 233366 11/03/17 09:16 JNG TAL PLS Dissolved Analysis 6010B 1 233477 11/06/17 11:57 BKR TAL PLS

Client Sample ID: MW-4 Lab Sample ID: 720-82853-6

1

233172 10/31/17 16:23 TNL

Date Collected: 10/31/17 07:56 **Matrix: Water**

Date Received: 10/31/17 12:17

Analysis

SM 2320B

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			233432	11/06/17 17:45	JRM	TAL PLS
Total/NA	Analysis	8260B		1	233527	11/07/17 12:17	JRM	TAL PLS
Total/NA	Prep	3510C			233482	11/06/17 14:25	BRR	TAL PLS
Total/NA	Analysis	8270C SIM		1	233515	11/07/17 01:38	MQL	TAL PLS
Total/NA	Prep	3510C			233244	11/01/17 15:51	BRR	TAL PLS
Total/NA	Analysis	8015B		1	233190	11/01/17 22:41	JXL	TAL PLS
Total/NA	Analysis	300.0		1	233176	10/31/17 23:51	ECB	TAL PLS
Total/NA	Analysis	300.0		1	233177	10/31/17 23:51	ECB	TAL PLS
Dissolved	Filtration	FILTRATION			233280	11/02/17 10:03	JNG	TAL PLS
Dissolved	Prep	3005A			233366	11/03/17 09:16	JNG	TAL PLS
Dissolved	Analysis	6010B		1	233477	11/06/17 12:09	BKR	TAL PLS
Total/NA	Analysis	SM 2320B		1	233172	10/31/17 16:31	TNL	TAL PLS

TestAmerica Pleasanton

10

11/7/2017 (Rev. 1)

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Client Sample ID: MW-5

Date Collected: 10/31/17 10:24 Date Received: 10/31/17 12:17

Lab Sample ID: 720-82853-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			233527	11/07/17 13:44	JRM	TAL PLS
Total/NA	Analysis	8260B		5	233527	11/07/17 15:15	JRM	TAL PLS
Total/NA	Prep	3510C			233482	11/06/17 14:25	BRR	TAL PLS
Total/NA	Analysis	8270C SIM		1	233515	11/07/17 02:01	MQL	TAL PLS
Total/NA	Prep	3510C			233244	11/01/17 15:51	BRR	TAL PLS
Total/NA	Analysis	8015B		1	233190	11/01/17 23:05	JXL	TAL PLS
Total/NA	Analysis	300.0		1	233176	11/01/17 01:00	ECB	TAL PLS
Total/NA	Analysis	300.0		1	233177	11/01/17 01:00	ECB	TAL PLS
Dissolved	Filtration	FILTRATION			233280	11/02/17 10:03	JNG	TAL PLS
Dissolved	Prep	3005A			233366	11/03/17 09:16	JNG	TAL PLS
Dissolved	Analysis	6010B		1	233477	11/06/17 12:13	BKR	TAL PLS
Total/NA	Analysis	SM 2320B		1	233172	10/31/17 16:37	TNL	TAL PLS

Client Sample ID: MW-6 Lab Sample ID: 720-82853-8 Date Collected: 10/31/17 08:14 **Matrix: Water**

Date Received: 10/31/17 12:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			233527	11/07/17 14:12	JRM	TAL PLS
Total/NA	Analysis	8260B		1	233527	11/07/17 15:44	JRM	TAL PLS
Total/NA	Prep	3510C			233482	11/06/17 14:25	BRR	TAL PLS
Total/NA	Analysis	8270C SIM		1	233515	11/07/17 02:25	MQL	TAL PLS
Total/NA	Prep	3510C			233244	11/01/17 15:51	BRR	TAL PLS
Total/NA	Analysis	8015B		1	233190	11/01/17 23:29	JXL	TAL PLS
Total/NA	Analysis	300.0		1	233176	11/01/17 01:34	ECB	TAL PLS
Total/NA	Analysis	300.0		1	233177	11/01/17 01:34	ECB	TAL PLS
Dissolved	Filtration	FILTRATION			233280	11/02/17 10:03	JNG	TAL PLS
Dissolved	Prep	3005A			233366	11/03/17 09:16	JNG	TAL PLS
Dissolved	Analysis	6010B		1	233477	11/06/17 12:18	BKR	TAL PLS
Total/NA	Analysis	SM 2320B		1	233172	10/31/17 16:43	TNL	TAL PLS

Client Sample ID: MW-10 Lab Sample ID: 720-82853-9 Date Collected: 10/31/17 10:27 **Matrix: Water**

Date Received: 10/31/17 12:17

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			233527	11/07/17 14:41	JRM	TAL PLS
Total/NA	Analysis	8260B		5	233527	11/07/17 16:12	JRM	TAL PLS
Total/NA	Prep	3510C			233482	11/06/17 14:25	BRR	TAL PLS
Total/NA	Analysis	8270C SIM		1	233515	11/07/17 02:49	MQL	TAL PLS
Total/NA	Prep	3510C			233244	11/01/17 15:51	BRR	TAL PLS
Total/NA	Analysis	8015B		1	233190	11/01/17 23:54	JXL	TAL PLS

TestAmerica Pleasanton

Page 57 of 63

Lab Chronicle

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID: 720-82853-9 **Client Sample ID: MW-10**

Matrix: Water

Date Collected: 10/31/17 10:27 Date Received: 10/31/17 12:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			233176	11/01/17 02:09	ECB	TAL PLS
Total/NA	Analysis	300.0		1	233177	11/01/17 02:09	ECB	TAL PLS
Dissolved	Filtration	FILTRATION			233280	11/02/17 10:03	JNG	TAL PLS
Dissolved	Prep	3005A			233366	11/03/17 09:16	JNG	TAL PLS
Dissolved	Analysis	6010B		1	233477	11/06/17 12:22	BKR	TAL PLS
Total/NA	Analysis	SM 2320B		1	233172	10/31/17 17:02	TNL	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Accreditation/Certification Summary

Client: Haley & Aldrich, Inc.

TestAmerica Job ID: 720-82853-1

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

Laboratory: TestAmerica Pleasanton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2496	01-31-18

3

A

6

8

40

11

13

14

Method Summary

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS
8270C SIM	Semivolatile Organic Compounds (GC/MS SIM)	SW846	TAL PLS
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL PLS
300.0	Anions, Ion Chromatography	MCAWW	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS
SM 2320B	Alkalinity	SM	TAL PLS

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

3

4

5

8

9

10

12

1 *1*

Sample Summary

Client: Haley & Aldrich, Inc.

Project/Site: Nestle-Dryer's Grand Ice Cream, Glendale

TestAmerica Job ID: 720-82853-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-82853-1	TB-1	Water	10/31/17 00:00	10/31/17 12:17
720-82853-2	FB-1	Water	10/31/17 10:05	10/31/17 12:17
720-82853-3	MW-1	Water	10/31/17 09:19	10/31/17 12:17
720-82853-4	MW-2	Water	10/31/17 10:22	10/31/17 12:17
720-82853-5	MW-3	Water	10/31/17 09:08	10/31/17 12:17
720-82853-6	MW-4	Water	10/31/17 07:56	10/31/17 12:17
720-82853-7	MW-5	Water	10/31/17 10:24	10/31/17 12:17
720-82853-8	MW-6	Water	10/31/17 08:14	10/31/17 12:17
720-82853-9	MW-10	Water	10/31/17 10:27	10/31/17 12:17

4

7

8

11

12

14

TestAmerica Pleasanton

Pleasanton, (phone 925.48 1220 Quarry Lane

Chain of Custody Record for
Haley & Aldrich, Inc. Blanket Service Agreement #2015-18-TestAmerica

, CA 94566-4756 484.1919 fax 925.600 3002 erica's services under this CoC shall be performed in acα	, CA 94566-4756 Regulatory Program: Dw NPDES RCRA Other: 484.1919 fax 925.600 3002 PROBLEM REGULATORY PROGRAM: DW NPDES RCRA OTHER: PROBLEM ROBER	B RCRA Other: 0.15-18-TestAmeru.d by and between Haley H&A Site Contact: Tyler Ketron	& Aldrich, Inc. its subsidiaries and affilia	TestAmerica Laboratories, Rc. Aldrich, Inc. its subsidiaries and affiliales, and TestAmerica Laboratories Inc. 7 ate: 10 7 30 - 17 COC No:
Client Contact		H&A Site Contact: Tyler Ketron	Date: 10-30-17	COC No:
	4.17			

Telemental services and the CA Self to entire the Accordance of the Content Telemental throught in the problems of a tileacon and included in the Accordance of the CA self to the Accordance of the Accordanc	phone 925.484.1919 fax 925.600 3002	Regulatory Program:	ram: Dw NPDES	ES RCRA Other:		TestAmerica La	boratories, loc.
Color Colo	lest-metica's services under this Cockets	ince with the T&Cs within Bla	inket Service Agreement#	2015-18-TestAmerica by and between Haley & A	drich, Inc. its subsidiaries and affilial	tes, and TestAmerica La	aboratories Inc. 17
Authorities Company		Tel/Fax: 510-879-4554		Smith	The way to		COCs
Addition CAL Phone	Address	Analysis Tur	naround Time	В)		- 1	
Project Supports Grand Learning Project Supports College P	Glendale, CA	CALENDAR DAYS	✓ WORKING DAYS)		For Lab Use Only:	
Political Number 130854 Political FAX		TAT if different from	n Below	15M 00.0		Walk-in Client	-
Pop #10064-000 SID	FAX	2,	weeks	/ N 0B 80		Lab Sampling:	
Sample S			week	PA EPA			The state of the s
Sample Specific Notes: Fe & Mn (Dissolve for Nontes: X X X X X X X X X X X X X X X X X X X			days	SD PA: no E C ate		Job / SDG No	***************************************
Sample Specific Notes: Fe & Mininity S X X X X X X X X X X X X X X X X X X	H&A P O # 130654-003 SID 1		day	S / M: ist El PHn 8270 Sulf			-
Sample Specific Notes: Fe Alkalit X X X X X X X X X X X X X X X X X X X	The state of the s		Sample	m MS Full I and 1 EPA and n (Dis			
	Sample Identification	Sample Time	Matrix	Filtere Perfor TPHg I TPHd : PAHs Nitrate		Sample Spe	cific Notes:
			٤			3,22.7	
X X X X X X X X X X		1		Z		T COX	1
X X X X X X X X X X	FB-1	 	*	z		ようでな	_
X X X X X X X X X X	MV-1	Ι.	8	× × × ×		MON CHOL	7
	MW-2	12	¥	× × × ×			
X	MW-3	10/3/17 00,03	٤	× × × ×			62
	MW-4	75to -11/5/11	\$	× × × ×			age
X X X 720-82853 Chain of Custor Therm I Company: Company: Company: Company: Company: Company: Company: Company: Company: Date/Tin	MW-5		\$	× × × ×			P
# T0600100486) Temp. (°C): Obs'd. Company: C	MW-6	10 21 1-7 CX1-7	*	× × × ×			
# T0600100486) Temp. (°C): Obs'd. Company: C	MW-10	├	٤	× × × ×			
# T0600100486) # T0600100486) Company: Company: Company: Company: Date/Tin						of Custody	
# T0600100466) # T0600100466) Temp. (°C): Obs'd. Company: Company: Date/Tineratory by Company Date/Tineratory by Company Date/Tineratory by Company	THE PROPERTY OF THE PROPERTY O		A				
# T0600100486) # T0600100486) Company: Company							
# T0600100466) # T0600100466) Temp. (°C): Obs'd. Company: Conr'd Therm I Corr'd Company: Date/Tin	rieservation used: (= ice, Z= HCl; 3= HZSO4; 4=HNO3; 3	=NaOH; 6= Other	The state of the s				
# T0600100486) # T0600100486) Temp. (°C): Obs'd. Company: Company: Date/Tinerm in the company of the company o	Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	List any EPA Waste Co	ides for the sample in t				
# T0600100466) Temp. (°C): Obs'd. Company: Company: Company: Company: Company: Date/Tir	Xi Non-Hazard Flammable Skin fritant	Poison B	Unknown	Return to Client 7 Dispo		Months	
Intact: Yes No Custody Seal No.: Company: Company: Company: Nate/Time: Received by: Company:	Special Instructions/QC Requirements & Comments: Pleas	e provide Haley & Aldrict	h format EDD and Geo	racker formaţ EDF (ID # T0600100466)		, (
Company: Company Company Date/Time: Received by: Company: Comp	Intact: 🗍 Yes 🗍	Custody Seal No.:		Temp.	Corr'd	Therm ID No.	
Company: Date/Time: Received by Company: Company:	Relinguished by:	Company: S. I	1931/Ja /	n Received by	Company:	Date/Time: (6/3///)	/2/
Company: Date/Time: Received in Laboratory by Company	Relinquistred by	Company	Date/Time.	Received by:	Company:	Date/Time:	and the second
	Relinquished by:	Company:	Date/Time [·]	Received in Laboratory by	Company	Date/Time	

Client: Haley & Aldrich, Inc.

Job Number: 720-82853-1

Login Number: 82853 List Source: TestAmerica Pleasanton

List Number: 1

Creator: Alcantara, Michael A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX C

Survey Data

KISTER, SAVIO, AND REI LS8178

KSR JOB # 19853 SURVEY DATE: OCTOBER 23, 2017

HALEY & ALDRICH - 5929 COLLEGE AVE.

OAKLAND, CALIF

KSR	NAD 83	NAD 83			NAVD 88	
PT.NO.	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEV.	DESCRIPTION
10026	2135962.41	6055594.26	37.8479589	-122.2528098	194.49	MW-1/2"PVC
10025					195.89	MW-1/CONC
10024					195.89	MW-1/RIM
10011	2425740.04	co===o= oo	27.0472000	400 0507000	101.15	
10014	2135719.04	6055595.82	37.8472908	-122.2527886	191.15	MW-2/4"PVC
10016					192.28	MW-2/P
10015					192.28	MW-2/RIM
10006	2135647.71	6055712.11	37.8471009	-122.2523813	190.57	MW-3/4"PVC
10008	2133047.71	0055712.11	37.8471009	-122.2323013	190.57	MW-3/GR
					191.43 191.52	•
10007					191.52	MW-3/RIM
10003	2135635.05	6055677.14	37.8470643	-122.2525015	190.13	MW-4/2"PVC
10005					190.59	MW-4/GR
10004					190.71	MW-4/RIM
						,
10017	2135703.00	6055562.77	37.8472450	-122.2529020	190.14	MW-5/2"PVC
10019					190.41	MW-5/P
10018					190.45	MW-5/RIM
10009	2135677.65	6055767.95	37.8471859	-122.2521899	192.60	MW-6/4"PVC
10011					192.83	MW-6/GR
10010					192.89	MW-6/RIM

APPENDIX D

Historical Groundwater Elevation Data

TABLE D-1
HISTORICAL GROUNDWATER ELEVATION DATA

	Top of Casing		Depth to	Groundwater
	Elevation		Groundwater	Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88) ^c
MW1	194.49	8/12/91	14.86	179.63
		12/4/91	16.16	178.33
		4/24/92	11.93	182.56
		5/4/92	12.15	182.34
		6/17/92	13.17	181.32
		7/15/92	13.66	180.83
		8/31/92	14.91	179.58
		9/14/92	15.18	179.31
		10/22/92	15.34	179.15
		11/20/92	15.27	179.22
		12/3/92	14.44	180.05
		1/18/93	7.85	186.64
		2/10/93	9.29	185.20
		3/10/93	9.88	184.61
		4/20/93	10.13	184.36
		6/2/93	10.82	183.67
		7/9/93	11.62	182.87
		8/10/93	12.31	182.18
		10/8/93	13.68	180.81
		11/10/93	14.72	179.77
		12/8/93	14.28	180.21
		1/21/94	14.30	180.19
		2/2/94	13.06	181.43
		3/25/94	12.26	182.23
		4/29/94	12.55	181.94
		5/20/94	12.59	181.90
		6/6/94	12.96	181.53
		7/27/94	13.81	180.68
		8/30/94	14.29	180.20
		9/20/94	14.55	179.94
		10/13/94	14.83	179.66
		11/15/94	11.00	183.49
		12/6/94	11.33	183.16
		1/31/95	8.14	186.35
		2/28/95	10.16	184.33
		3/14/95	7.90	186.59
		6/27/95	10.31	184.18

TABLE D-1
HISTORICAL GROUNDWATER ELEVATION DATA
DREYERS GRAND ICE CREAM
5929 COLLEGE AVENUE

OAKLAND, CALIFORNIA

	Top of Casing		Depth to	Groundwater
	Elevation		Groundwater	Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88) ^c
MW1	194.49	8/3/95	11.11	183.38
(continued)		8/31/95	11.80	182.69
		9/28/95	12.39	182.10
		12/8/95	14.04	180.45
		1/30/96	9.99	184.50
		2/8/96	8.64	185.85
		3/22/96	9.61	184.88
		4/17/96	9.73	184.76
		5/31/96	9.99	184.50
		6/28/96	10.75	183.74
		7/31/96	11.31	183.18
		8/30/96	11.85	182.64
		9/27/96	12.46	182.03
		10/3/96	12.55	181.94
		12/9/96	9.10	185.39
		10/27/98	12.40	182.09
		3/16/99	9.66	184.83
		6/4/99	10.94	183.55
		10/31/17	13.12	181.37
MW2	191.15	8/12/91	12.26	178.89
		12/4/91	12.30	178.85
		4/24/92	10.00	181.15
		5/4/92	10.29	180.86
		6/17/92	10.86	180.29
		7/15/92	11.48	179.67
		8/31/92	12.02	179.13
		9/14/92	12.34	178.81
		10/22/92	12.37	178.78
		11/20/92	11.64	179.51
	[12/3/92	11.95	179.20
	[1/18/93	5.86	185.29
	[2/10/93	8.20	182.95
		3/10/93	8.57	182.58
	[4/20/93	8.95	182.20
	[6/2/93	9.10	182.05
		7/9/93	8.35	182.80
		8/10/93	8.45	182.70

TABLE D-1 HISTORICAL GROUNDWATER ELEVATION DATA

	Top of Casing		Depth to	Groundwater
	Elevation		Groundwater	Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88) ^c
MW2	191.15	10/8/93	10.19	180.96
(continued)		11/10/93	11.15	180.00
		12/8/93	11.13	180.02
		1/21/94	11.40	179.75
		2/2/94	9.85	181.30
		3/25/94	10.05	181.10
		4/29/94	9.86	181.29
		5/20/94	9.68	181.47
		6/6/94	10.27	180.88
		7/27/94	10.32	180.83
		8/30/94	11.01	180.14
		9/20/94	11.34	179.81
		10/13/94	11.42	179.73
		11/15/94	8.92	182.23
		12/6/94	8.79	182.36
		1/31/95	5.91	185.24
		2/28/95	9.01	182.14
		3/14/95	5.95	185.20
		6/27/95	8.84	182.31
		8/3/95	9.16	181.99
		8/31/95	9.26	181.89
		9/28/95	9.97	181.18
		12/8/95	10.31	180.84
		1/30/96	6.93	184.22
		2/8/96	5.90	185.25
		3/22/96	8.30	182.85
		4/17/96	7.91	183.24
		5/31/96	8.08	183.07
		6/28/96	8.75	182.40
		7/31/96	9.40	181.75
		8/30/96	9.85	181.30
		9/27/96	10.51	180.64
		10/3/96	10.37	180.78
		12/9/96	8.15	183.00
		10/27/98	9.55	181.60
		3/16/99	7.55	183.60
		6/4/99	8.30	182.85

TABLE D-1
HISTORICAL GROUNDWATER ELEVATION DATA

	Top of Casing		Depth to	Groundwater
	Elevation		Groundwater	Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88) ^c
MW2	191.15	10/31/17	11.03	180.12
MW3	190.57	8/12/91	11.73	178.84
		12/4/91	11.65	178.92
		4/24/92	11.00	179.57
		5/4/92	11.09	179.48
		6/17/92	11.51	179.06
		7/15/92	11.84	178.73
		8/31/92	11.70	178.87
		9/14/92	11.74	178.83
		10/22/92	11.33	179.24
		11/20/92	10.58	179.99
		12/3/92	10.12	180.45
		1/18/93	8.42	182.15
		2/10/93	9.94	180.63
		3/10/93	10.19	180.38
		4/20/93	10.22	180.35
		6/2/93	10.73	179.84
		7/9/93	10.03	180.54
		8/10/93	8.32	182.25
		10/8/93	10.53	180.04
		11/10/93	11.22	179.35
		12/8/93	11.79	178.78
		1/21/94	12.02	178.55
		2/2/94	11.48	179.09
		3/25/94	11.26	179.31
		4/29/94	11.47	179.10
		5/20/94	11.16	179.41
		6/6/94	11.55	179.02
		7/27/94	9.78	180.79
		8/30/94	11.50	179.07
	l [9/20/94	11.74	178.83
	Ι Γ	10/13/94	11.52	179.05
	Ι Γ	11/15/94	10.28	180.29
		12/6/94	11.19	179.38
		1/31/95	8.91	181.66
		2/28/95	11.35	179.22
	T	3/14/95	9.96	180.61

TABLE D-1
HISTORICAL GROUNDWATER ELEVATION DATA

	Top of Casing		Depth to	Groundwater
	Elevation		Groundwater	Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88)°
MW3	190.57	6/27/95	7.15	183.42
(continued)		8/3/95	11.02	179.55
		8/31/95	11.10	179.47
		9/28/95	11.21	179.36
		12/8/95	10.79	179.78
		1/30/96	10.18	180.39
		2/8/96	8.94	181.63
		3/22/96	10.75	179.82
		4/17/96	10.42	180.15
		5/31/96	10.72	179.85
		6/28/96	11.54	179.03
		7/31/96	11.55	179.02
		9/27/96	12.05	178.52
		10/3/96	12.11	178.46
		12/9/96	11.17	179.40
		10/27/98	10.84	179.73
		3/16/99	9.90	180.67
		6/4/99	11.49	179.08
		10/31/17	10.56	180.01
MW4	190.13	10/8/93	10.29	179.84
		11/10/93	11.14	178.99
		12/8/93	11.82	178.31
		1/21/94	12.07	178.06
		2/2/94	11.41	178.72
		3/25/94	11.03	179.10
		4/29/94	11.50	178.63
		5/20/94	11.13	179.00
		6/6/94	11.56	178.57
		7/27/94	9.57	180.56
		8/30/94	11.21	178.92
	Ι Γ	9/20/94	11.56	178.57
		10/13/94	11.40	178.73
		11/15/94	9.83	180.30
		12/6/94	10.85	179.28
		1/31/95	8.53	181.60
		2/28/95	10.95	179.18
	1	3/14/95	9.81	180.32

TABLE D-1
HISTORICAL GROUNDWATER ELEVATION DATA

	Top of Casing		Depth to	Groundwater
	Elevation		Groundwater	Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88) ^c
MW4	190.13	6/27/95	10.90	179.23
(continued)		8/3/95	11.18	178.95
		8/31/95	10.97	179.16
		9/28/95	11.08	179.05
		12/8/95	10.63	179.50
		1/30/96	9.90	180.23
		2/8/96	8.59	181.54
		3/22/96	10.37	179.76
		4/17/96	10.22	179.91
		5/31/96	10.38	179.75
		6/28/96	11.45	178.68
		7/31/96	11.28	178.85
		8/30/96	12.10	178.03
		9/27/96	12.23	177.90
		10/3/96	12.25	177.88
		12/9/96	10.54	179.59
		10/27/98	10.97	179.16
		3/16/99	9.63	180.50
		6/4/99	11.62	178.51
		10/31/17	10.70	179.43
MW5	190.14	10/8/93	9.84	180.30
		11/10/93	10.53	179.61
		12/8/93	10.69	179.45
		1/21/94	11.22	178.92
		2/2/94	8.80	181.34
		3/25/94	9.75	180.39
		4/29/94	9.00	181.14
		5/20/94	9.29	180.85
		6/6/94	9.74	180.40
		7/27/94	9.88	180.26
	Γ	8/30/94	10.44	179.70
	Γ	9/20/94	10.56	179.58
	Γ	10/13/94	10.87	179.27
	Γ	11/15/94	8.17	181.97
	Γ	12/6/94	7.98	182.16
	Γ	1/31/95	5.09	185.05
		2/28/95	8.48	181.66

TABLE D-1
HISTORICAL GROUNDWATER ELEVATION DATA
DREYERS GRAND ICE CREAM

5929 COLLEGE AVENUE OAKLAND, CALIFORNIA

	Top of Casing		Depth to	Groundwater
	Elevation		Groundwater	Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88) ^c
MW5	190.14	3/14/95	5.10	185.04
(continued)		6/27/95	8.33	181.81
		8/3/95	8.55	181.59
		8/31/95	8.66	181.48
		9/28/95	9.31	180.83
		12/8/95	9.47	180.67
		1/30/96	6.05	184.09
		2/8/96	5.09	185.05
		3/22/96	7.69	182.45
		4/17/96	7.37	182.77
		5/31/96	7.38	182.76
		6/28/96	8.04	182.10
		7/31/96	8.43	181.71
		8/30/96	9.13	181.01
		9/27/96	9.62	180.52
		10/3/96	9.67	180.47
		12/9/96	6.79	183.35
		10/27/98	9.01	181.13
		3/16/99	6.68	183.46
		6/4/99	7.81	182.33
		10/31/17	10.27	179.87
MW6	192.60	10/8/93	8.23	184.37
		11/10/93	7.74	184.86
		12/8/93	8.53	184.07
		1/21/94	8.46	184.14
		2/2/94	7.84	184.76
		3/25/94	7.72	184.88
		4/29/94	7.64	184.96
		5/20/94	7.60	185.00
	Γ	6/6/94	7.91	184.69
	[7/27/94	6.90	185.70
	[8/30/94	8.10	184.50
		9/20/94	8.17	184.43
	[10/13/94	8.21	184.39
	[11/15/94	7.62	184.98
	Ī	12/6/94	8.15	184.45
		1/31/95	5.75	186.85

TABLE D-1
HISTORICAL GROUNDWATER ELEVATION DATA

	Top of Casing Elevation		Depth to Groundwater	Groundwater Elevation
Well ID	(feet NAVD88) ¹	Date	(feet BTOC) ²	(feet NAVD88) ^c
MW6	192.60	2/28/95	7.75	184.85
(continued)		3/14/95	5.70	186.90
(66.16.116.66.7)		6/27/95	7.53	185.07
		8/3/95	7.86	184.74
		8/31/95	7.91	184.69
		9/28/95	8.35	184.25
		12/8/95	8.61	183.99
		1/30/96	6.62	185.98
		2/8/96	5.61	186.99
		3/22/96	7.10	185.50
		4/17/96	7.50	185.10
		5/31/96	7.34	185.26
		6/28/96	8.38	184.22
		7/31/96	10.11	182.49
		8/30/96	9.10	183.50
		9/27/96	9.35	183.25
		10/3/96	9.45	183.15
		12/9/96	10.11	182.49
		10/27/98	7.62	184.98
		3/16/99	5.55	187.05
		6/4/99	7.07	185.53
		10/31/17	9.58	183.02

Notes

- 1. Top of casing resurveyed by a California licensed surveyor on 23 October 2017.
- 2. Depth to groundwater measured from top of casing (TOC).
- 3. Groundwater elevation is relative to the North American Vertical Datum of 1988.

APPENDIX E

Historical Analytical Data

SUMMARY OF HISTORICAL ANALYTICAL RESULTS

DREYERS GRAND ICE CREAM 5929 COLLEGE AVENUE OAKLAND, CALIFORNIA

Results are reported in micrograms per liter (µg/L)

2016 Ti	er 1 ESL 08/05/1991 12/04/1991 03/10/1993	100 < 50	100					(SVOC)	(VOC)
	12/04/1991	< 50		1.0	13	40	20	0.17	0.17
			-	1.1	< 0.5	< 0.5	< 0.5	-	-
	03/10/1003	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	=
	03/10/1333	< 50	85	< 0.5	< 0.5	< 0.5	< 0.5	-	=
-	06/02/1993	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	=
-	10/08/1993	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
-	12/08/1993	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
Ī	03/25/1994	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
	06/06/1994	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	_
	09/20/1994	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
	12/06/1994	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
Ī	06/27/1995	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
Ī	12/08/1995	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
Ī	03/22/1996	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	-
Ī	08/03/1996	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	_
ŀ	12/18/1996	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	-
ļ	10/27/1998	< 50	70	< 0.5	< 0.5	< 0.5	< 0.5	_	-
}	03/16/1999	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	_	-
MW-01	10/31/2017	< 50	< 51	< 0.50	< 0.50	< 0.50	< 1.0	< 0.10	< 1.0
10100 01	08/05/1991	38,000	1,900	8,300	8,200	2,300	13,000		
+	12/04/1991	91,000	< 50	6,900	6,800	3,200	25,000	_	-
H	03/10/1993	59,000	89	5,800	5,300	3,100	15.000	_	-
-	06/02/1993	58,000	< 50	50	68	70	170	-	-
F	10/08/1993	56,000	110	2,800	2,400	2,900	12,000	-	-
-		54,000			1,700		10.000	+	
-	12/08/1993	,	< 50	2,400		2,900	-,	-	-
-	03/25/1994	91,000	< 50	1,900	1,500	2,100	8,100	=	-
-	06/06/1994	7,700	< 50	1,900	1,300	2,300	9,400	-	-
-	09/20/1994	63,000	< 500	1,900	1,200	3,000	12,000	-	-
-	12/06/1994	25,000	< 50	1,800	910	1,800	7,600	-	-
_	06/27/1995	33,000	< 50	1,700	820	2,800	9,700	-	-
_	12/08/1995	37,000	< 50	1,400	850	2,700	9,700	-	-
_	06/28/1996	30,000	< 50	1,000	450	2,600	4,700	-	-
_	12/18/1996	34,000	< 50	930	420	2,100	6,500	-	-
L	10/27/1998	21,000	11,000	370	120	1,900	2,600	-	320
L	03/16/1999	16,000	4,900	400	86	2,300	1,400	-	190
	06/04/1999	21,000	4,300	380	74	2,300	1,200	150	-
MW-02	10/31/2017	4,500	1,300	3.3	1.1	9.6	6.3	1.2	1.3
	08/05/1991	3,300	800	3,900	95	160	150	-	-
	12/04/1991	10,000	< 50	3,300	88	80	130	-	-
	03/10/1993	8,100	< 50	2,000	31	240	30	-	-
	06/02/1993	14,000	< 50	11	13	16	49	-	-
	10/08/1993	7,600	< 50	2,400	< 10	49	< 10	-	-
	12/08/1993	3,800	< 50	340	3.9	29	13	-	-
	03/25/1994	5,700	< 50	500	10	21	25	-	-
Ī	06/06/1994	12,000	< 50	1,100	23	33	43	-	-
	09/20/1994	5,200	< 50	1,100	22	32	42	-	-
ļ	12/06/1994	4,100	< 50	790	16	23	45	-	-
ļ	06/27/1995	11,000	< 50	2,700	65	74	72	-	-
ļ	12/08/1995	8,100	< 50	1,600	40	70	91	-	-
ŀ	06/28/1996	7,100	< 50	2,600	28	48	55	-	-
ŀ	12/18/1996	8,100	< 50	1,400	33	60	44	-	-
ŀ	10/27/1998	7,100	2,200	1,500	57	46	47	_	_
}	03/16/1999	5,600	1,500	1,000	200	88	80	_	12
}	06/04/1999	4,300	640	580	63	57	6.7	< 2	-
MW-03	10/31/2017	3,400	930	130	5.0	2.9	13	1.3	1.6

TABLE E-1 SUMMARY OF HISTORICAL ANALYTICAL RESULTS

DREYERS GRAND ICE CREAM 5929 COLLEGE AVENUE OAKLAND, CALIFORNIA

Results are reported in micrograms per liter (µg/L)

Well ID	Sample Date	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Xylenes (total)	Naphthalene (SVOC)	Naphthalene (VOC)
2016 T	ier 1 ESL	100	100	1.0	13	40	20	0.17	0.17
	10/08/1993	1,400	< 50	< 0.5	< 0.5	2.9	3.1	-	-
	12/08/1993	2,800	< 50	460	< 0.5	3.8	3.8	-	-
	03/25/1994	1,600	< 50	94	1.7	4.4	5.6	-	-
	06/06/1994	12,000	< 50	3,100	15	11	13	-	=
	09/20/1994	1,900	< 50	6.2	2.4	7.1	8.7	-	-
	12/06/1994	1,000	< 50	0.7	< 0.5	14	17	-	-
	06/27/1995	720	< 50	< 0.5	< 0.5	5.2	24	-	-
	12/08/1995	840	< 50	< 0.5	< 0.5	4.2	< 0.5	-	-
	03/22/1996	820	< 50	3.4	< 0.5	3.3	10	-	-
	08/03/1996	870	< 50	7.3	2.7	5.4	14	-	=
	12/18/1996	1,100	< 50	2.1	2.9	4.6	8.8	-	=
	10/27/1998	600	480	4.2	5.5	6.4	8.2	-	=
	03/16/1999	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	-	< 2.1
	06/04/1999	410	300	< 0.5	3.7	8.0	1.1	< 2	-
MW-04	10/31/2017	< 50	< 50	< 0.50	< 0.50	< 0.50	< 1.0	< 0.10	< 1.0
	10/08/1993	31,000	< 50	4,000	1,200	1,800	5,100	-	-
	12/08/1993	25,000	< 50	2,600	110	1,700	2,400	_	-
	03/25/1994	41,000	< 50	2,400	500	1,400	2,800	_	_
	06/06/1994	42,000	< 50	2,500	320	1,700	3,000	_	_
	09/20/1994	23,000	< 50	2,100	170	1,500	2,400	_	-
	12/06/1994	16,000	< 50	800	35	1,300	1,600	_	_
	06/27/1995	25,000	< 50	3,200	750	2,500	7,900	_	-
	12/08/1995	21,000	< 50	2,700	200	2,400	4,300	_	_
	03/22/1996	22,000	< 50	2,100	260	2,000	3,500	_	_
	08/30/1996	26,000	< 50	2,400	480	2,600	6,600	_	-
	12/18/1996	23,000	< 50	1,500	97	2,000	2,100	_	_
	10/27/1998	22,000	9,300	1,200	140	2,200	2,600	_	320
	03/16/1999	400	3,100	38	2.2	45	14	_	110
	06/04/1999	23,000	3,100	1,700	120	2,800	1,500	120	-
MW-05	10/31/2017	3,500	1,200	7.4	1.4	42	5.7	2.7	4.4
10100 00	10/08/1993	2,100	< 50	85	< 0.5	70	190	-	-
	12/08/1993	3,800	< 50	74	< 0.5	210	150	-	-
	03/25/1994	460	< 50	9.6	27	15	11	-	_
	06/06/1994	440	< 50	8.4	1.00	4.9	3.0	-	_
	09/20/1994	490	< 50	4.5	0.6	12	2.4	<u>-</u>	-
	12/06/1994	730	< 50	28	15	86	11	-	-
	06/27/1995	660	< 50	11	< 0.5	20	22	-	-
	12/08/1995	1,100	< 50	23	< 0.5	69	52	-	-
	06/28/1996	200	< 50 < 50	3.2	< 0.5	6.5	5.0	-	-
		770		7.3	< 0.5 1.4	12			-
	12/18/1996		< 50				16	-	
	10/27/1998 03/16/1999	1,200 1,500	910	8.4	2.7	12	4.1	-	-
			760	7.6	2.3	6.2	6.1		
	06/04/1999	1,800 < 50	760 < 50	14 < 0.50	4.00 < 0.50	8.2 < 0.50	2.6 < 1.0	< 0.10	- < 1.0

Notes:

Results in **bold** indicate the analyte was detected in the sample above the reporting limit

Where primary/duplicate results exist, the higher concentration is shown

2016 Regional Water Quality Control Board (RWQCB) Tier 1 Environmental Screening Levels (ESL) used for reference value.

[&]quot;<" indicates the analyte was not detected in the sample above the reporting limit shown

APPENDIX F

Quality Assurance/Quality Control Data

Haley & Aldrich, Inc. 600 South Meyer Ave Suite 100 Tucson, AZ 85701 520.289.8621

Data Usability Summary Report

Level II

Project Name: Nestle – Dreyer's Grand Ice Cream

Analytical Laboratory: TestAmerica Laboratories, Inc. - Pleasanton, CA

Validation Performed by: Vanessa Boocher

Haley & Aldrich, Inc. prepared this Data Usability Report (DUSR) to summarize the review and validation of the Nestle – Dreyer's Grand Ice Cream groundwater samples collected on 31 October 2017. Analytical results for each Sample Delivery Group (SDG) below were reviewed with guidance provided by the United States Environmental Protection Agency (EPA) to determine the data's usability. This data validation and usability assessment was performed per the guidance and requirements established by the EPA National Functional Guidelines for Inorganic Data Review and the EPA National Functional Guidelines for Organic Data Review. The following quality assurance/quality control (QA/QC) criteria from the analysis of the project samples were reviewed as applicable:

- 1. Sample Delivery Group Number 720-82853-1
- Holding Times/Preservation
- Reporting Limits and Sample Dilution
- Blank Sample Analysis
- Surrogate Recovery Compliance
- Laboratory Control Samples
- Matrix Spike Samples
- Field and Laboratory Duplicate Samples
- Use of Laboratory Data Qualifiers

Analytical precision and accuracy were evaluated based on the laboratory control, matrix spike, or lab duplicate analyses performed concurrently with the project samples.

Data reported in this sampling event were reported to the laboratory reporting limit (RL).

Sample data were qualified by the laboratory in accordance with standard operating procedures (SOPs). Based on a check of the data qualifiers assigned as project sample results, these flags were applied to the reported results in accordance with the laboratory-specific SOPs. The results presented in each laboratory report were found to be compliant with the data quality objectives (DQOs) for the project and usable; any exceptions are noted in the following pages.

1. Sample Delivery Group Number 720-82853-1

1.1 SUMMARY

This DUSR summarizes the review of SDG number 720-82853-1. Samples were collected, preserved, and shipped following standard chain of custody protocol. Samples were also received appropriately, identified correctly, and analyzed according to the monitoring schedule. Chains of custody were appropriately signed and dated by the field and/or laboratory personnel, with the following exceptions:

- Custody seals were not utilized on the sample cooler or sample containers.
- A lab report revision was issued on 11/7/2017 to correct the metals list (Iron and Manganese only).
- The metals fraction was filtered at the laboratory per request.
- Validation report revised 12/12/2017 to account for the blind field duplicate.

Analyses were performed on the following samples:

Sample ID	Sample Type	Lab ID	Sample Collection Date	Matrix	Methods
TB-1	ТВ	720-82853-1	10/31/2017	Quality Control	VOCs and GRO
FB-1	FB	720-82853-2	10/31/2017	Quality Control	only
MW-1	N	720-82853-3	10/31/2017	Groundwater	
MW-2	N	720-82853-4	10/31/2017	Groundwater	
MW-3	N	720-82853-5	10/31/2017	Groundwater	VOCs, GRO, DRO,
MW-4	N	720-82853-6	10/31/2017	Groundwater	MO, PAHs, Anions, Metals,
MW-5	N	720-82853-7	10/31/2017	Groundwater	and Alkalinity
MW-6	N	720-82853-8	10/31/2017	Groundwater	
MW-10	FD	720-82853-9	10/31/2017	Groundwater	

Holding Times:

Nitrate (as N) & Nitrite (as N) by EPA Method 300	48 hours
Nitrate/Nitrite & SO4 by EPA Method 300	28 days
Alkalinity Variations by Method SM2320B	14 days
Dissolved Iron and Manganese by EPA 6010B	180 days
TPH Diesel and Motor Oil by EPA Method 8015D	7 days extraction, 40 days analysis
VOCs & GRO by EPA Method 8260B	14 days
PAHs by EPA Method 8270C SIM	7 days extraction, 40 days analysis

1.2 HOLDING TIMES/PRESERVATION

The samples were prepared and analyzed within the holding time and preservation criteria specified per EPA protocol.

Cooler temperature on arrival to the laboratory was:

5.6

Degrees C.

1.3 REPORTING LIMITS AND SAMPLE DILUTION

All dilutions were reviewed and found to be justified. Any non-detects with elevated reported limits are noted and explained below. In cases when multiple dilutions are reported per sample, the reviewer chose the lowest dilution with results still within the calibration range and rejected the alternative result.

1.4 BLANK SAMPLE ANALYSIS

Method blanks are prepared by the analytical laboratory and analyzed concurrently with the project samples to assess possible laboratory contamination. Method blank samples did not have detections, indicating that contamination from laboratory activities did not occur.

Field blanks are prepared to identify contamination that may have been introduced during field activity. Trip blanks are prepared when volatile analysis is requested to identify contamination that may have been introduced during transport. Blank samples for field QC did not have detections, indicating that contamination from field activities did not occur.

1.5 SURROGATE RECOVERY COMPLIANCE

Surrogates, also known as deuterated monitoring compounds, are compounds added to each sample prior to sample preparation to evaluate the percent recovery (%R) to ensure that the organic analytical method is efficient. The percent recoveries were within the limits specified by the EPA, with the following exceptions:

 Surrogate Terphenyl-d14 for method 8270C SIM recovered low in sample MW-10 at 43%. Qualify targeted analytes J-/UJ.

1.6 LABORATORY CONTROL SAMPLES

The laboratory control sample/laboratory control sample duplicate (LCS/LCSD) analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. Compounds associated with the LCS/LCSD analyses exhibited recoveries and relative percent difference (RPD) within the control limits specified by the SOPs.

1.7 MATRIX SPIKE SAMPLES

Matrix spike/matrix spike duplicate (MS/MSD) data are used to assess the precision and accuracy of the analytical method and evaluate the effect of the sample matrix on the sample preparation procedures and measurement methodologies. The below samples were used for MS/MSD:

Lab Sample Number	Matrix Spike/ Matrix Spike Duplicate Sample Client ID	Method(s)
720-82853-3	MW-1	EPA 300 (Anions), EPA 6010B (Metals)

The MS/MSD recoveries and the RPD between the MS and MSD results were within the acceptance limits specified by the EPA.

1.8 LABORATORY AND FIELD DUPLICATE SAMPLES

The laboratory duplicate sample analysis is used by the laboratory at the time of analysis to demonstrate acceptable method precision. The following sample was used for laboratory duplicate analysis and the RPDs were all below 20%.

Sample MW-1 was used as a laboratory duplicate for Alkalinity by method SM2320B.

The field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. The RPD comparison for any field duplicates in this SDG are shown below.

Haley & Aldrich, Inc. 3 December 2017

Field Duplicate RPD Calculations:

Method: EPA 300					
Analyte	Primary Sample ID	Duplicate Sample ID			
(mg/L)	MW-2	MW-10	% RPD	Qualification	
Nitrate (as N)	0.23 U	0.23 U	NA	None, Both ND	
Nitrite (as N)	0.89	0.91	NA	None, Abs. Diff. < RL	
Nitrite/Nitrate	0.89	0.91	NA	None, Abs. Diff. < RL	
Sulfate	1.0 U	1.0 U	NA NA	None, Both ND	
Junate		:hod: EPA 2320B	IVA	None, Both ND	
Analyte	Primary Sample ID	Duplicate Sample ID			
(mg/L)	MW-2	MW-10	% RPD	Qualification	
Alkalinity, Hydroxide	5.0 U	5.0 U	NA	None, Both ND	
Alkalinity, Bicarbonate	370	370	0.0	None, RPD < 35%	
Alkalinity, Carbonate	5.0 U	5.0 U	NA	None, Both ND	
Alkalinity, Total (as CaCO3)	370	370	0.0	None, RPD < 35%	
,, (hod: EPA 6010B		,	
Analyte	Primary Sample ID	Duplicate Sample ID			
(mg/L)	MW-2	MW-10	% RPD	Qualification	
Dissolved Iron	1.0 U	1.0 U	NA	None, Both ND	
Dissolved Manganese	6.4	6.2	3.2	None, RPD < 35%	
	Met	hod: EPA 8015D			
Analyte	Primary Sample ID	Duplicate Sample ID	% RPD	Qualification	
(ug/L)	MW-2	MW-10	% KPD	Qualification	
TPH Diesel	1100	1300	16.7	None, RPD < 35%	
TPD Motor Oil	110 U	100 U	NA	None, Both ND	
	Method: EF	A 8260B (Detects Only)			
Analyte	Primary Sample ID	Duplicate Sample ID	% RPD	Qualification	
(ug/L)	MW-2	MW-10			
1,2,4-Trimethylbenzene	0.75	0.78	NA	None, Abs. Diff. < RL	
1,3,5-Trimethylbenzene	2.5	2.5	0.0	None, RPD < 35%	
Sec-Butylbenzene	1.0 U	9.2	NA	J-Flag, Abs. Diff. > RL	
Benzene	3.3	3.0	9.5	None, RPD < 35%	
Ethylbenzene	9.6				
	3.0	8.9	7.6	None, RPD < 35%	
Isopropylbenzene (Cumene)	26	8.9 25	7.6 3.9	None, RPD < 35% None, RPD < 35%	
Isopropylbenzene (Cumene) Naphthalene				,	
	26	25	3.9	None, RPD < 35%	
Naphthalene	26 1.2	25 1.3	3.9 NA	None, RPD < 35% None, Abs. Diff. < RL	
Naphthalene n-Butylbenzene	26 1.2 18	25 1.3 19	3.9 NA 5.4	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35%	
Naphthalene n-Butylbenzene n-Propylbenzene	26 1.2 18 49	25 1.3 19 47	3.9 NA 5.4 4.2	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35% None, RPD < 35%	
Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene	26 1.2 18 49 43	25 1.3 19 47 45	3.9 NA 5.4 4.2 4.5	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35% None, RPD < 35% None, RPD < 35%	
Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene Toluene	26 1.2 18 49 43 1.1	25 1.3 19 47 45 1.0	3.9 NA 5.4 4.2 4.5 NA	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35%	
Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene Toluene TPH (C4-C12)	26 1.2 18 49 43 1.1 4500 6.3	25 1.3 19 47 45 1.0 2600	3.9 NA 5.4 4.2 4.5 NA 53.5	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35% None, RPD < 35% None, RPD < 35% None, RPD < 35% J-Flag, RPD > 35%	
Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene Toluene TPH (C4-C12) Xylene (total) Analyte	26 1.2 18 49 43 1.1 4500 6.3	25 1.3 19 47 45 1.0 2600 6.1	3.9 NA 5.4 4.2 4.5 NA 53.5 3.2	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35% None, RPD < 35% None, RPD < 35% None, RPD < 35% None, Abs. Diff. < RL J-Flag, RPD > 35% None, RPD < 35%	
Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene Toluene TPH (C4-C12) Xylene (total) Analyte (ug/L)	26 1.2 18 49 43 1.1 4500 6.3 Method: EPA	25 1.3 19 47 45 1.0 2600 6.1 4 8270SIM (Detects Only)	3.9 NA 5.4 4.2 4.5 NA 53.5	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35% None, RPD < 35% None, RPD < 35% None, RPD < 35% J-Flag, RPD > 35%	
Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene Toluene TPH (C4-C12) Xylene (total) Analyte	26 1.2 18 49 43 1.1 4500 6.3 Method: EPA Primary Sample ID	25 1.3 19 47 45 1.0 2600 6.1 8270SIM (Detects Only) Duplicate Sample ID	3.9 NA 5.4 4.2 4.5 NA 53.5 3.2	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35% None, RPD < 35% None, RPD < 35% None, RPD < 35% None, Abs. Diff. < RL J-Flag, RPD > 35% None, RPD < 35%	
Naphthalene n-Butylbenzene n-Propylbenzene tert-Butylbenzene Toluene TPH (C4-C12) Xylene (total) Analyte (ug/L)	26 1.2 18 49 43 1.1 4500 6.3 Method: EPA Primary Sample ID MW-2	25 1.3 19 47 45 1.0 2600 6.1 8270SIM (Detects Only) Duplicate Sample ID MW-10	3.9 NA 5.4 4.2 4.5 NA 53.5 3.2	None, RPD < 35% None, Abs. Diff. < RL None, RPD < 35% None, RPD < 35% None, RPD < 35% None, Abs. Diff. < RL J-Flag, RPD > 35% None, RPD < 35% Qualification	

1.9 USE OF LABORATORY DATA QUALIFIERS

The results presented in this report were found to be compliant with the DQOs for the project and the guidelines specified by the analytical methods and EPA. Based on the review of this report, the data are 100% useable. A summary of qualifiers applied to this SDG are shown below.

Sample ID	Analyte	Reported Result	Validated Result	Reason for Qualifier
MW-10	Anthracene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Benzo(a)anthracene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Benzo(a)pyrene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Benzo(b)fluoranthene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Benzo(g,h,i)perylene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Benzo(k)fluoranthene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Chrysene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Dibenz(a,h)anthracene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Fluoranthene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Indeno(1,2,3-cd)pyrene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Phenanthrene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-10	Pyrene	0.10 U	0.10 UJ	Low Surrogate Recovery
MW-2	Sec-Butylbenzene	1.0 U	1.0 UJ	Field Duplicate Incongruence
MW-10	Sec-Butylbenzene	9.2	9.2 J	Field Duplicate Incongruence
MW-2	TPH (C4-C12)	4500	4500 J	Field Duplicate Incongruence
MW-10	TPH (C4-C12)	2600	2600 J	Field Duplicate Incongruence

References

- 1. United States Environmental Protection Agency ,2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review. EPA-540-R-2017-001. January.
- 2. United States Environmental Protection Agency, 2017b. National Functional Guidelines for Organic Superfund Methods Data Review. EPA-540-R-2017-002. January.

Glossary

Laboratory qualified and unqualified data are verified against the supporting documentation during the review process. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with EPA National Functional Guidelines:

- Concentration (C) Qualifiers:
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound was found in the sample and its associated blank. Its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers:
 - E The compound was quantitated above the calibration range.
 - D The concentration is based on a diluted sample analysis.
- Validation Qualifiers:
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - J+ The result is an estimated quantity, but the result may be biased high.
 - J- The result is an estimated quantity, but the result may be biased low.
 - UJ The compound was not detected above the reported sample quantitation limit; however, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicated the presence of a compound for which there is presumptive
 evidence to make a tentative identification; the associated numerical value is therefore
 an estimated concentration only.
 - R The sample results were rejected as unusable; the compound may or may not be present in the sample.
- Sample Types:
 - N Primary Sample
 - FD Field Duplicate Sample
 - FB Field Blank Sample
 - EB Equipment Blank Sample
 - TB Trip Blank Sample

APPENDIX G

Low-Threat Case Closure Evaluation

TABLE G-1
LOW-THREAT UNDERGROUND STORAGE TANK CLOSURE POLICY CRITERIA
DREYER'S GRAND ICE CREAM FACILITY
OAKLAND, CALIFORNIA

		DOES THE SITE	
		MEET THE	
CRITERIA	DESCRIPTION	CRITERIA?	COMMENTS/NOTES
General Crit		V	Water complied by Foot Day Municipal Htility District, no action modes
Α.	The unauthorized release is located within the services area of a public water system.	Y	Water supplied by East Bay Municipal Utility District - no action needed.
			Underground storgage tanks (USTs) removed from the site contained gasoline, diesel, and waste oil. Sampling
D	The upposite agine dueles as a points and upforces and upforces.	v	conducted at the Site, including the most recent groundwater monitoring event, indicate that petroleum fuel-
В.	The unauthorized release consists only of petroleum:	Y	related compounds such as TPHg, TPHd, and BTEX are the chemicals of concern.
	The une of hearing of (national and an algebra of the second that the LICT exists are here here here as a second of	Y	Between December 1989 and February 1990, seven underground fuel and waste oil storage tanks and
C.	The unauthorized (primary) release from the UST system has been stopped.	Y	approximately 500 to 550 cubic yards of impacted soil were removed from the Site.
D.	Free product has been removed to the maximum extent practicable.	N/A	Historical and recent groundwater monitoring do not indicate the presence of free product at the Site.
	A conceptual site model that assesses the nature, extent, and mobility of the release has been	,	g. contained the process of the proc
E.	developed.	Υ	A conceptual site model is included as Section 4 of this report.
F.	Secondary source has been removed to the extent practicable	Υ	Soil impacted with diesel, gasoline, and waste oil removed in 1989 through 1990.
			In 1999 groundwater samples were analyzed for MTBE. No detections were reported. There are no available
	Soil or groundwater has been tested for MTBE and results reported in accordance with H&S Code		records of soil samples analyzed for MTBE at the site. In October 2017 groundwater samples were collected
G.	25296.15	Υ	and analyzed for MTBE; no detections were reported.
Н.	Nuisance as defined by Water Code section 13050 does not exist at the Site	Υ	No nuisance exists at the Site.
Media-Spec	ific Criteria		
Groundwate	er (Must meet the general and one of the 5 other criteria below)		
			Historical and current analytical results generally show decreasing concentrations, by several orders of
General	Groundwater plume is stable or decreasing	Υ	magnitude in some cases; this indicates that the plume is stable or decreasing.
			The downgradient edge of the plume is defined by MW4, within approximately 50 feet downgradient of the
			former excavation area. Although MW5 is cross-gradient of MW4, based on the rapid attenuation with
	The contaminant plume that exceeds water quality objectives is <100 feet in length		distance at MW4, the plume does not likely extend far beyond MW5.
	There is no free product		There is no free product based on historical and current sampling results.
			There is no surface water body within one mile of the downgradient edge of the Site; based on a review of the
			State's Geotracker GAMA database and recent reports for nearby sites, the closest water supply well is 0.5
1	The nearest existing water supply well or surface water body is >250 feet from the plume boundary	Υ	miles downgradient of the Site.
			The downgradient edge of the plume is defined by MW4, within approximately 50 feet downgradient of the
			former excavation area. Although MW5 is cross-gradient of MW4, based on the rapid attenuation with
	The contaminant plume that exceeds water quality objectives is <250 feet in length		distance at MW4, the plume does not likely extend far beyond MW5.
	There is no free product		There is no free product based on historical and current sampling results
			There is no surface water body within one mile of the downgradient edge of the Site; based on a review of the
_	The nearest existing water supply well or surface water body is >1,000 feet from the plume boundary		State's Geotracker GAMA database, there are no water supply wells within one mile of the site.
2	The dissolved concentrations of benzene is <3,000 ug/L, and dissolved MTBE is <1,000 ug/L	Υ	This condition is met.

TABLE G-1 LOW-THREAT UNDERGROUND STORAGE TANK CLOSURE POLICY CRITERIA DREYER'S GRAND ICE CREAM FACILITY OAKLAND, CALIFORNIA

		DOES THE SITE	
		MEET THE	
CRITERIA	DESCRIPTION	CRITERIA?	COMMENTS/NOTES
			The downgradient edge of the plume is defined by MW4, within approximately 50 feet downgradient of the
			former excavation area. Although MW5 is cross-gradient of MW4, based on the rapid attenuation with
	The contaminant plume that exceeds water quality objectives is <250 feet in length		distance at MW4, the plume does not likely extend far beyond MW5.
	Free product has been removed to the maximum extent practicable, may still be present below the Site		
	where the release originated, but does not extend off-Site		There is no free product based on historical and current sampling results
			Historical and current analytical results generally shown decreasing concentrations, by several orders of
	The plume has been stable or decreasing for a minimum of 5 years		magnitude in some cases; this indicates that the plume is stable or decreasing.
			There is no surface water body within one mile of the downgradient edge of the Site; based on a review of the
			State's Geotracker GAMA database and recent reports for nearby sites, the closest water supply well is 0.5
	The nearest existing water supply well or surface water body is >1,000 feet from the plume boundary		miles downgradient of the Site.
	The property owner is willing to accept a land use restriction if the regulatory agency requires one as a		
3	condition of case closure	Υ	This condition is acceptable to the property owner.
			The downgradient edge of the plume is defined by MW4, within approximately 50 feet downgradient of the
			former excavation area. Although MW5 is cross-gradient of MW4, based on the rapid attenuation with
	The contaminant plume that exceeds water quality objectives is <1,000 feet in length		distance at MW4, the plume does not likely extend far beyond MW5.
	There is no free product		There is no free product based on historical and current sampling results
			There is no surface water body within one mile of the downgradient edge of the Site; based on a review of the
			State's Geotracker GAMA database and recent reports for nearby sites, the closest water supply well is 0.5
	The nearest existing water supply well or surface water body is >1,000 feet from the plume boundary		miles downgradient of the Site.
4	The dissolved concentrations of benzene is <1,000 ug/L, and dissolved MTBE is <1,000 ug/L	Υ	This condition is met.
			The analytical results obtained from the sampling event conducted on 31 October 2017 clearly demonstrate a
			decreasing trend in concentrations of TPH and BTEX compounds in groundwater over time. As described in
			Section 4, water quality objectives (Tier 1 ESLs) can likely be achieved in perimeter monitoring wells within a
			reasonable time frame. Moreover, geochemical conditions (ORP, DO) and the analytical results for nitrate,
	The regulatory agency determines, based on an analysis of Site-specific conditions, that under current		sulfate, and dissolved manganese indicate that natural attenuation is occuring. The generally low permability
	and reasonable anticipated near-term future scenarios, the plume poses a low threat to human health	Potentially; to	subsurface soil materials suggests low groundwater velocities and COC mass flux. Lastly, there is little risk to
	and safety and to the environment and water quality objectives will be achieved within a reasonable	be determined by	human health (via direct contact/drinking) or the environment (as there are no surface water bodies near the
5	time frame.	ACDEH	Site.
Vapor Intrus	ion to Indoor Air (one of the following must apply)		
	Scenario 1: LNAPL is present in groundwater, but is separated from building foundation by 30 feet		
	vertically with soil containing <100 mg/kg TPH		Not applicable - there is no free product based on historical and current sampling results.
	Scenario 2: LNAPL in present in soil, but is separated from building foundation by 30 feet (laterally and		
	vertically) with soil containing <100 mg/kg TPH		Not applicable - there is no free product based on historical and current sampling results.
			No soil oxygen data is available. Benzene concentrations are below 100 ug/L in all wells except MW3 (130
	Scenario 3a: If no soil oxygen data is available, a minimum vertical separation of 5 feet (benzene in GW		ug/L; Table 3), and the average depth to water historically is greater than 10 feet (Appendix D). Limited soil
	<100 ug/L) or 10 feet (benzene in GW between 100 and 1000 ug/L) between groundwater and building		analytical data is available; however with the exception of MW3 (which may have been installed in former
A.	foundation, with soil containing <100 mg/kg TPH	Υ	excavation backfill), concentrations of TPH in soil are below 100 mg/kg.
(cont. on	Senario 3b: if soil oxygen is >4%, groundwater is separated from building foundation by 5 feet vertically	(cont. on	
next page)	with soil containing <100 mg/kg TPH (only for GW <1,000 ug/L)	next page)	Not applicable - no soil oxygen data is available.

TABLE G-1
LOW-THREAT UNDERGROUND STORAGE TANK CLOSURE POLICY CRITERIA
DREYER'S GRAND ICE CREAM FACILITY
OAKLAND, CALIFORNIA

		DOES THE SITE	
		MEET THE	
CRITERIA	DESCRIPTION	CRITERIA?	COMMENTS/NOTES
A.	Senario 4a: If soil gas data is available, meet the criteria with no bioattenuation zone		Not applicable - no soil vapor data is available
(cont.)	Senario 4b: If soil gas data is available, meet the criteria with bioattenuation zone	Y	Not applicable - no soil vapor data is available
			A site-specific risk assessment has not been conducted; however, a comparison of groundwater
	A site-specific risk assessment for the VI pathway is conducted and demonstrates that human health is		concentrations to Vapor Intrusion ESLs (Table 3) indicates that concentrations are below applicable ESLs for all
В.	protected to the satisfaction of the regulatory agency	N/A	wells except MW3.
	As a result of controlling exposure through the use of mitigation measures or through the use of	Potentially; to	
	institutional or engineering controls, the agency determines that petroleum vapors migrating from soil	be determined by	If ACDEH determines that vapor intrusion is a potential concern, mitigation measure or
C.	or GW will have no significant risk of adversely affecting human health.	ACDEH	institutional/engineering controls can be proposed to mitigate the risk to human health.
Direct Conta	nct/Outdoor Air (one of the following must apply)		
			Historical soil samples collected at 10 feet meet the criteria for benzene and ethylbenzene; no soil data for
			naphthalene or other PAHs is available. However, based on the low concentrations of PAHs in groundwater
			(less than 5 ug/L; Table 3), it is unlikely that concentrations in soil are present above the criteria listed in Table
a	Concentrations of petroleum constituents in soil meet the Criteria in Table 1 of the policy	Potentially	1 of the policy.
	Max concentrations of petroleum constituents in soil are less than levels that a site-specific risk		
b	assessment demonstrates will have no sigificant risk of adversely affecting human health	N/A	Not applicable - a site-specific risk assessment has not been conducted.
	As a result of controlling exposure through the use of mitigation measures or through the use of	Potentially; to	
	institutional or engineering controls, the agency determines that concentrations of petroleum	be determined by	If ACDEH determines that direct contact or exposure via outdoor air is a potential concern, mitigation measure
С	constituents in soil will have no significant risk of adversely affecting human health.	ACDEH	or institutional/engineering controls can be proposed to mitigate the risk to human health.