

March 19, 2009

RECEIVED

9:53 am, Mar 23, 2009

Alameda County
Environmental Health

Mr. David Blain BPS Reprographic Services 945 Bryant Street San Francisco, CA 94103

RE: March 2009 Groundwater Monitoring Report

1700 Jefferson Street, Oakland, California

Fuel Leak Case No. RO 151 ERS Project No. 1015-01.00

Dear Mr. Blain:

Environmental Risk Specialties Corporation (ERS) has enclosed one hard copy of the March 2009 Groundwater Monitoring Report for 1700 Jefferson Street, Oakland, California. ERS will also upload the Report along with monitoring well sampling and analytical data to the Regional Water Quality Control Board's GeoTracker database.

If you have any questions regarding this report or the findings of the work, please contact me at (925) 938-1600, extension 109 or email me at <u>ddement@erscorp.us</u>.

Sincerely,

David DeMent, PG, REA II

Senior Geologist

cc: Ms. Barbara Jakub, Alameda County Health Care Services Agency

Enclosure

MARCH 2009 GROUNDWATER MONITORING REPORT

1700 Jefferson Street Oakland, California

Prepared for:

Mr. David Blain BPS Reprographic Services 945 Bryant Street San Francisco, CA 94103

Prepared by:

Environmental Risk Specialties Corporation Walnut Creek, California

March 19, 2009

Reviewed By:

David DeMent, PG, REA II Senior Geologist

TABLE OF CONTENTS

2.0 BACKGROUND	1.0	INTRODUCTION	1
3.0 GROUNDWATER MONITORING AND SAMPLING 3.1 Groundwater Monitoring 3.2 Groundwater Gradient 3.3 Groundwater Sampling 4.0 RESULTS OF GROUNDWATER SAMPLING 5.0 DISCUSSION 6.0 CONCLUSIONS 7.0 RECOMMENDATIONS 8.0 LIMITATIONS TABLES 1 - Groundwater Elevations 2 - Groundwater Gradient and Flow Direction	2.0	BACKGROUND	1
3.1 Groundwater Monitoring 3.2 Groundwater Gradient 3.3 Groundwater Sampling 4.0 RESULTS OF GROUNDWATER SAMPLING 5.0 DISCUSSION 6.0 CONCLUSIONS 7.0 RECOMMENDATIONS 8.0 LIMITATIONS TABLES 1 - Groundwater Elevations 2 - Groundwater Gradient and Flow Direction	2.1	Subsurface Conditions	1
3.1 Groundwater Monitoring 3.2 Groundwater Gradient 3.3 Groundwater Sampling 4.0 RESULTS OF GROUNDWATER SAMPLING 5.0 DISCUSSION 6.0 CONCLUSIONS 7.0 RECOMMENDATIONS 8.0 LIMITATIONS TABLES 1 - Groundwater Elevations 2 - Groundwater Gradient and Flow Direction	3.0	GROUNDWATER MONITORING AND SAMPLING	2
3.2 Groundwater Gradient	3.1		
4.0 RESULTS OF GROUNDWATER SAMPLING	3.2		
4.0 RESULTS OF GROUNDWATER SAMPLING	3.3	Groundwater Sampling	9
6.0 CONCLUSIONS	4.0	<u>.</u> •	
7.0 RECOMMENDATIONS	5.0	DISCUSSION	16
8.0 LIMITATIONS TABLES 1 - Groundwater Elevations	6.0	CONCLUSIONS	18
TABLES 1 - Groundwater Elevations	7.0	RECOMMENDATIONS	19
1 - Groundwater Elevations2 -Groundwater Gradient and Flow Direction	8.0	LIMITATIONS	20
2 –Groundwater Gradient and Flow Direction	TABL	ES	
	1 - Gr	oundwater Elevations	2
3 - Groundwater Analytical Result	2 –Gr	oundwater Gradient and Flow Direction	8
	3 - Gr	oundwater Analytical Result	10

FIGURES

- 1 Location Map
- 2 Site Plan
- 3 Groundwater Gradient Map
- 4 Iso-concentration Map for TPHg
- 5 Iso-concentration Map for Benzene

APPENDICES

- 1 Well Monitoring Worksheet
- 2 Analytical Results and Chain of Custody Record

1.0 INTRODUCTION

This March 2009 Groundwater Monitoring Report was prepared by Environmental Risk Specialties Corporation (ERS) at the request of BPS Reprographic Services (Client). This Report describes groundwater monitoring work performed at 1700 Jefferson Street, Oakland, California (Site). The project objectives were to purge and sample four existing groundwater monitoring wells, measure the depth to groundwater in all existing wells to calculate groundwater gradient and flow direction, evaluate analytical results, and report the findings.

2.0 BACKGROUND

The Site is located on the northeast corner of the intersection of Jefferson Street and 17th Street in Oakland, California. On June 16, 1987, three gasoline underground storage tanks (USTs) were removed from the Site and a suspect unauthorized release was confirmed. Three groundwater monitoring wells were installed in June 1987 and well MW-1 initially contained 30 inches of free-phase floating product (free product). Well MW-2 was subsequently destroyed when the current building was constructed. In January 1988, wells MW-1A and MW-4 were installed to specifically remove free product. In August 1988, offsite well MW-5 was installed.

Free product was removed from well MW-1 on a daily basis and an estimated 2,300 gallons of free product were removed from September 1987 to March 1991. Harding Lawson Associates (HLA) constructed a groundwater extraction and treatment system in June 1992 and by July 1999 removed an additional 867 gallons of free product. In April 1996, HLA installed well MW-6, and in March 1998, HLA advanced five Cone Penetrometer Test (CPT) borings south of the Site and north of well MW-5. In April 1998, HLA had free product samples analyzed and determined that free product was comprised of leaded gasoline. Free product has not been observed in the wells since 1999.

In 1999, MACTEC installed oxygen release compound (ORC®) socks in wells MW-1A, MW-3, MW-4, and MW-5. The ORC® socks were removed at the request of ACHCSA in 2002. Quarterly groundwater monitoring has been conducted since January 1994.

2.1 Subsurface Conditions

Soil boring logs from extraction wells MW-1A and MW-4, included in the February 2, 1990 Aquifer Testing and Ground-water Treatment Cost Feasibility Study, indicate that silty

PAGE 1 OF 20 ers

sand and clayey sands is present from the surface to an approximately depth of 27.0 to 30.5 feet below ground surface (bgs). Sands were reported in well MW-4 from approximately 27.0 to 30.5 feet bgs. These soils were underlain by stiff to very stiff, saturated silty clays to the maximum explored depth of 33.0 feet bgs. Groundwater was encountered between 25.0 and 25.5 feet bgs.

3.0 GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring and sampling of the Site was performed on March 3, 2009 by ERS personnel. Work at the Site included measuring depth to water, subjectively evaluating groundwater in the wells, purging and sampling the wells using EPA approved low-flow techniques, and submitting the samples to a state-certified laboratory for analysis of constituents of concern.

3.1 Groundwater Monitoring

Before groundwater purging and sampling, the depth to the water table was measured from the top of each well casing using an electronic water level meter. The water level measurements were recorded to the nearest 0.01 foot with respect to mean sea level (MSL). Worksheets of recently recorded groundwater monitoring data are included as Appendix 1. Information regarding well elevations and groundwater depths for the Site is summarized in Table 1.

TABLE 1 – GROUNDWATER ELEVATIONS

Well Number	Date Measured	Well Elevation* (feet above MSL)	- F	
MW-1	03/06/96	32.36	NS	
	06/11/96	32.36	FP	
	09/19/96	32.36	FP	
	12/23/96	32.36	FP	
	03/27/97	32.36	FP	
	06/04/97	32.36	26.41	5.95
	09/26/97	32.36	26.80	5.56
	12/22/97	32.36	26.00	6.36
	03/31/98	32.36	26.06	6.30
	06/18/98	32.36	25.60	6.76
	08/28/98	32.36	25.45	6.91
	12/02/98	32.36	24.92	7.44
	03/10/99	32.36	24.90	7.46
	06/30/99	32.36	25.53	6.83
	09/29/99	32.36	24.23	8.13

	5 . 16	*** 11 =1	5 4 .		
Well Number	Date Measured	Well Elevation*	Depth to	Groundwater	
		(feet above MSL)	Groundwater (feet)	Elevation (feet)	
MW-1	11/22/99	32.36	24.33	8.03	
Cont.	02/11/00	32.36 24.38 32.36 23.57		7.98	
	05/30/00	32.36 23.57		8.79	
	09/15/00	32.36	23.85	8.51	
	11/16/00	32.36	24.14	8.22	
	04/02/01	32.36	23.40	8.96	
	06/28/01	32.36	23.58	8.78	
	08/30/01	32.36	24.00	8.36	
	12/26/01	32.36	24.18	8.18	
	04/23/02	32.36	NA		
	06/14/02	32.36	23.41	8.95	
	08/20/02	32.36	23.85	8.51	
	12/27/02	32.36	24.10	8.26	
	04/01/03	32.36	23.75	8.61	
	07/01/03	32.36	23.50	8.86	
	09/24/03	32.36	23.82	8.54	
	12/29/03	32.36	24.07	8.29	
	05/18/04	32.36	23.64	8.72	
	06/30/04	32.36	23.64	8.72	
	09/23/04	32.36	23.98	8.38	
	12/28/04	32.36	24.07	8.29	
	03/16/05	32.36	23.80	8.56	
	06/23/05	32.36	22.90	9.46	
	09/09/05	32.36	23.27	9.09	
	12/02/05	32.36	23.75	8.61	
	03/24/06	32.36	23.05	9.31	
	06/29/06	32.36	22.56	9.80	
	09/13/06	32.36	23.00	9.36	
	12/27/06	32.36	23.47	8.89	
	03/30/07	32.36	23.51	8.85	
	07/02/07	32.36	23.39	8.97	
	10/02/07	32.36	23.87	8.49	
	12/13/07	32.36	24.05	8.31	
	03/26/08	32.36	23.56	8.80	
	06/02/08	32.36	23.70	8.66	
	03/03/09	32.36	24.31	8.05	
MW-3	03/06/96	31.77	24.79	6.98	
	06/11/96	31.77	25.60	6.17	
	09/19/96	31.77	26.09	5.68	
	12/23/96	31.77	FP		
	03/27/97	31.77	FP		
	06/04/97	31.77	25.11	6.66	
	09/26/97	31.77	25.41	6.36	
	07/20/7/	31.//	23.41	0.50	

Well Number	Date Measured	Well Elevation*	Depth to	Groundwater
vven rvaniber	Date Weasured	(feet above MSL)	Groundwater (feet)	Elevation (feet)
MW-3	12/22/97	31.77	24.91	6.86
Cont.	03/31/98	31.77	24.05	7.72
Control	06/18/98	31.77	23.71	8.06
	08/28/98	31.77	23.70	8.07
	12/02/98	31.77	23.60	8.17
	03/10/99	31.77	22.65	9.12
	06/30/99	31.77	23.07	8.70
	09/29/99	31.77	23.03	8.74
	11/22/99	31.77	23.68	8.09
	02/11/00	31.77	23.74	8.03
	05/30/00	31.77	22.97	8.80
	09/15/00	31.77	23.12	8.65
	11/16/00	31.77	23.40	8.37
	04/02/01	31.77	23.40	8.37
	06/28/01	31.77	23.17	8.60
	08/30/01	31.77	23.35	7.42
	12/26/01	31.77	23.54	8.23
	04/23/02	31.77	22.89	8.88
	06/14/02	31.77	22.85	8.92
	08/20/02	31.77	23.11	8.66
	12/27/02	31.77	23.34	8.43
	04/01/03	31.77	22.90	8.87
	07/01/03	31.77	22.80	8.97
	09/24/03	31.77	23.15	8.62
	12/29/03	31.77	23.45	8.32
	05/18/04	31.77	22.98	8.79
	06/30/04	31.77	23.04	8.73
	09/23/04	31.77	23.32	8.45
	12/28/04	31.77	28.71	3.06^{2}
	03/16/05	31.77	23.70	8.07
	06/23/05	31.77	22.40	9.37
	09/09/05	31.77	22.63	9.14
	12/02/05	31.77	23.06	8.74
	03/24/06	31.77	22.57	9.20
	06/29/06	31.77	23.91	9.84
	09/13/06	31.77	22.35	9.42
	12/27/06	31.77	22.82	8.95
	03/30/07	31.77	22.91	8.86
	07/02/07	31.77	22.88	8.89
	10/02/07	31.77	23.20	8.57
	12/13/07	31.77	23.40	8.37
	03/26/08	31.77	23.00	8.77
	06/02/08	31.77	23.08	8.69

Well Number	Date Measured	Well Elevation* (feet above MSL)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
MW-3	03/03/09	31.77	23.78	7.99
MW-5	03/06/96	30.56	23.53	7.03
14144 3	06/11/96	30.56	23.78	6.78
	09/19/96	30.56	24.48	6.08
	12/23/96	30.56	24.83	5.73
	03/27/97	30.56	23.82	6.74
	06/04/97	30.56	23.92	6.64
	09/26/97	30.56	24.29	6.27
	12/22/97	30.56	24.02	6.54
	03/31/98	30.56	22.78	7.78
	06/18/98	30.56	22.51	8.05
	08/28/98	30.56	22.74	7.82
	12/02/98	30.56	23.16	7.40
	03/10/99	30.56	22.82	7.74
	06/30/99	30.56	22.41	8.15
	09/29/99	30.56	22.81	7.75
	11/22/99	30.56	22.88	7.68
	02/11/00	30.56	22.74	7.82
	05/30/00	30.56	21.73	8.83
	09/15/00	30.56	22.14	8.42
	11/16/00	30.56	22.39	8.17
	04/02/01	30.56	22.07	8.49
	06/28/01	30.56	22.15	8.41
	08/30/01	30.56	22.35	8.21
	12/26/01	30.56	22.49	8.07
	04/23/02	30.56	21.07	9.49
	06/14/02	30.56	21.80	8.76
	08/20/02	30.56	22.14	8.42
	12/27/02	30.56	NA¹	NA¹
	04/01/03	30.56	NA¹	NA¹
	07/01/03	30.56	NA¹	NA¹
	09/24/03	30.56	22.21	8.35
	12/29/03	30.56	22.56	8.00
	05/18/04	30.56	21.85	8.71
	06/30/04	30.56	22.00	8.56
	09/23/04	30.56	22.36	8.20
	12/28/04	30.56	22.42	8.14
	03/16/05	30.56	22.11	8.45
	06/23/05	30.56	21.20	9.36
	09/09/05	30.56	21.68	8.88
	12/02/05	30.56	22.19	8.37
	03/24/06	30.56	21.01	9.55
	06/29/06	30.56	20.78	9.78

Well Number	Date Measured	Well Elevation*	Depth to	Groundwater
		(feet above MSL)	Groundwater (feet)	Elevation (feet)
MW-5	09/13/06	30.56	21.35	9.21
Cont.	12/27/06	30.56	21.82	8.74
	03/30/07	30.56	21.70	8.86
	07/02/07	30.56	21.81	8.75
	10/02/07	30.56	22.22	8.34
	12/13/07	30.56	22.31	8.25
	03/26/08	30.56	21.77	8.79
	06/02/08	30.56	22.04	8.52
	03/03/09	30.56	22.51	8.05
MW-6	03/06/96	31.26	NA	
	06/11/96	31.26	25.16	6.10
	09/19/96	31.26	25.76	5.50
	12/23/96	31.26	25.88	5.38
	03/27/97	31.26	24.78	6.48
	06/04/97	31.26	24.60	6.66
	09/26/97	31.26	24.80	6.46
	12/22/97	31.26	24.71	6.55
	03/31/98	31.26	23.75	7.51
	06/18/98	31.26	23.22	8.04
	08/28/98	31.26	22.23	9.03
	12/02/98	31.26	23.72	7.54
	03/10/99	31.26	23.54	7.72
	06/30/99	31.26	23.04	8.22
	09/29/99	31.26	23.42	7.84
	11/22/99	31.26	23.64	7.62
	02/11/00	31.26	23.67	7.59
	05/30/00	31.26	22.82	8.44
	09/15/00	31.26	23.10	8.16
	11/16/00	31.26	23.41	7.85
	04/02/01	31.26	23.33	7.93
	06/28/01	31.26	23.15	8.11
	08/30/01	31.26	23.35	7.91
	12/26/01	31.26	23.27	7.99
	04/23/02	31.26	22.89	8.37
	06/14/02	31.26	22.81	8.45
	08/20/02	31.26	23.15	8.11
	12/27/02	31.26	23.41	7.85
	04/01/03	31.26	23.16	8.10
	07/01/03	31.26	22.75	8.51
	09/24/03	31.26	23.16	8.10
	12/29/03	31.26	23.47	7.79
	05/18/04	31.26	22.87	8.39
	06/30/04	31.26	22.43	8.83

PAGE 6 OF 20

Well Number	Date Measured	Well Elevation* (feet above MSL)	Depth to Groundwater (feet)	Groundwater Elevation (feet)
		(leet above MSL)	Groundwater (reet)	Elevation (leet)
MW-6	09/23/04	31.26	23.30	7.96
Cont.	12/28/04	31.26	23.42	7.84
	03/16/05	31.26	23.60	7.66
	06/23/05	31.26	22.27	8.99
	09/09/05	31.26	22.55	8.71
	12/02/05	31.26	23.05	8.21
	03/24/06	31.26	22.50	8.76
	06/29/06	31.26	21.85	9.41
	09/13/06	31.26	22.31	8.95
	12/27/06	31.26	22.85	8.41
	03/30/07	31.26	22.88	8.38
	07/02/07	31.26	22.75	8.51
	10/02/07	31.26	23.17	8.09
	12/13/07	31.26	23.37	7.89
	03/26/08	31.26	22.97	8.29
	06/02/08	31.26	23.07	8.19
	03/03/09	31.26	31.26 22.51	

Notes: All measurements are in feet

*Well elevation measured to top of casing

NS = Not Sampled

 $FP = Free\ Product$

NA = Not available

3.2 Groundwater Gradient

Groundwater elevation contours, as determined from monitoring well data obtained on March 3, 2009, are illustrated on Figure 3. Based on the measured groundwater elevations, calculated groundwater flow direction is to the west at an average gradient of 0.004 foot per foot. Historical groundwater gradients and flow directions are summarized in Table 2. Thirty-two of 35 calculated groundwater flow directions ranged from northwest to southwest and west was the predominant flow direction.

PAGE 7 OF 20

¹ = Data not available due to ORC socks in well

² = Data not available due to probable equipment malfunction or operator error

TABLE 2 - GROUNDWATER GRADIENT AND FLOW DIRECTION

Date Monitored	Gradient (foot/foot)	Direction
06/11/96	0.003	Southwest
06/04/97	0.009	Northwest
03/31/98	0.002	West
08/28/98	0.007	East
12/02/98	0.006	Northwest
03/10/99	0.011	Northwest
09/29/99	0.004	Northwest
02/11/00	0.001	Northwest
05/30/00	0.003	West
11/16/00	0.044	West
04/02/01	0.001	Southwest
06/28/01	0.005	Southwest
08/30/01	0.004	Southwest
04/23/02	0.006	West-Southwest
06/14/02	0.004	West- Southwest
08/20/02	0.005	West- Southwest
12/27/02	0.005	West- Southwest
04/01/03	0.007	West- Southwest
07/01/03	0.006	West-Northwest
09/24/03	0.005	West-Northwest
12/29/03	0.003	West-Northwest
05/18/04	0.006	West
06/30/04	0.002	North
09/23/04	0.005	West
12/28/04	0.045^{1}	Southeast ¹
03/16/05	0.010	Southwest
06/23/05	0.005	West
09/09/05	0.005	West
12/02/05	0.006	Northwest
03/24/06	0.006	Northwest
09/13/06	0.005	West-Northwest
12/13/07	0.004	West-northwest
03/26/08	0.004	West
06/02/08	0.004 West	
03/03/09	0.004	West

Notes: ¹ MACTEC reported an error in groundwater measurement

3.3 Groundwater Sampling

Before groundwater sampling, each well was purged using EPA approved low-flow techniques summarized in the "Low-Flow (Minimal Drawdown) Ground Water Sampling Procedures" (EPA, 1996). Dedicated tubing, attached to a peristaltic pump, was lowered to the mid-point of the reported screen zone. The pump was set to a rate of less than 1 liter per minute and pH, dissolved oxygen (DO), specific conductance (SC), oxidation reduction potential (ORP), depth to water (DTW) and temperature were measured in three to five minute intervals within a flow-through cell. When parameters stabilized to within ±10% in consecutive readings, the pump rate was lowered, the tube was disconnected from the flow-through cell and samples were collected directly from the dedicated tubing. Groundwater conditions monitored during purging and sampling were recorded on monitoring wells worksheets, included as Appendix 1.

From each monitoring well, three laboratory-supplied 40-milliliter sample vials were filled to overflowing and sealed to eliminate trapped air. Once filled, sample vials were inverted and tapped to test for air bubbles. Sample containers were labeled with self adhesive, preprinted tags. The samples were stored in a pre-chilled, insulated container and returned to ERS's Walnut Creek Office pending courier pickup by AccuTest, a state-certified analytical laboratory, for the requested analyses.

Water purged during the development and sampling of the monitoring wells is being temporarily stored onsite in a 55-gallon drum pending laboratory analysis and proper disposal.

4.0 RESULTS OF GROUNDWATER SAMPLING

Groundwater samples collected from each well were submitted for analysis, following chain of custody protocol. Groundwater samples collected from wells MW-1, MW-3, MW-5, and MW-6 were analyzed for gasoline-range petroleum hydrocarbons (TPHg), benzene, toluene, ethylbenzene, total xylenes (BTEX), and methyl tertiary butyl ether (MTBE) by EPA Method 8260B. Copies of the chain of custody record and laboratory analytical reports are included as Appendix 2. TPHg, BTEX, and MTBE analytical results are summarized in Table 3.

PAGE 9 OF 20

TABLE 3 – GROUNDWATER ANALYTICAL RESULTS

Well Number	Date Sampled	TPHg (µg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethyl Benzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	Free Product (inches)
MW-1	07/08/87							30
	09/12/88							25
	07/12/89							21.6
	08/01/91							12
	09/30/92							
	03/30/93							
	01/13/94							14.8
	04/13/94							12
	06/29/94							0
	12/08/94							
	04/03/95							
	06/27/95							
	09/19/95							
	12/13/95							
	03/06/96							
	06/11/96							
	09/19/96							
	12/23/96							
	03/27/97							
	06/04/97	68,000	2,200	4,500	1,500	11,000	< 500	
	09/26/97	59,000	6,000	3,000	1,600	8,600	< 500	
	12/23/97	41,000	6,800	3,000	1,400	6,600	300	
	03/31/98	44,000	8,300	3,700	1,100	4,300	420	
	06/18/98	32,000	1,100	3,800	550	3,000	< 50	
	08/28/98	26,000	8,600	2,300	730	2,100	< 50	
	12/02/98	26,000	9,200	4,300	820	2,800	< 50	
	03/10/99	26,000	8,200	5,900	870	3,500	< 50	
	06/30/99	18,000	7,000	5,800	950	2,500	<25	
	09/29/99	21,000	9,200	10,000	1,200	5,500	<250	
	09/29/99	14,000	6,200	5,900	620	3,500	<250	
	11/22/99	24,000	4,900	5,000	730	3,500	<100	
	02/11/00	19,000	4,100	4,800	530	2,800	6.6	
	05/30/00	19,000	5,700	8,400	730	3,500	< 5.0	
	09/15/00	20,000	4,100	5,700	540	2,700	<12	
	11/16/00	18,000	3,500	4,300	640	3,200	<40	
	04/02/01	19,000	4,700	5,200	570	2,600	50	
	06/28/01	39,000	5,200	4,200	660	3,900	8.5	

Well	Date	TPHg	Benzene	Toluene	Ethyl	Total	MTBE	Free
Number	Sampled	(μg/L)	(μg/L)	(μg/L)	Benzene	Xylenes	(μg/L)	Product
INUITIDEI	Sampled	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(inches)
MW-1	08/30/01	31,000	5,600	5,100	560	2,500	<100	(IIIcrics)
II		•	*	*	630	· ·	<120	
(cont)	12/26/01	34,000	5,300	5,200		2,400		
	04/24/02	35,000	4,900 5,400	6,000	740	3,100	<120	
	06/14/02	35,000	5,400	6,800	870	3,500	<250	
	08/20/02	26,000	4,100	4,700 5,000	620	2,700	<120	
	12/27/02	28,000	4,500	5,000	660 680	3,000	<120	
	04/01/03	16,000	4,500 7,700	6,000		3,100	<120	
	07/01/03	61,000	7,700	11,000	1,200	6,700	<250	
	09/25/03	59,000	7,600	9,400	1,000	4,800	<1,200	
	12/29/03	46,000	6,600	7,900	960	4,000	<250	
	05/18/04	23,000	4,100	4,700	450	1,500	<50	
	06/30/04	24,000	3,500	3,600	390	1,300	<50	
	09/23/04	24,000	3,800	3,900	470	1,400	<25	
	12/28/04	22,000	3,400	3,400	380	1,400	<250	
	03/16/05	21,000	4,100	4,200	470 520	1,300	<50	
	06/23/05	30,000	5,400	5,500	520	1,900	<1,200	
	09/09/05	7,100	840	950	120	410	<120	
	12/02/05	19,000	3,600	3,500	410	1,300	<2.5	
	03/24/06	29,000	6,200	6,000	620	2,000	<500	
	06/29/06	23,000	4,800	4, 000	330	1,200	<500	
	09/13/06	20,000	4,500	3,900	400	1,400	<250	
	12/27/06	31,000	6,000 5 ,000	5,300	710	2,500	<500	
	03/30/07	30,000	5,000	4,600	520	1,700	<500	
	07/02/07	14,000	2,500	2,000	280	930	<500	
	10/02/07	19,000	3,400	2,700	400	1,200	<500	
	12/13/07	18,000	3,500	2,700	390	1,100	<500	
	03/26/08	28,000	4,900	4,900	530	2,100	<500	
	06/02/08	20,000	3,300	3,300	380	1,700	<500	
	03/03/09	33,100	5,380	5,380	603	2,800	<100	
NATAL 2	07/09/97							
MW-3	07/08/87							
	09/12/88							
	07/12/89	74.000	1 (00	4.600	(70	4.200		4
	08/01/91	74,000	1,600	4,600	670	4,300		4
	09/30/92							4.1
	03/30/93							1.3
	01/13/94							2.2
	04/13/94	20,000	2 200	2 000	FOO	4 200		1.8
	06/29/94	39,000	3,200	2,900	580	4,300		0.5
	12/08/94	4,600,000	1,500	4,200	6,000	95,000		

Well	Date	TPHg	Benzene	Toluene	Ethyl	Total	MTBE	Free
Number	Sampled	(μg/L)	(µg/L)	(µg/L)	Benzene	Xylenes	(µg/L)	Product
	_				(µg/L)	(μg/L)		(inches)
MW-3	04/03/95	51,000	1,100	2,300	580	4,800		
(cont)	06/27/95	20,000	270	550	190	1,700		
	09/19/95	6,200	70	140	68	500		
	12/13/95	19,000	220	480	140	1,700		
	03/06/96	7,000	120	170	49	440		
	06/11/96	16,000	170	270	68	1,500		
	09/19/96	6,000	45	30	15	300		
	12/23/96							
	03/27/97							
	06/04/97	85,000	8,500	13,000	2,400	16,000	< 500	
	09/26/97	47,000	610	6,000	930	5,900	<100	
	12/23/97	32,000	640	5,300	800	5,900	<300	
	03/31/98	32,000	690	3,800	870	5,200	350	
	06/18/98	16,000	180	1,500	490	3,700	<25	
	08/28/98	17,000	84	1,100	430	3,800	< 50	
	12/02/98	3,200	39	85	25	360	< 50	
	03/10/99	9,600	86	540	250	2,300	<25	
	06/30/99	7,900	31	330	200	1,800	<25	
	09/29/99	5,000	120	340	230	1,300	10	
	09/29/99	4,100	180	340	130	580	14	
	11/22/99	3,100	6.5	33	27	260	<1.0	
	02/11/00	540	8.3	20	2.4	28	31	
	05/30/00	490	11	5.6	0.45	17	< 5.0	
	09/15/00	1,500	28	14	2.6	160	< 5.0	
	11/16/00	1,300	20	34	25	28	< 5.0	
	04/02/01	170	9	6.2	1.4	8.1	77	
	06/28/01	4,900	150	240	38	160	<2	
	08/30/01	3,100	42	48	26	210	<1.2	
	12/26/01	950	8	5.2	1.1	7	< 0.5	
	04/24/02	300,000	11	4.8	0.72	1.4	< 0.5	
	06/14/02	4,600	130	470	91	390	< 0.5	
	08/20/02	4,900	330	170	40	150	< 5.0	
	12/27/02	4,000	110	280	57	260	19	
	04/01/03	5,900	370	150	44	230	<1.0	
	07/01/03	12,000	200	460	130	390	< 5.0	
	09/25/03	10,000	150	300	120	280	<2.5	
	12/29/03	7,300	160	250	79	210	<2.5	
	05/18/04	1,500	77	72	19	59	<12	
	06/30/04	2,000	81	37	34	40	<1.0	
	09/23/04	3,400	140	95	36	40	<10	

Well	Date	TPHg	Benzene	Toluene	Ethyl	Total	MTBE	Free
Number	Sampled	(μg/L)	(μg/L)	(μg/L)	Benzene	Xylenes	(μg/L)	Product
	1	(1 0,)	(1 0) /	(1 0) /	(µg/L)	μg/L)	(10)	(inches)
MW-3	12/28/04	3,900	340	37	11	60	<5.0	
(cont)	03/16/05	970	1.4	1.8	0.66	2.9	<2.5	
	06/23/05	850	56	7.3	<5	12	<25	
	09/09/05	3,900	470	100	33	96	<62	
	12/02/05	760	14	8	2.4	17	< 0.5	
	03/24/06	590	83	41	7.3	33	<12	
	06/29/06	1,100	130	38	16	21	<25	
	09/13/06	1,300	260	71	44	28	<25	
	12/27/06	3,000	250	160	49	140	<25	
	03/30/07	3,100	250	260	46	110	<25	
	07/02/07	2,600	250	250	54	130	<25	
	10/02/07	1,900	170	140	24	48	<25	
	12/13/07	2,900	250	170	66	120	<25	
	03/26/08	2,300	340	95	26	64	<25	
	06/02/08	2,300	270	250	59	130	<25	
	03/03/09	3,020	37.1	10	3.8 ^J	12.3 ^J	<10	
MW-5	07/08/87							
	09/12/88							0.5
	07/12/89							0.4
	08/01/91	120,000	20,000	14,000	1,900	4,900		0
	09/30/92	51,000	13,000	5,900	1,400	2,600		0
	03/30/93	74,000	16,000	5,000	1,800	2,700		0
	01/13/94	80,000	19,000	8,200	1,400	2,700		0
	04/13/94	63,000	14,000	3,500	1,500	2,100		0
	06/29/94	64,000	29,000	5,400	2,800	4,500		0
	12/08/94	59,000	13,000	3,800	1,800	2,900		
	04/03/95	51,000	15,000	2,200	2,800	4,500		
	06/27/95	41,000	12,000	2,100	1,400	1,600		
	09/19/95	50,000	1,600	2,700	2,000	2,100		
	12/13/95	45,000	13,000	2,100	16,000	1,900		
	03/06/96	51,000	15,000	2,800	2,000	2,400		
	06/11/96	48,000	12,000	2,900	2,000	2,700		
	09/19/96	48,000	12,000	4,500	2,300	4,000		
	12/23/96	45,000	12,000	2,200	2,700	6,500	600	
	03/27/97	44,000	11,000	1,100	1,900	2,800	300	
	06/04/97	35,000	8,900	560	1,500	1,700	<100	
	09/26/97	36,000	7,900	270	1,500	1,300	< 500	
	12/23/97	39,000	13,000	500	1,900	1,700	<1,000	
	03/31/98	48,000	10,000	400	2,000	2,200	350	

Well	Date	TPHg	Benzene	Toluene	Ethyl	Total	MTBE	Free
Number	Sampled	(µg/L)	(µg/L)	(µg/L)	Benzene	Xylenes	(µg/L)	Product
					(µg/L)	(μg/L)		(inches)
MW-5	06/18/98	17,000	9,500	310	420	850	<10	
(cont)	08/28/98	16,000	5,400	160	1,100	900	< 50	
	12/02/98	15,000	8,400	120	1,500	840	< 50	
	03/10/99	23,000	14,000	300	1,800	1,100	< 50	
	06/30/99	7,700	5,200	270	1,100	690	<25	
	09/29/99	11,000	9,600	710	1,100	1,100	<100	
	09/29/99	10,000	14,000	470	1,100	600	<100	
	11/22/99	30,000	11,000	3,400	1,500	2,500	<100	
	02/11/00	23,000	12,000	4,500	1,200	1,300	6.6	
	05/30/00	19,000	9,900	6,900	1,200	2,600	<200	
	09/15/00	24,000	3,800	3,000	460	1,200	<10	
	11/16/00	1,800	470	220	39	100	<5	
	04/02/01	15,000	7,400	3,000	1,000	2,200	< 50	
	06/28/01	3,600	300	11	16	15	4.4	
	08/30/01	34,000	8,300	3,000	1,400	2,600	< 50	
	12/26/01	1,900	300	110	55	120	<10	
	04/24/02	9,400	2,300	130	300	270	< 50	
	06/14/02	1,700	110	<2.5	7.2	<2.5	< 0.50	
	08/20/02	3,200	320	8.6	22	19	< 0.50	
	12/27/02	6,200	2,200	140	160	250	<25	
	04/01/03							
	07/01/03							
	09/25/03	43,000	12,000	2,800	1,500	3,000	<1,200	
	12/29/03	26,000	7,700	1,900	910	210	<2.5	
	05/18/04	15,000	5,000	1,300	380	770	< 50	
	06/30/04	18,000	5,700	1,600	540	1,200	< 50	
	09/23/04	42,000	12,000	3,900	1,200	2,400	<120	
	12/28/04	41,000	10,000	3,800	1,000	2,300	<250	
	03/16/05	37,000	11,000	3,800	1,100	2,400	<120	
	06/23/05	27,000	7,700	1,700	680	1,300	<1,200	
	09/09/05	46,000	10,000	2,700	1,100	2,100	<1,200	
	12/02/05	21,000	5,900	1,500	600	1,200	< 500	
	03/24/06	<10,000	2,800	450	190	180	< 500	
	06/29/06	1,200	240	11	13	18	<2.5	
	09/13/06	5,800	1,600	210	180	270	<120	
	12/27/06	16,000	4,300	610	460	750	< 500	
	03/30/07	31,000	10,000	1,400	1,100	1,600	< 500	
	07/02/07	33,000	9,400	1,400	1,000	1,500	< 500	
	10/02/07	36,000	11,000	2,100	1,100	1,700	<620	
	12/13/07	34,000	11,000	2,600	1,200	1,900	<1,200	

Well	Date	ТРНд	Benzene	Toluene	Ethyl	Total	MTBE	Free
Number	Sampled	(μg/L)	(µg/L)	(µg/L)	Benzene	Xylenes	(μg/L)	Product
					(µg/L)	(μg/L)		(inches)
MW-5	03/26/08	28,000	7,700	1,900	860	1,300	<1,200	
(cont)	06/02/08	43,000	13,000	3,800	1,400	2,400	<1,200	
	03/03/09	43,400	11,700	3,560	1,290	2,200	<250	
MW-6	06/11/96	< 50	<0.5	<0.5	<0.5	<2		
	09/19/96	< 50	< 0.5	< 0.5	< 0.5	<2		
	12/23/96	< 50	< 0.5	< 0.5	< 0.5	<2	<5	
	03/27/97	< 50	< 0.5	< 0.5	< 0.5	<2	<5	
	06/04/97	< 50	< 0.5	< 0.5	< 0.5	<2	<5	
	09/26/97	< 50	< 0.5	< 0.5	< 0.5	<2	<5	
	12/23/97	< 50	< 0.5	< 0.5	< 0.5	<2	<5	
	03/31/98	< 50	< 0.5	< 0.5	< 0.5	<2	<5	
	06/18/98	< 50	< 0.3	< 0.3	<0.3	<0.6	<1.0	
	08/28/98	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	12/02/98	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	03/10/99	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	06/30/99	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	09/29/99	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	09/29/99	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	11/22/99	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	02/11/00	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	05/30/00	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	09/15/00	< 50	< 0.3	< 0.3	< 0.3	< 0.6	<1.0	
	11/16/00	< 50	< 0.3	< 0.3	< 0.3	< 0.3	<1.0	
	04/02/01	< 50	< 0.3	< 0.3	< 0.3	2.7	5	
	06/28/01	< 50	< 0.5	< 0.5	< 0.3	< 0.5	17	
	08/30/01	< 50	< 0.5	< 0.5	<0.3	8.7	<2.5	
	12/26/01	66	3.6	3.6	3.6	< 0.5	<2.5	
	04/24/02	< 50	< 0.5	< 0.5	<0.5	< 0.5	<2.5	
	06/14/02	< 50	< 0.5	< 0.5	<0.5	< 0.5	<2.5	
	08/20/02	< 50	< 0.5	< 0.5	<0.5	< 0.5	<2.5	
	12/27/02	<50	<0.5	< 0.05	<0.5	<0.5	<2.5	
	04/01/03	< 50	< 0.5	< 0.05	<0.5	< 0.5	<2.5	
	07/01/03	<50	<0.5	< 0.05	<0.5	<2.5	<2.5	
	09/25/03	<50	<0.5	< 0.05	<0.5	<2.5	<2.5	
	12/29/03	<50	<0.5	< 0.05	<0.5	<0.5	<2.5	
	05/18/04	< 50	<0.5	<0.5	<0.5	<0.5	<2.5	
	06/30/04	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5	
	09/23/04	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	

PAGE 15 OF 20

Well	Date	TPHg	Benzene	Toluene	Ethyl	Total	MTBE	Free
Number	Sampled	$(\mu g/L)$	(µg/L)	(µg/L)	Benzene	Xylenes	(µg/L)	Product
					(µg/L)	(µg/L)		(inches)
MW-6	12/28/04	59	< 0.5	< 0.5	< 0.5	1.6	<2.5	
(cont)	03/16/05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	06/23/05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	09/09/05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	12/02/05	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	03/24/06	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	06/29/06	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	09/13/06	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	12/27/06	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	03/30/07	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	07/02/07	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	10/02/07	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	12/13/07	< 50	< 0.5	0.84	< 0.5	< 0.5	<2.5	
	03/26/08	< 50	< 0.5	< 0.5	< 0.5	0.88	<2.5	
	06/02/08	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	
	03/03/09	<50	<1.0	0.53 ^J	<1.0	<2.0	<1.0	

Notes: $\mu g/L = micrograms per liter (approximately equivalent to ppb)$

<= Concentration is below the reporting limit of the lab

J = *Estimated value*

5.0 DISCUSSION

During this groundwater monitoring and sampling event, the calculated groundwater flow direction was west at an average gradient of 0.004 foot per foot. Since March 1998, 32 of 35 calculated groundwater flow directions have ranged from northwest to southwest and calculated flow direction was west in 10 events. Historical groundwater flow direction and gradient are generally consistent with surface topography. During this sampling event, ERS used groundwater elevation data from wells MW-1, MW-3, MW-5, and MW-6 to calculate groundwater flow direction and gradient.

TPHg concentrations increased in wells MW-1, MW-3, and MW-5. BTEX concentrations increased in well MW-1 and decreased in wells MW-3 and MW-5. MTBE concentrations for wells MW-1, MW-3, MW-5, and MW-6 were not reported above laboratory reporting limits. TPHg and BTEX concentrations were not reported above laboratory reporting limits in well MW-6. In comparison to the June 2008 sampling event, TPHg concentrations generally increased in all wells, with the exception of well MW-6, which did not report TPHg concentrations above laboratory reporting limits.

Historical groundwater monitoring data and CPT grab groundwater sampling conducted in February 1998 suggest that an unknown source of petroleum hydrocarbon impact to groundwater exists in proximity to well MW-5. Evidence for this offsite source of impact adjacent to well MW-5 includes: 1) reported values of petroleum hydrocarbons impacts in groundwater are atypical of a release scenerio from the former onsite USTs; 2) concentrations of TPHg and BTEX have been reported at higher concentrations in offsite well MW-5, located approximately 160 feet north of the former USTs, than in onsite wells, located immediately adjacent to the former UST excavation; 3) from June 1996 to March 2009, the predominant groundwater flow direction is west and ranges almost exclusively from northwest to southwest; 4) groundwater plume definition work performed in March 1998 demonstrated that offsite TPHg and BTEX impacts in 17th Street, Jefferson Street, and San Pablo Avenue were low to non-detect; and 5) no significant reduction in TPHg and BTEX concentrations in well MW-5 have been reported since 1996 despite significant onsite remediation and reduction in petroleum hydrocarbon concentrations in onsite wells.

Specifically, the highest benzene concentration historically reported in well MW-1 was 9,200 μg/L and the highest benzene concentration reported in well MW-5 was 29,000 μg/L. From June 1997 to May 2000, the average TPHg concentration in well MW-1 was 31,200 μg/L and the average TPHg in well MW-5 was 23,550 μg/L. During this same time frame, the average benzene concentration in well MW-1 was 6,250 µg/L and the average benzene concentration in well MW-5 was 9,914 µg/L. In other words, during these 14 periodic groundwater monitoring events, the benzene to TPHg ratio in well MW-1 (located adjacent to the former USTs) was 20 percent while the benzene to TPHg ratio in well MW-5 (located 160 feet north of the former USTs) was 42 percent. Similarly, during the last eight sampling events from December 2006 to March 2009, the benzene to TPHg ratio in well MW-1 was 17.6 percent while the benzene to TPHg ratio in well MW-5 was 29.5 percent. These ratios are contrary to what should be found in nature if the petroleum hydrocarbons reported in well MW-5 originated from the former onsite USTs. Hardling Lawson reported that the free product and groundwater treatment system operating at the Site removed approximately 1,000 gallons per day in 1992, approximately 191,880 gallons of water were treated and discharged to the sanitary sewer in 1994, and approximately 395,860 gallons of water were discharged in 1995. Significantly lower TPHg and BTEX concentrations in well MW-3 and generally non-detect analytical results in well MW-6 demonstrate that: 1) groundwater remediation conducted at the Site was effective at decreasing TPHg/BTEX impacts in groundwater; and 2) lateral petroleum hydrocarbon migration in groundwater is limited by low effective permeabilities in saturated zones under the Site. Lastly, if TPHg/BTEX concentrations originating from the former onsite USTs were responsible for the reported elevated TPHg/BTEX in well MW-5, then grab

groundwater samples collected in CPT soil borings CPT-3, 4, and 6 located only 80 to 120 feet further north of well MW-5 would have reported higher concentrations thatn 180 to 420 μ g/L. TPHg impacts in well MW-5 ranged from 36,000 to 120,000 μ g/L from August 1991 to March 1998 and benzene concentrations generally ranged from 11,000 to 20,000 μ g/L during this timeframe; yet, a grab groundwater sample collected only 80 feet further north reported TPHg at 420 μ g/L with almost no BTEX.

ERS generated iso-concentration contour maps for the interpolated distribution of TPHg and benzene in groundwater using Surfer® interpolation software. Figure 4 illustrates interpolated contours for TPHg and Figure 5 illustrates interpolated contours for benzene. Iso-concentrations maps suggest the Site is being impacted by an off-site source located near well MW-5. While interpolation programs are limited because attempting to honor limited data points can distort the data and inaccurately depict the distribution of the interpolated data, it is interesting to note that using well TPHg and benzene data also indicates the highest concentrations appear to originate in the vicinity of well MW-5.

Since the elevated concentrations of TPHg and BTEX reported in well MW-5 appear to originate from an unknown source, additional focused subsurface investigation could be performed to verify this conclusion and attempt to identify impacted soil and groundwater adjacent to well MW-5 and the "suspicious" concrete repair in the sidewalk next to MW-5.

6.0 CONCLUSIONS

Based on the results of groundwater monitoring performed at 1700 Jefferson Street, ERS has made the following conclusions:

- Calculated groundwater flow direction is to the west at an average gradient of 0.004 foot per foot and continues to be generally consistent with historical trends and regional topography;
- Reported TPHg concentrations have increased slightly in wells MW-1, MW-3, and MW-5, possibly as a result of recent precipitation in the area;
- Reported BTEX concentrations have increased in well MW-1 and decreased in wells MW-3 and MW-5;
- Consistent with recent trends, reported TPHg and BTEX concentrations were not reported above laboratory reporting limits in well MW-6;

- Reported TPHg and BTEX concentrations in well MW-5 over time suggest an offsite unknown source of petroleum hydrocarbon impact to groundwater in the general vicinity of this well; and
- Natural attenuation processes are continuing to degrade residual petroleum hydrocarbon concentrations in groundwater as evidenced by the relatively low TPHg and BTEX reported in well MW-3 and lack of detectable concentrations of TPHg and BTEX in downgradient well MW-6.

7.0 RECOMMENDATIONS

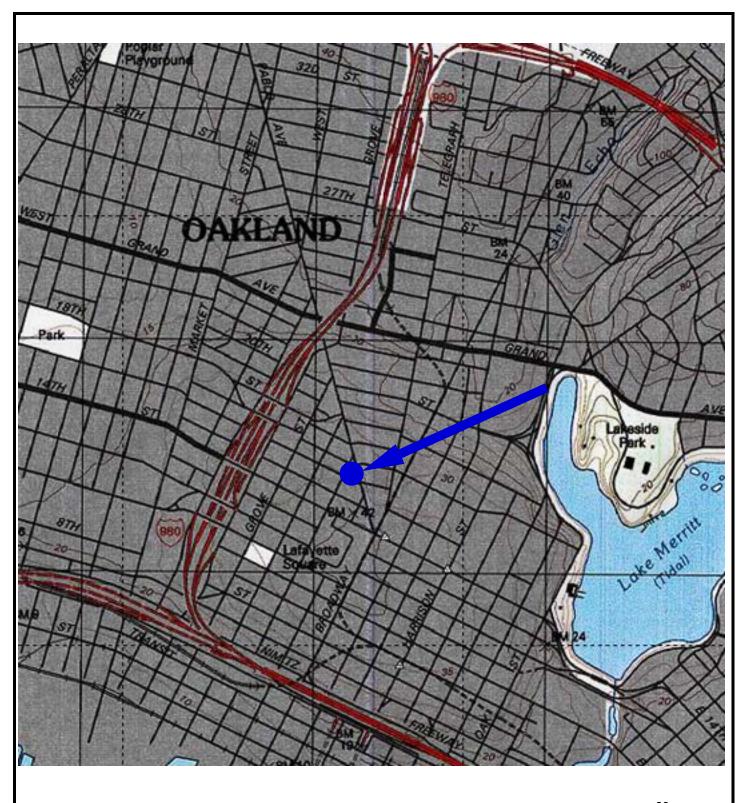
Based on current groundwater monitoring results and observations made during Site investigations, ERS recommends the following;

- Conduct a subsurface investigation to: (1) further characterize soil adjacent to the
 former UST excavation to help identify suspect sources of residual petroleum
 hydrocarbons that continue to impact groundwater in well MW-1; and (2) attempt to
 identify a potential offsite source that is impacting groundwater in the vicinity of
 well MW-5; and
- Five years of quarterly groundwater monitoring have established trends and future groundwater sampling in monitoring wells MW1, MW-3, MW-5, and MW-6 should be reduced to a semi-annual basis.

Therefore, the next tentatively scheduled groundwater monitoring event is September 3, 2009.

PAGE 19 OF 20

8.0 LIMITATIONS


The service performed by ERS has been conducted in a manner consistent with the levels of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area. No other warranty, expressed or implied, is made.

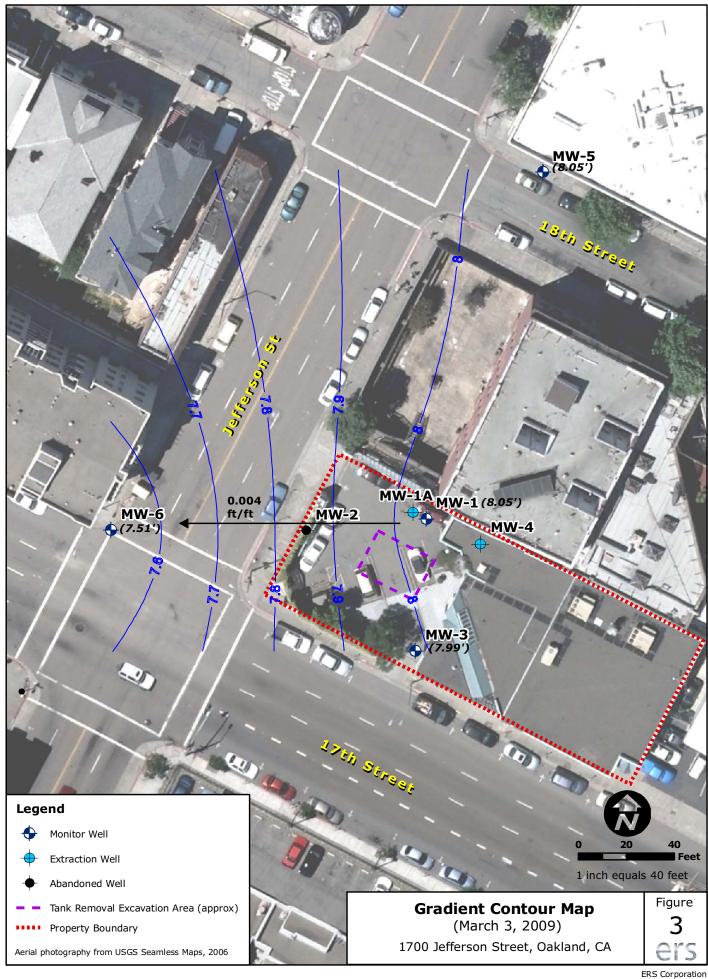
The conclusions presented in this report are professional opinions based on the indicated data described in this report and applicable regulations and guidelines currently in place. They are intended only for the purpose, site, and project indicated. Opinions and recommendations presented herein apply to site conditions existing at the time of our study.

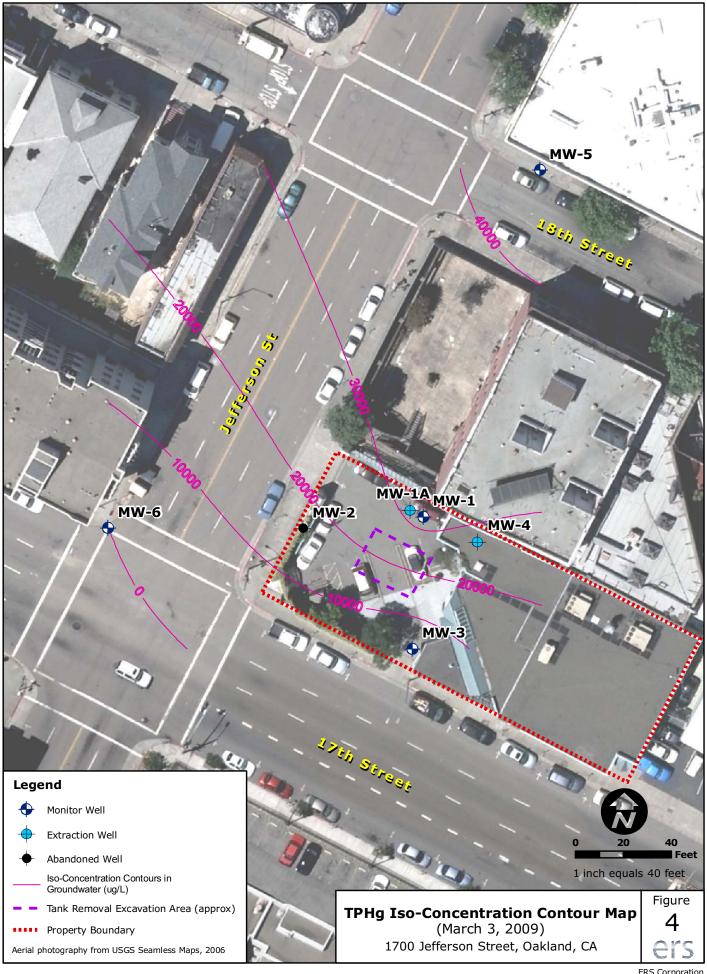
ERS has included analytical results from a state-certified laboratory, which performs analyses according to procedures suggested by the U.S. Environmental Protection Agency and the State of California. ERS is not responsible for laboratory errors in procedure or result reporting.

PAGE 20 OF 20 C S

FIGURES






Location Map 1700 Jefferson Street Oakland, California


Source: National Geographic TOPO!

Figure 1

APPENDIX 1

		Depth t	o Water Data	Sheet	New Age	
Site Name: BPS	Reprogra	Date: 3/3/09				
Site Name: BPS Location: 1700 Te	Herson S	Date: 3/3/09 Field Tech: LL/K-B				
Client: BPS					000	
Well ID	Well Diameter	Time	DTW	Total Depth	Comments	
MW-1	4"	11:23	24.31	31.81		
MW-3	411	11:25	23.78	31.35	**	
MW-5	2"	11:31	22.51	33.15		
MW-6	2"	11:27	23:75	32.360	v	
MW-/A	4"	11:20	22.77	30.60	Extraction Well	
MW-4	4"	11:17	24.21	32.42	Extraction Well Extraction Well	
F						
d						
Notes: Raiw	y day		l.			

B

Site Name:				Well/Sample ID: MW-/							
Location: / 7	Gerson St. Oa	Initial Depth to Water (DTW): 24,31									
Client:	,	Total Well Depth (TD): 31.8 (
Sampler: Lo	gan L	inderman		Well Diame	Well Diameter:						
	3/09			1 Casing V	1 Casing Volume:						
Purge Method	/	ic Pump	v-9	Purge Rate	e: 0.2	- L(n	in				
Sample Meth	od: Low FI	ic Pump		Sampling F		15 V		J) (6			
2 well x 1 foo	ot = 0.6 lite			4" well x 1							
Time	рН	SC M.S	DO	Temp	DTW	Cumulative Volume	ORP	Notes			
hh:mm	SU	umhos/cm	mg/l	COP	feet	liters	mV				
1153	6.37	1440	1.48	17.4	24.41	ĺ	-71				
1158	6.50	1440	1.17	17.5	24.41	2	-85				
1201	6.52	1440	1.05	17.5	24.41	2.6	-91				
1204	6.54	1440	0.95	17.4	24.41	3.2	-97				
(207	6.56	1440	0.78	17.3	24.41	3.8	-104				
1210	6.58	1440	0.73	17.4	24.41	4.4	-118				
1213	6.59	1440	0.75	17.4	24.41	5	-118				
								2			
Did Well Dew	vater?	No	Start Purge	e Time:	11:48	DTW prior t	DTW prior to sample: 24.1				
Casing volumes Purged:			Stop Purge	e Time:	1213	Start Sampl	e Time:	1215			
		~32'	Total Liters	s Purged:	5	Total Samp	le Volume:	120 mL			
Well Recharge:		good	Turbidity:	very.	low	Color:	Sligh	it yellow			
Odor: fue		fuel	Sheen:	-		Product Thi	nkness (in):				
Notes: 1	- rata	lend	32 -	feet	new	tube	ng				

Site Name:				Well/Sample ID: MW - 3						
Location: 17	Gercan	Initial Depth to Water (DTW): 23.78								
Client: BP		(01901)		Total Well Depth (TD): 31.35						
01		. 1.		Well Diame			-			
Date: 3	3/09	inderman		1 Casing V						
Purge Method	-		, ⁽⁴)	Purge Rate		1				
Sample Meth		7 3	<i>y</i>)	10000	0.6	· ym				
2" well x 1 foo				4" well x 1	foot = 2.4L	ym	m			
Time	рН	SC MS	DO	Temp	DTW	Cumulative Volume	ORP	Notes		
hh:mm	SU	umhos/cm	mg/l	Je S	feet	liters	mV			
13:22	6.51	69	4.72	14.5	23.29	1	82			
13:25	5.89	雪70	3.99	14.6	23.40	1.6	112			
13:28	9.52	51	3,44	14.7	23.49	2.2	133			
	5.32		3.33	14.7	23.55	2.8	149			
1334	5.14	46	3.25	14.8	23.62	3.4	157			
1337	5.00	46	3.18	14.9	23.71	4	163			
1340	4.90	45	3.11	15.0	23.77	4.6	171			
1343	4.86	48	3.05	15.1	23.80	5.2	170	<u> </u>		
1346	4.81	48	2.95	15.2	23.84	5.8	176			
Did Well Dev	vater?	No	Start Purge	e Time:	13:17	DTW prior to sample:		23.84		
Casing volumes Purged:		Stop Purge	e Time:	1346	Start Sampl	e Time:	1347			
1		Total Liters	s Purged:	5.8	Total Sample Volume:		120 ml			
Well Recharge: 3000		good	Turbidity:	very	low	Color:		120 ml		
Odor: none		Sheen:		none	Product Thi	nkness (in):				
Notes:	hear	u. dans	7. 601	7						

Notes: heavy downpour "Installed 32 ft. new dedicated tubing

Site Name:	3	Well/Sample ID: MW-5								
Location: 1700 Jefferson St, Oakbud				Initial Depth to Water (DTW): 22.51						
	HE43011 91	Total Well Depth (TD): 33.15								
	PS I am	1 1 1			Well Diameter: 2 11					
*	/ () /	Linderman			olume:	7		- Property		
-	/3/09	io Rump A/6	redicated			2.1	<i>IP</i>			
			tubing		0.25					
Sample Meth 2" well x 1 fo				Sampling F		5 L/m	'n			
Z Well X I IU	0t - 0.0 lite	15	1	T WOILY I	1					
Time	рН	SC 45	DO	Temp	DTW	Cumulative Volume	ORP	Notes		
hh:mm	SU	µmhos/cm	mg/l	× C	feet	liters	mV			
14:34	6.57	1130	1.20	18.8	22.58	1	-110			
14:37	6.56	1130	0.98	18,8	22.58	1.75	-112			
14:40	6.57	1130	0.83	18.8	22.58	2.50	-115			
14:43	6.58	1130	0.80	18.9	22.58	3.25	-117			
14:46	6,59	1130	0.76	18.9	22.58	4,00	-120			
14:49	6.59	1130	0.74	18.9	22.58	4.75	~12-2			
								NeSi .		
Did Well Dev	water?	No	Start Purge	e Time:	14:30	DTW prior t	o sample:	22.58		
Casing volumes		Stop Purge	e Time:	14:49	Start Sampl	e Time:	13:52			
Length of Tu	bing (ft):	~34'	Total Liters	s Purged:	4.75	Total Samp	le Volume:	120mL		
Well Recharge: good Tu		Turbidity:	very lo	V	Color:	Color: Fear U				
Odor:		fuel	Sheen:	/	none	Product Thi	nkness (in):			
Notes:	a tulla	1 211 0 =	+	Lubis	14					

notes. Installed 34 feet new tubing

Site Name:		Well/Sample ID: MW − Ø								
Location: 17	erson	Initial Depth to Water (DTW): 23.75								
Client: BP		Total Well Depth (TD): 32.36								
		inderman		Well Diameter: 2"						
Date: 2/:	3/09	inderman		1 Casing V						
Purge Metho	d: Peristalti	c Pump w/d	ed coted	Purge Rate	0.2	5 VI	mis			
Sample Meth	od: Low Fl	ow	Tra VIV	Sampling F	Rate: O,	15 L/V	in			
2" well x 1 foo				4" well x 1						
Time	рН	SC / S	DO	Temp	DTW	Cumulative Volume	ORP	Notes		
hh:mm	SU	µmhos/cm	mg/l	°F	feet	liters	mV			
1407	6.30	1170	1.20	19.7	23.84	1.25	102			
1410	6.39	1190	1.00	1	23.84		98			
1413	6.44	1190	0.93	19.8	23.84	2.75	100			
1416	6.46	1190	0.93	19.7	23.84	3.5	101			
				i¥						
Did Well Dev	vater?	No	Start Purge	e Time:	1402	DTW prior to	o sample:	23.84		
Casing volumes Purged:		Stop Purge	e Time:	1416	Start Sampl	e Time:	1418			
Length of Tubing (ft): ~32.5′		Total Liters	s Purged:	3.5	Total Sampl	e Volume:	120 ml			
Well Recharge: qsad		Turbidity:	very	low	Color:		clear			
- 9		Sheen:	non	2	Product Thi	nkness (in):				
Notes:	Ins	folled	32.5	5' M	en to	bing				

APPENDIX 2

03/10/09

Technical Report for

ERS Corporation

T0600100196-1700 Jefferson, Oakland, CA

Accutest Job Number: C4684

Sampling Date: 03/03/09

Report to:

ERS Corporation 1600 Riviera Ave Suite 310 Walnut Creek, CA 94596 ddement@erscorp.us; kblume@erscorp.us

ATTN: Kenneth Blume

Total number of pages in report: 20

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Diane Theesen 408-588-0200

Certifications: CA (08258CA)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Laurie Glantz-Murphy

Laboratory Director

Sections:

_

N.

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: C4684-1: MW-1	5
2.2: C4684-2: MW-3	6
2.3: C4684-3: MW-5	7
2.4: C4684-4: MW-6	8
Section 3: Misc. Forms	9
3.1: Chain of Custody	10
Section 4: GC/MS Volatiles - QC Data Summaries	12
4.1: Method Blank Summary	13
4.2: Blank Spike Summary	15
4.3: Matrix Spike/Matrix Spike Duplicate Summary	19

Sample Summary

ERS Corporation

T0600100196-1700 Jefferson, Oakland, CA

Job No: C4684

Sample Number	Collected Date	l Time By	Received Co	atrix ode Type	Client Sample ID
C4684-1	03/03/09	12:15 KB	03/04/09 A	Q Ground Water	MW-1
C4684-2	03/03/09	13:47 KB	03/04/09 A	Q Ground Water	MW-3
C4684-3	03/03/09	14:52 KB	03/04/09 A	Q Ground Water	MW-5
C4684-4	03/03/09	14:18 KB	03/04/09 A	Q Ground Water	MW-6

Sample Results

Report of Analysis

Report of Analysis

Page 1 of 1

Client Sample ID: MW-1

 Lab Sample ID:
 C4684-1
 Date Sampled:
 03/03/09

 Matrix:
 AQ - Ground Water
 Date Received:
 03/04/09

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600100196-1700 Jefferson, Oakland, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 M4867.D 100 03/05/09 XB n/a n/a VM159

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	5380 5380 603 2800 ND	100 100 100 200 100	30 50 30 70 50	ug/l ug/l ug/l ug/l ug/l	
	TPH-GRO (C6-C10)	33100	5000	2500	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	106% 104% 96%		60-13 60-13 60-13	80%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-3

 Lab Sample ID:
 C4684-2
 Date Sampled:
 03/03/09

 Matrix:
 AQ - Ground Water
 Date Received:
 03/04/09

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600100196-1700 Jefferson, Oakland, CA

File ID DF **Prep Batch Analytical Batch** Analyzed By **Prep Date** Run #1 M4865.D 10 03/05/09 XBn/aVM159 n/aRun #2

Purge Volume Run #1 10.0 ml

Run #2

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	37.1 10 3.8 12.3 ND 3020	10 10 10 20 10 500	3.0 5.0 3.0 7.0 5.0 250	ug/l ug/l ug/l ug/l ug/l ug/l	J J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	104% 103% 93%		60-13 60-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

N

Report of Analysis

Page 1 of 1

Client Sample ID: MW-5

 Lab Sample ID:
 C4684-3
 Date Sampled:
 03/03/09

 Matrix:
 AQ - Ground Water
 Date Received:
 03/04/09

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600100196-1700 Jefferson, Oakland, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M4868.D 250 03/05/09 XB n/a n/a VM159

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	11700 3560 1290 2200 ND 43400	250 250 250 500 250 13000	75 130 75 180 130 6300	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	106% 104% 93%		60-13 60-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: MW-6

 Lab Sample ID:
 C4684-4
 Date Sampled:
 03/03/09

 Matrix:
 AQ - Ground Water
 Date Received:
 03/04/09

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: T0600100196-1700 Jefferson, Oakland, CA

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M4890.D 1 03/06/09 XB n/a n/a VM160

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether TPH-GRO (C6-C10)	ND 0.53 ND ND ND ND	1.0 1.0 1.0 2.0 1.0 50	0.30 0.50 0.30 0.70 0.50 25	ug/l ug/l ug/l ug/l ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	104% 104% 94%		60-13 60-13 60-13	30%	

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	CHAIN OF CUSTODY 3334 Victor Court, Santa Clara, CA 95054
ZACCUTEST.	408-588-0200 FAX: 408-588-0201 FED-EX Tracking #
Laboratories	Accutest Quote #

5.4	ACCUTES	10				-10	0.200.02	.00	,,,,,,	100-5	00 020		L		_										
CERTIFICATION	Laboratori												1	Accutest	Quote #				Ac	cutest.	Job#	0	મા	080	J.
		-											1	SEESE								\sim			
	Client / Reporting Information	100000000000000000000000000000000000000			Proje	ect Infor	mation	- 83		e sole		RADE:	434			SOURCE	N. Sept.	Re	quest	ed An	alysis		en ve		Matrix Codes
Company N				Project Na	ame:	1700 Je	iferson							BTEX	E D			\							DW- Drinking Water
Address	ERS Corporation			Street											MTB	g	B268								GW- Ground Water WW- Water
	iava Arra Parita 240				rson Street										S	7ARS	60								SW- Surface Water
City	iera Ave, Suite 310 State		Zip	City	rson Street			S	tate				-		TAR	8 0	4					-			SO- Soil
Walnut (Creek CA	94596		Oakland					CA					00	PPL [] STARS [] MTBE +15 []	□ PPL □ STARS□ PAH□ +TICS□	MTBE								SL-Studge OI-Oil
Project Con				Project#										□ 602 □ NAP □	PPL 15 C	윤ㅁ	3								01-011
	Kenneth Blume kbi	ume@e	us											~ :		ΠĄ	. ~	-		- 1					LIQ- Other Liquid
Phone #	925-938-1600 x103			Fax#	925-93	3-1610								□ 802 TBA□	TCL E	TCL	BTEX								AIR- Air
Samplers's				Client Pur	chase Order									624	00	п _п	20					- 1			
Accutest		SUMMA#	T	Collecti	on	1	•	Num	ber of	prese	erved	Bottle	s	D III	8260 🗆 624 🗀 TBA 🗀 NAP	8270 [] 625 [] ABN[] AE[]	-27	S							SOL-Other Solid WP-Wipe
Sample #				T			# of	Т		- 1	36	EOH	ORE	8260 CI CI MTBE	60 A	2 U	4								LAB USE ONLY
Sample #	Field ID / Point of Collection	MEOH Vial #	Date	Time	Sampled by	Matrix	bottles	ĝ,	HNO3	18E		MEC	N.S	25 🗆	18.2 E	82 AB			+		_	_	_		LAD OUL OILL
	MW-1		3/3/01	12:15	KB/LL	GW	3	X.									\times					17			
	MW-3		(13:47	1	1	Ĭ	X		1 2	X.						\bowtie				ļ	۲,		1	
	MW-6		1	1#:52		1	1,	X			X						X					+	3		
	MW-6		V	14:18	V	V	V	X			X	T					X					-	4		
				1,,,,,						11	Ť						ĺ					T	80		
		 		 	-			\vdash		++	_	-	-						+	1	-		-		
-			ļ	-				-	-	++	+	+	\dashv						-			-		-	
				-			ļ	\sqcup	_	+	-	-					\sqcup		-				_	\dashv	
								Ц	\perp											_		_	_		
								П	T			Τ													
	Turnaround Time (Business days)	9000000000	360000	P-02400000F	2256	Data De	liverable	Inform	tion	2000		ARRIB	1000								/ Remark	s			
]	Approved By	r:/ Date:			nercial "/		-	FULL (Δ.	(1)	2 (MO	ς,	e.a.	ch.				
					i-marmid	nercial "E	3"	_		P Cates									-						
	5 Day STANDARD 3 Day EMERGENCY			-	NJ FU	duced				P Cate															
	2 Day EMERGENCY				Other			\forall		orms ormat	116	TF	rinte	1											
 	1 Day EMERGENCY				الله الله الله الله الله الله الله الله			2						•											
<u> </u>	Other	***************************************			Comm	erciat "A'	' = Resul	ts Only	, /८	2600	010	ויוכ	0		de la constantina	. 1									
Emer	gency T/A data available VIA Labli	nk											\neg		[\	wlu	.4.	,							
15 FOREST PRES	COSTRESSED . A . A		e docume	ented belo			es chang	je pos	sessi				rig ir d	elivery					N	(\searrow				
Retinquis	hed by Sampler: Med by: hed by:	3/4/09	Date Time:	SV	Received By	-	7	-		Relin	quished	By:		Name of the last o		3/41	121	15	2	eceived	X	s.E	lia	d	a
Relinquis	hed by:	741	Date Time	:	Received By	: (Relin	quished	W.		\Rightarrow		Date Tim			R	eceive	BA				
3 Relinquis	bod bu	ļ	Date Time:		3 Received By		<u>.</u>			4	dy Seal	#			Procent	d where	nnlicahi]4		4	On Ice		Cooler	Temp.
5			Law Inte	•	5	•				Gusto	ay oddi				. 1636141			-					-	- 00.01	r morest
-		1			1-																				

C4684: Chain of Custody Page 1 of 2

C4684: Chain of Custody Page 2 of 2

Accutest Laboratories Northern California STANDARD OPERATING PROCEDURE

	Job# C4684
Sample Receiving Checklist	Sample Control Initial JH
&	Sample Control militar 3.1
Review Chain of Custody The Chain of Custody is to be completely a	nd legibly filled out by Client.
Are these regulatory (NPDES) samples? Yes (No circle one	and the state state are
□ le pH requested? Yes (No dircle one □ Was Client informed that hold	time is 15 min? Yes / No circle one
If yes, did Client consent to continue?	
Are sample within hold time? Yes/ No circle one Are sample in dang	ger of exceeding its hold-time within 6-48 hours?
□ Report to info is complete and legible, including;	
□ Type of deliverable needed □ Name □ Address □ phone	re-mail
□ Bill to info is complete and legible, including; □ PO# □ Credit card	neontact naedress notione re-mail
Deciliact ality of Floject Manager Identification in the Property	e e-mail
□-Project name / number □ Special requirements? (res/ No circle of	
Sample IDs / date & time of collection provided? (Ge/ No circle of	ne
He Matrix listed and correct? Yes No circle one	
Analyses listed are those we do or client has authorized a subcontract	Yes/ No circle one
Chain is signed and dated by both client and sample custodian?	(Yee) / No circle one
☐ TAT requested available? Approved by	
Review Coolers:	_{пр} <u>И.9°</u> С
E 11010 COLOR THINPTIME	
elf cooler is outside the ≤6°C; note down below the affected bottles in the	that cooler
Note that ANC does NOT accept evidentiary samples. (We do not lo	ck renigerators)
Shipment Method Acoutust Courses	Man / Bin pirola and
Custody Seals.	Yes / No circle one
Review of Sample Bottles: If you answer no, explain below	On Was / No sirela one
Bample ID / bottle number / Date / Time of bottle labels match the CO	C? (Yes) No circle one
□ Sample bottle intact? (Yes / No circle one	alandia manan containera Vot / Na circle one
□ Is there enough samples for requested analyses? If so, were samples	placed in proper containers? Yes 7 No circle one
□ Proper Preservatives? Check pH on preserved samples except 1664,	020, 0210 and VOAs and list below
□ Are VOAs received without headspace? Size of bubble (not greater to List sample ID and affected container	ren dum in Germeter) Tes / No circle one
all Check	Other Comments/Issues

Lab #	Client Sample ID	pH Check	Other Comments/Issues
Lau #	Olicite Oditipio 12		
	m - 100m		
		1	

Non-Compliance issues and discrepancies on the COC are forwarded to Project Management

\\Anc-srv-file1\\Entech-Data\\Laboratory\\Sample_Control\\Form_Sample Receipt Checklist_Rev0.doc

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: C4684

ERSCCAWC ERS Corporation **Account:**

Project: T0600100196-1700 Jefferson, Oakland, CA

Sample VM159-MB	File ID M4853.D	DF 1	Analyzed 03/05/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM159

The QC reported here applies to the following samples: **Method:** SW846 8260B

C4684-1, C4684-2, C4684-3

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4	Benzene Ethylbenzene	ND ND	1.0 1.0	0.30 0.30	ug/l ug/l
1634-04-4 108-88-3	Methyl Tert Butyl Ether Toluene	ND ND	1.0	0.50 0.50	ug/l ug/l
1330-20-7	Xylene (total) TPH-GRO (C6-C10)	ND ND	2.0	0.70 25	ug/l ug/l

CAS No.	Surrogate Recoveries		Limits
	Dibromofluoromethane Toluene-D8	103% 103%	60-130% 60-130%
	4-Bromofluorobenzene	93%	60-130%

Page 1 of 1

Method Blank Summary Job Number: C4684

ERSCCAWC ERS Corporation Account:

Project: T0600100196-1700 Jefferson, Oakland, CA

Sample VM160-MB	File ID M4882.D	DF 1	Analyzed 03/06/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM160

The QC reported here applies to the following samples:

C4684-4

CAS No.	Compound	Result	RL	MDL	Units Q
	_				-
71-43-2	Benzene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.30	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.50	ug/l
108-88-3	Toluene	ND	1.0	0.50	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.70	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

CAS No.	Surrogate Recoveries	Limits	
1868-53-7	Dibromofluoromethane	105%	60-130%
2037-26-5	Toluene-D8	102%	60-130%
460-00-4	4-Bromofluorobenzene	91%	60-130%

Page 1 of 1

Method: SW846 8260B

Method: SW846 8260B

Blank Spike Summary Job Number: C4684

Account: **ERSCCAWC ERS Corporation**

T0600100196-1700 Jefferson, Oakland, CA **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM159-BS	M4849.D	1	03/05/09	XB	n/a	n/a	VM159

The QC reported here applies to the following samples:

C4684-1, C4684-2, C4684-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	20	20.3	102	60-130
100-41-4	Ethylbenzene	20	20.2	101	60-130
1634-04-4	Methyl Tert Butyl Ether	20	20.8	104	60-130
108-88-3	Toluene	20	18.5	93	60-130
1330-20-7	Xylene (total)	60	61.0	102	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane Toluene-D8	105% 96%	60-130% 60-130%
460-00-4	4-Bromofluorobenzene	96%	60-130%

8

Blank Spike Summary Job Number: C4684

Account: ERSCCAWC ERS Corporation

Project: T0600100196-1700 Jefferson, Oakland, CA

Sample VM159-BS	File ID M4852.D	DF 1	Analyzed 03/05/09	By XB	Prep Date n/a	Prep Batch n/a	Analytical Batch VM159

The QC reported here applies to the following samples: Method: SW846 8260B

C4684-1, C4684-2, C4684-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	126	101	60-130
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7	Dibromofluoromethane	102%	60-1	.30%	
2037-26-5	Toluene-D8	102%	60-1	30%	
460-00-4	4-Bromofluorobenzene	95%	60-1	30%	

Blank Spike Summary Job Number: C4684

Account: **ERSCCAWC ERS Corporation**

T0600100196-1700 Jefferson, Oakland, CA **Project:**

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
VM160-BS	M4878.D	1	03/06/09	XB	n/a	n/a	VM160

The QC reported here applies to the following samples: **Method:** SW846 8260B

C4684-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	20	19.7	99	60-130
100-41-4	Ethylbenzene	20	20.0	100	60-130
1634-04-4	Methyl Tert Butyl Ether	20	20.6	103	60-130
108-88-3	Toluene	20	18.5	93	60-130
1330-20-7	Xylene (total)	60	60.6	101	60-130

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane	103%	60-130%
2037-26-5	Toluene-D8	99%	60-130%
460-00-4	4-Bromofluorobenzene	99%	60-130%

Method: SW846 8260B

Blank Spike Summary Job Number: C4684

1868-53-7 Dibromofluoromethane

Toluene-D8

4-Bromofluorobenzene

Account: **ERSCCAWC ERS Corporation**

Project: T0600100196-1700 Jefferson, Oakland, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VM160-BS	M4881.D	1	03/06/09	XB	n/a	n/a	VM160

60-130%

60-130%

60-130%

The QC reported here applies to the following samples:

C4684-4

2037-26-5

460-00-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
	TPH-GRO (C6-C10)	125	123	98	60-130
CAS No.	Surrogate Recoveries	BSP	Lim	iits	

105%

104%

96%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C4684

Account: ERSCCAWC ERS Corporation

Project: T0600100196-1700 Jefferson, Oakland, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C4667-4MS	M4869.D	1	03/05/09	XB	n/a	n/a	VM159
C4667-4MSD	M4870.D	1	03/05/09	XB	n/a	n/a	VM159
C4667-4 a	M4860.D	1	03/05/09	XB	n/a	n/a	VM159

The QC reported here applies to the following samples:

C4684-1, C4684-2, C4684-3

CAS No.	Compound	C4667-4 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	21.0	105	20.0	100	5	60-130/25
100-41-4	Ethylbenzene	ND	20	19.3	97	19.8	99	3	60-130/25
1634-04-4	Methyl Tert Butyl Ether	ND	20	18.9	95	17.4	87	8	60-130/25
108-88-3	Toluene	ND	20	18.7	94	18.7	94	0	60-130/25
1330-20-7	Xylene (total)	ND	60	57.9	97	58.1	97	0	60-130/25

CAS No.	Surrogate Recoveries	MS	MSD	C4667-4	Limits	
	Dibromofluoromethane	104%	100%	104%	60-130%	
2037-26-5	Toluene-D8	98%	100%	103%	60-130%	
460-00-4	4-Bromofluorobenzene	96%	96%	89%	60-130%	

(a) Sample was not preserved to a pH < 2.

Page 1 of 1

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C4684

Account: ERSCCAWC ERS Corporation

Project: T0600100196-1700 Jefferson, Oakland, CA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C4706-1MS	M4898.D	1	03/06/09	XB	n/a	n/a	VM160
C4706-1MSD	M4899.D	1	03/06/09	XB	n/a	n/a	VM160
C4706-1	M4883.D	1	03/06/09	XB	n/a	n/a	VM160

The QC reported here applies to the following samples:

C4684-4

CAS No.	Compound	C4706-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	20	20.8	104	19.8	99	5	60-130/25
100-41-4	Ethylbenzene	ND	20	20.3	102	20.0	100	1	60-130/25
1634-04-4	Methyl Tert Butyl Ether	ND	20	18.2	91	18.1	91	1	60-130/25
108-88-3	Toluene	ND	20	19.1	96	18.6	93	3	60-130/25
1330-20-7	Xylene (total)	ND	60	60.6	101	59.3	99	2	60-130/25

CAS No.	Surrogate Recoveries	MS	MSD	C4706-1	Limits	
1868-53-7	Dibromofluoromethane	103%	99%	106%	60-130%	
2037-26-5	Toluene-D8	98%	99%	105%	60-130%	
460-00-4	4-Bromofluorobenzene	98%	95%	93%	60-130%	

Page 1 of 1

Method: SW846 8260B

