

Alameda County

JAN 0 7 2004

December 12, 2003

Environmental Health

Project 53087 Task 007

Mr. Jeff Christoff Blue Print Service Company 149 Second Street San Francisco, California 94105

Quarterly Groundwater Remediation and Monitoring Report July through September, 2003 BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dear Mr. Christoff:

MACTEC Engineering and Consulting, Inc., presents this quarterly status letter-report on the groundwater monitoring and remedial activities at the BPS Reprographic Services (BPS) facility located at 1700 Jefferson Street in Oakland, California (Plate 1). This letter-report covers the period from July 1 through September 1, 2003, and was prepared to satisfy the quarterly groundwater monitoring requirements of the Alameda County Department of Health Care Services (ACHCS).

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987 and a preliminary soil and groundwater investigation indicated that a release of fuel into the subsurface had occurred. Three groundwater-monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the groundwater and to determine the direction of groundwater flow. Free phase hydrocarbon (FPH) was found in MW-1. Groundwater level measurements indicated that the local groundwater gradient was in a north to northwest direction.

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present BPS facility and, in January 1988, two additional wells, MW-1A and MW-4, were installed as groundwater extraction wells. MACTEC also installed one offsite monitoring well, MW-5, in August 1988 and a second offsite well, MW-6, in April 1996. The monitoring well locations are shown on Plate 1.

In 1992, a groundwater extraction system was constructed at the site to remove FPH from the groundwater surface. Groundwater was extracted from MW-1A and MW-4 and passed through an oil-water separator that removed the FPH. The water was then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrients were supplied to the water within the bioreactor to facilitate microbial growth. The treated water from the bioreactor was pumped in batches of approximately 500 gallons through three granular activated carbon vessels before discharge under a wastewater discharge permit from the East Bay Utility District to the sanitary sewer. The treatment system processed approximately 1,385,490 gallons of groundwater and an estimated 5,062 pounds of FPH were recovered.

By 1999, the oil-water separator was no longer recovering FPH and FPH was no longer present in any of the groundwater monitoring wells. Dissolved hydrocarbon concentrations were decreasing and MACTEC requested approval from The County to terminate groundwater extraction and to modify the remediation technique to insitu-bioremediation using an oxygen-releasing compound (ORCTM). ORCTM is manufactured and distributed by Regenesis, Inc.; its purpose is to increase the concentration of dissolved oxygen (DO) in the groundwater and to augment the ability of naturally occurring microbial organisms in the groundwater to biodegrade the dissolved petroleum hydrocarbons. The County approved this plan in a letter dated September 28, 1999, following the submittal of an ORCTM calculation sheet and a Groundwater Monitoring Plan, dated September 23, 1999.

MACTEC implemented the *in situ* remediation technique by placing ORC[™] in treatment wells: MW-1A, MW-3, MW-4, and MW-5 on September 29, 1999. The ORC[™] is contained in fabric "socks" which release oxygen over time until the compound's oxygen releasing potential is depleted. MACTEC installed five socks in each treatment well at the approximate depth of the well's screened interval. As described in the Groundwater Monitoring Plan, the ORC[™] socks are removed from the treatment wells two weeks before each quarterly groundwater monitoring event, then replaced after sampling is complete.

The Groundwater Monitoring Plan outlined procedures for groundwater sampling using a non-purge method approved by the Regional Water Quality Control Board in a letter dated January 31, 1997. The first quarter that the new Groundwater Monitoring Plan was implemented, sampling included duplicate sampling using both the purge and non-purge methods (see MACTEC's quarterly report, dated October 25, 1999).

During the Fourth Quarter 2002 groundwater monitoring event MACTEC removed the ORC™ socks from the treatment wells per a request from the ACHCS in a September 27, 2002 letter to BPS. The ACHCS suggested that contaminant concentrations may not be accurate due to the presence of the ORC™ socks and requested the socks be removed and DO allowed to return to back ground levels. Additionally, the ACHCS suggested in the same letter that the ORC™ socks appear to be ineffective as contaminant concentrations continue to be high in MW-1 and MW-5.

During the ORC™ socks removal effort from MW-5 it was discovered that the socks were stuck. ORC™ socks can become stuck in monitoring wells when the well casing has become disturbed or bent. This can typically be caused by even minor seismic occurrences in the area of the well. The ORC™ socks remained stuck in MW-5 despite three removal attempts including attempts incorporating an industrial winch and tripod. An ORC™ sock removal effort was performed on September 17, 2003 utilizing a drill rig. The socks were successfully removed with no damage to the monitoring well.

THIRD QUARTER 2003 GROUNDWATER SAMPLING AND ANALYSIS

On September 24, 2003, MACTEC conducted the quarterly groundwater monitoring of MW-1, MW-3, MW-5 and MW-6 (Plate 1) using the purge and sample method as described in the September 27, 2002 ACHCS letter. Groundwater parameters collected during sampling are shown on Table 1. Prior to sampling, MACTEC measured the depth to groundwater from the top of casing (TOC) of wells MW-1, MW-3, MW-5 and MW-6 using an electronic water level indicator. These measurements are displayed on Plate 2 and tabulated in Table 2.

Monitoring well samples were collected according to methods described in the September 27, 2002 ACHCS letter and typical well purging protocol as described in *Ground-Water Sampling Preparations* and Purging Methods at Water-Supply Wells and Monitoring Wells dated September 1999 by Jacob Gibs and F.D. Wilde. This document was provided as a reference for groundwater monitoring procedures by the ACHCS case worker.

Immediately after sample collection, MACTEC labeled and stored the samples in a cooler with ice. The groundwater samples were kept chilled until submitted to Sequoia Analytical Laboratory (Sequoia), a California state-certified laboratory (CA ELAP Certificate #2374), under chain-of-custody protocol for the following analyses:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015 modified.
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) in accordance with EPA Method 8020.
- Methyl tertiary butyl ether (MTBE) in accordance with EPA Method 8020 with confirmation of detections by EPA Method 8260.
- Ethylene Dichloride (EDC) by EPA Method 8260.

The analytical results for TPH-g, BTEX and MTBE are displayed on Plates 3 and 4. Historical groundwater elevations are shown graphically on Plate 5. Historical analytical results for TPH-g, BTEX and MTBE are shown on Table 3. Analytical results for groundwater samples collected pre-purge are presented on Table 4a. Analytical results for groundwater samples collected post-purge are presented on

Table 4b. Analytical results for samples collected pre and post purge during the First Quarter 2003 groundwater monitoring event are displayed on Table 4c. Historical analytical results for Tert-amyl methyl ether (TAME), Tert-butyl alcohol (TBA), Di-isopropyl ether (DIPE), Ethylene Dibromide (EDB), Ethyl tert Butyl Ether (ETBE) and EDC are displayed on Table 5. The certified analytical reports (CARs) are presented in the Appendix A.

DISCUSSION

Groundwater Monitoring Data

As shown in Table 2 and on Plate 5, the groundwater surface elevation decreased an average of 0.36 feet across the site as compared to last quarter's measurements. Using the groundwater elevations from MW-1, MW-3, MW-5 and MW-6 as measured on September 24, 2003, groundwater contours were created and are shown on Plate 2. Based on the groundwater elevations, the groundwater gradient is approximately 0.005 ft/ft. The direction of flow appears to be West to Northwest.

Table 3 displays a summary of historical groundwater sample results through September 29, 1999, when the typical purge and sample protocol was terminated. Plate 3 presents the sample results from this quarter's sampling event. Table 4a and Plate 4 display historical groundwater sample results since instituting *in situ* bioremediation using ORC™ socks and a non-purge sampling protocol. As of December 2002 *in situ* bioremediation using ORC™ socks was suspended. As of July 1, 2003 the data displayed on Table 4a and Plate 4 were collected by the purge and sample protocol described in the previous section.

As shown on Plate 3 and Table 4a, concentrations of TPH-g, BTEX and MTBE remained within the range of historical values (including historical concentrations monitored prior to September 1999) for all the wells sampled. TPH-g and BTEX concentrations in MW-5 are within the historical range but appear to have rebounded to values typically seen before the year 2000. This may be due to well disturbance during recent removal of the stuck ORC socks. TPH-g and BTEX concentrations in MW-1 continue (since Second Quarter 2003) to be higher than typical concentrations monitored since initiating in situ remediation using ORC™ in September 1999. TPH-g ranged from non-detectable with a detection limit of 0.05 mg/l (MW-6) to 59 mg/l (MW-1). Benzene ranged from non-detectable with a detection limit of 0.5 ug/l (MW-6) to 12,000 ug/l (MW-5). Toluene ranged from non-detectable with a detection limit of 0.05 ug/l (MW-6) to 9,400 ug/l (MW-1). Ethylbenzene ranged from non-detectable with a detection limit of 0.5 ug/l (MW-6) to 1,500 ug/l (MW-5). Total Xylenes ranged from non-detectable with a detection limit of 2.5 ug/l (MW-6) to 4,800 ug/l (MW-1). MTBE was not detected in samples from any of the groundwater monitoring wells this quarter with detection limits ranging from 2.5 ug/l (MW-6) to 1200 ug/L (MW-1 and MW-5). A laboratory provided trip blank consisting of organic free water was transported to and from the Site with the samples described above. The trip blank was analyzed for TPHg, BTEX and MTBE with the groundwater samples using EPA Method 8015M/8020M. The CARS

1

reported no analytes of concern were present in the trip blank equal to or above their respective detection limits.

Historical analytical results for TAME, TBA, DIPE, EDB, ETBE and EDC are displayed on Table 5. As described in the ACHCS September 27, 2002 letter to BPS these analyses were performed per ACHCS request during the Fourth Quarter 2002 monitoring event. None of these analytes were detected in any of the groundwater samples collected from MW-1, MW-3, MW-5 and MW-6 except for EDC. EDC was detected in the samples collected from MW-1 at a concentration of 370 ug/L and MW-5 at a concentration of 220 ug/L. As a result of these detections of EDC an analysis was performed for EDC in groundwater samples from MW-1 and MW-5 during the Third Quarter 2003 event. EDC was detected in the sample from MW-1 at the same concentration as the detection limit of 500 ug/L. EDC was detected in the sample from MW-5 at a concentration of 610 ug/L.

As described above, the ORC[™] socks were removed from all treatment wells during the Fourth Quarter 2002 monitoring event per ACHCS request (except MW-5, ORC[™] socks removed from this well September 17, 2003). The ORC[™] socks were removed to allow the DO concentrations in each well to return to background levels. Prior to sampling during the Third Quarter 2003 event, DO was monitored in each well. The DO concentrations monitored in wells MW-1 and MW-3 remain significantly greater than typical DO concentrations monitored in these wells (Table 1) with or with out ORC[™] socks. The DO concentrations in wells MW-5 and MW-6 appear to have returned to background levels. DO will continue to be monitored in these wells.

The ACHCS letter of September 27, 2002 suggests that the presence of ORC™ socks may effect contaminant concentrations in wells containing them. The letter asks if contaminant concentrations will rebound after ORC™ socks have been removed from the wells longer than two weeks. As described above, ORC™ socks were removed from all wells containing them during the Fourth Quarter Monitoring Event in 2002 and not replaced. Groundwater has been sampled post purge during the subsequent First, Second and Third Quarter Monitoring Events in 2003. There continues to be a slight increasing trend of BTEX concentrations in MW-3 over the last four events beginning in June of 2002 compared to analytical results from two years previous. However, as MW-3 was being used as a treatment well up until the 4th Quarter 2002 event, the presence of ORC™ socks appears unrelated to this trend.

TPH-g and BTEX concentrations in MW-1 were significantly higher the last two monitoring events compared to data collected during the previous three years. Well MW-5 was monitored for the first time during the Third Quarter 2003 monitoring since treatment using the ORC™ socks was terminated (as described above) in December 2002. TPH-g and BTEX concentrations monitored this quarter in well MW-5 are higher than concentrations typically monitored during the last two to three years. Comparison of pre and post ORC treatment TPH-g and BTEX concentrations in wells MW-1 and MW-5 suggest that TPH-g and BTEX concentrations have begun to increase in these wells since ORC treatment has been

terminated. This suggests that in-situ ORCTM treatment may have been associated with reduction of contaminant impact in these wells. Wells MW-1 and MW-5 will continue to be monitored during the upcoming quarterly events and TPH-g and BTEX concentrations evaluated for increased values. The impact ORCTM socks had on contaminant concentrations in the treatment wells will continue to be evaluated as the data becomes available. An evaluation using data available currently will be included in the workplan referenced below.

RECOMMENDATIONS

MACTEC recommends continued quarterly monitoring utilizing the procedures outlined in the ACHCS September 27, 2002 letter. Based upon the results of the pre and post purge groundwater data presented in the Second Quarter 2003 Groundwater Monitoring Report, MACTEC recommends continuing prepurge groundwater monitoring with ACHCS approval.

The workplan requested in the ACHCS September 27, 2002 letter is currently being created and will contain responses to the remaining comments in the ACHCS letter that have not been addressed by this or previous quarterly reports.

MACTEC recommends that Blue Print Services send a copy of this report to the following address:

Mr. Don Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577

While under contract to BPS, MACTEC will continue to provide quarterly groundwater monitoring and reporting as required by The County.

If you have any questions, please contact the undersigned at (415) 278-2118.

Sincerely,

MACTEC ENGINEERING AND CONSULTING, INC.

David S. Nanstad Project Engineer

Steven Hickey Senior Engineer

DSN SFOmain:/Cityblue/3q03

4 copies submitted

Attachments:

Table I – Groundwater Parameters

Table 2 – Groundwater Elevation Data

Table 3 - Historical Groundwater Monitoring Analytical Results - Using Purge Method

Table 4a - Groundwater Monitoring Analytical Results - Non-Purge Method

Table 4b - Groundwater Monitoring Analytical Results - Comparison of Non-Purge and

Purge Methods

Table 4c - Groundwater Monitoring Analytical Results 1Q03 - Comparison of Non-

Purge and Purge Methods

Table 5 – Groundwater Monitoring Analytical Results – EPA Method 8260

Plate 1 – Site Map

Plate 2 – Groundwater Contours, Third Quarter 2003

Plate 3 – TPH-g, BTEX and MTBE Concentrations in Groundwater, Third Quarter 2003

Plate 4 – BTEX and DO Results

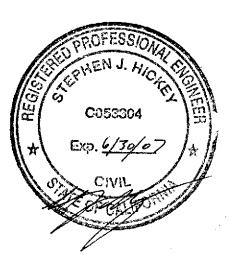


Plate 5 – Groundwater Elevation Data

Appendix A - Laboratory Reports

Appendix B – Groundwater Sampling Forms

Table B1. Sample Location/Sample Description Cross-Reference

Table 1. Groundwater Parameters BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

	MW-1	MW-3	MW-5	MW-6
9/29/1999	2.90	1.70	0.40	1.80
11/5/1999	4.00	10.30	4.00	2.80
11/22/1999	1.80	2.40	2.00	3.20
1/28/2000	2.90	8.40	3.60	2.20
2/11/2000	2.50	2.30	1.80	3.50
5/12/2000	2.00	7.40	2.40	1.70
5/30/2000	1.90	2.60	1.80	3.20
9/1/2000	2.90	3.40	2.30	2.70
9/15/2000	2.00	1.80	2.20	3.80
11/9/2000	NA	5.00	5.30	NA COO
11/17/2000	3.10	4.20	3.40	6.00
3/15/2001 4/2/2001	2.00	7.00	1.40	2.10
	1.00	0.78	2.00	0.99
6/1/2001	0.22	0.24	6.62	0.32
5/28/2001	0.32	0.56	0.53	0.71
R/16/2001	0.48 0.33	6.52	1.61	0.78
8/30/2001		0.40	0.23	0.46
12/14/2001 12/26/2001	0.03	3.76	2.22	0.16
4/10/2002	0.16 0.55	0.28	0.19 0.20	0.21
4/23/2002 4/23/2002	0.30	0.63	0.20	0.37 0.45
4/23/2002 6/3/2002	0.38	0,35 5.16	4.32	0.45
6/14/2002 6/14/2002	0.29	0.34	4.32 0.38	0.31
8/5/2002 8/5/2002	0.33	0.28	0.40	0.39
8/14/2002	0.34	0.28	0.42	0.63
12/6/2002	1.00	0.90	NA	0.62
12/27/2002	0.94	0.96	NA	1.24
4/1/2003 ^b				
	0.30	1.06	*NA	NA ¹
7/1/2003 ^{ah}	7.65	7.70	NA	7.2
9/24/2003	6.25	7.16	0.55	0.9
REDOX (mvolts)				
5/30/2000	-322	197	-128	203
9/15/2000	-269	3	-89	206
11/17/2000	64	178	296	230
4/2/2001	-194	26	-36	102
6/28/2001	-310	-283	-360	107
8/30/2001	NA	NA	NA	NA
12/26/2001	12	11	11	11
4/23/2002	3	62	-299	158
6/14/2002	0	245	-215	254
8/20/2002	-294	-315	-238	228
12/27/2002	-315	-357	NA	-12
#/1/2003 ^b	-82	-75	NA	172
7/1/2003 ^b				
	212	230	NA 192	227
9/24/2003	-166	-300	-183	50
Temperature (deg F)				
9/29/1999	67.0	72.6	67.7	73.8
11/22/1999	66,4	62.9	65.0	69.8
2/11/2000	61.3	63.2	62.0	68.5
5/30/2000	77.7	74.8	76.3	76.2
	64.4	64.3	64.7	67.0
9/15/2000				
	54.5	58.1	68.1	65.9
11/17/2000	54.5 63,5	58.1 64.9	68.1 66.2	65.9 66.4
11/17/2000 4/2/2001				
11/17/2000 4/2/2001 6/28/2001	63,5	64.9	66.2	66.4
11/17/2000 4/2/2001 6/28/2001 8/30/2001	63,5 73.0	64.9 71.2	66.2 74.7	66.4 74.3
9/15/2000 11/17/2000 4/2/2001 6/28/2001 8/30/2001 12/26/2001 4/23/2002	63,5 73.0 74.8	64.9 71.2 77.6	66,2 74,7 78.3	66.4 74.3 78.7
11/17/2000 4/2/2001 6/28/2001 8/30/2001 12/26/2001 4/23/2002	63,5 73.0 74.8 65.7	64.9 71.2 77.6 65.8	66,2 74.7 78.3 65.8	66.4 74.3 78.7 65.1
11/17/2000 4/2/2001 6/28/2001 8/30/2001 12/26/2001 4/23/2002 6/14/2002	63,5 73.0 74.8 65.7 64.4	64.9 71.2 77.6 65.8 69.8	66.2 74.7 78.3 65.8 37.1	66.4 74.3 78.7 65.1 71.6
11/17/2000 4/2/2001 6/28/2001 8/30/2001 12/26/2001	63.5 73.0 74.8 65.7 64.4 66.7	64.9 71.2 77.6 65.8 69.8 67.5	66.2 74.7 78.3 65.8 37.1 66.7	66.4 74.3 78.7 65.1 71.6 68.0
11/17/2000 4/2/2001 6/28/2001 8/30/2001 12/26/2001 4/23/2002 6/14/2002 8/20/2002	63.5 73.0 74.8 65.7 64.4 66.7 64.6 41.7	64.9 71.2 77.6 65.8 69.8 67.5 67.6 42.5	66.2 74.7 78.3 65.8 37.1 66.7 66.2 NA	66.4 74.3 78.7 65.1 71.6 68.0 68.0 41.7
11/17/2000 4/2/2001 6/28/2001 8/30/2001 12/26/2001 4/23/2002 6/14/2002 8/20/2002	63.5 73.0 74.8 65.7 64.4 66.7 64.6	64.9 71.2 77.6 65.8 69.8 67.5 67.6	66.2 74.7 78.3 65.8 37.1 66.7 66.2	66.4 74.3 78.7 65.1 71.6 68.0 68.0

Table 1. Groundwater Parameters BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

рН	MW-1	MW-3	MW-5	MW-6
9/29/1999	8.39	8.53	8.43	8.44
11/22/1999	6.86	8.42	6.84	6.79
2/11/2000	6.80	6.94	6.83	6.72
5/30/2000	7.02	7,35	7.54	7.56
9/15/2000	7.06	7.54	6.76	6.62
11/17/2000	7.37	7.69	7.12	7.34
4/2/2001	6.98	6.61	7.07	6.96
6/28/2001	6.90	6.74	6.78	6.83
8/30/2001	7.85	7.91	7.9	8.41
12/26/2001	6.23	6.91	7.11	6.72
4/23/2002	6.90	6.95	6.94	6,86
6/14/2002	7.05	7.24	7.08	6.89
8/20/2002	NA	6.89	NA	6.91
12/27/2002	6.33	6.41	NA.	6,49
4/1/2003 ^b	6.90	7.08	NA	6.70
7/1/2003 ^b	7.42	7.59	NA	7.68
9/24/2003	7.12	7.34	7.25	7.17
Specific Conductance (µS/cm)				
9/29/1999	976	880	1,577	966
11/22/1999	1,004	1,500	1,352	1,038
2/11/2000	992	1,327	1,275	1,149
5/30/2000	845	1,020	758	924
9/15/2000	800	917	989	1,009
11/17/2000	785	970	742	886
4/2/2001	725	365	839	821
6/28/2001	1080	704	876	1021
8/30/2001	924	1015	975	931
12/26/2001	848	496	333	891
4/23/2002	922	601	848	977
6/14/2002	932	767	810	961
8/20/2002	1015	809	891	985
12/27/2002	956	791	NA	903
4/1/2003 ^b	1128	800	NA	1021
7/1/2003 ⁶	1020	690	NA	970
9/24/2003	951	697	987	890
Note:				

Baseline dissolved oxygen measurement taken on 09/29/99, prior to initial installation of oxygen releasing compound

mg/l = milligrams per liter

mvolts = millivolts

deg F = degrees Fahrenheit

μS/cm = micro-ohms per centimeter

NA = Not Available

1 = indicates data not available due to equipment malfunction

a = indicates dissolved oxygen and temperature readings collected on this date above typical range and should be considered suspect

b = indicates this data collected post purge

Table 2. Groundwater Elevation Data BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

	MV	V-1	MV	V-3	l MV	V-5	 MV	V-6	Average
	TOC Elev.	32.36	TOC Elev.	31.77	TOC Elev.	30.56	TOC Elev.	31.26	Change
Date	Water	Since							
Sampled	Level	Elevation	Level	Elevation	Level	Elevation	Level	Elevation	Preceding
3/6/1996	MN	P**	24.79	6.98	23.53	7.03	NA		Quarter
6/11/1996	FP		25.60	6.17	23.78	6.78	25,16	6.10	-0.53
9/19/1996	FP		26.09	5.68	24.48	6.08	25.76	5.50	-0.60
12/23/1996	FP		FP		24.83	5.73	25.88	5.38	-0.23
3/27/1997	FP	••	FP		23.82	6.74	24.78	6.48	1.06
6/4/1997	26.41	5.95	25.11	6.66	23.92	6.64	24.60	6.66	0.04
9/26/1997	26.80	5.56	25.41	6.36	24.29	6.27	24.80	6.46	-0.32
12/22/1997	26.00	6.36	24.91	6.86	24.02	6.54	24.71	6.55	0.42
3/31/1998	26.06	6.30	24.05	7.72	22.78	7.78	23.75	7.51	0.75
6/18/1998	25.60	6.76	23.71	8.06	22.51	8.05	23.22	8.04	0.40
8/28/1998	25,45	6.91	23.70	8.07	22.74	7.82	22.23	9.03	0.23
12/2/1998	24.92	7.44	23.60	8.17	23.16	7.40	23.72	7.54	-0.32
3/10/1999	24.90	7.46	22.65	9.12	22.82	7.74	23.54	7.72	0.37
6/30/1999	25.53	6.83	23.07	8.70	22.41	8.15	23.04	8.22	-0.04
9/29/1999	24,23	8.13	23.03	8.74	22.81	7.75	23.42	7.84	0.14
11/22/1999	24.33	8.03	23.68	8.09	22.88	7.68	23.64	7.62	-0.26
2/11/2000	24.38	7.98	23.74	8.03	22.74	7.82	23.67	7.59	0.00
5/30/2000	23.57	8.79	22.97	8.80	21.73	8.83	22.82	8.44	0.86
9/15/2000	23.85	8.51	23.12	8.65	22.14	8.42	23.10	8.16	-0.28
11/16/2000	24.14	8.22	23.40	8.37	22.39	8.17	23.41	7.85	-0.28
4/2/2001	23.40	8.96	23.40	8.37	22.07	8.49	23.33	7.93	0.29
6/28/2001	23.58	8.78	23.17	8.60	22.15	8.41	23.15	8.11	0.04
8/30/2001	24.00	8.36	23.35	8.42	22.35	8.21	23.35	7.91	-0.25
12/26/2001	24.18	8.18	23.54	8.23	22.49	8.07	23.27	7.99	-0.11
4/23/2002	NA	NA	22.89	8.88	21.07	9.49	22.89	8.37	0.82
6/14/2002	23.41	8.95	22,85	8.92	21.80	8.76	22.81	8.45	-0.20
8/20/2002	23.85	8.51	23.11	8.66	22.14	8.42	23.15	8.11	-0.31
12/27/2002	24.10	8.26	23.34	8.43	*NA	*NA	23.41	7.85	-0.24
4/1/2003	23.75	8.61	22,90	8.87	*NA	*NA	23.16	8.10	0.35
7/1/2003	23.50	8.86	22.80	8.97	*NA	*NA	22.75	8.51	0.25
9/24/2003	23.82	8.54	23.15	8.62	22.21	8.35	23.16	8.10	-0.36

TOC Elev. = top of casing elevation

NM = not monitored

FP = free product
-- = no data collected

NA = not available

* This data not available due to ORC socks stuck in well

Table 3. Historical Groundwater Monitoring Analytical Results - Using Purge Method **BPS** Reprographic Services Facility 1700 Jefferson Street Oakland, California

							Dul e Sample	d												Date Sample	d					
TPHIS (mg/L)	8/1/1991 3	/30/1992	3/30/1993	1/13/1994	4/13/1994	6/29/1994	12/8/1994	4/3/1995	6/27/1995	9/19/1995	12/13/1995	3/6/1996	6/11/1996	9/19/1996	12/23/1996	3/27/1997	6/4/1997	9/26/1997	12/23/1997	3/31/1998	6/18/1998	8/28/1998	12/2/1998	3/10/1999	6/30/1999	9/29/1999
MW-1	F) ³	FP	FP	FP	FF	PP	FP	NA	NA	NA	NA	NA	FP	FP	FP	F₽	68	59	41	44	32	26	26	26	18	2
MW-LA	350	FP	FP	FP	170	95	190	67	53	52	62	200	L4D	100	FP	66	54	73	66	51	50	LS	41	10	13	NA
MW-3	74	FP	FP	FP	FP	39	4,600	51	20	6.2	19	,	16	5	FP	PP	85	47	32	32	16	17	3.2	9.6	7.9	5.0
MW-4	86	FP	FP	FP	58	16	92	35	13	14	11	110	260	95	FP	37	24	41	48	NA	25	48	10	11	8.8	NA
MW-5	120	51	74	80	63	64	59	51	41	50	4.5	51	48	48	45	44	35	36	39	48	17	16	25	23	7.7	11
MW-6	••	••	**	••								**	MD(0.05)	ND(0.05)	HD(0.05)	ND(0.05)	ND(0.05)	ND(0.03)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	MD(0.05)	ND(0.05)	ND(0.05
Benzene (µg/L)																										
MW-1	FP	FP	FP	FP	FP	FP	PP	NA	NA	NA	NA	NA	FP	FP	FP	FP	2,200	6,000	6,800	8,300	1,100	8,600	9,200	8,200	7,000	9,20
MW-IA	17,000	FP	FP	FP	17,000	16,000	13,000	11,000	11,000	8,900	9.900	14,000	18,000	16,000	FP	12,000	11,000	10,000	10,000	9,100	11,000	1,100	8,500	2,300	6,400	NA
MW-3	1,600	FP	FP	PP	FP	3,200	1,500	1,100	270	70	220	120	L70	45	F₽	FF	8,500	610	640	690	LBD	84	39	B6	31	120
MW-4	L,500	FP	FP	FP	1,500	1,300	1,700	1,200	1,300	2,200	630	2,600	6,500	9,900	FP	2,600	2,600	2,900	6,000	NA	2,000	9,700	1.700	2,300	1,300	NA
MW-5		13,000	16,000	19,000	14,000	29,000	13,000	15,000	12,000	1,600	13,000	15,000	12,000	12,000	12,000	11,000	8,900	7,900	13,000	10,000	9,500	5,400	8,400	14,000	5,200	9,600
MW-6		••	**	•-		••	••	••					ND(4.3)	ND(0.5)	ND(0.5)	ND(0.5)	MD(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30
Toluene (µg/L)							-																			
MW-1	FP	FP	FP	₽ P	FP	FP	₽₽	ŊĄ	NA	NA	NA	NA	FP	FP	FP	14,000		3,000	3,000	3,700	3,800	2,300	4,300	3,900	5,800	10,000
MW-1A	31,000	FP	FP	FP	31,000	21,000	21,000	13,000	9,900	9,200	(1,000	22,000	28,000	22,000	FP	15,000		16,000	16,000	11,000	15,000	830	11,000	1,900	7,800	NA
E-WM	4,600	FP	FP	FP	FP	2,900	4,200	2,300	550	140	480	170	270	30	FP	FP.	13.000	6,000	5,300	3,800	1,500	1,100	B3	540	330	340
MW-4	6,200	FP	FP	FP	2,500	790	4,100	3,400	1,600	2,100	470	3,600	19,000	19,000	FP	6,900	3,200	5,000	11,000	NA	460	11.000	R10	2,100	3,000	NA
MW-5 MW-6	14,000	5,900	5,000	8,200	3,500	5,400	3,800	2,200	2,100	2,700	2,100	2,600	2,900	4,500	2,200	1.100	560	270	500	400	310	160	120	300	270	710
nw-a Bibyltenzene (pg/L)	-			-	**	**	•-			••	••	-	MD(0.5)	MD(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.30)	NO(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
	54																									
MW-1 MW-1A	FP	FP	FP	FP.	44	F₽	FP	ŊA	NA	NA	NA	NA	FP	PP	FΡ	FP		1,600	1,400	1,100	550	730	820	870	950	1,200
E-WM	3,000 670	FP FP	FP	FP FP	2,100 FP	1,500	1,400	910	500 190	710	790	2,700	2,800 68	2,100	FP	1,400	1,000 2,400	1,400	1,400	1,100	870	31	720	1,600	660	NA
MW-4	1.000	PP	FP FP	FP FP	520	580 51	6,000 310	580 280	77	68 110	140	49 780	3,700	2.000	FP FP	FP 540	2,400 140	930 350	300 580	870 NA	490 ND(15)	430	25	250	200	230 NA
MW-3	1,900	1,400	1,800	1,400	1,500	Z,800	1,800	2,800	1,400	2,000	16,000	2,000	2,000	2,300	2,700	1,900	1.500	1,500	1,900	2,000	420	890 1,100	ND(15) 1,500	98 1,800	150 1,100	1.100
MW-6	1,500	2,400	1,000	1,400	2,300	2,000	1,000	2,500	3,400	2,000	10,000	2,000	ND(0.5)	ND(0.5)	NTD(0.5)	ND(0.5)		ND(0.5)	0.5	ND(0.5)	ND(0.30)		(0E,0)GN	MD(0:30)		MD(0.30)
Xvienes (µg/L)													1412(0.2)	1422(0.2)	1024(0.2)	Landor 2)	MD(E.S)	1442(0.2)	0.3	110(0.0)	142/(0.30)	140(0.30)	MO(0.30)	MD(0.30)	1413(0.30)	1424 6.216
MW-1	FP	F₽	FP	FP	43	FP	FΡ	ЫA	NA	NA	NA	NA	FΥ	FP	FP	FF	11,000	8,400	6,600	4,300	3,000	2,100	2,800	3,500	2.160	3,300
MW-1A	22,000	FP	FF	FP	14,000	12,000	11.000	9,800	6,300	6,800	5,300	22,000	19,000	L4.000	FP	100	1,200	8,500	12,000	6,800	5,800	3,000	6,700	2,300	2,500 4,100	DA NA
MW-3	4.300	PP	FP	FP	FP	4.300	95,000	4.800	1,700	500	1,700	440	1,500	300	FP.	PP.	16,000	5,900	5,900	5,200	3,700	3,800	360	2,300	1,800	1,300
MW-4	7,300	FP	FP	FP	3,200	3,400	5,400	3,800	1,800	2,100	1,800	10,000	28.000	13,000	77	5,500	3,500	4,800	8,200	NA NA	6,400	5,000	2,300	1,600	2,700	NA NA
MW-3	4,900	2,600	2,700	2,700	2,100	4,500	2,900	4,500	1,600	2,100	1,900	2,400	2,700	4,000	6,500	2,800		1,300	1,700	2,200	850	900	840	1,100	690	1,100
MW-6					-,	-		1,5-1	-11	-,			ND(2)	ND(2)	ND(2)	ND(2)		ND(2)	ND(2)	ND(2)	NEX(0.60)		ND(0.60)			ND(0.60
MTBE (µg/L)														(*)		45(2)	(2)		-12(2)	_,_,	(0.00)	((0.00)	(0.00)	142-(0,00)	
MW-J	NA	NA	ÑΑ	NA	NA	NA	NA	ŅΑ	NA	NA.	NА	NA	NA	NA	FP	FP	ND(300)	MD(500)	300	420	ND(50)	ND(50)	ND(30)	ND(50)	ND(25)	ND(250
MW-1A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.		ND(500)	ND(500)	1,900	300	ND(30)	ND(50)	ND(30)	ND(30)	ND(25)	NA NA
MW-3	NA	NA	NA	NA	NA	NA	NA	NA	MA	NA	NA	NA	NA	NA	FP		MD(500)	ND(100)	ND(300)	350	ND(25)	ND(50)	NE(50)	NTX(25)	ND(25)	10
MW-4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ÑA		NID(300)	ND(500)	270	17A	ND(50)	ND(50)	ND(50)	ND(23)	ND(25)	N/
MW-5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	600	300		ND(300)	MD(1000)	350	ND(10)	ND(50)	ND(30)	ND(30)	ND(25)	ND(100
MW-6			bre .		••			-		••			NA	NA	ND(5)	ND(5)	MD(3)	ND(5)	ND(5)	ND(S)	ND(1.0)	ND(L0)	ND(L0)	ND(1.0)	ND(1.0)	ND(1.0
															.42(2)			-14-1-7		-10(3)	(2.0)	(1.0)	(1.0)	144(1.0)	142(1.0)	.10(1

Tivig = total petroleum hydrocarbona as geachne MTRE = methyl t-bubyl ether (mg/l) milligrims per liter (ng/l) micrograms per liter

FD w Not detected shows the reporting treat in parenthese NA = Not insilyzed FP → Free Froduct - well not complete -- = Well the first cost at data indicated

Table 4a. Groundwater Monitoring Analytical Results – Non-Purge Method Through 1903

BPS Reprographic Services Facility

1700 Jefferson Street

Oakland, California

TPHg (mg/L)		9/29/1999	11/22/1999	2/11/2000	5/30/2000	9/15/2000	11/16/2000	4/2/2001	6/28/2001	8/30/2001	12/26/2001	4/24/2002	6/14/2002	8/20/2002	12/27/2002	⁵ 4/1/2003
	MW-1	14	24	19	19	20	18	19	39	31	34	35	35	26	28	16
	MW-3	4.1	3:1	0.54	0.49	1.5	1.3	0.17	4,9	3.1	0.95	300	4.6	4.9	4	5.9
	MW-5	10	30	23	19	24	1.8	15	3.6	34	1.9	9.4	1.7	3.2	*6.2	NA ⁴
D (71)	MW-6	ND<0.5	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	0.066	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Benzene (µg/L)		4 - 6 -		4100												
	MW-1 MW-3	6,200 180	4,900	4,100 8.3	5,700	4,100 28	3,500	4,700 9	5,200	5,600	5,300 8	4,900	5400	4100	4,500	4500
			6.5		11		20	-	150	42		11	130	330	110	370
	MW-5 MW-6	14,000 ND<0.3	11,000 ND<0.3	12,000 ND<0.3	9,900 ND<0.3	3,800 ND<0.3	470 ND<0.30	7,400 ND<0.30	300 ND<0.50	8,300 ND<0.50	300 3.6	2,300 ND<0.50	110 ND<0.50	320 ND<0.50	*2200 ND<0,5	NA⁴ ND<0.5
Toluene (µg/L)	IVI VV -O	1417~0.5	ND~0.5	MD-0.3	ND~0.3	ND~0.3	MD~0/30	טכ,ט~עויז	MD-0.30	MD~0.30	3.0	NLJ~0.30	ND~0.30	ND~0.30	MD<0'3	NDSU.3
	MW-1	5,900	5,000	4.800	8,400	5,700	4,300	5,200	4,200	5,100	5,200	6,000	6,800	4700	5,000	6000
	MW-3	340	33	20	5.6	14	34	6.2	240	48	5.2	4.8	470	170	280	150
	MW-5	470	3,400	4,500	6,900	3,000	220	3,000	11	3.000	110	130	ND<2.5	8.6	*140	NA ⁴
	MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0,30	ND<0.30	2.9	ND<0.50	3.6	ND<0.50	ND<0,50	ND<0.50	ND<0.05	ND<0.05
Ethylbenzene (µg/L)																
	MW-I	620	730	530	730	540	640	570	660	560	630	740	870	620	660	680
	MW-3	130	27	2.4	0.45	2.6	25	1.4	38	26	1.1	0.72	91	40	57	44
	MW-5	1,100	1,500	1,200	1,200	460	39	1000	16	1,400	55	300	7.2	22	*160	NA4
	MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30	ND<0.50	ND<0.50	ND<0.50	ND<0,50	ND<0.50	ND<0.50	ND<0.5	ND<0.5
Total Xylenes (µg/L)																
	MW-1 MW-3	3,500	3,500	2,800	3,500	2,700	3,200	2,600	3,900	2,500	2,400	3,100	3500	2700	3,000	3100
		580	260	28	17	160	28	8,1	160	210	7	1.4	390	150	260	230
	MW-5 MW-6	600 ND<0.6	2,500 ND<0.6	1,300 ND<0.6	2,600 ND<0.6	1,200	100	2,200	15	2,600	120	270	ND<2.5	19	*250	NA ⁴
MTBE (µg/L) (EPA M			ND<0.6	ND~0.0	ND<0.6	ND<0.6	ND<0.60	ND<0.30	2.7	ND<0.50	8.7	ND<0.50	ND<0.50	ND<0,50	ND<0.5	ND<0.5
(18/19/(18/19/19/19/19/19/19/19/19/19/19/19/19/19/	MW-1	ND<250	3777 < 1.00		ND<5.0 ¹	2072 1.2	2 m + 101.2	40.1	11							······································
			ND<100	6.6		ND<12 1,2	ND<40 ^{1,2}	50 ¹		ND<100 ^{1,2}	ND<120	ND<120	ND<250	ND<120	ND<120	ND<120
	MW-3	14	ND<1.0	31	ND<5.0 ¹	ND<5 1	ND<5 1	77 1	ND<2 1	ND<1.2 1	ND<0.50	ND<0.50 ¹		ND<5 1	19	ND<1.0
	MW-5	ND<100	ND<100	6.6	ND<200	ND<10 1.2	ND<5 1	ND<501	4.4 1	ND<50 ¹	ND<101	ND<50	ND<0.503	ND<0.50 ¹	*ND(25)	NA ⁴
Ethylene Dichloride (µg	MW-6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5 ^{1,3}	17 1	ND<2,5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5
(EPA Method \$260)	gr)			<u>.</u> _												
	MW-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	370	ND<120
	MW-3	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND<12	NA
	MW-5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	220	NA ⁴
	MW-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND<0.5	NA

mg/l = milligrams per liter

μg/l = micrograms per liter

MTBE = methyl t-butyl ether

* = Fourth Quarter 2002 analytical data for MW-5 collected on January 3, 2003

ND = Not detected above the reporting limit following the less than sign

NA = Not Applicable

¹ Result of MTBE confirmation by EPA Method 8260.

² Reporting limits elevated due to matrix interference.

³ Detection limit = 5 ug/L, backup sample analyzed after hold time had a result of ND<5 µg/l.

⁴ Data from April 1, 2003 sampling event not available due to ORC sock obstruction in well (see report for details)

⁵ Table 4b displays post purge sample analytical results

Table 4b. Groundwater Monitoring Analytical Results - Samples Collected Post Purge Beggining 1Q03

EPA Method EPA 8015M/8020M BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

TPHg (mg/L)	•	4/1/2003	7/1/2003	9/25/2003
	MW-1	23	61	59
	MW-3	6.6	12	10
	² MW-5	NA ⁴	NA ⁴	43
	MW-6	ND<0.05	ND<0.05	ND<0.05
Benzene (µg/L)				
	MW-1	5100	7,700	7600
	MW-3	240	200	150
	² MW-5	NA ⁴	NA ⁴	12000
	MW-6	ND<0.5	ND<0.5	ND<0.5
Toluene (µg/L)				
	MW-1	6900	11,000	9400
	MW-3	200	460	300
	² MW-5	NA ⁴	NA ⁴	2800
	MW-6	ND<0.05	ND<0.05	ND<0.05
Ethylbenzene (µg/L)				
	MW-I	840	1200	1000
	MW-3	63	130	120
	² MW-5	NA ⁴	NA ⁴	1500
	MW-6	ND<0.5	ND<0.5	ND<0.5
Xylenes (μg/L)				
	MW-1	4100	6700	4800
	MW-3	220	390	280
	² MW-5	NA ⁴	NA ⁴	3000
	MW-6	ND<0.5	ND<2.5	ND<2.5
MTBE (μg/L) (EPA Method 8020)				
	MW-1	ND<120	ND<250	ND<1200
	MW-3	ND<2.5	ND<51	ND<2.51
	² MW-5	NA ⁴	NA ⁴	ND<1200
	MW-6	ND<2.5	ND<2.5	ND<2.5

mg/l = milligrams per liter

μg/l = micrograms per liter

ND = Not detected above the reporting limit following the less than sign

NA = Not Available

MTBE = methyl t-butyl ether

¹ Result of MTBE confirmation by EPA Method 8260.

² Data not available from April 1 and July 1, 2003 sampling events due to

ORC socks stuck in well

^{*} Detected at same concentration as reporting limit

Table 5. Groundwater Monitoring Analytical Results EPA Method 8260

BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

tert Amyl Methyl Ether (µg/L)	¹ 12/27/2002	4/1/2003	7/1/2003	9/25/2003
MW-1	ND<250	NA	NA	NA
MW-3	ND<25	NA	NA	NA
MW-5	*ND<100	NA	NA	NA
MW -6	ND<1	NA	NA	NA
Ethyl tert Butyl Ether (µg/L)				
MW-1	ND<250	NA	NA.	NA
MW-3	ND<25	NA	NA	NA
MW-5	*ND<100	NA	NA	NA
MW -6	ND<1	NA	NA	NA
Di-isopropyl Ether (μg/L)				
	ND<250	NA	NA	NA
MW-3	ND<25	NA	NA	NA
MW-5	*ND<100	NA	NA	NA
MW-6	ND<1	NA	NA	NA
tert Butyl Alcohol (μg/L)				
MW-1	ND<5000	NA	NA	NA
MW-3	ND<500	NA	NA	NA
MW-5	*ND<2000	NA	NA	NA
MW -6	ND<20	NA	NA	NA
Ethylene Dibromide (µg/L)				
MW-1	ND<120	NA	NA	NA
MW-3	ND<12	NA	NA	NA
MW-5	*ND<50	NA	NA	NA
MW-6	ND<0.5	NA	NA	NA
Ethylene Dichloride (µg/L)				
MW-1	370	ND<120	400	a500
MW-3	ND<12	NA	NA	NA
MW-5	*220	NA	NA	610
MW-6	ND<0.5	NA	NA	NA
Notes:				

Analytical results shown here collected post purge after 12/27/2002 μg/l = micrograms per liter

ND = Not detected above the reporting limit

NA = Not Available/MW-1 is the only well currently sampled for Ethylene Dichloride (see report for details)

1 of 1

^{* =} Analytical data collected for MW-5 on January 3, 2003

a = EDC detected at same concentration as detecton limit

^{1 =} Samples on this date collected pre-purge

Table 4c. Groundwater Monitoring Analytical Results 1003 – Comparison of Non-Purge and Purge Methods

BPS Reprographic Services Facility

1700 Jefferson Street

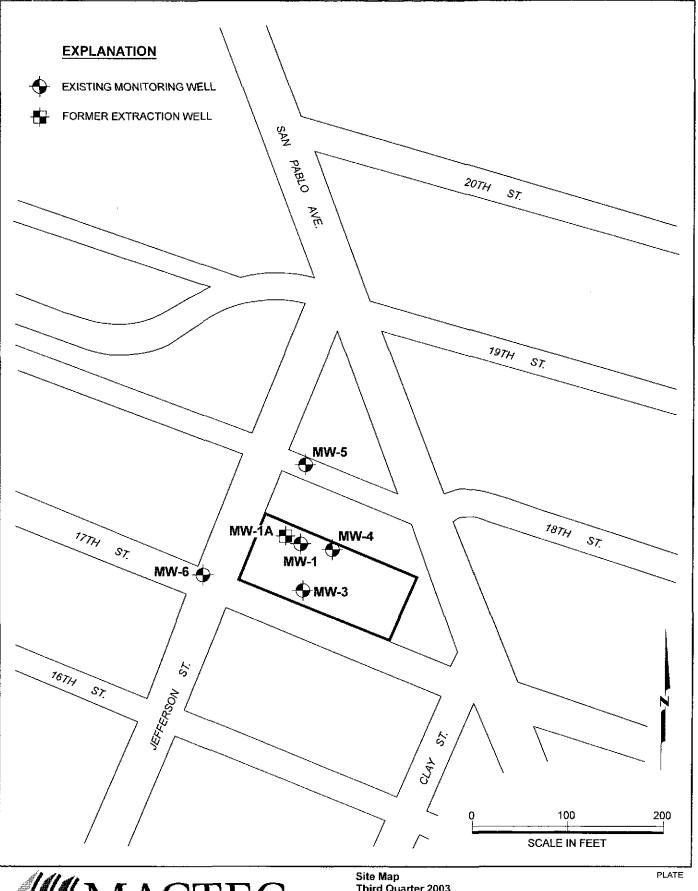
Oakland, California

TPHg (mg/L)	Pre-Purge 4/1/2003	Post-Purge 4/1/2003
MW		23
MW		6.6
*MW		NA ²
MW	-6 ND<0.05	ND<0.05
Benzene (µg/L)		
MW		5100
MW		240
*MW		NA ²
MW-	-6 ND<0,5	ND<0.5
Toluene (μg/L)		
MW		6900
MW-		200
*MW-		NA ²
MW-	-6 ND<0.0 5	ND<0.05
Ethylbenzene (µg/L)		
MW-		84()
MW-		63
*MW-		NA ²
MW-	-6 ND<0.5	ND<0.5
Xylenes (μg/L)		
MW		4100
MW-		220
*MW-		NA ²
MW-	-6 ND<0,5	ND<0.5
MTBE (µg/L) (EPA Method 8020) MW-	1 175 4144	ND -170
		ND<120
MW-	*	ND<2.5 ¹
*MW-		NA ²
MW-	•6 ND<2.5	ND<2.5
Ethylene Dichloride (µg/L) (EPA Method 8260)		
MW-		ND<120
MW-		NA
*MW-		NA
MW-	-6 NA	NA

mg/l = milligrams per liter

μg/l = micrograms per liter

ND = Not detected above the reporting limit following the less than sign

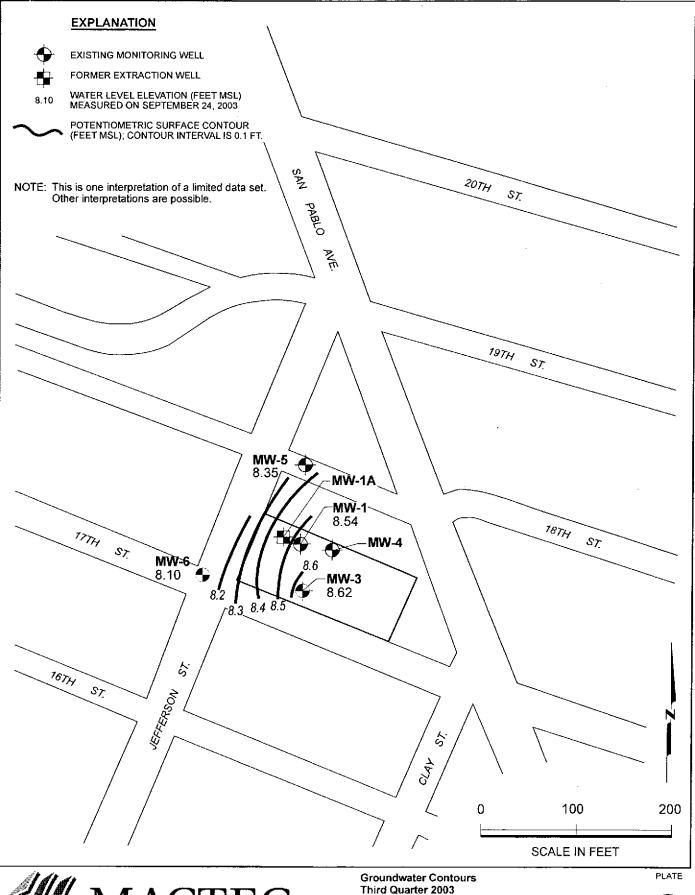

NA = Not Available

MTBE = methyl t-butyl ether

¹ Result of MTBE confirmation by EPA Method 8260.

² Data not available from April 1, 2003 sampling date due to ORC socks stuck in well

^{* =} Analytical data collected for MW-5 on January 3, 2003


Site Map
Third Quarter 2003
1700 Jefferson Street
BPS Reprographic Services Facility
Oakland, California

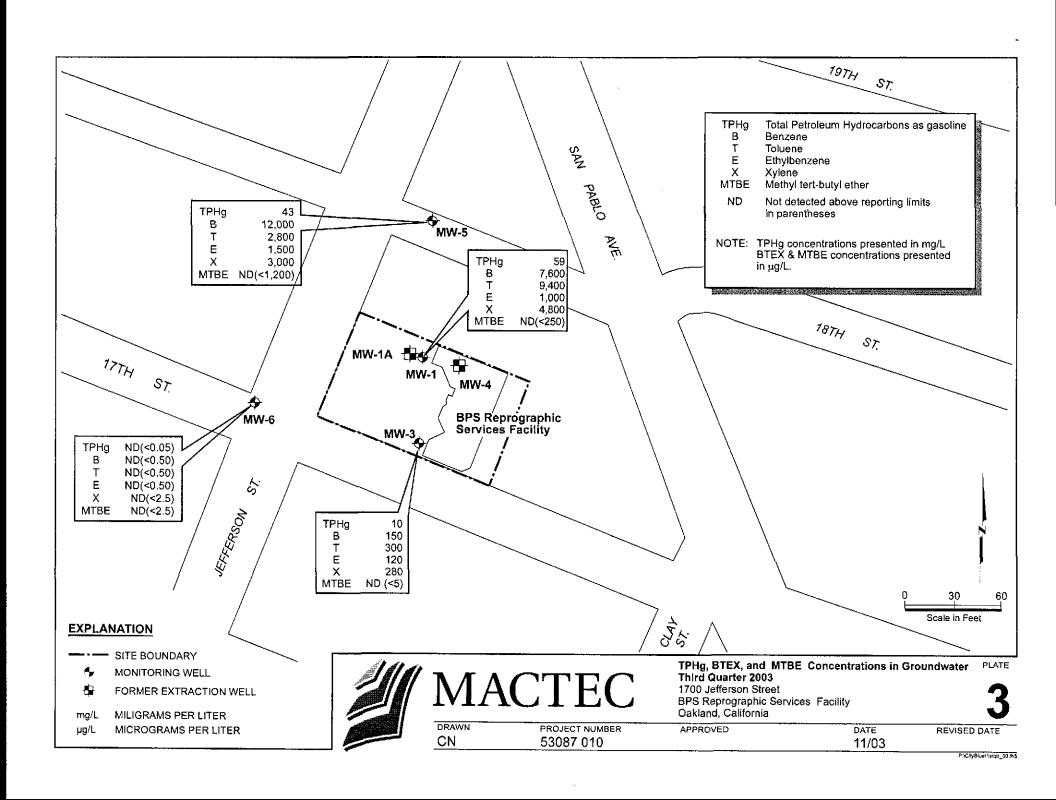
1

DRAWN PROJECT NUMBER
CN 53087 010

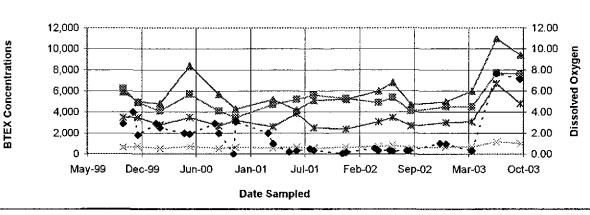
APPROVED

DATE 11/03 REVISED DATE

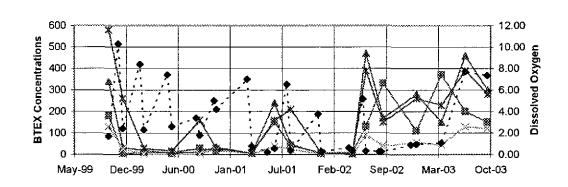
MACTEC

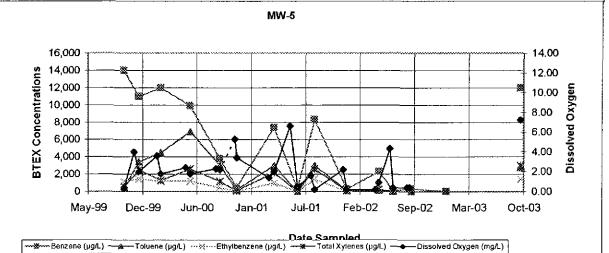

Groundwater Contours
Third Quarter 2003
1700 Jefferson Street
BPS Reprographic Services Facility
Oakland, California

2


DRAWN PROJECT NUMBER
CN 53087 010

APPROVED


DATE 11/03 REVISED DATE



MW-3

Date Sampled

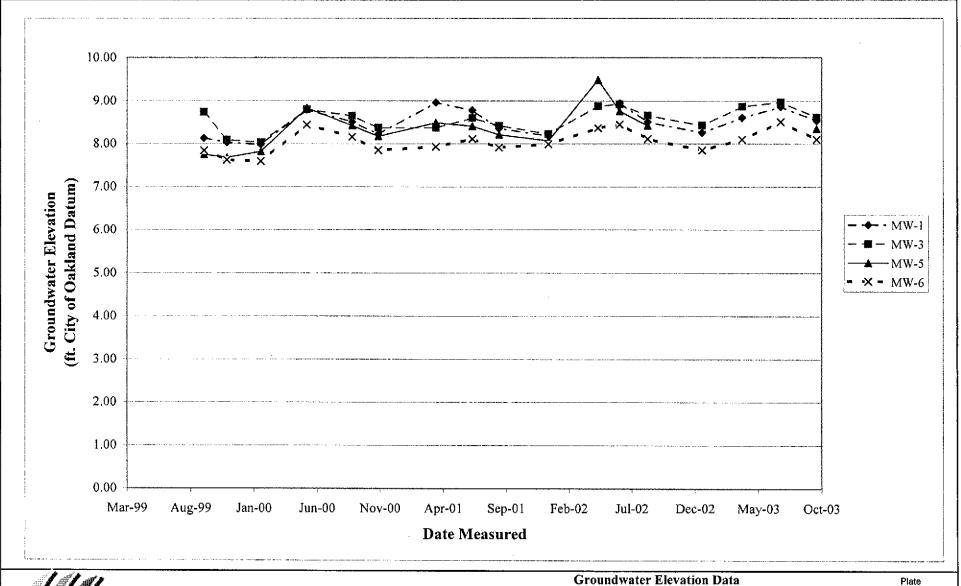
MACTEC

Historical BTEX and DO Results

Third Quarter 2003 **BPS Reprographic Services Facility** 1700 Jefferson Steet Oakland, California

Plate

Drawn by JOB NUMBER DSN


APPROVED

DATE

REVISION DATE

53087.007

10/13/2003

Third Quarter 2003 BPS Reprographic Services Facility 1700 Jefferson Steet Oakland, California

5

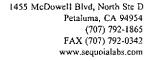
DRAWN	JOB NUMBER	APPROVED	DATE	REVISION DATE
DSN	53087.007		10/2/2003	

9 October, 2003

David Nanstad Harding ESE - Novato 5341 Old Redwood Highway, Suite 300 Petaluma, CA 94954

RE: General Commercial Work Order: P310037

Stay P. Hoch


Enclosed are the results of analyses for samples received by the laboratory on 09/25/03 08:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Stacy P. Hoch

Dept Manager - Client Services

CA ELAP Certificate #2374

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported:

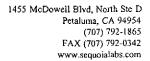
10/09/03 16:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
03530874	P310037-01	Water	09/24/03 12:00	09/25/03 08:30
03530872	P310037-02	Water	09/24/03 16:00	09/25/03 08:30
03530871	P310037-03	Water	09/24/03 17:05	09/25/03 08:30
03530873	P310037-04	Water	09/24/03 17:40	09/25/03 08:30
03530875	P310037-05	Water	09/24/03 18:20	09/25/03 08:30

Project: General Commercial

P310037 Reported:


5341 Old Redwood Highway, Suite 300 Petaluma CA, 94954

Project Number: BPS Services - City Blue/53087.007 Project Manager: David Nanstad

10/09/03 16:58

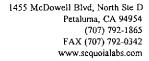
Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25/0	3 08:30				,	
Gasoline Range Organics	ND	50	ug/l	ŧ	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	ND	0.50	п	п	u	U	II .	11	
Toluene	ND	0.50	n	u	H	n	n	n	
Ethylbenzene	ND	0.50	11	n	**	n	n	D	
Xylenes (total)	ND	0.50	n	"	**	n	1+	**	
Methyl tert-butyl ether	ND	2.5	"	TF	n	***	It	tr	
Surrogate: a.a.a-Trifluorotoluene		101 %	65-	.135	"	p	<i>n</i>	n	
Surrogate: 4-Bromofluorobenzene	2	90 %	65-	-135	"	"	"	"	
03530872 (P310037-02) Water	Sampled: 09/24/03 16:00	Received	: 09/25/0	3 08:30					
Gasoline Range Organics	10000	1000	ug/l	20	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	150	10	11	II .	u	**	71	**	
Toluene	300	10	71	u	н	**	Ħ	ш	
Ethylbenzene	120	10	U	n	"	ш	tt	. n	
Xylenes (total)	280	10	"	n	n	q	u	u	
Methyl tert-butyl ether	52	50	"	n	0	п	U	11	QR-04
Surrogate: a,a,a-Trifluorotoluene		102 %	65-	135	n	n	v	n	
Surrogate: 4-Bromofluorobenzene	2	91%	65-	135	"	,,	n	n	
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	: 09/25/0	3 08:30					
Gasoline Range Organics	59000	25000	ug/l	500	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	7600	250	ч	"	**	17	**	**	
Toluene	9400	250		н	*	H	19	74	
Ethylbenzene	1000	250	n n	n	Ħ	**	H	79	
Xylenes (total)	4800	250	"	"	ti	*1	Tŧ	п	
Methyl tert-butyl ether	ND	1200	п	n	u	71	71	U	
Surrogate: a,a,a-Trifluorotoluene		105 %	65-	135	"	"	,,	"	
Surrogate: 4-Bromofluorobenzene	?	92 %	65-	135	"	н	и	"	

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial


Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B Sequoia Analytical - Petaluma

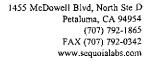
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530873 (P310037-04) Water	Sampled: 09/24/03 17:40	Received	: 09/25/0	3 08:30					
Gasoline Range Organics	43000	25000	ug/l	500	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	12000	250	"	IJ	n	n	n	1+	
Toluene	2800	250	u	п	n	"	II	**	
Ethylbenzene	1500	250	l)	17	n	rr	n	n	
Xylenes (total)	3000	250	n	**	н	**	17	n	
Methyl tert-butyl ether	ND	1200	"	**	"	n	**	H	
Surrogate: a,a,a-Trifluorotoluene		102 %	65-	335	"	u	к	n	
Surrogate: 4-Bromofluorobenzen	e	99 %	65-	135	"	"	"	n .	
03530875 (P310037-05) Water	Sampled: 09/24/03 18:20	Received	: 09/25/0	3 08:30					
Gasoline Range Organics	ND	50	ug/l	1	3100097	10/06/03	10/06/03	EPA 8015B/8021B	
Benzene	ND	0.50	**	н	n	0	ti	n	
Toluene	ND	0.50	н	0	н	n ,	10	þ	
Ethylbenzene	ND	0.50	u	n	1+	11	II .	16	
Xylenes (total)	ND	0.50	п	n	п	n	D	*1	
Methyl tert-butyl ether	ND	2.5	IJ	n	11	Ħ	н	η	
Surrogate: a,a,a-Trifluorotoluene		105 %	65-	135	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	·	91%	65-	135	**	u	"	u	

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007


Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Petaluma

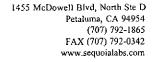
		<u> </u>							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530872 (P310037-02) Water	Sampled: 09/24/03 16:00	Received	: 09/25/0	3 08:30					
Methyl tert-butyl ether	ND	2.5	ug/l	5	3100167	10/08/03	10/08/03	EPA 8260B	
Surrogate: Dibromofluoromethar	ne e	118 %	84-	-122	"	"	"	"	
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	: 09/25/0	3 08:30					
1,2-Dichloroethane	500	500	ug/l	500	3100127	10/07/03	10/07/03	EPA 8260B	
Surrogate: Dibromofluoromethar	ie	119%	84-	-122	"	"	"	"	
Surrogate: 1,2-Dichloroethane-d-	4	113 %	74-	-135	"	"	"	u	
Surrogate: Toluene-d8		102 %	84-	119	"	"	"	"	
Surrogate: 4-Bromofluorobenzen	2	104 %	86-	119	"	"	"	"	
03530873 (P310037-04) Water	Sampled: 09/24/03 17:40	Received	: 09/25/0	3 08:30					
1,2-Dichloroethane	610	500	ug/l	500	3100127	10/07/03	10/07/03	EPA 8260B	
Surrogate: Dibromofluoromethar	ie	102 %	84-	122	"	"	"	**	
Surrogate: 1,2-Dichloroethane-d-	#	104 %	74-	135	#	"	n	**	
Surrogate: Toluene-d8		102 %	84-	119	"	"	п	**	
Surrogate: 4-Bromofluorobenzen	ខ	104 %	86-	119	"	"	"	"	

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007


Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25/0	3 08:30					
Total Alkalinity as CaCO3	540	20	mg/l	1	3100191	10/08/03	10/08/03	EPA 310.1	
Carbonate Alkalinity as CaCO3	ND	20	п	D	#	"	н	16	
Bicarbonate Alkalinity as CaCo	O3 540	20	l)	n	**	II	n	11	
Hydroxide Alkalinity as CaCO3	ND	20	ŋ	11	**	n	n	H	
Carbon dioxide, free	74	5.0	n	n	3100240))	10/09/03	SM 4500 CO2 D	
03530872 (P310037-02) Water	Sampled: 09/24/03 16:00	Received	: 09/25/0	3 08:30					
Total Alkalinity as CaCO3	240	20	mg/l	l	3100191	10/08/03	10/08/03	EPA 310.1	
Carbonate Alkalinity as CaCO3	ND	20	п	II	17	н	n	H	
Bicarbonate Alkalinity as CaC	O3 240	20	II	11	H	h	ш	н	
Hydroxide Alkalinity as CaCO3	ND	20	u	11	H	п	п	n	
Carbon dioxide, free	22	5.0	u	n	3100240	п	10/09/03	SM 4500 CO2 D	
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	: 09/25/0	3 08:30					
Total Alkalinity as CaCO3	480	20	mg/l	1	3100191	10/08/03	10/08/03	EPA 310.1	
Carbonate Alkalinity as CaCO3	ND	20	n	u	H	n	n	16	
Bicarbonate Alkalinity as CaC	O3 480	20	"	0	n	"	ıı	19	
Hydroxide Alkalinity as CaCO3	ND	20	n	n	19	"	h	H	
Carbon dioxide, free	72	5.0	II	n	3100240	I)	10/09/03	SM 4500 CO2 D	

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Anions by EPA Method 300.0

Sequoia Analytical - Petaluma

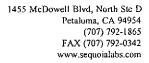
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25/0	3 08:30					
Nitrate as N	ND	1.0	mg/l	5	3100027	09/25/03	09/25/03	EPA 300.0	
Sulfate as SO4	6.4	5.0	**	II .	11	u	H	"	
03530872 (P310037-02) Water	Sampled: 09/24/03 16:00	Received	: 09/25/0	3 08:30	_				
Nitrate as N	5.3	1.0	mg/l	5	3100027	09/25/03	09/25/03	EPA 300.0	
Sulfate as SO4	65	5.0	u	10	**	n	b	H	
03530871 (P310037-03) Water	Sampled: 09/24/03 17:05	Received	: 09/25/0	3 08:30					
Nitrate as N	ND	1.0	mg/l	5	3100027	09/25/03	09/25/03	EPA 300.0	
Sulfate as SO4	25	5.0	11	"	**	"	"	"	_

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007


Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Dissolved Volatile Gases by Method RSK 175 Modified

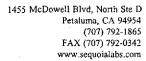
Sequoia Analytical - Sacramento

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
03530874 (P310037-01) Water	Sampled: 09/24/03 12:00	Received	: 09/25/0	3 08:30					
Methane 03530872 (P310037-02) Water	ND Sampled: 09/24/03 16:00	0.010 Received	mg/l : 09/25/0	l 3 08:30	3100105	10/08/03	10/08/03	RSK 175	
Methane 03530871 (P310037-03) Water	0.088 Sampled: 09/24/03 17:05	0.010 Received	mg/l : 09/25 /(l 3 08:30	3100105	10/08/03	10/08/03	RSK 175	
Methane	0.017	0.010	mg/l	1	3100105	10/08/03	10/08/03	RSK 175	

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial


Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3100097 - EPA 5030, waters										
Blank (3100097-BLK1)				Prepared	& Analyz	ed: 10/06/	03			
Gasoline Range Organics	ND	50	ug/l							
Веплепе	ND	0.50	**							
Toluene	ND	0.50	**							
Ethylbenzene	ND	0.50	**							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether	ND	2.5	**							
Surrogate: a,a,a-Trifluorotoluene	302		"	300		101	65-135			
Surrogate: 4-Bromofluorobenzene	270		"	300		90	65-135			
Laboratory Control Sample (3100097-	·BS1)			Prepared .	& Analyz	ed: 10/06/	03		******	
Gasoline Range Organics	2170	50	ug/l	2750		79	65-135			
Benzene	38.2	0.50	n	34.0		112	65-135			
Toluene	203	0.50	n	208		98	65-135			
Ethylbenzene	45.6	0.50	"	47.0		97	65-135			
Xylenes (total)	222	0.50	"	241		92	65-135			
Methyl tert-butyl ether	60.9	2.5	**	56.0		109	65-135			
Surrogate: a,a,a-Trifluorotoluene	321		"	300	*	107	65-135	•		
Surrogate: 4-Bromofluorobenzene	287		#	300		96	65-135			
Matrix Spike (3100097-MS1)	Source: P.	309471-17		Prepared of	& Analyz	ed: 10/06/	03			
Gasoline Range Organics	2230	50	ug/l	2750	74	78	65-135			
Benzene	40.3	0.50	**	34.0	ND	119	65-135			
Toluene	221	0.50	**	208	ND	106	65-135			
Ethylbenzene	48.6	0.50	"	47.0	ND	103	65-135			
Xylenes (total)	232	0.50	**	241	ND	96	65-135			
Methyl tert-butyl ether	74.4	2.5	Ħ	56.0	10	115	65-135			
Surrogate: a,a,a-Trifluorotoluene	352		н	300		117	65-135			··············
Surrogate: 4-Bromofluorobenzene	291		#	300		97	65-135			

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015B/8021B - Quality Control Sequoia Analytical - Petaluma

		Reporting		Spike	Source	%REC			RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3100097 - EPA 5030, waters										
Matrix Spike Dup (3100097-MSD1)	Source: P3	09471-17		Prepared	& Analyze	ed: 10/06/	03			
Gasoline Range Organics	2240	50	ug/l	2750	74	79	65-135	0.4	20	
Benzene	40.2	0.50	u	34.0	ND	118	65-135	0.2	20	
Toluene	212	0.50	ч	208	ND	102	65-135	4	20	
Ethylbenzene	48.9	0.50	II	47.0	ND	104	65-135	0.6	20	
Xylenes (total)	233	0.50	п	241	ND	97	65-135	0.4	20	
Methyl tert-butyl ether	72.8	2.5	u	56.0	10	112	65-135	2	20	
Surrogate: a,a,a-Trifluorotoluene	335		"	300		112	65-135			
Surrogate: 4-Bromofluorobenzene	290		"	300		97	65-135			

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Petaluma

											1
		Reporting		Spike	Source		%REC		RPD		ĺ
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Blank (3100127-BLK1)				Prepared & Analyzed: 10/07/03
Acetone	ND	10	սը/1	
Benzene	ND	1.0	H	
Bromobenzene	ND	1.0	77	
Bromochloromethane	ND	1.0	**	
Bromodichloromethane	ND	1.0	**	
Bromoform	ND	1.0	н	
Brontomethane	ИD	1.0	Ħ	
2-Butanone	ND	10	н	
n-Butylbenzene	ND	1.0	0	
sec-Butylbenzene	ND	1.0	0	
tert-Butylbenzene	ND	1.0	"	
Carbon disulfide	ND	10	"	
Carbon tetrachloride	ND	1.0	n	
Chlorobenzene	ND	1.0	D	
Chloroethane	ND	1.0	и	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	1+	
4-Chlorotoluene	ND	1.0	**	
Dibromochloromethane	ND	1.0	n	
1,2-Dibromo-3-chioropropane	ND	1.0	η	
1,2-Dibromoethane (EDB)	ND	1.0	**	
Dibromomethane	ND	1.0	**	
1,2-Dichlorobenzene	ND	1.0	**	
1,3-Dichlorobenzene	ND	1.0	n	
1,4-Dichlorobenzene	ND	1.0	n	
Dichlorodi fluoromethane	ND	1.0	D	
1,1-Dichlorocthane	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	,,	
1,1-Dichloroethene	ND	1.0	**	
cis-1,2-Dichloroethene	ND	1.0	н	
trans-1,2-Dichloroethene	ND	1.0	н	
1,2-Dichloropropane	ND	1.0	11	
1,3-Dichloropropane	ND	1.0	#1	
2,2-Dichloropropane	ND	1.0	••	
1,1-Dichloropropene	ND	1.0	#1	

Sequoia Analytical - Petaluma

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

5341 Old Redwood Highway, Suite 300

Batch 3100127 - EPA 5030 waters

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager; David Nanstad

P310037 Reported: 10/09/03 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Sequoia Analytical - Petaluma

•		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (3100127-BLK1)				Prepared & Analyzed: 10/07/03
cis-1,3-Dichlaropropene	ND	1.0	ug/l	
trans-1,3-Dichloropropene	ND	1.0	"	
Ethylbenzene	ND	1.0	n	
Freon 113	ND	1.0	"	
Hexachlorobutadiene	ND	1.0	"	
2-Hexanone	ND	10	ti	
Isopropylbenzene	ND	1.0	u	
p-Isopropyltoluene	ND	1.0	"	
Methylene chloride	ND	1.0	"	
4-Methyl-2-pentanone	ND	10	u	
Methyl tert-butyl ether	ND	1.0	a	
Naphthalene	ND	1.0	"	
n-Propylbenzene	ND	1.0	"	
Styrene	ND	1.0		
1,1,2,2-Tetrachloroethane	ND	1.0	"	
1,1,1,2-Tetrachloroethane	ND	1.0	n	
Tetrachloroethene	ND	1.0	u	
Toluene	DИ	1.0	"	
1,2,3-Trichlorobenzene	ND	1.0	"	
1,2,4-Trichlorobenzene	ND	1.0	"	
1,1,2-Trichtoroethane	ND	1.0	n	
1,1,1-Trichloroethane	ND	1.0	n	
Trichloroethene	ND	1.0	"	
Trichlorofluoromethane	ND	1.0	"	
1,2,3-Trichloropropane	ND	1.0	п	
1,3,5-Trimethylbenzene	ND	1.0	II	
1,2,4-Trimethylbenzene	ND	1.0	u	
Vinyl acetate	ND	20	'n	
Vinyl chloride	ND	1.0	н	
m,p-Xylene	ND	1.0	н	
o-Xylene	ND	1.0	*1	

6.00

6.00

6.00 6.00

5.55

5.55

6.20

6.02

Sequoia Analytical - Petaluma

Surrogate: Dibromofluoromethane

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: Toluene-d8

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

84-122

74-135

84-119

86-119

92

92

103

100

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Petaluma

RPD	Limit	Notes
3	20	
2	20	
1	20	
3	20	
3	20	
	2 1 3	2 20 1 20 3 20

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

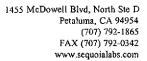
Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Petaluma

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3100167 - EPA 5030 waters									<u>. </u>	·
Laboratory Control Sample (3100167-	BS1)			Prepared	& Analyze	ed: 10/08/	03			
Methyl tert-butyl ether	4.94	0.50	ug/l	5.00		99	77-123			
Surrogate: Dibromofluoromethane	6.44	•	#	6.00		107	84-122			
Laboratory Control Sample Dup (3100	0167-BSD1)			Prepared	& Analyze	ed: 10/08/	03			
Methyl tert-butyl ether	5.11	0.50	ug/l	5.00		102	77-123	3	20	
Surrogate: Dibromofluoromethane	6.37		11	6.00		106	84-122			

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial


Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported: 10/09/03 16:58

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 3100191 - General Preparation	on										
Blank (3100191-BLK1)					Prepared & Analyzed: 10/08/03						
Total Alkalinity as CaCO3	ND	20	mg/l								
Carbonate Alkalinity as CaCO3	ND	20									
Bicarbonate Alkalinity as CaCO3	ND	20	п								
Hydroxide Alkalinity as CaCO3	ND	20	II .								
Laboratory Control Sample (3100191-BSI)				Prepared & Analyzed: 10/08/03							
Total Alkalinity as CaCO3	246	20	mg/l	250		98	80-120				
Duplicate (3100191-DUP1)	Source: P310129-01			Prepared & Analyzed: 10/08/03							
Total Alkalinity as CaCO3	194	20	mg/l		200			3	20		

Harding ESE - Novato 5341 Old Redwood Highway, Suite 300

Sulfate as SO4

5341 Old Redwood Highway, Suite 300
Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

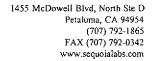
P310037 Reported: 10/09/03 16:58

Anions by EPA Method 300.0 - Quality Control Sequoia Analytical - Petaluma

		Reporting		Spike	Source		%REC		RPD	Į
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 3100027 - General Preparation	n		- 					
Blank (3100027-BLK1)	Prepared & Analyzed: 09/25/03							
Nitrate as N	ND	0.20	mg/l					
Sulfate as SO4	ND	1.0	n					
Laboratory Control Sample (3100027-		Prepared & Analyzed: 09/25/03						
Nitrate as N	9.30	0.20	mg/l	10.0		93	90-110	
Sulfate as SO4	9.19	1.0	"	10.0		92	90-110	
Matrix Spike (3100027-MS1)	Source: P31	10037-03		Prepared a	& Analyze	ed: 09/25	/03	
Nitrate as N	24.3	1.0	mg/l	25.0	ND	97	80-120	

25.0


25

116

80-120

5.0

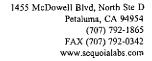
54.1

Harding ESE - Novato

Project: General Commercial

5341 Old Redwood Highway, Suite 300

Project Number: BPS Services - City Blue/53087.007


P310037 Reported: 10/09/03 16:58

Petaluma CA, 94954

Project Manager: David Nanstad

Dissolved Volatile Gases by Method RSK 175 Modified - Quality Control Sequoia Analytical - Sacramento

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3100105 - General Prep										. <u>.</u>
Blank (3100105-BLK1)				Prepared	& Analyz	ed: 10/08/	03			
Methane	ND	0.010	mg/l							
Laboratory Control Sample (3100105-B	S1)			Prepared & Analyzed: 10/08/03						
Methane	0.0612	0.010	mg/l	0.0942		65	50-150			
Matrix Spike (3100105-MS1)	Source: P	310037-01		Prepared	& Analyza	ed: 10/08/0)3			
Methane	0.0491	0.010	mg/l	0.0942	ND	52	50-150			
Matrix Spike Dup (3100105-MSD1)	Source: P	310037-01		Prepared	& Analyzo	ed: 10/08/0)3			
Methane	0.0440	0.010	mg/l	0.0942	ND	47	50-150	11	20	Q-LIM

Harding ESE - Novato

5341 Old Redwood Highway, Suite 300

Petaluma CA, 94954

Project: General Commercial

Project Number: BPS Services - City Blue/53087.007

Project Manager: David Nanstad

P310037 Reported:

10/09/03 16:58

Notes and Definitions

Q-LIM The percent recovery was outside of the control limits. The samples results may still be useful for their intended purpose.

QR-04 Primary and confirmation results varied by greater than 40% RPD. The results may still be useful for their intended purpose.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY FORM

Seq. No.: Nº 10299

Lab: Segoure

(415) 883-0112	Samplers: -=	David Browne	ANALYSIS REQUESTED
Job Number: 53087.007 Name/Location: BPS Services - C Project Manager: Dave Nonstalt	Recorder:	Savel Zwee (Signalure Required)	Manics 8015B (8020) Asis (17) Asis
MATRIX #CONTAINERS & PRESERV. SAMPLE NUMBER SINGLE NUMBER SAMPLE NUMBER SEQ	DATE YR MO DAY TIME	STATION DESCRIPTION 13 100 3 7 DEPTH	Gasoline Range Organics 8015B Diesel Range Organics 8015B BTEX plus MTBE (8020) CCR Title 22 Metals (17) EPA 8021B EPA 8270C TPH and (8015) AI Fract (300.0) AI Late to 300.0) AI Late to 300.0
X	0309241200 0309241600 0309241705 0309241820		
ADDITIONAL INFORMATION		CHA	IN OF CUSTODY RECORD

	ADDITIONAL INFORMATION		CHAIN OF CUSTOD	Y RECORD
SAMPLE NUMB YA SEQ	TURNAROUND TIME/REMARKS	Reliadpished By , is joinature)	Day d Brown (Par) Name) Help GAIL Help	e MACT (Compagy)
	STANDARD TAT	Skil Human Actived By. (signature)	(Print Name)	ZMANN Se (Company)
		Refinquished By. (signature)	(Psint Name)	(Company)
		Received By: (signature)	(Pnot Name)	(Company)
$ar{}$	NOT INTACT	Relinquished By (signature)	(Print Name)	(Company)
	1/0	Received By. (signature)	(Print Name;	(Company)
	GOLER TEMPERATURE 4 8 °C	Received By: (signature)	(Print Name)	(Company)
		Method of Shipment:		

Laboratory Copy

Project Office Copy

Field or Office Copy

00291-1

Date/Time

Date/Time Date/Time

Date/Time

CHAIN OF CUSTODY FORM Harding ESE Seq. No.: 20 Digital Drive Novelo, CA 94948 (415) 983-0112 ANALYSIS REQUESTED 53087 1007 Job Number: Name/Location: Project Manager: (Signature Required) sol Range Organ **#CONTAINERS** MATRIX & PRESERV. SAMPLE NUMBER DATE YR MO DAY 0 Z G NOSMU) HARDING HARDING ADDITIONAL INFORMATION CHAIN OF CUSTODY RECORD SAMPLE NUMBER URNAROUND TIME/REMARKS YA SEO 18:02 2003 Rebrovished by. (sopraising) (Prin Name) (Company) Deta/Tena Received By: (signature) (Print Name) H'corpany) Det y/Tym Redriguetted By (signature) (Przii Name) (Company) Placehood By (signature) (Company) Data Lene Proceived By (1) government (Company) Method of Shipmept

SEQUOIA ANALYTICAL SAMPLE RECEIPT LOG

ÇLIENT NAME: A REC. BY (PRINT) WORKORDER:	marter 873	10037		DATE Received at Lab: TIME Received at Lab: LOG IN DATE:	9/25/03 830 80/2/03	-	(Drinking wa regulatory pu (Wastewater) regulatory pu	rposes: YI	ES/NO ES/NO
CIRCLE THE APPRO	PRIATE RESPONSE	LAB SAMPLE#	#	CLIENT ID	DESCRIPTION	SAMPLE MATRIX		CONDITION	
1. Custody Scal(s)	Present / Ausent			03530874	3-UV, 3PV	W	9/24/03		CONTRACTOR SECTION AND CO.
	. Intact / Broken*			2,			1/2//		
2. Chain-of-Custody	(Present) Absent*			. /	2-UV-3 PV		1 /		
3. Traffic Reports or				3	3 PVS	1-1-			
Packing List:	Present / Absent			5	181	V			
4. Airbill:	Airbill / Sticker								·
	Present / Absent								
5. Airbill #;									
6. Sample Labels:	Rresent Absent								
7. Sample IDs:	Listed Not Listed								
	on Chain-of-Custody								
8. Sample Condition:	Infact Broken*/							_ 	
	Leaking*								
9. Does information on									
custody reports, traffic				<u> </u>		<u> </u>			·
reports and sample					<u> </u>				
labels agree?	(Yes)/ No*				V	<u></u>			
10. Sample received within	$\tilde{\wedge}$			ļ/	*	ļ			
hold time:	(Yes / No*					ļ			
11. Proper Preservatives	\wedge			 					
used:	Yes / No*	ļ. .		<u> </u>		<u> </u>			
12. Temp Rec. at Lab:	- 4.8			(
(Acceptance range for sample		ļ				<u> </u>		Name (Alaboratory of the Party	-
requiring thermal pres.:4+/-2	2°C) (Yes/No*		u Malenkoro			<u> </u>			· ····································
		*If Circl	ed, co	ontact Project Manage	r and attach reco	rd of reso	olution.		reneward Marketon de la mana del se

Sample Receipt Log Revision 2.1 (11/10/00) Replaces Revision 2 (11/06/00)

Page _____ of ____

APPENDIX B GROUNDWATER SAMPLING FORM

Table B1. Sample Location/Sample Description Cross-Reference
BPS Reprographic Services Facility
1700 Jefferson Street
Oakland, California

Well/Sample Number	Client Sample ID
MW-1	3530871
MW-3	3530872
MW-5	3530873
MW-6	3530874
Field Blank	3530875

Groundwater Monitoring Data Sheet

City Blue 1700 Jefferson Street Oakland, CA

Well Number	Date	Time	Water Depth First	Water Depth Second	Сар	Lock	Casing	Box/Lid	Well Diameter	Comments
			Reading (TOC)	Reading (TOC)					\$	
MW-1	9/29	1345	23.82	23 62	Yes	No	Garl	Good	411	
MW-3	9/24	1300	23.15	23.15	405	No		Good	41	
MW-5	9/24	1370	37.31	27.71	105	No	Good	Good	115	
MW-6	9/24	1100	23.16	23.16	705	1450	y.c.5	Cood	211	
MW-1A	9124	1350			7105	N/0	Ga	Good	2	
MW-4						,				

MW-1A Diameter: ______ inches

Please record all monitoring equipment model numbers, serial numbers and calibration dates here. Also record expiration dates of calibration fluids if applicable:

pH: Harmy H; 9075 Geral 401303 to 744
Temperature: Suid # ; 951000009092
Specific Conductance: See Daily Report
Dissolved Oxygen: Gualt 0160075 Page 1
Turbidity: Serial # 95/000009092
Ferrouse Iron:
Ferrouse Iron Values for MW-1: 187 my MW-3: 2.06 mg/2 MW-6: 0.50 mg/2
MW-5=2.06 mg/2

COOK SERIALE, 45100 2956
ORION MODEL SA 230
FACTORY CARISPATED BY EQUIRO 9/13/63

Project: BPS Services - City Blue	Lab No. 63 600 7
Subject: FIELD INVESTIGATION DAILY REPORT	Job No.: <u>53087</u> 007 Date:9 2403
Equipment Rental: Company:	To: Dave New bast
Equipment Hours: F.E. Time from: to:	By: Dez
(Outside service and expense record must be attached for any	outside costs)
e Aus	
1345 @ mu-3 wt 23.15 TO- Dop	
1345 @ mw-1 WC= 23.82	
Redor = -166, Z	
D.0 = 6.25 ms/et	
Ferrous from = 1187 ms/ft	
1514 @ mw-3	
WL= 23:15 TD= 31' 3 well your	4 = 15.3 gallen
10 30 Street he le.	-
15 50 Stop builty - 15.3 gallons prage	
1600 Sample # 0353087-Z Same an	
Sample # 0353087-Z Same an	ulysia as asove
1640 6 MOST	
WL-23.62 7D=32.0 3well(ou	my = 16 cally
1647 Slart bady	Y
1700 Stop baily 16 callons purged	
1705 Sangle Mer-1	
Scriple # 0353067-4	
Same analysis as abolic	
1720 e MU-4	
WC= 27.21 TD= 33.5 3We	4 Volume = 5:500 CB
17 25 Stort bailing	
1735 Stopbarly - 6.0 gallons surged	
1740 1740 Sample MW-4	
Sample # 0353087,007	
3 rous for ozcors	
1800 Purp perge water into 55 gallon	drung behind office
Drun is marked, labeled - But B	ecouse the extrustry
locked & had to leave the dre	is outside the eta
	3
Attachments:	
Ini	tial DSn

• (r 1

Project: BPS Services City Blue Job No.: 53087-007
Subject: FIELD INVESTIGATION DAILY REPORT Date: 9124163
Equipment Rental: Company: To: Dave Naushuff
Equipment Rental: Company: To: Dave Naushiff Equipment Hours: F.E. Time from: to: By: Dave
(Outside service and expense record must be attached for any outside costs)
1010 @ Mus-le advorate equipment 2H meter - Hanna Hi 9025 Serve & D003 To 794
2H mety - Hanny Hi 9025 Serve & Dan 3 To 794
Conductivity 45£30 Servel # 9960249 to 1000 milet
t- 25 Conduct = 995
Tulbdity meter Seven # 951000009092
0-10= 4.56 10-100= 50.8 100-1000= 539
D.D. meter sevend & 0160075 6 0 Ch Att. 0.0 Salunty
Redox Serul # 7946 ORION model SA230
Total = 2750 OKION model 514250
1045 a mo-a
wc = 23.16
Redox Samp4 Serial 1 97/190000807
Ferrors For = 50 ms/0+
Rudoy = 49.9 My
D.0 = 0.90 ms/er
1130 Start backy w1= 23.16 TD= 32.5 3 volume = 4.6 gellong
1700 Same 4 Mus-6
Sample & 03530874 Brows w/HCI for TPH gas, BTEX, MTSP
3 vons univer for Methers
1-500mlp for Sulfate, netrate, Alkalineta
1245 Heed 12 batterns - for grapment
1300 @ MID-3 WL= 23.15
Redox = -300;3mx
D.O = 7.66 m3/et
Ferrous iron = 7.06 MS/et
1330 @ MW 5 WC=
Redox - psi 173183.0
D.O. = 0.55 ms/et
Ferrous you = 2.06
LONIONS 1401 7.00
Attachments:
Initial Dans

Job Name:

City Blue

GROUNDWATER SAMPLING FORM X Well Number: MW-1 Well Type: Monitor Extraction Other PVC St. Steel Other

Job Number	: <u>53</u>	<u>3087 007</u>	Date:	9,	9/24/2003					
Recorded By	y: <u>_</u>	Sand &	gnature)	<u></u>	Sampled By:	Sampled By: D.S.B (initials)				
	e in majeri in cari da Çêri deweren i Basildon ya	de estado de estado en estado e		WELL PURGI	NG					
Total Depth Water Level	PURGE neter (D in inc of Casing (TE Depth (WL in Volumes to be) in ft BTOC) 1 ft BTOC):	23.82	X Bailer - Type: Submersible - Typ Other - Type:	P.V.C.	METHOD				
110.01.00	voidinioo to be	puiged (ii v	· _ 5			PUMP INTAI	KE SETTING			
	PURGE VOLUM	IE CALCULATI	ON	er a lare la carrena de la	Near Bottom		Near Top	,		
(32 · o - 2	23.82) x 4 WL (Feet) D	_ ² X 3 X 0.04 (inches) # V	•	gals ulated Purge Volume	Other Depth in feet (BTOC) Screen Interval in fee	et (BTOC):	from _	to		
	Field Paramet	er Measuremer	it							
Minutes Initial C	7.39 7.24 7.17 7.12	Conductivity (µS) 940 947 952	X°C Temp. °F 18.9 18.4 18.3 8.4	Turbidity (NTU) Z4.8 >1000 54.5 300.5	PURGE FIME Purge Start: 16 Purge Stop: 17 Elapsed: PURGE VOLUME Volume:	15 15	PURGE'R GPM: GPM: gallons	ATE		
Meter S/N					Observations During Cloudy My O Carry Discharge Water Disc	gran	Aslac Av S Sanitary So Other	10 modera		
				WELL SAMPLI	NG			Terure i describitados Maio de describitados		
Bailer - Type	·	_			Sample Time:	17	-05			
T.P.H. gas (8		Volume/Cont. 3 V5V/S 1-500M/F	03530	sis Requested	Preservatives If CI Nury	Lab Sey	Co	omments		
Alkali Metha	hvy	\$ VOVAS		/						
			QUA	LITY CONTROL S	AMPLES					
Duplicate Samples Original Sample No. Dupl. Sample No. Type					amples Sample No.	Туре	Other San	n ples ample No.		

GROUNDWATER SAMPLING FORM

<i>3</i> // 1	VI/				★ Well Number:	мw-з		
Section 10			···· ·•		Well Type:	Monitor	Extraction	Other
Job Name:		City Blue				PVC	St. Steel	Other
Job Number:	53	3087 007			Date:	9/2	24/2003	
Recorded By:	\mathcal{D}_{c}	wid 3e	ome		Sampled By:		D.S.B	
		(Sig	nature)	-		****	(initials)	
				WELL PURG	ING	u e e	76955S	
	PURGE	EVOLUME				PURGE	иетнор	
Casing Diamete			4"		X Bailer - Type:	P.V.C.		
Total Depth of (Water Level De			23.15		Submersible - Type Other - Type:	e:		···
No. of Well Volu					Ouler - Type.			
					P	UMP INTAKI	SETTING	
PU	RGE VOLUN	JE CALCULATIO)Ne Salasa		Near Bottom	[Near-Top	
71 0 20					Other			
31.0 - 23	15×21	_ ² X 3 X 0.040	18 = <u>15,3</u>	gals	Depth in feet (BTOC)			
TD (feet) WL	L (Feet) D	(inches) # V	Cal	culated Purge Volume	Screen Interval in feet	(BTOC):	from	to
T-2505 18 48 4 F	ield Paramas	er Measuremen	engaurys, ac					
programmer (##99888.c.##GL	iciu rai aillei	Conductivity		Turbidity	PURGETIME	20	PURGE RATE	
Minutes	рН	· '	Temp. Temp		Purge Start: /53	a O	GPM:	• ************************************
Initial	1.63	(147.0	204	110 NTU	Purge Stop: 15	, 0	GPM;	
5 4	eB17.9	3601	20.3	97.7		9 .Ø		
10	1.32	698	199	765.0	PURGE VOLUME		=	
15,3	1.34	497	19 =	450	Volume:	15.5	gallons	
, , , , , , ,							gamente	
	•				Observations During P	uraina (Well	Condition, Color, 6	Odor):
			Weren a Lebys in .		01.	nrau	modus	t hydra
					oder	She		surface
					Discharge Water Dispo	sal:	Sanitary Sewe	r
Meter S/N					Storm Sewer		Other 55	gel drun
			**************************************	WELL SAMPLI	NG		<u>هم</u>	
Poiter Tupe:	$\mathcal{N}_{\mathcal{I}}$	poseble	TOOL S STORY PRODUCE A		<u> </u>	1600	till mystir regard og alle straketille tr	4854 C. (288 C.)
Bailer - Type: _				-	Sample Time:	 		
Sample N T.P.H. gas (8015		Volume/Cont.	53308	ysis Requested	Preservatives	Lab	Comm	ents
BTEX (802		- YUN 3	2300)	13 61	Seg	~	
MTBE (8020)		4			6			
Sulfute, A		1.50m/h			Mono			
Milh	nrt -	3 1/0-4		7	 	<u> </u>		
- M. J. Plane		3 YO-A5		· · · · · · · · · · · · · · · · · · ·	Mone			
								····
± M-044						<u> </u>		
			QU/	ALITY CONTROL S	AMPLES			
Duplic	cate Sample	s			Samples		Other Sample	
Original Sample No.	. Du	pl. Sample No.	Туг		Sample No.	Type Sample No.		
			\vdash	:				
			-			<u> </u>		<u>-</u>
			I		<u></u>	h		

					Well Number:	MW-5			
					Well Type:	Monitor	Extraction	Other	
Job Name:		City Blue				PVC	St. Steel	Other	
Job Number:	: <u>5</u>	3087 0 <u>07</u>	· · · · · · · · · · · · · · · · · · ·		Date:	9/	24/2003		
Recorded By	lecorded By: David Straws (Signature)				Sampled By:	1 -20 200 11	D.S.B (initials)		
1 (ring a series of the series of		WEL	LL PURGING		10 PM 12 1971 S	riki a keriy		
	PURG	E VOLUME				PURGE	METHOD	And the court of the court of the	
Water Level	of Casing (TI Depth (WL i	D in ft BTOC):	22.21	X	Bailer - Type: Submersible - Typ Other - Type:	<u>P.V.C.</u> e:		WWW.	
					P	UMP INTAK	E SETTING -		
i i i i i i i i i i i i i i i i i i i	PURGE VOLU	ME CALCULATIO	in property of the		Near Bottom		Near Top		
(33.5 - Z		2_2 X 3 X 0.040	08 = 5 : 5 gals Calculated Pur		Other epth in feet (BTOC): creen Interval in feet		from	to	
			Sur de dida tod ministrativa						
Minutes Initial	pH 7,44 7,25	Conductivity (µS) 944 µK	Temp. □ °F (N	NTU) PL	JAGE TIME Irge Start: I Irge Stop: I apsed: I	725	PURGE RATE GPM:		
3.0 5.4	7.75	984 987		>	JRGE VOLUME	(s	– gallons		
	A			<u> </u>	Oservations During F Cloudy Vyclos consum Scharge Water Disposition	deric osai:	-Black -	- Slight Sheen	
Meter S/N		_			Storm Sewer	l	Other 55.5	i site	
			WELL	SAMPLING	reterajojenio	Bazina na i			
Bailer - Type:	<u> </u>	. barly			Sample Time:	13	40		
Samp	le No.	Volume/Cont.	Analysis Requ		Preservatives	Lab	Comm	ents	
	(015 modified)	3/6,75	<u>034308</u>	7.3	HU	Seg			
MTBE (80	(8020) 020)				7	1			
The second of th	*1,445.4 * .mg 1	1.000	OHALITÉO/	OUTDOL OLUD	Andrews and the French	Notes to describe			
	plicate Sample		SECTION ASSOCIATION CO.	Blank Sampl	ES.		Other Cample		
Original Sample		upl. Sample No.	Type		es Sample No.	Туре	Other Sample: Samp		
			1			**************************************	:		

GROUNDWATER SAMPLING FORM

GROUNDWATER SAMPLING FORM

MW-6

Job Name:					Well Type:	X Monitor	Extractio	n Other
		City Blue				ZPVC	St. Steel	Other
Job Number	r: <u>5</u>	3087 007	Date:	9/24/2003				
Recorded B	iy: <u>Da</u>	David Scource (Signature)			Sampled By:	D.S.B		
in the English St.	V et destates at se		8,100,000,000	WELL PURG	ING	GA to the dispersi		
Table 1	PURG	E VOLUME				PURGE	METHOD	
Casing Dia	meter (D in ind	ches):	2		X Bailer - Type:	P.V.C.		
	of Casing (TI				Submersible - Type	9:		
	el Depth (WL in Volumes to b	n ft BTOC):	23-16		Other - Type:			
NO. OF WEIL	volumes to b	e purgeu (# v	<u>/</u>			I IMP INTAKE	SETTING	e iii wek is fan de Jasi
	PURGE VOLUE	ME CALCULATIO	วท		Near Bottom	Can in Earl	Near Top	Park - kirk or met liftigades
Marie Color Street, 2014		WE CHECCEAN			' 	ا	TOP	
37.	23.160)×_3	Z 2x3 x004	08=46	gals	Other Depth in feet (BTOC):			-
TD (feet)				ulated Purge Volume	Screen Interval in feet		trom	to
(,,,,,,,,,,				(0.00).		
and the state of	Field Parame	ter Measuremen	it .					
		Conductivity	°c	Turbidity	PURGE TIME	E	PURGE R	ATE # // Date #
Minutes	рН	(μS)	Temp. 🗆 °F	11117/	Purge Start:	00	_ GPM: _	
Initial	68,0	400	19.7	41.2	Purge Stop:	200	_ GPM:	
1.5	7.22	880	20,2	> 1000	Elapsed:	Ihr.	·	
3.0	7.22	880	20.3	71000	PURGE VOLUME			
4.6	7.17	890	20.3	>100U	Volume:	5.0	gallons	
				-			•	
					Observations During F	uraina (Well	Condition. Co	lor. Odor):
				.,	clouds	Olan	j	
					Odorlus.	No	shew	• · · · · · · · · · · · · · · · · · · ·
					Discharge Water Disp		Sanitary S	ewer
leter S/N					Storm Sewer		Other	55 gall c
			e grana	WELL SAMPL	ING		- 4.45 of 2.55 of	
Bailer - Typi	e: <u>D15</u> 0	منعمة لا		Sec. 3. 14	Sample Time:	120	0	
Sample No.		Volume/Cont. Analysis Hequested		Preservatives	Lab	Co	omments	
	(8015 modified)	3 VO AS	MO'5	30874	1+01	Sey		
	((8020)	.).		.		'	-	
MTBE (8 人かんしょ		1-800ml			alone	 		
	alinity!	ル '	,	t.	NONE			
Mether	u	3 VONS	•	Y	None	4		
						ļ		
						<u></u>		
			QUA	LITY CONTROL S	AMPLES			
	<u>a Maran Indonesia da </u>			Diamir	·			
	Ouplicate Sample	es		plank s	Samples	1	Other Sar	nples
	Duplicate Sample	es upl. Sample No.	Тур		Sample No.	Туре		ample No.
C	Duplicate Sample		Тур		` I	Туре		