VUN 2 0 2002

To:

Mr. Don Hwang

Alameda County Environmental Health Services

1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

From:

David Nanstad

Harding ESE

28 Second Street, Suite 700 San Francisco, California 94105

Date:

June 7, 2002

Subject:

First Quarter 2002 Quarterly Monitoring Report

BPS Reprographic Services Facility

1700 Jefferson Street Oakland, California

Project Number:

53087 Task 4

Dear Mr. Hwang,

This memo is to inform you that the attached report is being submitted past the typical due date because of delays associated with contract renewal between BPS Services and Harding ESE. I informed you that the report would be submitted after the typical due date during our April 12, 2002, telephone conversation. During our telephone conversation, you indicated that it was acceptable to submit the report past the due date and to include with the report the explanation I described during our telephone conversation.

The remaining quarterly reports for 2002 are back on schedule for delivery to you by their respective due dates. BPS Reprographic Services and Harding ESE appreciates your patience on this matter.

Please feel free to call me with any questions at (415) 278-2118.

DSN/1Q02-DSNanstad

Attachment:

Quarterly Groundwater Remediation and Monitoring Report

January 1 through April 23, 2002 BPS Reprographic Services Facility

1700 Jefferson Street Oakland, California

Harding ESE, Inc.

28 Second Street Suite 700

San Francisco, CA 94105 Telephone: 415/543-8422 Fax: 415/777-9706

Home Page: www.mactec.com

June 7, 2002

Project 53087.4

JUN 2 0 2002

Mr. Jeff Christoff Blue Print Service Company 149 Second Street San Francisco, California 94105

Quarterly Groundwater Remediation and Monitoring Report January 1 through April 23, 2002 BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dear Mr. Christoff:

Harding ESE, Inc, (Harding) presents this quarterly status letter-report on the groundwater monitoring and remedial activities at the BPS Reprographic Services (BPS) facility located at 1700 Jefferson Street in Oakland, California (Plate 1). This letter-report covers the period from January 1 through April 23, 2002, and was prepared to satisfy the quarterly groundwater monitoring requirements of the Alameda County Department of Environmental Health Services (County).

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987 and a preliminary soil and groundwater investigation indicated that a release of fuel into the subsurface had occurred. Three groundwater-monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the groundwater and to determine the direction of groundwater flow. Free phase hydrocarbon (FPH) was found in MW-1. Groundwater level measurements indicated that the local groundwater gradient was in a north to northwest direction.

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present BPS facility and, in January 1988, two additional wells, MW-1A and MW-4, were installed as groundwater extraction wells. Harding also installed one offsite monitoring well, MW-5, in August 1988 and a second offsite well, MW-6, in April 1996. The monitoring well locations are shown on Plate 1.

In 1992, a groundwater extraction system was constructed at the site to remove FPH from the groundwater surface. Groundwater was extracted from MW-1A and MW-4 and passed through an oil-water separator that removed the FPH. The water was then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrients were supplied to the water within the bioreactor to facilitate microbial growth. The treated water from the bioreactor was pumped in batches of approximately 500 gallons through three granular activated carbon vessels before discharge under a wastewater discharge permit from the East Bay Utility District to the sanitary sewer. The treatment system processed approximately 1,385,490 gallons of groundwater and an estimated 5,062 pounds of FPH were recovered.

By 1999, the oil-water separator was no longer recovering FPH and FPH was no longer present in any of the groundwater monitoring wells. Dissolved hydrocarbon concentrations were decreasing and Harding requested approval from The County to terminate groundwater extraction and to modify the remediation technique to insitu-bioremediation using an oxygen-releasing compound (ORC™). ORC™ is manufactured and distributed by Regenesis, Inc.; its purpose is to increase the concentration of dissolved oxygen (DO) in the groundwater and to augment the ability of naturally occurring microbial organisms in the groundwater to biodegrade the dissolved petroleum hydrocarbons. The County approved this plan in a letter dated September 28, 1999, following the submittal of an ORC™ calculation sheet and a Groundwater Monitoring Plan, dated September 23, 1999.

Harding implemented the *in situ* remediation technique by placing ORC™ in treatment wells: MW-1A, MW-3, MW-4, and MW-5 on September 29, 1999. The ORC™ is contained in fabric "socks" which release oxygen over time until the compound's oxygen releasing potential is depleted. Harding installed five socks in each treatment well at the approximate depth of the well's screened interval. The Groundwater Monitoring Plan outlined procedures for groundwater sampling using a non-purge method approved by the Regional Water Quality Control Board in a letter dated January 31, 1997. The first quarter that the new Groundwater Monitoring Plan was implemented, sampling included duplicate sampling using both the purge and non-purge methods (see Harding's quarterly report, dated October 25, 1999).

FIRST QUARTER 2002 GROUNDWATER SAMPLING AND ANALYSIS

In accordance with the Groundwater Monitoring Plan, Harding removed the ORC™ socks approximately two weeks before the scheduled sampling event from Wells MW-3 and MW-5 on April 10, 2002. The dissolved oxygen (DO) was measured in-situ in wells MW-3, MW-5, MW-1 and MW-6. The DO measurements are presented in Table 1.

On April 23, 2001, Harding conducted the quarterly groundwater sampling of wells MW-1, MW-3, MW-5, and MW-6 using the non-purge method outlined in the Groundwater Monitoring Plan. Prior to

sampling, Harding measured the depth to groundwater from the top of casing (TOC) of each well using an electronic water level indicator. These measurements are displayed on Plate 2 and tabulated in Table 2. To collect the groundwater samples, Harding raised dedicated Teflon tubing contained in each well until the submerged end of the tubing was 2 to 4 feet below the groundwater surface and connected the dry end of the tubing to a peristaltic pump with silicon tubing. New silicon tubing was used to sample each well. After removing the approximate volume of groundwater equal to the volume capacity of the Teflon tubing, Harding measured the groundwater's conductivity, pH, DO, and temperature and collected a sample in laboratory provided 40-milliliter vials. The groundwater parameter measurements are also presented in Table 1.

Immediately after sample collection, Harding labeled and stored the samples in a cooler with ice. The groundwater samples were kept chilled until submitted to Sequoia Analytical Laboratory (Sequoia), a California state-certified laboratory, under chain-of-custody protocol for the following analyses:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015 modified;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) in accordance with EPA Method 8020.
- Methyl tertiary butyl ether (MTBE) in accordance with EPA Method 8020 with confirmation of detections by EPA Method 8260.

The analytical results are displayed on Plates 3 and 4. The laboratory reports are presented in the Appendix.

Upon completion of the groundwater sampling, Harding installed 5 new ORC™ socks in well MW-3 and MW-5. Harding left the ORC™ socks in MW-1A and MW-4 undisturbed where they will remain until the next quarterly monitoring event. Presently, the ORC™ socks are replaced in the treatment wells on six-month intervals.

DISCUSSION

As shown in Table 2 and on Plate 5, the groundwater surface elevation increased an average of 0.82 feet across the site as compared to last quarter's measurements. Using the groundwater elevations from MW-3, MW-5, and MW-6 as measured on April 23, 2001, groundwater contours were created and are shown on Plate 2. During the first quarter 2002 monitoring event no groundwater elevation data was collected from monitoring point MW-1, however, groundwater elevation data from MW-1 will continue to be collected next quarter. Based on the groundwater elevations, the groundwater gradient ranges from 0.005 to 0.007 ft/ft from the west to southwest. At the time MW-5 was constructed, the groundwater flow direction was reportedly north to northwest, and MW-5 was considered a downgradient well. However, presumably because of the construction of new buildings in the immediate vicinity, which

extend below the groundwater surface, recent groundwater monitoring has indicated the groundwater flow has been in a west to southwest direction.

Table 3 displays a summary of historical groundwater sample results through September 29, 1999, when the typical purge and sample protocol was terminated. Table 4 displays historical groundwater sample results since instituting *in situ* bioremediation and a non-purge sampling protocol. Plate 3 and Plate 4 present the sample results from this quarter's sampling event.

As shown on Table 4 and Plate 3, concentrations of TPH-g, BTEX and MTBE remained within the range of historical values for all the wells sampled. However, the groundwater sample collected from MW-3 contained the lowest concentration of Xylenes (total) monitored to data at 1.4 μ g/L (detection limit 0.5 μ g/L) since monitoring of this well began in August, 1991.

A laboratory provided trip blank consisting of organic free water was transported to and from the sampling site with the samples described above. The trip blank was analyzed for TPH-g, BTEX and MTBE with the groundwater samples using EPA Method 8015M/8020M. The trip blank was found to be free of contamination.

The DO content in the groundwater in wells MW-3 and MW-5 immediately following the removal of the ORC™ socks were 0.6 and 0.2 milligrams per liter (mg/l) respectively. The DO content in both wells remained approximately the same after two weeks (0.4 mg/L in well MW-3 and 0.9 mg/L in well MW-5). The low DO concentration upon removal of the ORC™ socks suggests that the ORC™ socks were depleted and ready to be replaced as discussed under the Recommendations section of this report.

RECOMMENDATIONS

Harding recommends continued quarterly monitoring utilizing the procedures outlined in our Groundwater Monitoring Plan. ORC™ socks will continue to be replaced on six-month intervals to promote continued biodegradation of the residual petroleum hydrocarbons. Based on this interval, Harding will replace the ORC™ socks in MW-3 and MW-5 next quarter.

Harding recommends that Blue Print Services send a copy of this report to the following address:

Mr. Don Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577

While under contract to BPS, Harding will continue to provide quarterly groundwater monitoring and reporting as required by The County.

If you have any questions, please contact the undersigned at (415) 278-2118.

Sincerely,

HARDING LAWSON ASSOCIATES

David S. Nanstad Project Engineer

Miles Grant, R.G. Senior Geologist

DSN Novmain:/Cityblue/1q02

4 copies submitted

Attachments:

Table 1 - Groundwater Parameters

Table 2 - Groundwater Elevation Data

Table 3 - Historical Groundwater Monitoring Analytical Results - Using Purge Method

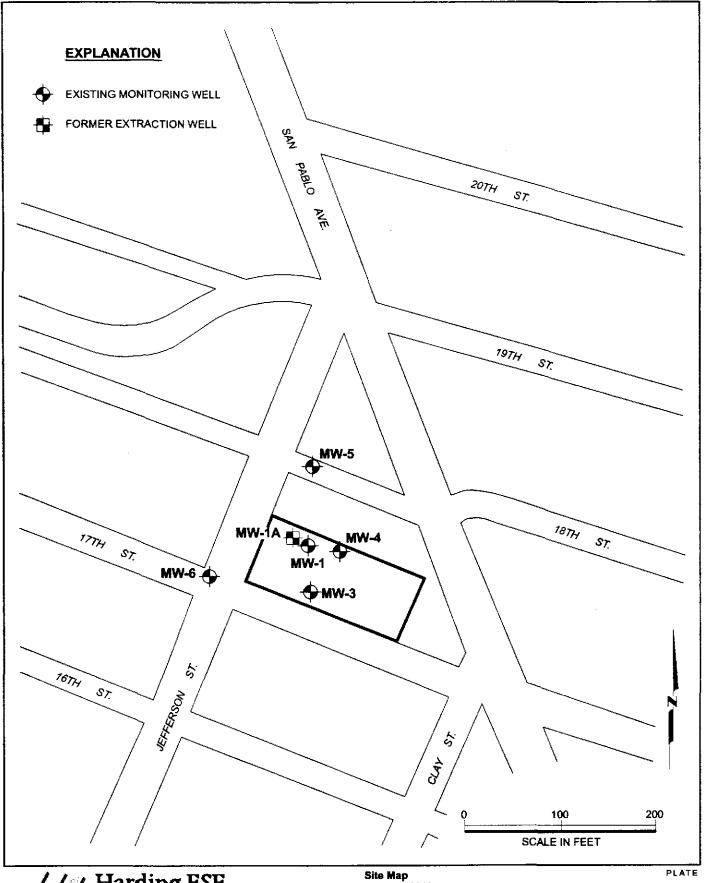
Table 4 - Groundwater Monitoring Analytical Results - Non-Purge Method

Plate 1 – Site Map

Plate 2 - Groundwater Contours, December 26, 2001

Plate 3 - TPH-g, BTEX and MTBE Concentrations in Groundwater, December 26, 2001

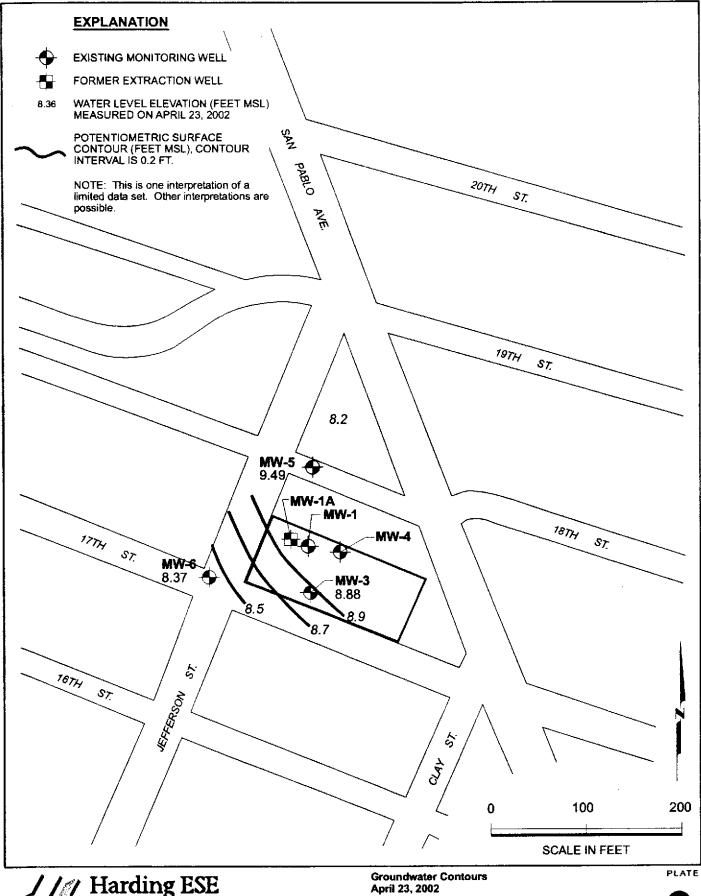
Plate 4 - BTEX and DO Results


Plate 5 – Groundwater Elevation Data

Appendix A - Laboratory Reports

Appendix B – Groundwater Sampling Forms

Table B1. Sample Location/Sample Description Cross-Reference


Harding ESE A MACTEC COMPANY

Site Map April 23, 2002 1700 Jefferson Street BPS Reprographic Services Facility Oakland, California

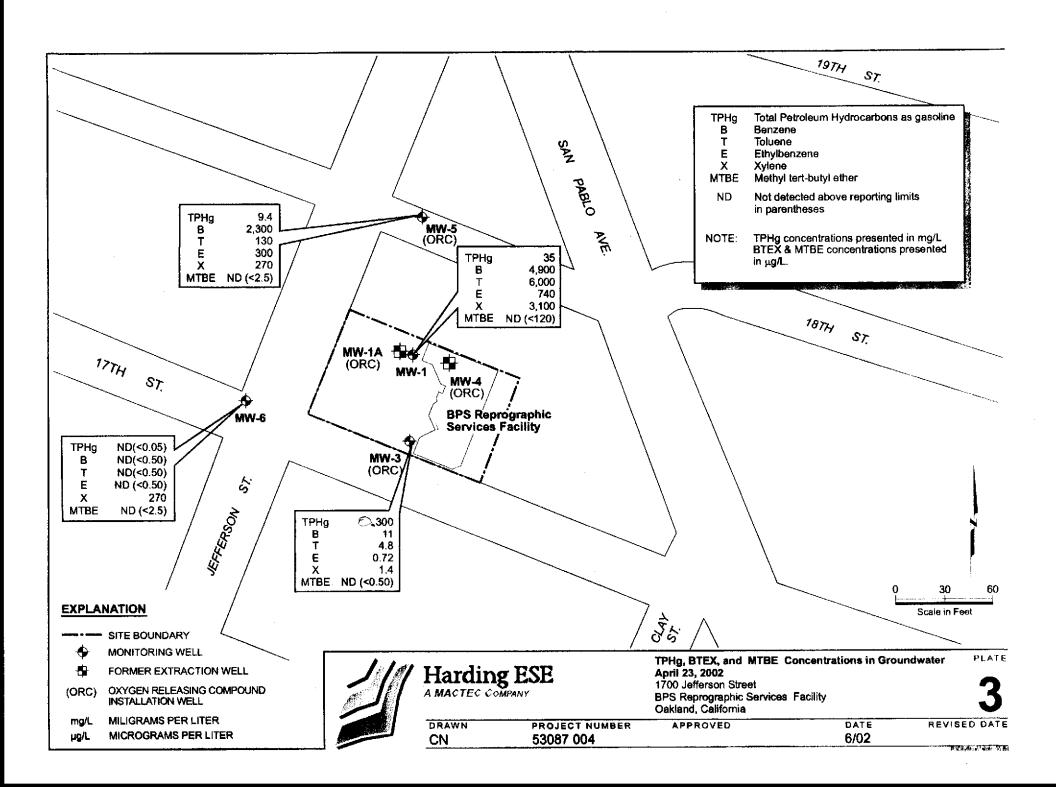
4

DRAWN CN PROJECT NUMBER 53087 004 APPROVED

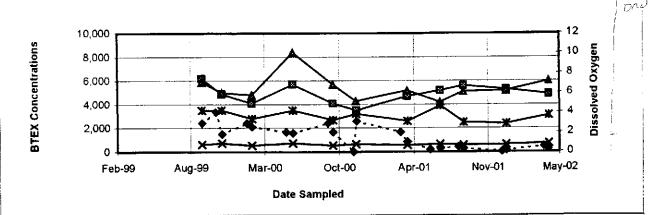
DATE 6/02 REVISED DATE

Harding ESE A MACTEC COMPANY

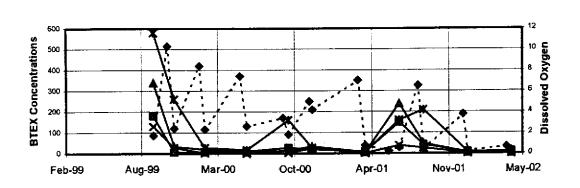
1700 Jefferson Street BPS Reprographic Services Facility Oakland, California

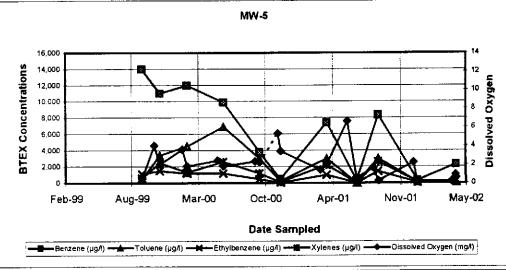

DRAWN CN

PROJECT NUMBER 53087 004


APPROVED

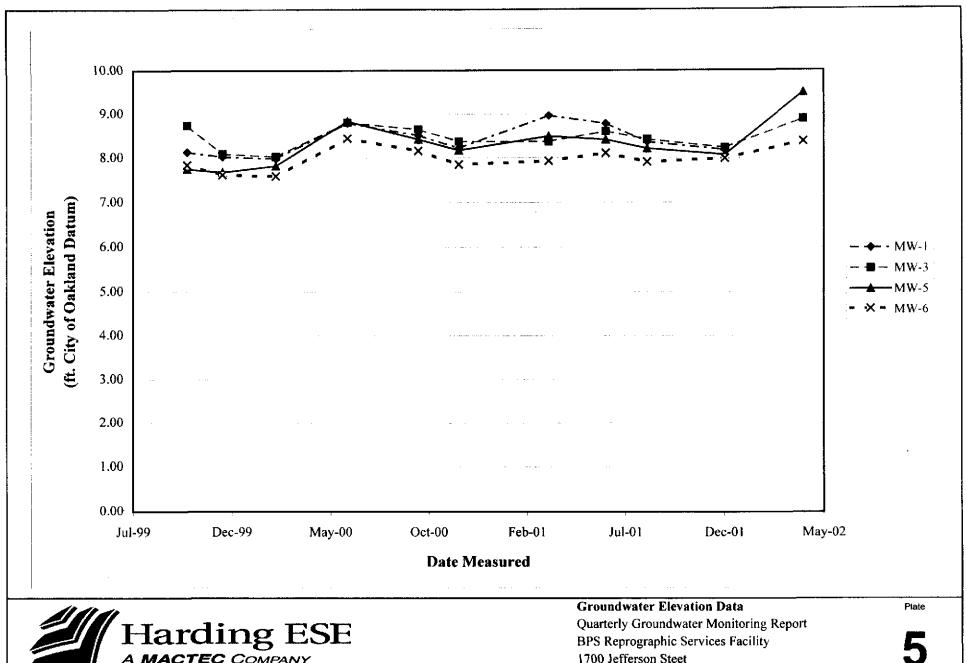
DATE 6/02


REVISED DATE



MW-3

Date Sampled



BTEX and DO Results

Quarterly Groundwater Monitoring Report BPS Reprographic Services Facility 1700 Jefferson Steet Oakland, California

4

Drawn by	JOB NUMBER	APPROVED	DATE	REVISED DATE
DSN	53087.004		4/24/02	

JOB NUMBER

53087.004

DRAWN

DSN

1700 Jefferson Steet

REVISED DATE

Oakland, California

APPROVED DATE 4/24/02

Table 1. Groundwater Parameters BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dissolved Oxygen (mg/l)	MW-1	MW-3	MW-5	MW-6
129-99	29	17	0.4	1.8
11-5'99	4.0	10.3	4.0	2.8
11/22/99	1.8	2.4	20	3.2
I-28/00	2.9	8.1	3.6	2.2
2/11/00	2.5	2.3	1.8	3.5
5/12/00	2.0	7.4	2.4	1.7
5/30/00	1.9	26	1.8	3.2
9/1/00	2.9	3.4	2.3	2.7
9/15/00	2.0	1.8	2.2	3.8
11/9/00		5.0	5.3	
11/17/00	3.1	4.2	3.4	6.0
3/15/01	2.0	7.0		
			1.4	2.1
4/2/01	1.0	0.8	2.0	1.0
6/1/01	0.2	0.2	6.6	0.3
6/28/01	0.3	0.6	0.5	0.7
8/16/01	0.5	6.5	1.6	0.8
8/30/01	0.3	0.4	0.2	0.5
12/14/01	0.03	3.8	2.2	0.2
12/26/01	0.16	0.3	0.2	0.2
4/10/02	0.55	0.6	0.2	0.4
4/23/02	0.30	0.4	0.9	0.4
	0.50	V.→	0.9	V.J
REDOX (mvolts)	275	102	120	300
5/30/00 6/15/00	-322 360	197	-128 90	203
9/15/00	-269	3	-89	206
11/17/00	64	178	296	230
4/2/01	-194	26	-36	102
6/28/01	-310	-283	-360	107
8/30/01	NA	NA	NA	NA
12/26/01	12	11	11	13
4/23/02	3	62	-299	1.58
Temperature (deg F)				
9/29/99	67.0	72.6	67.7	73.8
11/22/99	66 4	62.9	65.0	69.8
2/11/00	61.3	63.2	62.0	68.5
5/30/00	77.7	74.8	76.3	76.2
9/15/00	54.4	74.8 64.3		
			64.7	67.0
11/17/00	54.5	58.1	68.1	65.9
4/2/01	63.5	64.9	66.2	66.4
6/28/01	73.0	71.2	74,7	74.3
8/30/01	74.8	77.6	78.3	78.7
12/26/01	65.7	65.8	65.8	65.1
4/23/02	64.4	69.8	37.1	71.6
p H				
9/29/99	8.39	8.53	8.43	8.44
11/22/99	6.86	8.42	6.84	6.79
2/11/00	6.80	6.94	6.83	6.72
5/30/00				
	7.02	7.35	7.54	7.56
9/15/00	7 06	7.54	6.76	6.62
11/17/00	7.37	7.69	7.12	7.34
4/2/01	6.98	6.61	7.07	6.96
6/28/01	6.90	6.74	6.78	6.83
8/30/01	1.85	7.91	7,9	8.41
12/26/01	6.23	6.91	7.11	6.72
4/23/02	6.90	6.95	6.94	6.86
Specific Conductance (µS/cm)				
9/29/99	976	880	1,577	966
11/22/99	1.004	1.500	1,352	1.038
2/11/00	992			
		1,327	1,275	1,149
5/30/00	845	1,020	758	924
9/15/00	800	917	989	1,009
11/17/00	785	970	742	886
4/2/01	725	365	839	821
6/28/01	1080	704	876	1021
8/30/01	924	1015	975	931
12/26/01	848	496	333	891
	922	601	848	977
4/23/02				

Baseline dissolved oxygen measurement taken on 09/29/99, prior to initial installation of oxygen releasing compound

mg/l = milligrams per later mvolts = millivolts deg F = degrees Fahrenhest µS/cm = micro-ohms per centimeter NA = Not Available

Table 2. Groundwater Elevation Data BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

	MV	V-1	MV	V-3	MV	V-5	MV	V -6	Average
	TOC Elev.	32.36	TOC Elev.	31.77	TOC Elev.	30.56	TOC Elev.	31.26	Change
Date	Water	Since							
Sampled	Level	Elevation	Level	Elevation	Level	Elevation	Level	Elevation	Preceding
3/6/96	NM		24.79	6.98	23.53	7.03	NA		Quarter
6/11/96	FP		25.60	6.17	23.78	6.78	25.16	6.10	-0.53
9/19/96	FP		26.09	5.68	24.48	6.08	25.76	5.50	-0.60
12/23/96	FP		FP		24.83	5.73	25.88	5.38	-0.23
3/27/97	FP		FP		23.82	6.74	24.78	6.48	1.06
6/4/97	26.41	5.95	25.11	6.66	23.92	6.64	24.60	6.66	0.04
9/26/97	26.80	5.56	25.41	6.36	24.29	6.27	24.80	6.46	-0.32
12/22/97	26.00	6.36	24.91	6.86	24.02	6.54	24.71	6.55	0.42
3/31/98	26.06	6.30	24.05	7.72	22.78	7.78	23.75	7.51	0.75
6/18/98	25.60	6.76	23.71	8.06	22.51	8.05	23.22	8.04	0.40
8/28/98	25.45	6.91	23.70	8.07	22.74	7.82	22.23	9.03	0.23
12/2/98	24.92	7.44	23.60	8.17	23.16	7.40	23.72	7.54	-0.32
3/10/99	24.90	7.46	22.65	9.12	22.82	7.74	23.54	7.72	0.37
6/30/99	25.53	6.83	23.07	8.70	22.41	8.15	23.04	8.22	-0.04
9/29/99	24.23	8.13	23.03	8.74	22.81	7.75	23.42	7.84	0.14
11/22/99	24.33	8.03	23.68	8.09	22.88	7.68	23.64	7.62	-0.26
2/11/00	24.38	7.98	23.74	8.03	22.74	7.82	ŀ	7.59	0.00
5/30/00	23.57	8.79	22.97	8.80	21.73	8.83	22.82	8.44	0.86
9/15/00	23.85	8.51	23.12	8.65	22.14	8.42	23.10	8.16	-0.28
11/16/00	24.14	8.22	23.40	8.37	22.39	8.17	23.41	7.85	-0.28
4/2/01	23.40	8.96	23.40	8.37	22.07	8.49	23.33	7.93	0.29
6/28/01	23.58	8.78		8.60	22.15	8.41	23.15	8.11	0.04
8/30/01	24.00	8.36	23.35	8.42	22.35	8.21	23.35	7.91	-0.25
12/26/01	24.18	8.18	23.54	8.23	22.49	8.07	23.27	7.99	-0.11
4/23/02	NM	NM	22.89	8.88	21.07	9.49	22.89	8.37	0.82

TOC Elev. = top of casing elevation

NM = not monitored FP = free product

- = no data collected

NA = not available (MW-6 had not been installed yet)

Table 4. Groundwater Monitoring Analytical Results ~ Non-Purge Method BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

TPHg (mg/l)	9/29/99	11/22/99	2/11/00	5/30/00	9/15/00	11/16/00	4/2/01	6/28/01	8/30/01	12/26/01	4/24/02
MW-1	-14	24	19	19	20	18	19	39	31	34	35
MW-3	4.1	3.1	0.54	0.49	1.5	1.3	0.17	4.9	3.1	0.95	5 (300
MW-5	10	30	23	19	24	1.8	15	3.6	34	1.9	9.4
MW-6	ND- 0.5	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND~0.05	ND<0.05	ND<0.05	0.066	ND 0.05
Benzene (µg/l)			÷								
MW-1	6,200	4,900	4,100	5,700	4,100	3,500	4,700	5,200	5,600	5,300	4,900
MW-3	180	6,5	8.3	11	28	20	9	150	42	8	11
MW-5	14,000	11,000	12,000	9,900	3,800	470	7,400	300	8,300	300	2,300
MW-6	ND≤0.3	ND<0.3	ND: 0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30	ND<0.50	ND<0.50	3.6	ND 10.50
Toluene (μg/l)											
MW-1	5,900	5,000	4,800	8,400	5,700	4,300	5,200	4,200	5,100	5,200	6,000
MW-3	340	33	20	5.6	14	34	6.2	240	48	5.2	48
MW-5	470	3,400	4,500	6,900	3,000	220	3,000	11	3,000	110	130
MW-6	ND<0.3	ND<0.3	ND<0.3	ND≤0.3	ND<0.3	ND<0.30	ND<0.30	2.9	ND<0.50	3.6	NID 0.50
Ethylbenzene (µg/l)											
MW-1	620	730	530	730	540	640	570	6 60	560	630	740
MW-3	130	27	2.4	0.45	2.6	25	1.4	38	26	1.1	0.72
MW-5	1,100	1,500	1,200	1,200	460	39	1000	16	1,400	55	300
MW-G	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30	ND<0.50	ND<0.50	ND: 0.50	ND: 0.50
Xylenes (μg/l)											
MW-1	3,500	3,500	2,800	3,500	2,700	3,200	2,600	3,900	2,500	2,400	3,100
MW-3	580	260	28	17	160	28	8.1	160	210	7	1.4
MW-5	600	2,500	1,300	2,600	1,200	100	2,200	15	2,600	120	270
MW-6	ND<0.6	ND<0.6	ND~0.6	ND<0.6	ND<0.6	ND<0.60	ND<0.30	2.7	ND<0.50	8.7	ND: 0.50
MTBE (μg/l) (EPA Me	thod 8020)										
MW-1	ND<250	ND<100	6.6	ND≤5,0 ¹	ND<12 1,2	ND<40 ^{1,2}	50 ¹	8.5	ND<100 ^{1,2}	ND 120	ND≤120
MW-3	1.4	ND<1.0	31	ND≤5.0 ¹	ND<5 1	ND<5 1	77 1	ND<2	ND<1.2 ¹	$ND \le 0.50^{1}$	ND<0,50
MW-5	ND<100	ND<100	6.6	ND<200	ND<10 1,2	ND<5 1	ND<50 ¹	4.4 ¹	ND<50 ¹	ND-10 ³	ND<50
MW-6	ND<1.0	0.1>C(N	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5 ^{1,3}	17 1	ND<2.5	ND: 2.5	ND<2.

mg/l = milligrams per liter

μg/l = micrograms per liter

ND = Not detected above the reporting limit following the less than sign

MTBE = methyl t-butyl ether

¹ Result of MTBE confirmation by EPA Method 8260.

² Reporting limits have been elevated due to matrix interference.

³ Detection limit = 5 ug/L, Backup sample analyzed after hold time had a result of ND<5 μ g/l.

Table J. Historical Groundwater Monitoring Analytical Results - Using Purge Method BPS Repregraphic Services Facility 1780 Jefferson Street

Oakland, California

							Date Sample	ed .								······································				Date Samp	e d					
TPHg (mg/l)	8/1/91	9/30/92	3/30/93	1/13/94	4/13/94	6/29/94	12/8/94	4/3/95	6/27/95	9/19/95	12/13/95	3/6/96	6/11/96	9/19/96	12/23/96	3/27/97	6/4/97	9/26/97	12/23/97	3/31/98	6/18/99	8/28/98	12/2/98	\$10/99	6/30/99	9/29/99
MW-1	FP	FP	ΕP	ŀР	PP	FP	FP	NA	ŅĀ	NA	NA	NA	FP	FP	FP	ή.	ĄΒ	59	41	44	32	26	26	26	}.K	21
MW-IA	350	FP	FP	FP	170	95	190	67	53	52	62	200	140	100	FP	66	54	73	66	51	50	15	41	10	18	NA
MW-3	74	FP	FP	FP	FP	39	4,600	51	20	6.2	19	7	16	6	FP	FP	85	47	32	32	16	17	3.2	9.6	79	5.0
MW-4	86	кР	PΡ	FP	SR	10	92	35	13	14	11	110	260	95	FP	3.7	24	41	48	NA	25	48	10	11	8 K	NA
MW-3	120	51	74	80	6.3	fel	19	51	41	50	45	51	48	48	45	44	35	36	39	48	17	16	15	23	7.7	1.1
MW-6													ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	MO(0.05)	MD(0.03)	ND(0.05)	M17(0.02)	ND (0.05)	ND(0 05)	NEMO 05)
Benzene (µg/l)																										
MW-1	FP	FP	FP	FР	FP	14	FΡ	NA	NA	NA	NA	NA	FP	FP	FP	PP		6,000	6,800	8,300	1,100	8,600	9,200	8,200	7,000	9,200
MW-1A	17,000	FP	PР	FP	17,000	16,000	13,000	11,000	[1.000	8,900	9,900	14,000	18,000	16,000	FP	12,000	11,000	10,000	10,000	9,100	11,000	1,100	8,500	2,300	9.4(X)	NA
MW-3	1,600	FP	FP	FP	FP	3,200	1,500	1,100	270	70	220	120	170	45	FP	FP	8,500	610	640	690	180	84	39	86		120
MW-4	1,500	PP	FP	FP	1,500	1,100	1,700	1,200	1,300	2,200	630	2,600	6,600	9,900	FP	2,600	2,600	2,900	6,000	NA	2,000	9,700	1,700	2,300	1,800	NA
MW-3	20,000	13,000	16,000	19,000	14,600	29,000	13,000	15,000	12,000	1,600	13,000	15,000	12,000	12,000	12,000	11,000	8,900	7,900	13,000	10,000	9,500	5,400	8,460	[4,000	5,200	9,600
MW-6		•-	••	**		**	-1			••	••		ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.50)	ND(0.30)	ND(0.30)	ND(0.30)	NDIO 30)
Toluene (µg/l)									-											1 800		7.10	4 1000	f		10.00
MW-1	FP	FP	FP	FP	FP	FP	FP	NA	NA	NA	NA	NA	FP	FP	FP	14,000	4,500	3,000	3,000	3,700	3,800	2,300	4,300	5,900 1.900	5,800	10,500
MW-IA	31,000	FP	FP	FP	31,000	21,000	21,000	13,000	9,900	9,200	11,000	22,000	28,000	22,000	FP	13,000	12,000	16,000	16,000	11,000	15,000	830	11,000	1,900	7,800	NA NA
MW-3	4,600	FP	FP	FP	FP	2,900	4,200	2,300	550	140	480	170	270	30	FP	FP	13,000	6,000	5,300	4,800	1,500	1,100	85		130	3-10
MW-4	6,200	FP	FP	FP	2,500	290	4,100	3,400	1,600	2,100	470	3,600	19,000	19,000	FP	6,900	3,200	3,000	11,000	NA	460 310	11,000	610 120	2,100	3,000 270	NA 710
MW-3	14,000	5.900	5,000	8,200	3,500	5,400	3,800	2,200	2,100	2,700	2.100	2,800	2,900	4,500	2.200	1,100	360	270	500	400		160			ND(0,30)	
MW-6	. (1)	••	•-	-			••						ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	NIX(0.5)	MD(0.3)	MD(0.30)	MD(0.50)	14(2(0.30)	(412(0), 50)	PILICH, MA	[11] (12) (12)
Ethylbesizene (µ	T .	4.44	1395	200			1/11	. 314	NI A	NIA	213	27.6	1/4)	PD	ET:	Er.	1.400	1.600	1.400	001.1	5.50	7.10	820	870	950	1.200
MW-I	FP	FP	FP	PP	PP	FP	FP 1.400	NA DIG	NA 500	NA 710	NA TO	NA 2.700	FP 2.800	FP 2.100	FP	FP 1.400	1,500	1,600 1,400	1,400 1,400	1,100	870	31	720	1.600	660	NA.
MW-IA MW-3	3,000 670	FP FP	FP FP	FP FP	2,100 FP	1,500 560	6,000	910 580	190	710 68	790 140	49	2,800 68	15	FP FP	1,400 FP	2,400	930	B00	B70	490	430	25	250	200	2.40
MW-4	1.000	FP	FP	FP	520	51	310	280	77	110	140	780	3,700	2,000	FP	540	140	350	580	NA.	ND(15)	890	ND(15)	88		NA.
MW-5	1,900	1,400	1,800	1.400	1.500	2,800	1,800	2,800	1.400	2,000	16,000	2.000	2.000	2,300	2,700	1,900	1.500	1,500	2.900	2,000	420	1,160	1,500	1.900	1100	1.100
MW-6	1,200	1,400	1,000	1,400	1,500	2,600	1,000	2,000	1.400	2,000	10,000	1,000	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	0.5	-					ND(u 3u)	
Xylenes (µg/t)			-	-									1417(0.5)	,	145(0.5)	140(0.0)	110(4.3)	142(0.2)	0.5	110(0.0)		,,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
MW-I	PP	FP	βĖ	FP	FP	PP	ΙP	ÑĀ	NA	NA	NΑ	NA	FP	FΡ	FP	FΡ	11.000	B.600	6,600	4,300	3,000	2,100	2,800	3.500	2,500	5,500
MW-1A	22.000	FP	FP	FP	14.000	12.000	11,000	9.800	6,300	6.800	5,300	22,000	19,000	14,000	FP	100	7.200	8,500	12,000	6,800	5,800	3.000	6.700	2,300	4 100	NA
MW-3	4,300	FP	FP	FP	14,000	4.300	95,000	4,800	1,700	500	1,700	440	1,500	300	FP	FP	16.000	5,900	5,900	5,200	3,700	3.8(8)	300	2,400	1 800	1,300
MW-4	7,300	FP	FP	FP	3.200	3,400	5,400	5,800	1.800	2,100	1.800	10,000	28,000	13,000	FP	5,500	3,500	4,800	8,200	NA	6,400	5,000	2,100	1.600	2,700	NA
MW-5	4,900	2,600	2,700	2,700	2,100	4.500	2,900	4,500	1,600	2,100	1,900	2,400	2,700	4,000	6,500	2,800	1,700	1,300	1,700	2,200	850	960	8-10	1,100	690	1,100
MW-6	.,,,,,,	-,	-12			.,			*,	-,			ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)		ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)
MΓΒΡ. (μg/l)														- (-,	- (-,		- (-)		- 1-7							
MW-1	NA	NA	NA	NA	N.A.	NA	NA	NΑ	NA	NA	NA	NA	ÑA	NA	FP	FP	ND(500)	ND(500)	300	420	ND(50)	MD(50)	ND(50)	ND(50)	ND(25)	ND(250)
	NA	NA	NA.	NA.	NA.	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	1,800		ND(500)	1,900	300	ND(50)	ND(50)	ND(50)	ND(50)	ND(25)	NA
MW-IA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	FP	FP	ND(500)	ND(100)	ND(300)	150	ND(25)	ND(50)	ND(50)	ND(25)	ND(25)	10
MW-IA MW-3	NA.																		270	NA	300(40)	1.771.4.0			ND(25)	NA
	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,400	ND(300)	MEGODI	2/0	NA.	ND(50)	ND(50)	ND(50)	ND(25)	2417(23)	NA.
MW-3			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	600	300	ND(100)	ND(500)		,350	ND(10)	ND(50)	ND(50)	ND(50)		

THEE = total petroleum hydrocartions as gasolice MTBE = mathyl i-buryl ather (mg/l) milligrams per liter

(µg/t) micrograms per liter

ND = Not detected above the reputing limit in parenthesis

NA ≃ Not snelyzed

FP = free Product - well not sampled -- * Wall did not exial at date indicated TPHg = total patroleum hydrocarbons es gasoline
MTBE = methyl t-butyl ether

(mg/l) milligranus per lita (µg/l) micrograms per liter ND = Not detected above the reporting inner in parenthesis

NA ~ Not sawly red
PP = Proc Product - well not sampled -- - Welt did not exist at data undecated

Harding ESE - SF

Project: BPS Services, Oakland, CA

28 2nd Street, Suite 700 San Francisco CA, 94105 Project Number: 53087.004 Project Manager: David Nanstad Reported: 05/08/02 15:56

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
53087-4 (P204517-01) Water Sam	pled: 04/23/02 13:20	Received:	04/24/02	14:30					
Gasoline (C6-C12)	ND	50	ug/l	1	2050038	05/02/02	05/02/02	EPA 8015M/8020M	
Benzene	ND	0.50	"	ŋ	**	**	"	н	
Toluene	ND	0.50	19	н	*	,	п	н	
Ethylbenzene	ND	0.50		H	79	17	н	ıi .	
Xylenes (total)	ND	0.50	"	ય	•	n	Ħ	Ħ	
Methyl tert-butyl ether	ND	2.5	"		н	п	Ħ	<u>, </u>	
Surrogate: a,a,a-Trifluorotoluene		109 %	65-	-135	*	14	#	r	
Surrogate: 4-Bromofluorobenzene		104 %	65-	-135	*	D.	"	**	
53087-2 (P204517-02) Water San	pled: 04/23/02 14:42	Received:	04/24/02	14:30					
Gasoline (C6-C12)	300	50	ug/l	1	2050038	05/02/02	05/02/02	EPA 8015M/8020M	
Benzene	11	0.50	*	Ħ	н	=	*	•	
Toluene	4.8	0.50	**	π	н		#	**	
Ethylbenzene	0.72	0.50	•	×	н	**	•	•	
Xylenes (total)	1.4	0.50	*	11	n	#	*	Ħ	
Methyl tert-butyl ether	2.9	2.5	**	π	н	*	*	Ħ	
Surrogate: a.a.a-Trifluorotoluene		110 %	65-	-135	n	"	,,	*	
Surrogate: 4-Bromofluorobenzene		106 %	65-	-135	"	#	*	*	
53087-3 (P204517-03) Water San	pled: 04/23/02 16:36	Received:	04/24/02	14:30					
Gasoline (C6-C12)	9400	1000	ug/l	20	2050038	05/02/02	05/02/02	EPA 8015M/8020M	
Benzene	2300	10	n		н	"		•	
Toluene	130	10	H	II .	н	н	-	#	
Ethylbenzene	300	10	н	п	•	n	н	**	
Xylenes (total)	270	10	17	н	**	н	п		
Methyl tert-butyl ether	ND	50	н	н		н	н		
Surrogate: a,a,a-Trifluorotoluene		107 %	65	-135	"	"	"	**	
Surrogate: 4-Bromofluorobenzene		103 %	65	-135	,,	•	"	"	

1455 McDoweil Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - SF

28 2nd Street, Suite 700 San Francisco CA, 94105 Project: BPS Services, Oakland, CA

Project Number: 53087.004 Project Manager: David Nanstad Reported: 05/08/02 15:56

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
53087-1 (P204517-04) Water Sam	pled: 04/23/02 17:35	Received:	04/24/02.14	:30					
Gasoline (C6-C12)	35000	2500	ug/l	50	2050038	05/02/02	05/02/02	EPA 8015M/8020M	
Benzene	4900	25	IJ	17	**	11	н	10	
Toluene	6000	25	n	15	**	**	Ħ	n	
Ethylbenzene	740	25	n	н	**	n	n	n	
Xylenes (total)	3100	25	п	11	**	**	н	н	
Methyl tert-butyl ether	ND	120	"	11	**	*	*1		
Surrogate: a,a,a-Trifluorotoluene		106 %	65-13	5	"	π		n	
Surrogate: 4-Bromofluorobenzene		101 %	65-13	5	"	"	"	•	
53087-5 (P204517-05) Water Sam	pled: 04/23/02 17:57	Received:	04/24/02 14	:30					•
Gasoline (C6-C12)	ND	50	ug/l	1	2050079	05/03/02	05/03/02	EPA 8015M/8020M	
Benzene	ND	0.50	n	н	**	m	"	n	
Toluene	ND	0.50	п	н	п	п	**	N	
Ethylbenzene	ND	0.50	н	n	**	11	•	н	
Xylenes (total)	ND	0.50	**		*	•	"	n	
Methyl tert-butyl ether	ND	2.5	н	н	н	."	**	н	
Surrogate: a,a,a-Trifluorotoluene		103 %	65-13	5	"	"	"	*	
Surrogate: 4-Bromofluorobenzene		101 %	65-13	5	*	**	"	"	

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - SF

Project: BPS Services, Oakland, CA

28 2nd Street, Suite 700 San Francisco CA, 94105 Project Number: 53087.004 Project Manager: David Nanstad Reported: 05/08/02 15:56

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes.
53087-2 (P204517-02) Water Sampled	: 04/23/02 14:42	Received:	04/24/02	14:30					
Methyl tert-butyl ether	ND	0.50	ug/l	1	2050115	05/05/02	05/05/02	EPA 8260B	
Surrogate: Dibromofluoromethane		101 %	84-	122	п	11	"	н	

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - SF

Project: BPS Services, Oakland, CA

28 2nd Street, Suite 700 San Francisco CA, 94105 Project Number: 53087.004 Project Manager: David Nanstad Reported: 05/08/02 15:56

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Limit	CHILI		1.0001.					
Batch 2050038 - EPA 5030, waters									····	
Blank (2050038-BLK1)				Prepared	& Analyzo	ed: 05/02/	02		<u> </u>	
Gasoline (C6-C12)	NĐ	50	ug/l							
Benzene	ND	0.50	*							
Toluene	ND	0.50								
Ethylbenzene	ND	0.50	*							
Xylenes (total)	ND	0.50	**							
Methyl tert-butyl ether	ND	2.5	Ħ							
Surrogate: a,a,a-Trifluorotoluene	316		"	300		105	65-135	-		·····
Surrogate: 4-Bromofluorobenzene	311)*	300		104	65-135			
LCS (2050038-BS1)				Prenared	& Analyz	ed: 05/02/	02			
Gasoline (C6-C12)	2670	50	ug/l	2750		97	65-135			
Benzene	41.2	0.50	"	34.0		121	65-135			
Toluene	195	0.50	u	206		95	65-135			
Ethylbenzene	45.6	0.50	*	48.5		94	65-135			
Xylenes (total)	226	0.50	*1	244		93	65-135			
Methyl tert-butyl ether	72.2	2.5	я	54.5		132	65-135			
Surrogate: a,a,a-Trifluorotoluene	364		"	300		121	65-135			
Surrogate: 4-Bromofluorobenzene	328		"	300		109	65-135			
Matrix Spike (2050038-MS1)	Se	ource: P20450	7-01	Prepared	& Analyz	ed: 05/02/	02			
Gasoline (C6-C12)	2700	50	ug/l	2750	ND	98	65-135			_
Benzene	40.2	0.50	n	34.0	ND	118	65-135			
Toluene	191	0.50	-	206	ND	93	65-135			
Ethylbenzene	47.2	0.50	H	48.5	ND	97	65-135			
Xylenes (total)	223	0.50	н	244	ND	91	65-135			
Methyl tert-butyl ether	70.3	2.5	19	54.5	ND	129	65-135			
Surrogate: a.a.a-Trifluorotoluene	354		"	300		118	65-135			
Surrogate: 4-Bromofluorobenzene	330		W	300		110	65-135			

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - SF 28 2nd Street, Suite 700 San Francisco CA, 94105 Project: BPS Services, Oakland, CA

Project Number: 53087.004
Project Manager: David Nanstad

Reported: 05/08/02 15:56

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M - Quality Control Sequoia Analytical - Petaluma

		Reporting		Spike	Source	_	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	° •REC	Limits	RPD	Limit	Notes
Batch 2050038 - EPA 5030, waters										
Matrix Spike Dup (2050038-MSD1)	So	urce: P2045(7-01	Prepared	& Analyze	d: 05/02/0	02			
Gasoline (C6-C12)	2680	50	ug/l	2750	ND	97	65-135	0.7	20	
Benzene	38.4	0.50	•	34.0	ND	113	65-135	5	20	
Foluene	187	0.50	**	206	ND	91	65-135	2	20	
Ethylbenzene	45.4	0.50	n	48.5	ND	94	65-135	4	20	
Xylenes (total)	218	0.50	11	244	ND	89	65-135	2	20	
Methyl tert-butyl ether	61.6	2.5	n	54.5	ND	113	65-135	13	20	
Surrogate: a,a,a-Trifluorotoluene	339		"	300		113	65-135			
Surrogate: 4-Bromofluorobenzene	33 <i>1</i>		"	300		110	65-135			
Batch 2050079 - EPA 5030, waters										
Blank (2050079-BLK1)				Prepared	& Analyz	ed: 05/ <u>03/</u>	02			
Gasoline (C6-C12)	ND	50	ug/l							
Benzene	ND	0.50	н							
Toluene	ND	0.50	**							
Ethylbenzene	ND	0.50	19							
Xylenes (total)	ND	0.50	"							
Methyl tert-butyl ether	ND	2.5	п							
Surrogate: a,a,a-Trifluorotoluene	312		,,	300		104	65-135	_		
Surrogate: 4-Bromofluorobenzene	310		"	300		103	65-135			
LCS (2050079-BS1)				Prepared	& Analyz	ed: 05/03/	'02			
Gasoline (C6-C12)	2430	50	ug/l	2750		88	65-135			
Benzene	41.4	0.50	10	34.0		122	65-135			
Toluene	209	0.50	n	206		101	65-135			
Ethylbenzene	44.5	0.50	**	48.5		92	65-135			
Xylenes (total)	224	0.50	11	244		92	65-135			
Methyl tert-butyl ether	58.2	2.5	**	54.5		107	65-135			
Surrogate: a,a,a-Trifluorotoluene	352		"	300		117	65-135			
Surrogate: 4-Bromosluorobenzene	323		,,	300		108	65-135			

Harding ESE - SF

Project: BPS Services, Oakland, CA

28 2nd Street, Suite 700 San Francisco CA, 94105 Project Number: 53087.004 Project Manager: David Nanstad Reported: 05/08/02 15:56

Total Petroleum Hydrocarbons as Gasoline and BTEX by EPA 8015M/8020M - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2050079 - EPA 5030, waters					_					
Matrix Spike (2050079-MS1)	Sour	rce: P20451	7-05	Prepared	& Analyze	d: 05/03/0	02	<u> </u>		
Gasoline (C6-C12)	2440	50	ug/l	2750	ND	89	65-135			
Benzene	39.8	0.50	"	34.0	ND	117	65-135			
Toluene	209	0.50	"	206	ND	101	65-135			
Ethylbenzene	43.9	0.50	19	48.5	ND	91	65-135			
Xylenes (total)	220	0.50	19	244	ND	90	65-135			
Methyl tert-butyl ether	55.0	2.5	-	54.5	ND	99	65-135			
Surrogate: a,a,a-Trifluorotoluene	336		ır	300		112	65-135		•••	
Surrogate: 4-Bromofluorobenzene	315		**	300		105	65-135			
Matrix Spike Dup (2050079-MSD1)	Sou	rce: P20451	7-05	Prepared	& Analyz	ed: 05/03/	02			
Gasoline (C6-C12)	2540	50	ug/l	2750	ND	92	65-135	4	20	
Benzene	41.5	0.50	**	34.0	ND	122	65-135	4	20	
Toluene	217	0.50	••	206	ND	105	65-135	4	20	
Ethylbenzene	45.4	0.50	•	48.5	ND	94	65-135	3	20	
Xylenes (total)	228	0.50	**	244	ND	93	65-135	4	20	
Methyl tert-butyl ether	57.9	2.5	"	54.5	ND	104	65-135	5	20	
Surrogate: a,a,a-Trifluorotoluene	334		н	300		111	65-135			
Surrogate: 4-Bromofluorobenzene	312		*	300		104	65-135			

1455 McDowell Blvd, North Ste D Petaluma, CA 94954 . (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - SF

Project: BPS Services, Oakland, CA

28 2nd Street, Suite 700 San Francisco CA, 94105 Project Number: 53087.004 Project Manager: David Nanstad Reported:

05/08/02 15:56

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2050115 - EPA 5030 waters										
Blank (2050115-BLK1)	Prepared & Analyzed: 05/05/02									
Methyl tert-butyl ether	ND	0.50	ug/l							
Surrogate: Dibromofluoromethane	5.99		"	5.50		109	84-122			
LCS (2050115-BS1)				Prepared	& Analyze	ed: 05/05/	02			
Methyl tert-butyl ether	4.76	0.50	ug/l	5.00		95	79-118			
Surrogate: Dibromofluoromethane	5.84		"	5.50		106	84-122	*************************************	,	
Matrix Spike (2050115-MS1)	So	ource: P2045(7-12	Prepared & Analyzed: 05/05/02						
Methyl tert-butyl ether	5190	100	ug/l	1000	4200	99	79-118			
Surrogate: Dibromofluoromethane	5.78		н	5.50		105	84-122			
Matrix Spike Dup (2050115-MSD1)	Sc	ource: P2045(7-12	Prepared & Analyzed: 05/05/02						
Methyl tert-butyl ether	4980	100	ug/l	1000	4200	78	79-118	4	20	QM-4
Surrogate: Dibromofluoromethane	5.78			5.50		105	84-122			,

1455 McDowell Blvd, North Ste D Petaluma, CA: 94954 (707) 792-1865 FAX (707) 792-0342 www.seguoiafabs.com

Harding ESE - SF

Project: BPS Services, Oakland, CA

28 2nd Street, Suite 700 San Francisco CA, 94105 Project Number: 53087.004 Project Manager: David Nanstad Reported:

05/08/02 15:56

Notes and Definitions

QM-4X The spike recovery was outside of control limits for the MS and/or MSD due to analyte concentration at 4 times or greater the

spike concentration. The QC batch was accepted based on LCS and/or LCSD recoveries within the acceptance limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Daa	Harding ESE
	A MACTEC COMPANY
	90 Digital Drive
	Novato, CA 94949
	(415) 883-0112

CHAIN OF CUSTODY FORM

Seq. No.: Nº 10067

Lab: Sequia

	90 Digital Drive Novato, CA 9494 (415) 883-0112	49			r	·		301		
	(415) 883-0112			. 1	Samplers: £	omela Llewellyn	ANALY	SIS REQUESTED		
Job Nu	umheri	5	30	187.004	M ₁	Omela Clewillyn fucks Omel Llowelf (Signature Required)	8 29	8020 8020 8020		
	/Location:	R	PS	501VIG5,1	rokland CA		108 35.	122		
	t tanager	7	av.	it Nonstad	Becorder: Y	Damel 7 Vewels	s 8((7)			
Project	t Manager:	_44_		4	necoluel	(Signature Required)	Gasoline Range Organics 8015B Diesel Range Organics 8015B BTEX plus MTBE CCH Title 22 Metals (17) EPA 8021B EPA 8260B	الهلاجاا		
							BE BE	1,20		
MATRIX	X #CONTAINE	EHS RV.	i			ļ , l	ang ge (띄겠게뭐		
		,	i	SAMPLE NUMBER	DATE	STATION DESCRIPTION	Gasoline Range C Diesel Range Org BTEX plus MTBE CCR Title 22 Meta EPA 8021B EPA 8260B	EPA 8270C EPA 80 BTEX MERE	-	
	8 3 6	,	i				Self F H H H H H H H H			
Water Soii	Unpress H2SQ4 HNO, HCL		YR	SEQ	YR MO DAY TIME	DEPTH		EPA 8270C EPA 8019 BTEK- MEBE-		
X	3			53087-4	0204231320	1920451701		XXX		
	3	+	,——'		0204231442	12012111111		XXX		+-1
\bigcirc			;	53087-2		1	I			
X	3			53087-3	0204231636	3,				
X	3		<u>L</u> '	53087-1	10/2/01/12/31/17/3/37	4		XXX		
X	2		, T	53087-5	0204231757	5 1		XXX		
 										1
┟╍╁╍╁	- - - - - 		, -'	 			I + + + + + + + + + + + + + + + + + + +			
\mathbf{I}	╼╂╌╂╌╂╌╂		'	 			┠┉┿╌┾┉┤╾┤╌┼┈┤	- 		+
		\perp			4-		I	 		_
			'							
			==			0.1141	OF CUSTORY F	1500DD		
			A[DDITIONAL INFORMATION		CHAI	N OF CUSTODY F	ECOHD		
s	SAMPLE NUMBE	ER	į	1		Vanil The sole	Pamele Lle	4 mllion	7/25/02	1053
YR	SEQ			TURNAROUND	TIME/REMARKS	Relinquished By (signature)	Pamela Lle	(Company)	Date	lime
		\Box	7	Pantira MIR	25 Apr. 145	Millen Theretes A	win Name) Il Huck's HAM Virin Name) 1.5 am Brittage Virin Name)	EDING ESE	4-23-02	1753
┝╃╃	++++	+++	+-1	Confirm M+B	> resulting	Received By: (signature)	rini Name)	(Company)	Oate/	fine ムッと
┝╃╃┼			+-	WITH EXA M	ethod 8460 1	Bengalshed By: (sig/atyle) (P)		(Company)	- Trans	Entrac
			'			(Neckente) altre	1 Jarenzo	Handry ESS (Company) SEQ	4/24/62	100
		O	OOL	RECUSTODY SEALS IN	NTACT [Received By: (signature) (P	rint Name)	(Company)	aHans	100e
	\top \top \top \top \top	11	- <i>'</i>	l		Relinquished By (signature) (P)	Print Name)	(Company)	Date/	イクン Time
			_	NUTE	NTACT		HIR Huckey	Constitution (A)		
	-1-1-1-1	10	OOL	ER TEMPERATURE	30 °C	Received By: (signature) (Pi	Print Name)	(Company)	Date"	fime
┈┤┈╏┈	++++	++	+			Received By: (signature) (P.	Pont Name)	(Company)	Date:	T
	- 	+	_+-'	 		Received by: (signature)	ent Name)	(Сотрапу)	·	
	\bot	\perp	——'			Method of Shipment:				

MA	Harding ESE
211	A MACIEC COMPANY
	90 Digital Drive Novato, CA 94949 (415) 883-0112
	(415) 883-0112

CHAIN OF CUSTODY FORM

Seq. No.: Nº 10067 Lab: Sequia

90 Digital Drive		_	Lab: Degate
90 Oigital Drive Novato, CA 94949 (415) 883-0112	3087.064 Samplers: 1 PS Services, Oakland, CA axid Nonstad Recorder:	Pomola Clewiller 1	ANALYSIS REQUESTED
5	3087.004 samplers: 4	Hucks	
Job Number:	PS SPLUICOS, Ackland CA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99 Organics 80158 Organics 80158 THE Wetals (17) EPA 8020 EPA 8020
Name/Location:	avid Namstad	Dan 1 4 aure Os	88 88 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Project Manager: 10°	Hecorder:	(Signature Required)	
"CONTAINEDO I			Metals Metals
MATRIX #CONTAINERS & PRESERV.	į		Nange Or Standard
	SAMPLE NUMBER DATE	STATION DESCRIPTION	Phus N Ranga 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S O C			BTEX plu BTEX plu BTEX plu CCR Title EPA 8221 EPA 8276 BA 8276 BA 8276 BA 8276
Water Soil Air Air HASO, HNOS, HCL	YR SEQ YR MO DAY TIME	ОЕРТН	Gasoline Range Organsel Range Organsel Range Organsez PA 80218 EPA 8270C EPA 8270C BREX FOLS BREX - ER MERE - E
X	53087-4 0204231320		
χ	53087-2 0204231442		
$\sqrt{1+\frac{3}{3}+\frac{3}{3}+\frac{3}{3}}$			
" 			
<u> </u>	53087-1 0204231735		
X Z	53087-5 0204231757		
<u></u>			
	ADDITIONAL INFORMATION	CHAIN	N OF CUSTODY RECORD
SAMPLE NUMBER		Dan 1 11 11	Par 1 / 1 / 1 / Date ting
YR SEQ	TURNAROUND TIME/REMARKS	Relinquished By (Signatura) (Prin	Pamela Llewellyn 1/2/02/18572
	Contina MAIRE 126	Miller Thereke N	1Hucks HARI)ING ESE 4-23-00 1732
	Confirm MIBE results with EPA Method 8260	Received By. (signature) (Pri	nt Name) (Company) Date time
	with EVA Method 8260,	I Der Covidate of Quit / signification 1	1 an Partage Handring EST + 1960 ZITE (Company) Harton L lared to SCO 4/14/62 WO
	128	Heckwed By: (signature) Heckwed By: (signature) Print	1 /2 reads Sea 4/24/62 1001
	\$ 20-	Heckived By: (signature) (Přil	ni Nanie) (Company) c. H 3/3 0
		Relinquished By. (signature) (Prin	nt Name) (Company) Pasc and
		Received By: (signature) (Prii	nt Name) (Company) Date Time
		Received By: (signature) {Prii	nt Name) (Company) Pate Tena
		Method of Shipment:	j

Field or Office Copy

Project Office Copy

Laboratory Copy

APPENDIX B GROUNDWATER SAMPLING FORMS

Table B1. Sample Location/Sample Description Cross-Reference BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Well/Sample Number	Client Sample ID
MW-1	53087-1
MW-3	53087-2
MW-5	53087-3
MW-6	53087-4
Trip Blank	53087-5

18 810

Sheet_____ of___2

Project: RPS ScCVICO Subject: FIELD INVESTIGATION DAILY REPORT Equipment Rental: Company: Equipment Hours: F.E. Time from: to: (outside service and expense record must be attached for a	
11:30: Arrer on site uteather s Tail gate Safety meeting	unny-
11:45: Cal. meters 45155 D.O. meter # 700	
12:00 : Redox meter	
12:30: Do. test @ MW6 .4	
12:40: lesa metera mub	158 mV 12:54
1304: Start pump (MWG) mable to sample through ever - line closed with CCW Reverse flow codes tree	Craiment.
1320: Used Bailer to expect we	stor from well
	nduckirtz crig pH
1400 : (MW3) Depth = 22.89 Red of = 063 @1	\$20 21°C
1442 i Set-up pump for UD (Sur Attachments: Com ductivity = 601	500 Initial
Harding Lawson Associate	

	<u> </u>	Sheet of
Fouinment Rental:	LD INVESTIGATION DAILY REPORT Company: F.E. Time from: to:	To: By:
	(outside service and expense record must be attached for a	ny ouiside costs)
1509:	Set of for sorles	3- 16.38
<u> </u>	1NC=21.70 5.0. 32 C8	
1\$52:	DO = 90 ms/+ Lav = - 299 @ 1605	
16.06:	848 us = Conductivity 20,6=e0 6.94= pH	1636 - HCL 5amylas
1645:	Set up for socks	
1718:	WWD 00 = 6.30	
1720:	Redex = 009 mV	
1737:	enductivity = 92)
1745	Clem up, pack equipme	nt
i	· · · · · · · · · · · · · · · · · · ·	
<u> </u>		
Attachments:		
İ		Initial

Harding Lawson Associates

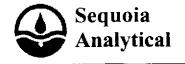
APPENDIX A LABORATORY REPORTS

8 May, 2002

David Nanstad Harding ESE - SF 28 2nd Street, Suite 700 San Francisco, CA 94105

RE: BPS Services, Oakland, CA Sequoia Work Order: P204517

Enclosed are the results of analyses for samples received by the laboratory on 04/24/02 14:30. If you have any questions concerning this report, please feel free to contact me.


Sincerely

Angelee Cari For Michelle M. Wiita

Angelee Care

Project Manager

CA ELAP Certificate #2374

(455 McDowell Blvd, North Ste D Petaluma, CA 94954 (707) 792-1865 FAX (707) 792-0342 www.sequoialabs.com

Harding ESE - SF

28 2nd Street, Suite 700 San Francisco CA, 94105 Project: BPS Services, Oakland, CA

Project Number: 53087.004
Project Manager: David Nanstad

Reported: 05/08/02 15:56

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
53087-4	P204517-01	Water	04/23/02 13:20	04/24/02 14:30
53087-2	P204517-02	Water	04/23/02 14:42	04/24/02 14:30
53087-3	P204517-03	Water	04/23/02 16:36	04/24/02 14:30
53087-1	P204517-04	Water	04/23/02 17:35	04/24/02 14:30
53087-5	P204517-05	Water	04/23/02 17:57	04/24/02 14:30

Sequoia Analytical - Petaluma Angelee Care

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.