

Harding ESE, Inc. 90 Digital Drive Novato, CA 94949

Telephone: 415/883-0112 Fax: 415/884-3300 Home Page: www.mactec.com

May 15, 2001

53087 1

Mr. Jeff Christoff BPS Reprographic Services 2748 Willow Pass Road Concord, California 94519

Quarterly Groundwater Remediation and Monitoring Report January 1, through April 4, 2001 BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dear Mr. Christoff:

Harding ESE, Inc, (Harding ESE), formerly Harding Lawson Associates, presents this quarterly status report on the groundwater monitoring and remedial activities at the BPS Reprographic Services (BPS) facility located at 1700 Jefferson Street in Oakland, California (see Plate 1). This letter report covers the period from January 1 through April 4, 2001, and was prepared to satisfy the quarterly groundwater monitoring requirements of the Alameda County Department of Environmental Health Services (County).

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987 and a preliminary soil and groundwater investigation indicated that a release of fuel into the subsurface had occurred. Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the groundwater and to determine the direction of groundwater flow. Free phase gasoline was found in MW-1. Groundwater level measurements indicated that the local groundwater gradient was in a north to northwest direction.

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present BPS facility and, in January 1988, two additional wells, MW-1A and MW-4, were installed as groundwater extraction wells. Harding ESE also installed one offsite monitoring well, MW-5, in August 1988 and a second offsite well, MW-6, in April 1996. The monitoring well locations are shown on Plate 1.

In 1992, a groundwater extraction system was constructed at the site to remove free phase product from the groundwater surface. Groundwater was extracted from MW-1A and MW-4 and passed through an oil-water separator that removed the free phase gasoline. The water was then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrients were supplied to the water within the bioreactor to facilitate microbial growth. The treated water from the bioreactor was pumped in batches of approximately 500 gallons through three granular activated carbon vessels before discharge under a wastewater discharge permit from the East Bay Utility District to the sanitary sewer. The treatment system processed approximately 1,385,490 gallons of groundwater and an estimated 5,062 pounds of free-phase gasoline were recovered.

By 1999, the oil-water separator was no longer recovering product and free phase product was no longer present in any of the groundwater monitoring wells. Dissolved hydrocarbon concentrations were decreasing and Harding ESE requested approval from the County to terminate groundwater extraction and to modify the remediation technique to insitu-bioremediation using an oxygen-releasing compound (ORCTM). ORCTM is manufactured and distributed by Regenesis, Inc.; its purpose is to increase the concentration of dissolved oxygen (DO) in the groundwater and to augment the ability of naturally occurring microbial organisms in the groundwater to biodegrade the dissolved petroleum hydrocarbons. The County approved this plan in a letter dated September 28, 1999, following the submittal of an ORCTM calculation sheet and a Groundwater Monitoring Plan, dated September 23, 1999.

Harding ESE implemented the *in situ* remediation technique by placing ORCTM in treatment wells: MW-1A, MW-3, MW-4, and MW-5 on September 29, 1999. The ORCTM is contained in fabric "socks" which release oxygen over time until the compound's oxygen releasing potential is depleted. Harding ESE installed five socks in each treatment well at the approximate depth of the well's screened interval. The Groundwater Monitoring Plan outlined procedures for groundwater sampling using a non-purge method approved by the Regional Water Quality Control Board in a letter dated January 31, 1997. The first quarter that the new Groundwater Monitoring Plan was implemented, sampling included duplicate sampling using both the purge and non-purge methods (see Harding ESE's quarterly report, dated October 25, 1999).

FIRST QUARTER OF 2001 GROUNDWATER SAMPLING AND ANALYSIS

In accordance with the Groundwater Monitoring Plan, Harding ESE removed the ORCTM socks two weeks before the scheduled sampling event from Wells MW-3 and MW-5 on March 15, 2001. The dissolved oxygen was measured in-situ in wells MW-3, MW-5, MW-1 and MW-6. The DO measurements are presented in Table 1.

On April 2, 2001, Harding ESE conducted the quarterly groundwater sampling of wells MW-1, MW-3, MW-5, and MW-6 using the non-purge method outlined in the Groundwater Monitoring Plan. Prior to sampling, Harding ESE measured the distance from the top of each well's casing to the groundwater using an electric water level indicator. These measurements are displayed on Plate 2 and tabulated in Table 2. To collect the groundwater samples, Harding ESE raised dedicated Teflon tubing contained in each well until the end of the tubing was 2 to 4 feet below the groundwater surface and connected the

tubing to a peristaltic pump with silicon tubing. New silicon tubing was used to sample each well. After removing the approximate volume of groundwater equal to the volume capacity of the Teflon tubing, Harding EES measured the groundwater's conductivity, pH, DO, oxidation reduction potential, and temperature and collected a sample in laboratory provided 40-milliliter vials. The groundwater parameter measurements are also presented in Table 1.

Immediately after sample collection, Harding ESE labeled and stored the samples in a cooler with ice. The groundwater samples were kept chilled until submitted to California Laboratory Services (CLS), a California state-certified laboratory, under chain-of-custody protocol for the following analyses:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015 Modified
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) in accordance with EPA Method 8020
- Methyl tertiary butyl ether (MTBE) in accordance with EPA Method 8020 with confirmation of detections by EPA Method 8260.

The analytical results are displayed on Plates 3 and 4. The laboratory reports are presented in the Appendix.

Upon completion of the groundwater sampling, Harding ESE installed 5 new ORCTM socks in wells MW-3 and MW-5. Harding ESE returned the ORCTM socks to treatment wells MW-1A and MW-4 where they will remain until the next quarterly monitoring event. Presently, the ORCTM socks are replaced in the treatment wells on six-month intervals.

DISCUSSION

As shown in Table 2 and Plate 5, the groundwater surface elevation increased an average of 0.29 feet across the site as compared to last quarter's measurements. Using the groundwater elevations from MW-1, MW-3, MW-5, and MW-6 as measured on April 2, 2001, groundwater contours were created and are shown on Plate 2. Based on these contours, the groundwater gradient was at 0.001 ft/ft to the southwest. At the time MW-5 was constructed, the groundwater flow direction was reportedly north to northwest, and MW-5 was considered a downgradient well. However, presumably because of the construction of new buildings in the immediate vicinity, which extend below the groundwater surface, recent groundwater monitoring has indicated the groundwater flow has been in a west to southwest direction.

Table 3 contains the compilation of historical groundwater sample results using the purge method of sampling and Table 4 provides the historical groundwater sample results since instituting in situ bioremediation using the non-purge sampling method. Plate 3 and Plate 4 present the sample results from this quarter's sampling event.

As shown on Plate 3, concentrations of TPH-g, BTEX constituents and MTBE remained within the range of historical values for well MW-1. First quarter sample results indicated that concentrations of TPH-g and BTEX constituents in well MW-3 were the lowest monitored to date. First quarter MTBE concentrations from well MW-3 remained within the range of historical values. First quarter sample results indicated that concentrations of TPH-g, BTEX constituents and MTBE remained within the range of historical values for well MW-5. The groundwater sample from MW-6 did not contain any detectable concentrations of TPH-g or BTEX.

The laboratory analytical result for MTBE from the groundwater sample collected from well MW-6 indicated the presence of MTBE at a concentration value equal to the laboratories detection limit of 5 ug/L. Upon direction from Harding ESE, the laboratory analyzed a second unopened sample container of groundwater sample from this well from the same sampling event and did not detect MTBE at or above the detection limit. The accuracy of the second MTBE analysis is questionable, however, due to its hold time of 14 days being violated by 14 days. MTBE analysis was performed using EPA Method 8260. It should be noted that fingerprint analyses of a product sample from the site in 1998 indicated the product recovered by the treatment system did not contain MTBE.

The DO content in well MW-5 immediately following the removal of the ORCTM socks was 1.4 mg/L indicating that the ORCTM socks had been depleted and were ready to be replaced. The DO content in MW-3 declined in the two week period following removal of the ORCTM socks, which would be expected if a healthy population of hydrocarbon reducing microbes were present.

RECOMMENDATIONS

Harding ESE recommends continued quarterly monitoring utilizing the procedures outlined in our Groundwater Monitoring Plan. ORCTM socks will continue to be replaced on six-month intervals to promote continued biodegradation of the residual petroleum hydrocarbons. Based on this interval, Harding ESE will replace the ORCTM socks in MW-1A and MW-4 next quarter.

Harding ESE recommends that Blue Print Services send a copy of this report to the following address:

Mr. Don Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577.

While under contract to BPS, Harding ESE will continue to provide quarterly groundwater monitoring and reporting as required by the County.

If you have any questions, please contact the undersigned at (415) 884-3199.

Yours very truly,

HARDING ESE, Inc.

David S. Nanstad Project Engineer

Luis A. Fraticelli, R.G.

Associate Geologist

DSN/LAF:sp/SP56993-Regulatory

Enclosures:

Table 1 – Groundwater Parameters

Table 2 – Groundwater Elevation Data

Table 3 - Groundwater Monitoring Analytical Results - Using Purge Method

Table 4 - Groundwater Monitoring Analytical Results - Non-Purge Method

Plate 1 – Site Map

Plate 2 - Groundwater Elevation Contours, April 2, 2001

Plate 3 - TPHg, BTEX and MTBE Concentrations, April 2, 2001

Plate 4 - BTEX and DO Results

Plate 5 - Groundwater Elevation Data

Appendix A - Laboratory Reports

Appendix B - Groundwater Sampling Forms

Table B1. Sample Location/Sample Description Cross Reference

cc: 4 copies submitted

Table 1. Groundwater Parameters BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

9/29/99	Dissolved Oxygen (mg/l)	MW-1	MW-3	MW-5	MW-6
11/5/99		2.9	1.7	0.4	
11/22/99	11/5/99	4.0			
1/28/00	11/22/99	1.8			
2/11/00	1/28/00	2.9			
5/12/00 2.0 7.4 2.4 1.7 5/30/00 1.9 2.6 1.8 3.2 9/1/00 2.9 3.4 2.3 2.7 9/15/00 2.0 1.8 2.2 3.8 11/9/00 - 5.0 5.3 - 11/17/100 3.1 4.2 3.4 6.0 3/15/01 2.0 7.0 1.4 2.1 4/2/01 1.0 0.8 2.0 1.0 REDOX (nvolts) ***Signor** **Signor** **20 7.0 1.4 2.1 4/2/01 1.0 0.8 2.0 1.0 ***PREDOX (nvolts) ****Page	2/11/00				
5/30/00 1.9 2.6 1.8 3.2 9/1/00 2.9 3.4 2.3 2.7 9/15/00 2.0 1.8 2.2 3.8 11/19/00 - 5.0 5.3 - 11/17/00 3.1 4.2 3.4 6.0 3/15/01 2.0 7.0 1.4 2.1 4/2/01 1.0 0.8 2.0 1.0 REDOX (mvolts) Signon 322 197 -128 203 9/15/00 -269 3 -89 206 11/17/00 64 178 296 230 4/2/01 -194 26 -36 102 Temperature (deg F) 9/29/99 67.0 72.6 67.7 73.8 11/22/99 66.4 62.9 65.0 69.8 2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0	5/12/00				
9/1/00 2.9 3.4 2.3 2.7 9/15/00 2.0 1.8 2.2 3.8 11/19/00 - 5.0 5.3 - 11/17/00 3.1 4.2 3.4 6.0 3/15/01 2.0 7.0 1.4 2.1 4/2/01 1.0 0.8 2.0 1.0 1.4 2.1 4/2/01 1.0 0.8 2.0 1.0 1.0 REDOX (nvolts) Si30/00 322 197 -128 203 9/15/00 -269 3 -89 206 11/17/00 64 178 296 230 4/2/01 -194 26 -36 102 Temperature (deg F) 9/29/99 67.0 72.6 67.7 73.8 11/22/99 66.4 62.9 65.0 69.8 2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 9/15/00 64.4 64.3 64.7 67.0 9/15/00 64.4 64.3 64.7 67.0 9/15/00 65.5 66.9 88.1 68.1 65.9 9/15/00 65.6 66.2 66.4 PH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 2/13/00 7.02 7.35 7.54 7.56 9/15/00 7.02 7.35 7.54 7.56 7.56 9/15/00 7.02 7.35 7.54 7.56 7.56 9/15/00 7.02 7.35 7.54 7.56 7.56 9/15/00 7.02 7.35 7.54 7.56 7.56 9/15/00 7.02 7.35 7.54 7.56 7.56 9/15/00 7.02 7.35 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.56 7.34 7.36 7.36 7.36 7.36 7.37 7.38 7.38 7.38 7.38 7.38 7.38 7.38	5/30/00				
9/15/00	9/1/00				
11/9/00	9/15/00				
11/17/00 3.1 4.2 3.4 6.0 3/15/01 2.0 7.0 1.4 2.1 4/2/01 1.0 0.8 2.0 1.0 REDOX (mvolts) 5/30/00 322 197 -128 203 9/15/00 -269 3 -89 206 11/17/00 64 178 296 230 4/2/01 -194 26 -36 102 Temperature (deg F) 9/29/99 67.0 72.6 67.7 73.8 11/22/99 66.4 62.9 65.0 69.8 2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 11/17/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 PH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 3/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 3/21/99 9 976 880 1,577 966 11/22/99 1,004 1,500 758 924 3/11/00 992 1,327 1,275 1,149 3/15/00 845 1,020 758 924 3/15/00 800 917 989 1,009 3/15/00 800 917 989 1,009 3/15/100 800 917 989 1,009 3/15/100 800 917 989 1,009 3/15/100 800 917 989 1,009 3/15/100 800 917 989 1,009	11/9/00				
3/15/01 2.0 7.0 1.4 2.1 4/2/01 1.0 0.8 2.0 1.0 REDOX (nvolts) System of the properties of the pro	11/17/00				
### A/2/01	3/15/01				
Section Sec	4/2/01				
9/15/00	REDOX (mvolts)				2.0
9/15/00	5/30/00	-322	197	-128	203
11/17/00 64 178 296 230 4/2/01 -194 26 -36 102 Temperature (deg F) 9/29/99 67.0 72.6 67.7 73.8 11/22/99 66.4 62.9 65.0 69.8 2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 pH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 2/11/00 6.80 6.94 6.83 6.72 2/11/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 1/100 800 917 989 1,009 1/11/100 785 970 742 886	9/15/00				
4/2/01 -194 26 -36 102 Temperature (deg F) 9/29/99 67.0 72.6 67.7 73.8 11/22/99 66.4 62.9 65.0 69.8 2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 pH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 2/330/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 5/30/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 11/17/00 785 970 742 886	11/17/00				
Pemperature (deg F)	4/2/01				
11/22/99 66.4 62.9 65.0 69.8 2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 PH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 1,004 1,500 1,352 1,038 2/11/20 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 2/11/00 800 917 989 1,009 11/17/00 785 970 742 886	Temperature (deg F)				142
11/22/99 66.4 62.9 65.0 69.8 2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 PH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 2/15/00 800 917 989 1,009 11/17/00 785 970 742 886	9/29/99	67.0	72.6	67.7	73.8
2/11/00 61.3 63.2 62.0 68.5 5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 PH 9/29/99 8.39 8.53 8.43 8.44 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 2/15/00 800 917 989 1,009 11/17/00 800 917 989 1,009 11/17/00 785 970 742 886	11/22/99				
5/30/00 77.7 74.8 76.3 76.2 9/15/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 PH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 2/15/00 800 917 989 1,009 11/17/00 785 970 742 886	2/11/00				
9/15/00 64.4 64.3 64.7 67.0 11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 pH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886	5/30/00				
11/17/00 54.5 58.1 68.1 65.9 4/2/01 63.5 64.9 66.2 66.4 PH 9/29/99 8.39 8.53 8.43 8.44 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 6/15/00 800 917 989 1,009 11/17/00 785 970 742 886	9/15/00				
4/2/01 63.5 64.9 66.2 66.4 pH 9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 9.76 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 11/17/00 785 970 742 886	11/17/00				
9/29/99 8.39 8.53 8.43 8.44 11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886	4/2/01				
11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886	p <u>H</u>				
11/22/99 6.86 8.42 6.84 6.79 2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 1/22/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 1/17/00 785 970 742 886		8.39	8.53	8.43	8.44
2/11/00 6.80 6.94 6.83 6.72 5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886		6.86	8.42		
5/30/00 7.02 7.35 7.54 7.56 9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886	2/11/00	6.80	6.94		
9/15/00 7.06 7.54 6.76 6.62 11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886	\$/30/00	7.02	7.35		
11/17/00 7.37 7.69 7.12 7.34 4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886		7.06	7.54		
4/2/01 6.98 6.61 7.07 6.96 Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886	11/17/00	7.37	7.69		
Specific Conductance (μS/cm) 9/29/99 976 880 1,577 966 11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 9/15/00 800 917 989 1,009 11/17/00 785 970 742 886	4/2/01	6.98			
11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 0/15/00 800 917 989 1,009 11/17/00 785 970 742 886					
11/22/99 1,004 1,500 1,352 1,038 2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 9/15/00 800 917 989 1,009 11/17/00 785 970 742 886		976	880	1,577	966
2/11/00 992 1,327 1,275 1,149 5/30/00 845 1,020 758 924 9/15/00 800 917 989 1,009 11/17/00 785 970 742 886			1,500		
5/30/00 845 1,020 758 924 9/15/00 800 917 989 1,009 11/17/00 785 970 742 886		992			
0/15/00 800 917 989 1,009 11/17/00 785 970 742 886	5/30/00	845			
1/17/00 785 970 742 886	/15/00	800			
U0/01		785			
	/2/01	725			

Note:

Baseline dissolved oxygen measurement taken on 09/29/99, prior to initial installation of oxygen releasing compound

mg/l = milligrams per liter

mvolts = millivolts

deg F = degrees Fahrenheit

 $\mu S/cm = micro-ohms$ per centimeter

Table 2. Groundwater Elevation Data BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

1		MV		MV		MV	V-5	МΛ	/- 6	Average
		TOC Elev.	32.36	TOC Elev.	31.77	TOC Elev.	30.56	TOC Elev.	31.26	Change
1	Date	Water	Since							
_	Sampled	Level	Elevation	Level	Elevation	Level	Elevation	Level	Elevation	Preceding
	3/6/96	NM		24.79	6.98	23.53	7.03	NA		Quarter
1	6/11/96	FP		25.60	6.17	23.78	6.78	25.16	6.10	-0.53
1	9/19/96	FP		26.09	5.68	24.48	6.08	25.76	5.50	-0.60
1	12/23/96	FP		FP		24.83	5.73	25.88	5.38	-0.23
1	3/27/97	FP		FP		23.82	6.74	24.78	6.48	1.06
1	6/4/97	26.41	5.95	25.11	6.66	23.92	6.64	24.60	6.66	0.04
	9/26/97	26.80	5.56	25.41	6.36	24.29	6.27	24.80	6.46	-0.32
1	12/22/97	26.00	6.36	24.91	6.86	24.02	6.54	24.71	6.55	0.42
J	3/31/98	26.06	6.30	24.05	7.72	22.78	7.78	23.75	7.51	0.75
1	6/18/98	25.60	6.76	23.71	8.06	22.51	8.05	23.22	8.04	0.40
1	8/28/98	25.45	6.91	23.70	8.07	22.74	7.82	22.23	9.03	0.23
1	12/2/98	24.92	7.44	23.60	8.17	23.16	7.40	23.72	7.54	-0.32
ł	3/10/99	24.90	7.46	22.65	9.12	22.82	7.74	23.54	7.72	0.37
	6/30/99	25.53	6.83	23.07	8.70	22.41	8.15	23.04	8.22	-0.04
i	9/29/99	24.23	8.13	23.03	8.74	22.81	7.75	23.42	7.84	0.14
f	11/22/99	24.33	8.03	23.68	8.09	22.88	7.68	23.64	7.62	-0.26
	2/11/00	24.38	7.98	23.74	8.03	22.74	7.82	23.67	7.59	0.00
ł	5/30/00	23.57	8.79	22.97	8.80	21.73	8.83	22.82	8.44	0.86
i	9/15/00	23.85	8.51	23.12	8.65	22.14	8.42	23.10	8.16	-0.28
	11/16/00	24.14	8.22	23.40	8.37	22.39	8.17	23.41	7.85	-0.28
1	4/2/01	23.40	8.96	23.40	8.37	22.07	8.49	23.33	7.93	0.29

TOC Elev. = top of well casing elevation based on City of Oakland Datum

NM = not measured

FP = free product

-- = no data

NA = not applicable (MW-6 was installed in April 1996)

Table 3, Historical Groundwater Monitoring Analytical Results - Using Purge Method BPS Reprographic Services Facility 1700 Jefferson Street Onkland, California

							Date Samol							_												
IPHg (mg/l)	8/1/91	9/30/92	3/30/93	1/13/94	4/13/94	6/29/94	12/8/94	4/3/95	6/27/95	00000										Date Samp	Ted.					
MW-1	FP	FP	FP	FP	FP	FP	12.6/54 FP	NA		9/19/95	12/13/95	3/6/96	6/11/96	9/19/96	12/23/96	3/27/97	6/4/97	9/26/97	12/23/97	3/31/98		8/29/98	12/2/98	3/10/99	r fan fan	
MW-1A	350	FP	FP	FP	170	95	190	67	NA	NA	NA	NA	FP	FP	FP	FF	68	59	41	44	32				6/30/99	9/29/99
MW-3	74	FP	FF-	FP	FP	39	4.600	51	53 20	52	62	200	140	100	FP	66	54	73	66	51	50		26 41	26	18	21
MW-4	86	FP	FP	FP	58	16	92	35	13	6.2	19	7	16	6	FP	FP	85	47	32	32	16		-	10	18	NA
MW-5	120	51	74	80	63	64	59	51	13	14	11	110	260	95	FP	37	24	41	48	NA.			3.2 10	9.6	7.9	5.0
MW-6	**			P-	-			31	41	50	45	51	48	48	45	44	35	36	30	40	17			11	8.8	NA
Benzene (µg/1)								_	-		-	-	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0,05)	ND(0.05)	ND(0.05)	ND(0.05)	NTVA 051	ND(0.05)	23	7.7	
MW-1	FP	FP	FP	FP	FP	FP	FP	NA	274											()	2125(4,05)	140(0.00)	1410(0.05)	(כטימ)חע	ND(9.03)	ND(0.05)
MW-1A	17,000	FP	FP	FP	17,000	16,000	13,000	11,000	NA 11 000	NA	NA	NA	FP	FP	FP	FP	2,200	6,000	6,800	8,300	1,100	8,600	9,200	2000		
MW-3	1,600	FP	FP	FP	FP	3.200	1.500	1,100	11,000	8,900	9,900	14,000	18,000	16,000	FP	12,000	11,000	10,000	10,000	9,100	11,000	-,		8,200	7,000	9,200
MW-4	1,500	FP	FP	FP	1,500	1.300	1,700	1,200	270	70	220	120	170	45	FP	FP	8,500	610	640	690	180		8,500	2,300	6,400	NA
MW-5	20,000	13,000	16,000	19.000	14.000	29,000	13,000	15,000	1,300	2,200	630	2,600	6,600	9,900	FP	2,600	2,600	2,900	6,000	NA	2,000		39	86	31	120
MW-6	· -	· _	,		1,,000	->,000	13,000	15,000	12,000	1,600	13,000	15,000	12,000	12,000	12,000	11,000	B,900	7,900	13,000	10.000	9,500		1,700	2,300	1,800	NA
[cluene (µg/J)					-	_	-		•		-		ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)				8,400	14,000	5,200	9,600
MW-1	FP	FP	FP	FP	FP	FP	FP	374				-							(0.5)	1-2(0,0)	142(0.30)	MD1(0.30)	ND(0.30)	ND(0.30)	ND(0.36)	ND(0.30)
MW-iA	31,000	FP	FP	FP	31,000	21,000	21,000	NA 13.000	NA	NA	NA	NA	FP	FP	PP	14,000	4,500	3,000	3,000	3,700	3,800	2 200	4.200	4.00		
MW-3	4,600	FP	FP	FP	FP	2,900	4,200		9,900	9,200	11,000	22,000	28,000	22,000	FP	15,990	12,000	16,000	16,000	11,000	15,000	-,	4,300	5,900	5,800	10,000
MW-4	6,200	FP	FP	FP	2,500	790	4,200	2,300	550	140	480	170	270	30	₽₽	FP	13,000	6.000	5,300	3,800	1.500		11,000	1,900	7,800	NA
MW-5	14,000	5,900	5.000	8,200	3,500	5.400	-	3,400	1,600	2,100	470	3,600	19,000	19,000	FP	6,900	3.200	5,000	11,000	NA.	460	-,	85	540	330	340
MW-6		_,	5,050	0,200		3,400	3,600	2,200	2,100	2,700	2,100	2,800	2,900	4,500	2,200	1,100	560	270	500	400	310	11,000	610	2,100	3,000	NA
thy itenzene (pg	z/I)			_		-	-	-	~~		••	-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0,3)	ND(0,5)				120	300	270	710
MW-1	FP	FP	FP	FP	FР	PP	FP	17.										()	2112(4,3)	1.D(v.5)	1412(0.50)	MD(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
MW-1A	3,000	FP	FP	FP	2,100	1,500	1,400	NA	NA	NA	NA	NA	FP	FP	FP	FP	1,500	1,600	1,400	1,100	550	720	244			
MW-3	670	FP	FP	FP	FP	580	6,000	910	500	710	790	2,700	2,800	2,100	FP	1,400	1,000	1,400	1,400	1,100	870		820	870	950	1,200
MW-4	1.000	FP	FP	FP	520	51	310	580	190	68	140	49	68	15	FP	FP	2.400	930	800	870	490	31	720	1,600	660	NA
MW-5	1.900	1,400	1.800	1,400	1.500	2,800	1.800	280	77	110	14	780	3,700	2,000	PP	540	140	350	580	NA	ND(15)	430	25	250	200	230
MW-6	-,	-	2,000	2,400	1,500	2,0UV	-,	2,800	1,400	2,000	16,000	2,000	2,000	2,300	2,700	1,900	1,500	1.500	1,900	2.000	420	890	ND(15)	88	150	NA
Sylenes (µg/l)			-		_	-	••		-			-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0,5)	ND(0.5)	ND(0.5)	0.5			1,100	1,500	1,800	1,100	1,100
MW-1	FP	FP	FP	FP	FP	T.T.	770											()	0.5	140(03)	141V(N'20)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
MW-1A	22,000	FP	FP	FP	14,000	F₽ 12000	FP 11,000	NA 0.000	NA	NA	NA	NA	FP	FP	FP	FP	11,000	8,600	6,600	4,300	3,000	2.00				
MW-3	4,300	FP	FP	FP	14,000 FP			9,800	6,300	6,800	5,300	22,000	19,000	14,000	FP	100	7.200	8,500	12,000	4,300 008.6		2,100	2,800	3,500	2,500	5,500
MW-4	7.300	FP	FP	FP	3,200	4,300 3,400	95,000	4,800	1,700	500	1,700	440	1,500	300	FP	FP	16,000	3,900	5,900	5,200	5,800 3,700	3,000	6,700	2,300	4,100	NA
MW-5	4,900	2,600	2,700	2,700	2,100	4,500	5,400	5,800	1,800	2,100	1,800	10,000	28,000	13,000	FP	5,500	3,500	4.800	8,200	3,200 NA		3,800	360	2,300	1,800	1,300
MW-6	**	-,	_,.00	4,700	4100	4,000	2,900	4,500	1,600	2,100	1,900	2,400	2,700	4,000	6,500	2,800	1,700	1,300	1,700	2,200	6,400 850	5,000	2,300	1,600	2,700	NA
TBE (#2/l)			-		-	-	-	-	-		-		ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)			900	840	1,100	690	1,100
MW-1	NA	NA	NA	NA.	47.6	374	17.									,			110(2)	14D(2)	vn(non)	WD(0.00)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)
MW-1A	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	FP	FP	ND(500)	NID(500)	300	/122	3777466					
MW-3	NA	NA NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			ND(500)		420	ND(50)	ND(50)	ND(50)	ND(50)	ND(25)	ND(250)
MW-4	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	FP		ND(500)	1	1,900	300	ND(50)	ND(50)	ND(50)	ND(50)	ND(25)	NA
	NA NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			ND(500)	ND(300)	350	ND(25)	ND(50)	ND(50)	ND(25)	ND(25)	10
λ. Ωλ/ ₋ . <	11/4	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	600				270	NA	ND(50)	ND(50)	ND(50)	ND(25)	ND(25)	NA.
MW-5 MW-6	_																									
MW-6	-	-	**	-			**		**			_	NA.	NA NA	ND(5)	300 ND(5)	ND(100) ND(5)	ND(500) ; ND(5)	ND(1000) ND(5)	350 ND(5)	ND(10) ND(1.0)	ND(50) ND(1.0)	ND(50) ND(1.0)	ND(50)	ND(25)	

TPHg = total petroleum hydrocarbons as gasoline MTEE = methyl t-butyl other

(mg/l) milligrants per liter (pg/l) micrograms per liter ND = Not detected above the reporting limit in parenthesis NA = Not analyzed FP = Pree Product - well not sampled

-- = Well did not exist at date indicated

TPHg = total potroleum hydrocarbons as gasoline MTBB = melhyl sbutyl either (mg/l) milligrans: per liter

(Hg/l) micrograms per liter

ND = Not detected above the reporting limit in parenthesis NA = Not analyzed FP = Free Product - well not sampled

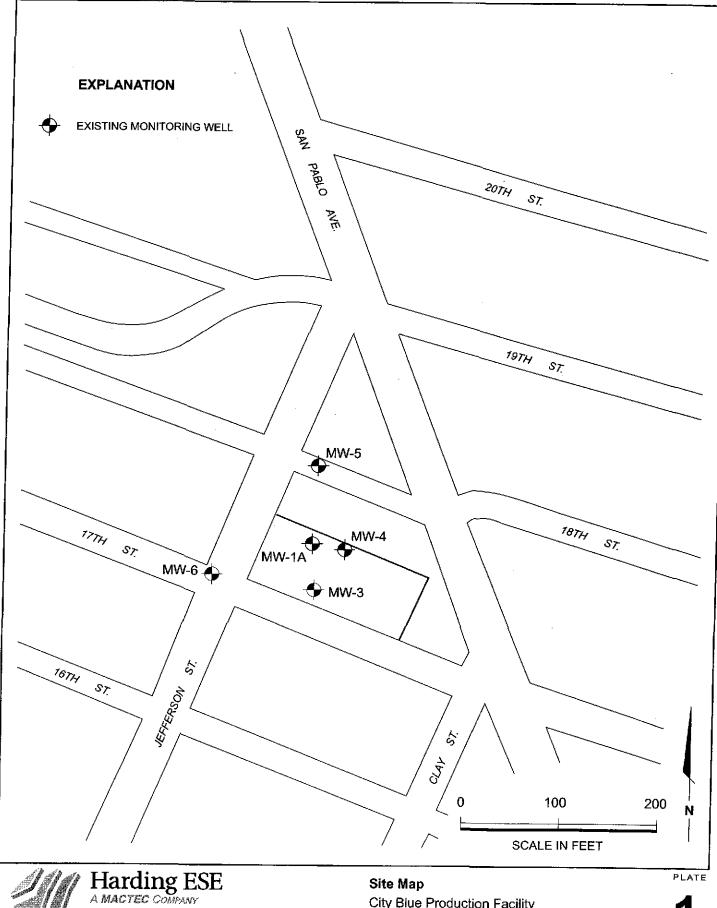
-- = Well did not exist at date indicated

Table 4. Groundwater Monitoring Analytical Results – Non-Purge Method BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

TPHg (mg/l)	9/29/99	11/22/99	2/11/00	5/30/00	9/15/00	11/16/00	4/2/01
MW-1	14	24	19	19	20	18	19
MW-3	4.1	3.1	0.54	0.49	1.5	1.3	0.17
MW-5	10	30	23	19	24	1.8	15
MW-6	ND<0.5	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Benzene (µg/l)							
MW-1	6,200	4,900	4,100	5,700	4,100	3,500	4,700
MW-3	180	6.5	8.3	11	28	20	9
MW-5	14,000	11,000	12,000	9,900	3,800	470	7,400
MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30
Toluene (μg/l)							
MW-1	5,900	5,000	4,800	8,400	5,700	4,300	5,200
MW-3	340	33	20	5.6	14	34	6.2
MW-5	470	3,400	4,500	6,900	3,000	220	3,000
MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30
Ethylbenzene (µg/l)							5,00
MW-1	620	730	530	730	540	640	570
MW-3	130	27	2.4	0.45	2.6	25	1,4
MW-5	1,100	1,500	1,200	1,200	460	39	1000
MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.30	ND<0.30
Xylenes (μg/l)		_					
MW-1	3,500	3,500	2,800	3,500	2,700	3,200	2,600
MW-3	580	260	28	17	160	28	8.1
MW-5	600	2,500	1,300	2,600	1,200	100	2,200
MW-6	ND<0,6	ND<0.6	ND<0.6	ND<0.6	ND<0.6	ND<0.60	ND<0.30
MTBE (μg/l) (EPA Metl	nod 8020)						112 0,50
MW-1	ND<250	ND<100	6,6	ND<5.0 ¹	ND<12 1,2	ND<40 ^{1,2}	50 ¹
MW-3	14	ND<1.0	31	ND<5.0 ¹	ND<5 1	ND<5 1	77 ¹
MW-5	ND<100	ND<100	6.6	ND<200	ND<10 1,2	ND<5 1	ND<501
MW-6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5 ^{1,3}

mg/l = milligrams per liter

μg/l = micrograms per liter


ND = Not detected above the reporting limit following the less than sign

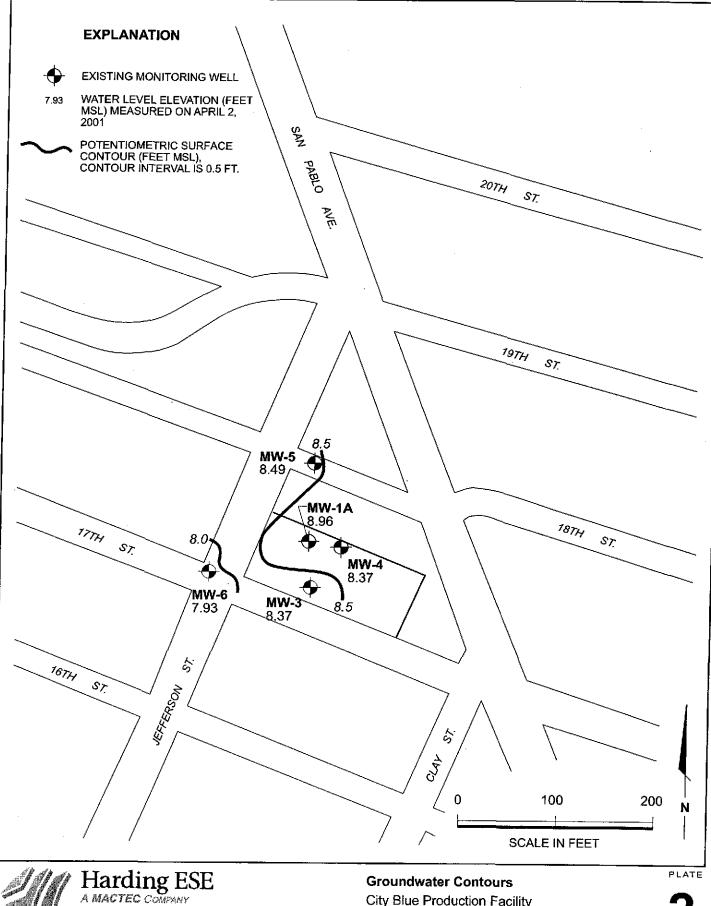
MTBE = methyl t-butyl ether

¹ Result of MTBE confirmation by EPA Method 8260.

² Reporting limits have been elevated due to matrix interference.

³ Detection limit = 5 ug/L, Backup sample analyzed after hold time had a result of ND<5 μ g/l.

City Blue Production Facility Oakland, California

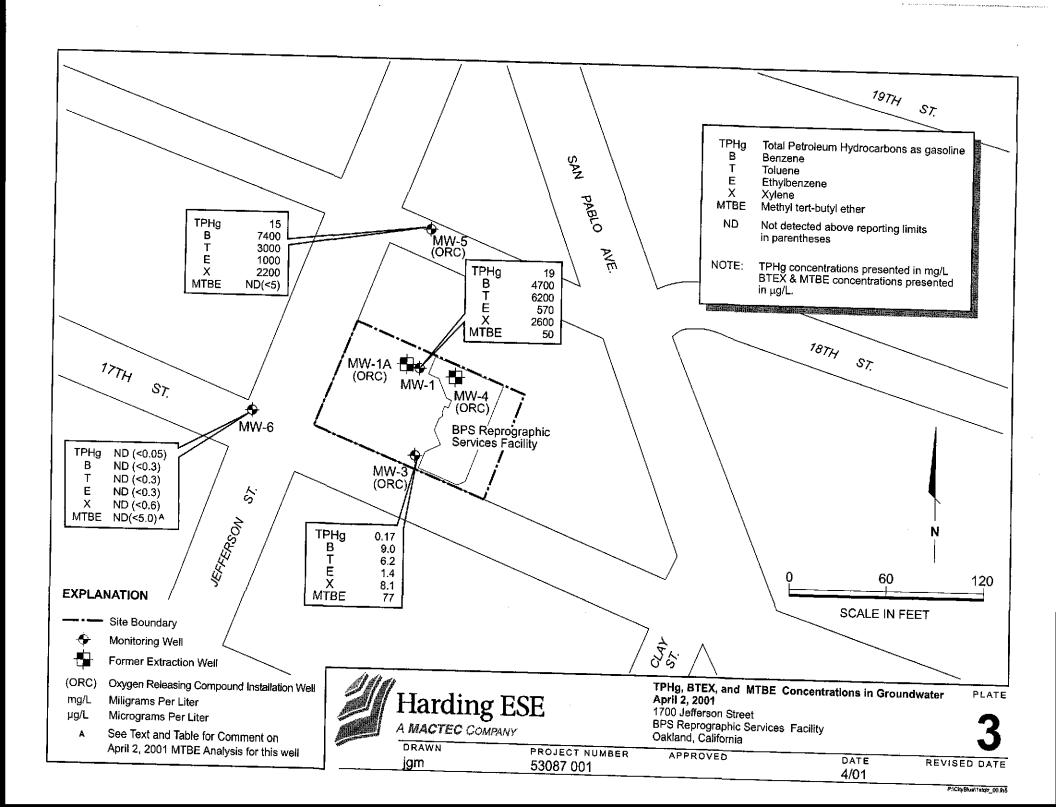

DRAWN CN

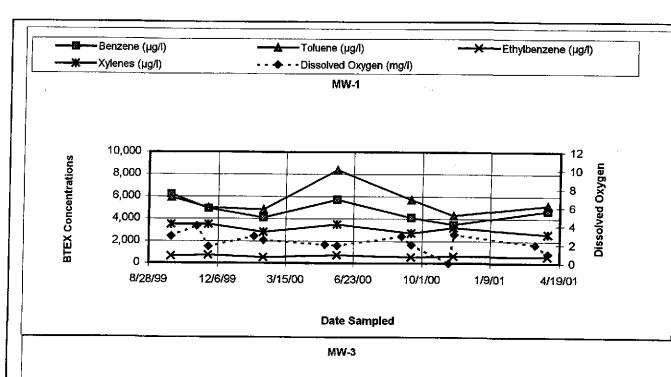
PROJECT NUMBER 53087 001

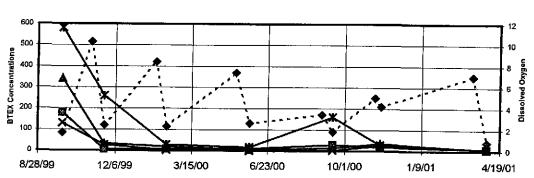
APPROVED

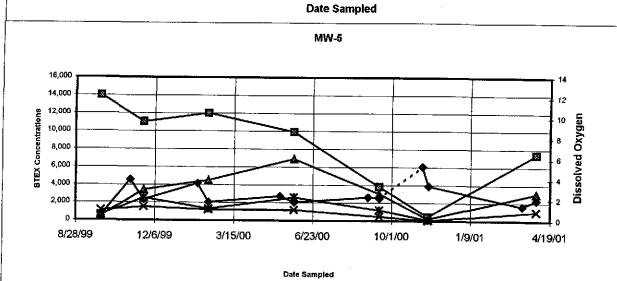
DATE 4/01

REVISED DATE


City Blue Production Facility Oakland, California


DRAWN PROJECT NUMBER CN 53087 001


APPROVED


DATE 4/01

REVISED DATE

BTEX and DO Results

Quarterly Groundwater Monitoring Report BPS Reprographic Services Facility 1700 Jefferson Steet

Plate

Oakland, California Drawn by JOB NUMBER

dsn 53087.001 APPROVED

DATE 4/2/01 REVISED DATE

APPENDIX A LABORATORY REPORTS

04/19/2001

Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Attention: David Nanstad

Reference: Analytical Results

Project Name: City Blue Oakland Project No.: 53087.001 Date Received: 04/03/2001 Chain Of Custody: 1384

CLS ID No.: 87390 CLS Job No.: 837390

The following analyses were performed on the above referenced project:

No. of Samples	Turnaround Time	Analysis Description
5	10 Days	TPH Gasoline and BTXE (water)
5	10 Days	Oxygenates by EPA Method 8260 Modified

These samples were received by CLS Labs in a chilled, intact state and accompanied by a valid chain of custody document.

Calibrations for analytical testing have been performed in accordance to and pass the EPA's criteria for acceptability.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001 Date Extracted: N/A

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001 Client ID No.: 53087-1

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: S7390-1A Job No.: 837390

COC Log No.: 1384

Batch No.: 30976

Instrument ID: GC007

Analyst ID: LEVIF

Matrix: WATER

SURROGATE

Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogat Recovery (percent	Lower Spec	Upper Spec
o-Chlorotoluene	95498	531	500	106	72	132
	·		53087-1 ,			
Analyte	CAS	No.	Results (ug/L)		p. Limit g/L)	Dilution (factor)
Benzene Toluene Ethylbenzene Xylenes, total	100	32 883 414 0207	4700 5200 570 2600	30 30 7. 15	Ō	1000 1000 25 25

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001

Date Extracted: N/A

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001 Client ID No.: 53087-2

Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: S7390-2A Job No.: 837390

COC Log No.: 1384 Batch No.: 30976

Instrument ID: GC007 Analyst ID: LEVIF

Matrix: WATER

STIRROGATE

	 		_ SURROGATE			
Analyte CA	AS No.	Results (ug/L)	Surr Conc. (ug/L)	Surro Recov (perc	ery Lower Spe	ec Upper Spec (Limit)
o-Chlorotoluene 95	5498	19.2	20.0 53087-2	96	72	132
Analyte	CAS	No.	Results (ug/L)		Rep. Limit (ug/L)	Dilution (factor)
Benzene Toluene Ethylbenzene Xylenes, total	7143 1088 1004 1330	183 14	9.0 6.2 1.4 8.1		0.30 0.30 0.30 0.60	1.0 1.0 1.0
ND - Not detected				_	•	

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001

Date Received: 04/03/2001
Date Extracted: N/A
Date Analyzed: 04/04/2001
Date Reported: 04/04/2001 Client ID No.: 53087-3

Project No.: 53087.001 Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: S7390-3A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30976

Instrument ID: GC007 Analyst ID: LEVIF Matrix: WATER

Sī	IR R	OG	BΤ	R
31				С.

Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogat Recovery (percent	Lower Spec	Upper Spec
o-Chlorotoluene	95498	547	500 53087~3	109	72	132
Analyte	CAS	No.	Results (ug/L)	Rer (uç	o. Limit g/L)	Dilution (factor)
Benzene Toluene Ethylbenzene Xylenes, total	7143 1088 1004 1330	383 14	7400 3000 1000 2200	300 300 7.5 15)	1000 1000 25 25

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

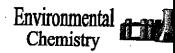
Date Sampled: 04/02/2001 Date Received: 04/03/2001 Date Extracted: N/A

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001 Client ID No.: 53087-4

Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang


Lab ID No.: \$7390-4A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30976

Instrument ID: GC007 Analyst ID: LEVIF Matrix: WATER

CHDDAGATE

			_ SURROGATE		·	
Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogat Recovery (percent	Lower Spec	Upper Spec (Limit)
o-Chlorotoluene	95498	20.1	20.0 53087-4	101	72	132
Analyte	CAS	No.	Results (ug/L)		p. Limit g/L)	Dilution (factor)
Benzene Toluene Ethylbenzene Xylenes, total	714 108 100 133	883	ND ND ND ND	0.3 0.3 0.6	10 10	1.0 1.0 1.0

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001

Date Received: 04/02/2001
Date Received: 04/03/2001
Date Extracted: N/A
Date Analyzed: 04/04/2001
Date Reported: 04/06/2001
Client ID No.: 53087-5

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: \$7390-5A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30976

Instrument ID: GC007 Analyst ID: LEVIP Matrix: WATER

SURROGATE

			_ SURROGATE			
Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
o-Chlorotoluene	95498	20.0	20.0	100	72	132
			53087-5			
Analyte	CAS	No.	Results (ug/L)	Rep. (ug/I	Limit L)	Dilution (factor)
Benzene Toluene Ethylbenzene Xylenes, total	7143 1088 1004 1330	383 114	ND ND ND ND	0.30 0.30 0.30 0.60		1.0 1.0 1.0 1.0
ND = Not detecte	ed at or ak	ove indicate	ed Reporting L	imit		•

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Extracted: N/A

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001

Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: \$7390
Job No.: 837390
COC Log No.: 1384
Batch No.: 30976
Instrument ID: GC007
Analyst ID: LEVIF Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Observed Conc. (ug/L)	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec
o-Chlorotoluene	95498	20.0	20.0	100	75	132
	,	м	ETHOD BLANK _			
Analyte		CAS No.		Results (ug/L)		Reporting Limit (ug/L)
Benzene Toluene Ethylbenzene Xylenes, total	·	71432 108883 100414 1330207		ND ND ND ND		0.30 0.30 0.30 0.60

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Observed

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Extracted: N/A

Benzene

Toluene

Analyte

Ethylbenzene

Xylenes, total

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001

Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: \$7390

Job No.: 837390 COC Log No.: 1384 Batch No.: 30976

Surrogate

Instrument ID: GC007 Analyst ID: LEVIF

MS

Matrix: WATER

Analyte	CAS No.	Conc. (ug/L)	Conc. (ug/L)	Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
o-Chlorotoluene	95498	19.4	20.0	97	69	132
<u> </u>		1	MATRIX SPIKE			
Analyte	CAS No.	Observed Conc. (ug/L)	MS Conc. (ug/L)	MS Recovery (percent)	Lower Spec (Limit)	Upper Spec
Benzene Toluene Ethylbenzene Xylenes, total	71432 108883 100414 1330207	20.4 20.8 20.6 60.5	20.0 20.0 20.0 60.0	102 104 103 101	64 68 80 81	138 134 129 127
		MS	D SURROGATE			
Analyte	CAS No.	Observed Conc. (ug/L)	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
o-Chlorotoluene	95498	19.7	20.0	99	69	132
	·	MATRIX	SPIKE DUPLI	CATE		
Analyte	CAS No.	Observed Conc. (ug/L)	MSD Conc. (ug/L)	MSD Recovery (percent)	Lower Spec (Limit)	Upper Spec

MS SURROGATE

MS Surr.

RELATIVE % DIFFERENCE

20.0

20.0

20.0

60.0

Relative Percent Difference CAS No. (percent)

Lower Spec (Limit)

68

80

82

Upper Spec (Limit)

134

128

124

CA DOMS ELAP Accreditation/Registration Number 1233

20.0

21.2

21.2

62.4

71432

108883

100414

1330207

100

106

106

104

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Extracted: N/A
Date Analyzed: 04/04/2001
Date Reported: 04/06/2001

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: 57390

Job No.: 837390 COC Log No.: 1384

Batch No.: 30976 Instrument ID: GC007 Analyst ID: LEVIF

Matrix: WATER

RELATIVE % DIFFERENCE(cont.)

Analyte	CAS No.	Relative Percent Difference (percent)	Lower Spec (Limit)	Upper Spec (Limit)
Benzene Toluene Ethylbenzene Xylenes, total	71432 108883 100414 1330207	2 2 3 3	0 0 0	32 32 32 32 32

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Extracted: N/A
Date Analyzed: 04/04/2001
Date Reported: 04/06/2001

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: 87390

Job No.: 837390

COC Log No.: 1384

Batch No.: 30976

Instrument ID: GC007

Analyst ID: LEVIF

Matrix: WATER

T.CS SHEDOGATE

		L(CS SURKOGATE			
Analyte	CAS No.	LCS Surr Conc. (ug/L)	LCS Conc.	LCS Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec
o-Chlorotoluene	e 95498	19.5	20.0	98	68	134
		LAB	CONTROL SAMP	LE		
Analyte	CAS No.	Observed Value (ug/L)	LCS Conc. (ug/L)	LCS Recovery (percent)	Lower Spec (Limit)	Upper Spec
Benzene Toluene Ethylbenzene Xylenes, total	71432 108883 100414 1330207	20.5 21.3 21.7 62.2	20.0 20.0 20.0 60.0	103 106 109 104	70 70 82 84	130 130 124 128

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001

Date Extracted: N/A

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001

Client ID No.: 53087-1

Project No.: 53087.001

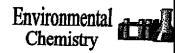
Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: S7390-1A Job No.: 837390

COC Log No.: 1384

Batch No.: 30976

Instrument ID: GC007


Analyst ID: LEVIF

Matrix: WATER

SURROGATE

Analyte	CAS No.	Results (mg/L)	Surr Conc. (mg/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec
o-Chlorotoluene	95498	0.705	0.500 53087-1	141 MA	70	130
Analyte	CAS	No.	Results (mg/L)	Rep. (mg/I	Limit .)	Dilution (factor)
TPH as Gasoline	N/A		19	1.3		25

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001

Date Received: 04/03/2001 Date Extracted: N/A Date Analyzed: 04/04/2001 Date Reported: 04/06/2001

Client ID No.: 53087-2

Project No.: 53087.001 Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: S7390-2A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30976

Instrument ID: GC007

Analyst ID: LEVIF Matrix: WATER

CITD	ROGA	me
JUK		

Analyte	CAS No.	Results (mg/L)	Surr Conc. (mg/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec	
o-Chlorotoluene	95498	0.0212	0.0200 53087-2	106	70	130	
Analyte	CAS	No.	Results (mg/L)	Rep. (mg/I	Limit	Dilution (factor)	
TPH as Gasoline	N/A		0.17	0.050	<u> </u>	1.0	
ND - Not detects							

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001

Date Received: 04/03/2001
Date Extracted: N/A

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001

Client ID No.: 53087-3

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: S7390-3A

Job No.: 837390

COC Log No.: 1384

Batch No.: 30976

Instrument ID: GC007

Analyst ID: LEVIF

Matrix: WATER

SURROGATE

Analyte	CAS No.	Results (mg/L)	Surr Conc.	Surrogate Recovery (percent)	Lower Spec	Upper Spec
o-Chlorotoluene	95498	0.710	0.500 53087-3	142 MA	70	130
Analyte	CAS	No.	Results (mg/L)	Rep. (mg/I	Limit	Dilution (factor)
TPH as Gasoline	N/A		15	1.3	<u> </u>	25

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001
Date Extracted: N/A

Date Analyzed: 04/04/2001 Date Reported: 04/06/2001 Client ID No.: 53087-4

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: S7390-4A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30976

Instrument ID: GC007 Analyst ID: LEVIF

Matrix: WATER

SURROGATE

			_ SURRUGATE		· · · · · · · · · · · · · · · · · · ·	
Analyte	CAS No.	Results (mg/L)	Surr Conc. (mg/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
o-Chlorotoluene	95498	0.0207	0.0200	103	70	130
	· · · · · · · · · · · · · · · · · ·		53087-4			
Analyte	CAS	No.	Results (mg/L)	Rep. (mg/I	Limit	Dilution (factor)
TPH as Gasoline	N/A		ND	0.050)	1.0
ND - Not detect					,	

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001

Date Received: 04/03/2001

Date Extracted: N/A Date Analyzed: 04/04/2001 Date Reported: 04/06/2001 Client ID No.: 53087-5

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: S7390-5A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30976

Instrument ID: GC007 Analyst ID: LEVIF

Matrix: WATER

SURROGATE

			_ BUNNOUNIE			
Analyte	CAS No.	Results (mg/L)	Surr Conc. (mg/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec
o-Chlorotoluene	95498	0.0221	0.0200	111	70	130
			_ 53087-5			
Analyte	CAS I	No.	Results (mg/L)	Rep. (mg/I	Limit)	Dilution (factor)
TPH as Gasoline	N/A		ND	0.050)	1.0
ND - Not datasts	سامسم مامسات					

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

ND = Not detected at or above indicated Reporting Limit

Project: City Blue Oakland

Date Extracted: N/A
Date Analyzed: 04/04/2001
Date Reported: 04/06/2001

Project No.: 53087.001

Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: S7390

Job No.: 8/370
Job No.: 837390
COC Log No.: 1384
Batch No.: 30976
Instrument ID: GC007
Analyst ID: LEVIF
Matrix: WATER

		<u></u> .	MB SURROGATE			
Analyte	CAS No.	Observed Conc. (mg/L)	Surr Conc. (mg/L)	MB Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
o-Chlorotoluene	95498	0.0195	0.0200	97	70	130
	·		METHOD BLANK _			
Analyte		CAS No.		Results (mg/L)		Reporting Limit (mg/L)
TPH as Gasoline		N/A		ND		0.050

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001 Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001

Date Reported: 04/19/2001

Client ID No.: 53087-1

Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: S7390-1A Job No.: 837390

COC Log No.: 1384
Batch No.: 30979
Instrument ID: MS05
Analyst ID: MINH

Matrix: WATER


SURROGATE

Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
Toluene-d8	N/A	114	100	114	72	125
			53087-1			
Analyte		CAS No.	Results (ug/L)	Rep.	Limit 'L)	Dilution (factor)
Methyl t-buty	l ether	1634044	ND	50 ((SI)	10

SI = Reporting limit was elevated due to matrix interference.

ND = Not detected at or above indicated Reporting Limit

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001 Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001 Date Reported: 04/19/2001

Client ID No.: 53087-2

Project No.: 53087.001 Contact: David Nanstad

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: S7390-2A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30979

Instrument ID: MS05 Analyst ID: MINH Matrix: WATER

			SURROGATE			
Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
Toluene-d8	N/A	10.1	10.0	101	72	125
			_ 53087-2			
Analyte		CAS No.	Results (ug/L)	Rep.	Limit (L)	Dilution (factor)
Methyl t-buty	l ether	1634044	77	5.0	-	1.0

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001
Date Received: 04/03/2001 Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001 Date Reported: 04/19/2001 Client ID No.: 53087-3

Project No.: 53087.001

Contact: David Nanstad

Phone: (510) 451-1001

Lab Contact: James Liang

Lab ID No.: \$7390-3A

Job No.: 837390 COC Log No.: 1384 Batch No.: 30979

Instrument ID: MS05
Analyst ID: MINH

Matrix: WATER

SURROGATE

Analyte	CAS No.	Results (ug/L)	Surr Conc.	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec
Toluene-d8	N/A	107	100	107	72	125
			_ 53087-3			
Analyte		CAS No.	Results (ug/L)	Rep.	Limit (L)	Dilution (factor)
Methyl t-buty	l ether	1634044	ND	50 (5	;I)	10

SI = Reporting limit was elevated due to matrix interference.

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001 Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001 Date Reported: 04/19/2001 Client ID No.: 53087-4

Project No.: 53087.001 Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No .: S7390-4A Job No.: 837390 COC Log No.: 1384 Batch No.: 30979 Instrument ID: MS05

Analyst ID: MINH Matrix: WATER

SURROGATE	St	JRR	OGZ	\TE
-----------	----	-----	-----	-----

Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec
Toluene-d8	N/A	10.1	10.0	101	72	125
	·		_ 53087-4			
Analyte		CAS No.	Results (ug/L)	Rep.	Limit (L)	Dilution (factor)
Methyl t-buty	l ether	1634044	5.0	5.0		1.0

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001 Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001 Date Reported: 04/19/2001 Client ID No.: 53087-5 Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: S7390-5A Job No.: 837390 COC Log No.: 1384 Batch No.: 30979 Instrument ID: MS05

Analyst ID: MINH

Matrix: WATER

SURROGATE

			ALKOGAIG			
Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
Toluene-d8	N/A	10.0	10.0	100	72	125
			53087-5			
Analyte		CAS No.	Results (ug/L)	Rep. (ug/	Limit (L)	Dilution (factor)
Methyl t-buty	l ether	1634044	ND	5.0		1.0

ND = Not detected at or above indicated Reporting Limit

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

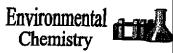
Oakland, CA 94607

Project: City Blue Oakland

Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001 Date Reported: 04/19/2001 Project No.: 53087.001

Contact: David Nanstad Phone: (510) 451-1001

Lab Contact: James Liang


Lab_ID No.: S7390 Job No.: 837390 COC Log No.: 1384 Batch No.: 30979

Instrument ID: MS05 Analyst ID: MINH

Matrix: WATER

MB SURROGATE

CAS No.	Observed Conc. (ug/L)	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
N/A	10.2	10.0	102	72	125
	м	ETHOD BLANK _	· · · ·		<u> </u>
,	CAS No		Results (ug/L)		Reporting Limit (ug/L)
l ether	163404	4	ND		5.0
	N/A	Observed Conc. (ug/L) N/A 10.2 M CAS No	Observed Conc. Surr Conc. (ug/L) (ug/L) N/A 10.2 10.0 METHOD BLANK CAS No.	Observed Conc. Surr Conc. Recovery (percent) N/A 10.2 10.0 102 METHOD BLANK CAS No. Results (ug/L)	CAS No. Observed Conc. Surr Conc. Recovery Lower Spec (percent) N/A 10.2 MB Surrogate Recovery (percent) (percent) The state of t

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001 Date Reported: 04/19/2001 Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: \$7390

Job No.: \$37390

COC Log No.: 1384

Batch No.: 30979

Instrument ID: MS05

Analyst ID: MINH

Matrix: WATER

MATRIX SPIKE

Analyte	CAS No.	Observed Conc. (ug/L)	MS Conc. (ug/L)	MS Recovery (percent)	Lower Spec	Upper Spec (Limit)
Methyl t-butyl ethe	r 1634044	11.1	10.0	111	52	140
		MATRIX SPI	KE DUPLICAT	E		
Analyte	CAS No.	Observed Conc. (ug/L)	MSD Conc. (ug/L)	MSD Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
Methyl t-butyl ethe	r 1634044	10.6	10.0	106	52	140
		RELATIVE %	DIFFERENCE		·	
Analyte	CAS N	٥.	Relative Percent Difference (percent)	Lower (Limit		Upper Spec (Limit)
Methyl t-butyl ether	16340	44	5	0		25

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001

Date Reported: 04/19/2001

Project No.: 53087.001

Contact: David Nanstad Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: **S7390**

Job No.: 837390 COC Log No.: 1384 Batch No.: 30979

Instrument ID: MS05 Analyst ID: MINH Matrix: WATER

		LAB CON	TROL SAMPLE			
Analyte	CAS No.	Observed Value (ug/L)	LCS Conc. (ug/L)	LCS Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
Methyl t-butyl ether	1634044	9.80	10.0	98	52 .	130

REVISION

Date: 05/07/01

Client: Harding Lawson Associates

Project: City Blue Oakland

Lab Job #: S7390

Attention: David Nanstad

Revision Remarks: The MTBE result for sample "5-3087-4" has been revised based upon the re-analysis on 5/1/01.

Sincerely,

James Liang Ph.D. Laboratory Director

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA 8260B- Modified

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Oakland

Date Sampled: 04/02/2001 Date Received: 04/03/2001 Date Extracted: 04/05/2001 Date Analyzed: 04/05/2001 Date Reported: 05/02/2001

Client ID No.: 53087-4

Project No.: 53087.001 Contact: David Nanstad

Phone: (510) 451-1001

Lab Contact: James Liang

Lab ID No.: S7390-4A Job No.: 837390

COC Log No.: 1384 Batch No.: 30979 Instrument ID: MS05 Analyst ID: MINH

Matrix: WATER

GIIDDAGATE

		······································	SURROGATE		·	
Analyte	CAS No.	Results (ug/L)	Surr Conc. (ug/L)	Surrogate Recovery (percent)	Lower Spec (Limit)	Upper Spec (Limit)
Toluene-d8	N/A	10.1	10.0 53087-4	101	72	125
Analyte	•	CAS No.	Results (ug/L)	Rep. (ug/	Limit 'L)	Dilution (factor)
Methyl t-buty	l ether	1634044	ND	5.0		1.0
ND = Not dete	cted at or a	above indicate	ed Reporting L	imit		

CHAIN OF CUSTODY FORM

Seq. No.: No. 1384

oed. 140**		2002
¥ Lab:	PAT	CLS
•		

Job Nun	nher:	53087.001	Samplers:	David Browne		ANALYSIS	REQUESTED		
Name/L		53087.001 City Blue Oa David Nanstad	Yland		로 Gasoline Range Organics 8015B Diesel Range Organics 8015B	8			
	Vanager: —	David Nanstad	- 7	· (4		3			
i iojecti	vialiagei. —	THE PROPERTY OF	Recorder:	(Signature Required)	Sing 8				
1447500	#CONTAINERS			(Signature Required)) sig			
MATRIX	& PRESERV.			;	ခွ ဝီ	Met Met			{
	,	SAMPLE NUMBER	DATE	STATION DESCRIPTION	Rar				
Water Soil Air	Unpres HsSo, HNO, HCL				e E	270 22 1 Tet		1	
Air Soi		YR SEQ	YR MO DAY TIME	DEF	로 Gasoline Range Organics 801	EPA 8270C			
X	3	53087-4	0104021140				- - - -		
λ	3		0104021305			}			
XXX	3		6109021350						
X	3		0104021500						
X	3				X				
		13798113	0104021515						
	┞┋┋ ┼┼┼┼┼							 	
								╿╸┆┈┝╶┝╶╽	+-
		++++++						 	\dashv
								 	\dashv
		ADDITIONAL INFORMATION			CHAIN OF CL	ISTODY DEC	<u>-</u>	<u> </u>	
SAM	PLE NUMBER								
YR	SEQ	TURNAROUND T	IME/REMARKS	DavidBrome	(Print Name) Trish E (Print Name)	Brown	المحملات	ECR 4/2 Pater	/Time
				Helinguished By: (signature)	(Print Name)		(Company)	Date/	Time
	- - - - -	STANDARD .	TAT	Received By: (signature)	Trish E	liasson	(Company)	4/2/01	1605
+++		·		Relinquished By: (signature)	Trish (Eliasson	Handin	4/3/01 Date	rime I
-	╴╎╎┝┢ ┼┼			(signature)	(Print Name)		(Company)	Date	Time
+++	╼╀╼╁╸╂╌╂╼┼				(Print Name)		(Company)		
	╼╁┈┼╼┼╍┤╌╽			The Control of the Co	(Print Name) (Print Name)	1CLS	(Финрану)	43/51 Date	128CH
 	┼┼┼┼	* BTEX USING	Method Bozo		CO NRAD		(Company)	Date	Tipe
		* BTEX USING MTBE USING	Method Brien	Haceivel By: (stonavia)	(Print Numer		(Company)	43b) Date	834
				Received By: (signature)	(7) - 1 - 1 - 1				835
	<u> </u>				(Print Name)		(Company)	Date/1	
				Method of Shipment:			·	·	

APPENDIX B GROUNDWATER SAMPLING FORMS

Harding Lawson Associates

GROUNDWATER SAMPLING FORM

Engineering and Environmental Services MW-01 Well Number: Other Well Type: Monitor Extraction City Blue PVC St. Steel Other Job Name: 53087.001 4/2/01 Date: Job Number: Dec Recorded By: Sampled By: (initials) well-purging well-purging PURGEVOLUME Casing Diameter (D in inches): Bailer - Type: Total Depth of Casing (TD in ft BTOC): Submersible - Type: Water Level Depth (WL in ft BTOC): 23.40 ◆Other - Type: No. of Well Volumes to be purged (# V): PUMP INTAKE SETTING PURGE VOLUME CALCULATION Near Bottom Near Top Other Depth in feet (BTOC): 3 X 0.0408 = 760 Screen Interval in feet (BTOC): from TD (feet) WL (Feet) Calculated Purge Volume Field Parameter Measurement X °C Turbidity PURGETIME PURGE RATE Gallons Conductivity □ °F (NTU) or Minutes (µS) Purge Start: GPM: 6.98 725~45 Zove Initial GPM: Purge Stop: Elapsed: PURGE VOLUME : Volume: gallons Observations During Purging (Well Condition, Color, Odor): ere Zo.8° Redox initial - 194 (Ce Redox final D O final Discharge Water Disposal: Meter S/N DB02 DQ953 9092 Storm Sewer Other DO953 WELLSAMPLING Bailer - Type: Sample Time: 1500 Sample No. Volume/Cont. Analysis Requested Preservatives Lab Comments TPH gas, BTEX,MTBE 53087-1 3-VOA's CLS QUALITY CONTROL SAMPLES **Duplicate Samples** Blank Samples Other Samples Dupl. Sample No. Sample No. Original Sample No. Type Type Sample No. 53087-5

GROUNDWATER SAMPLING FORM Harding Lawson Associates Engineering and Environmental Services MW-03 Well Number: Monitor Extraction Other Well Type: City Blue PVC St. Steel Other Job Name: 53087.001 4/2/01 Job Number: Date: Recorded By: Sampled By: (initials) Law Well Purging PURGE VOLUME Casing Diameter (D in inches): Bailer - Type: Total Depth of Casing (TD in ft BTOC): Submersible - Type: Water Level Depth (WL in ft BTOC): Other - Type: No. of Well Volumes to be purged (# V): PUMP INTAKE SETTING PURGE VOLUME CALCULATION Near Bottom Near Top Other 3 X 0.0408 = Depth in feet (BTOC): Screen Interval in feet (BTOC): TD (feet) D (inches) from WL (Feet) Calculated Purge Volume to Field Parameter Measurement C Turbidity PURGE RATE Gallons Conductivity PURGETIME! □°F (NTU) or Minutes рΗ (μS) Purge Start: GPM: 365 Initial 6-61 18.3 19.7 Purge Stop: GPM: Elapsed: PURGE VOLUME: Volume: gallons Observations During Purging (Well Condition, Color, Odor): MSlet 20.4% Redox initial Redox final_ D.O. final_ Discharge Water Disposal: Meter S/N DQ953 DO953 Storm Sewer **DB02** 9092 Other WELLSAMPLING Bailer - Type: Sample Time:

3087-2	3-VOA's	TPH gas, BTEX,MTBE	Hei	CLS	
			1,50,1		
					
		· · · · · · · · · · · · · · · · · · ·	 	 	-·· · · ·
· · · · · · · · · · · · · · · · · · ·					
					<u> </u>
		· · · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·
					-
		QUALITY CONTROLS.			

Duplicate	Samples	В	lank Samples	
Original Sample No.	Dupl. Sample No.	Туре	Sample No.	Туре
<u> </u>			1	
1				
i			1	
			1	

Other Samples			
Type	Sample No.		

GROUNDWATER SAMPLING FORM Harding Lawson Associates Engineering and Environmental Services MW-05 Well Number: Extraction Other Well Type: Monitor City Blue PVC St. Steel Other Job Name: 4/2/01 53087.001 Date: Job Number: Sampled By: Recorded By: DSB (initials) WELLPURGING FURGEMETHOD PÜRGEVOLUME Casing Diameter (D in inches): Bailer - Type: Total Depth of Casing (TD in ft BTOC): Submersible - Type: Water Level Depth (WL in ft BTOC): Other - Type: 2207 No. of Well Volumes to be purged (# V): PUMP INTAKE SETTING C PURGE VOLUME CALCULATION Near Bottom Near Top Other _2 X 3 X 0.0408 = _ Depth in feet (BTOC): Screen Interval in feet (BTOC): D (inches) #V from to TD (feet) WŁ (Feet) Calculated Purge Volume Field Parameter Measurement Conductivity χJ°C. Turbidity PURGETIME PURGERATE Gallons _ ୯୮ (NTU) or Minutes рΗ (μS) Purge Start: F0.5 <u>839.45</u> 11 . B initial GPM: 19.0 Purge Stop: Elapsed: PURGE VOLUME. IT Volume: gallons Observations During Purging (Well Condition, Color, Odor): avo-Redox final ___ D.O. final Discharge Water Disposal: Meter S/N Storm Sewer Other DB02 DO953 DO953 9092 WELL SAMPLING Bailer - Type: Sample Time: 1350 Sample No. Volume/Cont. Analysis Requested Preservatives Lab Comments TPH gas, BTEX,MTBE 53087 3-VOA's

			<u> </u>
TO THE RESIDENCE OF THE PROPERTY OF THE PROPER	AND THE PROPERTY OF STREET STREET, STREET STREET, STREET STREET, STREE		
A STATE OF THE PROPERTY OF THE	THE PROPERTY OF SAME	423	The state of the s

Duplicate Samples				
Original Sample No. Dupl. Sample				
ı				

Blank Samples		
Туре	Sample No.	
	1	
	l	
	!	
· -		

Other Samples			
Туре	Sample No.		

Harding Lawson Associates

GROUNDWATER SAMPLING FORM

	Engin	eering and E	nvironmenta	al Services	Well Numb	er: MW-0	6		
					Well Type:	Monitor	Extraction	Other_	
Job Name:		City Blu	1 6		-	PVC	St. Steel	Other	
Job Numbe)r:	53087.00	1		Date:	4/2/01			
Recorded E	By: <u> </u>	and 3	Signature)		Sampled By	': <u> </u>) S Y(initials)		
				WELFRIE	giver =======				
	PUR	GE VOLUME				+ +- PURGE	METHOD:		
	meter (D in		<u>Z</u>		Bailer - Type:				
		TD in ft BTO In ft BTOC):			Submersible - * Other - Type:				
		be purged (#			Ciner + Type.	FWC	no bruck	<u> </u>	
						PUMP INTAK	≘Sjerjinik(sz		
	PURGE VOL	IME CALCULAT	ion"	Section Control	Near Bottom	(Near Top		
,	77 77				Other				
	23.33) x_	X 3 X 0.04 D (inches) #V			Depth in feet (BTO		<u>Zu'</u>		
TD (feet)	VVC (Peet)	D (inches) # V		Calculated Purge Volu	me Screen Interval in f	eet (BTOC):	from	to	
1977	: Fleid Parami	eter Measureme	nt of the state of						
Gallons		Conductivity	I —	Turbidity	ielelegezajnija		HUKELEKAT		
or Minutes	pH	(μS)	Temp. □°F	4	Purge Start:		GPM:		
Initial	6.96	821	19.1	6.81	Purge Stop:		_ GPM:		
			 		Elapsed:		-	•	
· ·			 		PURGEVOLUME				
			<u> </u>		Observations During	n Dismine (Mall (gallons	04-3-	
		†	<u> </u>		<u>cloudy</u>			odor):	
					D.O. Initial () , 99	@ 25 4°	Redox initial_	102,4	
					D.O. final	<u>—</u>	Redox final		
4-1 0/51					Discharge Water Dis	sposal:	_		
/leter S/N	DB02	DO953	DO953	9092	Storm Sewer	Ĺ	Other		
	grant.		A Paris	WELLSAMP	ING.				
Bailer - Type:					Sample Time:	1140	· <u></u>		
Sampl	e No.	Volume/Cont.		sis Requested	Preservatives	Lab	Comm	ents	
53087-6		3-VOA's	TPH gas, BTE	X,MTBE	Hel	CLS			
			_						
	-								
			_	·					
	· · <u>-</u>								
			- mra	ITY CONTROL	SAMPLES				
Du	plicate Sample	enza preve parparate (Marini PS	BONG SUMPAGAGAY (A MASA		Samples		Other Sample:	<u>1/4/5///////////</u> 5	
riginal Sample I		pl. Sample No.	Тур		Sample No.	Туре	Samp	Į.	
	 						1		
								1	

Table B1. Sample Location/Sample Description Cross-Reference BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Well/Sample Number	Client Sample ID
MW-1	53087-1
MW-3	53087-2
MW-5	53087-3
MW-6	53087-4
Trip Blank	53087-5