Harding Lawson Associates

OR AUG 23 PM 2: 30

July 11, 2000

49560 1

Mr. Jeff Christoff BPS Reprographic Services 2748 Willow Pass Road Concord, California 94519

Quarterly Groundwater Remediation and Monitoring Report April 1, through June 30, 2000 BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dear Mr. Christoff:

Harding Lawson Associates (HLA) presents this quarterly status report on the groundwater monitoring and remedial action activities at the BPS Reprographic Services (BPS) facility located at 1700 Jefferson Street in Oakland, California (see Plate 1). This report covers the period from April 1, through June 30, 2000 and was prepared to satisfy the quarterly groundwater monitoring requirements of the Alameda County Department of Environmental Health Services (County).

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987 and a preliminary soil and groundwater investigation indicated that a release of fuel into the subsurface had occurred. Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the groundwater and to determine the direction of groundwater flow. Free phase gasoline was found in MW-1. Groundwater level measurements indicated that the local groundwater gradient was in a north to northwest direction.

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present BPS facility and, in January 1988, two additional wells, MW-1A and MW-4, were installed as groundwater extraction wells. HLA also installed one offsite monitoring well, MW-5, in August 1988 and a second offsite well, MW-6, in April 1996. The monitoring well locations are shown on Plate 1.

In 1992, a groundwater extraction system was constructed at the site to remove free phase product from the groundwater surface. Groundwater was extracted from MW-1A and MW-4 and passed through an oil-water separator that removed the free phase gasoline. The water was then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrients were supplied to the water within the bioreactor to facilitate microbial growth. The treated water from the bioreactor was pumped in batches of approximately 500 gallons through three granular activated carbon vessels before discharge under a wastewater discharge permit from the East Bay Utility District to the sanitary sewer. The treatment system processed approximately 1,385,490 gallons of groundwater and an estimated 5,062 pounds of free-phase gasoline were recovered.

By 1999, the oil-water separator was no longer recovering product and free phase product was no longer present in any of the groundwater monitoring wells. Dissolved hydrocarbon concentrations were decreasing and HLA requested approval from The County to terminate groundwater extraction and to modify the remediation technique to insitu-bioremediation using an oxygen-releasing compound (ORC). ORC is manufactured and distributed by Regenisis, Inc.; its purpose is to increase the concentration of dissolved oxygen (DO) in the groundwater and to augment the ability of naturally occurring microbial organisms in the groundwater to biodegrade the dissolved petroleum hydrocarbons. The County approved this plan in a letter dated September 28, 1999, following the submittal of an ORC calculation sheet and a Groundwater Monitoring Plan, dated September 23, 1999.

HLA implemented the insitu remediation technique by placement of ORC in treatment wells: MW-1A, MW-3, MW-4, and MW-5 on September 29, 1999. The ORC is contained in fabric "socks" which release oxygen over time until the compound's oxygen releasing potential is depleted. HLA installed five socks in each treatment well at the approximate depth of the well's screened interval. The Groundwater Monitoring Plan outlined procedures for groundwater sampling using a non-purge method approved by the Regional Water Quality Control Board in a letter dated January 31, 1997. The first quarter that the new Groundwater Monitoring Plan was implemented, sampling included duplicate sampling using both the purge and non-purge methods (see HLA's quarterly report, dated October 25, 1999).

SECOND QUARTER OF 2000 GROUNDWATER SAMPLING AND ANALYSIS

In accordance with HLA's Groundwater Monitoring Plan, HLA removed the ORC socks from MW-3 and MW-5 on May 12, 2000, approximately two weeks before sampling. At that time, HLA measured the dissolved oxygen concentrations in monitoring wells MW-1, MW-3, MW-5, and MW-6. The DO measurements are presented in Table 1.

On May 30, 2000, HLA conducted the quarterly groundwater sampling of wells MW-1, MW-3, MW-5, and MW-6 using the non-purge method outlined in the Groundwater Monitoring Plan. Prior to sampling, HLA measured the distance from the top of each well's casing to the groundwater using an electric water level indicator. These measurements are presented in Table 2. To collect the groundwater samples, HLA raised dedicated Teflon tubing contained in each well until the end of the tubing was 2 to 4 feet below the groundwater surface and connected the tubing to a peristaltic pump with silicon tubing. New silicon tubing was used to sample each well. After removing the approximate volume of groundwater equal to the volume capacity of the Teflon tubing, HLA collected a sample in laboratory provided 40-milliliter vials and measured the groundwater's conductivity, pH, DO, and temperature. The groundwater parameter measurements are also presented in Table 1.

Immediately after sample collection, HLA labeled and stored the samples in a cooler with ice. The groundwater samples were kept chilled until submittal to California Laboratory Services (CLS), a California state-certified laboratory, under chain-of-custody protocol for the following analyses:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015 modified;
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) in accordance with EPA Method 8020.
- Methyl tertiary butyl ether (MTBE) in accordance with EPA Method 8020 with confirmation of detections in accordance with EPA Method 8260.

The laboratory reports are presented in the Appendix.

Upon completion of the groundwater sampling, HLA replaced the ORC socks in treatment wells MW-3 and MW-5 with a set of 5 new socks. Presently, the ORC socks are being replaced in the treatment wells on six-month intervals. Based on this schedule, the ORC socks in MW-1A and MW-4 will be replaced during next quarterly monitoring.

DISCUSSION

As shown in Table 2, the groundwater surface elevation increased an average on 0.86 feet across the site as compared to last quarter's measurements. HLA used SurferTM, a contouring computer program, to generate groundwater surface contours presented on Plate 2. Using the groundwater elevations from MW-3, MW-5, and MW-6 as measured on May 30th, groundwater contours were generated by the computer program using triangulation. Based on this model, the groundwater gradient was at 0.0033 ft/ft to the west. At the time MW-5 was constructed, the groundwater flow direction was reportedly north to northwest, and MW-5 was considered a downgradient well. However, presumably because of the

construction of new buildings in the immediate vicinity, which extend below the groundwater surface, recent groundwater monitoring has indicated the groundwater flow has been in a westerly direction.

Table 3 contains the compilation of historical groundwater sample results using the purge method of sampling and Table 4 provides the historical groundwater sample results since instituting insitubioremediation using the non-purge sampling method. The sample results from this quarter's sampling event are presented on Plate 3 and Plate 4 presents graphs of the BTEX results and DO measurements from MW-1, MW-3, and MW-5.

As shown on Plate 4, there has been a significant reduction in all BTEX constituents in MW-3 since implementation of insitu-bioremediation. The trend in reduction of BTEX constituents in MW-1 appears to have reversed itself this quarter, possibly due to the increase in groundwater elevation, which may be allowing petroleum hydrocarbons in the soil, that were above the water table, to dissolve into the groundwater. The results of the sampling at MW-5 show mixed results, with benzene decreasing slightly, toluene and xylenes increasing slightly, and ethylbenzene staying the same. The groundwater sample from MW-6 did not contain any detectable concentrations of TPHg, BTEX, or MTBE.

The groundwater samples from MW-5 and MW-6 did not contain any detectable concentrations MTBE above their respective reporting limits. The reporting limit for MTBE on the sample from MW-5 was elevated due to the high levels of BTEX constituents. The samples from MW-1, and MW-3 tested positive for MTBE using EPA Test Method 8020, however analysis by EPA Test Method 8260 indicated no MTBE above the 5 milligram per liter detection limit. Fingerprint analyses of a product sample from the site in 1998 indicated the product recovered by the treatment system did not contain MTBE.

The DO content in MW-3 and MW-5 declined sharply in the two weeks following removal to the ORC socks, which would be expected if a healthy population of hydrocarbon reducing microbes was present. The DO content in MW-1 did not change significantly during the two week interval, possibly an indication that the oxygen is being utilized rapidly while the socks are in the well.

CONCLUSIONS AND RECOMMENDATIONS

HLA recommends continued quarterly monitoring utilizing the procedures outlined in our Groundwater Monitoring Plan. ORC socks will continue to be replaced on six-month intervals to promote continued biodegradation of the residual petroleum hydrocarbons.

HLA recommends that Blue Print Services send a copy of this report to the following address:

Mr. Don Hwang Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577

While under contract to BPS, HLA will continue to provide quarterly groundwater monitoring and reporting as required by The County.

If you have any questions, please contact James McCarty at (510) 628-3220.

Yours very truly,

HARDING LAWSON ASSOCIATES

James G. McCarty

Project Engineer

Luis Fraticelli

Associate Geologist

JGM/LF/ts/49560/037757L

4 copies submitted

Attachments: Table 1 - Groundwater Parameters

Table 2 – Groundwater Elevation Data

Table 3 – Groundwater Monitoring Analytical Results - Using Purge Method Table 4 – Groundwater Monitoring Analytical Results – Non-Purge Method

Plate 1 – Site Map

Plate 2 - Groundwater Contours, May 30, 2000

Plate 3 - TPHg, BTEX and MTBE Concentrations, May 30, 2000

Plate 4 – BTEX and DO Results Appendix – Laboratory Reports

Table 1. Groundwater Parameters BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

Dissolved Oxygen (mg/l)	MW-1	MW-3	MW-5	MW-6
09/29/99	2.9	1.7	0.4	1.8
11/05/99	4.0	10.3	4.0	2.8
11/22/99	1.8	2.4	2.0	3.2
01/28/00	2.9	8.4	3.6	2.2
02/11/00	2.5	2.3	1.8	3.5
05/12/00	2.0	7.4	2.4	1.7
05/30/00	1.9	2.6	1.8	3.2
REDOX (mvolts)				
05/30/00	-322	197	-128	203
Temperature (deg F)				
09/29/99	67.0	72.6	67.7	73.8
11/22/99	66.4	62.9	65.0	69.8
02/11/00	61.3	63.2	62.0	68.5
05/30/00	77.7	74,8	76.3	76.2
рН				
09/29/99	8.39	8,53	8.43	8.44
11/22/99	6.86	8.42	6.84	6.79
02/11/00	6.80	6.94	6.83	6.72
05/30/00	7.02	7.35	7.54	7.56
Specific Conductance (µS/cm)				
09/29/99	976	880	1,577	966
11/22/99	1,004	1,500	1,352	1,038
02/11/00	992	1,327	1,275	1,149
05/30/00	845	1,020	758	924

Note:

Baseline dissolved oxygen measurement taken on 09/29/99, prior to initial installation of oxygen releasing compound

mg/l = milligrams per liter

mvolts = millivolts

deg F = degrees Fahrenheit

 μ S/cm = micromho per centermeter

Table 2. Groundwater Elevation Data BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

	MΛ	/ -1	MΜ	/-3	MV	V-5	MV	/-6	Average
	TOC Elev.	32.36	TOC Elev.	31.77	TOC Elev.	30.56	TOC Elev.	31.26	Change
Date	Water	Water	Water	Water	Water	Water	Water	Water	Since
Sampled	Level	Elevation	Level	Elevation	Level	Elevation	Level	Elevation	Preceding
03/06/96	MM		24.79	6.98	23.53	7.03	NA		Quarter
06/11/96	FP		25.60	6.17	23.78	6.78	25.16	6.10	-0.53
09/19/96	FP		26.09	5.68	24.48	6.08	25.76	5.50	-0.60
12/23/96	FP		FP		24.83	5.73	25.88	5.38	-0.23
03/27/97	FP		FP		23.82	6.74	24.78	6.48	
06/04/97	26.41	5.95	25.11	6.66	23.92	6.64	24.60	6.66	0.04
09/26/97	26.80	5.56	25.41	6.36	24.29	6.27	24.80	6.46	-0.32
12/22/97		6.36	24.91	6.86	24.02	6.54	24.71	6.55	0.42
03/31/98		6.30		7.72	i	7.78		7.51	0.75
06/18/98	25.60	6.76	23.71	8.06	22.51	8.05		8.04	0.40
08/28/98	25.45	6.91	23.70	8.07	22.74	7.82	i	9.03	0.23
12/02/98	k .	7.44	23.60	8.17	1	7.40	ì	7.54	-0.32
03/10/99	1	7.46	ŀ	9.12	i	7.74	!	7.72	0.37
06/30/99		6.83	i .	8.70	l	8.15		8.22	-0.04
09/29/99		8.13	1	8.74	22.81	7.75		7.84	0.14
11/22/99		8.03	i .	8.09	22.88	7.68		7.62	-0.26
02/11/00		7.98	l	8.03	l	7.82		7.59	0.00
05/30/00	23.57	8.79	22.97	8.80	21.73	8.83	22.82	8.44	0.86

TOC Elev. = top of well casing elevation baed on City of Oakland Datum

NM = not measured

FP = free product

-- = no data

NA = not applicable (MW-6 was installed in April 1996)

Table 3. Historical Purge Groundwater Monitoring Analytical Results - Using Purge Method
BPS Reprographic Services Facility
1700 Jefferson Street
Oakland, California

This could be compared by the control of the cont					ı			l-≝	- P				5	34.00	, w e e e e
120	(I/g (mg/l)	16/10/80	09/30/92	03/30/93	- 11	04/13/94	06/29/94	H	04/03/93	06/27/95	09/195	12/13/95	03/00/50	06/11/90	02/12/26
1350 FP FP FP FP 39 4600 51 52 52 52 52 52 52 52	MW-1	료	FP	댐	FP	윤	FP	FP	NA	NA	NA	NA	NA	균	H
174 FP FP FP FP 39 4500 51 20 62 19 1700 FP FP FP FP 53 64 59 51 41 50 45 17000 FP FP FP 17000 15000 1	MW-1A	350		랊	단	170	95	190	29	53	52	62	200	140	100
120 120 121	MW-3	74		FP	FP	균	39	4,600	5	20	6.2	6	7	16	9
120 51 74 80 63 64 59 51 41 50 45 17000 FP FP FP FP FP FP FP	WW-4	98		FP	FP	80	16	92	35	13	14	Ξ	110	260	95
FP FP FP FP FP FP FP FP	MW-5	120		74	98 98	63	64	\$9	2	41	50	45	2	48	48
1,500	9-MM	1	1	i	•	!	•	1	;	;	1	I	1	ND(0.05) ND(0.05)	ND(0.05)
1,000 FP FP FP FP FP FP FP	Benzene (µg/l)														
17,000 FP FP 17,000 15,000 11,000 270 70 220 1,000 1,000 1,000 270 270 220 220 1,000 1,000 1,000 1,000 2,000 2,000 2,000 2,000 1,000 2,000 1,000 2,000	MW-1	FF	된	FP	댼	됸	윤	료	NA	NA	AN	NA A	NA	ΕĒ	댐
1,500 FP FP FP 3,200 1,300 1,100 2,200 2,300 2,300 1,500	MW-1A	17,000		FP	FP	17,000	16,000	13,000	11,000	11,000	8,900	9,900	14,000	18,000	16,000
1,500 FP FP FP 1,500 1,700 1,700 1,300 1,500 1,600 1,600 1,500	MW-3	1,600		FP	FP	FP	3,200	1,500	1,100	270	5	220	120	170	45
Fig. 60 15,000	WW-4	1.500		FP	FP	1,500	1,300	1,700	1,200	1,300	2,200	630	2,600	009'9	9,900
FP FP FP FP FP FP FP FP	MW-5	20,000			19,000		29,000	13,000	15,000	12,000	1,600	13,000	15,000	12,000	12,000
FP FP FP FP FP FP FP FP	9-MM						1	1	;	:	:	ī	1	ND(0.5)	ND(0.5)
1,000 FP FP FP FP FP FP FP	Toluene (µg/l)														
11,000 FP FP FP 11,000 21,000 23,000 3,200 11,000 11,000 480 4,000 FP FP FP FP 2,500 4,200 2,300 2,100 2,100 2,100 14,000 5,900 8,200 3,500 3,400 1,600 2,100 2,100 2,000 FP FP FP FP FP 7,00 1,400 1,600 2,100 2,100 3,000 FP FP FP FP 520 1,400 580 190 68 140 1,000 FP FP FP 520 1,800 1,800 1,800 1,800 1,000 FP FP FP 520 2,800 1,800 2,800 1,900 1,800 1,000 FP FP FP FP 520 2,800 1,800 1,800 1,800 1,000 FP FP FP FP FP FP FP	MW-1	냰	FP	FP	FP	FP	댐	F.	NA	NA	NA	NA	NA	FF	H
4,600 FP FP FP 2,900 4,200 2,300 5,900 4,70 4,000 6,200 2,100 4,70 4,000 2,100 2,100 4,70 4,700 2,100	MW-1A	31,000		FP	듄	31,000		21,000	13,000	9,900	9,200	11,000	22,000	28,000	22,000
14,000 FP FP FP 2,500 3,400 1,600 2,100 4,700 4,100 3,400 1,600 2,100 2,100 4,100 4,100 4,100 2,10	MW-3	4,600		잞	윤	FP		4,200	2,300	550	140	480	170	270	30
14,000 5,900 5,000 8,200 3,500 5,400 3,800 2,200 2,100 2,700 2,100	MW-4	6,200		싪	단	2,500		4,100	3,400	1,600	2,100	470	3,600	19,000	19,000
FP FP FP FP FP FP FP FP	MW-5	14,000		5,000	8,200	3,500		3,800	2,200	2,100	2,700	2,100	2,800	2,900	4,500
FP FP FP FP FP FP FP NA NA NA NA NA NA NA N	MW-6	1	I	ł	Į.	ł	1	:	ł	:	:	1	1	ND(0.5)	ND(0.5)
FP FP FP FP FP FP FP NA NA NA NA NA NA NA N	Ethylbenzene (1	([/Bn													
3,000 FP FP FP 2,100 1,500 1,400 910 500 710 790 670 670 670 670 670 670 670 670 670 67	MW-1	£	FP	F	윤	FP	FP	윤	NA	NA	NA	NA A	NA	FP	FP
670 FP FP FP 520 51 310 280 177 110 14 1,000 FP FP FP 520 51 310 280 77 110 14 1,900 1,400 1,800 1,800 2,800 1,800 2,800 1,000 1,000 1,900 1,900 1,900 1,900 2,000 1,900 1,900 1,900 1,900 1,900 1,000 1,000 1,900 1,0	MW-1A	3,000		FP	FP	2,100	1,500	1,400	910	200	710	790	2,700	2,800	2,100
1,000 FP FP FP 520 51 310 280 77 110 14 1,900 1,400 1,800 1,500 2,800 1,800 2,800 1,400 2,000 16,000	MW-3	670		쥰	윤	FP	580	9000	280	190	89	140	49	89	15
1,900 1,400 1,800 1,500 1,800 2,800 1,400 2,000 1,600 1,40	MW-4	1,000		단	단	520	51	310	280	11	110	14	780	3,700	2,000
FP FP FP FP FP FP FP NA NA NA NA NA NA NA N	MW-5	1,900		_	1,400	_	2,800	1,800	2,800	1,400	2,000	16,000	2,000	2,000	2,300
FP FP FP FP FP FP FP FP	MW-6	1	1	1	1	ì	I	I	ł	;	:	i	1	ND(0.5)	ND(0.5)
FP FP FP FP FP FP FP FP	Xylenes (µg/l)									***************************************					
A 22,000 FP FP 14,000 12,000 9,800 6,300 6,800 5,300 2,300 4,300 5,300 5,300 5,300 5,300 5,300 5,300 5,300 5,300 5,300 5,300 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700 5,300 1,700<	MW-1	Œ	FP	FP	FP	FP	FP	윤	NA	NA	NA	NA	AN	FP	FP
4,300 FP FP 4,300 95,000 4,800 1,700 500 1,700 4,900 2,600 2,700 2,700 2,100 4,500 2,900 4,500 2,100 1,800 1,700 1 NA NA NA NA NA NA NA NA 1 NA NA NA NA NA NA NA NA 1 NA NA NA NA NA NA NA NA 1 NA NA NA NA NA NA NA 2 NA NA NA NA NA NA NA 3 NA NA NA NA NA NA NA 4 NA NA NA NA NA NA NA NA 5 NA NA NA NA NA NA NA NA 6	MW-1A	22,000		Ŧ	FP	14,000	12,000	11,000	9,800	6,300	6,800	5,300	22,000	000'61	14,000
4 900 2,600 2,700 2,100 4,500 5,800 1,800 2,100 1,800 1,900 1,900 1,800 1,800 1,900 <td< td=""><td>MW-3</td><td>4,300</td><td></td><td>FP</td><td>FP</td><td>FP</td><td>4,300</td><td>95,000</td><td>4,800</td><td>1,700</td><td>200</td><td>1,700</td><td>440</td><td>1,500</td><td>300</td></td<>	MW-3	4,300		FP	FP	FP	4,300	95,000	4,800	1,700	200	1,700	440	1,500	300
4,900 2,600 2,700 2,100 4,500 4,500 1,600 2,100 1,900 1 NA NA NA NA NA NA NA NA 1 NA 3 NA	MW-4	7,300		FP	FP	3,200	3,400	5,400	5,800	1,800	2,100	1,800	10,000	28,000	13,000
NA	MW-5	4,900		2,700		2,100	4,500	2,900	4,500	1,600	2,100	1,900	2,400	2,700	4,000
1 NA NA </td <td>WW-6</td> <td>I</td> <td>1</td> <td>I</td> <td>I</td> <td>;</td> <td>:</td> <td>:</td> <td>1</td> <td>:</td> <td>:</td> <td>;</td> <td>1</td> <td>ND(2)</td> <td>ND(2)</td>	WW-6	I	1	I	I	;	:	:	1	:	:	;	1	ND(2)	ND(2)
NA NA<	MTBE (μg/l)														
NA NA<	MW-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
NA NA<	MW-1A	NA		NA	NA	NA	ΝA	NA	NA NA	NA	NA	NA	Ν	NA	NA
NA NA<	MW-3	NA		ΝĀ	Ä	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA
NA N	MW-4	NA		NA	NA	NA		NA	NA	NA	NA	NA	ΝĄ	NA	NA
TPHg = total petroleum hydrocarbons as gasoline ND MTBE = methyl t-butyl ether (mg/l) milligrams per liter FP = (µg/l) ruicrograms per liter=	MW-5	NA		NA	Ν	NA		NA	NA	Ϋ́	NA	NA	NA	NA	NA
carbons as gasoline ND NA. FP = FP =	MW-6	:	:	;	:	ŀ	1	ł	ı	:	:	:	;	Ν	NA
		TPHg = tota	al petroleum !	ydrocarbons	s as gasoline			ND = Not de	tected above	the reportin	g limit in par	enthesis			
- ·		MTBE = m	ethyl t-butyl e	ather			- * '	NA = Not and	alyzed						
H		illim (I/Bm)	grams per lite	=				FF = Free PA	oduct - well	not sampled					
		(µg/l) micr	rograms per li	ter			٠	= Well did	not exist at c	late indicated					

Table 3. Historical Purge Groundwater Monitoring Analytical Results - Using Purge Method
BPS Reprographic Services Facility
1700 Jefferson Street
Oakland, California

-						Date Sampl	led					·
TPHg (mg/l)	12/23/96	03/27/97	06/04/97	09/26/97	12/23/97	03/31/98	06/18/98	08/28/98	12/02/98	03/10/99	06/30/99	09/29/99
MW-1	FP	FP	68	59	41	44	32	26	26	26	18	21
MW-IA	FP	66	54	73	66	51	50	15	41	10	18	NA
MW-3	FP	FP	85	47	32	32	16	17	3.2	9.6	7.9	5.0
MW-4	FP	37	24	41	48	NA	25	48	10	11	8.8	NA
MW-5	45	44	35	36	39	48	17	16	15	23	7.7	11
MW-6	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)
Benzene (µg/l)				·····					<u></u>			
MW-1	FP	FP	2,200	6,000	6,800	8,300	1,100	8,600	9,200	8,200	7,000	9,200
MW-1A	FP	12,000	11,000	10,000	10,000	9,100	11,000	1,100	8,500	2,300	6,400	NA
MW-3	FP	FP	8,500	610	640	690	180	84	39	86	31	120
MW-4	FP	2,600	2,600	2,900	6,000	NA	2,000	9,700	1,700	2,300	1,800	NA
MW-5	12,000	11,000	8,900	7,900	13,000	10,000	9,500	5,400	8,400	14,000	5,200	9,600
MW-6	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
Toluene (µg/l)									_			
MW-1	FP	14,000	4,500	3,000	3,000	3,700	3,800	2,300	4,300	5,900	5,800	10,000
MW-IA	FP	15,000	12,000	16,000	16,000	11,000	15,000	830	11,000	1,900	7,800	NA
MW-3	FP	FP	13,000	6,000	5,300	3,800	1,500	1,100	85	540	330	340
MW-4	FP	6,900	3,200	5,000	11,000	NA	460	11,000	610	2,100	3,000	NA
MW-5	2,200	1,100	560	270	500	400	310	160	120	300	270	710
MW-6	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
Ethylbenzene (
MW-1	FP	FP	1,500	1,600	1,400	1,100	550	730	820	870	950	1,200
MW-1A	FP	1,400	1,000	1,400	1,400	1,100	870	31	720	1,600	660	NA
MW-3	FP	FP	2,400	930	800	870	490	430	25	250	200	230
MW-4	FP	540	140	350	580	NA	ND(15)	890	ND(15)	88	150	NA
MW-5	2,700	1,900	1,500	1,500	1.900	2,000	420	1,100	1,500	1,800	1,100	1,100
MW-6	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	0.5	ND(0.5)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
Xylenes (μg/l)												
MW-J	FP	FP	11,000	8,600	6,600	4,300	3,000	2,100	.2,800	3,500	2,500	5,500
MW-1A	FP	100	7,200	8,500	12,000	6,800	5,800	3,000	6,700	2,300	4,100	NA
MW-3	FP	FP	16,000	5,900	5,900	5,200	3,700	3,800	360	2,300	1,800	1,300
MW-4	FP	5,500	3,500	4,800	8,200	NA	6,400	5,000	2,300	1,600	2,700	NA
MW-5	6,500	2,800	1,700	1,300	1,700	2,200	850	900	840	1,100	690	1,100
MW-6	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)	ND(0.60)
MTBE (μg/l)												
MW-1	FP	FP	ND(500)	ND(500)	300	420	ND(50)	ND(50)	ND(50)	ND(50)	ND(25)	ND(250)
MW-1A	NA	1,800	ND(500)	ND(500)	1,900	300	ND(50)	ND(50)	ND(50)	ND(50)	ND(25)	NA
MW-3	FP	FP	ND(500)	ND(100)	ND(300)	350	ND(25)	ND(50)	ND(50)	ND(25)	ND(25)	10
MW-4	NA	1,400	ND(300)	ND(500)	270	NA	ND(50)	ND(50)	ND(50)	ND(25)	ND(25)	NA
MW-5	600	300	ND(100)	ND(500)	ND(1000)	350	ND(10)	ND(50)	ND(50)	ND(50)	ND(25)	ND(100)
MW-6	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
		TPHe = tota	I petroleum h	vdrocarbons				ND = Not d	letected abov	e the reportir	ng limit in par	enthesis

TPHg = total petroleum hydrocarbons as gasoline

MTBE = methyl t-butyl ether

(mg/l) milligrams per liter (µg/l) micrograms per liter

ND = Not detected above the reporting limit in parenthesis

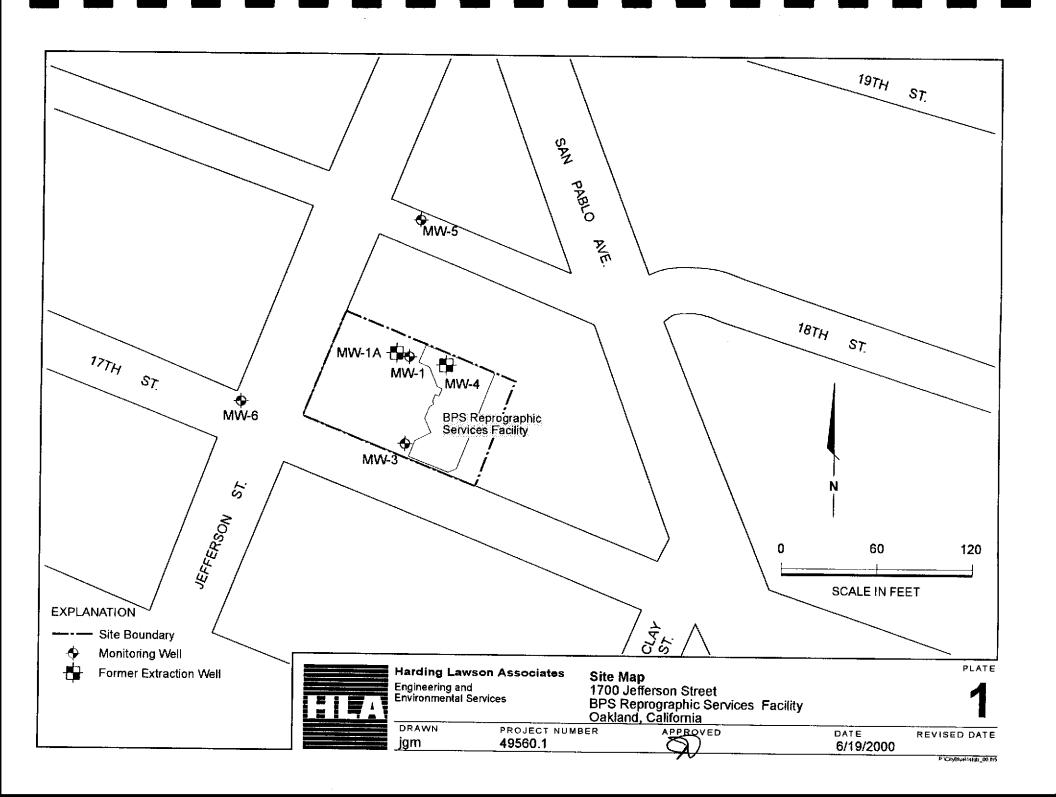
NA = Not analyzed

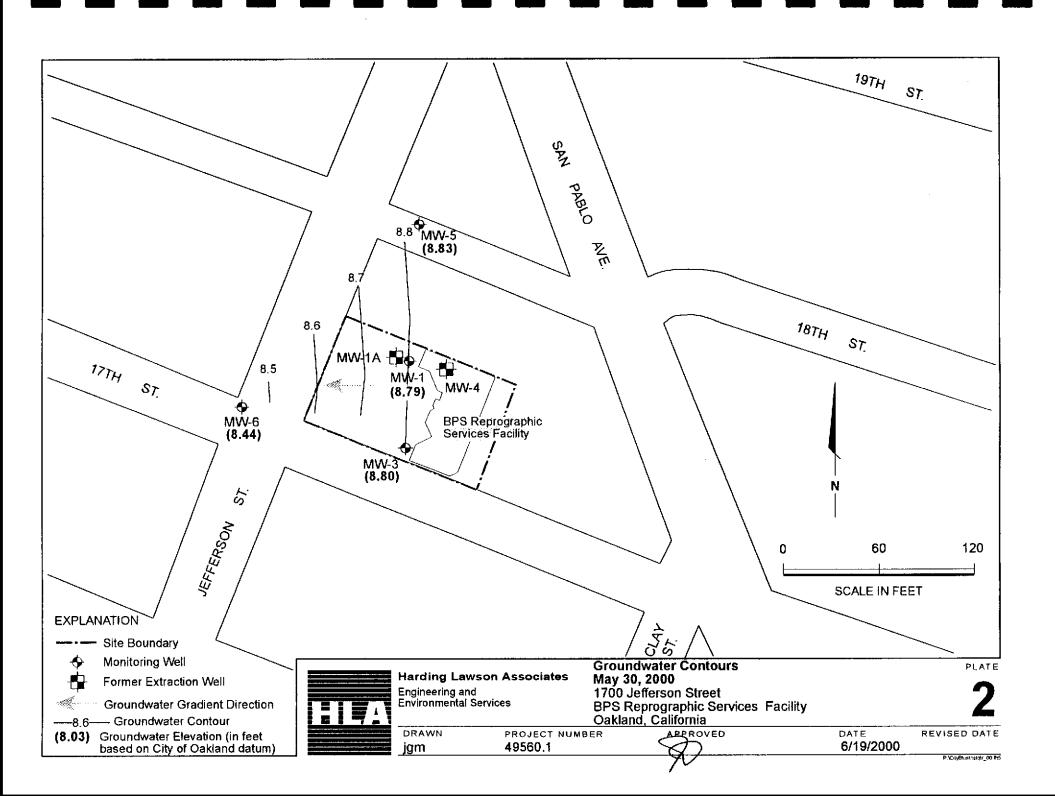
FP = Free Product - well not sampled

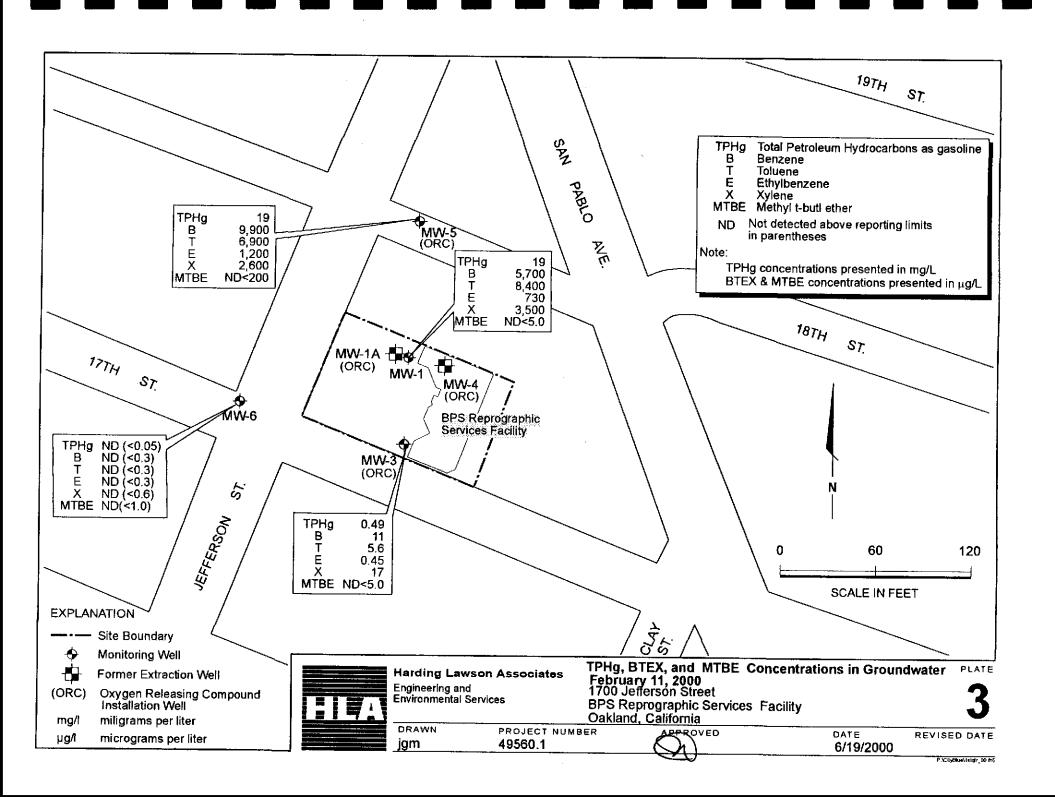
^{-- =} Well did not exist at date indicated

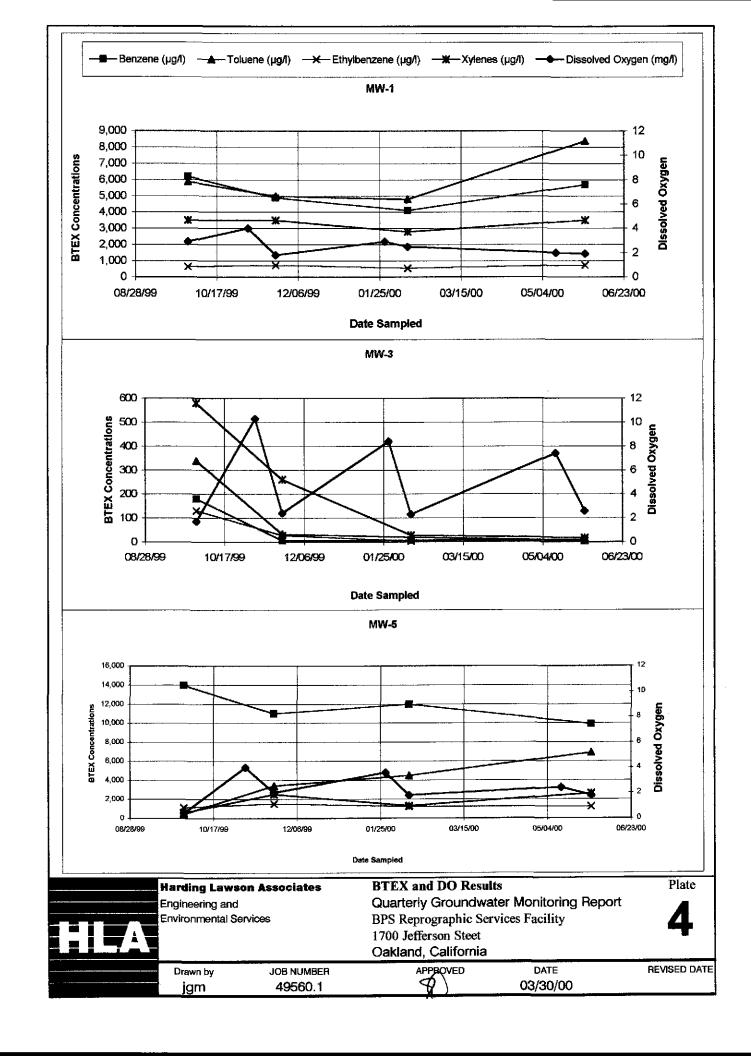
Table 4. Groundwater Monitoring Analytical Results - Non-Purge Method BPS Reprographic Services Facility 1700 Jefferson Street Oakland, California

TPHg (mg/l)	09/29/99	11/22/99	02/11/00	05/30/00
MW-1	14	24	19	19
MW-3	4. I	3.1	0.54	0.49
MW-5	10	30	23	19
MW-6	ND<0.5	ND<0.05	ND<0.05	ND<0.05
Benzene (μg/l)		. <u></u> -		
MW-1	6,200	4,900	4,100	5,700
MW-3	180	6.5	8.3	11
MW-5	14,000	11,000	12,000	9,900
MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3
Toluene (µg/l)				
MW-1	5,900	5,000	4,800	8,400
MW-3	340	33	20	5.6
MW-5	470	3,400	4,500	6,900
MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3
Ethylbenzene (µg/l)				
MW-1	620	730	530	730
MW-3	130	27	2.4	0.45
MW-5	1,100	1,500	1,200	1,200
MW-6	ND<0.3	ND<0.3	ND<0.3	ND<0.3
Xylenes (μg/l)		·		
MW-1	3,500	- 3,500	2,800	3,500
MW-3	580	260	28	17
MW-5	600	2,500	1,300	2,600
MW-6	ND<0.6	ND<0.6	ND<0.6	ND<0.6
MTBE (μg/l)				
MW-1	ND<250	ND<100	6.6	ND<5.0 ¹
MW-3	14	ND<1.0	31	ND<5,0 ¹
MW-5	ND<100	ND<100	6.6	ND<200
MW-6	ND<1.0	ND<1.0	ND<1.0	ND<1.0


mg/l = milligrams per liter


MTBE = methyl t-butyl ether


 $[\]mu g/l = micrograms per liter$


ND = Not detected above the reporting limit following the less than sign

¹ Confirmation by EPA Test Method 8260 of MTBE hits as analyzed by EPA Test Method 8020 was requested of the laboratory

APPENDIX

LABORATORY REPORT

Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607 06/12/2000

Attention: Jim McCarty

Reference: Analytical Results

Project Name: City Blue Groundwater

CLS ID No.: R9902 CLS Job No.: 829902

Monitoring

Project No.: 49560.1 Date Received: 05/31/2000

Chain Of Custody: 2542

The following analyses were performed on the above referenced project:

No. of Samples	Turnaround Time	Analysis Description
4	10 Days	TPH as Gasoline, BTEX and MTBE

These samples were received by CLS Labs in a chilled, intact state and accompanied by a valid chain of custody document.

Calibrations for analytical testing have been performed in accordance to and pass the EPA's criteria for acceptability.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater

Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: N/A Date Analyzed: 06/02/2000

TPH as Gasoline

Date Reported: 06/07/2000

Client ID No.: MW-6

Project No.: 49560.1 Contact: Jim McCarty

Phone: (510)451-1001

1.0

Lab Contact: James Liang

Lab ID No.: R9902-1A Job No.: 829902 COC Log No.: 2542 Batch No.: 28840

Instrument ID: GC018
Analyst ID: LEVIF
Matrix: WATER

0.050

		SURROGATE _		
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95498		0.9200	104
	· · · · · · · · · · · · · · · · · · ·	MW-6		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)

ND

ND = Not detected at or above indicated Reporting Limit

N/A

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: N/A

Date Analyzed: 06/02/2000 Date Reported: 06/07/2000 Client ID No.: MW-3

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902-2A

Job No.: 829902

COC Log No.: 2542

Batch No.: 28840

Instrument ID: GC018

Analyst ID: LEVIF

Matrix: WATER

SURROGATE

				· · · · · · · · · · · · · · · · · · ·
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95498		0.0200	97
***		MW-3		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	0.49	0.050	1.0

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: N/A

Date Analyzed: 06/02/2000

Date Reported: 06/07/2000 Client ID No.: MW-1

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902-3A

Job No.: 829902 COC Log No.: 2542 Batch No.: 28840

Instrument ID: GC018 Analyst ID: LEVIF

Matrix: WATER

SURROGATE

*	 	_ DOMMOGRIE	· · · · · · · · · · · · · · · · · · ·	
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95498		0.200	88
		MW-1		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	19	0.50	10

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater

Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: N/A

Date Analyzed: 06/02/2000 Date Reported: 06/07/2000 Client ID No.: MW-5

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902-4A

Job No.: 829902 COC Log No.: 2542

Batch No .: 28840

Instrument ID: GC018
Analyst ID: LEVIF
Matrix: WATER

SURROGATE

				
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95498		0.200	91
		MW-5		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	19	0.50	10

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Extracted: N/A
Date Analyzed: 06/02/2000
Date Reported: 06/07/2000

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902 Job No.: 829902 COC Log No.: 2542 Batch No.: 28840

Instrument ID: GC018
Analyst ID: LEVIF

Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Surr Conc. (mg/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95498	0.0200	98
	METHOD	BLANK	
Analyte	CAS No.	Results (mg/L)	Reporting Limit (mg/L)
TPH as Gasoline	N/A	ND	0.050

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000

Date Extracted: N/A
Date Extracted: 06/02/2000
Date Reported: 06/07/2000
Client ID No.: MW-6

Project No.: 49560.1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R9902-1A

Job No.: 829902
COC Log No.: 2542
Batch No.: 28840
Instrument ID: GC018
Analyst ID: LEVIF

Matrix: WATER

STEROGATE

		SURROGATE		
Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95498		20.0	104
	<u> </u>	MW-6		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634044 71432 108883 100414 1330207	ND ND ND ND	1.0 0.30 0.30 0.30 0.50	1.0 1.0 1.0 1.0

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000

Date Extracted: N/A
Date Analyzed: 06/02/2000
Date Reported: 06/07/2000
Client ID No.: MW-3

Project No.: 49560.1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R9902-2A
Job No.: 829902
COC Log No.: 2542
Batch No.: 28840
Instrument ID: GC018
Analyst ID: LEVIF

Matrix: WATER

DDAC3.TV

		SURROGATE		
Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95498		20.0	96
•		MW - 3		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634044 71432 108883 100414 1330207	21 11 5.6 0.45 17	1.0 0.30 0.30 0.30 0.60	1.0 1.0 1.0 1.0

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: N/A

Date Analyzed: 06/02/2000 Date Reported: 06/07/2000 Client ID No.: MW-1

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902-3A Job No.: 829902 COC Log No.: 2542 Batch No.: 28840

Instrument ID: GC018 Analyst ID: LEVIF

Matrix: WATER

.....

		SURROGATE		-
Analyte	CAS No.		urr Conc. ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95498	20	00	94
		MW-1		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634044 71432 108883 100414 1330207	74 5700 8400 730 3500	10 60 60 60 60 120	10 200 200 200 200 200

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: N/A

Date Analyzed: 06/02/2000 Date Reported: 06/07/2000

Client ID No.: MW-5

Project No.: 49560.1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902-4A Job No.: 829902 COC Log No.: 2542 Batch No.: 28840

Instrument ID: GC018
Analyst ID: LEVIF

Matrix: WATER

SURROGATE					
Analyte	CAS No.		urr Conc. ug/L)	Surrogate Recovery (percent)	
o-Chlorotoluene	95498	40	000	106	
		MW-5			
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)	
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634044 71432 108883 100414 1330207	ND 9900 6900 1200 2600	200 150 150 60 120	200 500 500 200 200	

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater

Monitoring

Xylenes, total

Date Extracted: N/A
Date Analyzed: 06/02/2000
Date Reported: 06/07/2000

Project No.: 49560.1
Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.; **R9902**

Job No.: 829902 COC Log No.: 2542 Batch No.: 28840 Instrument ID: GC018
Analyst ID: LEVIF
Matrix: WATER

ND

0.60

MB SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95498	20.0	106
	METHOD	BLANK	
Analyte	CAS No.	Results (ug/L)	Reporting Limit (ug/L)
Methyl t-butyl ether Benzene Toluene Ethylbenzene	1634044 71432 108883 100414	ND ND ND ND	1.0 0.30 0.30 0.30

ND = Not detected at or above indicated Reporting Limit

1330207

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Extracted: N/A
Date Analyzed: 06/02/2000
Date Reported: 06/07/2000

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902

Job No.: R9902
Job No.: 829902
COC Log No.: 2542
Batch No.: 28840
Instrument ID: GC018
Analyst ID: LEVIF
Matrix: WATER

	MS SURI	ROGATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95498	20.0	99
	MATRIX	SPIKE	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71432 108883 100414 1330207	20.0 20.0 20.0 60.0	105 110 103 100
	MSD SURE	ROGATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95498	20.0	99
	MATRIX SPIKE	E DUPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71432 108883 100414 1330207	20.0 20.0 20.0 60.0	97 103 100 99
	RELATIVE % I	DIFFERENCE	
Analyte	CAS	No.	Relative Percent Difference (percent)

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Extracted: N/A

Date Analyzed: 06/02/2000 Date Reported: 06/07/2000

Project No.: 49560.1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902 Job No.: 829902 COC Log No.: 2542 Batch No.: 28840

Instrument ID: GC018
Analyst ID: LEVIF
Matrix: WATER

RELATIVE % DIFFERENCE(cont.)

Analyte	CAS No.	Relative Percent Difference (percent)
Benzene	71432	8
Toluene	108883	7
Ethylbenzene	100414	3
Xylenes, total	1330207	1

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Extracted: N/A
Date Analyzed: 06/02/2000
Date Reported: 06/07/2000

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902

Job No.: 829902

COC Log No.: 2542

Batch No.: 28840

Instrument ID: GC018

Analyst ID: LEVIF

Matrix: WATER

LCS SURROGATE				
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Surrogate Recovery (percent)	
o-Chlorotoluene	95498	20.0	102	
	LAB CONTRO	L SAMPLE		
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Benzene Toluene Ethylbenzene Xvlenes, total	71432 108883 100414 1330207	20.0 20.0 20.0 60.0	100 102 105 105	

Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

06/14/2000

Attention: Jim McCarty

Reference: Analytical Results

Project Name: City Blue Groundwater Monitoring

CLS ID No.: R9902A CLS Job No.: 829902

Project No.: 49560.1 Date Received: 05/31/2000

Chain Of Custody: 2542

The following analyses were performed on the above referenced project:

<i>No. of</i> Samples	Turnaround Time	Analysis Description
		
2	10 Days	MTBE by EPA Method 8260 Modified

These samples were received by CLS Labs in a chilled, intact state and accompanied by a valid chain of custody document.

Calibrations for analytical testing have been performed in accordance to and pass the ${\tt EPA's}$ criteria for acceptability.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA Method 8260MOD

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater

Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: 06/09/2000 Date Analyzed: 06/09/2000 Date Reported: 06/13/2000

Client ID No.: MW-3

Project No.: 49560.1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902A-2A

Job No.: 829902

COC Log No.: 2542

Batch No.: 28910

Instrument ID: MS007 Analyst ID: MINH

Matrix: WATER

		SURROGATE		
Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
Toluene-d8	N/A		50.0	101
		MW-3		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether	1634044	ND	5.0	1.0

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA Method 8260MOD

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Sampled: 05/30/2000 Date Received: 05/31/2000 Date Extracted: 06/09/2000 Date Analyzed: 06/09/2000 Date Reported: 06/13/2000

Client ID No.: MW-1

Project No.: 49560.1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R9902A-3A Job No.: 829902

COC Log No.: 2542 Batch No.: 28910

Instrument ID: MS007 Analyst ID: MINH

Matrix: WATER

SITEPOCATE

	· · · · · · · · · · · · · · · · · · ·	SURROGATE		
Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
Toluene-d8	N/A		50.0	99
		MW-1		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether	1634044	ND	5.0	1.0

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA Method 8260MOD

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Extracted: 06/09/2000 Date Analyzed: 06/09/2000 Date Reported: 06/13/2000

Project No.: 49560.1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R9902A Job No.: 829902 COC Log No.: 2542 Batch No.: 28910 Instrument ID: MS007 Analyst ID: MINH

Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)
Toluene-d8	N/A	50.0	102
	METHOD BL	ANK	
Analyte	CAS No.	Results (ug/L)	Reporting Limit (ug/L)
Methyl t-butyl ether	1634044	ND	5.0

Analysis Report: Volatile Organics (Oxygenates) by Capillary GC/MS, EPA Method 8260MOD

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue Groundwater Monitoring

Date Extracted: 06/09/2000 Date Analyzed: 06/09/2000 Date Reported: 06/13/2000

Project No.: 49560.1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R9902A
Job No.: 829902
COC Log No.: 2542
Batch No.: 28910
Instrument ID: MS007
Analyst ID: MINH

Matrix: WATER

LAB CONTROL SAMPLE					
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)		
Methyl t-butyl ether	1634044	50.0	145		
	LAB CONTROL SAMPLE	DUPLICATE			
Analyte	CAS No.	LCS Conc. (ug/L)	LCSD Recovery (percent)		
Methyl t-butyl ether	1634044	50.0	149		
	LCS RPD				
Analyte	CAS	No.	LCS Relative Percent Difference (percent)		
Methyl t-butyl ether	1634	044	3		