Harding Lawson Associates

PROPERTY AL SO MAR 19 AM 8:52

April 5, 1999

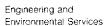
STID 4148

46559 1

Mr. Jeff Christoff Blue Print Service Company 1057 Shary Circle Concord, California 94518

Quarterly Report
January 1, 1999 through April 1, 1999
Groundwater Remediation and Monitoring
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

Dear Mr. Christoff:


Harding Lawson Associates (HLA) presents this quarterly monitoring report of the groundwater monitoring wells and treatment system at the Blue Print Service facility at 1700 Jefferson Street, Oakland, California. This report covers the period of January 1, 1999 through April 5, 1999. It was prepared to satisfy quarterly groundwater monitoring requirements of the Alameda County Health Care Services Agency (Alameda County). The report also satisfies the reporting requirements of the East Bay Municipal Utilities District (EBMUD) for treatment system discharge to the sanitary sewer.

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987. A preliminary investigation indicated a release of fuel into the soil and groundwater. Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the soil and groundwater and to determine the direction of groundwater flow. Monitoring of these wells revealed free phase gasoline floating on the surface of the groundwater in MW-1. Initial groundwater level measurements indicated that groundwater flows in a north to northwest direction at the site.

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present structures. In January 1988, two additional wells (MW-1A and MW-4) were installed at the facility to be used as groundwater extraction wells. One downgradient monitoring well (MW-5) was installed offsite in August 1988 and in April 1996, monitoring well MW-6 was installed offsite in an upgradient location to improve understanding of groundwater flow at the site. The locations of the monitoring wells are shown on Plate 1.

In 1992 a groundwater extraction system was constructed at the site to remove free phase product from the groundwater surface. Groundwater is extracted from MW-1A and MW-4 and passes through an oil-water

3

March 31, 1999 46559 1 Mr. Jeff Christoff Blue Print Service Company Page 2

separator that removes the free phase gasoline. The water is then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrient are supplied to the groundwater within the bioreactor to facilitate microbial growth. The treated water from the bioreactor is pumped in batches of approximately 500 gallons through three granular activated carbon (GAC) vessels before being discharged to the sanitary sewer. Since 1992, the three-phase treatment system has processed approximately 1,384,290 gallons of groundwater and discharged the treated effluent to the sanitary sewer. An estimated 5,062 pounds of gasoline have been recovered. Groundwater discharge to the sanitary sewer is authorized under the EBMUD Wastewater Discharge Permit (Account No. 500-68191).

TREATMENT SYSTEM STATUS

During the first quarter of 1999, the treatment system processed approximately 22,630 gallons of groundwater. The average daily discharge flow rate for the treatment system was approximately 294 gallons per day (gpd). Average combined extraction rate for the two extraction wells was 0.20 gallons per minute (gpm). No free phase gasoline was recovered from the groundwater by the oil water separator this quarter. Gasoline was removed in the dissolved phase and treated by the bioreactor or adsorbed by the GAC. Flow totalizer readings and system maintenance activities are summarized in Table 1.

TREATMENT SYSTEM SAMPLING AND ANALYSIS

On March 10, 1999, HLA collected samples from the two extraction wells, the separator effluent, the bioreactor effluent and the treatment system effluent. The two extraction wells are sampled from sample ports prior to entering the separator. The separator effluent was sampled by collecting a grab sample with a Teflon bailer directly from the downstream end of the oil-water separator, the bioreactor effluent sample was collected from a sampling port upstream of the GAC vessels, and the system effluent sample was collected from a sample port downstream of the third and final GAC vessel. These water samples, consisting of 40-milliliter volatile analysis vials (VOAs), were placed in ice-chilled coolers and submitted to California Laboratory Services of Rancho Cordova, California, under chain-of-custody protocol for analyses. The samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Test Method 8015 modified and for benzene, toluene, ethylbenzene and total xylenes (BTEX) and methyl t-butl ether (MTBE) by EPA Test Method 8020.

Results of the chemical analyses of these samples indicate that treatment system effluent concentrations were below the EBMUD discharge limitations of 5 micrograms per liter (µg/I) for each individual BTEX components. HLA's treatment system sampling results are presented in Table 2. The laboratory reports are presented in the Appendix A.

GROUNDWATER SAMPLING AND ANALYSIS

On March 10, 1999, HLA measured the water levels in wells MW-1, MW-3, MW-5 and MW-6. Groundwater surface elevations are presented on Plate 1. The monitoring wells were sampled after purging at least three well volumes from each and allowing the water level to recover to at least 80 percent of the

March 31, 1999 46559 1 Mr. Jeff Christoff Blue Print Service Company Page 3

pre-purge level. HLA monitored the pH, conductivity, and temperature of the groundwater removed during purging. Sampling was not performed until these parameters had stabilized. Three 40-milliliter VOAs of water were collected from each well with a disposable Teflon bailer. Purge water was discharged to the treatment system bioreactor.

HLA collected samples from the two extraction wells, MW-1A and MW-4, at individual sampling ports upstream of the oil-water separator.

All of the water samples were placed in ice-chilled coolers and submitted to California Laboratory Services of Rancho Cordova, California under chain-of-custody protocol. The samples were analyzed for TPHg by EPA Test Method 8015 (modified) and for BTEX and MTBE by EPA Test Method 8020. The historical analytical results are summarized in Table 3. Plate 2 presents the TPHg and BTEX results for this reporting period. The laboratory reports are presented in the Appendix A.

DISCUSSION

The treatment system continues to be effective in removing and treating TPHg and BTEX in the groundwater as evidenced by the reduction of hydrocarbon concentrations in the water sample collected from the oil/water separator effluent as compared to the bioreactor effluent. The lack of free phase product recovered in the oil/water separator indicates that source removal in the form of free product may be complete. The results of effluent sampling by HLA during this quarter show compliance with EBMUD permit discharge limitations.

The groundwater elevation was measured to range from 0.95 feet (MW-3) to 0.03 feet (MW-5) higher than last quarter's measurements. The groundwater elevations presented on Plate 1 show a depression in the groundwater surface elevation at the site of the two extraction wells. Using the groundwater elevations measured from MW-3, MW-5, and MW-6, the groundwater gradient direction appears to be toward the northwest at approximately 0.011 ft/ft. The groundwater elevation at MW-3 may be depressed by the groundwater extraction from MW-1A and MW-4.

Comparison of this quarter's sample results with historical data indicates that TPHg and BTEX concentrations in the monitoring wells remained relatively stable. The groundwater sample from the offsite well MW-6 did not contain any detectable concentrations of TPHg or BTEX. MTBE was not detected in any of the samples collected.

HLA recommends that Blue Print Services send a copy of this report to the following addresses:

Mr. Thomas Peacock Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577 March 31, 1999 46559 1 Mr. Jeff Christoff Blue Print Service Company Page 4

Ms. Trish Maguire
East Bay Municipal Utility District
P.O. Box 24055

Oakland, California, 94623-1055

Following approval of Blue Print Services, HLA will continue to perform the treatment system monitoring, quarterly groundwater monitoring and reporting as required by Alameda County, and treatment system discharge monitoring reporting as required by EBMUD. The next groundwater sampling will be performed during the second quarter of 1999 and monitoring of the system effluent will continue to be performed as required by the EBMUD permit.

If you have any questions, please contact James McCarty at (510) 628-3220.

Yours very truly,

HARDING LAWSON ASSOCIATES

James G. McCarty
Project Engineer

Steppen J/Osborne Geotechnical Engineer

JGM/SJO/mlw 46559\1STQRT99

5 copies submitted

Attachments: Table 1 - City Blue Groundwater Treatment System Maintenance Log

Exp. 3/31/99

Table 2 - Groundwater Treatment System Analytical Results

Table 3 - Groundwater Monitoring Analytical Results

Plate 1 - Groundwater Surface Elevations, March 10, 1999

Plate 2 - Groundwater Surface Elevations, March 10, 1999

Appendix A- Laboratory Reports

Table 1. City Blue Groundwater Treatment System Maintenance Log Blue Print Services Facility 1700 Jeferson Street Oakland, California

	FLOW	DISCHARGE	DISCHARGE	
DATE	TOTALIZER	RATE	RATE	COMMENTS
	(gal)	(gpd)	(gpm)	
01/07/99	1,361,660			Check system, had to clear recycle line, add two new carbon vessels
01/11/99	1,364,620	740	0.51	Check system, compressor not pressuring up, running continuously, turn system off
02/11/99	1,364,640	ı	0,00	Fix compressor restart system
02/16/99	1,368,120	696	0.48	Check on system
02/18/99	1,368,800	340	0.24	System down due to rain water in containment, pump into tank and restart
02/23/99	1,371,380	516	0.36	Met EBMUD Rep/collects sample from sys-eff
02/25/99	1,372,230	425	0.30	Met EBMUD Rep/re-sample from sys-eff, sample from 2/23/99 not preserved properly by EBMUD
03/05/99	1,373,940	214	0.15	High bio-tank, restart
03/06/99	1,373,970	30	0.02	High bio-tank, discharge level float not working, fix, clean sand filter
03/09/99	1,374,190	73	0.05	Check system
03/10/99	1,375,910	1720	1.19	Sample wells and system
03/25/99	1,384,290	559	0.39	Check system, clear recycle line

 Total
 Average

 (gallons)
 Average (gpd)
 (gpm)

 22,630
 294
 0.20

Table 2. Groundwater Treatment System Analytical Results Blue Print Service Facility 1700 Jefferson Street Oakland, California

Date/Analytes	Bioreactor Influent	Bioreactor Effluent	First Carbon Bed Effluent	Second Carbon Bed Effluent	Third* Carbon Bed Effluent
10-Mar-99			,		
TPHg	8.5	1.4	NA	NA	ND(0.05)
Benzene	1,400	19	NA	NA	ND(0.30)
Toluene	910	13	NA	NA	ND(0.30)
Ethylbenzene	20	0.69	NA	NA	ND(0.30)
Xylene	1,700	38	NA	NA	ND(0.60)

TPHg = total petroleum hydrocarbons as gasoline

TPHg concentrations presented in milligrams per liter (mg/l)

Benzene, Toluene, Ethylbenzene, and Xylenes concentrations presented in micrograms per liter (µg/l)

ND = Not detected above the reporting limit in parenthesis

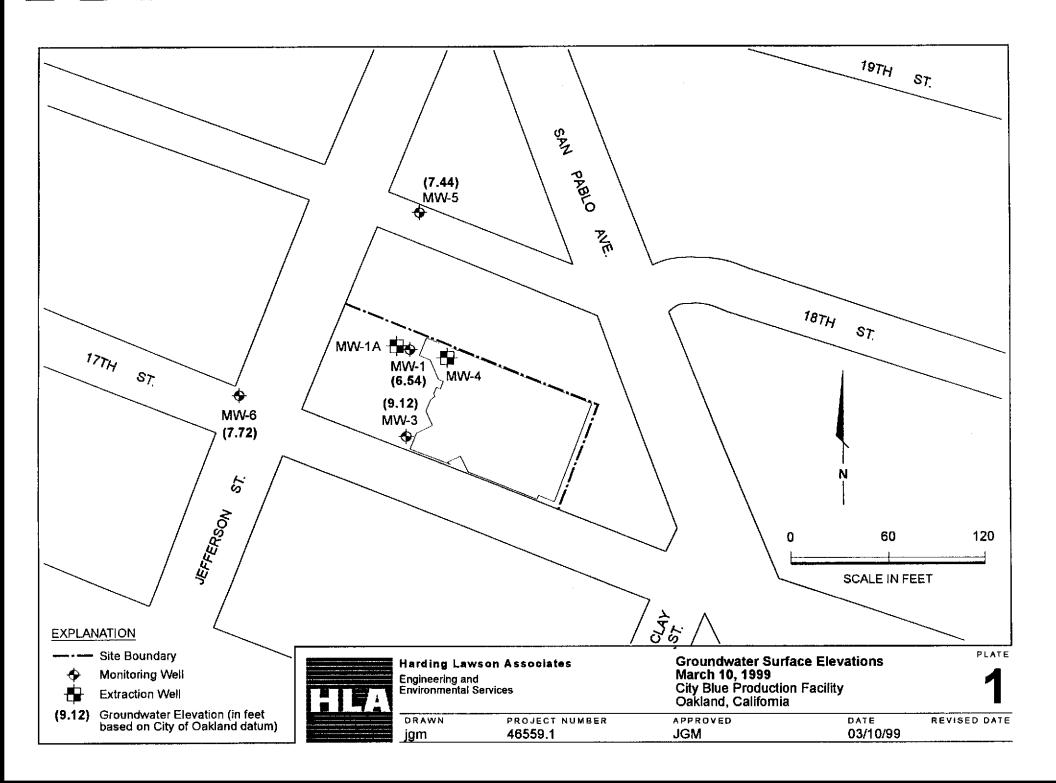
NA = Not analyzed

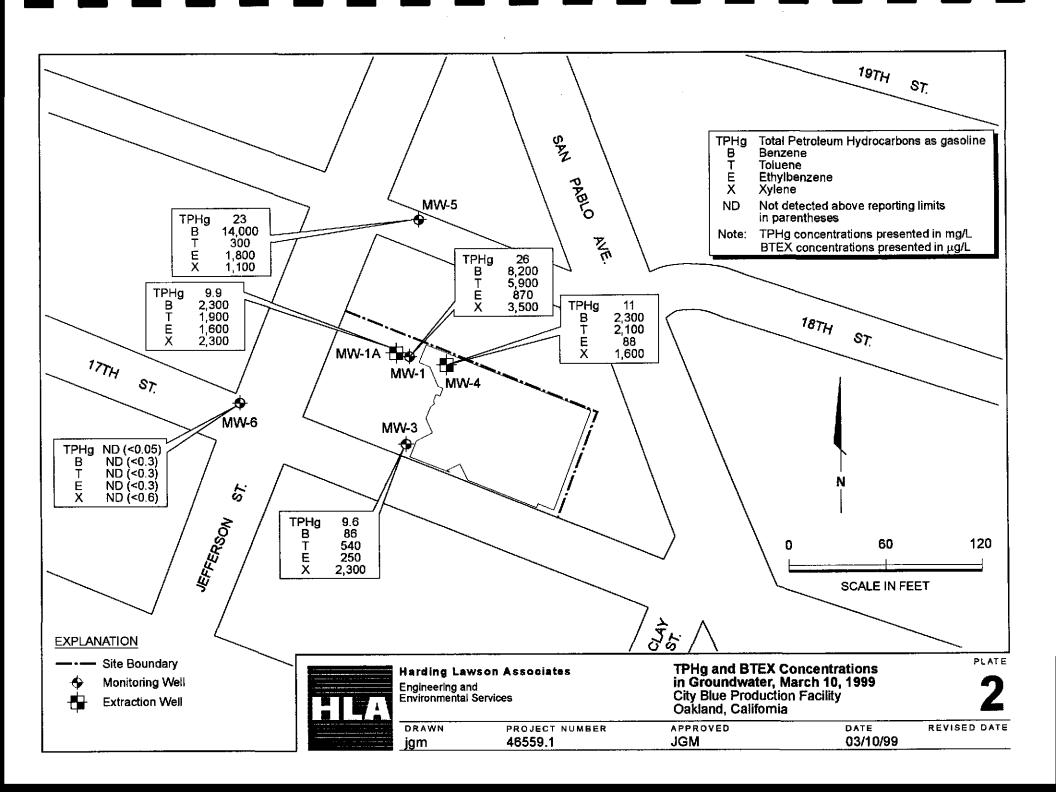
Table 3. Groundwater Monitoring Analytical Results Blue Print Service Facility 1700 Jefferson Street Oakland, Callfornia

												Date S	Sampled											
TPHg (mg/l)	8/1/91	9/30/92	3/30/93	1/13/94	4/13/94	6/29/94	12/8/94	4/3/95	6/27/95	9/19/95	12/13/95	3/6/96	6/11/96	9/19/96	12/23/96	3/27/97	6/4/97	9/26/97	12/23/97	3/31/98	6/18/98	8/28/98	12/2/98	3/10/99
MW-1	FP	FP	FP "	FP	FP	FP	FP	NA	NA	NA	NA	NA	FP	FP	FP	FP	68	59	41	. 44	32	26	26	26
MW-1A	350	FP	FP	FP.	170	. 95	190	67	53	52	62	200	140	100	FP	66	5.4	73	66	51	50	15	41	9.9
MW-3	74	FP	FΡ	FP	FP	39	4,600	51	20	6.2	19	7	16	6	FP	FP	85	47	32	32	16	17	3.2	9.6
MW-4	88	. FP	: FP	FP	58	16	92	35	13	14		110	260	.95	FP	37	24	41	48	NA.	25	48	10	11:
MW-5	120	51	74	80	63	64	59	51	41	50	45	51	48	48	45	44	35	36	39	48	17	16	15	23
MW-6		••	**	**			**	•-	**	•4		**	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0,05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)
Benzene (µg/l)																	C. C			CCCCC44130				
MW-1	FP	FP	FP	FP	FΡ	FP	FP	NA	NA	NA	NA	NA	FP	ŧΡ	FP	FP	2,200	6,000	6,800	8,300	1,100	8,600	9,200	8,200
MW-1A	17,000	FP	FP	FP	17,000	16,000	13,000	11,000	11,000	8,900	9,900	14,000	18,000	16,000	FP	12,000	11,000	10,000	10,000	9,100	11,000	1,100	8,500	2,300
MW-3	1,600	FP	FP	FP	FP	3,200	1,500	1,100	270	70	220	120	170	45	FP	FP	8,500	610	640	690	180	.84	39	86
MW-4	1,500	FP	FP	FP	1,500	1,300	1,700	1,200	1,300	2,200	630	2,600	6,600	9,900	FP	2,600	2,600	2,900	6,000	NA.	2,000	9,700	1,700	2,300
MW-5	20,000	13,000	16,000	19,000	14,000	29,000	13,000	15,000	12,000	1,600	13,000	15,000	12,000	12,000	12,000	11,000	8 900	7,900	13,000	10,000	9,500	5,400	8,400	14,000
MW-6		•		**			~~			1.4	1. 3 T-1		ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	NO(0.5)	ND(0,5)	ND(0.30)	ND(0.30)	NO(0.30)	ND(0.30)
Toluene (µg/l)																								
MW-1	FP.	FP	FP	FP	FP.	FP	FP	NA	NA	NA.	NA	NA	FP	FP	FP	14,000	4,500	3,000	3,000	3,700	3,800	2,300	4,300	5,900
MW-1A	31,000	FP	FP	FP	31,000	21,000	21,000	13,000	9,900	9,200	11,000	22,000	28,000	22,000	FP	15,000	12,000	::16,000	16,000	31,000	. 15,000	830	11,000	1,900
MW-3	4,600	FP	FP	FP	FP	2,900	4,200	2,300	550	140	480	170	270	30	FP	FP	13,000	6,000	5,300	3,800	1,500	1,100	85	540
MW-4	6,200	FP 5.900	FP	FP	2,500	790	4,100	3,400	1,600	2 100	470	3,600	19,000	19,000	FP	6,900	3,200	5,000	11,000	NA:	460	11,000	610	2,100
MW-5	14,000		5,000	8,200	3,500	5,400	3,800	2,200	2,100	2,700	2,100	2,800	2,900	4,500	2,200	1,100	560	270	500	400	310	160	120	300 ND(0.30)
MW-6 Ethylhenzene ((uati)				**			••	••	**		-	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	· MD(0.9)	ND(0.30)	ND(0.30)	. ND(0.30)	ND(O.SO)
MW-1	FP	FP	FP	FP	FP	FP	FP	NA.	NA.	NA.	NA	NA.	FΡ	FΡ	FP	ÉΡ	1.500	1,600	1,400	1,100	550	730	820	870
MW-1A	3.000	FP	EP.	FP	2,100	1.500	1,400	910	500	710	790	2,700	2.800	2.100	FP	1.400	1,000	1,400	1,400	1.100	870	. 31	720	1,600
MW-3	670	FP	FΡ	FP	2,100 FP	560	6,000	580	190	68	140	49	2,600	2,100	FP	1,400 FP	2.400	930	800	870	490	430	25	250
MW-4	1,000	FP	EP	FP	520	51	310	280	77	-110	14	780	3.700	2,000	- FP	540	140	350	580	NA NA	ND(15)	890	ND(15)	88
MW-5	1,900	1,400	1,800	1,400	1,500	2,800	1,800	2,800	1,400	2,000	18,000	2,000	2,000	2,300	2,700	1,900	1,500	1,500	1.900	2.000	420	1,100	1,500	1,800
MW-6	1,000	1,400	1,000	1,400	1,000	2,000	1,000	2,000	1,400	2,000	10,000	2,000	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	0.5		ND(0.30)	ND(0.30)	ND(0.30)	ND(0.30)
Xylenes (µg/l)							. **.			. 7:		•	(4D(4.4)	110(0.0)	(10,0.0)	110(0.0)	(1940.0)	140(0.0)	. 0,9		(ADIO: OD)	inip(a.so).	ربحد.بإحد،	140(0.50)
MW-1	FP	FP	FP	£Ρ	FP	FP	FP	AN	NA	NA	NA	NA	FP	FP	FΡ	Ε̈́Ρ	11.000	8,600	6,600	4,300	3,000	2,100	2,800	3,500
MW-1A	22.000	FP	FP	EP.	14,000	12,000	11,000	9,800	6,300	6,800	5,300	22,000	19.000	14,000	FP	100	7.200	8,500	12,000	6 800	5,800	3,000	6,700	2,300
MW-3	4.300	FP	FP	FP	FP	4,300	95,000	4.800	1,700	500	1,700	440	1.500	300	FP	FP	16,000	5.900	5.900	5.200	3,700	3,800	360	2,300
MW-4	7,300	FP	FP	FP	3,200	3:400	5.400	5,800	1,800	2.100	1,800	10,000	28,000	13,000	·FΡ	5,500	3.500	4,800	8,200	NA:	6,400	5,000	2,300	1,600
MW-5	4,900	2,600	2,700	2,700	2,100	4,500	2,900	4,500	1,600	2,100	1,900	2,400	2,700	4,000	6,500	2,800	1.700	1,300	1,700	2,200	850	900	840	1,100
MW-6			_,				-,		-,	7		-,	ND(2)	ND(2)	NO(2)	ND(2)	ND(2)	ND(2)	ND(2)		ND(0.60)		ND(0,60)	ND(0.60)
MTBE (µg/l)													5-7			(-)	1575 1 77	· · · · · · · · · · · · · · · · · · ·	. A AST STEA		us amanana.	. Programme and the control of		4
MW-1	NA	NA	NA	NA	NA	NA	NA	ŇA	ΝA	NΑ	NA	NA	NA	NA	FP	FP	NO(500)	ND(500)	300	420	ND(50)	ND(50)	ND(50)	ND(50)
MW-1A	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA:	NA	NA	NA	NA	NA:	1,800	ND(500)	NO(500)	1,900	300	ND(50)	ND(50)	ND(50)	ND(50)
MW-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	FP	₽P	ND(500)	ND(100)	ND(300)	350	ND(25)	ND(50)	ND(50)	ND(25)
MW-4	NA	NA	NA	NÀ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-NA	1,400	ND(300)	ND(500)	270	NA	ND(50)	ND(50)	ND(50)	ND(25)
																								LICY CON
MW-5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	600	300	ND(100)	ND(500)	ND(1000)	350	ND(10)	ND(50)	ND(50)	ND(50)
MW-5 MW-6	NA 	NA 	NA 	NA 	NA 	NA :-	NA 	NA 	NA 	NA 	NA 	NA 	NA NA	NA NA	600 ND(5)	300 ND(5)	ND(100) ND(5)	ND(500) ND(5)	ND(1000) ND(5)	350 (5) ND(5	ND(10) ND(1.0)	ND(50) ND(1.0)	ND(50)	ND(30)

TPHg = total petroleum hydrocarbons as gasoline

MTBE = methyl t-butyl ether (mg/l) milligrams per liter


(mg/l) militgrams per liter (µg/l) micrograms per liter


ND = Not detected above the reporting limit in parenthesis

NA = Not analyzed

FP = Free Product

- = Well did not exist at date indicated

APPENDIX A LABORATORY REPORTS

Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

03/16/99

Attention: Jim McCarty

Reference: Analytical Results

Project Name: City Blue GW Mon Project No.: 46449-1 Date Received: 03/11/99 Chain Of Custody: 2119

CLS ID No.: R0687 CLS Job No.: 820687

The following analyses were performed on the above referenced project:

No. of Samples	Turnaround Time	Analysis Description
6	10 Days	TPH as Gasoline, BTEX and MTBE

These samples were received by CLS Labs in a chilled, intact state and accompanied by a valid chain of custody document.

Calibrations for analytical testing have been performed in accordance to and pass the ${\tt EPA's}$ criteria for acceptability.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Harding Lawson Associates

CHAIN OF CUSTODY FORM

No 2119

Oakland California 94607				Lab: DXX0
(510) 451-1001		Complere: T	· · · · ·	ANALYSIS REQUESTED
		Samplers: 3	GM	ANALYSIS REQUESTED
Job Number: 46449 - 1				
Name/Location: C.ty Blu	e GW MON		10.50	—
Project Manager: 📆 🧸 🔥	carty	Recorder:	M Cut (Signature Required)	EPA 601/8010 EPA 602/8020 EPA 624/8240 EPA 625/8270 METALS EPA 8015M/TPHg EPA 8020/BTEX 4/MT/R/R/R EPA 8015M/TPHd.o
# CONTAINERS MATRIX & PRESERV.	SAMPLE NUMBER			EPA 601/8010 EPA 602/8020 EPA 624/8240 EPA 625/8270 METAL S EPA 8015M/TPI EPA 8020/BTE>
Sounce code code code code code code code co	OR LAB NUMBER	DATE	STATION DESCRIPTION/ NOTES	8015 8015 8015
Sounce Cope Sediment Sediment Oil HySQ HUCL	Yr Wk Seg	Yr Mo Day Time		PA A A B A B A B A B A B A B A B A B A B
	mu-1			
		990310093		
<u> </u>	MW-14		1 1 1	
	M4-3	1 / 090		
	mw-4	095		
	MW-5	081	ν	
	MW-6	08/	7	
		<u> </u>		
LAB DEPTH CO	m l wan	IISCELLANEOUS	CHAIN	OF CUSTOD∦ RECORD
Yr Wk Seq FEET C	D OOOL W	5t		RECEIVED BY Ging Print DATE / TIME
			ELYNOWISHO BY: (Signaly)	1270
		RE	Lylous (Signaly e)	RECEIVED BY: Signature) DATE/TIME
\			ELINQUISHED BY: (Signature)	
		NE	ECINQUISHED BY: (Signature)	RECEIVED X: (Signature) DATE/TIME
<u> </u>		, ne	ELINQUISHED BY: (Signature)	RECEIVED BY: (Signature) DATE/TIME
			v	
		DI	SPATCHED BY: (Signature) DATE/	lawa and a second
				(S) 11/14 RW
		ME	ETHOD OF SHIPMENT	<i>p</i> . , ,
			AMPLE CONDITION WHEN RECEIVED BY THE LABORAT	TORY
<u> </u>			WALES COMMITTION MACHINERS OF THE PURCHAL	UNI

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99 Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99 Client ID No.: MW-1

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687-1A
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		1000	113
		Sample: MW-1 _		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene	1634-04-4 71-43-2	ND 8200	50 150	50 250
Toluene Ethylbenzene Xylenes, total	108-88-3 100-41-4 1330-20-7	5900 870 3500	150 15 30	250 50 50

Analysis Report: EPA 8020, ETEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Ploor Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No. WW-13

Client ID No.: MW-1A

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687-2A
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATTER

Matrix: WATER

SURROGATE

Analyte	CAS No.		urr Conc. ug/L)	Surrogate Recovery (percent	
o-Chlorotoluene	95-49-8	1	000	104	
· · · · · · · · · · · · · · · · · · ·	San	ple: MW-1A			
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)	
Methyl t-butyl ether	1634-04-4	ND	50	50	
Benzene Toluene	71-43-2 108-88-3	2300 1900	15 15	50 50	
Ethylbenzene	100-41-4	1600	15	50	
Xvlenes, total	1330-20-7	2300	30	50	

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client TD No. MM-2

Client ID No.: MW-3

Project No.: 46449-1 Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab Contact: James Lis
Lab ID No.: R0687-3A
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

Matrix: WATER

SURROGATE

				· · · · · · · · · · · · · · · · · · ·
Analyte	CAS No.		urr Conc. ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	50	00	117
	Se	ample: MW-3		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene	1634-04-4 71-43-2	ND 86	25 7.5	25 25
Toluene Ethylbenzene Xylenes, total	108-88-3 100-41-4 1330-20-7	540 250 2300	7.5 7.5 15	25 25 25

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No.: MW-4

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0687-4A Job No.: 820687

COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF

Matrix: WATER

S	URROGATE	
---	----------	--

Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8		500		
		Sample: MW-4	<u>.</u>		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)	
Methyl t-butyl ether	1634-04-4	ND	25	25	
Benzene Toluene	71-43-2 108-88-3	2300 2100	75 75	250 250	
Ethylbenzene	100-41-4	88	7.5	250 25	
Xvlenes, total	1330-20-7	1600	150	250	

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99 Date Received: 03/11/99 Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No.: MW-5 Project No.: 46449-1 Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0687-5A

Job No.: 820687 COC Log No.: 2119 Batch No.: 25046 Instrument ID: GC007

Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		1000	118
		Sample: MW-5 _		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND 14000 300 1800 1100	50 300 15 15 30	50 1000 50 50 50

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99 Date Received: 03/11/99 Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99

Client ID No.: MW-6

Project No.: 46449-1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687-6A
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.		rr Conc. g/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20	114	
	s	ample: MW-6		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND ND ND ND ND	1.0 0.30 0.30 0.30 0.60	1.0 1.0 1.0 1.0

Analysis Report: EFA 8020, BTEX and MTBE Purge and Trap, EFA Method 5030

Client: Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No .: R0687

Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF

Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	116
	METHOD	BLANK	
Analyte	CAS No.	Results (ug/L)	Reporting Limit (ug/L)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND ND ND ND ND	1.0 0.30 0.30 0.30 0.60

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687 Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

	MS SURI	ROGATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	106
	MATRIX	SPIKE	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	103 100 100 104
	MSD SURI	ROGATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	106
	MATRIX SPIK	E DUPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	105 101 100 106
	RELATIVE % 1	DIFFERENCE	
Analyte	CAS		Relative Percent Difference (percent)

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

RELATIVE & DIFFERENCE (cont.)

Analyte	CAS No.	Relative Percent Difference (percent)
Benzene	71-43-2	2
Toluene	108-88-3	1
Ethylbenzene	100-41-4	0
Xylenes, total	1330-20-7	2

Analysis Report: EPA 8020, BTEX and MTBE Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99

Project No.: 46449-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0687 Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

T.C.

LCS SURROGATE					
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8	20.0	104		
	LAB CONTRO	L SAMPLE			
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)		
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	92 88 97 99		

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99 Date Received: 03/11/99 Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99 Client ID No.: WW-1

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0687-1A

Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		1.00	70 MA
		Sample: MW-1 _		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	26	2.5	50

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Ploor

Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99 Date Received: 03/11/99 Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99 Client ID No.: WW-1A

Project No.: 46449-1 Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687-2A
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

Matrix: WATER

BURROGATE	
-----------	--

Analyte	CAS No.		err Conc. ng/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	1.	00	79
		Sample: MW-1A		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	9.9	2.5	50

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client TR No. 20/16/99 Client ID No.: MW-3

Project No.: 46449-1 Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687-3A
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		0.500	76
	··	Sample: MW-3		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	9.6	1.3	25

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No.: MW-4

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: R0687-4A
Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		0.500	76
		Sample: MW-4 _		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	11	1.3	25

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

CAS No.

95-49-8

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99
Date Received: 03/11/99 Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No.: MW-5

Analyte

o-Chlorotoluene

Project No.: 46449-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0687-5A

Job No.: 820687
COC Log No.: 2119
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF Matrix: WATER

Surr Conc. (mg/L)	Surrogate Recovery (percent)
 1.00	103

Sample: MW-5

SURROGATE

Rep. Limit Dilution Results Analyte CAS No. (mg/L) (factor) (mg/L) 50 N/A 23 2.5 TPH as Gasoline

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue GW Mon

Date Sampled: 03/10/99 Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No. WW-6 Client ID No.: MW-6

Project No.: 46449-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0687-6A

Job No.: 820687 COC Log No.: 2119 Batch No.: 25046

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

80	KKO	GATE

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		0.0200	73
	·	Sample: MW-6		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	ND	0.050	1.0

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue GW Mon

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99

Project No.: 46449-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0687

Job No.: 820687 COC Log No.: 2119 Batch No.: 25046 Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

ΜВ	SURROGATE	
----	-----------	--

Analyte	CAS No.	Surr Conc. (mg/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	0.0200	89
	METHOD	BLANK	
Analyte	CAS No.	Results (mg/L)	Reporting Limit (mg/L)
TPH as Gasoline	N/A	ND	0.050

CHAIN OF CUSTODY FORM Harding Lawson Associates 2118 Lab: 383 Fourth Street, Third Floor Oakland California 94607 (510) 451-1001 Samplers: 56M **ANALYSIS REQUESTED** MTRE <u>42577</u> Job Number: ______ Blue D' Name/Location: City Blue D' Tim Mcart EPA 8015M/TPHg EPA 8020/81EX EPA 8015M/TPHd.o EPA 8010 M Recorder: (Signature Required, EPA 624/8240 EPA 625/8270 METALS # CONTAINERS MATRIX **SAMPLE NUMBER** DATE SOURCE Sediment Soil Oit OR STATION DESCRIPTION/ Unpres. H₂SQ, HNO₃ LAB NUMBER NOTES Water 로 Wk Seq Yr Mo Day Time 99 100946 03 0 LAB **DEPTH** COL QA CHAIN OF CUSTODY RECORD NUMBER MTD IN CODE **MISCELLANEOUS** CD FEET RECEIVED BY: (Signature) Υr Wk Seq RELINQUISHED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME RELINQUISMED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME DISPATCHED BY: (Signature) DATE/TIME RECEIVED FOR LAB BY DATE/TIME METHOD OF SHIPMENT SAMPLE CONDITION WHEN RECEIVED BY THE LABORATORY

Laboratory Copy White Project Office Copy Yellow Field or Office Copy Pink

Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

03/16/99

Attention: Jim McCarty

Reference: Analytical Results

Project Name: City Blue O&M Project No.: 42577-1 Date Received: 03/11/99 Chain Of Custody: 2118

CLS ID No.: R0686 CLS Job No.: 820686

The following analyses were performed on the above referenced project:

No. of Samples	Turnaround Time	Analysis Description
3	10 Davs	TPH as Gasoline, BTEX and MTBE

These samples were received by CLS Labs in a chilled, intact state and accompanied by a valid chain of custody document.

Calibrations for analytical testing have been performed in accordance to and pass the EPA's criteria for acceptability.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue O&M

Date Sampled: 03/10/99 Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99

Date Reported: 03/16/99

Client ID No.: Bio-Eff

Project No.: 42577-1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0686-1A

Job No.: 820686

COC Log No.: 2118

Batch No.: 25046

Instrument ID: GC007

Analyst ID: SCOTTF

Matrix: WATER

, ,	L.	w	GR.	TE	

Analyte	Surr Conc. CAS No. (mg/L)			Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8	0.0200		56 MA	
		BIO-EFF	· · · · · · · · · · · · · · · · · · ·		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)	
TPH as Gasoline	N/A	1.4	0.050	1.0	

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue O&M

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No.: Sep-Eff

Project No.: 42577-1

Contact: Jim McCarty
Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0686-2A Job No.: 820686

COC Log No.: 2118
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

		- POKKOGNIE -		
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		0.200	6 MA
		SEP-EFF		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	8.5	0.50	10

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

ND = Not detected at or above indicated Reporting Limit

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue O&M

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99 Client ID No.: Sys-Eff

Project No.: 42577-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0686-3A

Job No.: 820686
COC Log No.: 2118
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

	·	_ DOMMOGRIE _		
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		0.0200	84
		SYS-EFF		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	ND	0.050	1.0

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue O&M

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99 Project No.: 42577-1

Contact: Jim McCarty
Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0686

Job No.: 820686 COC Log No.: 2118 Batch No.: 25046

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Surr Conc. (mg/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	0.0200	89
	METHOD	BLANK	
Analyte	CAS No.	Results (mg/L)	Reporting Limit (mg/L)
TPH as Gasoline	N/A	ND	0.050

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue O&M

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99 Client ID No.: Bio-Eff

Project No.: 42577-1

Contact: Jim McCarty
Phone: (510)451-1001

Surrogate

Lab Contact: James Liang Lab ID No.: R0686-1A

Job No.: 820686 COC Log No.: 2118 Batch No.: 25046

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)		Recovery (percent)	
o-Chlorotoluene	95-49-8	20	20.0		
		BIO-EFF			
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)	
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	1.5 19 13 0.69 38	1.0 0.30 0.30 0.30 0.60	1.0 1.0 1.0 1.0	

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue O&M

Date Sampled: 03/10/99 Date Received: 03/11/99 Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99

Client ID No.: Sep-Eff

Project No.: 42577-1

Contact: Jim McCarty
Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0686-2A

Job No.: 820686 COC Log No.: 2118 Batch No.: 25046

Instrument ID: GC007 Analyst ID: SCOTTF Matrix: WATER

SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	199	101

SEP-EFF

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether	1634-04-4	ND	10	10
Benzene	71-43-2	1400	30	100
Toluene	108-88-3	910	30	100
Ethylbenzene	100-41-4	20	3.0	100
Xylenes, total	1330-20-7	1700	60	10

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue O&M

Date Sampled: 03/10/99
Date Received: 03/11/99
Date Extracted: 03/12/99 Date Analyzed: 03/12/99
Date Reported: 03/16/99
Client ID No.: Sys-Eff

Project No.: 42577-1
Contact: Jim McCarty
Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: R0686-3A

Job No.: 820686 COC Log No.: 2118 Batch No.: 25046

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.		rr Conc. g/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	8 20.0		117
		SYS-EFF		<u></u>
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND ND ND ND ND	1.0 0.30 0.30 0.30 0.60	1.0 1.0 1.0 1.0

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue O&M

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99

Ethylbenzene

Xylenes, total

Project No.: 42577-1

Contact: Jim McCarty
Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0686 Job No.: 820686
COC Log No.: 2118
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF

ND

ND

0.30

0,60

Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	116
	METHOD	BLANK	
Analyte	CAS No.	Results (ug/L)	Reporting Limit (ug/L)
Methyl t-butyl ether Benzene Toluene	1634-04-4 71-43-2 108-88-3	ND ND ND	1.0 0.30 0.30

ND = Not detected at or above indicated Reporting Limit

100-41-4

1330-20-7

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue O&M

Date Extracted: 03/12/99
Date Analyzed: 03/12/99
Date Reported: 03/16/99

Project No.: 42577-1 Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0686 Job No.: 820686 COC Log No.: 2118
Batch No.: 25046

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

	MS SURRO	GATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	106
	MATRIX S	SPIKE	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	103 100 100 104
	MSD SURRO	GATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	106
	MATRIX SPIKE	DUPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	105 101 100 106
	RELATIVE % DI	FFERENCE	
Analyte	CAS 1	Io .	Relative Percent Difference (percent)

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue O&M

Date Extracted: 03/12/99 Date Analyzed: 03/12/99 Date Reported: 03/16/99 Project No.: 42577-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0686 Job No.: 820686
COC Log No.: 2118
Batch No.: 25046
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

RELATIVE % DIFFERENCE(cont.)

	,	
Analyte	CAS No.	Relative Percent Difference (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	2 1 0 2

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue O&M

Date Extracted: 03/12/99
Date Analyzed: 03/12/99 Date Reported: 03/16/99 Project No.: 42577-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: R0686

Job No.: 820686 COC Log No.: 2118 Batch No.: 25046

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

LCS	SURROGATE
-----	-----------

LCS SURROGATE					
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8	20.0	104		
	LAB CONTRO	L SAMPLE	····		
Änalyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)		
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	92 88 97 99		