Harding Lawson Associates

ER MINDEL CHIAL PROTECTION S9 JAN 32 PM 1:43

55.10 4148

January 7, 1999

409101

Mr. Jeff Christoff Blue Print Service Company 1057 Shary Circle Concord, California 94518

Quarterly Report
October 1, 1998 through December 31, 1998
Groundwater Remediation and Monitoring
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

Dear Mr. Christoff:

Harding Lawson Associates (HLA) presents this quarterly monitoring report of the groundwater monitoring wells and treatment system at the Blue Print Service facility at 1700 Jefferson Street, Oakland, California. This report covers the period of October 1, 1998, through December 31, 1998. It was prepared to satisfy quarterly groundwater monitoring requirements of the Alameda County Health Care Services Agency (Alameda County). The report also satisfies the reporting requirements of the East Bay Municipal Utilities District (EBMUD) for treatment system discharge.

BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987. A preliminary investigation indicated that there had been a release of fuel into the soil and groundwater. Three groundwater monitoring wells (MW-1, MW-2, and MW-3) were installed on the property to evaluate the distribution of petroleum hydrocarbons in the soil and groundwater and to determine the direction of groundwater flow. Monitoring of these wells revealed free phase gasoline floating on the surface of the groundwater in MW-1. Initial groundwater level measurements indicated that groundwater flows in a north to northwest direction at the site.

In November 1987, monitoring well MW-2 was abandoned to facilitate the construction of the present structures. In January 1988 two additional wells (MW-1A and MW-4) were installed at the facility to be used as groundwater extraction wells. One downgradient monitoring well, MW-5, was installed offsite in August 1988 and in April 1996, monitoring well MW-6 was installed offsite in an upgradient location to improve understanding of groundwater flow at the site. The locations of the monitoring wells are shown on Plate 1.

January 7, 1999 40910 1 Mr. Jeff Christoff Blue Print Service Company Page 2

In 1992 a groundwater extraction system was constructed at the site to remove free phase product from the groundwater surface. Groundwater is extracted from MW-1A and MW-4 and passes through an oil-water separator that removes the free phase gasoline. The water is then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. Air and nutrient are supplied to the groundwater within the bioreactor to facilitate microbial growth. The treated water from the bioreactor is pumped in batches of approximately 500 gallons through three granular activated carbon (GAC) vessels before being discharged to the sanitary sewer. Since 1992, the three-phase treatment system has processed approximately 1,353,970 gallons of groundwater and discharged the treated effluent to the sanitary sewer. An estimated 5,062 pounds of gasoline have been recovered. Groundwater discharge to the sanitary sewer is authorized under the EBMUD Wastewater Discharge Permit (Account No. 500-68191).

TREATMENT SYSTEM STATUS

During the fourth quarter of 1998, the treatment system processed approximately 55,910 gallons of groundwater. The average daily discharge flow rate for the treatment system was approximately 635 gallons per day (gpd). Average combined extraction rate for the two extraction wells was 0.44 gallons per minute (gpm). Operation and maintenance records show that 0.3 liters or 0.5 pounds of free phase gasoline were recovered from the groundwater by the oil water separator. This amount of gasoline does not include dissolved concentrations treated by the bioreactor or the amount of dissolved concentrations adsorbed by the GAC. Flow totalizer readings and system maintenance activities are summarized in Table 1.

TREATMENT SYSTEM SAMPLING AND ANALYSIS

On December 2, 1998, HLA collected samples from the two extraction wells, the separator effluent, the bioreactor effluent and the treatment system effluent. The two extraction wells are sampled from sample ports prior to entering the separator. The separator effluent was sampled by collecting a grab sample with a Teflon bailer directly from the downstream end of the oil-water separator. The bioreactor effluent sample was collected from a sampling port upstream of the GAC vessels. The system effluent sample was collected from a sample port downstream of the third and final GAC vessel. These water samples, consisting of 40-milliliter volatile analysis vials (VOAs), were placed in ice-chilled coolers and submitted to California Laboratory Services of Rancho Cordova, California, under chain-of-custody protocol for analysis. The samples were analyzed by EPA Test Method 8015 for total petroleum hydrocarbons as gasoline (TPHg) and by EPA Test Method 8020 for benzene, toluene, ethylbenzene and total xylenes (BTEX).

Results of the chemical analyses of these samples indicate that treatment system effluent concentrations were below the EBMUD discharge limitations of 5 micrograms per liter ($\mu g/l$) for each individual BTEX components.

HLA's treatment system sampling results are presented in Table 2. The laboratory reports are presented in the Appendix A.

January 7, 1999 40910 1 Mr. Jeff Christoff Blue Print Service Company Page 3

GROUNDWATER SAMPLING AND ANALYSIS

On December 2, 1998, HLA measured the water levels in wells MW-1, MW-3, MW-5 and MW-6. Groundwater surface elevations are presented on Plate 1. The monitoring wells were sampled after purging at least three well volumes from each and allowing the water level to recover to at least 80 percent of the pre-purge level. HLA monitored the pH, conductivity, and temperature of the groundwater removed during purging. Sampling was not performed until these parameters had stabilized. Three 40-milliliter VOAs of water were collected from each well with a disposable Teflon bailer. Purge water was discharged to the treatment system bioreactor.

HLA collected samples from the two extraction wells, MW-1A and MW-4, at individual sampling ports upstream of the oil-water separator.

All of the water samples were placed in ice-chilled coolers and submitted to California Laboratory Services of Rancho Cordova, California under chain-of-custody protocol. The samples were analyzed by EPA Test Method 8015 (modified) for TPHg and by EPA Test Method 8020 for BTEX and MTBE. The historical analytical results are summarized in Table 3. Plate 2 presents the TPHg and BTEX results for this reporting period. The laboratory reports are presented in the Appendix A.

DISCUSSION

The treatment system continues to be effective in removing and treating TPHg and BTEX in the groundwater as evidenced by product collected in the oil/water separator and the reduction of the petroleum hydrocarbon concentrations in the bioreactor. The small amount of free phase product recovered in the oil/water separator indicated source removal in the form on free product is nearly complete. The results of effluent sampling by HLA during this quarter show compliance with EBMUD permit discharge limitations.

The groundwater elevations on Plate 1 show a depression in the groundwater surface elevation at the site of the two extraction wells. Using the groundwater elevations measured from MW-3, MW-5, and MW-6, the groundwater gradient direction appears to be toward the northwest at approximately 0.006 ft/ft. However, the groundwater extraction at MW-1A and MW-4 may be artificially depressing the groundwater elevation at MW-3.

Comparison of this quarter's sample results with historical data indicates declining TPHg and BTEX concentrations in monitoring well MW-3 and extraction well MW-4. The low concentrations detected in MW-3 indicate a reduction in the size of the hydrocarbon plume. TPHg and BTEX concentrations in the other wells remained relatively stable. The groundwater sample from MW-6, the offsite upgradient well did not contain any detectable concentrations of TPHg or BTEX. MTBE was not detected in any of the samples collected.

HLA recommends that Blue Print Services send a copy of this report to the following addresses:

January 7, 1999 40910 1 Mr. Jeff Christoff Blue Print Service Company Page 4

> Mr. Thomas Peacock Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California, 94502-6577

Ms. Trish Maguire East Bay Municipal Utility District P.O. Box 24055 Oakland, California, 94623-1055

Following approval of Blue Print Services, HLA will continue to perform the treatment system monitoring, quarterly groundwater monitoring and reporting as required by Alameda County, and treatment system discharge monitoring reporting as required by EBMUD. The next groundwater sampling will be performed during the first quarter of 1999 and monitoring of the system effluent will continue to be performed as required by the EBMUD permit.

If you have any questions, please contact James McCarty at (510) 628-3220.

Yours very truly,

HARDING LAWSON ASSOCIATES

James G. McCarty Project Engineer

anus

Stephen J Osborne Geotechnical Engineer

JGM/SJO/mlw 40910\037085L

Attachments: Table 1 - City Blue Groundwater Treatment System Maintenance Log

Table 2 - Groundwater Treatment System Analytical Results

No. GE 656

Exp. 3/31/99

Table 3 - Groundwater Monitoring Analytical Results

Plate 1 - Groundwater Surface Elevations, December 2, 1998 Plate 2 - Groundwater Surface Elevations, December 2, 1998

Appendix A- Laboratory Reports

Table 1. City Blue Groundwater Treatment System Maintenance Log Blue Print Services Facility 1700 Jeferson Street Oakland, California

	FLOW	DISCHARGE	DISCHARGE	
DATE	TOTALIZER	RATE	RATE	COMMENTS
	(gal)	(gpd)	(gpm)	
09/30/98	1,298,060			Check on system
10/04/98	1,299,470	353	0.24	Check on system, recycle line plugged, clear line backwash carbon 1 & 2, and sand filters, remove 0,3 liter gas
10/07/98	1,302,200	910	0.63	Met EBMUD Rep/collects sample from sys-eff
10/10/98	1,305,695	1165	0.81	Check on system
10/13/98	1,307,777	694	0.48	Check on system
10/21/98	1,314,880	888	0.62	Check on system, backwash carbon 1 & 2, and sand filters
10/24/98	1,318,278	1133	0.79	System down, clean recycle line and backwash carbon
11/01/98	1,323,890	702	0.49	System down from rain in containment, compressor not working
11/08/98	1,326,106	317	0.22	Burnt out fuse in control box
11/11/98	1,326,106	0	0.00	Replace fuses, tightened compressor belt
11/13/98	1,326,106	0	0.00	Met EBMUD Rep/collects sample from sys-eff, system down due to high containment, discharge pump not primed
11/14/98	1,327,176	1070	0.74	Pump rainwater from comtainment into bioreactor, restart system
11/18/98	1,331,950	1194	0.83	Check on system
11/20/98	1,334,352	1201	0.83	Check on system, add two bags of nutrient and 135 gallons of water to nutient tank
11/29/98	1,338,640	476	0.33	Check on system, clear recycle line, backwash sand filters
12/02/98	1,339,840	400	0.28	Sample monitoring wells, system eff, bio-eff and sep-eff
12/06/98	1,344,130	1073	0,74	Check system
12/19/98	1,348,660	348	0.24	Check system, cleared recycle line
12/27/98	1,353,970	664	0.46	Backwash carbon vessels and sand filters
	Total		Average	

 Total
 Average

 (gallons)
 Average (gpd)
 (gpm)

 55,910
 635
 0.44

Table 2. Groundwater Treatment System Analytical Results
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

			First	Second	Third* Carbon
	Bioreactor	Bioreactor	Carbon Bed	Carbon Bed	Bed
Date/Analytes	Influent	Effluent	Effluent	Effluent	Effluent
16-Jun-92					
TPHg	NA	3	ND <0.05	NA	
Benzene	NA NA	220	ND <0.3	NA NA	_
Toluene	NA NA	460	ND <0.3	NA NA	
Ethylbenzene	NA NA	35	ND <0.3	NA NA	_
Xylene	NA	290	ND <0.3	NA NA	
-	14/5	230	140 40,0	100	
19-Jun-92	400	_	ND -0.05	A.I.A	
TPHg	180	2	ND <0.05	NA	_
Benzene	18,000	2	ND <0.3	NA	
Toluene	31,000	5	ND <0.3	NA	
Ethylbenzene	2,200	ND <0.3	ND <0.3	NA	_
Xylene	16,000	150	ND <0.3	NA	_
2-Jul-92					
TPHg	160	0	ND <0.05	NA	_
Benzene	14,000	1	ND <0.3	NA	
Toluene	27,000	ND <0.3	ND <0.3	NA	_
Ethylbenzene	1,700	ND <0.3	ND <0.3	NA	
Xylene	1,300	1	ND <0.3	NA	
20-Aug-92					
TPHg	190	6	0.073	NA	_
Benzene	14,000	31	ND <0.3	NA	
Toluene	24,000	14	ND <0.3	NA	
Ethylbenzene	2,000	ND <6	ND <0.3	NA	
Xylene	13,000	150	ND <0.3	NA	
15-Sep-92					
TPHg	230	23	0.054	NA	
Benzene	17,000	1,100	0.4	NA	
Toluene	29,000	3,600	0.8	NA.	
Ethylbenzene	2,200	59	ND <0.3	NA	
Xylene	15,000	1,100	0.6	NA.	
3-Mar-94	,	.,			
3-mar-94 TPHg	80	4	NA	ND <0.05	
	1,500	270	NA NA	ND <0.5	
Benzene Toluene	9,200	370	NA NA	ND <0.5	_
	•			ND <0.5	
Ethylbenzene	1,000	32	NA NA	ND <0.5	
Xylene	14,000	840	NA	14D <0.5	_
7-Apr-94	7-	_	45		
TPHg	79	0	ND <0.05	NA	
Benzene	8,300	16	3.7	NA	
Toluene	19,000	4	ND <0.5	NA	
Ethylbenzene	990	ND <0.5	ND <0.5	NA	

			First Carbon	Second Carbon	Third* Carbon
	Bioreactor	Bioreactor	Bed	Bed	Bed
Date/Analytes	Influent	Effluent	Effluent	Effluent	Effluent
Xylene	9,300	2	ND <0.5	NA	
13-May-94					
TPHg	220	1	ND <0.05	NA	
Benzene	12,000	45	ND <0.5	NA	
Toluene	23,000	7	ND <0.5	NA	_
Ethylbenzene	1,700	1	ND <0.5	NA	-
Xylene	17,000	11	ND <0.5	NA	
29-Sep-94					
TPHg	96	1	NA	ND <0.05	-
Benzene	8,000	5	NA	ND <0.5	-
Toluene	16,000	8	NA	ND <0.5	
Ethylbenzene	ND <250	ND <2.5	NA	ND <0.5	
Xylene	9,000	9	NA	ND <0.5	
19-Dec-94					
TPHg	NA	6	0.59	ND<0.05	
Benzene	NA	140	60	1	
Toluene	NA	100	14	0.5	
Ethylbenzene	NA	ND<5	ND<0.5	ND <0.5	
Xylene	NA	1,600	100	ND <0.5	
5-Jan-95					
TPHg	NA	NA	0.2	ND<0.05	_
Benzene	NA	NA	17	0.7	
Toluene	NA	NA	3	ND<0.5	_
thylbenzene	NA	NA	ND<0.5	ND<0.5	
Xylene	NA	NA	3	ND<0.5	
14-Apr-95		_			
TPHg	NA	2	0.9	NA	
Benzene	NA	36	22	NA	
Toluene	NA	6	3	NA .	
Ethylbenzene	NA	3	0.6	NA	_
Xylene	NA	58	13	NA	
18-May-95				ND -0.05	
TPHg	41	1	0.1	ND<0.05	
Benzene	4,400	22	2	ND<0.5	
Toluene	5,700	9	ND<0.5	ND<0.5	***
Ethylbenzene	430	ND<0.5	ND<0.5	ND<0.5	
Xylene	8,200	16	ND<0.5	ND<2	
7-Sep-95		_			
TPHg	NA	4	1.1	0.2	
Benzene	NA	400	120	15	
Toluene	NA	300	75	9	

			First	Second	Third*
	Dianasahan	D'	Carbon	Carbon	Carbon Bed
Data/Anahas	Bioreactor Influent	Bioreactor Effluent	Bed Effluent	Bed Effluent	Effluent
Date/Analytes					Cittaent
Ethylbenzene	NA	12	2	ND<0.5	
Xylene	NA	320	82	9	
16-Nov-95					
TPHg	NA	3	2.8	0.8	
Benzene	NA	18	17	3	
Toluene	NA	11	18	2	
Ethylbenzene	NA	7	6	0.9	_
Xylene	NA	90	74	10	
22-Dec-95					
TPHg	NA	10	0.54	NA	
Benzene	NA	95	1	NA	
Toluene	NA	38	0.6	NA	_
Ethylbenzene	NA	6	ND<0.5	NA	_
Xylene	NA	1,300	13	NA	_
29-Dec-95					
TPHg	NA	NA	0.7	0.1	
Benzene	NA	NA.	5	ND<0.5	
Toluene	NA	NA	3	ND<0.5	_
Ethylbenzene	NA	NA	1	ND<0.5	
Xylene	NA	NA	19	ND<0.5	
17-Jan-96					
TPHg	NA	1	ND<0.05	NA	
Benzene	NA NA	8	ND<0.5	NA NA	_
Toluene	NA NA	4	ND<0.5	NA NA	
Ethylbenzene	NA NA	1	ND<0.5	NA NA	_
Xylene	NA NA	15	ND<2	NA NA	
-	10/1	,,	,,,,,,,,		
16-Feb-96					
TPHg	NA	1	0.2	ND<0.05	
Benzene	NA	13	ND<0.5	ND<0.5	
Toluene	NA	6	ND<0.5	ND<0.5	
Ethylbenzene	NA	1	ND<0.5	ND<0.5	
Xylene	NA	16	ND<2	ND<2	
19-Mar-96					
TPHg	33	1	0.1	NA -	
Benzene	460	12	ND<0.5	NA	
Toluene	360	7	ND<0.5	NA	
Ethylbenzene	59	3	ND<0.5	NA	
Xylene	3,300	32	ND<2	NA	
18-Apr-96					
TPHg	NA	NA	1.3	0.17	0.09
Benzene	NA	NA	37	1.4	ND<0.5

			First	Second	Third*
	Diorocator	Discontar	Carbon	Carbon Bed	Carbon Bed
Date/Analytes	Bioreactor Influent	Bioreactor Effluent	Bed Effluent	Effluent	Effluent
Toluene	NA	NA	16	0.5	ND<0.5
Ethylbenzene	NA NA	NA NA	3.8	0.5 ND<0.5	ND<0.5
Xylene	NA	NA NA	66	ND<2	ND<2
-	13/5	IN/A	00	140 -2	140 -2
5-Jun-96					- 4-
TPHg	NA	NA	5.8	0.53	0.19
Benzene	NA	NA	93	2.1	ND<0.5
Toluene	NA 	NA	93	1.2	ND<0.5
Ethylbenzene	NA	NA	11	1.7	0.5
Xylene	NA	NA	490	6	ND<2
9-Aug-96					
TPHg	NA	74	NA	0.77	0.19
Benzene	NA	5,600	NA	12	ND<0.5
Toluene	NA	11,000	NA	4.8	ND<0.5
Ethylbenzene	NA	990	NA	1.2	ND<0.5
Xylene	NA	18,000	NA	26	ND<2
4-Oct-96					
TPHg	NA	2,100	NA	670	44
Benzene	NA	2,900	NA	3,700	ND<30
Toluene	NA	13,000	NA	8,400	50
Ethylbenzene	NA	7,000	NA	1,600	110
Xylene	NA	170,000	NA	36,000	870
11-Dec-96					
TPHg	69	5	51	2.8	0.31
Benzene	11,000	72	4,300	2.3	ND<0.5
Toluene	17,000	120	8,500	8.0	ND<0.5
Ethylbenzene	1,500	32	750	7.8	0.6
Xylene	12,000	1,000	16,000	45	ND<2
16-Dec-96					
TPHg	NA	6	NA	NA	0.16
Benzene	NA	450	NA	NA	ND<0.5
Toluene	NA	790	NA	NA	ND<0.5
Ethylbenzene	NA	52	NA	NA	ND<0.5
Xylene	NA	540	NA	NA	ND<2
23-Dec-96					
TPHg	100	NA	NA	NA	NA
Benzene	15,000	NA NA	NA.	NA NA	NA.
Toluene	26,000	NA NA	NA	NA	NA
Ethylbenzene	1,800	NA	NA.	NA.	NA
Xylene	14,000	NA NA	NA	NA	NA
18-Feb-97	-1	• • •			
TPHg	NA	2.0	NA	0.12	ND<0.05
irny	INA	2.0	INA	0.12	(4D-070)

			First	Second	Third*
			Carbon	Carbon	Carbon
	Bioreactor	Bioreactor	Bed	Bed	Bed
Date/Analytes	Influent	Effluent	Effluent	Effluent	Effluent
Benzene	NA	14	NA	ND<0.5	ND<0.5
Toluene	NA	18	NA	ND<0.5	ND<0.5
Ethylbenzene	NA	2.1	NA	ND<0.5	ND<0.5
Xylene	NA	140	NA	ND<2	ND<2
6-May-97					
TPHg	NA	3.9	NA	0.05	ND<0.05
Benzene	NA	390	NA	ND<0.5	ND<0.5
Toluene	NA	770	NA	ND<0.5	ND<0.5
Ethylbenzene	NA	20	NA	ND<0.5	ND<0.5
Xylene	NA	700	NA	ND<2	ND<2
21-Jun-97					
TPHg	NA	0.22	NA	0.68	ND<0.05
Benzene	NA	0.9	NA	ND<0.5	ND<0.5
Toluene	NA	ND<0.5	NA	ND<0.5	ND<0.5
Ethylbenzene	NA	ND<0.5	NA	ND<0.5	ND<0.5
Xylene	NA	5	NA	ND<2	ND<2
13-Aug-97					
TPHg	NA	0.28	NA	0.05	ND<0.05
Benzene	NA	4.2	NA	ND<0.5	ND<0.5
Toluene	NA	0.9	NA	ND<0.5	ND<0.5
Ethylbenzene	NA	ND<0.5	NA	ND<0.5	ND<0.5
Xylene	NA	5	NA	ND<2	ND<2
3-Oct-97					
TPHg	NA	0.49	NA	0.17	ND<0.05
Benzene	NA	8.4	NA	2.2	ND<0.5
Toluene	NA	0.7	NA	ND<0.5	ND<0.5
Ethylbenzene	NA.	ND<0.5	NA	ND<0.5	ND<0.5
Xylene	NA	3	NA	ND<2	ND<2
23-Dec-97					
TPHg	NA	NA	NA	0.26	ND<0.05
Benzene	NA NA	NA	NA NA	ND<0.5	ND<0.5
Toluene	NA NA	NA NA	NA NA	0.8	ND<0.5
Ethylbenzene	NA NA	NA NA	NA NA	0.6	ND<0.5
Xylene	NA	NA NA	NA NA	2	ND<2
-		,	• • •	_	
9-Feb-98	NA	NA	NA	NA	ND<0.05
TPHg Benzene	NA NA	NA NA	NA NA	NA NA	ND<0.03
Toluene	NA NA	NA NA	NA NA	NA NA	ND<0.5
Ethylbenzene	NA NA	NA NA	NA NA	NA NA	ND<0.5
Zuryibenzene Xylene	NA NA	NA NA	NA NA	NA NA	ND<2
•	INA	INA	INC	INC	140-2
24-Маг-98					

			First	Second	Third*
			Carbon	Carbon	Carbon
	Bioreactor	Bioreactor	Bed	Bed	Bed
Date/Analytes	Influent	Effluent	Effluent	Effluent	Effluent
TPHg	NA	NA	NA	NA	ND<0.05
Benzene	NA	NA	NA	NA	ND<0.5
Toluene	NA	NA	NA	NA NA	ND<0.5
Ethylbenzene	NA	NA	NA	NA	ND<0.5
Xylene	NA	NA	NA	NA	ND<2
31-Mar-98					
TPHg	51	0.44	NA	NA	NA
Benzene	5,800	17	NA	NA	NA
Toluene	9,200	11	NA	NA	NA
Ethylbenzene	700	ND(0.5)	NA	NA	NA
Xylene	9,000	6	NA	NA	NA
18-Jun-98					
TPHg	26	ND(0.05)	NA	NA	ND(0.05)
Benzene	4,100	ND(0.30)	NA	NA	ND(0.30)
Toluene	1,900	ND(0.30)	NA	NA	ND(0.30)
Ethylbenzene	ND(15)	ND(0.30)	NA	NA	ND(0.30)
Xylene	4,700	ND(0.60)	NA	NA	ND(0.60)
28-Aug-98					
TPHg	31	ND(0.05)	NA	NA	ND(0.05)
Benzene	3,800	0.46	NA	NA	ND(0.30)
Toluene	3,900	0.37	NA	NA	ND(0.30)
Ethylbenzene	220	ND(0.30)	NA	NA	ND(0.30)
Xylene	5,700	1.8	NA	NA	ND(0.60)
2-Dec-98					
TPHg	31	ND(0.05)	NA	NA	ND(0.05)
Benzene	1,100	ND(0.30)	NA	NA	ND(0.30)
Toluene	610	ND(0.30)	NA	NA	ND(0.30)
Ethylbenzene	23	ND(0.30)	NA	NA	ND(0.30)
Xylene	3,000	ND(0.60)	NA	NA	ND(0.60)

TPHg = total petroleum hydrocarbons as gasoline

TPHg concentrations presented in milligrams per liter (mg/l)

Benzene, Toluene, Ethylbenzene, and Xylenes concentrations presented in micrograms per liter (µg/l)

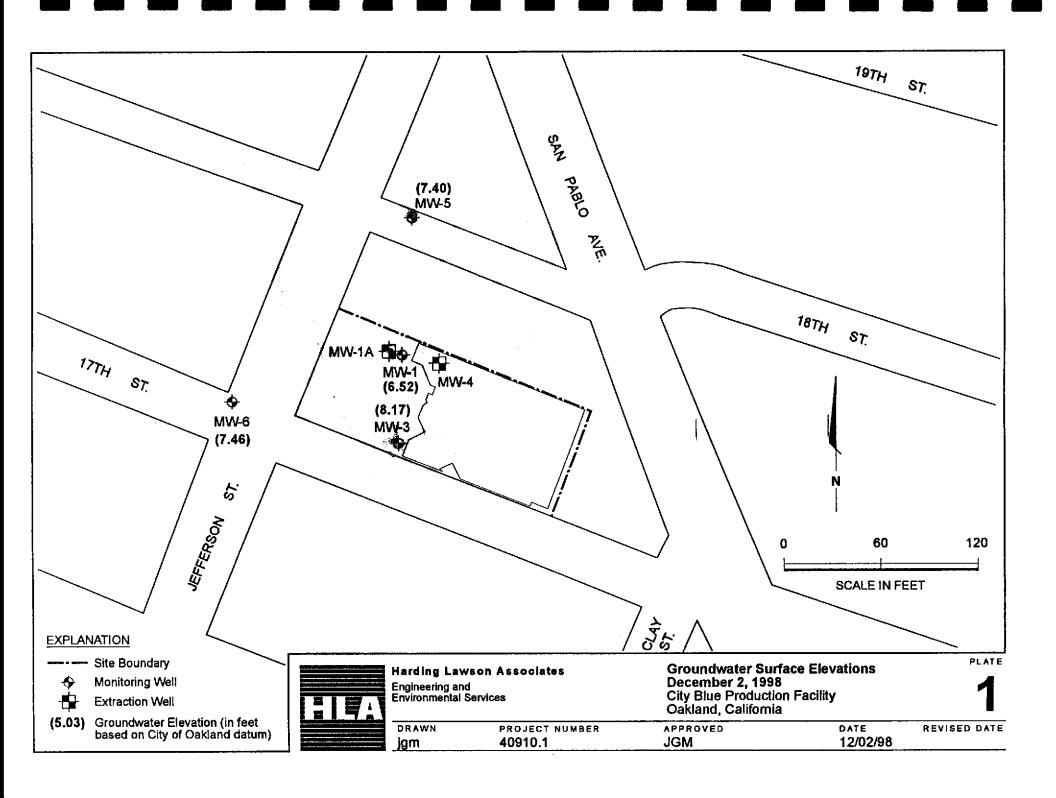
ND = Not detected above the reporting limit in parenthesis

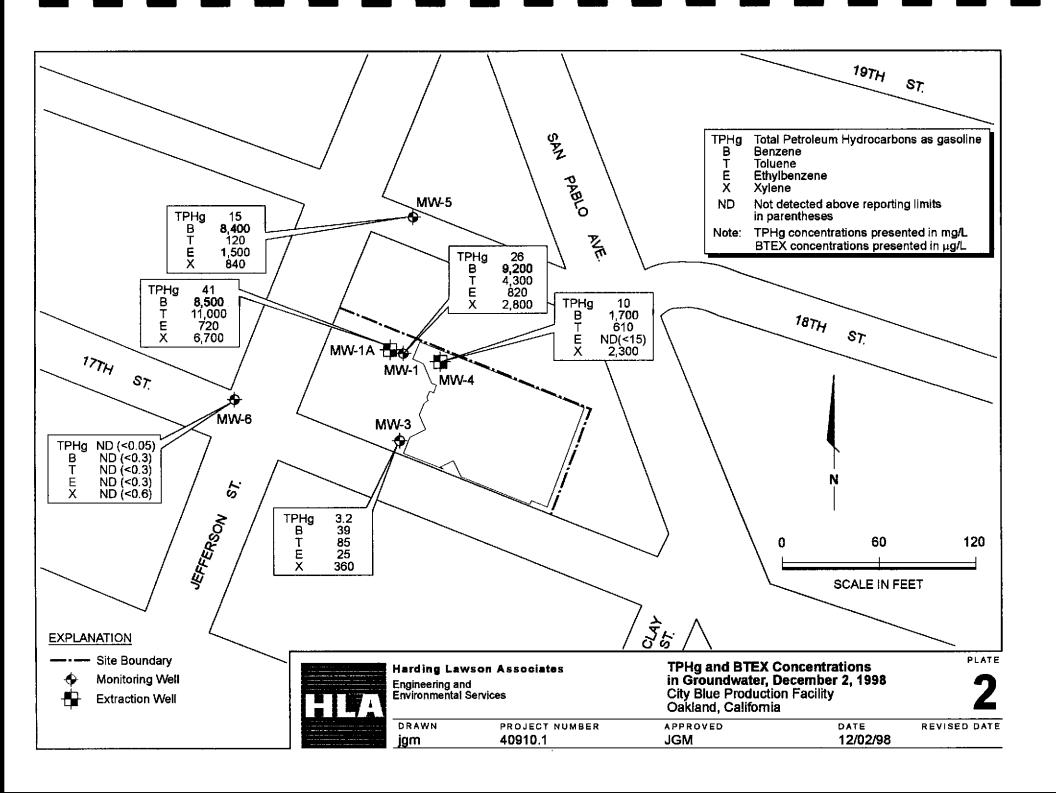
NA = Not analyzed

^{*} Third carbon added in-line December 29, 1996

Table 3. Groundwater Monitoring Analytical Results Blue Print Service Facility 1700 Jefferson Street Oakland, California

												Date Sample	×d										
TPHg (mg/l)	8/1/91	9/30/92	3/30/93	1/13/94	4/13/94	6/29/94	12/8/94	4/3/95	6/27/95	9/19/95	12/13/95	3/6/96	6/11/96	9/19/96	12/23/96	3/27/97	6/4/97	9/26/97	12/23/97	3/31/98	6/18/98	8/28/98	12/2/98
MW-1	FP	FP	FP	FΡ	FP	FP	FP	NA	NA	NA	NA	NA	FP	FP	FP	FP	68		41	44	32	26	
MVV-1A	350	FP	FP	FP	170	95	190	67	53	52	62	200	140	100	FP	5 6	54	.	66	51	50	15	
MW-3	74	<u>FP</u>	FP	FP.	FP.	39	4,600	51	20	6.2	19	7	16	6	FP	FP	85 	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	32	32	16 25	17 48	3.2 10
MW-4	86	FP	FP.	FP:	58	16	92 59	35 51	13:	14 50	11 45	110 51	260 48	95 48	FP 45	37 44	24 35	41 36	48 39	NA 4R		40: 16	15
MW-5	120	51	74	80	63	64	- 196	31	41 1668 (88. 1998)		40				ND(0.05)	. 7 7.				ND(0.05)	ND(0.05)	ND(0.05)	
Benzene (µg/l)		innessent sent re n	n ostopost <u>sz</u> a	90 000000 00000 000 000 000 000 000 000	energeneses (The		000000000000000000000000000000000000000	1900010401	0.000,000,000,000		iparanjii an i jii an	ndak salak di nadi Tabuk	rational cost.	NUID CO		HINTO WHY	1.0007.000.00.5			11010.00	11010.001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(tame (in terms)
MW-1	FP	FP	FP	FP	FP	FP	FP	NA	NA	NA	NA	NA	FP	FP	fΡ	FP	2.200	6,000	6,800	8.300	1,100	8,600	9,200
MW-1A	17,000	FΡ	FP:	FP.	17,000	16,000	13.000	11,000	11,000	8.900	9.900	14,000	18,000	16,000	FP	12,000	11,000		10,000	9,100	11,000	1,100	
MW-3	1,600	FP	FP	FP	FP	3.200	1,500	1.100	270	70	220	120	170	45	FP	FP	8,500	610	640	690	180	84	39
MW-4	1,500	FP.	FP	FP.	1,500	1,300	1.700	1.200	1,300	2,200	630	2,600	6,600	9,900	FP	2,600	2,600	2,900	6,000	NA.	2,000	9,700	1,700
MW-5	20,000	13,000	16,000	19,000	14,000	29,000	13,000	15,000	12,000	1,600	13,000	15,000	12,000	12,000	12,000	11,000	8,900	7,900	13,000	10,000	9,500	5,400	8,400
MW-6					•				0000000000000000000000000000000000000	(8) (8) (8) (4)	1		ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.30)	ND(0.30)	ND(0.30)
Toluene (µg/l)														,				// exercises = 2.22					
MW-1	FP	FP	FP	FP	FP	FP	FP	NA	NA	NA	NA NA	NA.	FP	FP.	FP	14,000	4,500	3,000	3,000	3,700	3,800	2,300	
MW-1A	31,000	FP.	FP	FP	31,000	21,000	21,000	13,000	9,900	9,200	11,000	22,000	28,000	22,000	FP	15,000	12,000		16,000	11,000	15,000	830	
MW-3	4,600	FP	FP	FP	FP	2,900	4,200	2,300	550	140	480	170	270	30	FP	FP	13,000		5,300	3,800	1,500	1,100	85
MW-4	6,200	FP	FP	FP	2,500	790	4,100	3,400	1,600	2,100	470	3,600	19,000	19,000	FP	6,900	3,200	5,000	11,000	NA.	460 310	11,000	
MW-5	14,000	5,900	5,000	8,200	3,500	5,400	3,800	2,200	2,100	2,700	2,100	2,800	2,900	4,500	2,200	1,100	560	270 ND(0.5)	500 ND(0.5)	400 ND(0.5)	ND(0.30)	160 ND(0.30)	
MW-6	A		na isa patena e ss oa	0000000000				aggese n s	VACON OF S	ार अधिक के त	24.01.60 (10 0)	884.848855	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	- NUA(U-O)	inip(n:n)	inclus)	Minimizer	: MD(0.30)	NO(0.30)
Ethylbenzene (µ			FP	FP	FP	FΡ	FP	NA	NA	NA	NA	NA	FP	FP	FP	ĒΡ	1.500	1.600	1.400	1.100	550	730	820
MW-1	FP 3,000	FP FP	FP.	FP	2,100	1,500	1,400	910	500	710	790	2,700	2.800	2,100	FP	1,400	1,000		1,400	1,100	870	31	
MW-1A: MW-3	670	FP	FP	FP	2,100 FP	580	6.000	580	190	68	140	49	68	15		FP	2.400	930	800	870	490	430	
MW-4	1.000	Fρ	FP.	FP.	520	5t	310	280	77	110	14	780	3.700	2,000	FΡ	540	<u></u> 140		580	NA.	ND(15)	890	
MW-5	1.900	1.400	1.800	1.400	1.500	2.800	1,800	2,800	1,400	2,000	16,000	2,000	2,000	2.300	2.700	1.900	1,500	1,500	1,900	2,000	420	1,100	1,500
MW-6						en võivõis	80000 100 A000		00 - 100 00 00 00 00 00 00 00 00 00 00 00 00	0000000	andinisi	coder beigg	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	0.5	ND(0.5)	ND(0.30)	ND(0.30)	ND(0.30)
Xylenes (µg/l)		** ***********		a an na manana an na manana	a a acutana ana a	vina annivaria vina anni	SA SECTION OF THE SE																
MW-1	FP	FP	FP	FP	FP	FP	FP	NΑ	NA	NA	NA	NA	FP	FP	FP	FP	11,000	8,600	6,600	4,300	3,000	2,100	2,800
MW-1A	22,000	FP.	. FP	FP	14,000	12,000	11,000	9,800	6,300	6,800	5,300	22,000	19,000	14,000	FP	100	7,200	8,500	12,000	6,800	5,800	3,000	
MW-3	4,300	FP	FP	FP	FP	4,300	95,000	4,800	1,700	500	1,700	440	1,500	300	FP.	FP	16,000	5,900	5,900	5,200	3,700	3,800	
MW-4	7,300	FP	FP	F P	3,200	3,400	5,400	5,800	1,800	2,100	1,800	10,000	28,000	13,000	FP	5,500	3,500	4,800	8,200	, NA	6,400	5,000	
MW-5	4,900	2,600	2,700	2,700	2,100	4,500	2,900	4,500	1,600	2,100	1,900	2,400	2,700	4,000	6,500	2,800	1,700	1,300	1,700	2,200	850	900	840
MW-6	-	***	ar en ouve	7	7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	· · · · · · · · · · · · · · · · · · ·		tick block ti ck				,0000000	ND(2)	NO(2)	ND(2)	ND(2)	NO(2)	ND(2)	ND(2)	ND(2)	ND(0.60)	ND(8.60)	NO(0,60)
MTBE (µg/l)													112				NDGCC	NOVECON	200	400	NEVEN	ND/CO	NO/EC:
MW-1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	FP	FP 4 000	ND(500)		300	420 300	ND(50)	ND(50) ND(50)	
MW-1A	NA.	NA.	NA.	NA.	· · · · · · · · · · · · · · · · · · ·	NA.	NA NA	NA NA	NA NA	NA:	NA NA	NA:	NA NA	NA NA	. NA FP	1,800 FP	ND(500) ND(500)	ND(500) ND(100)	1,900 ND(300)	350	ND(60) ND(25)	ND(50)	ND(50)
MW-3	NA.	NA.	NA	NA NA	NA Na	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	1,400	ND(300)		270	NA	ND(50)	ND(50)	ND(50)
MW-4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	600	300	ND(100)		ND(1000)	350	ND(10)	ND(50)	
MW-5 MW-6	INA	INA Company	NA Company	NA Seesse Substitution	INA L	INA	ines Distributione particular	14/1 2000/02/0	1 4€ 2000-00-00-00	1 1/1 11/10/06/06	1924 30. (10) - 11		NA.	NA:	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(1.0)	ND(1.0)	
MAR.O.	gra i ras i" .	area in pro-1755	er er en en en 1990. V	o enidablica (TA).	e sivitiist.	aug (13,650 th . 157 88	e, pri eduktički.	ur unudud Rái	necessories (This	on on the second Di	an ioni an Will	in interitarity	164 p. 4 17 17 757 16	1 × 5,15 ,55 (\$	Sec. 10 10 10 10 10 10 10 10 10 10 10 10 10		 					ar ara ra n maretar	ಲಂಪಾರ್ಯಾ ಕ ಉತ್ಪಕ್ಷ .


TPHg = total petroleum hydrocarbons as gasoline MTBE = methyl t-butyl ether


(mg/l) milligrams per liter

(ug/l) micrograms per liter
ND = Not detected above the reporting limit in parenthesis

NA = Not analyzed FP = Free Product

-- = Well did not exist at date indicated

Harding Lawson Associates

APPENDIX A

LABORATORY REPORTS

Harding Lawson Associates Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Attention: Jim McCarty

Reference: Analytical Results

Project Name: City Blue Project No.: 40910-1 Date Received: 12/03/98 Chain Of Custody: 2029

CLS ID No.: P8579 CLS Job No.: 818579

12/24/98

The following analyses were performed on the above referenced project:

No. of Samples	Turnaround Time	Analysis Description						
								
6	10 Days	TPH as Gasoline, BTEX and MTBE						
3	10 Days	TPH Gasoline and BTXE (water)						

These samples were received by CLS Labs in a chilled, intact state and accompanied by a valid chain of custody document.

Calibrations for analytical testing have been performed in accordance to and pass the EPA's criteria for acceptability.

Analytical results are attached to this letter. Please call if we can provide additional assistance.

Sincerely,

James Liang, Ph.D. Laboratory Director

ZE JUNIS

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98
Date Extracted: 12/04/98

Date Analyzed: 12/04/98
Date Reported: 12/08/98
Client ID No.: MW-1

Project No.: 40910-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-1A

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8		1.00	100	
		Sample: MW-1			
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)	
TPH as Gasoline	N/A	26	2.5	50	

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Sampled: 12/02/98
Date Received: 12/03/98
Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98
Client ID No.: MW-1A Project No.: 40910-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-2A
Job No.: 818579
COC Log No.: 2029
Batch No.: 24021
Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATED

Matrix: WATER

		SURROGATE			
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8		1.00	93	
		Sample: MW-1A			
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)	
TPH as Gasoline	N/A	41	2.5	50	

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98 Date Extracted: 12/04/98 Date Analyzed: 12/04/98 Date Reported: 12/08/98

Client ID No.: MW-3

Project No.: 40910-1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-3A

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021

Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8		0.100	118	
		Sample: MW-3 _			
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)	
TPH as Gasoline	N/A	3.2	0.25	5.0	

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Received: 12/03/98 Date Extracted: 12/04/98 Date Analyzed: 12/04/98

Date Reported: 12/08/98 Client ID No.: MW-4

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579-4A

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.	Surr Conc. (mg/L)		Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	<u></u>	0.200	64 MA
		Sample: MW-4 _		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	10	0.50	10

MA = Recovery data is outside standard QC limits due to matrix interference. LCS recovery data validates methodology.

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98 Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98

Client ID No.: MW-5

Project No.: 40910-1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-5A

Job No.: 818579

COC Log No.: 2029

Batch No.: 24021 Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		0.200	114
	<u>,</u>	Sample: MW-5		
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	15	0.50	10

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98
Date Extracted: 12/04/98
Date Analyzed: 12/04/98

Date Reported: 12/08/98

Client ID No.: MW-6

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: P8579-6A

Job No.: 818579 COC Log No.: 2029
Batch No.: 24021
Instrument ID: GC007

Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

		OUNTOGRE		
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		0.0200	94
		Sample: MW-6		<u></u>
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)
TPH as Gasoline	N/A	ЙD	0.050	1.0

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Project: City Blue

Date Extracted: 12/04/98 Date Analyzed: 12/04/98 Date Reported: 12/08/98

Project No.: 40910-1 Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021 Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

ND DOWNOONIA	MB	SURROGAT	E
--------------	----	----------	---

Analyte	CAS No.	Surr Conc. (mg/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	0.0200	103
	METHOD	BLANK	
Analyte	CAS No.	Results (mg/L)	Reporting Limit (mg/L)
TPH as Gasoline	N/A	ND	0.050
	1 12 1 2 2		

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Received: 12/03/98
Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98

Client ID No.: MW-1

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579-1A Job No.: 818579

COC Log No.: 2029
Batch No.: 24021
Instrument ID: GC007
Analyst ID: SCOTTF

Macrix: WATER

SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	1000	107

Sample: MW-1

				
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND 9200 4300 820 2800	50 150 150 15 30	50 500 500 50 50

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Received: 12/03/98

Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98 Client ID No.: MW-1A

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: P8579-2A
Job No.: 818579
COC Log No.: 2029
Batch No.: 24021

Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

				•
Analyte	CAS No.		rr Conc. g/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	9-8 1000		99
	Sam	ple: MW-1A		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND 8500 11000 720 6700	50 150 150 15 30	50 500 500 50

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Received: 12/03/98
Date Extracted: 12/04/98
Date Analyzed: 12/04/98

Date Reported: 12/08/98 Client ID No.: MW-3

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579-3A

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021 Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

SURROGATE

Analyte	CAS No.		rr Conc. g/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	100	0	107
	Sa	mple: MW-3		
		Results	Rep. Limit	Dilution (Factor)

(factor) CAS No. (ug/L) (ug/L) Analyte 5.0 5.0 1634-04-4 ND Methyl t-butyl ether 5.0 1.5 71-43-2 39 Benzene 5.0 108-88-3 85 1.5 Toluene 5.0 1.5 100-41-4 25 Ethylbenzene 5.0 1330-20-7 360 3.0 Xylenes, total

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98 Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98

Client ID No.: MW-4

Contact: Jim McCarty
Phone: (S10)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-4A

Job No.: 818579

COC Log No.: 2029

Batch No.: 24021 Instrument ID: GC007 Analyst ID: SCOTTF

Project No.: 40910-1

Matrix: WATER

SURROGATE

Analyte	CAS No.		err Conc.	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	95-49-8 1000		98
	Sa	mple: MW-4		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND 1700 610 ND 2300	50 15 15 15 30	50 50 50 50 50

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Received: 12/03/98
Date Extracted: 12/04/98
Date Analyzed: 12/07/98
Date Reported: 12/08/98

Client ID No.: MW-5

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: P8579-5A
Job No.: 818579
COC Log No.: 2029
Batch No.: 24021
Instrument ID: GC007
Analyst ID: SCOTTF

Matrix: WATER

	s	URROGATE		
Analyte	CAS No.		err Conc. g/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	2000		108
	Sa	mple: MW-5		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634~04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND 8400 120 1500 840	100 150 30 30	100 500 100 100

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98 Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98
Client ID No.: MW-6

Project No.: 40910-1

Contact: Jim McCarty Phone: (510)451-1001

Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

STEPOOGATE

SURRUGALE				
Analyte	CAS No.		urr Conc. ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	2	0.0	106
	Sa	mple: MW-6		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Methyl t-butyl ether Benzene Toluene Ethylbenzene Xylenes, total	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND ND ND ND ND	1.0 0.30 0.30 0.30 0.60	1.0 1.0 1.0 1.0

Analysis Report: EPA 8020, BTEX and MTBE

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Extracted: 12/04/98
Date Analyzed: 12/04/98 Date Reported: 12/08/98 Project No.: 40910-1

Contact: Jim McCarty
Phone: (510) 451-1001

Lab Contact: James Liang

Lab ID No.: P8579

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021

Instrument ID: GC007 Analyst ID: SCOTTF Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	109
	METHOD	BLANK	
Analyts	CAS No.	Results (ug/L)	Reporting Limit (ug/L)
Methyl t-butyl ether Benzene Toluene Ethylben ene Xylenes, cotal	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	ND ND ND ND ND	1.0 0.30 0.30 0.30 0.60

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue

Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98

Project No.: 40910-1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: P8579

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

	MS SURRO	OGATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	102
	MATRIX S	SPIKE	
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	113 105 109 106
	MSD SURRO	OGATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	101
	MATRIX SPIKE	DUPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	104 101 101 101
	RELATIVE % D	IFFERENCE	
Analyte	CAS		Relative Percent Difference (percent)

CA DORS ELAP Accreditation/Registration Number 1233

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue

Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98

Project No.: 40910-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579

Job No.: 818579 COC Log No.: 2029 Batch No.: 24021

Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

RELATIVE % DIFFERENCE(cont.)

Analyte	CAS No.	Relative Percent Difference (percent)
Benzene	71-43-2	8
Toluene	108-88-3	4
Ethylbenzene	100-41-4	8
Xylenes, total	1330-20-7	5

Analysis Report: EPA 8020, BTEX and MTBE
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Extracted: 12/04/98
Date Analyzed: 12/04/98
Date Reported: 12/08/98

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579 Job No.: 818579 COC Log No.: 2029 Batch No.: 24021

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

LCS SURROGATE				
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Surrogate Recovery (percent)	
o-Chlorotoluene	95-49-8	20.0	98	
	LAB CONTRO	L SAMPLE		
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)	
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	97 99 109 99	

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Received: 12/03/98
Date Extracted: 12/08/98 Date Analyzed: 12/08/98
Date Reported: 12/09/98
Client ID No.: Bio-eff

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-7A Job No.: 818579

COC Log No.: 2029

Batch No.: 24048

Instrument ID: GC007

Analyst ID: SCOTTF Matrix: WATER

SURROGATE

Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		20.0	111
	S	ample: BIO-EFF		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	ND ND ND ND	0.30 0.30 0.30 0.60	1.0 1.0 1.0

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98 Date Extracted: 12/08/98
Date Analyzed: 12/08/98
Date Reported: 12/09/98

Client ID No.: Sep-eff

Project No.: 40910-1

Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579-8A

Job No.: 818579 COC Log No.: 2029 Batch No.: 24048 Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	1000	99

Sample: SEP-EFF ___

Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Benzene	71-43-2	1100	15	50
Toluene	108-88-3	610	15	50
Ethylbenzene	100-41-4	23	15	50
Xylenes, total	1330-20-7	3000	30	50

Analysis Report: BTEX, EPA Method 602
Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Ethylbenzene

Xylenes, total

Date Sampled: 12/02/98
Date Received: 12/03/98
Date Extracted: 12/08/98

Date Analyzed: 12/08/98
Date Reported: 12/09/98 Client ID No.: Sys-eff

Project No.: 40910-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-9A Job No.: 818579 COC Log No.: 2029 Batch No.: 24048

Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

0.30

0.60

1.0

1.0

SURROGATE

Analyte	CAS No.		Surr Conc. (ug/L)	Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8		20.0	109
	s	ample: SYS-EFF		
Analyte	CAS No.	Results (ug/L)	Rep. Limit (ug/L)	Dilution (factor)
Benzene Toluene	71-43-2 108-88-3	ND ND	0.30	1.0

ND

ND

ND = Not detected at or above indicated Reporting Limit

100-41-4

1330-20-7

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Extracted: 12/08/98 Date Analyzed: 12/08/98 Date Reported: 12/09/98

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang
Lab ID No.: P8579

Job No.: 818579
COC Log No.: 2029
Batch No.: 24048
Instrument ID: GC007
Analyst ID: SCOTTF

Matrix: WATER

MB SURROGATE

Analyte	CAS No.	Surr Conc. (ug/L)	MB Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	108
	METHOD 1	BLANK	
Analyte	CAS No.	Results (ug/L)	Reporting Limit (ug/L)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	ND ND ND ND	0.30 0.30 0.30 0.60

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Extracted: 12/08/98 Date Analyzed: 12/08/98 Date Reported: 12/09/98

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579 Job No.: 818579 COC Log No.: 2029 Batch No.: 24048

Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

	MS SURRO	OGATE	
Analyte	CAS No.	MS Surr. Conc. (ug/L)	MS Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	99
	MATRIX S	SPIKE	<u></u>
Analyte	CAS No.	MS Conc. (ug/L)	MS Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	104 104 105 105
	MSD SURRO	OGATE	
Analyte	CAS No.	Surr. Conc. (ug/L)	MSD Surrogate Recovery (percent)
o-Chlorotoluene	95-49-8	20.0	100
	MATRIX SPIKE	DUPLICATE	
Analyte	CAS No.	MSD Conc. (ug/L)	MSD Recovery (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	105 105 105 106
	RELATIVE % D	IFFERENCE	
Analyte	CAS :		Relative Percent Difference (percent)

CA DOHS ELAP Accreditation/Registration Number 1233

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Extracted: 12/08/98 Date Analyzed: 12/08/98 Date Reported: 12/09/98

Project No.: 40910-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579 Job No.: 818579 COC Log No.: 2029 Batch No.: 24048

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

RELATIVE % DIFFERENCE (cont.)

Analyte	CAS No.	Relative Percent Difference (percent)
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	1 1 0 1

Analysis Report: BTEX, EPA Method 602

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue

Date Extracted: 12/08/98
Date Analyzed: 12/08/98
Date Reported: 12/09/98

Project No.: 40910-1

Contact: Jim McCarty
Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579

Job No.: 818579 COC Log No.: 2029 Batch No.: 24048

Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

LCS SURROGATE					
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8	20.0	98		
	LAB CONTROI	SAMPLE			
Analyte	CAS No.	LCS Conc. (ug/L)	LCS Recovery (percent)		
Benzene Toluene Ethylbenzene Xylenes, total	71-43-2 108-88-3 100-41-4 1330-20-7	20.0 20.0 20.0 60.0	97 98 109 101		

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98 Date Extracted: 12/08/98 Date Analyzed: 12/08/98 Date Reported: 12/09/98 Client ID No.: Bio-eff

Project No.: 40910-1 Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579-7A

Job No.: 818579
COC Log No.: 2029
Batch No.: 24048
Instrument ID: GC007
Analyst ID: SCOTTF

Matrix: WATER

SURROGATE _

Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8		0.0200			
		Sample: BIO-EFF				
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)		
TPH as Gasoline	N/A	ND	0.050	1.0		

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98
Date Received: 12/03/98
Date Extracted: 12/08/98
Date Analyzed: 12/08/98
Date Reported: 12/09/98

Client ID No.: Sep-eff

Project No.: 40910-1

Contact: Jim McCarty Phone: (510)451-1001

Lab Contact: James Liang Lab ID No.: P8579-8A

Job No.: 818579

COC Log No.: 2029

Batch No.: 24048 Instrument ID: GC007
Analyst ID: SCOTTF
Matrix: WATER

Analyte	CAS No		Surr Conc. (mg/L)	Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8	8	1.00			
		Sample: SEP-EFF				
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)		
TPH as Gasoline	N/A	15	2.5	50		

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015 Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental

383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

Date Sampled: 12/02/98 Date Received: 12/03/98 Date Extracted: 12/08/98
Date Analyzed: 12/08/98
Date Reported: 12/09/98
Client ID No.: Sys-eff

Project No.: 40910-1 Contact: Jim McCarty

Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579-9A Job No.: 818579 COC Log No.: 2029 Batch No.: 24048 Instrument ID: GC007

Analyst ID: SCOTTF Matrix: WATER

SURROGATE

						
Analyte	CAS No.		Surr Conc. (mg/L)	Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8		0.0200	92		
		Sample: SYS-EFF				
Analyte	CAS No.	Results (mg/L)	Rep. Limit (mg/L)	Dilution (factor)		
TPH as Gasoline	N/A	ND	0.050	1.0		

Analysis Report: Total Petroleum Hydrocarbons, EPA Method 8015

Purge and Trap, EPA Method 5030

Client: Harding Lawson Associates

Engineering and Environmental 383 4th Street, Third Floor

Oakland, CA 94607

Project: City Blue

TPH as Gasoline

Date Extracted: 12/08/98 Date Analyzed: 12/08/98 Date Reported: 12/09/98

Project No.: 40910-1

Contact: Jim McCarty
Phone: (510)451-1001

Lab Contact: James Liang

Lab ID No.: P8579 Job No.: 818579 COC Log No.: 2029

Batch No.: 24048 Instrument ID: GC007 Analyst ID: SCOTTF

Matrix: WATER

0.050

	MB SURR	OGATE			
Analyte	CAS No.	Surr Conc. (mg/L)	MB Surrogate Recovery (percent)		
o-Chlorotoluene	95-49-8	0.0200	93		
	METHOD	BLANK			
Analyte	CAS No.	Results (mg/L)	Reporting Limit (mg/L)		

ND = Not detected at or above indicated Reporting Limit

N/A

Harding Lawson Associates 383 Fourth Street, Third Floor

CHAIN OF CUSTODY FORM

No

2029 CLS

	A Oakland	California 94607										L-0	au						
	(510) 45					S	Samplers	s:	<u> </u>	M		_ [ANAL	YSIS	REQUE	STED	
Job Ni	umber:	40910-	1									_							
Name	Location:	Citus	<u>3</u> L.	e	•					_							X		
Projec	t Manager	City S	M	Cart	1	F	Recorde	r:	Jan	M (a) (Signature Required)	4	_			오	× H			
SOURCE	Water Sediment Soil	CONTAIN & PRESE	RV.	LAB N	NUMBER OR UMBER		DAT	E		STATION DES		EPA 601/8010	EPA 602/8020	A 625/8270	METALS EPA 8015M/TPHg	A 8020/BTE	MT8 P		
<i>3</i> 0	N S S S			Yr Wk	Seq	-	Mo Day		Time			1 12		ᇤᇤ	뿔읍	<u> </u>	- 2		
		3		MW-1 MW-1 MW-3 MW-4	A	98	(20)		900 920 830 922								<		
				1-1-1-1-	5			0	745 710							- I i	< ×		
				Bio-e	ff.			0	935							,	<u> </u>		
				1-1-1	eff		*	1 1	930			-				,	K K	-	
1	LAB NUMBER	DEPTH IN FEET	COL MTD CD	QA CODE	M	IISCELL/	ANEOUS				CHAIN OF		r r	,			```		
Yr	Wk Seq				219	TH	+T		REVINC	MUSHED BY: (Signature)	RE	CEIVE	NIJ DBY:/(S	gnature			\(\frac{\cdot\}{\cdot\}\)	12/3/51	TETIME P 13 TO
					FAx #					NUISHED BY: (Signature)				lignature lignature					ATE/TIME
					E-mail				_	y	1	~	- 1. (c	g-reluic	.,				1,3,1,,,,,,
						ho	rding.	Cor	DISPAT	CHED BY: (Signature)	DATE/TIM	E .	RECE! (Signal	VED FO	FI LAB BY	2		12/3/	TETIME)
									METHO	D OF SHIPMENT	- ,	,	•			1		-1-11-1	.
									SAMPL	E CONDITION WHEN RECEIVE	D BY THE LABORATOR	Y							