Harding Lawson Associates

ENVIRONMENT AL PROTECTION

97 ATT 25 AM 10: 43

April 16, 1997

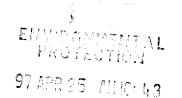
34467 1

Mr. Jeff Christoff Blue Print Service Company 1057 Shary Circle Concord, California 94518

Semiannual Report (including first Quarter 1997) October 1, 1996 through March 31, 1997 Groundwater Remediation and Monitoring Blue Print Service Facility 1760 Jefferson Street Oakland, California

Dear Mr. Christoff:

This letter presents Harding Lawson Associates's (HLA) sample results from the groundwater monitoring wells and treatment system at the Blue Print Service facility at 1700 Jefferson Street, Oakland, California. This report is for the period of October 1, 1996 through March 31, 1997. It was prepared to satisfy quarterly groundwater monitoring (first Quarter 1997) reporting required by the Alameda County Health Care Services Agency (Alameda County) and first 1997 semiannual reporting required by the East Bay Municipal Utilities District (EBMUD).


BACKGROUND

Three underground gasoline storage tanks were removed from the property in 1987. Preliminary investigation indicated there had been a release of fuel into the soil and groundwater. Three groundwater monitoring wells were installed (MW-1, MW-2, and MW-3) on the property to evaluate the distribution of petroleum hydrocarbons in the soil and groundwater and to determine the direction of groundwater flow.

Groundwater monitoring of these wells revealed free phase gasoline floating on the surface of the groundwater in monitoring well MW-1. In January 1988, two additional monitoring wells (MW-1A and MW-4) were installed by HLA at the facility. One downgradient offsite monitoring well (MW-5) was installed by HLA in August 1988. Monitoring well MW-2 was destroyed during construction of the present facility. Monitoring well MW-6 was installed on April 22, 1996, to replace MW-2. The present configuration is presented on Plate 1.

The existing biodegradation groundwater treatment system began operating in June 1992. In the original configuration, groundwater was extracted from MW-1A and MW-4, and passed through an oil-water separator which removed the free phase gasoline. The water was then drawn into a 3,000-gallon bioreactor tank for treatment by hydrocarbon reducing microbes. The treated water from the bioreactor passed through two carbon adsorption vessels before being discharged to the sanitary sewer. In August 1995, free phase gasoline was no longer being recovered by the oil-water separator

Harding Lawson Associates

April 16, 1997 34467 1 Mr. Jeff Christoff Blue Print Service Company Page 2

and in December of 1995 the oil-water separator was by-passed. At this time, the water was pumped directly into the bioreactor for remediation. Also in December 1995, a third carbon vessel was added in-line to optimize carbon usage. In June of 1996, the reoccurrence of free phase gasoline was observed in MW-1 and a sheen was observed in the bioreactor. In October 1996, the system was shut down because of high TPH concentrations in the bioreactor effluent. To reduce the free phase product in the bioreactor, the oil-water separator was reinstated in December 1996. Between December 11, 1996 and February 31, 1997, approximately 150 gallons of product was removed from the groundwater. Since February, the free product removal rate appears to have slowed considerably.

TREATMENT SYSTEM STATUS

During this reporting period, approximately 60,000 gallons of water were treated and discharged to the sanitary sewer. The average daily discharge flow rate was approximately 670 gallons per day (gpd). Average combined extraction rate for the two extraction wells was 0.46 gallons per minute (gpm). The system was not operated between October 16, 1996 and December 11, 1996 while the oilwater separator was being plumbed back in-line. During this reporting period there were approximately 30 additional days that the system was not fully-operational due to high pressures on the carbon vessel or sand filters. Approximately 150 gallons of gasoline were recovered from the groundwater by the oil water separator.

During normal operation, an HLA engineer or technician visits the site on a weekly basis to monitor the system performance, collect samples if necessary, and perform maintenance functions as needed. Periodically, MW-1 is checked for the presence of free phase product and any free product observed is removed. Approximately six gallons of gasoline was removed from this well during this reporting period. During the last check of this well the amount of free phase product in this well was less than 0.01 feet. Flow totalizer readings and system maintenance activities are summarized in Table 1.

TREATMENT SYSTEM SAMPLING AND ANALYSIS

In accordance with the letter from HLA to EBMUD dated December 13, 1995, HLA has sampled the carbon vessel effluent, and/or the sanitary sewer influent at a frequency of every 40,000 gallons of water discharged. The EBMUD Wastewater Discharge Permit (Account No. 500-68191) requires effluent monitoring on a quarterly basis. HLA collects water samples from sampling ports into 40-milliliter volatile organic analysis vials. The water samples are placed in ice-chilled coolers and submitted to American Environmental Network Laboratory in Pleasant Hill, California, under chain-of-custody protocol for analysis. The samples are analyzed by EPA Test Method 8015 for total petroleum hydrocarbons as gasoline (TPHg) and EPA Test Method 8020 for benzene, toluene, ethylbenzene and xylene (BTEX). On December 23, 1996, Rodney Temples of EBMUD sampled the treatment system effluent. Sample results provided by EBMUD indicated the treatment system's discharge was below discharge limitations.

During this reporting period, the treatment system effluent was sampled by an HLA representative on October 4, 1996, 36,509 gallon of groundwater had been treated since the last effluent sample was collected on August 9, 1996. Chemical results indicate that treatment system effluent concentrations limitations were exceeded at this time. Upon receiving these chemical results on October 16, 1996, the system was shut down to reevaluate the treatment process. At this time, it was decided that it was

April 16, 1997 34467 1 Mr. Jeff Christoff Blue Print Service Company Page 3

necessary to place the oil-water separator back in-line to prohibit free phase product being removed from the groundwater from entering the bioreactor. On December 11, 1996, HLA sampled the oil-water separator effluent, the bioreactor effluent (before carbon adsorption), and the effluent from all three carbon vessels after starting the system with the oil-water separator in-line. On December 16, 1996, after five days of operation, the bioreactor effluent and the third carbon effluent (system effluent) were sampled again to evaluate the systems treatment efficiency and confirm regulatory compliance. None of reported concentrations of BTEX in the system effluent samples collected after the oil-water separator was put back in-line were above the discharge limits. On February 18, 1997, the bioreactor effluent, the second carbon vessel effluent and the third carbon vessel effluent (system discharge) were sampled. Since the sampling on December 16, 1996, 30,250 gallons of groundwater had been processed by the system. Results of the chemical analysis of these samples indicate that treatment system effluent concentrations were below the EBMUD discharge limitations. Treatment system sampling results are presented in Table 2. The laboratory reports are presented in Appendix A.

GROUNDWATER SAMPLING AND ANALYSIS

On December 23, 1996 and March 27, 1997, HLA measured the water levels and checked for the presence of free phase product in wells MW-1, MW-3, MW-5 and MW-6. During both these sampling events, Wells MW-1 and MW-3 were found to have free product and therefore were not sampled. On December 23, 1996, 2.51 feet of product was measured in MW-1. At this time there was not a measurable amount (i.e., less than 0.01 feet) of product in MW-3 though free phase product was observed as emulsified droplets in groundwater removed from this well. On March 27, 1997, the amount of product in MW-1 was not a measurable amount, however, free phase product was observed as emulsified droplets on groundwater removed from this well. The thickness of product was measured to be 0.49 feet in MW-3 during this sampling event. During both sample events, these two wells were bailed dry to remove the existing product. During each sampling event, Monitoring wells MW-5 and MW-6 were sampled after purging at least three well volumes from each. During purging the pH, conductivity, and temperature of the purge water was monitored. Sampling was not performed until these groundwater parameters had stabilized. Three 40-milliliter VOA vials of water were collected from each well with a disposable Teflon bailer. Purge water was disposed of in the treatment system.

Groundwater surface elevations calculated from the water level measurements collected on December 23, 1996 are presented on Plate 1. Groundwater surface elevations calculated from the water level measurements collected on March 27, 1997 are presented on Plate 1. Data from both sampling events show a depression in the groundwater surface elevation at the site of the two extraction wells.

The two extraction wells, MW-1A and MW-4, were not sampled during the December 23, 1996 sampling event because the amount of gasoline being removed by the oil-water separator indicated the presence of free phase product. Three 40-milliliter VOA vials were collected from the oil-water separator effluent to evaluate the system efficiency. By March 1997, the amount of product being recovered in the oil-water separator was negligible and little free phase product was observed in MW-1. Therefore during the March 27, 1997, sampling event, these two wells were sampled at

April 16, 1997 34467 1 Mr. Jeff Christoff Blue Print Service Company Page 4

sampling ports in the treatment system prior to the extracted groundwater entering the oil-water separator.

All of the water samples were placed in ice-chilled coolers and submitted to American Environmental Network Laboratory in Pleasant Hill, California under chain-of-custody protocol for analysis. The samples were analyzed by EPA Test Method 8015 (modified) for TPHg and EPA Test Method 8020 for BTEX. The groundwater samples from MW-1, MW-4, MW-5 and MW-6 were analyzed for methyl t-butyl ether (MTBE). The historical analytical results are summarized in Table 3. Plates 3 and 4 presents the THPg and BTEX results of the two sampling events for this reporting period. The laboratory reports are presented in Appendix A.

DISCUSSION

HLA will to continue quarterly groundwater monitoring and reporting as required by Alameda County, and treatment system discharge monitoring with semiannual reporting as required by EBMUD. Groundwater sampling will be performed during the second quarter of 1997 in June, and monitoring of the system effluent will continue to be performed for every 40,000 gallons of treated groundwater discharged.

If you have any questions, please contact James McCarty at (510) 628-3220) or David Kleesattel at (415) 278-2107.

DAVID R. KLEESATTEI NO. 5136

OFCA

Yours very truly,

HARDING LAWSON ASSOCIATES

James G. McCarty

Staff Engineer

David R. Kleesattel, R.G. Associate Geologist

JGM/DRK/mlw 34467/036419M.DOC

Attachments: Table 1 - City Blue Groundwater Treatment System Maintenance Log

Table 2 - Groundwater Treatment System Analytical Results

Table 3 - Groundwater Monitoring Analytical Results

Plate 1 - Groundwater Surface Elevations, December 23, 1996

Plate 2 - Groundwater Surface Elevations, March 27, 1997 Plate 3 - TPHg and BTEX Concentration, December 23, 1996

Plate 4 - TPHg and BTEX Concentration, March 27, 1997

Appendix A - Laboratory Reports

Table 1. City Blue Groundwater Treatment System Maintenance Log Blue Print Services Facility 1700 Jeferson Street Oakland, California

	FLOW	DISCHARGE	DISCHARGE	
DATE	TOTALIZER	RATE	RATE	COMMENTS
	(gel)	(gpd)	(gpm)	
10/03/96	800,890	570	0.40	System down due to high pressures, backwashed CD-1 and sandlikers to allow discharge
10/04/96	801,597	707	0.49	Collect H2O samples from CD-1 inf, CD-2 off & CD-3 off
10/10/96	803,460	311	0.22	System down due to high pressures, backwashed CD-1,283 and sand filters
10/15/96	803,810	70	0.05	System down on arrival, possible problem with high level relay switch, balled MW-1, meeting onsite with ACDHS
10/16/96	804,490	680	0.47	Turn off air to well pumps, leave nutrient pump and recycle pump on
11/09/96	804,519		**	Plumbed separator back in line, measured convault levels with interface probe, pumps off
11/14/96	804,529	_		Put two new carbon vessels on-line, moved #2 to # 1, pumps off
12/11/96	805,085			Restart system, Sample sep-eff, blo-eff, c1-eff, c2-eff, c3-eff
12/12/96	805,825	740	0.51	Check on system
12/15/96	807,664	613	0.43	Check on system
12/16/96	807,717			System down due to plugged inductor, clean and let system run for 1 hr. then sample Bio-eff & C3-eff
12/19/96	809,790	691	0.48	Check on system
12/23/96	811,967	544	0.38	Met EBMIUD Rep.:collects sample from sys-eff, get 3 new carbons & get rid of 2 spent, sample MW-5,6 & Sys-eff, balled MW-1 & 3
12/25/96	813,220	627	0.44	Measure product level in conveuli with interface probe: 91 gal product, 25 gal water
01/01/97	817,540	617	0.43	Backwesh carbon and sand filters, system down on arrival due to high containment from rain
01/05/97	818,200		-	high sandfilter, tio tank alarm. Backwashed C3 and sandfilters, increased nutrient 10/40 to 10/90
01/10/97	818,420	1	_	high biotank alerm, backwashed sandifiters and left other sendlitter open eligitity
01/12/97	819,770	675	0.47	check on system, seems to be running ok
01/15/97	819,886		_	high biotank, high sand litter, switch sandlitter bypass, leave discharge on manual at 5gpm
01/16/97	820,905			high biotanis, high sand filter, switch sandfilter bypass, leave discharge on manual at 5gpm
01/16/97	821,390			return to find tank down to discharge intake, turn back to auto
01/21/97	824,597	641	0.45	Check System
01/25/97	827,070	618	0.43	Check system, sys down due to high rain level in containment
01/27/97	828,663	797	0.55	Check on system
02/04/97	834,380	715	0.50	Check on system
02/08/97	837,180	700	0.49	Check on system, increased nutrient pump 10/50 to 10/60
02/17/97	837,920			Put new carbon online
02/18/97	837,968			Sampled Bio-Eff, CD2-Eff, and CD3-Eff decreesed rutrient pure to 8/55
02/19/97	838,850	882	0.61	Check System
03/01/97	845,620	677	0.47	Check on system, Sys was down due to clogged carbon vessels, backwashed all three & sand fillers
03/08/97	852,390	967	0.67	Check on system
03/14/97	857,582	865	0.60	Check on system, backwashed C1, C2, C3 & S. Filters
03/26/97	858,606	_		System down, burn out fuse, repince fuse
03/27/97	859,600	994	0.69	Check on system, Citrly GW Mon, sampled MM-5,6 1A, & 4
	Total	Average	Average	
	(gallons)	(gpd)	(gpm)	
	58,710	668	0.46	

Table 2. Groundwater Treatment System Analytical Results
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

			First	Second	_Third*
	.		Carbon	Carbon	Carbon
Dete/Arel to-	Bioreactor	Bioreactor	Bed	Bed	Bed
Date/Analytes	Influent	Effluent	Effluent	Effluent	Effluent
16-Jun-92					
TPHg	NA	3	ND <.05	NA	
Benzene	NA NA	220	ND <0.3	NA NA	
Toluene	NA NA	460	ND <0.3	NA NA	
Ethylbenzene	NA NA	35	ND <0.3	NA NA	
Xylene	NA NA	290	ND <0.3	NA NA	
Aylelle	INA	290	ND <0.3	IVA	
19-Jun-92					
TPHg	180	2	ND <.05	NA	***
Benzene	18,000	2	ND <0.3	NA	
Toluene	31,000	5	ND <0.3	NA	
Ethylbenzene	2,200	ND <0.3	ND <0.3	NA	
Xylene	16,000	150	ND <0.3	NA	
5					
2-Jul-92	4==	_			
TPHg	160	0	ND <.05	NA NA	***
Benzene	14,000	1	ND <0.3	NA	
Toluene	27,000	ND <0.3	ND <0.3	NA	
Ethylbenzene	1,700	ND <0.3	ND <0.3	NA	***
Xylene	1,300	1	ND <0.3	NA	
20-Aug-92					
TPHg	190	6	0.073	NA	
Benzene	14,000	31	ND < 0.3	NA	
Toluene	24,000	14	ND <0.3	NA	
Ethylbenzene	2,000	ND <6	ND <0.3	NA	-40
Xylene	13,000	150	ND <0.3	NA	
15-Sep-92					
TPHg	230	23	0.054	NA	
Benzene	17,000	1,100	0.4		
Toluene	29,000	3,600	0.8	NA NA	
Ethylbenzene	2,200	3,600 59	0.8 ND <0.3	NA NA	
Xylene				NA NA	
Ayicile	15,000	1,100	0.6	NA	
2 ** 0.4					
3-Mar-94	25	a a		ND .c=	
TPHg	80	4	NA	ND <.05	
Benzene	1,500	270	NA	ND <0.5	
Toluene	9,200	370	NA	ND <0.5	
Ethylbenzene	1,000	32	NA	ND <0.5	
Xylene	14,000	840	NA	ND <0.5	

Table 2. Groundwater Treatment System Analytical Results
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

			First	Second	Third*
	Diornastas	Dinesastas	Carbon	Carbon	Carbon
Date/Analytes	Bioreactor Influent	Bioreactor Effluent	Bed Effluent	Bed Effluent	Bed Effluent
Date/Allarytes	IIIsiueiii	Ellinelif	Ellingill	Linuent	Elliuelii
7-Apr-94					
TPHg	79	0	ND <.05	NA	
Benzene	8,300	16	3.7	NA	
Toluene	19,000	4	ND <0.5	NA	
Ethylbenzene	990	ND <0.5	ND <0.5	NA	
Xylene	9,300	2	ND <0.5	NA	***
13-May-94					
TPHg	220	1	ND <.05	NA	
Benzene	12,000	45	ND <0.5	NA	***
Toluene	23,000	7	ND <0.5	NA	_
Ethylbenzene	1,700	1	ND <0.5	NA	***
Xylene	17,000	11	ND <0.5	NA	
29-Sep-94					
TPHg	96	1	NA	ND <.05	
Benzene	8,000	5	NA	ND <0.5	***
Toluene	16,000	8	NA	ND <0.5	
Ethylbenzene	ND <250	ND <2.5	NA	ND <0.5	_
Xylene	9,000	9	NA	ND <0.5	444
19-Dec-94					
TPHg	NA	6	0.59	ND <.05	
Benzene	NA	140	60	1	
Toluene	NA	100	14	0.5	
Ethylbenzene	NA	ND<5	ND<0.5	ND <0.5	
Xylene	NA	1,600	100	ND <0.5	_
5-Jan-95				·	
TPHg	NA	NA	0.2	ND <.05	
Benzene	NA NA	NA	17	0.7	***
Toluene	NA	NA	3	ND<0.5	•
Ethylbenzene	NA NA	NA	ND<0.5	ND<0.5	
Xylene	NA	NA	3	ND<0.5	
14-Apr-95					
TPHg	NA	2	0.9	NA	
Benzene	NA	36	22	NA	***
Toluene	NA	6	3	NA	
Ethylbenzene	NA NA	3	0.6	NA	
Xylene	NA	58	13	NA	

Table 2. Groundwater Treatment System Analytical Results
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

Date/Analytes	Bioreactor Influent	Bioreactor Effluent	First Carbon Bed Effluent	Second Carbon Bed Effluent	Third* Carbon Bed Effluent
40 14 05	*				
18-May-95	44	4	0.4	NO 4 OF	
TPHg Benzene	41	1	0.1 2	ND <.05 ND<0.5	
Toluene	4,400 5,700	22 9	ND<0.5	ND<0.5	
Ethylbenzene	430	ND<0.5	ND<0.5 ND<0.5	ND<0.5	
Xylene	8,200	16	ND<0.5 ND<0.5	ND<2	_
Aylelle	0,200	10	ND~0.5	ND-2	
7-Sep-95					
TPHg	NA	4	1.1	0.2	
Benzene	NA	400	120	15	
Toluene	NA	300	75	9	***
Ethylbenzene	NA	12	2	ND<0.5	-
Xylene	NA	320	82	9	***
16-Nov-95					
TPHg	NA	3	2.8	0.8	
Benzene	NA NA	18	17	3	***
Toluene	NA NA	11	18	2	
Ethylbenzene	NA.	7	6	0.9	
Xylene	NA	90	74	10	
22-Dec-95					
TPHg	NA	10	0.54	NA	
Benzene	NA	95	1	NA NA	
Toluene	NA	38	0.6	NA	
Ethylbenzene	NA.	6	ND<0.5	NA.	***
Xylene	NA	1,300	13	NA	
•		1,000			
29-Dec-95					
TPHg	NA	NA	0.7	0.1	
Benzene	NA	NA	. 5	ND<0.5	
Toluene	NA	NA	3	ND<0.5	
Ethylbenzene	NA	NA	1	ND<0.5	
Xylene	NA	NA	19	ND<0.5	
17-Jan-96					
TPHg	NA	1	ND<0.05	NA	
Benzene	NA.	8	ND<0.5	NA	
Toluene	NA	4	ND<0.5	NA	
Ethylbenzene	NA.	1	ND<0.5	NA.	
Xylene	NA	15	ND<2	NA	
-					

Table 2. Groundwater Treatment System Analytical Results
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

	Bioreactor	Bioreactor	First Carbon Bed	Second Carbon Bed	Third* Carbon Bed
Date/Analytes	Influent	Effluent	Effluent	Effluent	Effluent
16-Feb-96	***	_			
TPHg	NA	1	0.2	ND<0.05	484
Benzene	NA	13	ND<0.5	ND<0.5	
Toluene	NA NA	6	ND<0.5	ND<0.5	
Ethylbenzene	NA	1	ND<0.5	ND<0.5	***
Xylene	NA	16	ND<2	ND<2	•••
19-Mar-96					
TPHg	33	1	0.1	NA	***
Benzene	460	12	ND<0.5	NA	
Toluene	360	7	ND<0.5	NA	
Ethylbenzene	59	3	ND<0.5	NA	
Xylene	3,300	32	ND<2	NA	
18-Apr-96					
_ TPHg	NA	NA	1.3	0.17	0.09
Benzene	NA	NA	37	1.4	ND<0.5
Toluene	NA	NA	16	0.5	ND<0.5
Ethylbenzene	NA	NA	3.8	ND<0.5	ND<0.5
Xylene	NA	NA	66	ND<2	ND<2
5-Jun-96					
TPHg	NA	NA	5.8	0.53	0.19
Benzene	NA	NA	93	2.1	ND<0.5
Toluene	NA	NA	93	1.2	ND<0.5
Ethylbenzene	NA	NA	11	1.7	0.5
Xylene	NA	NA	490	6	ND<2
9-Aug-96					
7-Aug-30 TPHq	NA	74	NIA	0.77	0.40
Benzene			NA NA	0.77	0.19 ND c0.5
Toluene	NA NA	5,600	NA	12	ND<0.5
Ethylbenzene	NA NA	11,000	NA NA	4.8	ND<0.5
——————————————————————————————————————	NA NA	990	NA	1.2	ND<0.5
Xylene	NA	18,000	NA	26	ND<2
4-Oct-96					
TPHg	NA	2,100	NA	670	44
Benzene	NA	2,900	NA	3,700	ND<30
Toluene	NA	13,000	NA	8,400	50
Ethylbenzene	NA	7,000	NA	1,600	110
Xylene	NA	170,000	NA	36,000	870

Table 2. Groundwater Treatment System Analytical Results
Blue Print Service Facility
1700 Jefferson Street
Oakland, California

			First Carbon	Second Carbon	Third* Carbon
	Bioreactor	Bioreactor	Bed	Bed	Bed
Date/Analytes	Influent	Effluent	Effluent	Effluent	Effluent
11-Dec-96					
TPHg	69	5	51	2.8	0.31
Benzene	11,000	72	4,300	2.3	ND<0.5
Toluene	17,000	120	8,500	8.0	ND<0.5
Ethylbenzene	1,500	32	750	7.8	0.6
Xylene	12,000	1,000	16,000	45	ND<2
16-Dec-96					
TPHg	NA	6	NA	NA	0.16
Benzene	NA	450	NA	NA	ND<0.5
Toluene	NA	790	NA	NA	ND<0.5
Ethylbenzene	NA	52	NA	NA	ND<0.5
Xylene	NA	540	NA	NA	ND<2
23-Dec-96					
TPHg	100	NA	NA	NA	NA
Benzene	15,000	NA	NA	NA	NA
Toluene	26,000	NA	NA	NA	NA
Ethylbenzene	1,800	NA	NA	NA	NA
Xylene	14,000	NA	NA	NA	NA
18-Feb-97		•			
TPHg	NA	2.0	NA	0.12	ND<00.5
Benzene	NA	14	NA	ND<0.5	ND<0.5
Toluene	NA	18	NA	ND<0.5	ND<0.5
Ethylbenzene	NA	2.1	NA	ND<0.5	ND<0.5
Xylene	NA	140	NA	ND<2	ND<2

TPHg = total petroleum hydrocarbons as gasoline

Benzene, Toluene, Ethylbenzene, and Xylenes concentrations presented in micrograms per liter (µg/l)

ND = Not detected above the reporting limit in parenthesis

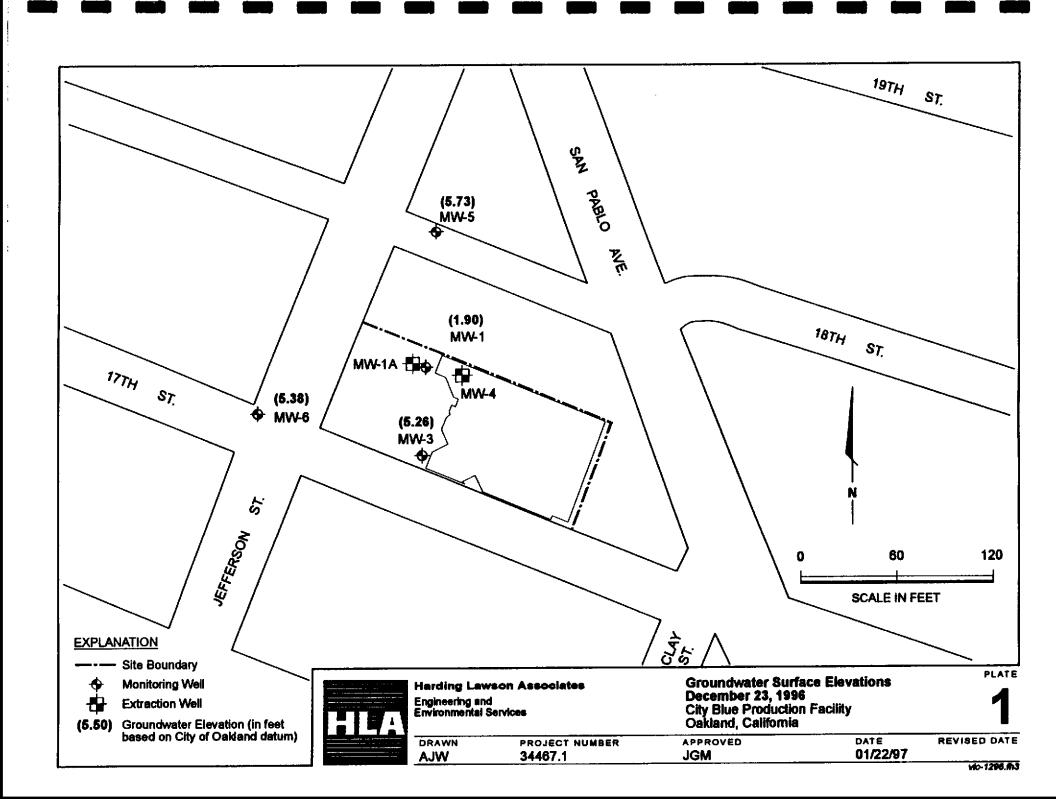
NA = Not analyzed

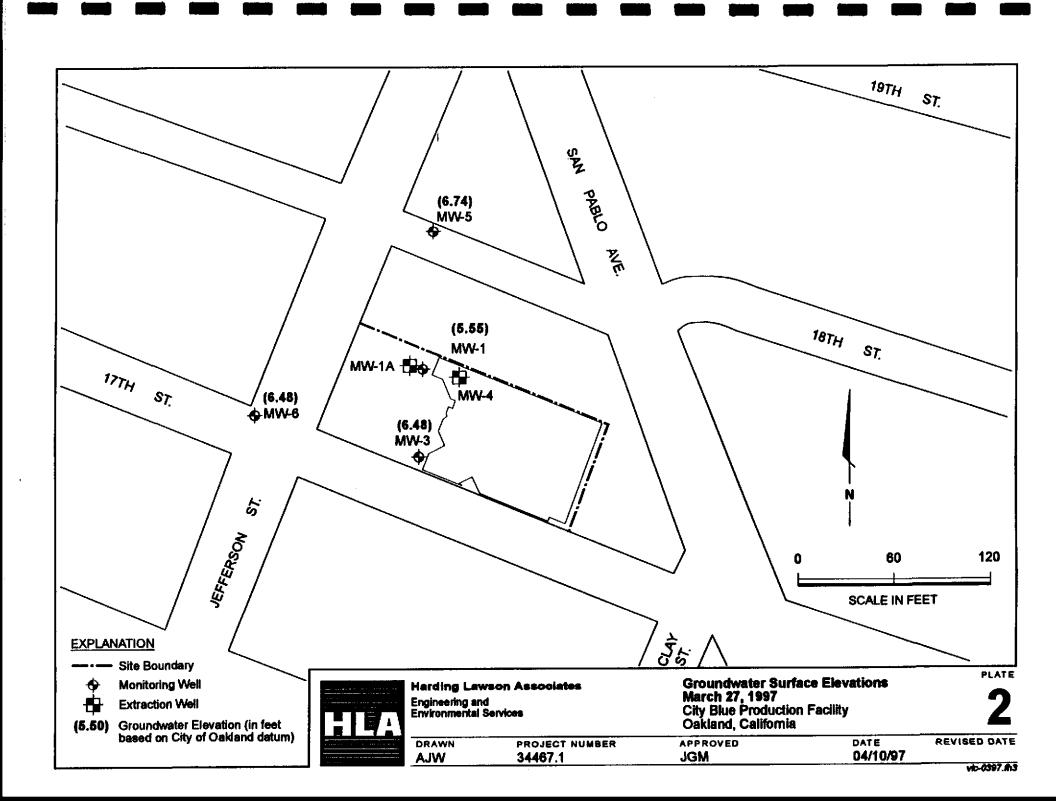
TPHg concentrations presented in milligrams per liter (mg/l)

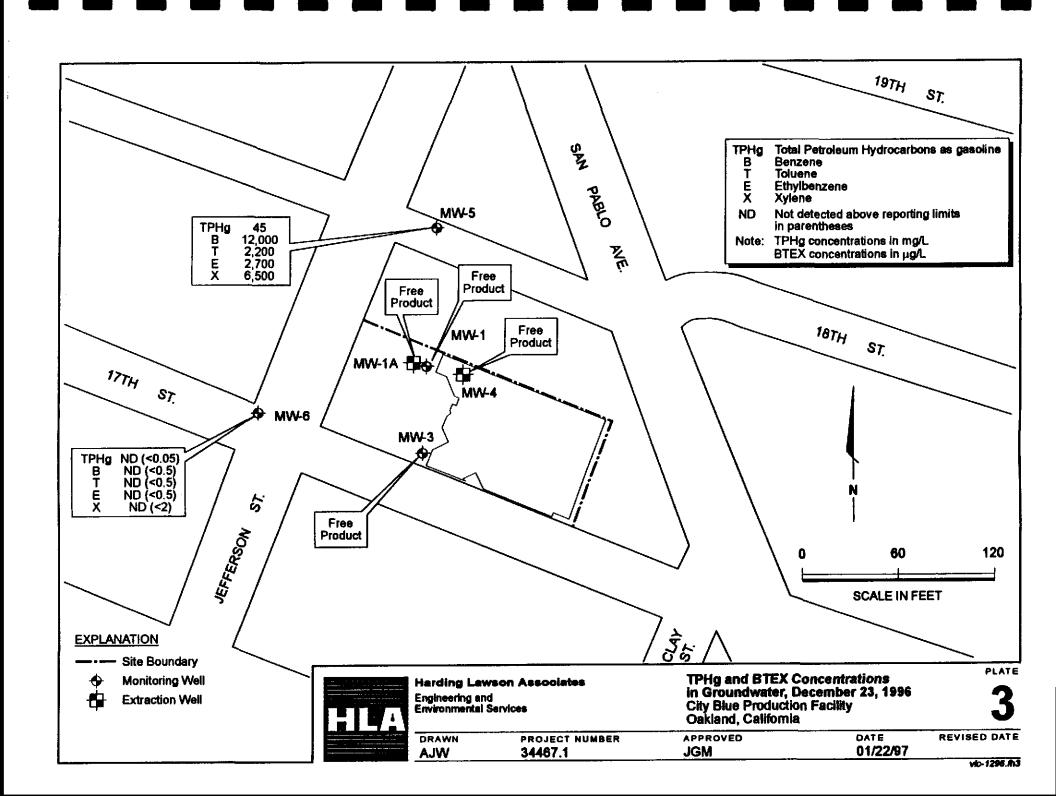
^{*} Third carbon added online December 29, 1996

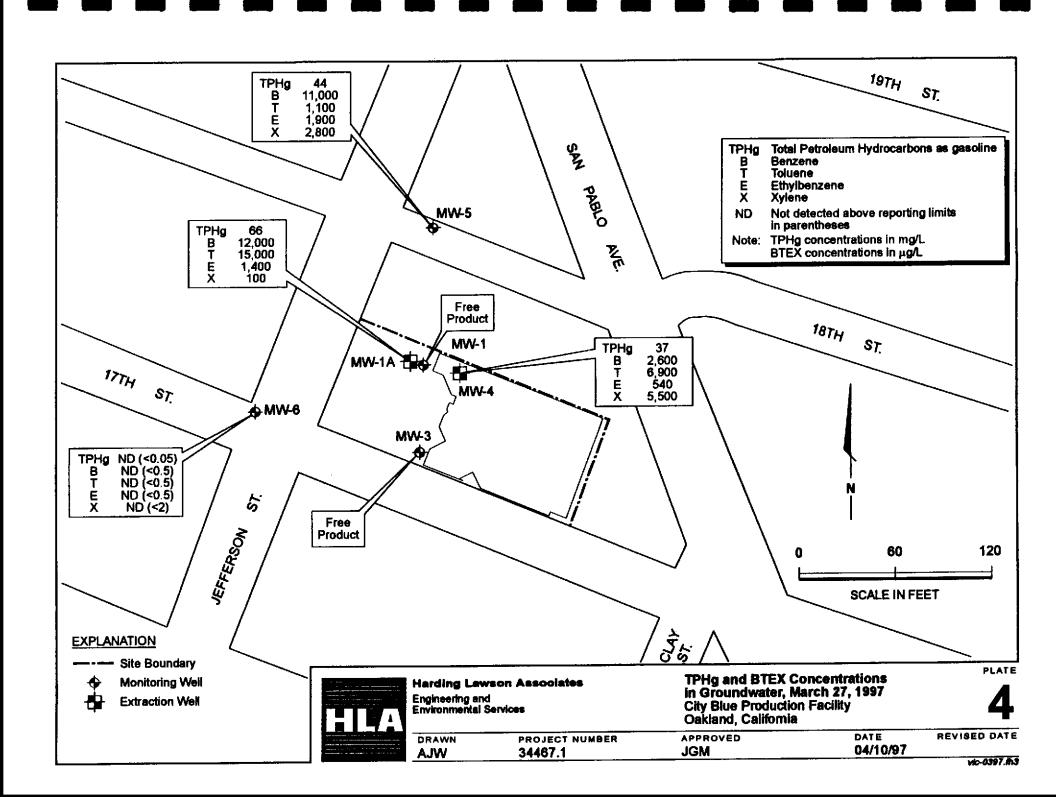
Table 3. Groundwater Monitoring Analytical Results Blue Print Service Facility 1700 Jefferson Street Oakland, California

							. ,		Sampled					<u> </u>		
TPHg	8/1/91	9/30/92	3/30/93	1/13/94	4/13/94	6/29/94	12/8/94	4/3/95	6/27/95	9/19/95	12/13/96	3/6/96	6/11/96	9/19/96	12/23/96	3/27/97
MW-1A	350	NA	· NA	NA	170	95	190	67	53	52	62	200	140	100	NA	- 66
MW-3	74	NA	NA	NA	NA	39	4,600	51	20	6	19	7	16	6	NA.	NA
MW-4	86	NA	NA	NA.	58	16	92	35	13.	14,		110	260	95	NA.	37
MW-5	120	51	74	80	63	64	59	51	41	50	45	51	48	48	45	44
MW-6	NA	NA.	NA	NA.	NA .	NA	NA NA	NA	NA:	NA	NA NA	NA NA	<0.05	<0.05	<0.05	<0.05
Benzene		···														
MW-1A	17,000	NA	NA.	NA	17,000	16,000	13,000	11,000	11,000	8,900	9,900	14,000	18,000	16,000	NA	12,000
MW-3	1,600	NA	NA	NA.	, NA	3,200	1,500	1,100	270	220	220	120	170	45	NA	NA
MW-4	1,500	NA NA	NA	NA.	1,500	1,300	1,700	1,200	1,300	630	2,200	2,600	6,600	9,900	NA.	2,600
MW-5	20,000	13,000	16,000	19,000	14,000	29,000	13,000	15,000	12,000	13,000	16,000	15,000	12,000	12,000	12,000	11,000
MW-6	NA	NA	NA	NA	NA .	NA	NA.	NA	NA.	NA	NA	NA.	<0.5	<0.5	<0.5	<0.5
Toluene		_														
MW-1A	31,000	NA	NA:	NA.	31,000	21,000	21,000	13,000	9,900	11,000	9,200	22,000	28,000	22,000	NA:	15,000
MW-3	4,600	NA	NA	NA	NA	2,900	4,200	2,300	550	480	140	170	270	30	NA	NA
MW-4	6,200	NA	NA	NA	2,500	790	4,100	3,400	1,600	470	2,100	3,600	19,000	19,000	NA.	6,900
MW-5	14,000	5,900	5,000	8,200	3,500	5,400	3,800	2,200	2,100	2,100	2,700	2,800	2,900	4,500	2,200	1,100
MW-6	NA	NA	NA	NA.	NA	NA	NA NA	NA	NA	NA NA	NA	NA .	<0.5	<0.5	<0.5	<0.5
Ethylbenzene						_					_					
MW-1A	3,000	NA	NA.	NA NA	2,100	1,500	1,400	910	500	790	710	2,700	2,800	2,100	NA.	1,400
MW-3	670	NA	NA	NA	ŅA	580	6,000	580	190	140	68	49	68	15	ŊĄ	ŅĄ
MW-4	1,000	NA	NA NA	NA	520	51	310	280	77	14	110	780	3,700	2,000	NA.	540
MW-5	1,900	1,400	1,800	1,400	1,500	2,800	1,800	2,800	1,400	16,000	2,000	2,000	2,000	2,300	2,700	1,900
MVV-6	NA	NA	NA	NA.	NA NA	NA	NA	NA	NA	NA	NA	NA .	<0.5	<0.5	<0.5	<0.5
Xylene		_														
MW-1A	NA .	NA.	NA	14,000	22,000	12,000	11,000	9,800	6,300	5,300	6,800	22,000	19,000	14,000	NA	100
MW-3	NA	NA	NA	NA	4,300	4,300	95,000	4,800	1,700	1,700	500	440	1,500	300	NA	NA
MW-4	NA	NA	NA	3,200	7,300	3,400	5,400	5,800	1,800	1,800	2,100	10,000	28,000	13,000	NA	5,500
MW-5	2,600	2,700	2,700	2,100	4,900	4,500	2,900	4,500	1,600	1,900	2,100	2,400	2,700	4,000	6,500	2,800
MW-6	NA	NA	NA NA	NA.	NA	NA.	NA.	NA .	NA NA	NA .	NA	NA.	<2	<2	<2	<2
MTBE		THE STATE OF THE STATE OF														
MW-1A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	····NA	NA .	NA	NA:	1,800
MW-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4	NA	NA .	NA	NA	NA	NA.	NA	NA .	NA	NA	NA	NA.	NA NA	NA	NA.	1,400
MW-5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	600	300
MW-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5	<5


TPHg = total petroleum hydrocarbons as gasoline TPHg concentrations presented in milligrams per liter (mg/l)


Benzene, Toluene, Ethylbenzene Xylenes, and MTBE concentrations presented in micrograms per liter (µg/l)


MTBE = methyl t-butyl ether


ND = Not detected above the reporting limit in parenthesis

NA = Not analyzed

APPENDIX A LABORATORY REPORTS

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

HADDING ASSOC.

PAGE 1

APR 9 - 1997

HARDING LAWSON ASSOCIATES 383 FOURTH ST., STE. 300 OAKLAND, CA 94607

REPORT DATE: 04/08/97

DATE(S) SAMPLED: 03/27/97

DATE RECEIVED: 03/27/97

ATTN: J. McCARTY CLIENT PROJ. ID: 34467-1 CLIENT PROJ. NAME: CITY BLUE

AEN WORK ORDER: 9703352

C.O.C. NUMBER: 1496

PROJECT SUMMARY:

On March 27, 1997, this laboratory received 4 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: MW-1A AEN LAB NO: 9703352-01

AEN WORK ORDER: 9703352 CLIENT PROJ. ID: 34467-1

DATE SAMPLED: 03/27/97 DATE RECEIVED: 03/27/97 **REPORT DATE: 04/08/97**

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	12.000 * 15.000 * 1,400 * 8.300 * 66 * 1,800 *	30 ug 30 ug 30 ug 100 ug 3 mg 300 ug	g/L g/L g/L g/L	04/01/97 04/01/97 04/01/97 04/01/97 04/01/97 04/01/97

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: MW-4

AEN LAB NO: 9703352-02 AEN WORK ORDER: 9703352 CLIENT PROJ. ID: 34467-1

DATE SAMPLED: 03/27/97 DATE RECEIVED: 03/27/97 **REPORT DATE: 04/08/97**

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	2.600 * 6,900 * 540 * 5.500 * 37 * 1,400 *	10 u 40 u 1 m	g/L g/L	04/01/97 04/01/97 04/01/97 04/01/97 04/01/97 04/01/97

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: MW-5

AEN LAB NO: 9703352-03 AEN WORK ORDER: 9703352 CLIENT PROJ. ID: 34467-1 DATE SAMPLED: 03/27/97 DATE RECEIVED: 03/27/97 REPORT DATE: 04/08/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	11.000 * 1.100 * 1.900 * 2.800 * 44 * 300 *	30 ug 30 ug 30 ug 100 ug 3 mg 300 ug	j/L j/L j/L	04/03/97 04/03/97 04/03/97 04/03/97 04/03/97 04/03/97

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit

* = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: MW-6

AEN LAB NO: 9703352-04 AEN WORK ORDER: 9703352 CLIENT PROJ. ID: 34467-1

DATE SAMPLED: 03/27/97 DATE RECEIVED: 03/27/97 **REPORT DATE: 04/08/97**

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	ND ND ND ND ND ND	0.5 0.5 2 0.05	ug/L ug/L ug/L ug/L mg/L ug/L	04/01/97 04/01/97 04/01/97 04/01/97 04/01/97 04/01/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9703352

CLIENT PROJECT ID: 34467-1

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9703352

INSTRUMENT: MATRIX: WATER

Surrogate Standard Recovery Summary

Date			Percent Recovery
Analyzed	Client Id.	Lab Id.	Fluorobenzene
04/01/97 04/01/97 04/03/97 04/01/97	MW-1A MW-4 MW-5 MW-6	01 02 03 04	95 95 98 93
QC Limits:			70-130

DATE ANALYZED: SAMPLE SPIKED: INSTRUMENT: F 03/31/97

LCS

Laboratory Control Sample Recovery

	Contile			QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	18.5 64.4	90 92	1 5	85-115 85-115	20 20
Hydrocarbons as Gasoline	500	92	4	85-115	20

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

Harding Lawson Associates 1855 Gateway Boulevard, Suite 500 Concord, California 94520 (510) 687-9660 R-3,5-2

CHAIN OF CUSTODY FORM

Lab: AEN 9703352

								•											San	ומח	ers	3 .	٠.	<u>)</u> a		\ 1	PS Ver Calty					AN	ALY		HEC	INES	ILEU	<i>;</i>		
ob N lame 'rojec	lumi e/Lo	bei cat	r: tior	3 1: (4	16	; 7	<u>- /</u> ·13	/_3し	~ {				•		~					_						3	-		-					1 3C					
					$\overline{\Lambda}$. *,	_		ارا			_	1 1	1	1						•		7	7		_	M'Cents	~] !		ો				' i	
roje	ct M	an	ag	er:	<u> </u>	La,	<u> 1e</u>		K	<u>ے ۱</u>	<u>e</u> :	5-		2	<u> </u>				Rec	orc	ret	r:	->	las	M	<u>U</u>	(Signature Required)	-	!			Į	" 📈	亨	T					
		МА	TRIX		$\neg \vdash$	ŧċ	ONTA	AINEI	18	Т	0.4	ME		NUN	400		Τ				_		#	-	\neg	Γ		기 [응	82	240	22			ξ	5					
SOURCE	ğ			ō	9	1		HCL					0				<u> </u>			D	ATE	E '				İ	STATION DESCRIPTION/ NOTES	EPA 601/8010	A 602/8	A 624/8	A 625/8	A ROTE	A 8020/	A 8015	TI'HS/BTEX					
90	Water	Š	S	ō] <u>:</u>	Ŧ	宑	<u>8</u>		Yr	<u>v</u>	۷k	,	Seq		Υ	r	Мо	(Day	'∟	Ti	me	╝	L		╛╚		ם	<u> </u>	žΩ	<u>. B</u>	<u> </u>	<u> </u>		Ш			
	×							3	X	h	1W	-/	14				9	7	0	} [27	4	0	5	5	L	OIABC					\perp			X					
\prod	\neg	T						3	X		nh		-							F		,	1	5		ł	O2 ABC								X					
	k		T			1		3	<	7	14		5		\top							1	0	0	5	-	03 ABC								X	7				
\prod	1	1	1		Ť	1	П	3	x	n	14		6		1		Ī		1		\top	0	4	<i>o</i>	ح	Ī	04 ABC	1				T	1		X					
\prod		1	1		1	╁	П			Ť	╁	1	Ĭ		1					4	T					ľ	<u> </u>	11	<u> </u>					П						
-	_	1			1	1	-			1		•			7		1			1	T	T				┢		11	T			1	1				П	T		
1-1	_	╁╴	t		+	十	Н		+	十	+	1	Н		\dagger	+	-			╁	+	\dagger				F		11	<u> </u>		\top	-	\dagger	П	1.	1	Ħ	\top		Ť
╁	+	-	1	1	+	t	Н	Н	_	+	+	\vdash	H		+	+	\dagger		\dashv	+	+	+	┢			r		 -	╁᠆		\dagger	+	+	Н	+	+		+	+	
╌	╬	+	╀	-	+	╁		\vdash	-	+	╀	 	┞┈┤	-	+		╁╴	H		+	+	+	+		\dashv	ŀ		┧┝╴	╁		+	+	+	╂╌╂	+	+	\vdash	+	H	
			┺		\perp			1			1	ļ	Ш		\perp	1	\perp			_ _			 _			L		┨┞	↓_		4	4	\bot	Ш	\bot			1	1	
							لسل		\perp	\perp						\perp				_L	丄					L		⅃┖				丄	丄		Ш.		Ш			
	NUM	AB ABE			I		PTH N		COL) [CO	A DE				М	ISCI	ELL	ANE	ous	 s						CHAIN OF	CUS1	TOD	Y R	ECO	RD								

	NUME	BER		IN		MTD	CC	DE	MIS	SCELLANEOUS					orobr neodnia			
Yr	Wk	Sec	1	FEI	ET	CD						RELINOUISHED BY: (Signature)		RECEIVE	D BY: (Signature)		DATE	/TIME
\Box									249	TAT		China M'Cast		Ru	k Stilm	ore	3-27-97	15:10
												Rich Dilmor 16	97	RECEIVE	ED BY: (Signature) A Silm ED BY: (Signature)	21/ 11	, 3/27/97	TIME
			$\perp \perp$				1		Fax (esults t	マ	RELINQUISHED BY: (Signature)	<u>بر</u>	MECEIVI	ED BY: (Signature)	more	DATE	TIME
									Z W.C"	ta/Oakla	49							
									D. Kle.	esattel/SI	E	RELINQUISHED BY: (Signature)		RECEIVE	D BY: (Signature)		DATE	/TIME
				_ _	_		\perp				· 	DISPATCHED BY: (Signature)	DATE	/TIME	RECEIVED FOR LA	8 BY:	DATE	/TIME
									Hard (DAY to								
				$\perp \perp$					2 W	rclty		METHOD OF SHIPMENT						
ا، ا												SAMPLE CONDITION WHEN RECEIVED BY TH	HE LABORA	тояч				
															<u> </u>			

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARDING LAWSON ASSOCIATES 383 FOURTH ST., STE. 300 OAKLAND, CA 94607

REPORT DATE: 02/28/97

DATE(S) SAMPLED: 02/18/97

DATE RECEIVED: 02/18/97

DATE RECEIVED. 02/16/9/

ATTN: JIM McCARTY

CLIENT PROJ. ID: 11295-012 CLIENT PROJ. NAME: CITY BLUE

C.O.C. NUMBER: 0665

AEN WORK ORDER: 9702185

PROJECT SUMMARY:

On February 18, 1997, this laboratory received 3 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Lary Klein

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: BIO-EFF AEN LAB NO: 9702185-01 AEN WORK ORDER: 9702185 CLIENT PROJ. ID: 11295-012

DATE SAMPLED: 02/18/97 DATE RECEIVED: 02/18/97 **REPORT DATE:** 02/28/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	14 * 18 * 2.1 * 140 * 2.0 *	0.5 0.5 2	ug/L ug/L ug/L	02/25/97 02/25/97 02/25/97 02/25/97 02/25/97

ND = Not detected at or above the reporting limit \star = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: CD2-EFF **AEN LAB NO: 9702185-02** AEN WORK ORDER: 9702185 CLIENT PROJ. ID: 11295-012 DATE SAMPLED: 02/18/97 DATE RECEIVED: 02/18/97 **REPORT DATE:** 02/28/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs	EPA 8020	NIT)	0.5.00	/1	02/25/07
Benzene Toluene	71-43-2 108-88-3	ND ND	0.5 ug. 0.5 ug.	/L /L	02/25/97 02/25/97
Ethy1benzene	100-41-4	ND	0.5 ug.	/L	02/25/97
Xylenes, Total	1330-20-7	ND	2 ug	/L	02/25/97
Purgeable HCs as Gasoline	5030/GCFID	0.12 *	0.05 mg.	/L	02/25/97

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: CD3-EFF AEN LAB NO: 9702185-03 AEN WORK ORDER: 9702185 CLIENT PROJ. ID: 11295-012

DATE SAMPLED: 02/18/97 DATE RECEIVED: 02/18/97 **REPORT DATE:** 02/28/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	ND ND ND ND ND	0.5 t 0.5 t 2 t 0.05 r	ıg/L ıg/L ıg/L	02/25/97 02/25/97 02/25/97 02/25/97 02/25/97

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9702185

CLIENT PROJECT ID: 11295-012

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

<u>Definitions</u>

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9702185

INSTRUMENT: F MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
02/25/97 02/25/97 02/25/97	BIO-EFF CD2-EFF CD3-EFF	01 02 03	100 96 97
QC Limits:			70-130

DATE ANALYZED: 02/26/97 SAMPLE SPIKED: 9702241-04

INSTRUMENT: F

Matrix Spike Recovery Summary

	Catle			QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	18.5 64.4	96 97	6 7	85-109 87-111	17 16
Hydrocarbons as Gasoline	500	103	12	66-117	19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

١
•
1

Harding Lawson Associates 1855 Galeway Boulevard, Suite 500

CHAIN OF CUSTODY FORM

		Conce	ord, C	alifor	lia 9	4520))	7 04	כלם		:, .																,	1.		42 4 1 32			L	av.			-1	· V	_				/-	<u> </u>	_			
	7	510)	607-9	000	FMA	(SIC	J) 00	7-90	013							•			Q	an	nnl	lor	٠.		7.		. c	4	M'Cara	\.a			Г	_			A	NAI	LYS	IS F	REQI	UES	TEL)				1
				>	_	_			,										J	an	ıpı	101	J	_=		***			1	1	_			Τ	Τ			\Box	T	T.	\prod					T		l
ob N							_											_	_										· \	<u> </u>						'				- u	Ň				Ì		1	١
lame	/Loc	atic	n: _	<u>_</u>	<u>; +</u>	ч		<u>31</u>	<u>~ <</u>									_	_						7			-	145 =	7	<u>.</u>		١.						١.	_	7			- {	1	-		ļ
rojec	t Ma	na	ger:	7	کھ	√₹		∀	10	<u> </u>	٠.	He	7.					_	F	lec	Or	de	r: _	\rightarrow	la	ш	ιΛ	·	(Signature Require				٠ _			_		EPA 8015M/TPHg	<u>:</u> نان:	引,				1				١
$\overline{}$		MATR	ıx			CON	TAINI	ERS			SA	MPI	LE	NUI	 MBI	ER	T				•		- (1			7	Γ					٤	EPA 602/8020	128	EPA 625/8270	, ,	Z N	TB/C	ξĹ	9				1	-		l
3 L					$-\Gamma$		Т-	T			1	ΔR	O	R JME	3F#	 I					D)AT	E							DESCRIPTIO	W	ţ	109	209	8	625/	ALS		802		5			1	ĺ	1		۱
SOURCE	Water	E e	ji Soi		500	<u>ح</u> را الر	돧	8		\vdash	/r	W			Seq			Yr	1	Mo	T	Day	,		Tim	18	1	١	N	DIES			0	X 4	E A	EPA	METALS	EPA	EPA:	₹ /	4	'			-			l
+	1 1	Ś	<u>s o</u>	Н	기	1 3	3	Ţ	\vdash	Ь	ö						+		-	5			-	_	т.	2	2	-	OIABC				╽┌	+		Τ			7		×	T			1			1
+-	×		\dashv		+		3			2	ا ہا				. /	+	+	7		1	7	4				2							11		\top	1			\uparrow	1	x				1	┪		1
		-	+	H		+		╀	+	C	H	2 1	4		1	\dashv	+	+	+	⇑	+	+	_ 1	- 1					02ABC				 	+	+-	T	$\dagger \exists \dagger$		+	一.		+		1	\forall	7	1	1
+	*			\sqcup	_	- -	3	-∔	\vdash	C	2	5 -	1	4 1	\dashv	\dashv	\dashv	+		-}	- ├	+	4	7	기	3	긱	E	D3ABC				┨├	+	╁	╀╌	H	$\vdash \vdash$	+	+'	×	╁─	\vdash	\dashv	\dashv	\dagger		1
$\perp \perp$		_			_	\perp	1	╀	ļ						_	_	4	4	+	1	4	-	+	-	-+	+	4	-					┨┠		+	 	H	\vdash	+		+	╁	Н	+	-	+	+	┨
			\perp		\perp	_ _	\perp	L			Ш					_	4	_ .	_	\downarrow	\perp	4		\perp	_		4	L					┨┞	╬	╀	╁	╀╢	H	\dashv	\dotplus	-	+		\dashv	+	\dashv	_	$\frac{1}{2}$
																				\perp								L					╢	<u> </u>		ļ	Ц	\sqcup	\perp	_	\perp	1	Ш		4	_		4
				П																							Ì															\perp			_			
\Box	18.00		1					T								7	T	\top				T																										
++	1,3	\vdash	+-	Ħ	_	+	†	1-	T				П			┪	\dashv	7	_	_	1	7		寸			1					-						П										
+		1	+	-	_	\dagger	\dagger	t	1		-			П			7	7	\top	\top	1	7	7		+																$oldsymbol{ol}}}}}}}}}}}}}}}$	floor						
	LA				_	EPT	.u	Ī	OL	<u> </u>	_				•	_									$\overline{}$			_									_											٦
	NUM		1			IN		М	TD		co oo	A DE					MIS	CEI	LLA	NE	OU	ıs									HAII	N OF (c			_	<u>.</u>			4							4
Yr	Wk		Seq			EE.	T	Ľ	CD.	Ļ		-									_				-{	REU	Ngu	UISI	HED BY: (Signature)	<u></u>		REC	EIVE	DBY	: (Sig	ngetu L	/e) [lø	d	_	10		ATE.			
								L	L.	Ц				\leq	H		T	4	T						_		Ku	M	HED BY: (Signatufe)	(ait)		NY.	ENE ENE	E EY	2		<u>-</u> /∙		16	2	<u>_</u>			<u>79</u>	2 ATE	<u>/ :</u>	<u> </u>	┨
																									╝	7) ,	Ì	1 / / / /	10		م ا	1	7 0,	. jog	ineno	, 	1	11		d 6	a /	/8/	ζŠ		10	- ال	4
											ı			F	- a :	,	re k	5.	1	4		-	د ا	,	-	##	NOU	L (2 UISI	HED BY: (Signature)	<u> </u>		J#€C	EIVE	D BY	: (Sig	natu	16)	DO	وحما	<u>e</u> cq	n ·	77	Ut.	0	ATE			1
++		7				1	T	T						T	<u> </u>		V	راا			H.	اره	` `								2	1																
++	+-				+	+	1	t	T		\dashv		_	_ <u>_</u>	- E	<u> </u>		<u>,</u>	نىڭ خا	3-	<u></u>	1		.1	1	RELI	NQU	JISI	HED BY: (Signature)	***		REC	EIVE	D BY	: (5ig	nalv	ne,i							Đ	ÀTE [/TIM	E	
++	+	+			+	+	1	╁╴	\vdash	=	\dashv		ᅥ		<u> </u>		$\overline{}$	<u>۲۲۶</u>	<u> </u>		Y	`	ام	4				×11P	ED BY: (Signature)		DAT	E/TIME		DE	~EW6	en e	OB i	AB B	V-					- n	ATE	тім	<u> </u>	$\frac{1}{2}$
++	+	\dashv		\vdash		+	┿	╀	\vdash		\dashv		\dashv		N	()	· K	<u>6</u>	n (\dashv	UISP	AIU	, ME	eu a I : (oignature)		JMI				matur									-	Ī			
$\downarrow \downarrow$	_ _		_		-	_	.	╀	\vdash	$\vdash \downarrow$,					· · ·						METI	HOD) Of	FSHIPMENT		-	1		1				—	—	—								$\frac{1}{2}$
	$\perp \!\! \perp \!\! \mid$				\perp	\perp		<u> </u> _		Ц				Щ	40	<u> </u>	<u>۾</u> اير	20	ч-		10	,	T^{r}	M	_																							
				<u> </u>										r	11	٠,	42	· 1	<u>, </u>	_(<u>)</u>	عاد	ما	45	7	SAM	PLE	CC	ONDITION WHEN RECE	IVED BY THE L	ABOR	ATORY																1
		\Box	\top	Π	T												- 1	}							١																							1

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARDING ASSOC.

JAN 6 - 1997

REPORT DATE: 01/03/97

DATE(S) SAMPLED: 12/23/96

DATE RECEIVED: 12/24/96

AEN WORK ORDER: 9612373

HARDING LAWSON ASSOCIATES 383 FOURTH ST., STE. 300 OAKLAND, CA 94607

ATTN: JIM McCARTY

CLIENT PROJ. ID: 34467-1 CLIENT PROJ. NAME: CITY BLUE

C.O.C. NUMBER: 0639

PROJECT SUMMARY:

On December 24, 1996, this laboratory received 3 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larry Klein

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: MW-6

AEN LAB NO: 9612373-01 AEN WORK ORDER: 9612373 CLIENT PROJ. ID: 34467-1 DATE SAMPLED: 12/23/96 DATE RECEIVED: 12/24/96 REPORT DATE: 01/03/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	ND ND ND ND ND	0.05 m	ıg/L ıg/L ıg/L	12/27/96 12/27/96 12/27/96 12/27/96 12/27/96 12/27/96

ND = Not detected at or above the reporting limit

^{* =} Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: MW-5

AEN LAB NO: 9612373-02 AEN WORK ORDER: 9612373 CLIENT PROJ. ID: 34467-1 DATE SAMPLED: 12/23/96
DATE RECEIVED: 12/24/96

DATE RECEIVED: 12/24/96 REPORT DATE: 01/03/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	12.000 * 2,200 * 2,700 * 6.500 * 45 * 600 *	50 50 200 5	ug/L ug/L ug/L ug/L mg/L ug/L	12/30/96 12/30/96 12/30/96 12/30/96 12/30/96 12/30/96

Rls elevated due to high levels of target compounds. Sample run dilute.

ND = Not detected at or above the reporting limit

* = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: SEP-EFF AEN LAB NO: 9612373-03 AEN WORK ORDER: 9612373 CLIENT PROJ. ID: 34467-1 DATE SAMPLED: 12/23/96 DATE RECEIVED: 12/24/96 REPORT DATE: 01/03/97

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline Methyl t-Butyl Ether	FPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID 1634-04-4	15,000 * 26,000 * 1,800 * 14,000 * 100 * 3,000 *	100 u 100 u 100 u 400 u 10 m 1000 u	g/L g/L g/L g/L	12/27/96 12/27/96 12/27/96 12/27/96 12/27/96 12/27/96

Rls elevated due to high levels of target compounds. Sample run dilute.

ND = Not detected at or above the reporting limit

* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9612373

CLIENT PROJECT ID: 34467-1

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9612373

INSTRUMENT: H MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
12/27/96 12/30/96 12/27/96	MW-6 MW-5 SEP-EFF	01 02 03	97 108 91
QC Limits:			70-130

DATE ANALYZED: 12/26/96 SAMPLE SPIKED: 9612316-03 INSTRUMENT: H

Matrix Spike Recovery Summary

	Caile			QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	26.1 83.1	99 100	4 <1	85-109 87-111	17 16
Hydrocarbons as Gasoline	500	113	2	66-117	19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

The second secon

		Hai 185 Con (54	rdin 5 Ga cord	g La Itewa LCal	wsc y Bo	n Auley a 9	880 810 , 452 (51	pcia Sui O O) 6	ate : ite 5	s 600 9673	3	8	3 X	4- (c	th nc	: S	t .	H, A	3	o (ን ራ የ	C 7-7	H	Α	41.	1	Ol	F	C	US	5	TOĐY	F	ORM			L	_at	o: _		9 6 L	91. AE	ナ =/	37 <u>N</u>	73 —	3 —	Ut <u></u> -	ექ <u>7</u>	17	. 3	₽ {	<u>7</u> 37
		-	,, 00	,	٠.	-		0,0	۴	€ ×		5'(5')	4	5/	- 3	16	,5				Sa	am	ηpl	er	s:		_	\mathcal{I}	w		5	YY	164	44		- [AN	JAL	YSI	IS F	REQ	UE:	STE	<u>D</u>		1	\exists
ob N	um	ber	: _	3	44	16	<u>. 7</u>	_	/	,																						· · · · · ·			-		-								21.0 10.15 11.0	U U						
lame.	/Lo t M	cat lan	ion age	ı: <u>. (</u> er: ,	<u></u>	<u>ሃ</u> ኤ,	γ . e		<u> S </u>	<u> 1</u>	<u>e</u>	0	Şα	1	<u>/c</u>	1	_					R	ec	ore	de	r: ,	_	\leq	Ž	m	يد	<u> </u>	alure	M Ger	ty		- -					370	PHg	X S	770,0 74	⋰						
SOURCE	Water		TRIX			_		TAII PESE	Т				L	ΑB	NI	NUI R JME	ER	l —			-	1.		_	ΑT		7					s	ATI	ION DESCI				EPA 601/8010	A 602/8020	PA 624/8240	PA 625/8270	ETALS SA SOLEMA	PA 8015M/1	EPA 8020/BTEX	PA 8U15MV I	1746, BTF						
7			တိ	ō	- :	5 :				8	+	ار رام	_	W			Seq			<u> </u>	6	╂	10 -	+-	Da	+	1	Tir	ne		ŀ) i i	A- C.			┨┞	W		<u>ω</u>	<u> </u>	∑ ŭ	ii ii			<u>-</u> -	+	+	H	+	+	+
++	\ \ \	T			\dagger	+	\dagger		3	\dagger	1) L	V	_	5	_	+			7	1	1	2	2 2	2 <u>.</u>		7			Н	ŀ			A-C	_		1	\dashv	\dashv	\dagger	\dagger	\dagger	+	_		×	\dagger	T	\prod	-	 	
++	×	-			1		┪		3	\dagger	<	5 -	• • i	5	-	E	۲	4		<u> </u>	6	1		2	ı	3	_			П				A-C				1	_		1	1		T	7	×	1	1				
	1	1			1	1	1	İ	1		ſ		- /	_				•																													Ţ	$oxed{\Box}$		\prod		
																							$oxed{L}$						-		L							_	\downarrow		_	1	\downarrow	1	\downarrow	_	1	\downarrow		\downarrow	\downarrow	$\perp \downarrow$
			ļ		-	-	_		_	_	1	1	-			\perp	_		<u> </u>	<u>. </u>	_	-	_	-	1						ŀ				=		-	-	\downarrow		+	\perp	_	\downarrow	+	_	+-	igapha	\sqcup	+	+	-
++	+	+-	-		_	+	\perp		+	_		+	\dashv			\dashv	\dashv			-	-	L	+	-	+	-	-				-						╢	\dashv	-		+	+	$\frac{1}{1}$	+	+	+	+	-	${oxed}$	+	-	+
+	+		-			╀	+		-	+	-	+	+		\dashv	-	\dashv				-	-	╀	+	+	1		-			F				=		┨┠	+	\dashv		$\frac{1}{1}$	+	+	+	+	-	+	+	H	+	+	+-
世		1			<u> </u>	\pm	\pm				1	1					\exists						\perp								ţ				·][土	1	上	土			土		
	L NUI	AB VIBE					EP1		ļı	COL)		Q/						MIS	SCI	ELL	.AI	VE(οU	s										CH	AIN OF				<u></u>		RD	 , 				_					
Yr	Wk	╁	S	eq	+	T	EE	T	╁	T	╁	Τ	Т		\dashv	_	71	<u> </u>	τ	- /	ļ 7	_						┪	REI		~)	ISHED BY: (S	ignatı	U (a)	1-	REG	EIVE	ED B	14. JU	Signa	ture)	۶	L	z /				11	يا كر	ATE/I	TIME 103	
++	+	┢	-	-	†	†	+	1	╁	\dagger	+	\dagger	\dagger	1		<u>ب</u>	10	<u> </u>			<u>' </u>							-	REI	PMQ	UIS	SHED BY:	igaati.	ure)	77	REC	EIVE	ED B	V: (S	Signa	ture)	<u> </u>			42			_ - /		ATE/T	TIME	
		1				T	1	Ī	1	\dagger	T	1			_	R	 es	u	11	5		+	 D		ς;	,,,		1	HEI	LINO		SHED BY: (S		ure)		REC	EIVE	EO B	V: (5	Signa	ture)		—				10)/2	<u>/</u> D	ATE/	///	
								Ī								M								ز (/	K		SHED BY:					EIVE:	-	M. //		4							··		ÁTE/I	FILLE	
	ļ	-					\downarrow	•	1	\downarrow	-	\downarrow	1		_	Ĉ) (<u>(</u> ,	<u>C</u>	e								1	HE	J WU	iU) E	SNEU BT: (6	gnan	urej		HEL	'EIAE	EU 0	ir: ja	oigna	ше								,		I	
	+	-				_	+	+	-	+		+	+	1	-													-	DIS	PAT	СН	HEO BY: (Sign	ature	9)	D	ATE/TIME		19	ignai	ture)		_	•		``			12	124	ATEN GI	140	00
++-	+	\vdash		+	+	\dagger	+-	Ť	t	+	†	†	+	1	+								_	_				. !				OF SHIPMEN		, '	<u>.</u>			т,	7)	1	() J	الما	fu	<u></u>			-31		, ,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
++	1	 				1	\dagger	Î	1		1	1	+															_	SAI	WPL	50 50	CONDITION V	HEN	RECEIVED B	e THE LAB	PRATORY	ť		_													\dashv
																													*	YC	.د'	'd coc	w	10 Sam	ples. H	LA C	our	rie	<u> </u>	dro	ope	J	° (<u>, , , , , , , , , , , , , , , , , , , </u>	·au	<u>pl</u>	<u>.es</u>	را ,	1>4	<u>(۵۱</u>	400	الخد

American Environmental Network

Certificate of Analysis

OHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARDING LAWSON ASSOCIATES 383 4TH ST. 3RD FL. OAKLAND. CA 94607

ATTN: DAVE KLEESATTEL

CLIENT PROJ. ID: 11295-012 CLIENT PROJ. NAME: CITY BLUE

C.O.C. NUMBER: 1219

REPORT DATE: 12/19/96

DATE(S) SAMPLED: 12/16/96

DATE RECEIVED: 12/16/96

AEN WORK ORDER: 9612236

PROJECT SUMMARY:

On December 16, 1996, this laboratory received 2 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

_arm Klein

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: BIO-EFF AEN LAB NO: 9612236-01 AEN WORK ORDER: 9612236 CLIENT PROJ. ID: 11295-012 DATE SAMPLED: 12/16/96 DATE RECEIVED: 12/16/96 REPORT DATE: 12/19/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	450 * 790 * 52 * 540 * 5.6 *	3 3 10	ug/L ug/L ug/L ug/L mg/L	12/16/96 12/16/96 12/16/96 12/16/96 12/16/96

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: C3-EFF

AEN LAB NO: 9612236-02 AEN WORK ORDER: 9612236 CLIENT PROJ. ID: 11295-012

DATE SAMPLED: 12/16/96 DATE RECEIVED: 12/16/96 REPORT DATE: 12/19/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene	EPA 8020 71-43-2 108-88-3	ND ND	0.5 ug 0.5 ug		12/16/96 12/16/96
Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	100-41-4 1330-20-7 5030/GCFID	ND ND ND 0.16 *	0.5 ug 0.5 ug 2 ug 0.05 mg	/L /L	12/16/96 12/16/96 12/16/96

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9612236

CLIENT PROJECT ID: 11295-012

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9612236

INSTRUMENT: E MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
12/16/96 12/16/96	BIO-EFF C3-EFF	01 02	102 106
QC Limits:			70-130

DATE ANALYZED: SAMPLE SPIKED:

12/09/96 9611365-03

INSTRUMENT: E

Matrix Spike Recovery Summary

	C= 41	МС		QC Limits					
Analyte	Spike Added (ug/L)	MS Percent Recovery	RPD	Percent Recovery	RPD				
Benzene Toluene	27.0 75.7	101 108	5 4	85-109 87-111	17 16				
Hydrocarbons as Gasoline	500	109	3	66-117	19				

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

Harding Lawson Associates 1866 Gateway politication 383 4th St. Compand, Collisional 34000 (SION COT OCCO. SION - 451-100	3rd CHAIN OF CU	STODY FORM R-3, 5-	Y Lab: AEN Nº 121	9
(E11) (E11)	94607 Samplers: To M	nes Mc Grtu	ANALYSIS REQUESTED	•
Job Number. 112. 27. River		441/	-	
Project Manager: Dave Kleesa Hell MATRIX CONTAINERS & PRESERV. SAMPLE NUMBER OR	DATE	(Signature Required) STATION DESCRIPTION/	EPA 601/8010 EPA 602/8020 EPA 624/8240 EPA 624/8270 METAL.S EPA 8015M/TPHg EPA 8015M/TPHG/EPA 80	
LAB NUMBER	Yr Mo Day Time	NOTES	EPA 66 EP	
1	1 11 111 1111	* 0/A-C		
3 Bio-EFF 2 3 C3-EFF	961216	* 02A-C	<u> </u>	
				+
- COLUMN CEET COLUMN	AISCELLANEOUS RELIN			TE/TIME
	Dig TAT	ausy M and	Celyetole 1: (Signature)	TE/TIME
		Matriacket 2	were Tolker D. D. D. D. D. D. D. D. D. D. D. D. D.	S/3=
Dive	Kloesattel	INCOISTED BY (Signature)		TE/TIME
(415	777-9706 RELIA			<u> </u>
	M M Cay ty DISPI	ATCHED BY: (Signature) DATE/TIM	ME RECEIVED FOR LAB BY: DA (Signature)	ATE/TIME
(5/0)		BOLEN WITH ICE		
	SAME	PLE CONDITION WHEN RECEIVED BY THE LABORATO	RY	
	Laboratory Copy : Prole	act Office Copy Field or Office Copy		

Project Office Copy

Yellow

Pink

Laboratory Copy White

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

HARDING ASSOC. PAGE 1

DEC 2 6 1996

HARDING LAWSON ASSOCIATES 383 FOURTH ST., THIRD FL. OAKLAND. CA 94607

ATTN: DAVE KLEESATTEL CLIENT PROJ. ID: 11295-012 CLIENT PROJ. NAME: CITY BLUE

C.O.C. NUMBER: 1218

REPORT DATE: 12/24/96

DATE(S) SAMPLED: 12/11/96

DATE RECEIVED: 12/12/96

AEN WORK ORDER: 9612185

PROJECT SUMMARY:

On December 12, 1996, this laboratory received 2 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larry Klein

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: C1-EFF AEN LAB NO: 9612185-01 AEN WORK ORDER: 9612185 CLIENT PROJ. ID: 11295-012 DATE SAMPLED: 12/11/96 DATE RECEIVED: 12/12/96 REPORT DATE: 12/24/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes. Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	4,300 * 8,500 * 750 * 16,000 * 51 *	30 u 30 u 30 u 100 u 3 m	ig/L ig/L	12/19/96 12/19/96 12/19/96 12/19/96 12/19/96

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit

* = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: C2-EFF **AEN LAB NO: 9612185-02**

AEN WORK ORDER: 9612185 CLIENT PROJ. ID: 11295-012

DATE SAMPLED: 12/11/96

DATE RECEIVED: 12/12/96 REPORT DATE: 12/24/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	2.3 * 8.0 * 7.8 * 45 * 2.8 *	0.5 0.5	ug/L ug/L ug/L ug/L mg/L	12/19/96 12/19/96 12/19/96 12/19/96 12/19/96

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9612185

CLIENT PROJECT ID: 11295-012

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and Surrogate recovery is monitored as an indication of acceptable sample preparation and spiked samples. instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9612185 INSTRUMENT: H

MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
12/19/96 12/19/96	C1-EFF C2-EFF	01 02	90 90
QC Limits:			70-130

DATE ANALYZED: 12/19/96 SAMPLE SPIKED: 9612128-02

INSTRUMENT: H

Matrix Spike Recovery Summary

· · · · · · · · · · · · · · · · · · ·				QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	26.0 83.1	95 104	3 3	85-109 87-111	17 16
Hydrocarbons as Gasoline	500	112	2	66-117	19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

Harding Lawson Associates 1855 Galeway Boulevard, Suite 500 Concord, California 94520 (510) 687-9660

CHAIN OF CUSTODY FORM

9612185 12184-01/4/246

	AEN	- 1218
ab:	AEN	

						Samı	olers: 🕒	DOLW	ves Villaity	1			ANALY	(SIS F	REQUES	STED		- 1
ob Numbe	er: <u>11</u>	<u> 295 -</u>	01	ح	·	<u> </u>									×			
lame/Loca	ılion: <u>(</u>	2ity	B	lue		<u> </u>		>							H			
roject Mai	nager: _	Dave	<u>. 1</u>	<1ee	satte	Reco	rder: 🔷	lan	W (Signature Frequeted)				£ ×	o,bH				
ğ T	ATRIX	HOO, HCC.		j (NUMBER DR IUMBER Sea	Yr Mo	DATE Day TI	me	STATION DESCRIPTION/ NOTES	PA 601/8010	PA 602/8020 PA 624/8240	PA 625/8270	EPA 8015M/TPH9 EPA 8020/8TEX	PA 8015M/T	TFHges			
		3		Sep- Bio-	eff.	9612	74		I day TAT BAT I day TATOGUE			, w .	2 W W	W _	×			
- - - -	_	3		C2-6	Ct				Std TAT OIA-C Std TAT OZA-C I day TATOGIZIBA	 	_ _ 				X			
	_	3		C3-6		\$			I day TATaGIZIEA		_				X			
LAB NUMB	EA	DEPTH IN FEET	COL MTD	QA CODE	Mil	SCELLANEO	us		CHAIN OF C	UST	י אסכ	RECO	RD				9	3:000
Yr Wk	Seq	FEET -			Fax 1	resulf	5		MUS (Signatura) RECE MUS (Signatura) RECE RECE RECE	4	1	produces A C	tax	K	41.	B.L.	A PETIL	IME IME

RECEIVED BY: (Signature)

RECEIVED BY: (Signature)

DATE/TIME

DATE/TIME

RELINQUISHED BY: (Signature)

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARDING ASSOC.

DEC 2 0 1996

HARDING LAWSON ASSOCIATES 383 4TH ST. 3RD FL. OAKLAND, CA 94607

ATTN: DAVE KLESSATTEL CLIENT PROJ. ID: 11295-012 CLIENT PROJ. NAME: CITY BLUE

C.O.C. NUMBER: 1218

REPORT DATE: 12/18/96

DATE(S) SAMPLED: 12/11/96

DATE RECEIVED: 12/12/96

AEN WORK ORDER: 9612184

PROJECT SUMMARY:

On December 12, 1996, this laboratory received 3 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larry Klein

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: SEP-EFF AEN LAB NO: 9612184-01 AEN WORK ORDER: 9612184 CLIENT PROJ. ID: 11295-012

DATE SAMPLED: 12/11/96 DATE RECEIVED: 12/12/96 REPORT DATE: 12/18/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	11.000 * 17.000 * 1.500 * 12.000 *	50 ug/ 50 ug/ 50 ug/ 200 ug/ 5 mg/	L L	12/12/96 12/12/96 12/12/96 12/12/96 12/12/96

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: BIO-EFF AEN LAB NO: 9612184-02 AEN WORK ORDER: 9612184 CLIENT PROJ. ID: 11295-012

DATE SAMPLED: 12/11/96 DATE RECEIVED: 12/12/96 REPORT DATE: 12/18/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	72 * 120 * 32 * 1.000 * 5.3 *	5 ug. 5 ug. 5 ug. 20 ug. 0.5 mg.	/L /L /L	12/12/96 12/12/96 12/12/96 12/12/96 12/12/96

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: C3-EFF AEN LAB NO: 9612184-03 AEN WORK ORDER: 9612184 CLIENT PROJ. ID: 11295-012

DATE SAMPLED: 12/11/96 DATE RECEIVED: 12/12/96 REPORT DATE: 12/18/96

	METHOD/		REPORTING		DATE
ANALYTE	CAS#	RESULT	LIMIT	UNITS	ANALYZED
BTEX & Gasoline HCs Benzene Toluene	EPA 8020 71-43-2 108-88-3	ND ND	0.5 ug	j/L	12/12/96 12/12/96
Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	100-41-4 1330-20-7 5030/GCFID	0.6 * ND 0.31 *	0.5 ug 2 ug 0.05 mg	g/L	12/12/96 12/12/96 12/12/96

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9612184

CLIENT PROJECT ID: 11295-012

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

<u>Definitions</u>

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9612184

INSTRUMENT: MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
12/12/96 12/12/96 12/12/96	SEP-EFF BIO-EFF C3-EFF	01 02 03	90 105 101
QC Limits:			70-130

DATE ANALYZED: 12/11/96 SAMPLE SPIKED: INSTRUMENT: H 9612051-02

Matrix Spike Recovery Summary

	C il			QC Limi	ts
Analyte	Spike Added (ug/L)	Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	26.0 83.1	100 99	13 4	85-109 87-111	17 16
Hydrocarbons as Gasoline	500	104	2	66-117	19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

Harding Lawson Associates 1855 Galeway Boulevard, Suite 500 Concord, California 94520

CHAIN OF CUSTODY FORM

1218

9612184 Lab: AEN

		(510) 68	7-96	60													٠,	9	an	ทก	ler	s:	-	Z	21	W-	e 5		V	10	(a.	1	٠,		Г				A	NAI	LYSI	SR	EQU	EST	ED			
b N	um	ber	; _	1.	12	9	5	-	. (2	17	<u>,</u>						¥	_															7		/								三 X N					
ame	/Lo	cat	ion	: _ (\subset	<u>. 1</u>	+	$\angle 1$	` ·	\mathbb{C}	<u>يل</u>	J.	e					<u>. </u>						_	_						<u></u>	_	_,			١													
oje	t M	an	age	er: .	7	\geq	<u>C</u> ^	<u>,</u>	e	_\	<	\ «	_ <	<u> </u>	9	H	e	<u>\ </u>	F	?ec	or	rde	r: _	_	X	21	u	11	(Sign	M nature /	Requir	gu	4	<u></u>							된	꿃	,	13					
			RIX		1			ITAIN RESE	Т	\top	1			Q	NUN		3		. <u></u>			DAT	E	7					s	TATIO	ON D	ESCF	RIPTK	ON/		EPA 601/8010	2/8020	24/8240	25/8270	S	15M/T	320/BT		4965	ווי				
CODE	Vator	edime	Soil	≅		Jupres	7	Š Ž	ر اح	8 8		Yr		N N	JMB S	ER eq		Yr	\top	Мо	1	Da			B. Tim		-		Ĭ			OTES				EPA 60	EPA 60	EPA 624/8240	EPA 6	METALS	EPA 80	EPA 8020/BTEX.	; ;	H					
	X	1	Ű		1			3		+	5	e	-		<u>a</u> .			9	7	/ 2	2	1	7	b	114	1		7		da	۱ u	T	AT								\top		Τ	X				T	
	ſ	}_			1	1	1	77	_	1	B		,		a	[(7				24	_	-	1	-	da	7		A7				Γ	1					Τ	×					
	\top					7	1	7	3	\top	Ć		_	0		-				$\sqrt{}$	1			,	, R	50		~	5 / c	<u></u>	\overline{T}	A	T											×					
П	1)	T		\Box			1	7	3		C	2	_	e	t	2				1			d	0				×	510	7	$\overline{\mathcal{T}}$	A	\overline{T}											X					
	Ų	,				T	T		3		Ċ	\	_		¢ (4	5	1				BA	1-C		1	<u>- (</u>	lau	4	TA	T									er .		X					
П	1					İ	1			1		T															7			-	,																		į
11	\top	1				1	Ť		1		Ì]					•			·					- [
П	1	1				1	1	_				T																					·																
\Box	1	1				1	1			1	Ì			j																																			
																							$oldsymbol{\perp}$													L										Ц,			
	L NUI	AB MBE	R			D	EP'			COL		-	IA DE				841	SCE	11.6	ME	:01	16												CHAIR	OFC	ะบรา	rod	ΥR	EÇ	DRE)						•	9.	20
Yr	Wk		Se	eq		ı	EE	T		CD							1010	JUL									•	ISHED		_	4.4	<u> </u>	-	_	RECE	IVED	ВУ	15 gri	ature		_		/	4			DATE	TIME	
										_					Fo	X	(e	50	<u>. [</u>	4	<u>S</u>			1	×	W	MARED	<u>y</u>	//	71	<u>` (</u>	gv	My_	RECE	2	4	9	Ŀ	T)		K)	4		Lä	3-4	Z_{i}	6	-
						_			1	\perp					1	<u></u>	$\overline{\mathcal{X}}$	c M	<u>< 5</u>	1	Μ	<u>``(</u>	# (·	۱,	_ "	JELIN S	100	No.		rignatui	re)	1/			HECE	:1VEU	181: •• //a	(31gn	awe	s) 					, Z,	4	5/2	5	
							1		┸						C	26.	د٥	16		6	£	<u>(</u> -	یکا	2	<u>/</u> -	ELIN	IOU	BHED	BY: (5	Signatui	• V	7—			RECE	IVED	BY:	(Sign	dure)	22	262	7	7 0	<u> </u>			TIME	
				\perp							_				(10	<u>)</u>	69	37	<u> </u>		16	7	<u>3</u>			4001		50. //						DECE	-wen	BV.	/E/==									DATE	/TIME	
		_		\downarrow	\perp	_	\perp	_	_	1	\perp	_	_		4	C	Ą	<u> </u>	1	O	<u>.]</u>	<u>\</u>	U	2	_	ELIP	4QUI	ISHED	OT: (8	ngna(u)	(e)				RECE		01:	(Sign	alu/6	"							UM 1 E		`
	\perp	_		1	4		\downarrow	_	\downarrow		_	_			-	<u> </u>	• é	Ś	H	e	1		N			HSP/	TC	HED BY	f: (Sig	nature)	- -		×.	DAT	E/TIME			EIVE!		RLA	BB	Y :					DATE	/TIME	
	\perp	_		_	_		1	_	\perp		<u> </u>	<u> </u>		_	5	15	•	<u>of</u>	4	ìC	€	•			1.	ETU	OP	OF SHI	PMEN	i T					<u></u>		•											<u></u>	
\coprod							_		\perp	_					(4	115	<u>5)</u>		17	7	_	9	70	76	2 "	r= 111		ر الم			V	H	^	bl	ne	į	i c	e											

SAMPLE CONDITION WHEN RECEIVED BY THE LABORATORY

American Environmental Network

Certificate of Analysis

OOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1 HARDING ASSOC.

OCT 2 1 **1996**

HARDING LAWSON ASSOCIATES 1855 GATEWAY BLVD., STE. 500 CONCORD. CA 94520

ATTN: JAMES McCARTY

CLIENT PROJ. ID: 11295.012 CLIENT PROJ. NAME: CITY BLUE

C.O.C. NUMBER: 1212

REPORT DATE: 10/17/96

DATE(S) SAMPLED: 10/04/96

DATE RECEIVED: 10/04/96

AEN WORK ORDER: 9610049

PROJECT SUMMARY:

On October 4, 1996, this laboratory received 1 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Larey Klein

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: CD-1 INF AEN LAB NO: 9610049-01 AEN WORK ORDER: 9610049 CLIENT PROJ. ID: 11295.012

DATE SAMPLED: 10/04/96 DATE RECEIVED: 10/04/96 REPORT DATE: 10/17/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	2.900 * 13.000 * 7.000 * 170.000 * 2.100 *	300 ug 300 ug 300 ug 1000 ug 30 mg	g/L g/L g/L	10/09/96 10/09/96 10/09/96 10/09/96 10/09/96

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

AEN (CALIFORNIA) OUALITY CONTROL REPORT

AEN JOB NUMBER: 9610049

CLIENT PROJECT ID: 11295.012

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and spiked samples. Surrogate recovery is monitored as an indication of acceptable sample preparation and instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9610049

INSTRUMENT: MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
10/09/96	CD-1 INF	01	88
QC Limits:			70-130

DATE ANALYZED: 10/09/96 SAMPLE SPIKED: 9610018-0 INSTRUMENT: F 9610018-02

Matrix Spike Recovery Summary

	··· <u>-</u>			QC Limi	ts
Analyte	Spike Added (ug/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	19.4 60.2	84 92	7 6	85-109 87-111	17 16
Hydrocarbons as Gasoline	500	110	3	66-117	19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

END OF REPORT

American Environmental Network

Certificate of Analysis

DOHS Certification: 1172

AIHA Accreditation: 11134

PAGE 1

HARDING ASSOC.

OCT 2 2 **1996**

HARDING LAWSON ASSOCIATES 1855 GATEWAY BLVD., STE. 500

CONCORD, CA 94520

JAMES McCARTY ATTN:

CLIENT PROJ. ID: 11295.012 CLIENT PROJ. NAME: CITY BLUE

C.O.C. NUMBER: 1211

REPORT DATE: 10/18/96

DATE(S) SAMPLED: 10/04/96

DATE RECEIVED: 10/04/96

AEN WORK ORDER: 9610048

PROJECT SUMMARY:

On October 4, 1996, this laboratory received 2 water sample(s).

Client requested sample(s) be analyzed for chemical parameters. Results of analysis are summarized on the following page(s). Please see quality control report for a summary of QC data pertaining to this project.

Samples will be stored for 30 days after completion of analysis, then disposed of in accordance with State and Federal regulations. Samples may be archived by prior arrangement.

If you have any questions, please contact Client Services at (510) 930-9090.

Laboratory Director

HARDING LAWSON ASSOCIATES

SAMPLE ID: CD-2 EFF AEN LAB NO: 9610048-01 AEN WORK ORDER: 9610048 CLIENT PROJ. ID: 11295.012 DATE SAMPLED: 10/04/96 DATE RECEIVED: 10/04/96 REPORT DATE: 10/18/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes. Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	3,700 * 8,400 * 1,600 * 36,000 *	100 u 100 u 100 u 400 u 10 m	ig/L ig/L ig/L	10/09/96 10/09/96 10/09/96 10/09/96 10/09/96

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
* = Value at or above reporting limit

HARDING LAWSON ASSOCIATES

SAMPLE ID: CD-3 EFF AEN LAB NO: 9610048-02 AEN WORK ORDER: 9610048 CLIENT PROJ. ID: 11295.012

DATE SAMPLED: 10/04/96 DATE RECEIVED: 10/04/96 REPORT DATE: 10/18/96

ANALYTE	METHOD/ CAS#	RESULT	REPORTING LIMIT	UNITS	DATE ANALYZED
BTEX & Gasoline HCs Benzene Toluene Ethylbenzene Xylenes, Total Purgeable HCs as Gasoline	EPA 8020 71-43-2 108-88-3 100-41-4 1330-20-7 5030/GCFID	ND 50 * 110 * 870 * 44 *	30 30 100	ug/L ug/L ug/L ug/L mg/L	10/15/96 10/15/96 10/15/96 10/15/96 10/15/96

Reporting limits elevated due to high levels of target compounds. Sample run at dilution.

ND = Not detected at or above the reporting limit
 * = Value at or above reporting limit

AEN (CALIFORNIA) QUALITY CONTROL REPORT

AEN JOB NUMBER: 9610048

CLIENT PROJECT ID: 11295.012

Quality Control and Project Summary

All laboratory quality control parameters were found to be within established limits.

Definitions

Laboratory Control Sample (LCS)/Method Spike(s): Control samples of known composition. LCS and Method Spike data are used to validate batch analytical results.

Matrix Spike(s): Aliquot of a sample (aqueous or solid) with added quantities of specific compounds and subjected to the entire analytical procedure. Matrix spike and matrix spike duplicate QC data are advisory.

Method Blank: An analytical control consisting of all reagents, internal standards, and surrogate standards carried through the entire analytical process. Used to monitor laboratory background and reagent contamination.

Not Detected (ND): Not detected at or above the reporting limit.

Relative Percent Difference (RPD): An indication of method precision based on duplicate analysis.

Reporting Limit (RL): The lowest concentration routinely determined during laboratory operations. The RL is generally 1 to 10 times the Method Detection Limit (MDL). Reporting limits are matrix, method, and analyte dependent and take into account any dilutions performed as part of the analysis.

Surrogates: Organic compounds which are similar to analytes of interest in chemical behavior, but are not found in environmental samples. Surrogates are added to all blanks, calibration and check standards, samples, and Surrogate recovery is monitored as an indication of acceptable sample preparation and spiked samples. instrumental performance.

- D: Surrogates diluted out.
- #: Indicates result outside of established laboratory QC limits.

QUALITY CONTROL DATA

METHOD: EPA 8020, 5030 GCFID

AEN JOB NO: 9610048 INSTRUMENT: F

MATRIX: WATER

Surrogate Standard Recovery Summary

Date Analyzed	Client Id.	Lab Id.	Percent Recovery Fluorobenzene
10/09/96 10/15/96	CD-2 EFF CD-3 EFF	01 02	93 100
QC Limits:			70-130

DATE ANALYZED: 10/09/96 SAMPLE SPIKED: 9610018-02

INSTRUMENT: F

Matrix Spike Recovery Summary

				QC Limi	ts
Analyte	Spike Added (ug/L)	Average Percent Recovery	RPD	Percent Recovery	RPD
Benzene Toluene	19.4 60.2	84 92	7 6	85-109 87-111	17 16
Hydrocarbons as Gasoline	500	110	3	66-117	19

Daily method blanks for all associated analytical runs showed no contamination at or above the reporting limit.

*** END OF REPORT ***

Harding Lawson Associates 1855 Gateway Boulevard, Suite 500 Concord, California 94520 (510) 687-9660

CHAIN OF CUSTODY FORM

9610049

115

1211

Lab: AEW

											Samplers: James Mc Carty														ANALYSIS REQUESTED															
	Num																		_	·						J .	.								×					
lam	e/Lo	oca	atio	n:	<u></u>	F_i	4	\mathcal{B}	١u	(\rightarrow	C	<i>اح ا</i>	راه	W	4	<u>-</u>																		日					['
roje	e/Lo ect N	/la	пас	ger	<u>. </u>	\mathcal{D}^{ϵ}	ve	<u>. </u>	1<	زاح	<u>e</u> s	25.	H:	رع	_				Recorder: James M' Carty (Signature Required)													된	×	<u>.</u>	/BTI					
			ATRI	IX		Τ	# CO	NTAI RESE	NER	S	Τ	SAI	MPL	LE N	IUM	BER	ı											8240	8270		MY.	MATE		Ŋ						
SOURCE		Water	Sediment	<u>.</u>		1	Unpres. H ₂ SQ, HNO ₃ HCL. Ice				Vr Wk			OR NUMBER Seq			Yr Mo Day Ti				-	STATION DESCRIPTION/ NOTES				PA 601/	PA 602/	PA 625/	ETALS	PA 8015	EPA 8020/BTEX FPA 8015M/TPHd o	7 OC 1	TPHec.					'		
""	1	Ţ	ကို ပိ	<u> </u>	5	j	Ĭ			<u>ğ</u>			_	_			Т		+	vio 기 <i>우</i>	Da	y -		ime	\dashv		┧┞			Ü	Σ	<u> </u>		<u>i</u>	\ <u>\</u>	- -	+	+	+	\vdash
+	1 1	4		+	+	H	Н		3 3	-	<u> </u>	0	-2 -3	Æ	- 1	-		7	6 1	24	0	4	0 7	0	2	Carbon #2 effluen Carbon #3 effluen	[-	+	+	╁	\vdash		+	+	X		+	+	+	\vdash
-	'	4			-	-			5	-	C		- }	<u> </u>	={	-	H	90	41	0	0	4	0 7	20	7	Calbon # 3 etluca	┞		+	+	\vdash						-	+	+	╁
1	_	\perp	_		_	L	Ц	4	4	\downarrow	\perp		_	4	_		ļ		_	-		_	- -		Ц		┨┠	_	+	-	\square	_	+	+	\dashv		+	\dashv	-	\vdash
_	 	_						\perp	_	_			_	-‡	_	\bot		\sqcup	_				-	_			┨┟	\bot	+	1	H	4	\bot	+	\sqcup	_	\perp	\dashv	+	igdash
			_	\downarrow			Ц	\downarrow	4		L		4	4	_	_			_	ļ			- -	<u> </u>	\sqcup		╢	_	-	ļ		-	_	↓	1-1			_	\perp	igspace
														\perp		┸			\perp						Ц		\prod	\perp		_		4		ļ	\coprod			_		<u> </u>
																																			Ш					<u> </u>
				Д,					\perp					\perp										<u> </u>						<u>L</u>							\perp		\perp	L
LAB DEPTH COL QA NUMBER IN MTD CODE MISCELL												CHAIN OF CUSTODY RECORD RELINQUISHED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) DATE/TIME RECEIVED BY: (Signature) DATE/TIME																												
Yr	Wk	_		Seq	Т	,	FEE	≣T →	+	CD	 			+										PE P		ISHED BY: (Signature)	EIVE	D BY	': (Sig	natur	e)					In	ak	ATE/	TIME	. ح
\bot		\downarrow	_	\perp	_	Ц			↓_	\perp	Ш		_	_ _	5	40		1	A	1						ISHED BY: (Signature) RECI	P	72	14 1. (Sig	nahu	<u>, , , , , , , , , , , , , , , , , , , </u>	1	en.	11	20	2		ATEC	TIME	
		1		\perp	$oxed{oxed}$				\perp	1		_	_	_ _		141								1	Linus	ISIRD BT. (Signatura)	CIVEL	<i>D</i> 01	. Jug	rialur	σ,								i mic	
									╧				\perp	\perp											LINQL	ISHED BY: (Signature) RECI	EIVE	D BÝ	: (Sig	netur	e)	·					D	ATE/	FIME	
														1	₹e	54	14	7	+	Ն -	٧ ک	8	بد,																	
								Ţ								rn c	. o /	4					,	RE	JNQU	ISHED BY: (Signature) RECI	EIVĒC	ĎΒΥ	: (Sig	natur	θ)						D	ATE/I	TIME	
								Ī																1	PATC	HED BY: (Signature) DATE/TIME		REG (Sig	CEIVE	D FC	PR LA	18 B1	Y:				Ō	ATE/	TIME	
\perp		1	-	\perp	$\perp \mid$	\square	_		4	-		_	_	_ _						<u>-</u>		_		MF	THOD	OF SHIPMENT		<u> </u>										\perp		
\perp		\perp	\perp	\downarrow			_	1	\perp	\perp		_	_	17	st	1	20	<u>/</u> =	=_'	90	1,	۶٩-	†																	
				\perp							Ш			\perp								<u>5</u>	• 1	SAI	MPLE	CONDITION WHEN RECEIVED BY THE LABORATORY														
												_]												L		·														