

Filing:

Correspondence File

5900 Hollis Street, Suite A Emeryville, California 94608 (510) 420-0700

Telephone:

Fax: (510) 420-9170

www.CRAworld.com

vertical in the		TR	ANSMITTAL	
DATE:	May 12	2, 2009	REFERENCE NO.: PROJECT NAME:	240781 2703 Martin Luther King Jr. Way, Oakland
То:	Jerry W	/ickham		RECEIVED
	Alame	da County Health Care Serv	ices Agency	REGEIVED
	1131 H	arbor Bay Parkway, Suite 25	50	10:17 am, May 18, 2009
1	Alame	da, California 94502-6577	.*	Alameda County
		1.1		Environmental Health
Please find	l enclose	d: Draft Originals Prints	Final Other	
Sent via:		☐ Mail ☐ Overnight Courier	Same Day Cou Other GeoT	rier Pracker and Alameda County FTP
QUAN'	TITY		DESCRIPTI	ON
1		Subsurface Investigation F	leport	
				·
	Sequested Your Use		Review and Comment	
COMME If you have		uestions regarding the conte	nts of this document, J	please contact Tom Sparrowe at
(510) 420-	3316.		····	·
Copy to:		Denis Brown, Shell Oil Prod Rodney & Janet Kwan, Auto Oakland, CA 94612	·	nington Avenue, Carson, CA 90810 tin Luther King Jr. Way,
	-	Scott Merillat, 664 27th Stree	et, Oakland, CA 94612	
		Monique Oatis, 670 27th Str	eet, Oakland, CA 9461	2
		Jack Chang, 559 9th Avenue	, San Francisco, CA 94	118-3716
Complete	ed by:	Tom Sparrowe	Signed:	Jon Spanone

Jerry Wickham Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Denis L. Brown
Shell Oil Products US

HSE - Environmental Services 20945 S. Wilmington Ave. Carson, CA 90810-1039 Tel (707) 865 0251 Fax (707) 865 2542 Email denis.l.brown@shell.com

Re:

Former Shell Service Station 2703 Martin Luther King Jr. Way Oakland, California SAP Code 129449 Incident No. 97093397 ACHCSA Case No. RO#0145

Dear Mr. Wickham:

The attached document is provided for your review and comment. Upon information and belief, I declare, under penalty of perjury, that the information contained in the attached document is true and correct.

If you have any questions or concerns, please call me at (707) 865-0251.

Sincerely,

Denis L. Brown Project Manager

SUBSURFACE INVESTIGATION REPORT

FORMER SHELL SERVICE STATION 2703 MARTIN LUTHER KING JR. WAY OAKLAND, CALIFORNIA

SAP CODE

129449

INCIDENT NO.

97093397

AGENCY NO.

RO0000145

Prepared by: Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, California U.S.A. 94608

Office: (510) 420-0700 Fax: (510) 420-9170

web: http:\\www.CRAworld.com

MAY 12, 2009
REF. NO. 240781 (6)
This report is printed on recycled paper.

TABLE OF CONTENTS

		$\mathcal{M}_{\mathbf{k}} = \{ \mathbf{k} \in \mathcal{M}_{\mathbf{k}} \mid \mathbf{k} \in \mathcal{M}_{\mathbf{k}} \}$	<u>Page</u>
1.0	INTRO	DDUCTION	1
2.0	EXECU	UTIVE SUMMARY	2
3.0	INVES	STIGATION RESULTS	3
	3.1	PERMIT	3
	3.2	FIELD DATE	
	3.3	DRILLING COMPANY	
	3.4	PERSONNEL PRESENT	
	3.5	DRILLING METHOD	3
	3.6	NUMBER OF BORINGS	3
	3.7	BORING DEPTHS	
	3.8	GROUNDWATER DEPTH	
	3.9	WASTE DISPOSAL	
4.0	FINDI	INGS	5
4.0	4.1	SOIL	
5.0	CONC	CLUSIONS AND RECOMMENDATIONS	6

LIST OF FIGURES (Following Text)

FIGURE 1

VICINITY MAP

FIGURE 2

SITE PLAN

LIST OF TABLES (Following Text)

TABLE 1

SOIL ANALYTICAL DATA

LIST OF APPENDICES

APPENDIX A

SITE HISTORY

APPENDIX B

PERMIT

APPENDIX C

BORING LOGS

APPENDIX D

CERTIFIED ANALYTICAL REPORTS

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) prepared this report on behalf of Equilon Enterprises LLC dba Shell Oil Products US (Shell) to document the recent subsurface investigation at this site. The purpose of this investigation was to delineate the extent of elevated lead concentrations in soil prior to completing the proposed excavation activities. CRA received Alameda County Health Care Services Agency's (ACHCSA's) February 20, 2009 letter approving CRA's January 29, 2009 Subsurface Investigation Work Plan and requesting additional analyses.

The subject site is a former service station located on the northwest corner of Martin Luther King Jr. Way and 27th Street in a mixed commercial and residential area of Oakland, California (Figure 1). Currently, the site is occupied by Auto-Tech West and is used as an automotive repair shop (Figure 2).

A summary of previous work performed at the site and additional background information is contained in Appendix A.

1

2.0 EXECUTIVE SUMMARY

- Eight hand-auger borings (HA-1 to HA-8) were advanced during this investigation to evaluate soil conditions.
- The elevated lead concentrations found in the soil cuttings from the vapor probe VP-9 installation were not encountered in the investigation area. Only one of the 24 soil samples collected (HA-8-1.5′, 1,060 milligrams per kilogram (mg/kg) exceeds the lead ESL, adequately defining the extent of lead in shallow soil.
- Soil analytical data indicated that TPHd and TPHmo are present in all of the shallow fill material samples (0.7 fbg) collected from the borings. The laboratory noted that the chromatographic pattern for the TPHd reported did not match the chromatographic pattern of the diesel standard. The TPHd and TPHmo detections in the samples collected from shallow fill material at 0.7 fbg exceed the applicable ESLs. These detections dramatically decrease with depth, and only TPHd in deeper samples from boring HA-6 exceeds ESLs.
- PAHs were detected in all of the samples, with the maximum concentrations found in samples collected from fill material at 0.7 fbg. Soil sample (HA-4-0.7') contained benzo(a)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, and indeno(1,2,3-cd) pyrene above ESLs. Soil samples HA-1-0.7', HA-2-0.7', HA-3-0.7', HA-5-0.7', HA-6-0.7', HA-7-0.7', HA-8-0.7' and HA-8-1.5' contained benzo(a) pyrene, above the ESL. No PAHs were detected in any of the soil samples collected at 5 fbg.
- No further investigation for petroleum hydrocarbons or lead in this area is required.
 The upcoming remedial excavation operations will include proper excavation and disposal of shallow fill material underlying the asphalt surface.

3.0 INVESTIGATION RESULTS

3.1 PERMIT

CRA obtained a drilling permit from Alameda County Public Works Agency (Appendix B).

3.2 FIELD DATE

April 8, 2009.

3.3 DRILLING COMPANY

Gregg Drilling and Testing, Inc.

3.4 <u>PERSONNEL PRESENT</u>

Geologist Erin Reinhart-Koylu directed the drilling under the supervision of California Professional Geologist Tom Sparrowe.

3.5 <u>DRILLING METHOD</u>

Hand auger.

3.6 <u>NUMBER OF BORINGS</u>

Eight soil borings (HA-1 through HA-8) were drilled during this investigation.

3

The boring specifications and soil types encountered are described on the boring logs contained in Appendix C. The boring locations are shown on Figure 2.

3.7 BORING DEPTHS

5 feet below grade (fbg).

3.8 GROUNDWATER DEPTH

No groundwater was encountered.

3.9 WASTE DISPOSAL

Soil generated during field activities was stored on site a 55-gallon drum, sampled, and profiled for disposal. The soil transportation and disposal as non-hazardous waste is pending.

4.0 <u>FINDINGS</u>

4.1 <u>SOIL</u>

The soil chemical analytical data are summarized in Table 1, and total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as motor oil (TPHmo) benzene, and lead analytical results are presented on Figure 2. Laboratory analytical reports are presented in Appendix E.

5.0 CONCLUSIONS AND RECOMMENDATIONS.

The purpose of this investigation was to delineate the extent of elevated lead concentrations in soil prior to completing the proposed excavation activities and to determine the presence of other chemicals of concern behind the former station building. Eight soil borings (HA-1 through HA-8) were drilled, sampled, and analyzed for total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as motor oil (TPHmo), total lead, and polycyclic aromatic hydrocarbons (PAHs).

The elevated lead concentrations found in the soil cuttings from the vapor probe VP-9 installation were not encountered in the investigation area. Only one of the 24 soil samples collected (HA-8-1.5′, 1,060 mg/kg) exceeds the applicable San Francisco Bay Regional Water Quality Control Board environmental screening level (ESL) for shallow soil (less than 3 meters below ground surface) where groundwater is a current or potential drinking water source (commercial/industrial land use).

Soil analytical data indicated that TPHd and TPHmo are present in all of the shallow fill material samples (0.7 fbg) under the asphalt surface. The maximum concentration of TPHd was 4,500 (mg/kg) in boring HA-4 at 0.7 fbg. The laboratory noted that the chromatographic pattern for the TPHd reported did not match the chromatographic pattern of the diesel standard. The maximum concentration of TPHmo was 11,000 mg/kg in boring HA-7 at 0.7 fbg. These detections decrease dramatically with depth and only TPHd in deeper samples from boring HA-6 exceeds ESLs.

PAHs were detected in all of the samples, with the maximum concentrations found in samples collected from fill material at 0.7 fbg. Soil sample (HA-4-0.7') contained PAHs benzo(a)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene above ESLs. Soil samples HA-1-0.7', HA-2-0.7', HA-3-0.7', HA-5-0.7', HA-6-0.7', HA-6-0.7', HA-8-0.7', and HA-8-1.5' contained benzo(a) pyrene above the ESL. No PAHs were detected in any of the soil samples collected at 5 fbg.

The extent of lead in shallow soil is adequately defined, and the observed TPHd, TPHmo, and PAH concentrations appear to be predominately limited to extremely shallow fill material. No further investigation in this area is warranted. The upcoming remedial excavation operations will include proper excavation and disposal of shallow fill material underlying the asphalt surface.

All of Which is Respectfully Submitted, CONESTOGA-ROVERS & ASSOCIATES

Thomas A. Sparrowe, PG

Aubrey K. Cool, PG

FIGURES

Former Shell Service Station

2703 Martin Luther King Jr. Way Oakland, California

Vicinity Map

2703 Martin Luther King Jr Way Oakland, California TABLES

TABLE 1

SOIL ANALYTICAL DATA FORMER SHELL SERVICE STATION 2703 MARTIN LUTHER KING JR. WAY, OAKLAND, CALIFORNIA

							hthalene	ene	e e e e e e e e e e e e e e e e e e e		e .		e e		thracene	•	ioranthene	ioranthene	rene	Perylene	-cd)		ohthalene	-
Sample ID	Date	Depth (fbg)	Lead	рнат	ТРНто	Naphthalene	2-Methyinaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a) Anthracene	Chrysene	Benzo(k) Fluoranthene	Benzo(b) Fluoranthene	Benzo(a) Pyrene	Benzo(g,h,i) Perylene	Indeno(1,2,3-cd) Pyrene	Dibenz(a,h) Anthracene	1-Methylnaphthalene	
HA-1-0.7'	4/8/2009	0.7	24.5	1,300 a	7,900	< 0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.18	<0.040	<0.040	<0.040	<0.040	
HA-1-1.5'	4/8/2009	1.5	7.73	< 5.0	<25	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	
HA-1-5'	4/8/2009	5	7.74	19 ^a	97	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
HA-2-0.7'	4/8/2009	0.7	44.0	560 a	6.700	< 0.040	< 0.040	< 0.040	<0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040	<0.040	< 0.040	< 0.040	0.19	<0.040	<0.040	<0.040	< 0.040	
HA-2-1.5'	4/8/2009	1.5	29.5	<5.0	<2 5													< 0.020		< 0.020	< 0.020	<0.020	<0.020	
HA-2-5'	4/8/2009	5	19.4	<5.0	<25													<0.020		<0.020	<0.020	<0.020	<0.020	
HA-3-0.7	4/8/2009	0.7	59.9	570 a	6,300	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.070	<0.040	<0.040	0.16	<0.040	<0.040	<0.040	<0.040	
HA-3-1.5'	4/8/2009	1.5	20.8	< 5.0	50	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	
HA-3-5'	4/8/2009	5	6.65	<5.0	<25	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
HA-4-0.7'	4/8/2009	0.7	43.5	4,500 a	7,800	1.2	<1.0	<1.0	1.6	1.7	8.5	2.6	7.9	8.1	3.6	4.0	7.1	<1.0	4.2	1.6	2.2	<1.0	<1.0	
	4/8/2009	1.5	10.1	<5.0	<25	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
HA-4-5'	4/8/2009	5	5.81	<5.0	<25											<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	
'	. (0 (*****	^ =	46.0	700 a	= 000	-0.040	<0.040	<0.040	<0.040	<0.040	0.25	0.075	0.39	0.98	0.29	0.48	0.61	0.56	0.51	0.18	0.16	n n48	<0.040	
HA-5 - 0.7'		0.7	46.0	700 ^a	5,800														<0.020		<0.020			
HA-5-1.5'	4/8/2009	1.5	8.14	<5.0	<25										<0.020					*				
HA-5-5'	4/8/2009	5	7.85	<5.0	<25	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	
HA-6-0.7'	4/8/2009	0.7	40.3	1,800 a	7,400	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	< 0.040	0.077	<0.040	0.12	<0.040	<0.040	0.21	0.077	<0.040	<0.040	<0.040	
HA-6-1.5'	4/8/2009	1.5	11.3	110 ^a	290	< 0.020	< 0.020	<0.020	<0.020	< 0.020	< 0.020	<0.020	< 0.020	< 0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	< 0.020	<0.020	
HA-6-5'	4/8/2009	5	12.1	130 ^a	230	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	< 0.020	<0.020	< 0.020	< 0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	

TABLE 1

SOIL ANALYTICAL DATA FORMER SHELL SERVICE STATION 2703 MARTIN LUTHER KING JR. WAY, OAKLAND, CALIFORNIA

Sample ID	Date	Depth (fbg)	Lead	ТРНА	ТРНио	Naphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(a) Anthracene	Chrysene	Benzo(k) Fluoranthene	Benzo(b) Fluoranthene	Benzo(a) Pyrene	Benzo(g,h,i) Perylene	Indeno(1,2,3-cd) Pyrene	Dibenz(a,h) Anthracene	1-Methylnaphthalene
HA-7-0.7	4/8/2009	0.7	37.1	910 a	11,000	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.091	<0.040	<0.040	0.18	<0.040	<0.040	<0.040	<0.040
HA-7-1.5'	4/8/2009	1.5	8.82	< 5.0	<25	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020
HA-7-5'	4/8/2009	5	7.45	< 5.0	<25	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	< 0.020
HA-8-0.7'	4/8/2009	0.7	32.8	810 a	9,600	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	< 0.040	0.079	< 0.040	< 0.040	0.17	<0.040	< 0.040	< 0.040	< 0.040
HA-8-1.5'	4/8/2009	1.5	1,060	11 ^a	74	< 0.020	<0.020	<0.020	< 0.020	< 0.020	0.10	0.027	0.29	0.31	0.17	0.18	0.18	0.15	0.20	0.045	0.061	< 0.020	< 0.020
HA-8-5'	4/8/2009	5	19.7	35 ^a	190	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	< 0.020	<0.020	< 0.020	<0.020	<0.020	<0.020	< 0.020
Shallow S	oils (≤10 fb	g) ESL ^b	750	83	2,500	2.8	0.25	13	16	8.9	11	2.8	40	85	1.3	23	1.3	1.3	0.13	27	2.1	0.21	NA

Notes:

All results in miligrams per kilograms (mg/kg) unless otherwise indicated.

fbg = feet below grade

Lead analyzed by EPA Method 6010B

TPHd = Total petroleum hydrocarbons as diesel analyzed by EPA Method 8015B

TPHmo = Total petroleum hydrocarbons as motor oil analyzed by EPA Method 8015B (M)

Polycyclic aromatic hydrocarbons (PAHs) analyzed by EPA Method 8270C SIM PAHS. Individual constituents tablulated above.

< x =Not detected at reporting limit x

ESLs = Environmental screening levels

NA = No applicable ESL

Bold values exceed ESLs.

a = The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

b = San Francisco Bay Regional Water Quality Control Board Environmental Screening Level for shallow soil where groundwater is a current or potential source of drinking water. Commercial land use. Ref: Table A in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater -Interim Final -November 2007 (Revised May 2008).

APPENDIX A

SITE HISTORY

SITE HISTORY

1994 Underground Storage Tank (UST) Removal: The 2,000-gallon UST was removed on October 11, 1994 by KTW & Associates on behalf of ATW. Two soil samples (TP-1-N and TP-2-S) were collected from beneath the tank. Total petroleum hydrocarbons as gasoline (TPHg) was detected at concentrations ranging from 870 milligrams per kilogram (mg/kg) to 18,000 mg/kg in the samples. Benzene concentrations in these samples ranged from 2.9 to 100 mg/kg.

1995 Phase I Environmental Site Assessment (ESA): In August and September 1995, Enviros Inc. (Enviros) performed a Phase I ESA for this site. Available information collected during this ESA indicates that the subject property was occupied by residential housing prior to approximately 1959. A building permit to erect a building was obtained for Shell Oil Company in February 1959. A building permit to "close lube bays with sheet metal panels" was secured for Shell Oil Company in July 1976.

In 1979, several building permits were secured for Acme to modify existing site structures. Two building permits were secured in 1979 related to the installation of a fuel pump at the site.

During a site survey in conjunction with the Phase I ESA, an excavation was observed near the southwest corner of the service building. The excavation was covered by a blue tarp. This excavation's location is consistent with that of the 2,000-gallon UST removed in 1994 by ATW, and with a large concrete slab observed in aerial photographs taken in 1971 and 1973, and a smaller concrete slab observed in aerial photographs taken in 1981 and 1985. The larger concrete slab observed in the aerial photographs was likely covering the USTs operated by Shell, and the smaller slab was likely covering the UST operated by Acme, confirming that the same location was used for both UST complexes.

1995 Subsurface Investigation: A site assessment was performed by ACC Environmental Consultants on May 23, 1995. This included drilling nine soil borings (B-1 through B-9) using a pneumatic sampling tool in the vicinity of the excavation (which formerly housed both Shell's and Acme's USTs) and the product dispenser islands, and collecting soil and groundwater samples for chemical analysis. TPHg concentrations in soil samples ranged from <20.0 to 830 mg/kg. Benzene concentrations ranged from <1.0 to 1.8 mg/kg. Separate phase hydrocarbons (SPH) were identified in water samples collected from four of the soil borings (B-1, B-5, B-6, and B-9). TPHg concentrations in the non-SPH grab groundwater samples submitted for chemical analysis ranged from <50 to 89,000 micrograms per liter (μg/L). Benzene concentrations in the grab groundwater samples ranged from <0.5 to 21,000 μg/L.

1996 Over-Excavation: Over-excavation and back-filling of Acme's former UST excavation were performed on March 19, 1996. The excavation, originally left open to 9 feet below grade (fbg), was over-excavated to approximately 11 fbg. Two soil samples (TP-3-W and TP-4-E) were collected from the bottom of the over-excavated former UST area. Soil sample TP-3-W, collected from the western end of the excavation, contained 560 mg/kg TPHg, and 3.1 mg/kg benzene. Soil sample TP-4-E, collected from the eastern end of the excavation, contained 2,700 mg/kg TPHg and <3.0 mg/kg benzene. The excavation was back-filled with clean imported fill material. Soil sampling and back-filling activities are documented in Enviros' May 10, 1996 correspondence.

1996 Subsurface Investigation: In July 1996, Enviros performed additional site assessment activities. Six exploratory borings (B-10, B-11, B-12, B-13, V-1, and V-2) were drilled and sampled on July 17 and 19, 1996 using a hollow-stem auger drill rig. Borings B-11 and B-12 were completed as groundwater monitoring wells MW-1 and MW-2, and borings V-1 and V-2 were completed as soil vapor extraction wells V-1 and V-2, respectively. Soil sampling was not performed in boring V-1 due to the fact that it was installed into the back-fill material within the former UST excavation. A soil sample from below the saturated zone in boring V-2 was submitted for physical parameter analyses (porosity, permeability, fractional organic carbon content, and dry bulk density).

TPHg and benzene were not detected in soil samples collected from MW-1 (B-11), MW-2 (B-12), and B-13. TPHg was detected in soil samples collected from B-10 and V-2 at concentrations of 1.7 and 110 mg/kg, respectively. Benzene concentrations in soil samples from B-10 and V-2 were < 0.0050 and 0.29 mg/kg, respectively.

Grab groundwater samples were collected from borings B-10, B-12 (MW-2), and B-13 at the depth of first encountered groundwater (approximately 8 to 11 fbg) for chemical analysis. Boring B-11 (MW-1) did not yield sufficient groundwater for grab groundwater sample collection. Monitoring wells MW-1 and MW-2 were developed and sampled on August 2, 1999 by Blaine Tech Services, Inc. (Blaine) of San Jose, CA. TPHg concentrations in the groundwater samples ranged from <50 to 290,000 μ g/L. Benzene concentrations ranged from <0.50 to 34,000 μ g/L.

1997 Modified Phase I ESA: In February 1997, Enviros performed a modified Phase I ESA for the subject facility. A review of aerial photographs (1952 to 1994), city directories (1967 to 1993) and Sanborn maps (1912 to 1970) did not reveal evidence of an off-site source of petroleum hydrocarbons which would have impacted groundwater onsite. The properties located north and west of the subject facility appear to have been

occupied by residential houses from at least 1912 to the present. The nearest gasoline stations identified in the vicinity of the subject facility were a former Chevron station (740 27th Street at West) approximately 450 feet to the west, a former station (26th Street and Martin Luther King, Jr. Way) approximately 300 feet to the south, and a former Mobil station (554 27th Street) approximately 950 feet to the east.

2000 Sensitive Receptor Survey (SRS): In late 2000, Cambria performed a SRS to identify wells and underground utility conduits. Cambria identified the local sanitary and storm sewer systems as the only utility conduits which may act as preferential pathways for groundwater and soil vapor migration. Conduits identified in the area are located at depths of approximately 3.5 to 9 fbg. Therefore, the potential does exist for groundwater to flow within these conduit trenches. Groundwater depth onsite historically ranges from approximately 4.5 to 10 fbg. However, since the typical groundwater flow direction onsite has generally been to the south, it is likely that any contaminant migration within the utility conduits would be limited, since the utility conduits located to the south of the site are the shallowest of all the conduits identified adjacent to the site at depths of 3.5 to 5.5 fbg.

Cambria also obtained well installation and destruction records from the California Department of Water Resources (DWR) in order to identify any active water producing wells in the vicinity of the site which may be at risk to petroleum hydrocarbon impact due to contaminant migration from the subsurface of the site. DWR records did not identify any existing wells within a ½-mile radius of the site. The SRS results are presented in Cambria's May 16, 2001 Subsurface Investigation Report.

2000 Subsurface Investigation: In November 2000, Cambria installed three soil borings (B-17, B-18 and B-19) and three groundwater monitoring wells (MW-3, MW-4 and MW-5). Concentrations up to 2,100 mg/kg TPHg and 3.3 mg/kg benzene were reported in soil samples. Methyl tertiary-butyl ether (MTBE) was detected in one soil sample at a concentration of 0.0070 mg/kg. Tertiary-butyl alcohol (TBA) was detected in two soil samples at concentrations of 0.0079 and 0.0059 mg/kg, respectively.

Grab groundwater samples were collected from borings B-17 through B-19 at first encountered groundwater for analyses during the investigation. TPHg concentrations in grab water samples were up to 190,000 μ g/L and benzene concentrations were up to 13,000 μ g/L. MTBE was detected at concentrations up to 300 μ g/L, and TBA was detected at a concentration of 240 μ g/L in one sample. No SPH was observed during the investigation. Results from this investigation are presented in Cambria's May 16, 2001 *Subsurface Investigation Report*.

2001 Oxygen Releasing Compound (ORC) Installation: As approved by the Alameda County Health Care Services Agency (ACHCSA), Blaine installed ORCs in wells V-1 and V-2 during the second quarter monitoring event on May 2, 2001. ORCs were removed during the fourth quarter 2001 monitoring event. MTBE has not been detected in these two wells since the ORCs were installed. Details of the ORC installation activities are presented in Cambria's quarterly groundwater monitoring reports for the second through the fourth quarter of 2001.

2002 Subsurface Investigation: In April 2002, Cambria installed borings B-20 through B-22. Groundwater was first encountered in the borings between 8.0 fbg (B-20) and 8.8 fbg (B-21 and B-22). The maximum TPHg and benzene concentrations detected in soil were 380 and 0.17 mg/kg, respectively, in the soil sample collected from 8.0 fbg in boring B-22, located behind the station building. No TPHg was detected in soil samples collected from borings B-21. No MTBE was detected in any of the analyzed soil samples collected from borings B-20, B-21, or B-22. Up to 160,000 μg/L TPHg and 18,000 μg/L benzene were reported in grab groundwater samples collected from borings B-20, B-21, and B-22. No MTBE was detected in grab groundwater samples collected from the borings. The complete report of findings was included in Cambria's June 21, 2002 Site Investigation Report. This document included recommendations for additional activities; however, a response from ACHCSA was never received. Results from this investigation are presented in Cambria's June 21, 2002 Subsurface Investigation Report.

2003 - 2005 Oxygen Releasing Compound (ORC) Installation: Although agency approval was not received, Shell proactively installed ORC in wells MW-5 and V-2 during first quarter of 2003. The ORCs were replaced on a semi-annual basis. The use of ORC was discontinued during the first quarter 2005, at Shell's request. Details of the ORC installation activities are presented in Cambria's quarterly groundwater monitoring reports for the first quarter 2003 through the first quarter of 2005.

2005 Agency Meeting: Since no agency response was received to the June 2002 Site Investigation Report that contained recommendations for additional investigation, and since monitoring continued to indicate elevated concentrations of volatile constituents in groundwater, Shell authorized Cambria to prepare a work plan to investigate subsurface soil, groundwater, and soil vapor conditions along the property boundaries and at select locations on site. A new case worker was assigned to this project in early 2005, and following a meeting with the new case worker, technical comments and work plan approval were received in ACHCSA correspondence dated June 6, 2005. On August 15, 2005, Cambria submitted correspondence providing responses to the technical comments, notification of field work, and a request for extension for the report of findings. In correspondence dated August 19, 2005, ACHCSA granted the extension.

2005 Soil Vapor Investigation: From August 28 through 31, 2005, Cambria installed 10 soil borings (GP-1 through GP-10). TPHg was detected in soil samples from the borings at concentrations up to 3,300 mg/kg and benzene was detected at concentrations up to 15 mg/kg. TPHg was detected in all groundwater samples at concentrations up to 140,000 μ g/L and benzene was also detected in all four groundwater samples at concentrations up to 17,000 μ g/L. TPHg was detected in soil vapor samples at concentrations ranging up to 71,000,000 micrograms per cubic meter (μ g/m³) and benzene was detected at concentrations up to 170,000 μ g/m³. Details of these activities are included in Cambria's November 15, 2005 Site Investigation Report.

2005 Door-to-Door Survey: Cambria conducted a door-to-door survey within 300 feet of the subject site for wells, basements, and foundation type to identify building construction and potential vapor receptors. Questionnaires were sent to 110 properties and responses for 25 properties were received as of January 13, 2006. Of the 25 responses received, none of the properties had basements. Three properties were denoted as vacant; nine properties contained buildings constructed with slab-on-grade foundations; three contained buildings constructed with perimeter foundations. Tabulated data and a list of properties included in the survey, and which completed surveys were received was included in Cambria's January 15, 2006 Door to Door Survey Report, Access Agreement Update, and Status/Schedule Update.

2006 Subsurface Investigation: Cambria advanced three monitoring wells (MW-6 through MW-8), one soil boring (B-23), and six soil vapor probes (VP-1 through VP-6). TPHg was detected in soil samples at concentrations up to 3,800 mg/kg and benzene was detected at concentrations up to 33 mg/kg. A complete discussion and presentation of these activities and findings is included in Cambria's April 14, 2006 Site Investigation Report, and First Quarter 2006 – Groundwater Monitoring Report.

2006 Dual-Phase Extraction (DPE) Pilot Test: Cambria conducted a five-day DPE pilot test on wells V-1, V-2, MW-6, MW-7, MW-4, MW-5, and MW-8 and a constant vacuum DPE test was conducted on well MW-6. The report concluded 1) the absence of vapor phase concentrations (and groundwater concentrations) from well V-1 indicates that the former UST excavation does not contain residual source material; 2) high sustained and increasing vapor concentrations suggest source material is present in the vicinity of wells V-2, MW-5, and MW-8; 3) variability in extraction flow rates across the site may reflect heterogeneities in subsurface soils or may suggest preferential pathways; and 4) the extremely high effective radius of influence calculated for wells MW-5 and MW-8 during DPE testing on well MW-7 supports the presence of a preferential pathway in the vicinity of these wells. The data from the DPE pilot test suggests that DPE is feasible at this site.

The groundwater table was effectively drawn down by DPE and moderate vapor extraction flow rates were yielded from some of the extraction points. Although DPE is deemed feasible, Cambria did not recommend implementing DPE at this site. The extraction points that yielded the highest vapor concentrations did not yield an effective vapor extraction flow rate. Conversely, low vapor concentrations were yielded from the extraction point that did yield an effective vapor extraction flow rate. Therefore, DPE is not considered feasible in the target areas at this site. The pilot test details and results are presented in Cambria's March 14, 2006 *Pilot Test Report*.

2006 Subsurface Investigation: Monitoring wells MW-12 and MW-14 were installed at two offsite properties. None of the soil samples from well MW-12 indicated the presence of any TPHg, benzene, toluene, ethylbenzene, or xylenes (BTEX). The 5 fbg sample from MW-14 also did not contain any reportable concentrations. TPHg was reported in the 10 and 14 fbg samples from MW-14 at concentrations of 32 and 970 mg/kg, respectively. Benzene was reported in the same two samples at concentrations of 0.0083 and 2.3 mg/kg, respectively. These activities are documented in Cambria's May 25, 2006 Subsurface Investigation Report.

2006 Survey and Site Visit: In addition to surveying the new wells, Cambria identified historical boring locations from patches on the ground surface, historical excavation edges, trenches, and other site features, and requested that they be included in the survey. Report figures since May 2006 have included the new survey data. Also, during the site visit, an inspection inside the building identified two bathrooms. A floor drain was observed in the northern-most bathroom. Standing liquid was present in the floor drain and automotive parts and cleaners were stored in this area. Thus, a sample from the floor drain was collected and submitted for analyses of volatile organic compounds (VOCs) by EPA Method 8260 and semi-volatile organic compounds (SVOCs) by EPA Method 8270. The floor drain sample was analyzed for VOCs and SVOCs. The results indicated the presence of carbon disulfide (3.69 μ g/L), ethylbenzene (0.610 μ g/L), and toluene (0.770 μ g/L). This information was reported in Cambria's May 25, 2006 Subsurface Investigation Report.

2006 Geophysical Survey: As recommended in Cambria's May 25, 2006 Subsurface Investigation Report, a geophysical study was performed on May 22, 2006. The objectives of this effort were to determine whether or not a waste oil UST was in the ground in the northwest portion of the property, and to evaluate the presence of subsurface utilities in this area that may act as preferential pathways, including the mapping of the sewer line from the floor drain found inside the northwest corner of the building during the April 19, 2006 site inspection. The results did not identify the presence of a UST on the northwest corner of the site, but did find another vent line located behind the northeast

A-6

corner of the station building. A subsurface electric line was traced from the station building to the western property boundary, and an unidentified subsurface utility was traced from the northwest corner of the station building to the southwest, near MW-5 and toward MW-6. The presence of the unknown utility line in the northwest corner confirms the observations of a possible preferential pathway in this area based on the dual-phase extraction pilot test performed in January 2006. NORCAL was unable to run a line down the floor drain inside of the building due to the trap in the line, so the sewer cleanout was found on the exterior of the building. Accessing the cleanout would have resulted in damage to the cap, and the property owner would not grant permission for Cambria to open the cleanout and repair any damage. Thus, the location, direction, and depth of the sewer line in this area are still unknown. However, based on the GPR survey that was performed to try to locate a non-metallic sewer line, NORCAL concludes that the sewer line may be more than 4 feet below grade, since the GPR was unable to identify the line. This information was presented in Cambria's July 25, 2006 Status Update, Report of Geophysical Survey, and Request for Agency Meeting.

2006 Subsurface Investigation and Vapor Probe Installation: Cambria installed cone-penetrometer test borings CPT-1 through CPT-5 and soil vapor probes VP-1 through VP-6. There was a lack of adequate groundwater recharge for many of the groundwater samples attempted between 15 and 29 fbg. Groundwater sample results from between 31-37 fbg confirm significant attenuation of contaminants of at least one order of magnitude from the interval monitored by the site wells (5-20 fbg), thus nor further vertical delineation is warranted. Comparison of data from 1995, 2000, and 2006 in similar location (B-6 & B-9, B-19, and CPT-5, respectively) demonstrates attenuation of contaminant concentrations over time is occurring. A site inspection at the neighboring property was performed and revealed that due to significant ventilation and air exchange with outdoor ambient air, vapor sampling within the above-ground basement was no longer warranted. These activities are documented in Cambria's January 31, 2007 CPT Investigation and Vapor Probe Installation Report.

2007 Subsurface Investigation and Vapor Probe Installation: Conestoga-Rovers & Associates (CRA) installed CPT-6 and CPT-7 within 27th Street southwest of the site, CPT-10 on the Marcus-Foster school property northwest of the site, and VP-7 and VP-8 on private properties west-northwest of the site. The CPT logs identified thin lithologic units of higher permeability that appear to be allowing preferential migration of contaminants in groundwater toward MW-14 and CPT-10. Further delineation and monitoring of the first encountered water zone to the northwest and west of the site was recommended. Soil vapor samples collected from onsite probes indicated petroleum hydrocarbon concentrations exceeding screening levels for protection of onsite commercial workers. Soil vapor samples collected from offsite vapor probe pairs VP-7

A-7

and VP-8, located on residential property, indicated that the soil gas concentrations immediately adjacent to the subject site and three parcels down gradient do no exceed the residential ESLs. Results of the investigation are documented in CRA's August 27, 2007 *Plume Delineation and Soil Vapor Sampling Report*.

2008 Site Conceptual Model (SCM) and Feasibility Study/Corrective Action Plan (FS/CAP): CRA submitted a February 2, 2008 SCM and FS/CAP for the site. Excavation followed by a bio-sparge curtain to assist biodegradation was recommended as remedial action for the site. A Remedial Action Plan was submitted by CRA on May 28, 2008 detailing the excavation and bio-sparging.

Groundwater Monitoring: Quarterly groundwater monitoring has been ongoing at the site since August 1996 and currently includes on-site monitoring wells MW-1 through MW-8, VP-1, and VP-2, and off-site monitoring wells MW-12 and MW-14. Fuel oxygenates are not a significant component of the groundwater plumes, although some detections of di-isopropyl ether and TBA have been observed. Overall, the groundwater flow direction is primarily to the west, with some radial components on site to the northwest and southwest. Historically, monitoring wells MW-1, MW-2, MW-3, and MW-12 have shown little or no impact from petroleum hydrocarbons. Maximum historical concentrations of TPHg and benzene have been observed in on-site monitoring well MW-5. The first quarter 2009 sample event reported maximum concentrations of TPHg and benzene at 130,000 and 8,500 μg/L, respectively in well MW-5. Historical groundwater monitoring results and current conditions are detailed in CRA's May 4, 2009 Groundwater Monitoring and Soil Vapor Report – First Quarter 2009

Vapor Monitoring: Vapor monitoring of off-site soil vapor probes VP-7 and VP-8 has been ongoing at the site since October 2007 and is currently conducted semiannually. Vapor probe VP-9 was added to the monitoring program in the third quarter of 2008. Historically, BTEX concentrations in soil vapor samples have consistently been below applicable screening levels in off-site vapor probes. During the first quarter 2009 sampling event, CRA was only able to collect one vapor sample from the shallow screen interval (3 fbg) of probe VP-8. Water was present in the shallow screen interval (3 fbg) for probes VP-6 and VP-7 and in the deeper screen interval (5 fbg) for probes VP-6 through VP-9, so no soil vapor samples could be collected from these probes. Toluene was the only chemical of concern detected, and the concentration was below the applicable residential ESL. Historical soil vapor and current data are summarized in CRA's May 4, 2009 Groundwater Monitoring and Soil Vapor Report – First Quarter 2009.

APPENDIX B

PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 04/06/2009 By jamesy

Permit Numbers: W2009-0264

Permits Valid from 04/08/2009 to 04/09/2009

Application Id:

1237571109512

City of Project Site: Oakland

Site Location: **Project Start Date:** 2703 Martin Luther King Jr Blvd. 04/08/2009

Completion Date: 04/09/2009

Assigned Inspector:

Contact John Shouldice at (510) 670-5424 or johns@acpwa.org

Applicant:

Conestoga-Rovers & Associates - Lauren

Phone: 510-420-3339

Goldfinch

Property Owner:

5900 Hollis St., Suite A, Emeryville, CA 94608 Rodney & Janet Kwan

Phone: --

1834 Alameda Ave., Alameda, CA 94501

Client:

Shell Oil Products US Shell Oil Products US

Phone: --

Contact:

20945 S. Wilmington Ave., Carson, CA 90810 Erin Reinhart

Phone: 510-420-3372

Cell: 510-385-0074

Total Due:

\$230.00

Receipt Number: WR2009-0123

Total Amount Paid:

Payer Name: Conestoga-Rovers & Paid By: CHECK

Associates

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 8 Boreholes

Driller: Gregg Drilling & Testing, Inc. - Lic #: 485165 - Method: Hand

Work Total: \$230.00

Specifications

Permit Issued Dt **Hole Diam** Expire Dt Max Depth Number **Boreholes**

W2009-

04/06/2009 07/07/2009

0264

4.00 in. 5.00 ft

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit

Alameda County Public Works Agency - Water Resources Well Permit

application on site shall result in a fine of \$500.00.

- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX C

BORING LOGS

CLIENT NAME

LOCATION

DRILLER

JOB/SITE NAME

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

Gregg Drilling

Shell Oil Products US Former Shell Service Station 2703 Martin Luther King Jr. Way, Oakland, CA **PROJECT NUMBER**

DRILLING METHOD Hand Auger **BORING DIAMETER** E. Reinhart **LOGGED BY**

REVIEWED BY

BORING/WELL NAME	HA-1		
DRILLING STARTED	08-Apr-09		
DRILLING COMPLETED	08-Apr-09		
WELL DEVELOPMENT DA	ATE (YIELD)	NA	
GROUND SURFACE ELEV	/ATION _	NA	
TOP OF CASING ELEVAT	ION _	NA	
SCREENED INTERVALS		NA	
DEPTH TO WATER (First	Encountered)	NA	7
DEPTH TO WATER (Static	•)	NA	

T. Sparrowe, PM **REMARKS** CONTACT DEPTH (fbg) SAMPLE ID PID (ppm) GRAPHIC LOG BLOW DEPTH (fbg) EXTENT U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT
Sandy SILT (Fill) (ML); very dark brown (10YR 2/2); dry; 0.2 0 HA-1- 0,7' 70% silt, 25% fine to coarse sand, 5% fine gravel; non ML 1.0 SILT (ML); very dark brown (10YR 2/2); moist; 25% clay, 75% silt; medium plasticity. HA-1- 1.5' 0 WELL LOG (PID) I:SHELL\6-CHARS\2407-\240781-OAKLAND 2703 MARTIN LUTHER KING\240781-GINT\0781.GPJ DEFAULT.GDT 5/5/09 ■ Portland Type I/II ML @4' - brown (10YR 4/3); 20% clay, 80% silt; low to medium plasticity. HA-1- 5' 5.0 Bottom of Boring @ 5 fbg

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED
LOCATION	2703 Martin Luther King Jr. Way, Oakland, CA	DRILLING COMPLETED _
PROJECT NUMBER	240781	WELL DEVELOPMENT DAT
DRILLER	Gregg Drilling	GROUND SURFACE ELEVA
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION
BORING DIAMETER	2"	SCREENED INTERVALS
LOGGED BY	E. Reinhart	DEPTH TO WATER (First E
REVIEWED BY	T. Sparrowe, PM	DEPTH TO WATER (Static)

BORING/WELL NAME HA-2

DRILLING STARTED 08-Apr-09

DRILLING COMPLETED 08-Apr-09

WELL DEVELOPMENT DATE (YIELD) NA

GROUND SURFACE ELEVATION NA

TOP OF CASING ELEVATION NA

SCREENED INTERVALS NA

DEPTH TO WATER (First Encountered) NA

DEPTH TO WATER (Static) NA

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW DEPTH (fbg) EXTENT U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT
Sandy SILT (Fill) (ML); very dark brown (10YR 2/2); dry;
70% silt, 25% fine to coarse sand, 5% fine gravel; non 0.2 HA-2- 0.7' 0 ML 1.0 SILT (ML); very dark brown (10YR 2/2); moist; 25% clay, 75% silt; medium plasticity. 0 HA-2- 1.5' WELL LOG (PID) INSHELLIG-CHARS12407-2240781-OAKLAND 2703 MARTIN LUTHER KING1240781-GINT10781.GPJ DEFAULT.GDT 5/5/09 Portland Type I/II ML @4' - brown (10YR 4/3); 30% clay, 70% silt. HA-2- 5' 5.0 Bottom of Boring @ 5 fbg

PAGE 1 OF 1

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HA-3		
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED 08-Apr-09		
LOCATION	2703 Martin Luther King Jr. Way, Oakland, CA	DRILLING COMPLETED 08-Apr-09		
PROJECT NUMBER	240781	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	NA	
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION	NA	
BORING DIAMETER	2"	SCREENED INTERVALS	NA	
LOGGED BY	E. Reinhart	DEPTH TO WATER (First Encountered) NA	∇
REVIEWED BY	T. Sparrowe, PM	DEPTH TO WATER (Static)	NA NA	Y
REMARKS		· ,		

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0		HA-3- 0.7'		_	ML		ASPHALT Sandy SILT (FIII) (ML); very dark brown (10YR 2/2); dry; 70% silt, 25% fine to coarse sand, 5% fine gravel; non plastic. SILT (ML); black (2.5Y 2.5/1); moist; 25% clay, 75% silt; medium plasticity.	1.0	
				-	ML			. 7	Portland Type I/II
0		HA-3- 5'		— 5 —	,		@4' - brown (10YR 4/3); 35% clay, 65% silt.	5.0	Bottom of Boring @ 5 fbg
					-				() TING

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HA-4	
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED 08-Apr-09	
LOCATION	2703 Martin Luther King Jr. Way, Oakland, CA	DRILLING COMPLETED 08-Apr-09	
PROJECT NUMBER	240781	WELL DEVELOPMENT DATE (YIELD)	NA
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION _	NA
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION	NA
BORING DIAMETER	2"	SCREENED INTERVALS	NA
LOGGED BY	E. Reinhart	DEPTH TO WATER (First Encountered)	NA Z
REVIEWED BY	T. Sparrowe, PM	DEPTH TO WATER (Static)	NA ·
		, , , ,	

REMAR	KS								
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0.2		HA-4- 0.7']		ML ———		ASPHALT Sandy SILT (FIII) (ML); dark brown (7.5 YR 3/2); dry; 60% silt, 30% fine to coarse sand, 10% fine gravel; non plastic. SILT (ML); very dark brown (7.5 YR 3/1); moist; 25% clay, 75% silt; medium plasticity.	1.0	
0		HA-4- 5'		5	ML		@4' - brown (10YR 4/3); 40% clay, 60% silt.	5.0	Portland Type I/II
0									Bottom of Borii @ 5 fbg

LOGGED BY

REVIEWED BY

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME Shell Oil Products US Former Shell Service Station **JOB/SITE NAME** LOCATION 2703 Martin Luther King Jr. Way, Oakland, CA **PROJECT NUMBER** 240781 **DRILLER**

Gregg Drilling **DRILLING METHOD** Hand Auger **BORING DIAMETER**

E. Reinhart T. Sparrowe, PM

BORING/WELL NAME HA-5 08-Apr-09 **DRILLING STARTED** 08-Apr-09 DRILLING COMPLETED _ WELL DEVELOPMENT DATE (YIELD) NA NΑ **GROUND SURFACE ELEVATION TOP OF CASING ELEVATION** NA **SCREENED INTERVALS** NA NΑ **DEPTH TO WATER (First Encountered)**

DEPTH TO WATER (Static) NΑ

PID (ppm)	BLOW	SAMPLE ID	EXTENT DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
4.6		HA-5- 0.7'		ML		ASPHALT Sandy SILT (Fill) (ML); dark brown (7.5 YR 3/2); dry; 60% silt, 30% fine to coarse sand, 10% fine gravel; non plastic. SILT (ML); very dark brown (7.5 YR 3/1); moist; 25%	0.2	
0		HA-5- 5'	- 5 -	ML		SILT (ML); very dark brown (7.5 YR 3/1); moist; 25% clay, 75% silt; medium plasticity. @4' - olive brown (2.5 Y 4/4); 40% clay, 60% silt.	5.0	Bottom of Boring
								@ 5 fbg

BORING / WELL LOG

REMARKS

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME Shell Oil Products US **BORING/WELL NAME** HA-6 **JOB/SITE NAME** Former Shell Service Station 08-Apr-09 **DRILLING STARTED** 08-Арг-09 DRILLING COMPLETED **LOCATION** 2703 Martin Luther King Jr. Way, Oakland, CA PROJECT NUMBER 240781 WELL DEVELOPMENT DATE (YIELD) NA **DRILLER** Gregg Drilling NA **GROUND SURFACE ELEVATION DRILLING METHOD** Hand Auger **TOP OF CASING ELEVATION** ΝÀ **BORING DIAMETER** NA SCREENED INTERVALS LOGGED BY E. Reinhart **DEPTH TO WATER (First Encountered)** NA **REVIEWED BY** T. Sparrowe, PM **DEPTH TO WATER (Static)** NA

REMARI	1.5								
PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEРТН (fbg)	U.S.C.S.	GRAPHIC	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0		HA-6- 0.7'			ML		ASPHALT Sandy SILT (Fill) (ML); dark brown (7.5 YR 3/3); dry; 60% silt, 30% fine to coarse sand, 10% coarse gravel; non plastic.	1.0	
0		HA-6- 1.5'			ML		SILT (ML); very dark brown (10 YR 2/2); moist; 25% clay, 75% silt; medium plasticity. @4' - brown (10 YR 4/3); 40% clay, 60% silt.	_5.0	Portland Type I/II
					·				Bottom of Borii @ 5 fbg

BORING / WELL LOG

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US
JOB/SITE NAME	Former Shell Service Station
LOCATION	2703 Martin Luther King Jr. Way, Oakland, CA
PROJECT NUMBER	240781
DRILLER	Gregg Drilling
DRILLING METHOD	Hand Auger
BORING DIAMETER	2"
LOGGED BY	E. Reinhart
REVIEWED BY	T. Sparrowe, PM

HA-7 **BORING/WELL NAME** 08-Apr-09 **DRILLING STARTED** 08-Apr-09 DRILLING COMPLETED WELL DEVELOPMENT DATE (YIELD) NA NA **GROUND SURFACE ELEVATION TOP OF CASING ELEVATION** NA **SCREENED INTERVALS** NA **DEPTH TO WATER (First Encountered)** NΑ **DEPTH TO WATER (Static)** NA

REMARKS CONTACT DEPTH (fbg) SAMPLE ID GRAPHIC LOG PID (ppm) BLOW U.S.C.S. DEPTH (fbg) EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT
Sandy SILT (Fill) (ML); very dark brown (10 YR 2/2); 0.2 0 HA-7- 0.7' dry; 70% silt, 25% fine to coarse sand, 5% fine gravel; non ML 1.0 HA-7- 1.5' 0 SILT (ML); black (2.5 Y 2.5/1); moist; 25% clay, 75% silt; medium plasticity. WELL LOG (PID) I:\SHELL\6-CHARS\2407-\240781-OAKLAND 2703 MARTIN LUTHER KING\240781-GINT\0781.GPJ DEFAULT.GDT 5/5/09 Portland Type I/II ML @4' - brown (10YR 4/3); 35% clay, 65% silt. HA-7- 5' 5.0 5 **Bottom of Boring** @ 5 fbg

BORING / WELL LOG

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: 510-420-0700 Fax: 510-420-9170

CLIENT NAME	Shell Oil Products US	BORING/WELL NAME HA-8		
JOB/SITE NAME	Former Shell Service Station	DRILLING STARTED 08-Apr-09	·	
LOCATION	2703 Martin Luther King Jr. Way, Oakland, CA	DRILLING COMPLETED 08-Apr-09		
PROJECT NUMBER	240781	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER	Gregg Drilling	GROUND SURFACE ELEVATION	NA	
DRILLING METHOD	Hand Auger	TOP OF CASING ELEVATION	NA	
BORING DIAMETER	2"	SCREENED INTERVALS	NA	, , ,
LOGGED BY	E. Reinhart	DEPTH TO WATER (First Encountered)) NA	Ž
REVIEWED BY	T. Sparrowe, PM	DEPTH TO WATER (Static)	NA	7
REMARKS	1	. ,		

PID (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (fbg)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (fbg)	WELL DIAGRAM
0		HA-8- 0.7')]		ML		ASPHALT Sandy SILT (Fill) (ML); very dark brown (10 YR 2/2); dry; 70% silt, 25% fine to coarse sand, 5% fine gravel; non plastic.	0.2 1.0	
0		HA-8- 1.5'			ML		SILT (ML); very dark brown (10 YR 2/2); moist; 20% clay, 80% silt; medium plasticity. @4' - dark yellowish brown (10YR 4/4); low to medium plasticity.		Portland Type I/I)
				- 5 -				5.0	Bottom of Boring @ 5 fbg

APPENDIX D

CERTIFIED ANALYTICAL REPORTS

April 23, 2009

Tom Sparrowe Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

09-04-0886

2703 Martin Luther King Jr. Way, Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/10/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental Laboratories, Inc.

Philip Samelle for

Jessie Lee

Project Manager

FAX: (714) 894-7501

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

04/10/09 09-04-0886 EPA 3050B EPA 6010B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 5

Project. 2703 Martin Lu	the King Jr. Wa	y, Oakland, CA					Гс	ige i oi s
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-5-0.7'		09-04-0886-1-A	04/08/09 11:30	Solid	ICP 5300	04/20/09	04/21/09 22:25	090420L03
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
ead	46.0	0.500	. 1		mg/kg			
HA-5-1.5'		09-04-0886-2-A	04/08/09 11:40	Solid	ICP 5300	04/20/09	04/21/09 22:27	090420L03
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
_ead	8.14	0.500	1	•	mg/kg			
HA-5-5'		09-04-0886-3-A	04/08/09 11:57	Solid	ICP 5300	04/20/09	04/21/09 22:29	090420L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
ead	7.85	0.500	1		mg/kg			
HA-4-0.7'		09-04-0886-4-A	04/08/09 12:04	Solid	ICP 5300	04/20/09	04/21/09 22:30	090420L03
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			•
_ead	43.5	0.500	1		mg/kg			
HA-4-1.5'		09-04-0886-5-A	04/08/09 12:11	Solid	ICP 5300	04/20/09	04/21/09 22:32	090420L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Lead	10.1	0.500	1		mg/kg	l		
HA-4-5'		09-04-0886-6-A	04/08/09 12:25	Solid	ICP 5300	04/20/09	04/21/09 22:33	090420L03
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			•
Lead	5.81	0.500	1		mg/kg			

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3050B EPA 6010B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 2 of 5

Project. 2703 Martin Lui	iller Killy Jr. vva	y, Oakianu, CA					۳۵	ige 2 01 5
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-6-0.7'		09-04-0886-7-A	04/08/09 12:31	Solid	ICP 5300	04/20/09	04/21/09 22:38	090420L03
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
Lead	40.3	0.500	1		mg/kg			
HA-6-1.5'		09-04-0886-8-A	04/08/09 12:40	Solid	ICP 5300	04/20/09	04/21/09 22:40	090420L03
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Lead	11.3	0.500	1		mg/kg			
HA-6-5'		09-04-0886-9-A	04/08/09 12;55	Solid	ICP 5300	04/20/09	04/21/09 22:41	090420L03
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>			
Lead	12.1	0.500	1		mg/kg			
HA-7-0.7'		09-04-0886-10-A	04/08/09 14:53	Solid	ICP 5300	04/20/09	04/21/09 22:43	090420L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	37.1	- 0.500	1		mg/kg	J		
HA-7-1.5'		09-04-0886-11-A	04/08/09 15:02	Solid	ICP 5300	04/20/09	04/21/09 22:45	090420L03
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	8.82	0.500	1		mg/ko	,	Λ.	
HA-7-5'		09-04-0886-12-A	04/08/09 15:15	Solid	ICP 5300	04/20/09	04/21/09 22:46	090420L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	i		
Lead	7.45	0.500	1		mg/k	9		

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3050B EPA 6010B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 3 of 5

Project. 2703 Martin Lui	ulei Kilig Ji. Wa	y, Canialiu, CA					rage 3 01 5				
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
HA-3-0.7'		09-04-0886-13-A	04/08/09 15:17	Solid	ICP 5300	04/20/09	04/21/09 22:48	090420L03			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>						
ead	59.9	0.500	1		mg/kg						
HA-3-1.5'		09-04-0886-14-A	04/08/09 15:26	Solid	ICP 5300	04/20/09	04/21/09 22:49	090420L03			
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>						
ead	20.8	0.500	. 1		mg/kg						
HA-3-5'		09-04-0886-15-A	04/08/09 15:43	Solid	ICP 5300	04/20/09	04/21/09 22:51	090420L03			
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Units</u>						
ead	6.65	0.500	1		mg/kg						
HA-2-0.7'		09-04-0886-16-A	04/08/09 15:47	Solid	ICP 5300	04/20/09	04/21/09 22:53	090420L03			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>						
Lead	44.0	0.500	1		mg/kg						
HA-2-1.5'		09-04-0886-17-A	04/08/09 15:53	Solid	ICP 5300	04/20/09	04/21/09 22:57	090420L03			
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>						
_ead	29.5	0.500	1		mg/kg	l					
HA-2-5'		09-04-0886-18-A	04/08/09 16:03	Solid	ICP 5300	04/20/09	04/21/09 22 :59	090420L03			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>						
Lead	19.4	0.500	1		mg/kg	ı 🦠					

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

04/10/09 09-04-0886 EPA 3050B EPA 6010B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 4 of 5

Project. 2703 Martin Lu	ther King Jr. wa	y, Oakianu, CA					Pa	ige 4 01 5
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-8-0.7'		09-04-0886-19-A	04/08/09 16:09	Solid	ICP 5300	04/20/09	04/21/09 23:00	090420L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	32.8	0.500	1		mg/kg			
HA-8-1.5'		09-04-0886-20-A	04/08/09 16:18	Solid	ICP 5300	04/20/09	04/21/09 23:02	090420L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Lead	1060	0.500	1		mg/kg			
HA-8-5'		09-04-0886-21-A	04/08/09 16:33	Solid	ICP 5300	04/20/09	04/21/09 23:04	090420L02
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	19.7	0.500	1		mg/kg			
HA-1-0.7'		09-04-0886-22-A	04/08/09 16:37	Solid	ICP 5300	04/20/09	04/21/09 23:05	090420L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	24.5	0.500	1		mg/kg	ı	•	
HA-1-1.5'		09-04-0886-23-A	04/08/09 16:44	Solid	ICP 5300	04/20/09	04/21/09 23:07	090420L02
<u>Parameter</u>	Result	RL	DF	<u>Qual</u>	<u>Units</u>		•	
Lead	7.73	0.500	1		mg/kg	1		
HA-1-5'		09-04-0886-24-A	04/08/09 17:02	Solid	ICP 5300	04/20/09	04/21/09 23:08	090420L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Lead	7.74	0.500	1		mg/kg	3	1	

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

09-04-0886 EPA 3050B EPA 6010B

04/10/09

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 5 of 5

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		097-01-002-12,207	N/A	Solid	ICP 5300	04/20/09	04/22/09 11:22	090420L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Lead	ND	0.500	1		mg/kg			
Method Blank		097-01-002-12,210	N/A	Solid	ICP 5300	04/20/09	04/21/09 22:19	090420L03
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Units</u>			
Lead	ND	0.500	1		mg/kg			

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

Method:

09-04-0886 **EPA 3550B EPA 8015B**

04/10/09

Project: 2703	Martin Luther Kin	ig Jr. Way	y, Oakland, CA					Pa	ge 1 of 9
Client Sample Number	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-5-0.7'			09-04-0886-1-A	04/08/09 11:30	Solid	GC 45	04/10/09	04/10/09 22:26	090410B06
Comment(s):	-The sample chromatog						specified st	andard. Qua	intitation
<u>Parameter</u>	of the unknown hydroca	Result	RL	DF	Qual	<u>Units</u>			
Diesel Range Organi	cs	700	500	100		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		144	61-145						
HA-5-1.5'			09-04-0886-2-A	04/08/09 11:40	Solid	GC 45	04/10/09	04/10/09 22:41	090410B06
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organi	cs	ND	5.0	1		mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		105	61-145						
HA-5-5'			09-04-0886-3-A	04/08/09 11:57	Solid	GC 45	04/10/09	04/10/09 22:57	090410B06
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organi	ics	ND	5.0	. 1		mg/kg	1		•
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl	•	98	61-145						

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

09-04-0886 **EPA 3550B**

Method:

04/10/09

EPA 8015B

Project: 2703	Martin Luther Kin	g Jr. Way	/, Oakland, CA	٨				Pa	ge 2 of 9
Client Sample Numb	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-4-0.7'			09-04-0886-4-A	04/08/09 12:04	Solid	GC 45	04/10/09	04/10/09 23:12	090410B06
Comment(s):	-The sample chromatog						specified st	andard. Qua	antitation
<u>Parameter</u>	of the unknown hydroca	Result	RL	DF	Qual	Units			
Diesel Range Organ	ics	4500	500	100		mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		126	61-145					*	
HA-4-1.5'			09-04-0886-5-A	04/08/09 12:11	Solid	GC 45	04/10/09	04/10/09 23:26	090410B06
<u>Parameter</u>		Result	RL	DF	<u>Qual</u>	<u>Units</u>			
Diesel Range Organ	ics	ND	5.0	-1		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		102	61-145						
HA-4-5'			09-04-0886-6-A	04/08/09 12:25	Solid	GC 45	04/10/09	04/10/09 23:42	090410B06
Parameter		Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organ	iics	ND	5.0	4		mg/kg	l		
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		104	61-145						

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

09-04-0886 EPA 3550B EPA 8015B

04/10/09

Project: 2703	Martin Luther Ki	ng Jr. Way	, Oakland, CA					Pa	ge 3 of 9
Client Sample Numbe	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-6-0.7'			09-04-0886-7-A	04/08/09 12:31	Solid	GC 45	04/10/09	04/10/09 23:57	090410B06
Comment(s):	-The sample chromate						specified st	andard. Qua	intitation
<u>Parameter</u>	. •	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organi	cs	1800	500	100		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		125	61-145						
HA-6-1.5'			09-04-0886-8-A	04/08/09 12:40	Solid	GC 45	04/10/09	04/11/09 00:13	090410B06
Comment(s):	-The sample chromat of the unknown hydro						e specified s	tandard. Qua	antitation
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organi	cs	110	25	5		mg/kg	,		
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		102	61-145						
HA-6-5'			09-04-0886 - 9 - A	04/08/09 12:55	Solid	GC 45	04/10/09	04/11/09 00:29	090410B06
Comment(s):	-The sample chromat of the unknown hydro			natch the chror	.	•	e specified s	tandard. Qu	antitation

		24.6		12.00	57.46 <u>)</u> (<u>5</u>		OWNER
Comment(s):	-The sample chromate of the unknown hydroc					pattern of the specified stand d.	dard.
<u>Parameter</u>		Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>	
Diesel Range Orga	anics	130	5.0	. 1		mg/kg	
Surrogates:		REC (%)	Control Limits		Qual		

61-145

Decachlorobiphenyl

DF - Dilution Factor

98

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

Method:

09-04-0886 EPA 3550B EPA 8015B

04/10/09

roject: 2703 Martin Luther King Jr. Way, Oakland, CA							Page 4 of 9			
Client Sample Numbe	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
HA-7-0.7'			09-04-0886-10-A	04/08/09 14:53	Solid	GC 45	04/10/09	04/11/09 00:44	090410B06	
Comment(s):	-The sample chromatogr						specified st	andard. Qua	ıntitation	
<u>Parameter</u>	of the unknown flydrodal	Result	RL	<u>DF</u>	Qual	<u>Units</u>				
Diesel Range Organio	cs	910	500	100		mg/kg				
Surrogates:	,	REC (%)	Control Limits		Qual					
Decachlorobiphenyl		111	61-145							
HA-7-1.5'			09-04-0886-11-A	04/08/09 15:02	Solid	GC 45	04/10/09	04/11/09 01:30	090410B06	
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>				
Diesel Range Organi	cs	ND	5.0	1		mg/kg				
Surrogates:		REC (%)	Control Limits		Qual					
Decachlorobiphenyl		99	61-145				,			
HA-7-5'			09-04-0886-12-A	04/08/09 15:15	Solid	GC 45	04/10/09	04/11/09 01:44	090410B06	
Parameter Parameter		Result	RL	DF	Qual	<u>Units</u>				
Diesel Range Organi	cs	ND	5.0	1		mg/kg	I			
Surrogates:		REC (%)	Control Limits		Qual					
Decachlorobiphenyl		103	61-145							

RL - Reporting Limit ,

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

EPA 3550B EPA 8015B

09-04-0886

04/10/09

Project: 2703	Martin Luther Kin	g Jr. Way	, Oakland, CA					Pa	ge 5 of 9
Client Sample Numbe	r		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-3-0.7'			09-04-0886-13-A	04/08/09 15:17	Solid	GC 45	04/10/09	04/11/09 02:00	090410B06
Comment(s):	-The sample chromatog						specified st	andard. Qua	antitation
<u>Parameter</u>	of the unknown hydroca	Result	RL	DF	Qual	Units			
Diesel Range Organic	cs	570	500	100		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		95	61-145						
HA-3-1.5'			09-04-0886-14-A	04/08/09 15:26	Solid	GC 45	04/10/09	04/11/09 02:15	090410B06
<u>Parameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	Units	•		
Diesel Range Organio	os ·	ND	5.0	1 ,		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		104	61-145						
HA-3-5'			09-04-0886-15-A	04/08/09 15:43	Solid	GC 45	04/10/09	04/11/09 02:31	090410B06
<u>Parameter</u>	,	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organic	cs	ND	5.0	1		mg/kg	· !		
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		101	61-145		•				

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:
Work Order No:
Preparation:
Method:

09-04-0886 EPA 3550B EPA 8015B

04/10/09

Project: 2703	Martin Luther Ki	ng Jr. Way	, Oakland, CA	<u> </u>		<u>.</u>		Pa	ige 6 of 9
Client Sample Numbe	ər		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-2-0.7'			09-04-0886-16-A	04/08/09 15:47	Solid	GC 45	04/10/09	04/11/09 02:46	090410B06
Comment(s):	-The sample chromate						e specified st	andard. Qua	entitation
<u>Parameter</u>	of the unknown hydro	Result	RL	DF	Qual	Units			
Diesel Range Organi	cs	560	500	100		mg/kg			
Surrogates:		REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl		98	61-145						
HA-2-1.5'			09-04-0886-17-A	04/08/09 15:53	Solid	GC 45	04/10/09	04/11/09 03:01	090410B06
Parameter		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organ	ics	ND	5.0	1		mg/kg	J		
Surrogates:	×	REC (%)	Control Limits		- Qual				
Decachlorobiphenyl		100	61-145						
HA-2-5'			09-04-0886-18-A	04/08/09 16:03	Solid	GC 45	04/10/09	04/11/09 03:17	090410B06
Parameter		Result	<u>RL</u>	DF	Qual	<u>Units</u>	į		
Diesel Range Organ	ics	ND	5.0	. 1		mg/k	. ·		
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		102	61-145						

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Diesel Range Organics

Surrogates:

Date Received: Work Order No:

04/10/09 09-04-0886

Preparation:

EPA 3550B

Method:

EPA 8015B

Page 7 of 0

Project: 2703	Martin Luther Ki	ng Jr. Way	/, Oakland, CA					Pa	ige / of 9
Client Sample Numbe	er		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-8-0.7'			09-04-0886-19-A	04/08/09 16:09	Solid	GC 45	04/10/09	04/11/09 03:32	090410B06
Comment(s):	-The sample chromato						e specified s	tandard. Qua	ıntitation
<u>Parameter</u>		Result	RL	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organi	cs	810	500	100		mg/kg			
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		86	61-145						
HA-8-1.5'			09-04-0886-20-A	04/08/09 16:18	Solid	GC 45	04/10/09	04/11/09 03:48	090410B06
Comment(s):	-The sample chromate						e specified s	tandard. Qua	antitation
Parameter	or the arminomin nyaro	Result	RL	DF	Qual	Units			

Decachlorobiphenyl	106	61-145		
HA-8-5'		09-04-0886-21-A	04/08/09 Solid 16:33	GC 43 04/10/09 04/11/09 090410B04 13:33

mg/kg

<u>Qual</u>

5.0

REC (%)

Control Limits

1			00-01-0000-27-74	16:33			13:33
Comment(s):	-The sample chromate of the unknown hydro						ed standard. Quantitation
<u>Parameter</u>	•	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	
Diesel Range Orga	anics	35	10	2		mg/kg	<i>*</i>
Surrogates:		REC (%)	Control Limits		<u>Qual</u>		
Decachlorobiphen	yl	95	61-145				

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation:

Method:

09-04-0886 **EPA 3550B EPA 8015B**

04/10/09

Client Sample Number			Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
HA-1-0.7'			09-04-0886-22-A	04/08/09 16:37	Solid	GC 43	04/10/09	04/11/09 13:53	090410B04
	-The sample chromatog of the unknown hydroca						specified st	andard. Qua	intitation
<u>Parameter</u>	or the unknown nythota	Result	RL	DF	Qual	<u>Units</u>			,
Diesel Range Organic	s	1300	400	80		mg/kg			
urrogates:		REC (%)	Control Limits		Qual				
ecachlorobiphenyl		107	61-145						
HA-1-1.5'			09-04-0886-23-A	04/08/09 16:44	Solid	GC 43	04/10/09	04/11/09 14:13	090410B04
<u>'arameter</u>		Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organic	s	ND	5.0	1		mg/kg	l		
Surrogates:		REC (%)	Control Limits		Qual				
Decachlorobiphenyl		89	61-145						
HA-1-5'			09-04-0886-24-A	04/08/09 17:02	Solid	GC 43	04/10/09	04/11/09 14:34	090410B0
Comment(s):	-The sample chromatog						e specified s	tandard. Qu	antitation
Parameter	of the unknown hydroca	Result	e sample was based t <u>RL</u>	ipon the speci <u>DF</u>	ried standa Qual	ura. <u>Units</u>			
Diesel Range Organic	s	19	5.0	1	***	mg/kg]		
Surrogates:		REC (%)	Control Limits		Qual	•			

RL - Reporting Limit , DF - Dilution Factor ,

Decachlorobiphenyl

89

Qual - Qualifiers

61-145

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

04/10/09 09-04-0886 EPA 3550B EPA 8015B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 9 of 9

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-025-686	N/A	Solid	GC 43	04/10/09	04/11/09 10:30	090410B04
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg	•		
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	96	61-145						
Method Blank		099-12-025-687	N/A	Solid	GC 45	04/10/09	04/10/09 20:09	090410B06
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Diesel Range Organics	ND	5.0	1		mg/kg	l		
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	104	61-145						

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 7

Project: 2703 Martin Luther K	ing Jr. vvay	, Oakland, CA					ı a	ige i oi i
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-5-0.7 ¹		09-04-0886-1-A	04/08/09 11:30	Solid	GC 45	04/10/09	04/10/09 22:26	090410B07
<u>Parameter</u>	Result	RL.	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	5800	2500	100		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	144	61-145						•
HA-5-1.5'		09-04-0886-2-A	04/08/09 11:40	Solid	GC 45	04/10/09	04/10/09 22:41	090410B07
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	105	61-145						
HA-5-5'		09-04-0886-3-A	04/08/09 11:57	Solid	GC 45	04/10/09	04/10/09 22:57	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		-	
TPH as Motor Oil	ND	25	1		mg/kg)		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	98	61-145						
HA-4-0.7'		09-04-0886-4-A	04/08/09 12:04	Solid	GC 45	04/10/09	04/10/09 23:12	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	i		
TPH as Motor Oil	7800	2500	100		mg/k	9		
Surrogates:	<u>REC (%)</u>	Control Limits		Qual			,	
Decachlorobiphenyl	126	61-145						

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 2 of 7

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-4-1.5'		09-04-0886-5-A	04/08/09 12:11	Solid	GC 45	04/10/09	04/10/09 23:26	090410B07
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	102	61-145						
HA-4-5		09-04-0886-6-A	04/08/09 12:25	Solid	GC 45	04/10/09	04/10/09 23:42	090410B07
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	104	61-145						
HA-6-0.7'		09-04-0886-7-A	04/08/09 12:31	Solid	GC 45	04/10/09	04/10/09 23:57	090410B07
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	7400	2500	100		mg/kg	l .		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	125	61-145						
HA-6-1.5'		09-04-0886-8-A	04/08/09 12:40	Solid	GC 45	04/10/09	04/11/09 00:13	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	!		
TPH as Motor Oil	290	120	5		mg/kg	9		
Surrogates:	REC (%)	Control Limits		Qual				

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 3 of 7

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-6-5'		09-04-0886-9-A	04/08/09 12:55	Solid	GC 45	04/10/09	04/11/09 00:29	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	230	25	. 1		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	97	61-145			•			
HA-7-0.7'		09-04-0886-10-A	04/08/09 14:53	Solid	GC 45	04/10/09	04/11/09 00:44	090410B07
Parameter	Result	RL	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	11000	2500	100		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	111	61-145						
HA-7-1.5'		09-04-0886-11-A	04/08/09 15:02	Solid	GC 45	04/10/09	04/11/09 01:30	090410B07
Parameter	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/ko]		
<u>Surrogates:</u>	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	99	61-145						
HA-7-5'		09-04-0886-12-A	04/08/09 15:15	Solid	GC 45	04/10/09	04/11/09 01:44	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>	i		
TPH as Motor Oil	ND	25	1		mg/k	g		
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	103	61-145						
•								

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 4 of 7

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-3-0.7'		09-04-0886-13-A	04/08/09 15:17	Solid	GC 45	04/10/09	04/11/09 02:00	090410B07
<u>Parameter</u>	Result	RL	DF	Qual	<u>Units</u>		,	
TPH as Motor Oil	6300	2500	100		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual				
Decachlorobiphenyl	95	61-145						
HA-3-1.5'		09-04-0886-14-A	04/08/09 15:26	Solid	GC 45	04/10/09	04/11/09 02:15	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	50	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	104	61-145						
HA-3-5'		09-04-0886-15 - A	04/08/09 15:43	Solid	GC 45	04/10/09	04/11/09 02:31	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	. 1		mg/kg	l		
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	101	61-145			-			
				56 50 C. 10 V Z 460 0 6				
HA-2-0.7'		09-04-0886-16-A	04/08/09 15:47	Solid	GC 45	04/10/09	04/11/09 02:46	090410B07
HA-2-0.7/ Parameter	Result	09-04-0886-16- A · RL	04/08/09 15:47 DF	Solid Qual	GC 45 <u>Units</u>			090410B07
	Result 6700							090410B07
Parameter		· RL	<u>DF</u>		<u>Units</u>			090410B07

DF - Dilution Factor ,

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 5 of 7

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-2-1.5'		09-04-0886-17-A	04/08/09 15:53	Solid	GC 45	04/10/09	04/11/09 03:01	090410B07
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	100	61-145			,			
HA-2-5'		09-04-0886-18-A	04/08/09 16:03	Solid	GC 45	04/10/09	04/11/09 03:17	090410B07
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	102	61-145						
HA-8-0.7'		09-04-0886-19-A	04/08/09 16:09	Solid	GC 45	04/10/09	04/11/09 03:32	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	9600	2500	100		mg/kg	I		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	86	61-145						
HA-8-1.5'		09-04-0886-20-A	04/08/09 16:18	Solid	GC 45	04/10/09	04/11/09 03:48	090410B07
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	74	25	1		mg/kg	3		
Surrogates:	REC (%)	Control Limits		Qual			÷	
Decachlorobiphenyl	106	61-145						

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 6 of 7

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
HA-8-5'		09-04-0886-21-A	04/08/09 16:33	Solid	GC 43	04/10/09	04/11/09 13:33	090410B05
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	190	50	2		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	95	61-145						
HA-1-0.7'		09-04-0886-22-A	04/08/09 16:37	Solid	GC 43	04/10/09	04/11/09 13:53	090410B05
<u>Parameter</u>	Result	<u>RL</u>	DF	Qual	<u>Units</u>			
TPH as Motor Oil	7900	2000	80		mg/kg			
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	•			
Decachlorobiphenyl	107	61-145						
HA-1-1.5'		09-04-0886-23-A	04/08/09 16:44	Solid	GC 43	04/10/09	04/11/09 14:13	090410B05
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	89	61-145						
HA-1-5'		09-04-0886-24-A	04/08/09 17:02	Solid	GC 43	04/10/09	04/11/09 14:34	090410B05
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	<u>1</u>		
TPH as Motor Oil	97	25	1		mg/k	g		•
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	89	61-145						

RL - Reporting Limit ,

DF - Dilution Factor

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 7 of 7

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-254-721	N/A	Solid	GC 43	04/10/09	04/11/09 10:30	090410B05
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	96	61-145						
Method Blank		099-12-254-722	N/A	Solid	GC 45	04/10/09	04/10/09 20:09	090410B07
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual				
Decachlorobiphenyl	104	61-145			•			

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method: Units: EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 13

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
HA-5-0.7'			09-04-08	386-1-A	04/08/09 11:30	Solid	GC/MS MM	04/13/09	04/17/ 23:4		090413L13
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Naphthalene	ND	0.040	2		Benzo (a) Anth	rracene		0.29	0.040	2	
2-Methylnaphthalene	ND	0.040	2		Chrysene			0.48	0.040	2	
Acenaphthylene	ND	0.040	2		Benzo (k) Fluo	ranthene		0.61	0.040	2	
Acenaphthene	ND	0.040	2		Benzo (b) Fluo	ranthene		0.56	0.040	2	
Fluorene	ND	0.040	2		Benzo (a) Pyre	ene		0.51	0.040	2	
Phenanthrene	0.25	0.040	2		Benzo (g,h,i) F	Perylene		0.18	0.040	2	
Anthracene	0.075	0.040	2		Indeno (1,2,3-	c,d) Pyrene	;	0.16	0.040	2	
Fluoranthene	0.39	0.040	2		Dibenz (a,h) A	nthracene		0.048	0.040	2	
Pyrene	0.98	0.040	2		1-Methylnapht	halene		ND	0.040	2	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Nitrobenzene-d5	118	18-162			2-Fluorobiphe	nyl		103	14-146		•
p-Terphenyl-d14	190	34-148		2		_					
HA-5-1.5'			09-04-0	886-2-A	04/08/09 11:40	Solid	GC/MS MM	04/13/09	04/16 02:4		090413L13
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual
Naphthalene	ND	0.020	1		Benzo (a) Ant	hracene		ND	0.020	1	
2-Methylnaphthalene	ND .	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Flu	oranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Flu	oranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyr	ene		ND	0.020	1	
Phenanthrene	ND	0.020	. 1		Benzo (g,h,i)	Perylene		ND ·	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-	c,d) Pyrene	е	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h)	Anthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnaph	thalene		ND	0.020	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Nitrobenzene-d5 p-Terphenyl-d14	108 79	18-162 34-148			2-Fluorobiphe	enyl		80	14-146		

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method:

Units:

EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 2 of 13

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti I Analyz		QC Batch ID
HA-5-5'			09-04-0	886-3-A	04/08/09 11:57	Solid	GC/MS MM	04/13/09	04/16/ 07:20		090413L13
Parameter	Result	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Naphthalene	ND	0.020	1		Benzo (a) Anth	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluo	ranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluo	ranthene		ND	0.020	1	•
Fluorene	ND	0.020	1		Benzo (a) Pyre	ene		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) F			ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-	c,d) Pyrene	•	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A	nthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnapht	halene		ND	0.020	1	
Surrogates:	REC (%)	Control		Qual	Surrogates:		j	REC (%)	<u>Control</u>		<u>Qual</u>
		<u>Limits</u>							<u>Limits</u>		
Nitrobenzene-d5	111	18-162			2-Fluorobipher	nyl		83	14-146		
p-Terphenyl-d14	76	34-148									
HA-4-0.7'			09-04-0	886-4-A	04/08/09	Solid	GC/MS MM	04/13/09	04/20 15:4		090413L13
					12:04				15.4	4	
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Naphthalene	1.2	1.0	50		Benzo (a) Ant	hracene		3.6	1.0	50)
2-Methylnaphthalene	ND	1.0	50		Chrysene			4.0	1.0	50	
Acenaphthylene	ND	1.0	50		Benzo (k) Fluo	oranthene		7.1	1.0	50)
Acenaphthene	1.6	1.0	50		Benzo (b) Flu	oranthene		ND	1.0	50	
Fluorene	1.7	1.0	50		Benzo (a) Pyr	ene		4.2	1.0	50)
Phenanthrene	8.5	1.0	50		Benzo (g,h,i) I	Perylene		1.6	1.0	50)
Anthracene	2.6	1.0	50		Indeno (1,2,3-	c,d) Pyrene	Э	2.2	1.0	50)
Fluoranthene	7.9	1.0	50		Dibenz (a,h) A	Anthracene		ND	1.0	50	
Pyrene	8.1	1.0	50		1-Methylnaph	thalene		ND	1.0	50	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Nitrobenzene-d5	0	18-162		1,2	2-Fluorobiphe	enyl		0	14-146		2,1
p-Terphenyl-d14	0	34-148		2,1	·	•	•				

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Date Received:

04/10/09

Emeryville, CA 94608-2008

Work Order No: Preparation:

09-04-0886

Method:

EPA 3545

Units:

EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 3 of 13

			Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
		09-04-0	886-5-A	04/08/09 12:11	Solid	GC/MS MM	04/13/09			090413L13
Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
ND	0.020	1		Benzo (a) Anth	racene		ND	0.020	1	
ND	0.020	1		Chrysene			ND	0.020	1	
ND	0.020	1					ND	0.020	1	
ND	0.020	- 1		Benzo (b) Fluo	ranthene		ND		1	
ND	0.020	1		Benzo (a) Pyre	ene		ND		1	
ND	0.020	1		Benzo (g,h,i) F	Perylene		ND	0.020	1	
ND	0.020	1		Indeno (1,2,3-	c,d) Pyrene		ND	0.020	• 1	
ND	0.020	1		Dibenz (a,h) A	nthracene		ND	0.020	1	
ND	0.020	1 -		1-Methylnapht	halene			0.020	1	
REC (%)	Control Limits		Qual	Surrogates:		1	REC (%)	Control Limits		<u>Qual</u>
115	18-162			2-Fluorobipher	nyl		82	14-146		
77	34-148									
		09-04-0	886-6-A	04/08/09 12:25	Solid	GC/MS MM	04/13/09			090413L13
Result	RL	DF	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
ND	0.020	1		Benzo (a) Ant	hracene		ND	0.020	1	
ND		1		Chrysene			ND	0.020	1	
ND		1		Benzo (k) Fluo	oranthene		ND	0.020	1	
ND	0.020	1		Benzo (b) Flue	oranthene		ND	0.020	1	
ND	0.020	1		Benzo (a) Pyr	ene		ND	0.020	1	
ND	0.020	1		Benzo (g,h,i) I	Perylene		ND	0.020	1	
ND		1				•	ND	0.020	1	
ND	0.020	1		Dibenz (a,h) A	Anthracene		ND	0.020	1	
ND	0.020	1		1-Methylnaph	thalene		ND	0.020	1	
REC (%)	<u>Control</u> Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
111	18-162			2-Fluorobiphe	nyl		73	14-146		
	ND ND ND ND ND ND ND TS TT Result ND	ND	Result RL DF ND 0.020 1 REC (%) Control Limits 115 18-162 77 34-148 Result RL DF ND 0.020 1 REC (%) Control Limits	Number	Number Collected O9-04-0886-5-A O4/08/09 12:11	Number Collected Matrix	Number Collected Matrix Instrument	Number Collected Matrix Instrument Prepared	Number Note Note	Number Collected Matrix Instrument Prepared Analyzed

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method: Units: EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 4 of 13

Client Sample Number		.*		Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID
HA-6-0.7'			09-04-08	86-7-A	04/08/09 12:31	Solid	GC/MS MN	04/13/09	04/18/ 01:0		090413L13
<u>Parameter</u>	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Naphthalene	ND	0.040	2		Benzo (a) Anth	rracene		ND ·	0.040	2	
2-Methylnaphthalene	ND	0.040	2		Chrysene			0.12	0.040	2	
Acenaphthylene	ND	0.040	2		Benzo (k) Fluo	ranthene		ND	0.040	2	
Acenaphthene	ND	0.040	2		Benzo (b) Fluo	oranthene		ND.	0.040	2	
Fluorene	ND	0.040	2		Benzo (a) Pyre	ene		0.21	0.040	2	
Phenanthrene	ND	0.040	2		Benzo (g,h,i) F	Perylene		0.077	0.040	2	
Anthracene	ND	0.040	2		Indeno (1,2,3-	c,d) Pyrene		ND	0.040	2	
Fluoranthene	ND	0.040	2		Dibenz (a,h) A	nthracene		ND	0.040	2	4
Pyrene	0.077	0.040	2		1-Methylnapht	halene	•	ND	0.040	2	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	188	18-162		2	2-Fluorobipher	nvl		113	14-146		
p-Terphenyl-d14	219	34-148		2							
HA-6-1.5'			09-04-08	886-8-A	04/08/09 12:40	Solid	GC/MS MN	04/13/09	04/16 12:3		090413L13
_		-,						D !	D.	DE	01
Parameter	<u>Result</u>	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Naphthalene	ND	0.020	1		Benzo (a) Ant	hracene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	.1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluo			ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Flu			ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyr			ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) I	•		ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-		•	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A			ND	0.020	1	
Pyrene	.ND	0.020	1		1-Methylnaph	thalene		ND	0.020	1	•
		Control		Qual	Surrogates:			REC (%)	Control		Qual
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	<u>Carrogatoo.</u>			1120 (10)	Limits		4401

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method: Units: EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 5 of 13

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
HA-6-5'			09-04-0	886-9-A	04/08/09 12:55	Solid	GC/MS MM	04/13/09	04/16/ 08:0		090413L13
Parameter Parameter	Result	RL	DF	Qual	Parameter			<u>Result</u>	<u>RL</u>	DF	Qual
Naphthalene	ND	0.020	1		Benzo (a) Anth	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	, ND	0.020	1		Benzo (k) Fluo	ranthene		ND	0.020	1	
Acenaphthene	ND -	0.020	1		Benzo (b) Fluo	ranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyre	ene		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) F	Perylene		ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-	c,d) Pyrene		ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A	nthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnapht	halene		ND	0.020	1	
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	103	18-162			2-Fluorobipher	nyl		62	14-146		
p-Terphenyl-d14	68	34-148									
HA-7-0.7'			09-04-0	1886-10-A	04/08/09 14:53	Solid	GC/MS MN	1 04/13/09	04/18/ 01:5		090413L13
Parameter	Result	RL	DF	Qual	Parameter			Result	RL	DF	<u>Qual</u>
Naphthalene	ND	0.040	2		Benzo (a) Ant	nracene	-	ND	0.040	2	
2-Methylnaphthalene	ND	0.040	2		Chrysene	.,		0.091	0.040	2	
Acenaphthylene	ND	0.040	2		Benzo (k) Fluo	ranthene		ND	0.040	2	
Acenaphthene	ND	0.040	2		Benzo (b) Fluo			ND	0.040	2	
Fluorene	ND	0.040	2		Benzo (a) Pyr			0.18	0.040	2	
Phenanthrene	ND	0.040	2		Benzo (g,h,i) I			ND	0.040	2	
Anthracene	ND	0.040	2		Indeno (1,2,3-		•	ND	0.040	2	
Fluoranthene	ND	0.040	2		Dibenz (a,h) A	. ,		ND	0.040	2	
Pyrene	ND	0.040	2		1-Methylnaphi	halene		ND	0.040	2	
Surrogates:	REC (%)	Control Limits	_	<u>Qual</u>	Surrogates:			REC (%)	<u>Control</u> Limits		Qual
Nitrobenzene-d5	101	18-162	'C'	•	2-Fluorobiphe	nyl		93	14-146		
p-Terphenyl-d14	235	34-148		2							

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

Work Order No:

Preparation:

Method:

Units:

04/10/09

09-04-0886 **EPA 3545**

EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 6 of 13

Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
HA-7-1.5'			09-04-0	886-11-A	04/08/09 15:02	Solid	GC/MS MM	04/13/09	04/16/ 06:3		090413L13
Parameter	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Naphthalene	ND	0.020	1		Benzo (a) Anth	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluo	ranthene		ND	0.020	1	
Acenaphthene	, ND	0.020	1		Benzo (b) Fluo	ranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyre	ene		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) F			ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-0	c,d) Pyrene		ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A	nthracene		ND	0.020	1	
Pyrene	. ND	0.020	1	•	1-Methylnapht	halene		ND	0.020	1	
Surrogates:	<u>REC (%)</u>	<u>Control</u>		Qual ·	Surrogates:			REC (%)	<u>Control</u>		<u>Qual</u>
Nitrobenzene-d5	97	<u>Limits</u> 18-162			2-Fluorobipher	nyl		59	<u>Limits</u> 14-146		
p-Terphenyl-d14	65	34-148	800 908 at 1 4 4 4 5 5					3.44.Y		Ser TWO L. Ma	753-482-55-882-8830
HA-7-5'		i de la companya de	09-04-0)886-12-A	04/08/09 15:15	Solid	GC/MS MM	04/13/09	04/16/ 11:5		090413L13
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Naphthalene	ND	0.020	1		Benzo (a) Anti	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	´ 1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluo	ranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluo	oranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyre	ene		ND .	0.020	1	
Phenanthrene	· ND	0.020	1		Benzo (g,h,i) f	Perylene		ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-)	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A	nthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnapht	halene		ND	0.020	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5 p-Terphenyl-d14	97 78	18-162 34-148			2-Fluorobiphe	nyl	r	71	14-146		

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

Work Order No:

Preparation: Method: Units:

04/10/09

09-04-0886

EPA 3545

EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 7 of 13

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tii Analyz		QC Batch ID
HA-3-0.7'			09-04-08	886-13-A	04/08/09 15:17	Solid	GC/MS MM	04/13/09	04/18/0 02:39)9)	090413L13
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
Naphthalene	ND	0.040	2		Benzo (a) Anti	hracene		ND	0.040	2	
2-Methylnaphthalene	ND	0.040	2		Chrysene			0.070	0.040	2	
Acenaphthylene	ND	0.040	2		Benzo (k) Fluo	oranthene		ND	0.040	2	
Acenaphthene	ND	0.040	2		Benzo (b) Fluo	oranthene		ND	0.040	2	
Fluorene	ND	0.040	2		Benzo (a) Pyr	ene		0.16	0.040	2	
Phenanthrene	ND	0.040	2		Benzo (g,h,i) I	Perylene		ND	0.040	2	
Anthracene	ND	0.040	2		Indeno (1,2,3-	c,d) Pyrene		ND	0.040	2	
Fluoranthene	ND	0.040	2		Dibenz (a,h) A	Anthracene		ND	0.040	2	
Pyrene	ND	0.040	2		1-Methylnaph	thalene		ND	0.040	. 2	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	98	18-162			2-Fluorobiphe	enyl		95	14-146		
p-Terphenyl-d14	228	34-148		2							
HA-3-1,5"			09-04-0	886-14-A	04/08/09 15:26	Solid	GC/MS MN	04/13/09	04/16/ 08:5		090413L13
Parameter	Result	<u>RL</u>	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Naphthalene	ND	0.020	1		Benzo (a) Ant	thracene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Flu	oranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Flu	oranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyr	rene		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i)			ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3	-c,d) Pyreņe	•	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h)	Anthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnaph	thalene		ND	0.020	1	
Surrogates:	REC (%)	<u>Control</u> Limits		Qual	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	114	18-162			2-Fluorobiphe	enyl		86	14-146		
p-Terphenyl-d14	84	34-148									

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method:

Units:

EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 8 of 13

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
HA-3-5'			09-04-08	86-15-A	04/08/09 15:43	Solid	GC/MS MM	04/13/09	04/16/ 03:31		090413L13
Parameter Parameter	Result	RL	DF	Qual	Parameter			Result	<u>RL</u>	DF	Qual
Naphthalene	ND	0.020	1		Benzo (a) Anthr	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluor	anthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluor	anthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyrer	ne .		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) Pe			ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-c	d) Pyrene		ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) Ar	thracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnaphth	alene		ND	0.020	1	
<u>Surrogates:</u>	REC (%)	Control		Qual	Surrogates:			REC (%)	Control		<u>Qual</u>
Nitrobenzene-d5	106	<u>Limits</u> 18-162			2-Fluorobiphen	vl		75	<u>Limits</u> 14-146		
p-Terphenyl-d14	80	34-148			21140100.	, .					
HA-2-0.7'			09-04-08	386-16-A	04/08/09 15:47	Solid	GC/MS MN	1 04/13/09	04/18/ 03:2		090413L13
	<u> </u>					<u> </u>		2.274.0			
<u>Parameter</u>	<u>Result</u>	RL	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	
Naphthalene	ND	0.040	2		Benzo (a) Anth	racene		ND	0.040	2	
2-Methylnaphthalene	ND	0.040	2		Chrysene			ND	0.040	2	
Acenaphthylene	ND	0.040	2		Benzo (k) Fluo			ND	0.040	2	
Acenaphthene	ND	0.040	2		Benzo (b) Fluo			ND	0.040	2	
Fluorene	ND ·	0.040	2		Benzo (a) Pyre			0.19	0.040	2	
Phenanthrene	ND ·	0.040	2		Benzo (g,h,i) P	•		ND	0.040	2	
Anthracene	ND	0.040	2		Indeno (1,2,3-c		•	ND	0.040	2	
Fluoranthene	ND	0.040	2		Dibenz (a,h) A			ND	0.040	2	
Pyrene	· ND	0.040	2		1-Methylnaphth	nalene		ND	0.040	2	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	99	18-162			2-Fluorobipher	nyl		95	14-146		
p-Terphenyl-d14	306	34-148		2							

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method: Units: EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 9 of 13

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
HA-2-1.5'			09-04-08	886-17-A	04/08/09 15:53	Solid	GC/MS MM	04/13/09	04/16/ 05:0		090413L13
<u>Parameter</u>	Result	<u>RL</u>	DF	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	DF	<u>Qual</u>
Naphthalene	ND	0.020	1		Benzo (a) Anth	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluor	ranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluor	ranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyre	ne -		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) P	erylene		ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-c	d) Pyrene		ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) Ar	nthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnaphth	nalene		ND	0.020	1	
Surrogates:	REC (%)	Control		<u>Qual</u>	Surrogates:			REC (%)	Control		<u>Qual</u>
Nitrobenzene-d5 p-Terphenyl-d14	51 37	<u>Limits</u> 18-162 34-148			2-Fluorobiphen	ıyl		37	<u>Limits</u> 14-146		
HA-2-5!			09-04-0	886-18-A	04/08/09 16:03	Solid	GC/MS MN	04/13/09	04/16 09:3		090413L13
Parameter	Result	RL	DF	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Naphthalene	ND	0.020	1		Benzo (a) Anth	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluo	ranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluo	ranthene		ND	0.020	. 1	
Fluorene	ND	0.020	1		Benzo (a) Pyre			ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) F	Perylene		ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-c	c,d) Pyrene)	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A	. , .		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnapht			ND	0.020	1	
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	114	18-162			2-Fluorobipher	nyl	÷	81	14-146		
p-Terphenyl-d14	81	34-148				-					

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method:

EPA 8270C SIM PAHs

Units:

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 10 of 13

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T Analyz		QC Batch ID	
HA-8-0.7%				886-19-A	04/08/09 16:09	Solid	GC/MS MM	04/13/09	04/18/09 04:08		090413L13	
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	
Naphthalene	ND	0.040	2		Benzo (a) Anti	racene		ND	0.040	2		
2-Methylnaphthalene	ND	0.040	2		Chrysene			0.079	0.040	2		
Acenaphthylene	ND	0.040	2		Benzo (k) Fluo	ranthene		ND	0.040	2		
Acenaphthene	ND	0.040	2		Benzo (b) Fluo	oranthene		ND	0.040	2		
Fluorene	ND	0.040	2		Benzo (a) Pyre	ene		0.17	0.040	2		
Phenanthrene	ND	0.040	2		Benzo (g,h,i) F	Perylene		ND	0.040	2		
Anthracene	ND	0.040	2		Indeno (1,2,3-	c,d) Pyrene		ND	0.040	2		
Fluoranthene	ND	0.040	2		Dibenz (a,h) A	nthracene		ND	0.040	2		
Pyrene ·	ND	0.040	2		1-Methylnapht	halene		ND	0.040	2		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual	
Nitrobenzene-d5	102	18-162			2-Fluorobiphe	nyl		97	14-146			
p-Terphenyl-d14	309	34-148		2								
HA-8-1.5'			09-04-0	886-20-A	04/08/09 16:18	Solid	GC/MS MN	04/13/09	04/16 11:0		090413L13	
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual	
Naphthalene	ND	0.020	1		Benzo (a) Ant	hracene		0.17	0.020	1		
2-Methylnaphthalene	ND	0.020	1		Chrysene			0.18	0.020	1		
Acenaphthylene	ND	0.020	1		Benzo (k) Fluo	oranthene		0.18	0.020	1		
Acenaphthene	ND	0.020	1		Benzo (b) Flu			0.15	0.020	1		
Fluorene	ND	0.020	1		Benzo (a) Pyr			0.20	0.020	1		
Phenanthrene	0.10	0.020	1		Benzo (g,h,i) l			0.045	0.020	1		
Anthracene	0.027	0.020	1		Indeno (1,2,3-	•		0.061	0.020	1		
Fluoranthene	0.29	0.020	1		Dibenz (a,h) A			ND	0.020	1		
Pyrene	0.31	0.020	1		1-Methylnaph	thalene		ND	0.020	1		
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual	
Nitrobenzene-d5	120	18-162			2-Fluorobiphe	enyl		84	14-146			
p-Terphenyl-d14	88	34-148				-					,	

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

Work Order No:

Preparation:

Method:

Units:

EPA 8270C SIM PAHs

mg/kg

04/10/09 09-04-0886

EPA 3545

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 11 of 13

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Ti Analyz		QC Batch ID
HA-8-5'	and the contraction of the contr		09-04-0)886-21-A	04/08/09 16:33	Solid	GC/MS MM	04/13/09	04/17/ 19:5		090413L14
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Naphthalene	ND	0.020	1.		Benzo (a) Anth	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluor	ranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluo	ranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyre	ne		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) P	erylene		ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-c	d) Pyrene	;	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) Ai	nthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnaphth	nalene		ND	0.020	1	
Surrogates:	REC (%)	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		Qual
Nitrobenzene-d5	83	18-162			2-Fluorobipher	ıvl		72	14-146		
p-Terphenyl-d14	75	34-148			•	•					
HA-1-0.7'			09-04-	0886-22-A	04/08/09 16:37	Solid	GC/MS MN	1 04/13/09	04/18 04:5		090413L14
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Naphthalene	ND	0.040	2		Benzo (a) Anth	racene		ND	0.040	2	
2-Methylnaphthalene	ND	0.040	2		Chrysene			ND	0.040	2	
Acenaphthylene	ND	0.040	2		Benzo (k) Fluo	ranthene		ND	0.040	2	
Acenaphthene	ND	0.040	2		Benzo (b) Fluo	ranthene		ND	0.040	2	
Fluorene	ND	0.040	2		Benzo (a) Pyre	ene		0.18	0.040	2	
Phenanthrene	ND	0.040	2		Benzo (g,h,i) F	Perylene		ND	0.040	2	
Anthracene	ND	0.040	2		Indeno (1,2,3-	c,d) Pyrene	•	ND	0.040	2	
Fluoranthene	N.D.	0.040	2	54	Dibenz (a,h) A	nthracene		ND	0.040	2	
riuoianiliene	ND									_	
	ND ND	0.040	2		1-Methylnapht	halene		ND	0.040	2	
Pyrene			2	Qual	1-Methylnapht Surrogates:	halene		REC (%)	0.040 Control Limits	2	Qual
Pyrene Surrogates: Nitrobenzene-d5	ND	0.040 Control	2	Qual					Control	2	

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method: Units: EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 12 of 13

FAX: (714) 894-7501

Client Sample Number				Sample umber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tii Analyze		QC Batch ID
HA-1-1,5'			09-04-08	886-23-A	04/08/09 16:44	Solid	GC/MS MM	04/13/09	04/16/0 10:21		090413L14
Parameter Parameter	Result	RL	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Naphthalene	ND	0.020	1		Benzo (a) Anth	rracene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	. ND	0.020	1		Benzo (k) Fluo	ranthene		ND.	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluo	oranthene		ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyre	ene		ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) F	Perylene		ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-			ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A	nthracene		ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnapht	halene		ND	0.020	1	
Surrogates:	<u>REC (%)</u>	Control Limits		Qual	Surrogates:			REC (%)	Control Limits		Qual
Nitrobenzene-d5	95	18-162			2-Fluorobiphe	nyl		57	14-146		
p-Terphenyl-d14	78	34-148			•	•					
HA-1-5'			09-04-0	886-24-A	04/08/09 17:02	Solid	GC/MS MN	n 04/13/09	04/16/ 13:1		090413L14
								D#	DI.	DE	Ovel
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Naphthalene	ND	0.020	1		Benzo (a) Ant	hracene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Flu			ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Flu			ND	0.020	1	
Fluorene	ND	0.020	1 .		Benzo (a) Pyr			ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i)			ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3)	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h)			ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnaph	thalene		ND	0.020	1	01
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			<u>REC (%)</u>	Control Limits		<u>Qual</u>
Nitrobenzene-d5 p-Terphenyl-d14	109 108	18-162 34-148			2-Fluorobiphe	enyl		80	14-146		
p respicitly are		2									

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0886

Preparation:

EPA 3545

Method: Units: EPA 8270C SIM PAHs

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 13 of 13

Client Sample Number			Lab Sa Numl		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Tii Analyz		QC Batch ID
Method Blank			099-06-010	-294	N/A	Solid	GC/MS MM	04/13/09	04/15/0 16:56		090413L13
Parameter	Result	RL	DF Q	ua <u>l</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Naphthalene	ND	0.020	1		Benzo (a) Anth	racene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Fluc	ranthene		ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Fluo			ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyre			ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i) F			ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3-			ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A			ND	0.020	1	
Pyrene	ND	0.020	1		1-Methylnapht			ND	0.020	1	
Surrogates:	REC (%)	Control Limits	Qı	<u>ıal</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	108	18-162			2-Fluorobiphe	nyl		85	14-146		
p-Terphenyl-d14	89	34-148									
Method Blank			099-06-010)-295	N/A	Solid	GC/MS MN	04/13/09	04/16/ 23:3		090413L14
							<u> </u>		- Di	DE	01
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u> Q	<u>ual</u>	<u>Parameter</u>			<u>Result</u>	RL	<u>D</u> F	<u>Qual</u>
Naphthalene	ND	0.020	1		Benzo (a) Ant	hracene		ND	0.020	1	
2-Methylnaphthalene	ND	0.020	1		Chrysene			ND	0.020	1	
Acenaphthylene	ND	0.020	1		Benzo (k) Flu			ND	0.020	1	
Acenaphthene	ND	0.020	1		Benzo (b) Flu			ND	0.020	1	
Fluorene	ND	0.020	1		Benzo (a) Pyr			ND	0.020	1	
Phenanthrene	ND	0.020	1		Benzo (g,h,i)			ND	0.020	1	
Anthracene	ND	0.020	1		Indeno (1,2,3		;	ND	0.020	1	
Fluoranthene	ND	0.020	1		Dibenz (a,h) A			ND	0.020	-1	
Pyrene	ND	0.020	1 .		1-Methylnaph	thalene		ND	0.020	1	
Surrogates:	<u>REC (%)</u>	Control Limits	Q	<u>ual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Nitrobenzene-d5	124	18-162			2-Fluorobiphe	enyl		70	14-146		
p-Terphenyl-d14	62	34-148									

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3050B EPA 6010B

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-04-1651-4	Solid	ICP 5300	04/20/09		04/21/09	090420S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Lead	102	98	75-125	3	0-20	

RPD - Relative Percent Difference, C

CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3050B EPA 6010B

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	F	Date Analyzed	MS/MSD Batch Number
HA-4-5	Solid	ICP 5300	04/20/09		04/21/09	090420S03
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	<u>Qualifiers</u>
Lead	109	102	75-125	5	0-20	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
HA-1-1.5'	Solid	GC 43	04/10/09		04/11/09	090410S04
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	136	137	64-130	0	0-15	3

Mullima_

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

04/10/09 09-04-0886 EPA 3550B **EPA 8015B**

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
HA-4-5'	Solid	GC 45	04/10/09		04/10/09	090410S06
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	93	93	64-130	0	0-15	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	MS/MSD Batch Number
HA-1-1.5'	Solid	GC 43	04/10/09	04/11/09	090410S05
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD RI	PD CL Qualifiers
TPH as Motor Oil	91	92	64-130	1	0-15

RPD - Relative Percent Difference ,

CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3550B EPA 8015B (M)

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
HA-4-5'	Solid	GC 45	04/10/09		04/10/09	090410807
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Motor Oil	81	84	64-130	5	0-15	

MMM__

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

04/10/09 09-04-0886 **EPA 3545 EPA 8270C SIM PAHs**

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
HA-2-5'	Solid	GC/MS MM	04/13/09		04/17/09	090413S13
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	79	79	21-133	1	0-25	
2-Methylnaphthalene	82	82	21-140	0	0-25	
Acenaphthylene	81	80	33-145	1	0-25	
Acenaphthene	80	78	40-106	2	0-25	~
Fluorene	81	80	59-121	2	0-25	
Phenanthrene	80	78	54-120	3	0-25	
Anthracene	75	74	27-133	1	0-25	
Fluoranthene	76	71	26-137	7	0-25	
Pyrene	89	83	6-156	7	0-25	
Benzo (a) Anthracene	80	77	33-143	4	0-25	
Chrysene	78	74	17-168	5	0-25	
Benzo (k) Fluoranthene	101	98	24-159	3	0-25	
Benzo (b) Fluoranthene	99	95	24-159	5	0-25	
Benzo (a) Pyrene	85	84	17-163	2	0-25	
Benzo (g,h,i) Perylene	28	29	0-219	3	0-25	
Indeno (1,2,3-c,d) Pyrene	38	40	0-171	6	0-25	
Dibenz (a,h) Anthracene	32	34	0-227	5	0-25	
1-Methylnaphthalene	81	80	40-160	1	0-25	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0886 EPA 3545 EPA 8270C SIM PAHs

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Д	Date nalyzed	MS/MSD Batch Number
HA-8-5'	Solid	GC/MS MM	04/13/09	()4/17/09	090413S14
Parameter	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	70	75	21-133	6	0-25	
2-Methylnaphthalene	73	77	21-140	5	0-25	
Acenaphthylene	71	76	33-145	6	0-25	
Acenaphthene	70	75	40-106	6	0-25	
Fluorene	71	76	59-121	6	0-25	
Phenanthrene	69	77	54-120	10	0-25	
Anthracene	67	72	27-133	7	0-25	
Fluoranthene	63	70	26-137	10	0-25	
Pyrene	75	95	6-156	23	0-25	
Benzo (a) Anthracene	69	76	33-143	9	0-25	
Chrysene	65	76	17-168	15	0-25	
Benzo (k) Fluoranthene	87	102	24-159	16	0-25	
Benzo (b) Fluoranthene	84	103	24-159	21	0-25	
Benzo (a) Pyrene	73	84	17-163	13	0-25	
Benzo (g,h,i) Perylene	25	25	0-219	2	0-25	
Indeno (1,2,3-c,d) Pyrene	35	33	0-171	5	0-25	
Dibenz (a,h) Anthracene	30	28	0-227	6	0-25	
1-Methylnaphthalene	71	76	40-160	7	0-25	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0886 EPA 3050B EPA 6010B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date rument Prepared		LCS/LCS Num	
097-01-002-12,207	Solid	ICP 5300	04/20/09	04/22/09	09042	0L02
<u>Parameter</u>	LCS %	REC LCSD	<u>%REC </u>	REC CL R	<u>PD RPD</u>	CL Qualifiers
Lead	102	103		30-120	1 . 0-2	20

alscience nvironmental Quality Control - Laboratory Control Sample aboratories, Inc.

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

N/A

Work Order No:

09-04-0886

Preparation:

EPA 3050B

Method:

EPA 6010B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Analyzed	Lab File II) LC	S Batch Number
097-01-002-12,210	Solid	ICP 5300	04/21/09	090420-1-0	3	090420L03
Parameter		Conc Added	Conc Recovered	LCS %Rec	%Rec CL	Qualifiers
Lead		25.0	26.9	108	80-120	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0886 EPA 3550B EPA 8015B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bato Number	h
099-12-025-686	Solid	GC 43	04/10/09	04/11/09	090410B04	
<u>Parameter</u>	LCS %	REC LCSD S	<u>%REC</u> <u>%F</u>	REC CL RPD	RPD CL	Qualifiers
Diesel Range Organics	98	103	7	5-123 5	0-12	

Mulhay_

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0886 EPA 3550B EPA 8015B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	d	LCS/LCSD Batc Number	h
099-12-025-687	Solid	GC 45	04/10/09	04/10/09)	090410B06	
<u>Parameter</u>	LCS %RE	<u>C LCSD (</u>	<u>%REC</u> <u>%F</u>	REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	100	99	7	75-123	1	0-12	

MMMM_

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bato Number	h
099-12-254-721	Solid	GC 43	04/10/09	04/11/09	090410B05	
<u>Parameter</u>	LCS %RE	C LCSD %	SREC %REC	CL RPD	RPD CL	Qualifiers
TPH as Motor Oil	96	96	75-1	23 0	0-12	

Muhan_

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0886 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz		LCS/LCSD Batc Number	h
099-12-254-722	Solid	GC 45	04/10/09	04/10/0	9	090410B07	
<u>Parameter</u>	LCS %F	REC LCSD	<u>%REC</u> <u>%</u>	ÉEC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Motor Oil	86	86		75-123	0	0-12	

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

N/A 09-04-0886 EPA 3545 EPA 8270C SIM PAHs

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Numbe	
099-06-010-294	Solid	GC/MS MM	04/13/09	04/15	/09	090413L	13
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Naphthalene	93	93	21-133	2-152	1	0-25	
2-Methylnaphthalene	97	96	21-140	1-160	0	0-25	
Acenaphthylene	92	92	33-145	14-164	1	0-25	•
Acenaphthene	94	94	48-108	38-118	0	0-11	
Fluorene	95	96	59-121	49-131	1	0-25	
Phenanthrene	96	96	54-120	43-131	0	0-25	
Anthracene	74	75	27-133	9-151	2	0-25	
Fluoranthene	90	90	26-137	8-156	0	0-25	
Pyrene	95	95	28-106	15-119	0	0-16	
Benzo (a) Anthracene	90	90	33-143	15-161	0	0-25	
Chrysene	90	90	17-168	0-193	0	0-25	
Benzo (k) Fluoranthene	102	102	24-159	2-182	. 1	0-25	
Benzo (b) Fluoranthene	98	98	24-159	2-182	1	0-25	
Benzo (a) Pyrene	93	93	17-163	0-187	0	0-25	
Benzo (g,h,i) Perylene	83	83	0-227	0-265	1	0-25	
Indeno (1,2,3-c,d) Pyrene	92	94	0-171	0-200	2	0-25	
Dibenz (a,h) Anthracene	71 ·	71	0-219	0-256	1	0-25	
1-Methylnaphthalene	96	96	40-160	20-180	0	0-25	

Total number of LCS compounds: 18

Total number of ME compounds: 0

Total number of ME compounds allowed:

1

LCS ME CL validation result: Pass

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No:

Preparation: Method:

N/A 09-04-0886

EPA 3545

EPA 8270C SIM PAHs

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD Numbe	
099-06-010-295	Solid	GC/MS MM	04/13/09	04/17	/09	090413L	14
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	<u>RPD</u>	RPD CL	Qualifiers
Naphthalene	99	99	21-133	2-152	0	0-25	
2-Methylnaphthalene	105	106	21-140	1-160	0	0-25	
Acenaphthylene	98	99	33-145	14-164	1	0-25	
Acenaphthene	100	100	48-108	38-118	1	0-11	
Fluorene	104 105 59-12				1	0-25	
Phenanthrene	· 95	95 96 54-120				0-25	
Anthracene	88	89	27-133	9-151	2	0-25	
Fluoranthene	85	86	26-137	8-156	1	0-25	
Pyrene	92	94	28-106	15-119	1	0-16	
Benzo (a) Anthracene	91	91	33-143	15-161	0	0-25	
Chrysene	88	89	17-168	0-193	1	0-25	
Benzo (k) Fluoranthene	98	99	24-159	2-182	1	0-25	
Benzo (b) Fluoranthene	95	94	24-159	2-182	2	0-25	
Benzo (a) Pyrene	93	94	17-163	0-187	1	0-25	
Benzo (g,h,i) Perylene	85	84	0-227	0-265	0	0-25	
Indeno (1,2,3-c,d) Pyrene	99	99	0-171	0-200	0	0-25	
Dibenz (a,h) Anthracene	75	75	0-219	0-256	1	0-25	
1-Methylnaphthalene	105	106	40-160	20-180	1	0-25	

Total number of LCS compounds: 18 Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number:

09-04-0886

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
C	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
U	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

	LÔCATION)						1	S	hell	Oi	I P	ro	du	cts	s C	ha	in	Of	Cu	sto	-										•	,
	()	11111	Ple	ease Ch	eck A	ppiopr				Pri	nf B	ill T	o Cc	nta	t Na	me:					∴ÍN	CIDE	NT	# (E	ΝV	SER	(VIC	ES)	CHEC	K IF NO INC	DENT # APPLI	s
)	☑ EN	VV. SERVICES		MOTIV	/A RETAIL		SHELL	RETAIL	.	Dei	nis E	3rov	vn							9						9		DATI	7_	-/8/	<u> </u>
	CA ()	□ M	OTIVA SD&CN		CONSU	JLTANT		LUBES	5						PO	#								ŞA	•						, , , , ,	7
)	☐ SH	IELL PIPELINI	E C	OTHER	<u> </u>				<u> </u>	Τ	T	T	Ï				Ť	Ť	<u>.::::</u> .		2	9	4	1	9	,		PAG	E:1	of	د
AMPLING COMPANY					LOG	CODE						RESS: S								ند	State		3	GLOS	BALIDN	_						-
onestoga-R	overs & Associates				CR	AW				270	03 M	lartir	<u>Lu</u>	ther	King	g Jr	Way	,00	Kla HONE NO	nd	CA			TO		101	1876	<u>3</u>		T-course v		
900 Hollis S	treet, Suite A, Emeryville, CA 94608											Carte					•							E-MAS.						CONSULIA	NT PROJECT NO	
OM Sparrow	Hardtopy or PDF Report to)									SAM	PLER NA	AME(S) (F	Pnnt)		•				510-42	0-33	43			shei	ledf@	crav	world.c		USE ON	240781		33
ELÉPHONE	FAX		E-MAIL							-{Erir	n Rei	inha	rt-Ko	ylu															11111111111		- 089	7
	20-3316 510-420-9170 TIME (CALENDAR DAYS):)	<u> </u>	ts	oarrowe	@crawo			F0.	╄																		٧		۳-	-	3
STANDARD (1			2 DAYS	□ 24	HOURS		RESUI	ON V	VEEKEND L											RE	QUE	STED	ANA	ALYS	SIS							
LA - RWQCB	REPORT FORMAT UST AGENCY:																\Box		T		uo			6					T	EMPERAT	URE ON REC	E
SPECIAL II	NSTRUCTIONS OR NOTES :			_		FRACT RATI															sellective fon			CAM17 Metals - Total (6010)		ı					C°	
				_		IBURSEMEN	IT RATE A	APPLIES	_				9								selle			tai	1	,					2.2	
					D NOT NE	EEDED RIFICATIOI	V RECVIES	STED	•				(8260B)			I					using : Mode		(8015B)	٢	ايرا				-		- - -	-
_				, E KC	CEIFI VEI	RIFICATIO	T REQUE	91 CD] <u>8</u>	(OB)	(B)	tes	(B)	<u>6</u>	ê	<u>@</u>	<u>0</u>		9	S(M)		<u>8</u>	tals	270C	(0	8		1			
		SAN	MPLING		¯	PRES	ERVATIVE		NO. OF	8	(826	(826	gen	(856	8260	(826	(85	(826	1	9	70C~		§	7 M	s (8;	(826	(8082)					
AA F	ield Sample Identification	DATE	TIME	MATRIX				ice .	CONT.	TPH-d (8015B	TPHg (8260B)	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)		LEAD (6010B)	PAH (8270C.		TPH - MO	AM1	SVOCs (8270C)	VOCs (8260)	PCBs				PID Reading	s
NEY .		illal			HCL	ниоз на	SO4 NO		-		-	8	10	٤	F	-	-	m	_	_				쒸	S	^	۴	$\vdash \vdash$				-
		118/04	11:30	Soil		1-1-		X	1	X			ļ			-		_	-	X	X		X			\dashv		\vdash				_
	-5-1.5'		11:40					44		Ш					_	_	_	\perp	⊥.	Ш									\bot			_
3 HP	1-5-5'		11:57	٠. أ				$\perp \! \! \! \! \! \perp$	Ш	Ш													Ц									_
I HA	-4-0.7'		12:04	≩: .						Ш											١.											
H	A-4-1.5' 1		12:11	T				TT		П							\Box				Т		П									
کلد ا	1-4-5		12:25	1						\parallel						$\neg \uparrow$					\top		П	\exists					\neg			_
7 140	1-10-07		12:31	1	+		-							$\neg \uparrow$		T	7	\top	\exists		+	\Box	$\dagger \dagger$		\dashv	\dashv		\neg				_
	0 1 151		1	+	+		_	+		-				\dashv	\dashv	_	\dashv	\dashv	\dashv	_	+	-	H	十	$\neg \dagger$	寸		十	-			-
H	7-6-1.5		12:40	-		\vdash	_		┷						-		\dashv	1	$-\!$		-	-	H				\dashv	\dashv	+			_
1 HA	7-6-5	业	12:55	$\overline{\Lambda}$				业	4	上									4	4	4	,										_
		J												.]							1		Ц									
in alshar by: (Si	gnature)			Received by:	(Signature)		14-		-			— - -					ш-					Date					\dashv	Time:			-
Z	Equet lo	5 ()		4	50	سىرە	ــف	0 0	ca	Fz.	\sim	_	ر										4	1	81	6	29			:3	Ö	
	gnature)			Received by:	(Signatule	"			,			α											Date:	ac.	<u> </u>	\ C	 2		Time:	07	-X	_
TTA	nt olen	17. 7		Received by:	(Signahian			>		<u> </u>		<u> </u>	t	- (_							-	الا	-41	<u>Y</u>	<u>ر</u>	<u> </u>	\dashv	Time:	1-65	<u>u</u> _	
	nolley 70/6(0)	1/2/2 173	9	o. area by.	(B-sames	,		L	•								W	Qh)	[a	L	_	- 1		lio	10	0	7		103	0		
- VII,	10000		ν <u> </u>													-	/ 1//	71/	00,	· V			/		, 0				05	/2/06 Revision		-
	51163448	8																												, .		

	AB (LOCATION)				(S	hell	Oi	il F	ro	du	cts	C	ha	in (Of (Cus	toc	ly F	₹ec	or	d						•
☑ CALS	CIENCE ()	2000	······pi	ease Che	ck Apr	ropria	te Bo	x:		Pri	int E	ill T	o Co	ntai	t Na	me:					INCII	DENT	# (E	NV:	SER	VIC	ES) r	1 CHF	K IF NO INCIDENT # APPLIE	is I
	()	⊘ EN	IV. SERVICES		MOTIVA P			SHELL	RETAIL			enis I					1,1,1,1,1				\neg	7 0				9		DAT	1/0/10	
	co ()	О мс	OTIVA SD&C		CONSULTA	ANT		LUBES							PO	#							· · · · ·	P:#				•		
OTH	TAMERICA ()	☐ SH	ELL PIPELIN		OTHER					-:::	::::::	T	T	T			Ť	Ī		تتات		ا ،	Γ.	1				PAG	6E: of	3
SAMPUNGO					LOG COD	E	-			SIT	E ADD	RESS: S	Street a	nd City		ا ب	<u> </u>			Sta	te 1	2 9	1	BALION	9	L				ᅱ
	oga-Rovers & Associates				CRAV	N				27	03 N	/lartir	n Lu	ther	King	g Jr V	Nay ,	Oa	Man	l C	Α		TO		101	876	<u> </u>		CONSULTANT PROJECT NO	
	ollis Street, Suite A, Emeryville, CA 94608											Carte					_		ONE NO											Į
PROJECT O	DNTACT (Hardsopy of PDF Report to)											WE(S) (51	10-420-	3343	***		she	ledf@	craw	orid.		ISE ON	240781 f£Y	
TELEPHON			EMAIL	ten	тоwе@	erawork	1 ~m			Eri	n Re	einha	rt-Ko	ylu													O	9.	04-088	6
	ROUND TIME (CALENDAR DAYS):		<u> </u>				RESULTS	S NEEDE	:D	╁										FOL	ESTE	D AN	ΔΙΥ	SIS				<u> ::6::::</u>		
	DARD (14 DAY)	i	2 DAYS	□ 24 H	OURS			ON W	EEKEND	 	1	_	ī	-								T		1	·			—		_
□ 1A-1	RWQCB REPORT FORMAT			CA CHE	L CONTRA	CT PATE 4	PPI TES			1			ł			- [e lon			(6010)					1	remperature on Rec C°	EIPT
SPEC	CIAL INSTRUCTIONS OR NOTES:			_	E REIMBU			PLIES					a			-				sellective			9)							l
				☐ EDD	NOT NEED	ED				ł	İ		(8260B)						İ		•	(g)	- Total					-		_
	•			RECI	IPT VERIF	TCATION F	REQUESTI																							
		SAN	IPLING.			PRESER	VATIVE			Ē	3260	8260	enat	826(260	260	826(8260	970	00.5	S)	9	Me	(82	826((8082)				
LAB USE ONLY	Field Sample Identification	DATE	TIME	MATRIX	HCL H	IND3 H2S0	4 NONE	ice OTHER	NO. OF CONT.	TPH-d (801	TPHg (8260B)	BTEX (8260B)	5 Oxygenates	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	LEAD (6010B)	PAH (827	monitarin	TPH - MO	CAM17 Metals	SVOCs (8270C)	VOCs (8260)	PCBs (Container PID Reading or Laboratory Notes	
10	HA-7-0.7 '-	4/8/00	2:53	Soil			1	X	1	х	\top							\top	X	7	٠ _	х								
ii l	HA-7-1,5'.		3:02				1	П	П	П												li								
12	HA-7-5'		3:15					П		П	1									T	П	\prod						\top		
13	HA-3-0.7'		3:17			1				П				_							П									
14	142-3-15'		3.26							\prod												П						T		
19	140-3-5'		3:43		TT					П							\neg	7		1										
16	HA = 2 = 0.7' -		3:47				\top			П								T												
ij	110 2 10		3:53		1-1					П	1						\top					\prod				\neg				\Box
-1	HH-Z-115 .		-		1-1		+			H	\vdash	1	\vdash		\dashv	-	十	+	-	+	廾	廾		-			_	十		-
18	HA-2-5.	Y	4:03	<u>¥</u>	4-4-		-	X	M	¥	1_	-	-		\dashv	\dashv	+		+4	4	4	134	-	-				+		\dashv
									<u> </u>										i			Date						íme:		
Relinquishe	ed by: (Signature)	1,		Received by:	Signature)		1)	_	L	_									•		Date	21	10	3/6	S	- [")3O	- 1
2	whent wy			\searrow	<u>I</u>	<u>و_</u>	<u>X</u>	0	<u>ca</u>	SI L	<u>ノ</u>	<u> </u>	<u> </u>									Date	l) [-			ime:		 .
Refinquishe	dy: (Signature)			Received by: (_			>			0	E	1								(-	9.	0	9		of	50	
Reimquishe	Osnalley TO 6-50	19/3		Received by: (Signature)			L	-								1	12	La	K		Date	1	0/	0	7	Ī	т•: 10	30	
<i>y</i> 0~	000 pour 10000 1	73												-			1												5/2/06 Revision	
-	•																													7

LAB (LOCATION)							SI	hell	Oi	ΙP	roc	du	cts	CI	hai	in (Of (Cus	to	l yt	₹ec	or	d						
☑ CALSCIENCE ()		Pie	ase Che	ck Ap	propri	iate Bo	x		Pri	nt:B	ill To	Co.	ntac	t Na	me.				::[:	INCI	DEN 7	# (E	NV:	SER	VIC	ES)	CHE	CK IF NO INCIDENT	# APPLIES
□ SPL ()	Ø E	NV. SERVICES		MOTIVA			SHELL F	RETAIL		Der	nis B	Згож	'n						Γ	9	7 (9	3	3	9	7	DA	re: <u>4</u> /\$	2/09
	O M	OTIVA SD&CM		CONSUL	TANT		LUBES							PO	#							SA	P #						. .
TEST AMERICA ()	IT SI	IELL PIPELINE		OTHER				一	1	T	<u> </u>	Ī		Ť	Ť	T	T	<u></u>	- -	Ī	1	<u> </u>	T	9			PAG	3E: D	of 5 _
OTHER ()				LOG CC	DOE.				SITE	E ADDR	ESS; S	treet ar	nd City	t					St	ate	4	GLO	BALIDN	1	I	L			
Conestoga-Rovers & Associates				CRA	w.				270	03 M	artin	ı Lut	her	King	Jr۱	Nay_	Oa	K/AMC	} C	Α	<u></u>	TC	600	101	1876	3			
ADDRESS 5900 Hollis Street, Suite A, Emeryville, CA 94608						•					ABLE TO A						- 1	one no 10-420-:				E-MAIL	lledf@	g occur	vodd i	com		CONSIL TANT PRO	JECT NO.
PROJECT CONTACT (Hardsopy or POF Report to) Tom Sparrowe											ME(S) (P						[5	10-420-	3343			Sile	ijed <u>i</u> (C	UCIAV	VOITU.		OSE O		
TELEPHONE FAX		E-MAIL				uld oom			Erir	n Kei	inhar	rt-Ko	yıu									•	•			C	9	-04-c	886
510-420-3316 510-420-917 TURNAROUND TIME (CALENDAR DAYS):	<u> </u>	1	. Ispa	rrowe		rid.com	TS NEEDE	D	1—											IF CT		IALV	<u> </u>			(HIIII)	HOHA:		
STANDARD (14 DAY) 5 DAYS 3 DAYS	5	Z DAYS	□ 24 H	OURS		KESOL		EEKEND		,								, r	ŒQ	JESTI	- Ar	ALT	313						
☐ IA - RWQCB REPORT FORMAT ☐ UST AGENCY:																			٤			9						TEMPERATURE	ON RECEIPT
SPECIAL INSTRUCTIONS OR NOTES:			_			E APPLIES								İ				'	noi evitaelles		1	(6010)						C ₀	•
						NT RATE A	PPLIES					(g)			Í							重	1.	1					
			☐ EDD			N DECUTE	TED					(82608)								Mode	(8015B)	- Total	_				-	- 	
		*	⊯ RECE	HI VER	iricatioi	n reques	120		158)	80	(B)		(8)	<u>a</u>	<u>a</u>	9	9	(B)	. §	monitoring (SIM) Mode	(8)	tals	SVOCs (8270C)	ĕ	22				
	SAI	MPLING	-		PRES	ERVATIVE			B	826	(826	jena	(826	3260	826	(826	(826	99	. [E C	Ş.	7 8	s (8)	(82	88				
Field Sample Identification	DATE	TIME	MATRIX			ļ	lce	NO, OF CONT.	TPH-d (8015B)	TPHg (8260B)	BTEX (8260B)	5 Oxygenates	MTBE (8260B	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	LEAD (6010B)	1	nitor	TPH - MO	AM1	l S	Vocs (8260)	PCBs (8082)			Container PID or Laborator	-
LUSE ONLY				HCL	HNO3 H2	2504 NON	E OTHER		₩	+	6	2 (Σ	٢	ā	=	<u> </u>	→-	┿			+	S	>	٥				
19 HA-8-0.7'.	4/8/0	4:09	Soil			_ _	X	1	X					_	_	_	+	X		X	X	-	-	-			_		
20 HA-8-1.5' 1		4:18					$\bot \bot$		Ц	_				_	_	_	4	_	₩-			 	-	 	ļ.,		-+		
1 HA-8-5'		4:33	1						Ш	<u> </u>										Ш			<u> </u>						
22 HA-1-00000,71.	\prod	4:37							Ц							_	_	\perp		\coprod		ļ	igspace						
03 44-1-15'		4:44				ŀ			П	_									Ш		Ш								
24 HA-1-5'	1	5:02	V				V	A	$ \psi $	1_									人		1	4_					\perp		
										[İ												
	 					-			-																				
	-	1		+		\dashv	 		-	-	-	\vdash		-	\dashv	\dashv			+		+			-	-	\vdash	十		
																_	\bot		1		<u> </u>	_	<u> </u>	ļ	<u> </u>		_		
																	1										}		
Reingusted by: (Signature)	ــــــــــــــــــــــــــــــــــــــ		Received by: (Sign(ature)	<u> </u>			<u>!</u>	i	1	لبسلا	لــــا						- • -			Dat	e: 	7				Time:		
Sirker the	M	_	<	XC	سب	و ا	0	ca	#	w	_	/					,					4	/8	3/	05	7	6	1:30	
Relinquished by: Signature)			Received by: (Signature)			<u> </u>		>												Dat	Ψ,	9	~(2	$\setminus \mid$	Time:	9950	_
Refinquished by: (Squature)	19/0	9	Received by: (Signature)			\mathcal{L}	,								1/2	1/1	20	L		Dat	4/1	01	0	a		Time:	730	
10 001 KW TO COSO 1	/30	<u> </u>		•	<u></u>			-						-		H	H	w	· V		1		/_		•	<u> </u>		05/2/06 Revision	
											-																/		

WORK ORDER #: 09-04- 2 8 8

SAMPLE RECEIPT FORM

Cooler ____ of ___

CLIENT: CRA DATE: DATE:
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 2 - 4 °C - 0.2 °C (CF) = 2 - 2 °C
CUSTODY SEALS INTACT: Cooler C No (Not Intact) Not Present N/A Initial: No Sample No (Not Intact) Not Present Initial: No Initial: No Not Present Initial: No Ini
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete. Collection date/time, matrix, and/or # of containers logged in based on sample labels. COC not relinquished. No date relinquished.
Sampler's name indicated on COC
Proper preservation noted on COC or sample container
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve □EnCores® □TerraCores® □ Water: □VOA □VOAh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB □1AGBna₂ □1AGBs □500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB □500PB □500PBna □250PB □250PBn □125PB □125PBznna □100PB □100PBna₂ □ □ □ Air: □Tedlar® □Summa® □ Other: □ Checked/Labeled by: ₩ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar (Wide-mouth) B: Bottle (Narrow-mouth) Reviewed by: ₩

April 21, 2009

Tom Sparrowe Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Subject:

Calscience Work Order No.:

Client Reference:

09-04-0887

2703 Martin Luther King Jr. Way, Oakland, CA

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 4/10/2009 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

yessi Cee

Calscience Environmental Laboratories, Inc. Jessie Lee Project Manager

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A

Emeryville, CA 94608-2008

Date Received:

04/10/09

Work Order No:

09-04-0887

Preparation:

EPA 3050B / EPA 7471A Total

EPA 6010B / EPA 7471A ·

Method:

Units:

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 1

Client Sample Nu	mber		Lab Sample Number		Date /Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Ba	tch ID
CRA-1	14.14.		09-04-0887-	1-A	04/08/09 16:00	Solid	ICP 5300	04/17/09	04/18/09 14:43	09041	7L02
Comment(s):	-Mercury was analyze	ed on 4/17/2009 5:	45:13 PM with	batch 0	90417L04						
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>		<u>Result</u>	<u>RL</u>		<u>DF</u>	<u>Qual</u>
Antimony	ND	0.750	1		Mercury		ND	0.083	35	1	
Arsenic	2.95	0.750	1		Molybdenum		ND	0.250)	1	
Barium	152	0.500	1		Nickel		32.4	0.250)	1	
Beryllium	0.549	0.250	1		Selenium		ND	0.750)	1	
Cadmium	ND	0.500	1		Silver		ND	0.250) ·	1	
Chromium	24.7	0.250	1		Thallium		ND	0.750)	1	
Cobalt	10.4	0.250	1		Vanadium		23.1	0.250)	1	
Copper	16.9	0.500	1		Zinc		33.8	1.00		1	
Lead	12.0	0.500	1							•	
Method Blank			099-04-007-	6,233	N/A	Solid	Mercury	04/17/09	04/17/09 17:07	09041	7L04
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual							
Mercury	ND	0.0835	1								
Method Blank			097-01-002-	12,204	N/A	Solid	ICP 5300	04/17/09	04/18/09 14:22	09041	7L02
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	Parameter		Result	<u>RL</u>		<u>DF</u>	Qual
Antimony	ND	0.750	1		Lead		ND	0.50	n	1	
Arsenic	ND	0.750	1		Molybdenum		ND	0.25		1	
Barium	ND	0.500	1		Nickel		ND	0.25		1	
Beryllium	ND	0.250	1		Selenium		ND	0.75		1	
Cadmium	ND .	0.500	1		Silver		ND	0.25		1	
Chromium	ND	0.250	1		Thallium		ND	0.75		1	
Cobalt	ND	0.250	1		Vanadium		ND	0.25		. 1	
-	ND	0.200	1		variadidili			1.20	~	•	

ND

1.00

ND

0.500

Copper

Zinc

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

09-04-0887 **EPA 3550B**

04/10/09

EPA 8015B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 1

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CRA-1	09-04-0887-1-A	04/08/09 16:00	Solid	GC 43	04/10/09	04/11/09 15:14	090410B04

Comment(s):

-The sample chromatographic pattern for TPH does not match the chromatographic pattern of the specified standard. Quantitation

of the unknown hydrocarbon(s) in the sample was based upon the specified standard.

Parameter

. <u>RL</u>

<u>Units</u>

Diesel Range Organics

Result 18

5.0

mg/kg

Surrogates:

REC (%)

Control Limits

Qual

Decachlorobiphenyl

90

61-145

Method Blank		099-12-025-686		Solid	GC 43 04	/10/09 04/11/09 10:30	090410B04
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>	F	
Diesel Range Organics	ND	5.0	1		mg/kg		
Surrogates:	REC (%)	Control Limits		<u>Qual</u>			1 !
Decachlorobiphenyl	96	61-145					

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method:

04/10/09 09-04-0887 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 1

Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
CRA-1		09-04-0887-1 - A	04/08/09 16:00	Solid	GC 43	04/10/09	04/11/09 15:14	090410B05
Parameter	<u>Result</u>	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>			
TPH as Motor Oil	120	25	1.		mg/kg			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
Decachlorobiphenyl	90	61-145						
Method Blank		099-12-254-721	N/A	Solid	GC 43	04/10/09	04/11/09 10:30	090410B05
Parameter	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Units</u>		•	
TPH as Motor Oil	ND	25	1		mg/kg			
Surrogates:	REC (%)	Control Limits		Qual	•			
Decachlorobiphenyl	96	61-145						

Conestoga-Rovers & Associates

5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received:

04/10/09

Work Order No:

09-04-0887

Preparation:

EPA 5030B

Method: Units:

LUFT GC/MS / EPA 8260B

mg/kg

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Page 1 of 1

Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/T I Analyz		QC Batch ID
CRA-1			09-04-0)887-1-A	04/08/09 16:00	Solid	GC/MS PP	04/10/09	04/11/ 05:2	STORES OF	090410L03
Parameter	Result	RL	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	DF	Qual
Benzene	ND	0.0050	1		Xylenes (total)			ND	0.0050	. 1	·
Ethylbenzene	ND	0.0050	1		TPPH			ND ·	0.50	1	
Toluene	ND	0.0050	1							•	
Surrogates:	REC (%)	Control Limits	·	<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	106	73-139			1,2-Dichloroeth	ane-d4		105	73-145		
Toluene-d8	99	90-108			1,4-Bromofluoro	obenzene		89	71-113		
Toluene-d8-TPPH	100	88-112									
Method Blank			099-12	-798-369	N/A	Solid	GC/MS PF	04/10/09	04/11 00:4		090410L03
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.0050	1		Xylenes (total)			ND	0.0050	1	
Ethylbenzene	ND	0.0050	1		TPPH ` ´			ND	0.50	1	
Toluene	ND	0.0050	1								
Surrogates:	<u>REC (%)</u>	Control Limits		<u>Qual</u>	Surrogates:			REC (%)	Control Limits		<u>Qual</u>
Dibromofluoromethane	96	73-139			1,2-Dichloroeth	ane-d4		93	73-145		
Toluene-d8	97	90-108			1,4-Bromofluor	obenzene		92	71-113		
Toluene-d8-TPPH	97	88-112									

13

2

16

2

75-125

75-125

75-125

75-125

75-125

0-20

0-20

0-20

0-20

0-20

3

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0887 EPA 3050B EPA 6010B

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-04-1206-1	Solid	ICP 5300	04/17/09		04/18/09	090417S02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Antimony	36	24	50-115	37	0-20	3,4
Arsenic	98	89	75-125	8	0-20	
Barium	4X	4X	75-125	4X	0-20	Q
Beryllium	101	91	75-125	10	0-20	
Cadmium	96	86	7 5-125	12	0-20	
Chromium	90	87	75-125	2	0-20	
Cobalt	97	86	75-125	8	0-20	
Copper	184	203	75-125	5	0-20	3
Lead	97	91	75-125	6	0-20	
Molybdenum	94	84	75-125	11	0-20	
Nickel	93	82	75-125	7	0-20	

85

100

62

82

118

97

98

73

86

121

Mulhan

Selenium

Thallium

Vanadium

Silver

Zinc

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0887 EPA 3550B EPA 8015B

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-04-0886-23	Solid	GC 43	04/10/09		04/11/09	090410504
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Diesel Range Organics	136	137	64-130	0	0-15	3

RPD - Relative Percent Difference , CL - Control L

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: 04/10/09 09-04-0887 EPA 3550B EPA 8015B (M)

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-04-0886-23	Solid	GC 43	04/10/09		04/11/09	090410S05
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	. Qualifiers
TPH as Motor Oil	91	92	64-130	1	0-15	

Muhan_

RPD - Relative Percent Difference, CL - Control Limit

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

04/10/09 09-04-0887 EPA 7471A Total EPA 7471A

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
09-04-1206-1	Solid	Mercury	04/17/09		04/17/09	090417S04
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Mercury	120	120	71-137	0	0-14	

M- RPD - Relie

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation:

Method:

04/10/09 09-04-0887 EPA 5030B LUFT GC/MS / EPA 8260B

Project 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	,	Date Analyzed	MS/MSD Batch Number
09-04-0275-1	Solid	GC/MS PP	04/10/09		04/11/09	090410802
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	96	102	79-115	5	0-13	
Carbon Tetrachloride	94	101	55-139	7	0-15	
Chlorobenzene	96	101	79-115	5	0-17	
1,2-Dibromoethane	95	102	70-130	8	0-30	
1,2-Dichlorobenzene	95	101	63-123	6	0-23	
1,1-Dichloroethene	90	96	69-123	6	0-16	
Ethylbenzene	97	102	70-130	5	0-30	
Toluene	95	99	79-115	. 5	0-15	
Trichloroethene	97	104	66-144	7.	0-14	
Vinyl Chloride	107	113	60-126	6	0-14	
Methyl-t-Butyl Ether (MTBE)	92	99	68-128	7	0-14	
Tert-Butyl Alcohol (TBA)	78	94	44-134	19	0-37	
Diisopropyl Ether (DIPE)	92	95	75-123	4	0-12	
Ethyl-t-Butyl Ether (ETBE)	93	97	75-117	5	0-12	
Tert-Amyl-Methyl Ether (TAME)	97	103	79-115	6	0-12	
Ethanol	26	65	42-138	87	0-28	3,4

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008

Date Received: Work Order No: Preparation: Method:

N/A 09-04-0887 **EPA 3050B EPA 6010B**

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy		LCS/LCSD I Numbe	
097-01-002-12,204	Solid	ICP 5300	04/17/09	04/18/	/09	090417L	02
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Antimony	98	97	80-120	73-127	1	0-20	
Arsenic	102	102	80-120	73-127	0	0-20	
Barium	104	105	80-120	73-127	1	0-20	
Beryllium	99	100	80-120	73-127	1	0-20	
Cadmium	103	104	80-120	73-127	1	0-20	
Chromium	99	100	80-120	73-127	1	0-20	
Cobalt	106	107	80-120	73-127	1	0-20	
Copper	102	103	80-120	73-127	1	0-20	
Lead	103	103	80-120	73-127	0	0-20	
Molybdenum	102	102	80-120	73-127	0	0-20	
Nickel	105	104	80-120	73-127	1	. 0-20	
Selenium	94	94	80-120	73-127	0	0-20	
Silver	100	100	80-120	73-127	1	0-20	
Thallium	97	97	80-120	73-127	0	0-20	
Vanadium	99	100	80-120	73-127	1	0-20	
Zinc	102	. 103	80-120	73-127	. 1	0-20	

Total number of LCS compounds: 16 Total number of ME compounds: Total number of ME compounds allowed:

LCS ME CL validation result: Pass

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0887 EPA 3550B EPA 8015B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Batc Number	h
099-12-025-686	Solid	GC 43	04/10/09	04/11/09	090410B04	
<u>Parameter</u>	LCS %	6REC LCSD	%REC %F	REC CL RPI	D RPD CL	Qualifiers
Diesel Range Organics	98	103	. 7	75-123 5	0-12	

RPD - Relative Percent Difference , CL - Co

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0887 EPA 3550B EPA 8015B (M)

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrumer	Da nt Prepa		Date nalyzed	LCS/LCSD Bate Number	ch
099-12-254-721	Solid	GC 43	04/10	0/09 0	4/11/09	090410B05	
Parameter	LCS %	<u> REC LO</u>	CSD %REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Motor Oil	96		96	75-123	0	0-12	

RPD - Relative Percent Difference,

CL - Control Limi

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No: Preparation: Method: N/A 09-04-0887 EPA 7471A Total EPA 7471A

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Bate Number	ch .
099-04-007-6,233	Solid	Mercury	04/17/09	04/17/09	090417L04	
<u>Parameter</u>	LCS %I	REC LCSD	%REC %F	REC CL RP	D RPD CL	Qualifiers
Mercury	107	106	8	5-121 1	0-10	

RPD - Relative Percent Difference, CL - C

Conestoga-Rovers & Associates 5900 Hollis Street, Suite A Emeryville, CA 94608-2008 Date Received: Work Order No:

N/A 09-04-0887

Preparation: Method:

EPA 5030B LUFT GC/MS / EPA 8260B

Project: 2703 Martin Luther King Jr. Way, Oakland, CA

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal		LCS/LCSD I Numbe	
099-12-798-369	Solid	GC/MS PP	04/10/09	04/10	/09	090410L	03
Parameter	LCS %REC	LCSD %REC	%REC CL	ME_CL	RPD	RPD CL	Qualifiers
Benzene	99	101	84-114	79-119	2	0-7	
Carbon Tetrachloride	96	98	66-132	55-143	1	0-12	
Chlorobenzene	100	100	87-111	83-115	1	0-7	
1,2-Dibromoethane	103	107	80-120	73-127	3	0-20	
1,2-Dichlorobenzene	101	101	79-115	73-121	0	0-8	
1,1-Dichloroethene	95	94	73-121	65-129	1	0-12	
Ethylbenzene	102	103	80-120	73-127	1	0-20	
Toluene	99	99	78-114	72-120	0	0-7	
Trichloroethene	107	108	84-114	79-119	1	0-8	
Vinyl Chloride	108	107	63-129	52-140	1	0-15	
Methyl-t-Butyl Ether (MTBE)	101	100	77-125	69-133	0	0-11	
Tert-Butyl Alcohol (TBA)	91	93	47-137	32-152	3	0-27	
Diisopropyl Ether (DIPE)	96	96	76-130	67-139	1	0-8	
Ethyl-t-Butyl Ether (ETBE)	98	99	76-124	68-132	0	0-12	
Tert-Amyl-Methyl Ether (TAME)	104	104	82-118	76-124	0	0-11	
Ethanol	85	79	59-131	47-143	8	0-21	
ТРРН	110	116	65-135	53-147	5	0-30	

Total number of LCS compounds: 17

Total number of ME compounds: 0

Total number of ME compounds allowed:

LCS ME CL validation result: Pass

CL - Control Lim

Glossary of Terms and Qualifiers

Work Order Number: 09-04-0887

Qualifier	<u>Definition</u>
*	See applicable analysis comment.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported with no further corrective action required.
Α	Result is the average of all dilutions, as defined by the method.
В	Analyte was present in the associated method blank.
С	Analyte presence was not confirmed on primary column.
E	Concentration exceeds the calibration range.
Н	Sample received and/or analyzed past the recommended holding time.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
N	Nontarget Analyte.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Ù	Undetected at the laboratory method detection limit.
Χ	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.

LAB (LOCATION)						O W	?		SI	nell	Oi	ΙP	ro	du	cts	C	ha	in	Of	Cı	ısto	ody	y R	ec	or	d								
☑ CALSCIENCE ()	12-13-13	Ple	ease Che	ck Ar	pror	riate	Вох	2000		Prin	if Bi	ill To	o Co	ntac	t Na	me:					∷IN	CIDI	NT.	# (E	N۷	SER	VICE	:S)	CHE	CK IF NO INC	IDENT # APPL	IES	
☐ SPL (EN				The state of the s								9	7	0	0 9 3 3 9 7						DATE: 4/8/09											
XENCO (Пмо	TIVA SD&CN		CONSU	LTANT		0	LUBES	一	3333					PO	#::								SAI						-7	<i></i>		
TEST AMERICA (一			(1)(()) T		· · · · ·	. · ·	<u>. T</u>	Γ	· · · · · · ·	Π				Ī	<u> </u>	T T				PAC	E:	1 of _	1_	
OTHER (SHE	ELL PIPELINI		OTHER			_	=		<u> </u>			لبا								1 State	2	9	4	4 BALIDN	9							
SAMPLING COMPANY					Logo	ODE					1 '			treet ar	-		a le	18/	. 1	h M	and				ı	600		876	3					
Conestoga-Rovers & Associa	tes				٠						EDF DE	LIVERA	BLE TO	(Name, C	omeanv	Office L	ocation)	vvay	, -	PHONE	10	<u> </u>			E-MAIL						CONSULT	ANT PROJECT NO	· · · · ·	
5900 Hollis Street, Suite A, En	meryville, CA 94608										Brei	nda C	Carte	r, CR	A, Er	neryv	/ille			510.4	20-33	43			shel	ledf@)ccau	orid r	com		240781			
PROJECT CONTACT (Hardcopy or PCF Report to) Tom Sparrowe	·												ME(S) (F		_					1210-4	20-33				SIIC	icula	,0141	ond.		USE O				
·	FAX		E-MAIL.								Erin	Rei	inhaı	rt-Ko	ylu														C	a.	വ	- O8	87	
510-420-3316	510-420-9170) 		tsr	oarrowe	@crav					<u> </u>																						~/	
TURNAROUND TIME (CALENDAR DA STANDARD (14 DAY)	AYS): 5 dayş 🗖 3 days	1	2 DAYS	□ 24	HOURS		□ RE	SULTS	ON W	EEKEND											RE	QUE	STE	O AN	ALY	SIS								
☐ LA - RWQCB REPORT FORMAT	UST AGENCY:																							İ	8	1				ĺ	TEMPERA	TURE ON RE	ECEIPT	
	OD NOTES			☑ SH	ELL CONT	ract r	ATE APP	LIES			E .	Ě	1												(6010)	1						C°		
SPECIAL INSTRUCTIONS	OR NOTES:			☐ ST/	ATE REIM	BURSEM	IENT RA	TE APPL	LIES	•	Purgeable (8260B)	TPH - Extractable (8015M)		6																	2.2			
cc: Kari Dupler, kdupler	@craworld.com				D NOT NE						8) a	le (5 Oxygenates (8260B)									Ê	<u>§</u>	CAM17 Metals - Total	_				-				
P 11 11				☑ RE	CEIPT VE	RIFICAT	TON REC	UESTE	D		eap	ctab	<u>a</u>	es (<u>@</u>	_	₩	<u>ē</u>	<u>@</u>	90E	æ	8 8 8	3015	8	SE	5	5	اي		- 1				
Follow attached conting	ent analysis	SAN	IPLING	1		PR	ESERVA	TIVE.	-		ş	xtra	3260	anat	8260	90E	260	8260	3260	8	260E	(83	5	ē	S S	(82	826(808						
_{Гав} Field Sample I	Identification			MATRIX						NO. OF CONT.		ä-	BTEX (8260B)	xyge	MTBE (8260B)	TBA (8260B)	DIPE (8260B)	TAME (8260B)	ETBE (8260B)	1,2 DCA (8260B)	EDB (8260B)	Ethanol (8260B)	Methanol (8015M)	TPH - MO (8015M)	3	SVOCs (8270C)	VOCs (8260)	PCBs (8082)		-		er PID Read	-	
Liai Field Sample i use owey		DATE	TIME		HCL	HNO3	H2SO4	NONE	Ice OTHER		TP.	Ė	H	50	E	18/	뭄	¥	🖫	1,2		뛾	⊠	르	δ	Š	8	5			or Lat	poratory Not	les	
Birth Stiff		1/8/20	16:00	so					Х	1	Х	Х	X											Х	Х					- 1		•		
CRA-1		707	Tou	-30			 		^	 -	1	-	†																					
			ļ	<u>.</u>		├						<u> </u>	-		-			-				Н		-	\vdash	 	-		\vdash \vdash					
		<u> </u>									_		<u> </u>						ļ.,					├	<u> </u>	├-	-	<u> </u>	┝╌┤					
				ĺ																				L	L	_			Ш			·		
																			ĺ					ĺ						l				
		 	 	 -	+	-					1		t														Ì							
		ļ		_	<u> </u>	-					⊢		├			\vdash	-	-		\vdash		Н		├─	-	H	-		$\vdash \vdash$	\dashv				
		<u>L</u>	<u> </u>	<u> </u>								<u> </u>	<u> </u>		ļ		_	_		\vdash				├ —		-	-	_	⊢┤				<u> </u>	
											1													l							_			
		 	 	ļ	_	1					t		1-													I^-								
		<u> </u>		<u> </u>		<u> </u>					<u> </u>		<u> </u>				L_	_						 	<u> </u>	-	-							
																											١.							
Relingershed by: (Signature)	 	<u> </u>		Received by	(Signature	a)			$\overline{}$,			<u></u>	<u> </u>	_									Date	. 1	1	.7	A (\overline{a}	Time:		5		
5, 7	1.1/1	n	U-	- 5	(Signature	ai	سار	L		00	L	J	_											۷ ا	4	/8	7	0	7		6	30)	
Mylli	W ne	1		Received by						<u>ت</u>														Date				_	一	Time:				
1 1	1. ()	V			$(\)$	_	11		•		_		\cap	E	-/									14	` 👡 '	۲,	1)	9			09	(7)	d	
Jano	· jo	1		6	اند	<u>_</u>		$\overline{}$	$\not \simeq$		<u> </u>		$\overline{}$	-		<u></u> -								Date	: .	<u>'</u>	_		\dashv	Time:	<u></u> .			
Relinquished by: (Signature)		4/4	09	Received by:	(Signature	")		(().										1	11	1-	1		12	,	01	10	/A		1,	127			
10~UMalley	TO 650	113	0																1/1	[4]L	~a	M		17	/1	0		7		16	05/2/06 Revis	ion		
0,	111 01.1.1	a					-											1		//														
, ,	7110 5970	0																														•		

Contingent analyses

- Organic lead required if TTLC lead ≥ 13 mg/kg
- Aquatic bioassay required if any TPH (gasoline, diesel, or motor oil) ≥ 5,000 mg/kg
- TCLP benzene required if benzene ≥ 10 mg/kg
- TCLP and STLC required for metals per table below

	· · · · · · · · · · · · · · · · · · ·									
	Trigger level									
Metal	TTLC	Requirement								
	(mg/kg)									
Antimony	150	STLC required if TTLC ≥ 150 mg/kg								
		STLC required if TTLC ≥ 50 mg/kg;								
Arsenic	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg								
	,	STLC required if TTLC ≥ 1,000 mg/kg;								
Barium	1,000/2,000	STLC and TCLP required if TTLC ≥ 2,000 mg/kg								
Beryllium	7.5	STLC required if TTLC ≥ 7.5 mg/kg								
		STLC required if TTLC ≥ 10 mg/kg;								
Cadmium	10/20	STLC and TCLP required if TTLC ≥ 20 mg/kg								
		STLC required if TTLC ≥ 50 mg/kg;								
Chromium	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg								
Cobalt	800	STLC required if TTLC ≥ 800 mg/kg								
Copper	250	STLC required if TTLC ≥ 250 mg/kg								
		STLC required if TTLC ≥ 50 mg/kg;								
Lead	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg								
		STLC required if TTLC ≥ 2 mg/kg;								
Mercury	2/4	STLC and TCLP required if TTLC ≥ 4 mg/kg								
Molybdenum	350	STLC required if TTLC ≥ 350 mg/kg								
Nickel	200	STLC required if TTLC ≥ 200 mg/kg								
•		STLC required if TTLC ≥ 10 mg/kg;								
Selenium	10/20	STLC and TCLP required if TTLC ≥ 20 mg/kg								
		STLC required if TTLC ≥ 50 mg/kg;								
Silver	50/100	STLC and TCLP required if TTLC ≥ 100 mg/kg								
Thallium	70	STLC required if TTLC ≥ 70 mg/kg								
Vanadium	240	STLC required if TTLC ≥ 240 mg/kg								
Zinc	2,500	STLC required if TTLC ≥ 2,500 mg/kg								

work order #: 09-04-0 图 图 7

SAMPLE RECEIPT FORM

Cooler ____ of ___

CLIENT: CRA DATE: DATE:
TEMPERATURE: (Criteria: 0.0 °C - 6.0 °C, not frozen) Temperature 2.4 °C - 0.2 °C (CF) = 2.2 °C Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. Received at ambient temperature, placed on ice for transport by Courier. Ambient Temperature: □ Air □ Filter □ Metals Only □ PCBs Only Initial: NC
CUSTODY SEALS INTACT: □ Cooler □ □ □ No (Not Intact) □ Not Present □ N/A Initial: Not Present □ N/A
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with samples. COC document(s) received complete.
☐ COC not relinquished. ☐ No date relinquished. ☐ No time relinquished. Sampler's name indicated on COC
Correct containers and volume for analyses requested
Volatile analysis container(s) free of headspace
Solid: \ 4ozCGJ \ 8ozCGJ \ 16ozCGJ \ Sleeve \ EnCores^\tilde{\trilde{\trilde{\tilde{\trilde{\trilde{\trilde{\tilde{\tilde{\tilde{\trilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\trilde{\tilde{\tilde{\trilde{\trilde{\tilde{\trilde{\trilde{\trilee{\tilde{\tilde{\trilde{\trilde{\trilde{\tilde{\trilde{\til