

951111 19 PH 1:46

May 16, 1995 93-1185002.80

Mr. Gregory Baum Vice President/General Counsel Harsch Investment Corp. P.O. Box 2708 1121 S. W. Salmon Street Portland, Oregon 97208

Subject:

REPORT -

Quarterly Groundwater Monitoring Program

February 1995

South Shore Shopping Center

2375 Shoreline Drive Alameda, California

Dear Mr. Baum:

The MARK Group, Inc. is pleased to submit the enclosed Quarterly Groundwater Monitoring Program Report for work conducted at the South Shore Shopping Center. This work was conducted pursuant to the requirements of the Alameda County Health Agency.

We appreciate the opportunity to be of continued service. Should you have any questions or comments regarding this report, please contact Mr. Alan D. Gibbs, R.G. or the undersigned at (510) 946-1055.

Sincerely,

The MARK Group, Inc.

David K. Rogers, P.E., C.E.G.

Principal

DKR:RSS:scd QTLYFEB LTR

Enclosure(s)

cc. Mr. Tom Hargett, Texaco

Mr Murray Stevens, Kamur

Ms. Madhulla Logan, ACHA

Mr. Frank Hamedi, Soil Tech

QUARTERLY GROUNDWATER
MONITORING PROGRAM
FEBRUARY 1995
SOUTH SHORE SHOPPING CENTER
2375 SHORELINE DRIVE
ALAMEDA, CALIFORNIA

93-1185002.80 May 16, 1995

PROFESSIONAL CERTIFICATION

95 MAY 19 PM 1: 47

QUARTERLY GROUNDWATER MONITORING PROGRAM
FEBRUARY 1995
SOUTH SHORE SHOPPING CENTER
2375 SHORELINE DRIVE
ALAMEDA, CALIFORNIA

May 16, 1995 93-1185002.80

This report has been prepared by the staff of The MARK Group, Inc. under the professional supervision of the Principal and senior staff whose seal(s) and signature(s) appear hereon.

The findings, recommendations, specifications or professional opinions are presented, within the limits prescribed by the client, after being prepared in accordance with generally accepted professional engineering and geologic practice. There is no other warranty, either expressed or implied.

DAVID K.
ROGERS
No. 967
CERTIFIED
ENGINEERING
GEOLOGIST
EM 3/91/47

FOF CALIFORNIA

OF CALIFORNI

David K Rogers, PE, CE.G.

Principal

NO. 4827

Alan D Grobs, R G Associate

TABLE OF CONTENTS

			<u>Page</u>
PRO	OFESSIO:	NAL CERTIFICATION	
1.0	INTROI	DUCTION	1-1
	1.1 1.2	Objective	
2.0	IMPLEM	MENTATION OF FIELD ACTIVITIES	2-1
	2.1 2.2 2.3	Field Activities and Procedures 2.1.1 Groundwater Elevations 2.1.2 Groundwater Sampling Analytical Methods Quality Assurance/Quality Control	2-1 2-1 2-1 2-2 2-2
3.0	RESULT	S OF THE SELF-MONITORING PROGRAM	. 3-1
	3.1 3.2 3.3	Groundwater Gradient Analytical Results Quality Assurance/Quality Control	. 3-1
4.0	CONCL	USIONS	. 4-1
	4.1	Groundwater Quality	. 4-1
5.0	RECOM	MENDATIONS	. 5-1
<u>List</u>	of Tables	Σ	
Tabl	le 1-1:	Monitoring Program For First Quarter 1995	
Tabl	le 2-1: le 2-2: le 2-3:	Groundwater Elevations Groundwater Analytical Results - Total Petroleum Hydrocarbons and B Groundwater Analytical Results - Volatile Organic Compounds	TEX

TABLE OF CONTENTS (Continued)

List of Drawings

Drawing 1-1: Site Location Map

Drawing 2-1: Groundwater Elevation Contours

Drawing 3-1: Concentration Plot-Gasoline Drawing 3-2: Concentration Plot-Benzene

Drawing 3-3: Concentration Plot-1,2-Dichloroethane

Appendices

APPENDIX A: Water Level Measurement Field Logs APPENDIX B: Field Purging and Sampling Logs APPENDIX C: Laboratory Analytical Reports

APPENDIX D: Groundwater Monitoring Report - Soil Tech Engineers

APPENDIX E: Historical Groundwater Quality Results

1.0 INTRODUCTION

1.1 Objective

This Quarterly Monitoring Program Report for groundwater samples collected February 14 and 15, 1995 was prepared by The MARK Group, Inc. (MARK) and summarizes the results of the groundwater sampling and analysis conducted at the South Shore Shopping Center, Alameda, California (Drawing 1-1). This work being conducted is pursuant to the requirements established by the Alameda County Health Agency (ACHA).

This report satisfies the quarterly groundwater monitoring requirements for the following parties:

- Kamur Industries, Inc. (Southshore Car Wash);
- Texaco Refining and Marketing, Inc. (former Texaco Service Station, currently Lyons Restaurant); and
- Harsch Investment Corp. (former Dry Cleaner site and current Southshore Shopping Center property owner).

1.2 Scope of Work

The scope of the work for this Quarterly Monitoring Program consisted of conducting groundwater monitoring and sampling for February 1995. The work was performed utilizing sampling methods and procedures specified in the Quality Assurance Project Plan [QAPP, (MARK, 1994)] which was included as Appendix A in the report entitled "Quarterly Groundwater Monitoring Program, April, 1994, Southshore Shopping Center" (MARK, August 2, 1994). The scope of work included the following:

- Measuring static water levels in 21 monitoring wells (Appendix A);
- Recording groundwater field parameters (pH, temperature, specific conductance and turbidity) from five Monitoring Wells (MW-16, MW-17, MW-19, MW-22, and MW-23);
- Purging and sampling each of the five monitoring wells associated with Harseh and Texaco. Monitoring Wells MW-12 and MW-24 were purged and sampled by Soil Tech Engineering (STE);

- Analyzing groundwater samples from these seven wells for the monitoring constituents indicated on Table 1-1 and discussed in Section 2 of this report; and
- Reporting the results of the groundwater samples collected from the five monitoring wells associated with Harsch and Texaco, and also the results of two monitoring wells (MW-12 and MW-24) associated with Kamur.

TABLE 1-1: Monitoring Program For First Quarter 1995 South Shore Shopping Center Alameda, California										
Well No.	Water Level	рН, ЕС, Тетр	TPH as Gasoline	втех	TPH as Diesel	O&G	VOCs			
MW-1	Closed									
MW-2	_ X									
MW-3	х									
MW-4	Damaged									
MW-5B	_ x									
MW-6	Closed									
MW-7B	х		1				<u>-</u> .			
MW-8B	Х									
MW-9	X			_						
MW-10	Х									
MW-11	х									
MW-12(a)	Х		X(b)	X(b)		X(b,c)	х			
MW-13	Closed									
MW-14	х									
MW-15	х									
MW-16	X	х	X	Х			х			
MW-17	X	X	X	Х			х			
MW-18	Х									
MW-19	Х	х	Х	Х			х			
MW-20	х									
MW-21	х									
MW-22	х	Х	х	х	х		х			
MW-23	х	Х	Х	х			x			
MW-24(a)	х		X(b)	X(b)			x			
MW-25	х									

Notes:

- (a) Samples collected by Soil Tech Engineers
- (b) With the exception of TPH Oil and Grease Analysis (MW-12) all samples were analyzed by McCampbell Analytical Laboratory
- (c) Samples analyzed by Priority Environmental Laboratory

Explanation.

EC = Electrical Conductivity

Temp = Temperature

BIEX = Benzene, Toluene, Ethylbenzene, and Xylenes

TPH = Total Petroleum Hydroxarbons

O&G = Oil and Grease

VOCs = Volatile Organic Compounds

2.0 IMPLEMENTATION OF FIELD ACTIVITIES

2.1 Field Activities and Procedures

2.1.1 Groundwater Elevations

Static water levels in 21 wells were measured to within 0.01 foot on February 14, 1995 in accordance with the procedures described in the Quality Assurance Project Plan [(QAPP) MARK, 1994]. Note that Monitoring Well MW-4 is damaged and needs to be closed and sealed. Secondly, according to Kamur, Monitoring Well MW-13 was recently closed and sealed. Therefore, water levels were not monitored in these two wells. Groundwater elevation measurements are summarized on Table 2-1. Water level measurement field logs are included in Appendix A. A groundwater elevation contour map (Drawing 2-1) was constructed using linear interpolation between wells. Groundwater elevation monitoring results are discussed in Section 3.0.

2.1.2 Groundwater Sampling

On February 15, 1995, groundwater was sampled from seven wells which are a part of the Harsch, Kamur, and Texaco monitoring network. These groundwater samples were collected in accordance with procedures outlined by the California Regional Water Quality Control Board (RWQCB) and the QAPP. Field forms documenting sampling and purging activities are included in Appendix B. Five monitoring wells were sampled by MARK (MW-16, MW-17, MW-19, MW-22, and MW-23). Laboratory analytical reports are provided in Appendix C. In addition, two of the Kamur Monitoring Wells (MW-12 and MW-24) were sampled by STE. STE's laboratory analytical reports are provided in Appendix D. The historical analytical results for groundwater samples collected from the site are summarized in Tables 2-2 and 2-3, and in Appendix E.

Groundwater sampling and water level measurements for the Harsch and Texaco monitoring network were conducted by Mr Michael S. Caravetto, and Mr. Geoffery Fiedler, Senior Staff Geologists, under the direct supervision of Mr. Robert S. Spare, Project Environmental Scientist. Mr. Spare has a Bachelor degree in Environmental Science and has over nine years experience. Messrs Caravetto and Fiedler have combined experience of over 13 years in groundwater sampling techniques. All employees involved

in this project have completed 40 hours of health and safety training in accordance with 29 CFR 1910.120, and are experienced with the general sampling protocols used.

2.2 Analytical Methods

Groundwater samples collected by MARK from the Harsch and Texaco monitoring wells were submitted to McCampbell Analytical, Inc. (McCampbell), which is certified by the State of California Department of Health Services to conduct the required analyses. The groundwater samples were analyzed by McCampbell in accordance with the following Environmental Protection Agency (EPA) methods:

- EPA Method 8015/8020, for total petroleum hydrocarbons as gasoline (TPH-g) and benzene, toluene, ethylbenzene, and xylenes (BTEX);
- EPA Method 8015 (modified) for total petroleum hydrocarbons as diesel (TPH-d); and
- EPA Method 601, for chlorinated hydrocarbons (VOCs).

Groundwater samples from monitoring wells MW-12 and MW-24 were collected by STE and given to MARK for VOCs, TPH-g, and BTEX analyses. These samples were analyzed by McCampbell laboratory also.

STE submitted groundwater samples from Kamur's wells MW-12 and MW-24 to Priority Environmental Laboratory (PEL). Samples from these wells were analyzed by Priority Environmental Laboratory (PEL) for TPH-g, and BTEX. The groundwater sample from Monitoring Well MW-12 was additionally analyzed for the presence of oil and grease by EPA Method 5520. The laboratory analytical test results for this monitoring period are summarized in Tables 2-2 and 2-3. McCampbell's analytical report is presented in Appendix C. PEL's analytical report is presented in STE's report which is included in Appendix D.

2.3 Quality Assurance/Quality Control

The Quality Assurance and Quality Control (QA/QC) program utilized during this monitoring program reporting period incorporated the following field and laboratory QA/QC methods:

Chain-of-custody control of samples;

- Laboratory methods:
 - matrix spikes;
 - matrix spike duplicates;
 - method blanks;
 - QC spikes; and
 - QC spike duplicates.

QA/QC laboratory reports are presented in Appendix C.

·		Alameda, C	Zalifornia	
Well ID	Date Measured	Well Elevation (feet)	Depth to Water	Groundwater Elevations (fe City of Alameda Datum
MW-1	(Destroyed)			
MW-2	04/26/94 10/18/94 02/14/95	7.44	5.77 7.27 5.15	1.6 0.1 2.2
MW-3	04/26/94 10/18/94 02/14/95	6.78	5.39 6.68 4.62	1.3 0.1 2.1
MW-4	(Damaged)			
MW-5B	04/26/94 10/18/94 02/14/95	5.08	4.00 5.07 3.00	1.6 0.6 2.6
MW-6B	(Destroyed)			
MW-7B	04/26/94 10/18/94 02/14/95	5.52	4.43 5.44 3.70	1.4 0.4 1.4
MW-8B	04/26/94 10/18/94 02/14/95	6.15	6.33 6.54 5.57	-0. -0. 0.
MW-9B	04/26/94 10/18/94 02/14/95	5.65	NR NR 4.98	 0.
MW-10	04/26/94 10/18/94 02/14/95	7.97	6.58 7.69 6.13	1 0 1.
MW-11	04/26/94 10/18/94 02/14/95	6.96	5.54 6.68 4.93	1. 0. 2.
MW-12	04/26/94 10/18/94 02/14/95	8.31	6.41 8.00 5.64	1. 0., 2.0
MW-13	(Damaged)			
MW-14	04/26/94 10/18/94 02/14/94	5.76	5.07 5.89 4.08	0. -0. 1.
MW-15	04/26/94 10/18/94 62/14/95	4 47	3 46 8 85 3 09	1.6
MW-16	04 26 94 10 18 94 62 14 95	3.52	2 93 3 85 3 78	6; -0;

	Table 2-1: Groundwater Elevations South Shore Shopping Center Alameda, California								
Well ID	Date Measured	Well Elevation (feet)	Depth to Water	Groundwater Elevations (feet) City of Alameda Datum					
MW-17	04/26/94 10/18/94 02/14/95	3.32	3.38 3.76 2.90	-0.06 -0.44 0.42					
MW-18	04/26/94 11/04/94 02/14/95	4.72	4.84 4.65 4.42	-0.12 0.07 0.30					
MW-19	04/26/94 10/18/94 02/14/95	5.28	5.09 5.58 4.55	0.19 -0.30 0.73					
MW-20	04/26/94 10/18/94 02/14/95	6.66	7.11 7.61 5.80	-0.45 -0.95 0.86					
MW-21	04/26/94 10/18/94 02/14/95	6.48	6.6 7.11 5.90	-0.12 -0.63 0.58					
MW-22	04/26/94 10/18/94 02/14/95	7.81	7.57 8.16 6.52	0.24 -0.35 1.29					
MW-23	04/26/94 10/18/94 02/14/95	7.09	4.45 6.54 4.76	2.64 0.55 2.33					
MW-24	04/26/94 10/18/94 02/14/95	9.19	8.49 9.10 7.87	0.70 0.09 1.32					
MW-25	04/26/94 10/18/94 02/14/95	9.41	9.15 9.55 8.75	0.26 -0.14 0.66					

Notes:

Groundwater levels measured from the top of the PVC well casing. Well elevations surveyed with reference to the City of Alameda datum (+3.41 feet msl). 2.

NR =Not recorded.

	Table 2-2: Groundwater Analytical Results - Total Petroleum Hydrocarbons and BTEX South Shore Shopping Center Alameda, California										
Well No.	Date Sample	TPH as Diesel	TPH as Gasoline	Oil\Grease	Benzene	Toluene	Xylenes	Ethylbenzene			
Texaco Wells											
MW-22	04/28/94	<0.05	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	10/18/94	<0.05	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	02/15/95	<0.05	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
Harsch We	lls										
MW-16	05/2/94	<0.05	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	10/18/94	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	02/15/95	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
MW-17	04/29/94	<0.05	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	10/18/94	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	02/15/95	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
MW-19	04/29/94	<0.05	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	10/18/94	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	02/15/95	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
MW-23	05/2/94	<0.05	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	10/18/94	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	02/15/95	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
Kamur We	lls	<u> </u>									
MW-12	04/27/94	NT	160	NT	1.3	6.3	12.0	1.4			
	10/18/94	NT	77.0	NT	5.2	6.2	22.0	13.0			
	02/15/95	NT	68.0	NT	1.1	6.2	15.0	2.0			
	02/14/95(ST)	NT	68.0	2.3	0.12	0.2	0.71	0.18			
MW-24	02/15/95	NT	29.0	NT	7.7	1.6	2.1	1.2			
	02/14/95(ST)	NT	4.1	NT	0.053	0.021	0.046	0.02			
MW-25	04/27/94	NT	<0.05	NT	<0.0005	<0.0005	<0.0005	<0.0005			
	10/18/94	NT	<0.05	NT	<0.0005	0.0005	0.0005	<0.0005			
	02/14/95	NT	NT	NT	NT	NT	NT	NT			
PMCL		NA	NA	NA	0.001	1.0	1.75	0.68			

Explanation:

All results are in milligrams per liter

BTEX = Benzene, toluene, ethylbenzene, and xylenes

NT = Not tested

NR = Analytical results not reported by laboratory

NA = Not Available

PMCL = Primary Maximum Contaminant Level

ST = Analytical Results Provided by Soil Tech Engineering

IPH = Total Petroleum Histrocarbons

FB1.2-2 HAR 93-1185002 80

	Table 2-3: Groundwater Analytical Results - Volatile Organic Compounds South Shore Shopping Center Alameda, California										
Well No.	Date Sample .	Chloro- benzene	1,2- DCA	1,1-DCE	Trans 1,2- DCE	PCE	TCE	Chloroform	Cis 1,2- DCE		
Texaco Wel	Texaco Wells										
MW-22	04/28/94	<0.001	0.015	<0.002	<0.001	<0.001	<0.002	<0.001	NR		
	10/18/94	<0.0005	0.014	<0.0005	<0.0005	<0.0005	<0.0005	0.00065	<0.0005		
	02/15/95	<0.0005	0.0082	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
Harsch Wel	ls										
MW-16	05/2/94	<0.001	0.002	<0.002	<0.001	<0.001	<0.002	<0.001	NR		
	10/18/94	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0061	<0.0005		
	02/15/95	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
MW-17	04/29/94	<0.001	<0.002	<0.002	<0.001	0.0024	<0.002	<0.001	NR		
	10/18/94	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.004	<0.0005		
	02/15/95	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
MW-19	04/29/94	<0.001	<0.002	<0.002	<0.001	0.0011	<0.002	<0.001	NR		
	10/18/94	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0046	<0.0005		
	02/15/95	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
MW-23	05/2/94	<0.001	<0.002	<0.002	<0.001	<0.001	<0.002	<0.001	NR		
	10/18/94	<0.0005	0.00053	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
	02/15/95	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
Kamur Well	s										
MW-12	04/27/94	<0.001	<0.002	<0.002	<0.001	0.0039	<0.002	<0.001	NR		
	10/18/94	NT	NT	NT	NT	NT	NT	NT	<0.0005		
	02/15/95	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		
MW-24	02/15/95	<0.0005	0.0066	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		
MW-25	04/27/94	<0.001	0.0093	<0.002	<0.001	0.0039	<0.002	<0.001	NR		
	10/18/94	<0.0005	0.0052	<0.0005	<0.0005	<0.0005	<0.0005	0.0013	<0.0005		
	02/15/95	NT	NT	NT	NT	NT	NT	NT	NT		
PMCL		0.03	0.0005	0.006	0.01	0.005	0.005	0.1	0.006		

Explanation:

All results are in milligrams per liter

DCA = Dichloroethane

DCE = Dichloroethene

PCE = Tetrachloroethene

TCE = Trichloroethene

BTEX = Benzene, toluene, ethylbenzene, and xylenes

NS = Not sampled

NT = Not tested

NR = Analytical results not reported by laboratory NA = Not Available

PMCI = Primary Maximum Contaminant Level

ST = Analytical Results Provided by Soil Tech Engineering

93-1185002.89 1BI 2-3 HAR

3.0 RESULTS OF THE SELF-MONITORING PROGRAM

3.1 Groundwater Gradient

There are presently 22 monitoring wells located within the South Shore Shopping Center and south of the site along Shoreline Drive. Because one of these wells is damaged (MW-4), 21 wells were utilized to evaluate the site groundwater flow conditions. Based on the most recent water elevation data collected during February 1995 (see Table 1-1), groundwater generally flows northwest, west, and southwest. However, the measured groundwater elevations indicate localized steep gradients, groundwater low and high areas, and varied groundwater flow directions. Groundwater elevations and flow direction are illustrated in Drawing 2-1. The groundwater elevations are referenced to City of Alameda datum which is 3.41 feet above mean sea level (MSL).

3.2 Analytical Results

The analytical results for Monitoring Wells MW-12, MW-16, MW-17, MW-19, MW-22, MW-23, and MW-24 are presented in Tables 2-2 and 2-3 and are discussed herein. The laboratory analytical reports are included in Appendices C and D. Historical groundwater quality analytical results are summarized in Appendix E.

- TPH-g was not detected above the method detection limit of 0.05 milligrams per liter (mg/l) in Monitoring Wells MW-16, MW-17, MW-19, MW-22, and MW-23. In Monitoring Well MW-12, the concentration of TPH-g was 68 mg/l. In Monitoring Well MW-24, the concentration of TPH-g was 29 mg/l. Drawing 3-1 shows the distribution of gasoline detected in these wells;
- The TPH-g concentrations reported by STE for Monitoring Wells MW-12 and MW-24 were: MW-12 68 mg/l; MW-24 4.1 mg/l;
- The concentration of oil and grease reported by STE for Monitoring Well MW-12 was 2.3 mg/l;
- TPH-d was not detected in Monitoring Well MW-22;
- The concentration of benzene in Monitoring Well MW-12 was 1 l mg/l. The concentration of benzene in Monitoring Well MW-24 was 7 7 mg/l. STE reported concentrations of benzene in Monitoring Wells MW-12 (0.12 mg/l) and MW-24 (0.053 mg/l). Drawing 3-2 shows the distribution of benzene detected in groundwater samples collected during this quarter:

- The reported concentration of toluene in Monitoring Well MW-12 was 6.2 mg/l. The concentration of toluene in Monitoring Well MW-24 was 1.6 mg/l. STE reported the toluene concentrations of 0.2 mg/l in Monitoring Well MW-12 and 0.021 mg/l in Monitoring Well MW-24. Toluene was not detected in the remaining wells;
- The reported concentrations of xylene in Monitoring Well MW-12 were 15 mg/l (McCampbell) and 0.71 mg/l (PEL). The xylene concentrations reported for samples from Monitoring Well MW-24 were 2.1 mg/l (McCampbell) and 0.046 mg/l (PEL). Xylenes were not detected in the remaining wells;
- The reported concentrations of ethylbenzene in samples from Monitoring Well MW-12 were 2.0 mg/l (McCampbell) and 0.18 mg/l (PEL). The concentration of ethylbenzene in Monitoring Well MW-24 was 1.2 mg/l (McCampbell) and 0.02 mg/l (PEL). Ethylbenzene was not detected in the remaining wells;
- 1,2-dichloroethane (1,2 DCA) was not detected above the method detection limit of 0.0005 mg/l in Monitoring Wells MW-23, MW-16, MW-17, MW-19, and MW-12. 1,2 DCA was detected in the samples collected from MW-24 (0.006 mg/l) and MW-22 (0.008 mg/l). The California Primary Maximum Contaminant Level (PMCL) for 1,2 DCA is 0.0005 mg/l. Drawing 3-3 shows the distribution of 1,2 DCA detected in groundwater samples collected during this quarter; and
- Chlorobenzene, chloroform, cis 1,2-dichloroethene, 1,1-dichloroethene, trans 1,2-dichloroethene, tetrachloroethene, and trichloroethene were not detected in any of the well samples analyzed during this quarter.

3.3 Quality Assurance/Quality Control

The QA/QC program was designed to:

- Establish the necessary activities to control the quality of sample collection, analysis, and data validations; and
- Guide assessment of the precision, accuracy, and completeness of the data.

The sampling methods and protocols have been specified in the QAPP. Relevant sections of the QAPP specify the methods and protocols for the groundwater sample collection, handling, and shipment; water level measurements; purging: and analytical methods.

Laboratory in-house QA,QC results were reported by McCampbell and PEL to

indicate that all matrix spikes, matrix spike duplicates, method blanks, QC spike, and QC spike duplicate results are within acceptable laboratory limits.

4.0 CONCLUSIONS

4.1 Groundwater Quality

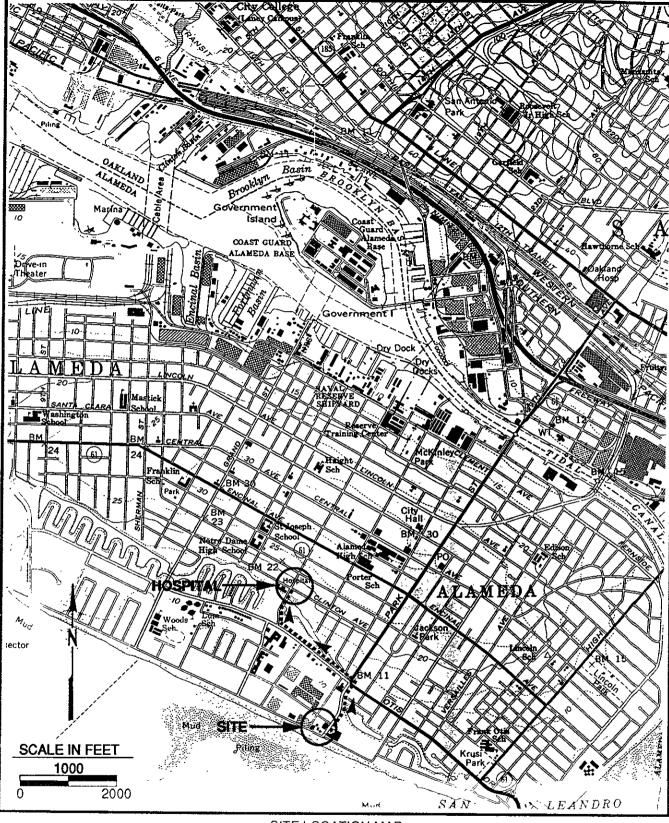
During this monitoring period, seven monitoring wells were sampled. The results indicate that groundwater continues to flow generally north, west, or southerly towards the bay (Drawing 2-1). However, the data suggests that surface watering of landscaped areas may be influencing recognized groundwater flow directions and gradients. Several other factors that commonly alter groundwater flow patterns are:

- Variation in thicknesses and type of fill material used;
- Total Dissolved Solids (TDS) and locations of saltwater interface;
- Depth to well screen; and
- Leaking pipes, buried utility trenches, etc.

1,2 DCA was detected in groundwater samples from Monitoring Wells MW-22 (0.0082 mg/l) and MW-24 (0.0066 mg/l) located along the southeastern and northern perimeters of the site, respectively. These concentrations are similar in magnitude to concentrations reported during the previous quarter.

1,2 DCA was detected in Monitoring Well MW-23 during the previous quarter at a concentration of 0.00053 mg/l. 1,2 DCA was not detected in MW-23 during this quarter. Chloroform, detected during the previous quarter in samples from Monitoring Wells MW-16, MW-17, MW-19 and MW-22 was not detected in any of the samples during this quarter.

Groundwater samples collected by STE from Monitoring Wells MW-12 and MW-24 were analyzed by McCampbell and PEL for TPH-g and BTEX. The reported TPH-g concentrations for Monitoring Well MW-12 were consistent (both laboratories reported 68 mg/l). The TPH-g concentrations reported for MW-24 were not as consistent (PEL - 4.1 mg/l - McCampbell - 29.0 mg/l). BTEX concentrations reported by PEL were generally one to two orders of magnitude less than the concentrations reported by McCampbell (i.e., benzene reported in MW-12: McCampbell - 1.1 mg/l, PEL - 0.12 mg/l) MARK contacted McCampbell and PEL to inquire about possible laboratory errors that may have produced this discrepancy in BTEX concentrations. McCampbell reported having reviewed their


laboratory quality control data and expressed their confidence in the reported BTEX concentrations. As of this date, PEL has not commented on their reported BTEX concentrations.

5.0 RECOMMENDATIONS

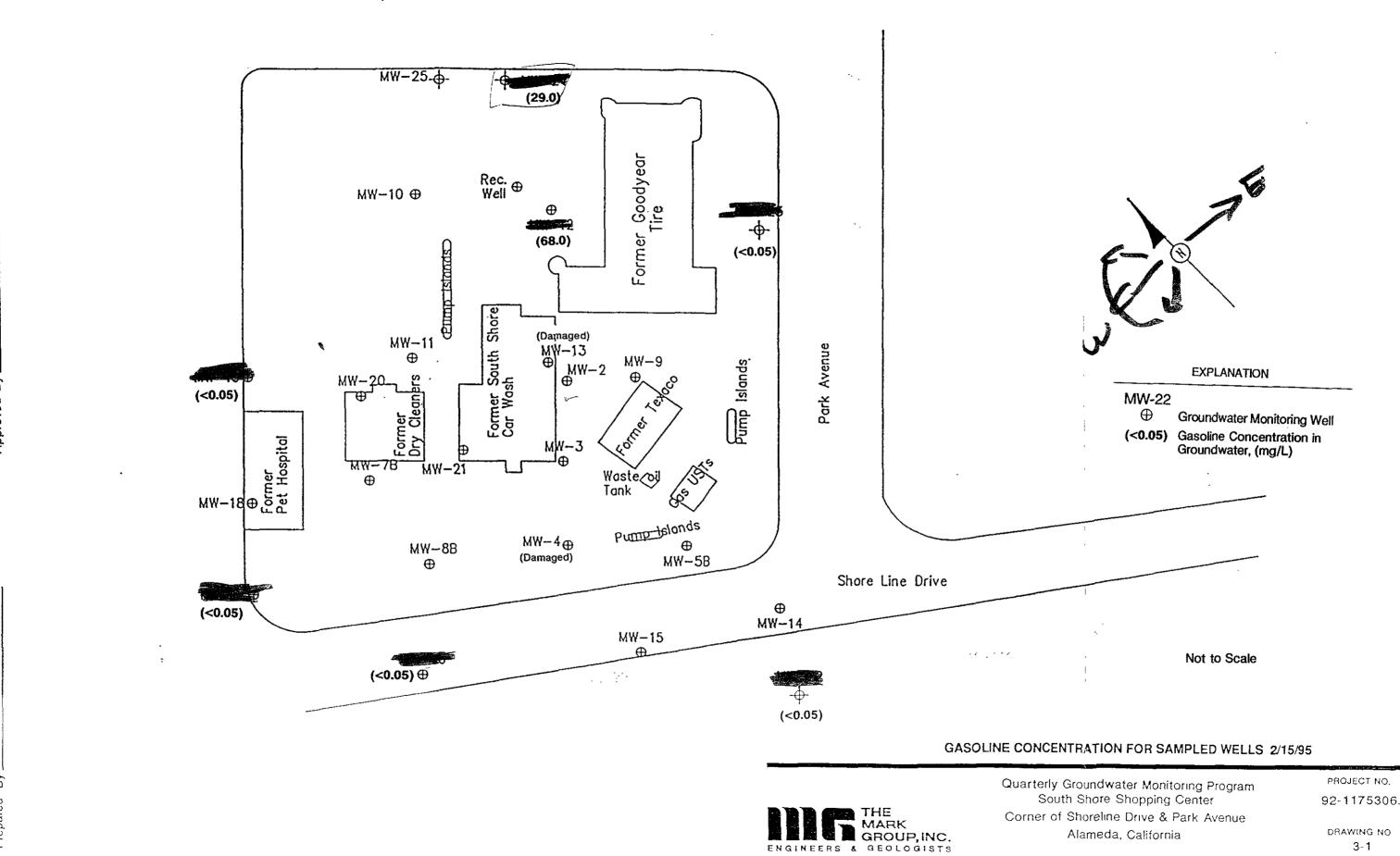
Monitoring Well MW-4 is damaged and no longer operable as a Monitoring Well. This well should be destroyed and sealed. The well was originally installed to define the horizontal extent of chemical impacts to groundwater. MARK sees no need at this time to replace this monitoring well.

The next quarterly groundwater sampling event should be scheduled for May 1995.

Drawings

SITE LOCATION MAP

Quarterly Groundwater Monitoring Program Southshore Shopping Center Corner of Shoreline Drive & Park Avenue Alameda, California PROJECT NO 93-1175306


> DRAWING NO 1-1

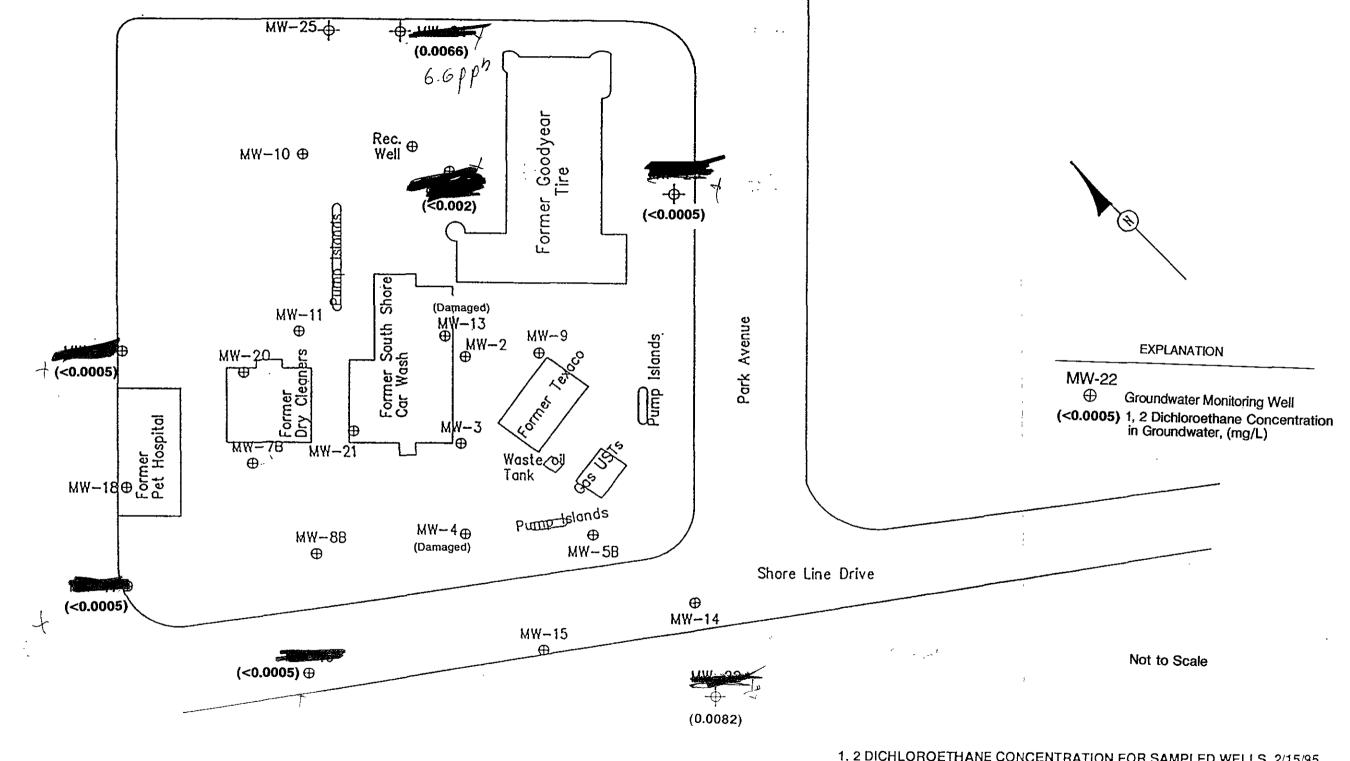
ADG

REVIEWED BY

HSS

PREPARED BY

Corner of Shoreline Drive & Park Avenue Alameda, California


DRAWING NO 3-1

THE MARK GROUP, INC. ENGINEERS & GEOLOGISTS

Alameda, California

PROJECT NO 92-1175306

DRAWING NO 3-2

1, 2 DICHLOROETHANE CONCENTRATION FOR SAMPLED WELLS 2/15/95

Quarterly Groundwater Monitoring Program South Snore Shopping Center Corner of Shoreline Drive & Park Avenue Alameda, California

PROJECT NO 92-1175306.

DRAWING NO 3-3

Appendix A

Field Water Level Measurements

DATE: 2/14/95	PROJECT No.: 92-1185603.30
PERSONNEL: G. FUOULE	HOW MEASURED/DEVICE: ELECTRONIC SOMBER
	LAST CALIBRATION DATE: FACTORS
WEATHER: CIGAR COOR CALLY	COMMENTS:

Tim e	Well No.	Predicted or Measured Tide Level*	Top of Casing Elevation (Measuring Point)	Depth Below Top of PVC Casing (MP)	Water Level Elevation
1320	MW-12	·	8.31	5.64	. 2.73
1330	MW-24		9.19	7.87	1,32
1340	uw-25		9.41	8.75	0.66
1425	MW-10	,	7.97	26 6.13	1.84
1458	uw-11		6.96	4.93	2,03
1503	MW-13		DAMAGED	5. II D	2.29
1505	MW-2		1.44	5.15	2.16 2.29
1509	MW-3		6.18	4.62	2.16
1511	MW-4		DAMAGED	4.52	
1518	nw-9B		5.65	4.98	0.67
1522	MW-SB		5.08	3.00	2.08
1526	MW-7B		5.52	3.70	1.82
1539	MW+19		5.28	4.55	0.73
154)	MW-20		6.66	5.80	0.86
1546	MW-21		6.48	5.90	0.58
1614	MW-15		4.47	3.09	1.38
1618	Mb-16		3.52	3.78	-0.26
1623	MW-23		7.09	4.76	2,833
1631	Mw-22		7.81	6.52	1 29
1644	MW-14		5.16	4.08	1.68
1648	MW-18		4.72	4.47	0.30
1654	MW-17 MW-8B		3.32	2.90	0.42

Appendix B

Date <u>Z-15-94</u>	Sample Location MW-22
Project Name South Shore	Project No. 921175306
Weather Conditions Smay - clear - Cool (
Observations/Comments	•
Samples Collected By JE- MSC	
•	Y CONTROL
Purging/Sampling Method Te Flow Banlor -	
Method to Measure Water Level _ E - Text	
Pump Lines or Bailer Ropes: (new cleaned	
Method of Cleaning Bailer/Pump	Wash / DI Ringe
pH Meter No. DEIPH-1	Date Calibrated Z-15-95
Sp Conductance Meter No. 1574 + 43103	Date Calibrated 2-15-95
10 637175	D SAMPLING DATA
Water Level (below MP) Start 6.52	End 6.95
W. Volume 3 sellos	
Measuring Point (MP)	
Time Pump Rate Discharge pH	Temp. Sp.Cond. Color Odor Turbidity
Stat	is tok i i i i kanamonia i i i i i i i i i i i i i i i i i i
4 1:25 HB - 3gallons - 7.81 +	16 = 1990 - M.lhy - None - Cloudy
1:30 11 - 6Gallon - 7.77 -	
1:35 11 96allon - 7.80 -	
Sandal 1:40 129 - 7.80	16-2040-11 11 11
	· · · · · · · · · · · · · · · · · · ·
Total Discharge 12 GALOS	Casing Volumes 34 4 Garrons
Method of Disposal of Discharge Water	witch sale drum
	Sheet of

Date 2/15/95	<u></u>	<u>.</u>	Sample L	ocation	10-23		
Project Name Loure	SWORLO		Project N	0. 92-117	5306		
Weather Conditions	SIGAR, COR	re CA	<u></u>		·		
Observations/Comment	ts	<u> </u>			<u> </u>		
Samples Collected By_	GAF	 					
,			Y CONTRO				
Purging/Sampling Met	hod TEFL	zu BA	uss/				
Method to Measure Wa	iter Level $\underline{\mathcal{E}}$	-TAPE					····
Pump Lines or Bailer R	lopes: new	cleaned	dedicated			· .	·
Method of Cleaning Ba	uiler/Pump	100100	x WASI	1-D.I.1	21~SE		
pH Meter No					<i>\$</i>		
Sp Conductance Meter							
n=18.45'			D SAMPLII				
Water Level (below MP) Start	4.79		End5-3	0		
-18- CK=2.39							
Measuring Point (MP)_	TOP OF	PVC	CASIN	4		<u></u>	
Time Pump Rate	Discharge:	pΗ	Temp.	Sp. Cond.	Color	Odor	Turbidity
1235	0			·	4 GRAG		
1.	_	7/	17	440	4		4
1240	2	7.6		770		4	
1245	4	7.6		476	v	4	9
·	4	7.6		476			9
1245	4	7.6	15	476	o	4	
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED)	7	7.6	15	476	o	4 &	B
1245 1255 (SAMPLED) 1305	7 10	7.6	15 14:7 16.5	476 400 360	0 ") "4	4 U U	B U
1245 1255 (SAMPLED)	10 Janons	7.6	/5 /4:7 /5.5 Casing V	476 400 360	0 ") "4	4 U U	B U

Date 2/15/55	Sample Location Mw-14/19
	Project No. 921175306
Weather Conditions Sunny Clar (a)	
Observations/Comments	
Samples Collected By MSC+ JF	
QUALIT	Y CONTROL
Purging/Sampling Method TeFlon Baller	Tetler Baler
Method to Measure Water Level	
Pump Lines or Bailer Ropes: new cleaned	
Method of Cleaning Bailer/Pump	+ Wash /DI Rma
pH Meter No. DSPH-1	Date Calibrated 2-15-95
Sp Conductance Meter No.	Date Calibrated 2-15-55
PURGING AN	D SAMPLING DATA
Water Level (below MP) Start 176 124.92 Wienli 20.25 Will 3, 30 Measuring Point (MP)	457 End 6.98
Time Pump Rate Discharge pH	Temp. Sp. Cond. Color Odor Turbidity
1105 BegIN PRAGING WELL	
11:25 - NB - 3,5 - 7,46.	- 18 - <2000 - 5/5.4/5. 9/km - 45 - low
11:30 - 146 - 70 - 7,4 -	- 19 - CZ0,000 - 11 - H25 - 11
11:11: -110- 10.3 -1.7-	77 22300
Sampk@ #	
11:40 - 13.5 - 7.4 -	19-010000 11 4 4
3 -	-
Total Birchaus 15	Control Values & 4
Total Discharge	Casing Volumes \$ 4

Date FeB. 15	1995		Sample	Location _ <	21175	B Mu.	-17
Project Name Sorte	SHORE		Project	No. 92-11	75306	<u> </u>	*
Weather Conditions	LGAR CO	on Ch	en	··			
Observations/Comments		<u></u>	·	* * *			
Samples Collected By_	GAP			·		<u></u>	·
		QUALIT	Y CONTR	OL			
Purging/Sampling Metho	od TERRE	ZE BAIL	ER/ 90	EFRON BA	LGR		<u>.</u>
Method to Measure Wate	er Level _6	-TAPC					
Pump Lines or Bailer Ro	pes: new	cleaned	dedicate	ed		<u>. </u>	
Method of Cleaning Bail	er/Pump	10UM	ox wh	519			
pH Meter No. DSPH				_	5/95		
Sp Conductance Meter N	No. 4510	3	Date Ca	alibrated 2/1	5/95		
	PUF	RGING AN	ID SAMPL	ING DATA			
75 24.8 Water Level (below MP)	Start	2.9	<u> </u>	_ End _ <u>5.4</u>	37		
24.8-2.9 = 21.	,	·					
CV=3. Measuring Point (MP)		OF F	ren	EU CASIN	4		
Time Pump Rate	Discharge Hoallonsh	pH	Temp	_Sp_Cond.	Color	Odor	Turbidity
1030 Begin 5	_					SUGHT H25	V. SUGAT
1035	4			>20,000	R	10	4
1040	8	7.5	19.5	"	//	4	1)
1045	12	7.5		4	4	4	4
1050 SAMPLED	<u> </u>	7.6	19.7	R		/1	<u> </u>
1056	16	7.6	19.7	И		H,	£1
				<u> </u>			
							
Total Discharge 16	O CALDON		Caeina	Volumes 4			
G			_	voidines Si			
Method of Disposal of D	uscharge Wa	iter <u>to</u>	101000	<u> </u>		Sheet	

Project Name South Share Project No. 921175 306 Weather Conditions Sungy Observations/Comments (20 (50-60) Sungy Samples Collected By F. C QUALITY CONTROL Purging/Sampling Method Hand South Toflow below Teffor Below Method to Measure Water Level E-Trope Pump Lines or Bailer Ropes: (rew cleaned dedicated Method of Cleaning Bailer/Pump Lighton Work D. Ringe pH Meter No. DSPHI-1 Date Calibrated 2-16-95 Sp Conductance Meter No. 45 03 Date Calibrated 2-16-95 Sp Conductance Meter No. 45 03 Date Calibrated 2-16-95 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 176-35 18-26-35 18-26-35 18-26-35 18-26-36 18-	Drainat N	•			Samp	le Location	nu - 16		
Observations/Comments (bol (50-bo) Sungers Samples Collected By F.+C QUALITY CONTROL Purging/Sampling Method Hand Bailed - ToFlon balls / TeFlon Balls Method to Measure Water Level E-Tape Pump Lines or Bailer Ropes: (Few cleaned dedicated Method of Cleaning Bailer/Pump Ligures Wash / D = Rinse pH Meter No. DSPHI-1 Date Calibrated 2-15-75 Sp Conductance Meter No. 45103 Date Calibrated 2/15/45 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26-55 Measuring Point (MP) Top of PC Wee CASING Measuring Point (MP) Top of PC Wee CASING Time Pump Rate Discharge pH Temp Sp. Cond Color Odor Turbic (Color Humbos/cm) Significant (Color Humb	roject i	<u>ره ک</u> lame	The Shore		Projec	t No. 9211	75 306		·
QUALITY CONTROL Purging/Sampling Method Hand Bailed — ToFlon balls / TeFlon Balls Method to Measure Water Level E-Tape Pump Lines or Bailer Ropes: (New Cleaned dedicated Method of Cleaning Bailer/Pump Lizanes Wash / D = Rins= PH Meter No. DSPHI-1 Date Calibrated 2-15-95 Sp Conductance Meter No. 45 03 Date Calibrated 2/15/95 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26-55 Measuring Point (MP) Top of Pic Wee CASING Time Pump Rate Discharge pH Temp Sp Cond. Color Odor Turbic Casing Highlight Highlionship Color Color Odor Turbic Casing Highlight Highlionship Color Casing Highlight Highlionship Color Casing Highlight Highlionship Color Casing Highlight Highlionship Color Casing Highlight Highlight Color Casing Highlight Colo							 		
QUALITY CONTROL Purging/Sampling Method Hand Bailed ~ ToFlon bulv ToFlon Bulv Method to Measure Water Level E-Tape Pump Lines or Bailer Ropes: (new cleaned dedicated Method of Cleaning Bailer/Pump Ligurian Wash D = Rinse pH Meter No. DSPHI-1 Date Calibrated 2-15-95 Sp Conductance Meter No. 45103 Date Calibrated 2/15/95 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) Top & Pic Wee Casing Time Pump Rate Discharge pH Temp Sp Cond Color Odor Turbic 11 11 12 12 20 000 15 15 15 16 12 13 14 20 000 15 15 16 13 14 15 16 16 14 15 15 15 15 16 15 16 16 17 17 18 15 16 17 17 18 16 17 18 18 18 18 17 18 18 18 18 18 18 19 10 10 19 10 10 10 10 10 10 11 10 10	Observat	ions/Comm	ents_ <u>Cool</u> (50-60)	Sunny				
Purging/Sampling Method Hand Bailed — ToFlon below / TeFlon Below Method to Measure Water Level E-Tape Pump Lines or Bailer Ropes: (new) cleaned dedicated Method of Cleaning Bailer/Pump Lizeway Wash / DI Rinse pH Meter No. DSPHI-1 Date Calibrated 2-15-95 Sp Conductance Meter No. 45103 Date Calibrated 2/15/95 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) Top of Puc Wee Casing Time Pump Rate Discharge pH Temp Sp. Cond. Color Odor Turbic (Minimoslam) Shift Highin High Highin Highi	Samples	Collected I	3y F. +C	···	·	<u> </u>	- · - · - · - · · · · · · · · · · · · ·		 _
Pump Lines or Bailer Ropes: (new cleaned dedicated Method of Cleaning Bailer/Pump Lizard Wash Description of Calibrated 2/15/45 Physicard Research Meter No. 45/03 Date Calibrated 2/15/45 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) Tap of Pic West Cash Color Odor Turbic Cash Color (MP) Tap of Pic West Cash Color (MP) Sp. Cond. Color Odor Turbic Cash Color (MP) Sp. Cond. Color (MP) Sp.						7	•		
Pump Lines or Bailer Ropes: (new cleaned dedicated			•	_	TeFlon I	mler / TeFlon 1	le-		
Method of Cleaning Bailer/Pump Ligurian Wash 37 Rinse pH Meter No. DSPMI-1 Date Calibrated 2-16-95 Sp Conductance Meter No. 45103 Date Calibrated 2/15/95 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) TSP SP PC WELL CASING Time Pump Rate Discharge pH Temp Sp Cond. Color Odor Turbic (Color) Highlight	Method t	o Measure	Water Level	- Tape		<u> </u>			
pH Meter No. D5PHI-1 Date Calibrated 2-15-75 Sp Conductance Meter No. 45103 Date Calibrated 2/15/95 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) Top of PC Wee CASING Time: Pump Rate Discharge pH Temp. Sp. Cond. Color Odor Turbic (Color) (Minhos/cm) Slight (Minh						<i>f</i>			
pH Meter No. D5PHI-1 Date Calibrated 2-15-75 Sp Conductance Meter No. 45103 Date Calibrated 2/15/95 PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) Top of PC Wee CASING Time: Pump Rate Discharge pH Temp. Sp. Cond. Color Odor Turbic (Color) (Minhos/cm) Slight (Minh	Method (of Cleaning	Bailer/Pump_	Liquinox	wash	BI Rinse			<u></u>
PURGING AND SAMPLING DATA Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) Top of Pic West Casing Measuring Point (MP) Top of Pic West Casing Time Pump Rate Discharge pH Temp Sp. Cond Color Odor Turbic (Mp) (Mp) (Mp) (Mp) (Mp) (Mp) (Mp) (Mp)							16-95		
Water Level (below MP) Start 3.57 End 6-1 26.55 Measuring Point (MP) Top of Pic Well Caring Time: Pump Rate Discharge pH Temp. Sp. Cond. Color Odor Turbic (Mp) (Mp) (Mp) (Mp) (Mp) (Mp) (Mp) (Mp)	Sp Cond	uctance Me			•		15/95	··········	
Measuring Point (MP) Top of PC Were CASING Time: Pump Rate Discharge pH Temp. Sp. Cond. Color Odor Turbic (Mmhos/cm) Sp. Marker (Mmhos/cm) Sp. Marker H2 S Jose 9:50 HB 10.05 7.11 19 \$20,000 yellow/dar H2 S Jose 9:00 HB 10.05 7.13 19 \$20,000 yellow/dar H2 S Jose 9:00 HB 15.00 7.12 20 \$20,000 Ship yellow/dar 11 Jose Danyle HB 15.00 7.12 20 \$20,000 Ship yellow/dar 11 Jose Danyle HB 15.00 7.13 10 \$20,000 Chr.	TD:30	012				_	,		
Measuring Point (MP) Top of Pic Wee CASING Time: Pump Rate Discharge pH Temp. Sp. Cond. Color Odor Turbic (G) (Minhos/cm) Slight (G) (G) (Minhos/cm) Slight (G)	Water Le	vel (below	MP) Stai	rt <u>5.57</u>		End <u>&</u> -	. [
Time Pump Rate Discharge pH Temp Sp. Cond. Color Odor Turbic (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ic: 4.3	3 tallons						·	
9:30 HB 5.80 7.11 19 \$ 20,000 46/w/km H2S 100 9:50 HB 10.05 7.13 19 \$20,000 5/13/14/w/km H2S 100 9:00 HB 15.00 7.12 20 \$20,000 5/13/14/w/km 11 1000 05/16/16/16/16 11 1000 05/16/16/16/16 11 1000 05/16/16/16/16/16/16/16/16/16/16/16/16/16/	Measurin	a Point (MI	TOP OF	PLC W	Tree .	PACINE			
9:30 HB 500 7.11 19 \$ 20,000 yellowflow H2S 100 9:50 HB 10.00 7.13 19 \$20,000 Shiphy bellow 11 1000 000 0000 Shiphy bellow 11 1000 0000 Shiphy bellow 11 10000 0000 Shiphy shiphy bellow 11 10000 0000 Shi		A LAUST TIME	- <u> </u>						
9.50 HB 10.00 7.13 19 \$20,000 Shiphfeller 11 low 9100 HB 15.00 7.12 20 \$20;000 Shiphfeller 11 low 05mple HB 600-15 7.13 10 \$20,000 Chr	Timo	Dump Data	Disabaras	ьЦ	Tomo	Sn Cond	Color		
) Sample 110 toons 7.13 10 \$20,000 (15 belle - 11 too	Time J	Pump_Rate	Discharge	ьЦ	Tomo	_Sp_Cond. ++++(kmhos/cm)	5/24	-i- 	
Dangle 110 to 1.15 to 9 LO,000 (1.5 "	Time 9:30	Pump Rate	Discharge	pH 3 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temp (*C) 	Sp. Cond.	Slight yellaskkur Slightfuskkur	H ₂ S	100
	7:30	Pump_Rate ⊢lgpm)+, HB HB	Discharge	pH 3 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temp (*G) 19	Sp. Cond. → (kunhos/cm) > 20,000 > 20,000	Slight yellaskkur Slightfuskkur	++++++++++++++++++++++++++++++++++++++	100 100
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons) GBO 10.00	pH 3 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Temp ('6) 19 19 20	\$p.Cond. → (kunhas/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Stight Kur Yellow Khur Stight Jellow Kley Stight Gellow	H ₂ S	100 low
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons): [Discharge (gallons): [Discharge (gallons): [Joba Joba Job	pH 7,11 7,13 7,12	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slighty yellow floor Slighty bellow - Chit	H ₂ S	low low
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons): [Discharge (gallons): [Discharge (gallons): [Joba Joba Job	pH 7,11 7,13 7,12	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slighty yellow floor Slighty bellow - Chit	H ₂ S	100 100 1000 1000
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons): [Discharge (gallons): [Discharge (gallons): [Joba Joba Job	pH 7,11 7,13 7,12	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slighty yellow floor Slighty bellow - Chit	H ₂ S	100 100 1000 1000
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons): [Discharge (gallons): [Discharge (gallons): [Joba Joba Job	pH 7,11 7,13 7,12	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slighty yellow floor Slighty bellow - Chit	H ₂ S	100 100 1000 1000
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons): [Discharge (gallons): [Discharge (gallons): [Joba Joba Job	pH 7,11 7,13 7,12	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slighty yellow floor Slighty bellow - Chit	H ₂ S	100 100 1000 1000
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons): [Discharge (gallons): [Discharge (gallons): [Joba Joba Job	pH 7,11 7,13 7,12	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slighty yellow floor Slighty bellow - Chit	H ₂ S	low low
	7:30 9:30 9:50 9:00	Pump Rate Highmin HB HB HB	Discharge (gallons): [Discharge (gallons): [Discharge (gallons): [Joba Joba Job	pH 7,11 7,13 7,12	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slighty yellow floor Slighty bellow - Chit	H ₂ S	low low
	7:50 9:50 9:50 9:00	Pump Rate Highin His His His His	Discharge (gallons): GBO 10.05 15.00 20	pH	Temp ('6) 19 19 20	\$p. Cond. → (fumhos/cm) ≥ 20,000 ≥ 20,000 ≥ 20,000	Slight yellow Klar Slight yellow floor Slight bellow - Chill bellow -	H ₂ S	low low
Total Discharge WK - 1/60) Casing Volumes 3704	7:50 9:50 9:50 9:00	Pump Rate Highin His His His His	Discharge (gallons): GBO 10.05 15.00 20	pH	Temp ('6) 19 20 20	\$ 20,000 \$ 20,000 \$ 20,000 \$ 20,000 \$ 20,000	Slight Klar Yellow Klar Slight yellow Slight yellow - Clist LI	H ₂ S	low low

pH Meter Calibration Log Meter No. PH 3

Temp (°C)	Standard/Actual	Standard/Actual	Standard Actual	Project No.	Operator	Comments
180	-/-	7.00/7.05	10.00/10.07	921175306	78	Recult rotal to 7 +12
ie.		1 4	10.00/9.00	U.		
	77 977		¥	** ** grant 		u
	- L ,		¥ 1	His		
	1 1					
	- y .			 		
	. '		Ê			
	i i					;
	1		ž.	į		
			\$ 1 \$ 1 \$ 2			
			C C			
	c			l .		
	î		(A)			
						!
	į,					
			10 P			
				;		,
						,
	,		# A			, , , , , , , , , , , , , , , , , , ,
						
	180		18° —/— 7.00/7.05 16. 1.00/6.95	7.00/7.05 /0.00/10.07 1.60/6.95 10.00/9.96	7.00/7.05 /0.00/10.07 93//75306 10.00/6.95 /0.00/9.96 // 1.00/6.95 /0.	7.00/7.05 10.00/10.07 721/75306 TE 1.00/6.95 10.00/9.96 11 GAF

Conductivity Meter Calibration Log Meter No. 4404

ate,	Temp (°C);	Standard/Actual	Standard/Actual	Standard Actual	Project No.	Operator	Comments
0-18		11/200	10K/9,500	-/4-	92/175706	TH	45104
/15/95	16	1,000/180	10,000/9,000		9:	GAF	45103
(1.6		7,500	4	1 1 7		
					13.7		
 					. :		
 				- 43			
				1			
·····		,		#.' #			: .
				7 1 7 1	,		
				14 14 14	1 ,		
·					F		:
					,,-,-,		Sit p
					1.	 	1
		1		100 mg/m	i i		.31.
				± -			
					:		
	,			# i			
				14. u.j.			

Appendix C

02/27/95

Dear Jeff:

Enclosed are:

- 1). the results of 7 samples from your # 92-1175306; South Shore project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Edward Hamilton

				***	-				
The Mark G	•	Client Project ID: #92-1175306; South				Date Sampled: 02/15/95			
Hookston Sq	uare, # 120	Shore				Date Received: 02/15/95 Date Extracted: 02/18-02/19/95			
3480 Buskirk	Avenue	Client Co	ntact: Jeff Fi	edler	[:				
Pleasant Hill	, CA 94523	Client P.O:				Date Analyz	ed: 02/18-0	2/19/95	
EPA methods 5	Gasoline Ran								
Lab ID	Client ID	Matrix	TPH(g) ⁺	Benzene	Toluene	Ethylben- zene	Xylenes	% Rec. Surrogate	
50250	MW-24	W	29,000,a	7700	1600	1200	2100	98	
50251	MW-12	w	68,000,a,h	1100	6200	2000	15,000	96	
50252	MW-16	W	ND	ND	ND	ND	ND	100	
50253	MW-17	W	ND	ND	ND	ND	ND	101	
50254	MW-19	w	ND	ND	ND	ND	ND	105	
50255	MW-23	w	ND	ND	ND	ND	ND	106	
50256	MW-22	W	ND	ND	ND	ND	ND	98	
					<u> </u>				
	imit unless other-	W	50 ug/L	0.5	0.5	0.5	0.5		
	etected	s	1.0 mg/kg	0.005	0.005	0.005	0.005		
		<u> </u>						<u> </u>	

^{*}water samples are reported in ug/L, soil samples in mg/kg, and all TCLP extracts in mg/L

[&]quot; cluttered chromatogram, sample peak co-elutes with surrogate peak

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation. a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant (aged gasoline?), c) lighter gasoline range compounds (the most mobile fraction) are significant, d) gasoline range compounds are significant, no recognizable pattern, e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present, g) strongly aged gasoline or diesel range compounds are significant, h) lighter than water immiscible phase is present

McCAMPBELL ANALYTICAL INC.

110 2nd Avenue South, #D7, Pacheco, CA 94553 Tele: 510-798-1620 Fax: 510-798-1622

The Mark Gr	oup		roject ID: #92-1175306; South	h Date Sampled: 02/15/95					
Hookston Sq	uare, # 120	Shore		Date Received: 02/15/95					
3480 Buskirk	Avenue	Client Co	ntact: Jeff Fiedler	Date Extracted: 02/16/95					
Pleasant Hill,	, CA 94523	Client P.C);	Date Analyzed: 0	2/16/95				
			0-C23) Extractable Hydrocarbons						
			ifornia RWQCB (SF Bay Region) method	GCFID(3550) or GC	% Recovery				
Lab ID	Client ID	Matrix	TPH(d) [†]		Surrogate				
50256	MW-22	W	ND		100				
				<u>.</u>					
									
									
									
	<u> </u>	-							
		-							
Detection Li	mit unless other- ND means Not	W	50 ug/L						
	etected	s	10 mg/kg						
*water sample	es are reported in	ug/L, soil	samples in mg/kg, and all TCLP ex	stracts in mg/L					
# cluttered cl	romatogram: surr	ogate and	sample peaks co-elute or surrogat	te peak is on eleva	ted baseline				
The following responsible for compounds and are significant diesel(?): f) of immiscible ph	The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is no esponsible for their interpretation: a) unmodified or weakly modified diesel is significant, b) diesel range compounds are significant, no recognizable pattern. c) modified diesel? light(cl) or heavy(cH) diesel compound ire significant), d) gasoline range compounds are significant, e) medium boiling point pattern that does not matchesel(?); f) one to a few isolated peaks present, g) oil range compounds are significant, h) lighter than wate mmiscible phase is present								
DHS Certifica	ation No 1644			Edward Ham	ılton, Lab Dırector				

				
The Mark Group	•): # 92-1175306; Sc	outh Date Sampled:	02/15/95
Hookston Square, # 120	Shore		Date Received:	02/15/95
3480 Buskirk Avenue	Client Contact: Jeff	f Fiedler	Date Extracted	: 02/16/95
Plcasant Hill, CA 94523	Client P.O:		Date Analyzed	: 02/16/95
	Volati	le Halocarbons		
EPA method 601 or 8010				
Lab ID	50250	50251	50252	50253
Client ID	MW-24	MW-12	MW-16	MW-17
Matrix	W	W	W	W
Compound ⁽¹⁾	Concentration*	Concentration*	Concentration*	Concentration*
Bromodichloromethane	ND	ND< 2	ND	ND
Bromoform ⁽²⁾	ND	ND< 2	ND	ND
Bromomethane	ND	ND< 2	ND	ND
Carbon Tetrachloride ⁽³⁾	ND	ND< 2	ND	ND
Chlorobenzene	ND	ND< 2	ND	ND
Chloroethane	ND	ND< 2	ND	ND
2-Chloroethyl Viny l Ether ⁽⁴⁾	ND	ND< 2	ND	ND
Chloroform (5)	ND	ND< 2	ND	ND
Chloromethane	ND	ND< 2	ND	ND
Dibromochloromethane	ND	ND< 2	ND	ND
1,2-Dichlorobenzene	ND	ND< 2	ND	ND
1,3-Dichlorobenzene	ND	ND< 2	ND	ND
1,4-Dichlorobenzene	ND	ND< 2	ND	ND
1,1-Dichloroethane	ND	ND< 2	ND	ND
1,2-Dichloroethane	6.6	ND< 2	ND	ND
1,1-Dichloroethene	ND	ND< 2	ND	ND
cis 1,2-Dichloroethene	ND	ND< 2	ND	ND
trans 1,2-Dichloroethene	ND	ND< 2	ND	ND
1,2-Dichloropropane	ND	ND< 2	ND	ND
cis 1,3-Dichloropropene	ND	ND< 2	ND	ND
trans 1,3-Dichloropropene	ND	ND< 2	ND	ND
Methylene Chloride ⁽⁶⁾	ND	ND< 2	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND< 2	ND	ND
Tetrachloroethene (7)	ND	ND< 2	ND	ND
1,1,1-Trichloroethane	ND< 2	ND< 2	ND< 2	ND< 2
1,1,2-Trichloroethane	ND	ND< 2	ND	ND
Trichloroethene	ND	ND< 2	ND	ND
Trichlorofluoromethane	ND ND	ND< 2	ND	ND —
Vinyl Chloride ⁽⁸⁾	ND	ND< 2	ND	ND
% Recovery Surrogate	107	98	103	103
Comments		high TPH		· ·
Comments		high TPH	·	

Detection limit unless otherwise stated water ND = 0.5 ug L, soil, ND = 10 ug kg

^{*} water samples are reported in ug L, soil samples in ug kg and all TCLP extracts in ug L

⁽¹⁾ IUPAC allows "ylene" or "ene" ex ethylene or ethene (2) tribromomethane, (3) tetrachloromethane (4) (2-chloroethoxy) ethene (5) trichlormethane, (6) dichloromethane, (7) perchlorethylene, PCE or perclor, (8) chloroethene (9) unidentified peak(5) present

The Mark Group		: # 92-1175306; Sc	outh Date Sampled:	02/15/95
Hookston Square, # 120	Shore		Date Received:	02/15/95
3480 Buskirk Avenue	Client Contact: Jeff	Fiedler	Date Extracted	: 02/16/95
Pleasant Hill, CA 94523	Client P.O:		Date Analyzed	: 02/16/95
	Volati	le Halocarbons		
EPA method 601 or 8010				1
Lab ID	50254	50255	50256	
Client ID	MW-19	MW-23	MW-22	
Matrix	<u> </u>	W	<u>W</u>	<u> </u>
Compound ⁽¹⁾	Concentration*	Concentration*	Concentration*	Concentration*
Bromodichloromethane	ND	ND	ND	
Bromoform ⁽²⁾	ND	ND	ND	
Bromomethane	ND	ND	ND	
Carbon Tetrachloride ⁽³⁾	ND	ND	ND	
Chlorobenzene	ND	ND	ND	
Chloroethane	ND	ND	ND	
2-Chloroethyl Viny 1 Ether (4)	ND	ND	ND	
Chloroform (5)	ND	ND	ND	
Chloromethane	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	ND	
1,3-Dichlorobenzene	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	
1,1-Dichloroethane	ND	ND	ND	
1,2-Dichloroethane	ND	ND	8,2	
1,1-Dichloroethene	ND	ND	ND	
cis 1,2-Dichloroethene	ND	ND	ND	
trans 1,2-Dichloroethene	ND	ND	ND	
1,2-Dichloropropane	ND	ND	ND	
cis 1,3-Dichloropropene	ND	ND ND	ND	
trans 1,3-Dichloropropene	ND ND	ND ND	ND	
Methylene Chloride ⁽⁶⁾	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND ND	ND ND	ND ND	
Tetrachloroethene (7)	ND ND	ND ND	ND ND	
1,1,1-Trichloroethane	ND< 2	ND< 2	· · - — · · · — — · · · · · · · · · · ·	
1,1,2-Trichloroethane	ND 2	ND ND	ND< 2 ND	
Trichloroethene	ND	ND ND		
			ND ND	
Trichlorofluoromethane Vinyl Chloride ⁽⁸⁾	<u>ND</u>	ND ND	ND	
	NDND	<u>ND</u>	. <u>ND</u>	
% Recovery Surrogate	102	104	105	-
Comments			····	·

Detection limit unless otherwise stated water, ND = 0 5ug L, soil, ND = 10ug kg

^{*} water samples are reported in ug L, soil samples in ug kg and all TCLP extracts in ug L

⁽¹⁾ IUPAC allows "yiene" or "ene" ex ethylene or ethene, (2) tribromomethane, (3) tetrachloromethane, (4) (2-chloroethoxy) ethene (5) trichlormethane, (6) dichloromethane, (7) perchlorethylene, PCF or perclor. (8) chloroethene, (9) unidentified peak(5) present

QC REPORT FOR HYDROCARBON ANALYSES

Date: 02/18-02/19/95 Matrix: Water

	Concent	ration	(ug/L)		% Reco	very	
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas) Benzene	0.0	104.6	93.5	100	104.6	93.5	11.2
Toluene	0	9.4 9.7	9.3 9.5	10 10	94.0 97.0	93.0 95.0	1.1 2.1
Ethyl Benzene	0	9.9	9.7	10	99.0	97.0	2.0
Xylenes	0	30.5		30	101.7	100.0	1,7
TPH (diesel)	0	156	160	150	104	107	2.1
TRPH (oil & grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked \times 100

RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100

QC REPORT FOR HYDROCARBON ANALYSES

Date:

02/16-02/17/95 Matrix: Water/TCLP

	Concent	ration	(ug/L)	% Recovery			
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
TPH (gas) Benzene	0.0	94.4 10.5	96.8	100	94.4 105.0	96.8 97.0	2.6
Toluene	o	11	10	10	110.0	100.0	9.5
Ethyl Benzene	0	10.3	9.8	10	103.0	98.0	5.0
Xylenes	0	31.8	30.1	30	106.0	100.3	5.5
TPH (diesel)	0	162	172	150	108	115	6.0
TRPH (oil & grease)	N/A	N/A	N/A	N/A	N/A	N/A	N/A

% Rec. = (MS - Sample) / amount spiked x 100

RPD = (MS - MSD) / (MS + MSD) $\times 2 \times 100$

QC REPORT FOR EPA 8010/8020/EDB

Date: 02/16/95

Matrix: Water

· — — — — — — — — — — — — — — — — — — —	Conce	entration	on (ug/L))	% Recovery		·
Analyte	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD
1,1-DCE	0.0	11.1	11.2	10.0	111	112	0.9
Trichloroethene	0.0	9.5	9.6	10.0	95	96	1.0
EDB	0.0	9.6	9.5	10.0	96	95	1.0
Chlorobenzene	0.0	10.3	10.2	10.0	103	102	1.0
Benzene	0.0	10.7	11.1	10.0	107	111	3.7
Toluene	0.0	10.2	9.6	10.0	102	96	6.1
Chlorobz (PID)	0.0	9.9	9.6	10.0	99	96	3.1

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

Chain of Custody Record

3670 AMG84 Sample Point: Project No. 92-1175306 Sarashore 2/15/95 Date HOLDING SAMPLE CONTAINER REMARKS **PRESERVATIVE** ANALYZE FOR TIME TIME NUMBER SIZE 1.4 1×40m) Harn 50249 oleto 18 TPM-LAS/BTEX BOSTEONO VOLS - EPA GO! OFF HAID TPH-GAS! 3-17-95HOLD VOCS E 1400 MW-24 3×40ml 50250 TPH-GAS BETTE VOCS APA GO 1430 50251 430 TPH WAS / BTOX - BUSIROND 3 × 40m MW-16 DUS - 68A 6651 50252 4 1050 MW-17 50253 1140 MW-19 11 1255 MW-23 4 5G254 h 340 MW-22 50255 nour DONE TRU-DIKKE EPAROLS 50256 vnaoina e lucuei cour ICE/T° PRESERVATIVE_ GOOD CONTINUES CONTAINERS HEAD SPACE ABSENT Relinquished by (signature) Received by (signature) 2,.5/95/.545 Date/Time Received by signature) Receiver represents Relinquished by (signature) Date/Time Received by Isignature)

Hookston Square, Suite 120 3480 Buskirk Avenue Pleasant Hill, CA 94523

(510) 946-1055

Appendix D

GROUNDWATER MONITORING AND
SAMPLING AT THE PROPERTY
LOCATED AT 2351 SHORELINE DRIVE
ALAMEDA, CALIFORNIA
FEBRUARY 22, 1995

PREPARED FOR:

MR. MURRAY STEVENS

KAMUR INDUSTRIES, INC.

2351 SHORELINE DRIVE

ALAMEDA, CALIFORNIA 94501

BY:

SOIL TECH ENGINEERING, INC.

298 BROKAW ROAD

SANTA CLARA, CALIFORNIA 95050

SOIL TECH ENGINEERING, INC.

TABLE OF CONTENTS

LETTER OF TRANSMITTAL	1
BACKGROUND	2-4
SCOPE OF PRESENT WORK	4-5
FIELD ACTIVITIES	
GROUNDWATER MONITORING GROUNDWATER SAMPLING	5 5
ANALYTICAL RESULTS	6
SUMMARY	6
LIMITATIONS	6-8
APPENDIX *A*	
TABLE 1 - GROUNDWATER MONITORING DATA TABLE 2 - GROUNDWATER ANALYTICAL RESULTS	T1-T4 T5-T11
APPENDIX *B*	
FIGURE 1 - VICINITY MAP FIGURE 2 - SITE PLAN	M1 M2
APPENDIX *C*	
GROUNDWATER SAMPLING	SOP1
APPENDIX *D*	

Page No.

PRIORITY ENVIRONMENTAL LABS ANALYTICAL REPORT AND CHAIN-OF-CUSTODY

LIST OF TABLES

TABLE 1 ... GROUNDWATER MONITORING DATA.

TABLE 2 ... GROUNDWATER ANALYTICAL RESULTS.

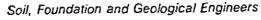
LIST OF FIGURES

FIGURE 1 ... SITE VICINITY MAP SHOWING 2351 SHORELINE DRIVE, ALAMEDA, CALIFORNIA.

FIGURE 2 ... SITE PLAN SHOWING LOCATIONS OF EXCAVATION AREA, MONITORING WELLS AND ABANDONED WELL.

LIST OF APPENDICES

APPENDIX "A" ... TABLE 1 AND TABLE 2.


APPENDIX "B" ... FIGURE 1 AND FIGURE 2.

APPENDIX "C" ... GROUNDWATER SAMPLING PROCEDURE.

APPENDIX "D" ... ANALYTICAL LABORATORY REPORT AND CHAIN-OF-CUSTODY DOCUMENT.

SOIL TECH ENGINEERING, INC.

298 BROKAW ROAD, SANTA CLARA, CA 95050 ■ (408) 496-0265 OR (408) 496-0266

February 22, 1995

File No. 8-90-418-SI

Mr. Murray Stevens Kamur Industries, Inc. 2351 Shoreline Drive Alameda, California 94501

SUBJECT: QUARTERLY GROUNDWATER MONITORING

AND SAMPLING AT THE PROPERTY

Located at 2351 Shoreline Drive, in

Alameda, California

Dear Mr. Stevens:

This report presents the results of quarterly groundwater monitoring and sampling conducted by Soil Tech Engineering, Inc. (STE), on February 14, 1995, at the subject site (Figure 1).

Five monitoring wells (STMW-1, STMW-2, STMW-3, STMW-5 and STMW-6) are located on-site. The location of the wells are shown on Figure 2. This quarterly monitoring and sampling were conducted in accordance with STE's recommendations made in "Preliminary Subsurface Environmental Assessment", dated July 2, 1991, and "Installation of Two Additional Monitoring Wells for Southshore Car Wash Property", dated March 15, 1993.

BACKGROUND:

The site is located at 2351 Shoreline Drive, Alameda, California (Figure 1). The site was formerly used as a gasoline service station and a car wash. In July 1990, three underground gasoline tanks (10,000 gallons each) were removed by Zacor Corporation. Soil sampling was conducted by Environmental Bio-Systems, Inc. (EBS). The soil sample analytical results taken beneath the underground tank showed high concentrations of Total Petroleum Hydrocarbons as gasoline (TPHg) which ranged from 360 parts per million (ppm) to a maximum of 9,500 ppm.

In addition to tank removal, EBS Consultants used a hand auger to conduct additional shallow soil sampling from the undisturbed area surrounding the former tank excavation. The depth of the soil sampling ranged from 5.1 to 7.1 feet below ground surface. The undisturbed soil analytical results showed moderate levels of TPHg and BTEX. No groundwater investigation was conducted by EBS.

Alameda County Health Care Services Agency--Department of Environmental Health (ACHCSA--DEH) requested a preliminary soil/groundwater investigation including the removal of contaminated soil and the further delineation of the extent of petroleum hydrocarbons in the soil and groundwater.

In August 1990, Kamur Industries, Inc., retained STE to conduct further investigations as requested by the ACHCSA--DEH. STE prepared a work plan (dated August 30, 1990) to conduct further

investigation for local agency approval. STE performed a preliminary subsurface investigation in February and March 1991 which were as follows:

Task 1: Removed contaminated Soil to the depth feasible and arranged for its proper disposal.

Task 2: Drilled ten exploratory borings.

Task 3: Installed four monitoring wells.

The preliminary subsurface investigation is described in STE's report, dated July 2, 1991, entitled "Preliminary Subsurface Environmental Assessment at Kamur Industries, Inc., Car Wash..." The report recommended quarterly monitoring and sampling of the four on-site wells.

In July 1991, quarterly groundwater monitoring and sampling of the four wells (STMW-1 to STMW-4) were initiated. The results of the first quarterly sampling are summarized in STE's report, dated July 30, 1991. The second quarterly sampling was conducted in October 1991, and the results are summarized in STE's report dated November 12, 1991. The third quarterly sampling was conducted in January 17, 1992, and the results are summarized in STE's report dated February 5, 1992. The fourth quarterly sampling was conducted in April 27, 1992, and the results are summarized STE's report dated May 8, 1992.

In January 26, 1993, STE installed two additional monitoring wells (STMW-5 and STMW-6). The details of newly installed wells are described in STE's report entitled "Installation of Two Additional Monitoring Wells for Southshore Car Wash Property" dated March 15, 1993.

The site is currently used as car washing facility surrounded by a paved parking lot.

SCOPE OF PRESENT WORK:

- Measured depth-to-water table in on-site wells STMW-3 (MW-12) and STMW-6 (MW-24) and monitored for presence of any floating product.
- Purged each monitoring well prior to sampling.
- Sampled monitoring wells STMW-3 (MW-12) and STMW-6 (MW-24) for laboratory analyses.
- Submitted water samples to a State-Certified laboratory for analyses of Total Petroleum Hydrocarbons as gasoline (TPHg), Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), and Total Oil & Grease (TOG).
- Reviewed results and prepared a report of the investigation.

Based on the newly monitoring and sampling program approved by the Alameda County Health Care Services Agency (ACHCSA), only two monitoring wells STMW-3 (MW-12) and STMW-6 (MW-24) were monitored and sampled.

FIELD ACTIVITIES:

GROUNDWATER MONITORING:

On February 14, 1995, the STE staff monitored two on-site wells to measure water depth and check for the presence of FFP and/or petroleum odor. During monitoring of the wells, no sheen was noted in well STMW-6 (MW-24); however, light sewerage odor was detected. Brown non-measurable floating product and strong petroleum odor were noted in well STMW-3 (MW-12).

GROUNDWATER SAMPLING:

Following groundwater monitoring, the on-site wells were purged at least five well volumes and sampled in accordance with STE's Standard Operation Procedures (see Appendix "C"), which contain State and Local guidelines for sampling monitoring wells. The samples were submitted to a California State-Certified laboratory for analyses, accompanied by chain-of-custody. The water samples from wells STMW-3 (MW-12) and STMW-6 (MW-24) were analyzed for Total Petroleum Hydrocarbons as gasoline (TPHg), Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX). However, water sample from monitoring well STMW-3 (MW-12) was also analyzed for TOG.

ANALYTICAL RESULTS:

Monitoring well STMW-3 (MW-12) detected TPHg at 68 milligram per liter (mg/L); Benzene at 0.12 mg/L; Toluene at 0.2 mg/L; Ethylbenzene at 0.18 mg/L; Total Xylenes at 0.71 mg/L and TOG at 2.3 mg/L. Monitoring well STMW-6 (MW-24) detected TPHg 4.1 mg/L; Benzene at 0.053 mg/L; Toluene at 0.021; Ethylbenzene at 0.02 mg/L and Total Xylenes 0.046 mg/L. The laboratory results are summarized in Table 2, and the laboratory report is attached in Appendix "D".

SUMMARY:

No sheen was noted in well STMW-6 (MW-24), but light sewerage odor was detected. Brown non-measurable floating product and strong petroleum odor were noted in well STMW-3 (MW-12). Monitoring well STMW-3 (MW-12) detected low concentrations of TPHg, BTEX and TOG, and well STMW-6 (MW-24) detected low concentrations of TPHg and BTEX.

LIMITATIONS:

This report and the associated work has been provided in accordance with the general principles and practices currently employed in the environmental consulting profession. The contents of this report reflect the conditions of the site at this particular time. The findings of this reports are based on:

- 1) The observations of field personnel.
- 2) The results of laboratory analyses performed by a statecertified laboratory.

It is possible that variations in the soil and groundwater could exist beyond the points explored in this investigation. Also, changes in groundwater conditions of a property can occur with the passage of time due to variations in rainfall, temperature, regional water usage and other natural processes or the works of man on this property or adjacent properties.

This report is issued with the understanding that it is the responsibility of the owner or his/her representative to ensure that the information and recommendations contained herein are called to the attention of the Local Environmental Agency.

Services performed by STE have been in accordance with generally accepted environmental professional practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. This report is not meant to represent a legal opinion. No other warranty, express or implied, is made.

File No. 8-90-418-SI

If you have any questions or require additional information, please feel free to contact our office at your convenience.

Sincerely,

C. E. #34928

SOIL TECH ENGINEERING, INC.

LAWRENCE KOO, P. E.

NOORI AMELI PROJECT ENGINEER

for forming

FRANK HAMEDI-FARD GENERAL MANAGER File No. 8-90-418-SI

a sa proper parket not be delicated. X 188 "A"

TABLE 1
GROUNDWATER MONITORING DATA
(Measured in Feet)

Date	Well #	Well Head Elevation	Depth-to Water	Water Elevation	Petroleum Thickness	Odor
7/08/91	STMW-1	99.46	7.54	91.92	Sheen	Strong Petroleum
	STMW-2	98.12	6.23	91.89	None	None
	STMW-3	99.90	7.96	91.94	None	Mild Petroleum
	STMW-4	98.78	6.90	91.88	None	None
10/21/91	STMW-1	99.46	7.63	91.83	L. Sheen	Strong Petroleum
	STMW-2	98.12	6.33	91.79	None	None
	STMW-3	99.90	7.83	92.07	Sheen	Strong Petroleum
	STMW-4	98.78	6.54	92.24	None	None
			!			
1/17/92*	STMW-1	8.10	6.96	1.14	Sheen	Strong Petroleum
	STMW-2	7.01	5.69	1.32	None	None
	STMW-3	8.33	6.71	1.62	Sheen	Strong Petroleum
	STMW-4	7.45	6.00	1.45	None	None

^{*} Well casing elevation surveyed by the other consultant.

TABLE 1 CONT'D GROUNDWATER MONITORING DATA (Measured in Feet)

Date	Well No.	Well Head Elevation	Depth-to- Water	Water Elevation	Petroleum Thickness	Odor
4/27/92	STMW-1	8.10	6.69	1.41	Sheen	Mild Petroleum
	STMW-2	7.01	5.52	1.49	None	None
	STMW-3	8.33	6.86	1.47	Sheen	Strong Petroleum
	STMW-4	7.45	5.84	1.61	None	None
7/30/92	STMW-1	8.10	7.40	0.70	Sheen	Mild Petroleum
	STMW-2	7.01	6.20	0.81	None	None
	STMW-3	8.33	7.71	0.62	Sheen	Strong Petroleum
	STMW-4	7.45	6.64	0.81	None	None
2/08/93	STMW-1	8.10	6.23	1.87	Rainbow Sheen	Strong Petroleum
	STMW-2	7.01	4.90	2.11	None	None

TABLE 1 CONT'D GROUNDWATER MONITORING DATA (Measured in Feet)

Date	Well No.	Well Head Elevation	Depth-to- Water	Water Elevation	Petroleum Thickness	0dor
2/08/93	STMW-3	8.33	5.96	2.37	Brown Non- Measurable	Strong Petroleum
	STMW-4	7.45	4.93	2.52	None	None
	STMW-5	NA	8.67	NA	None	None
	STMW-6	NA	7.88	NA	None	Light Sewage
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
4/27/94	STMW-1	8.10	6.55	1.55	None	Strong Petroleum
	STMW-2	7.01	5.52	1.49	None	None
	STMW-3	8.33	6.96	1.37	Sheen	Strong Petroleum
	STMW-4	NA	NA	NA	NA	NA
	STMW-5	NA	8.88	NA	None	None
	STMW-6	NA	8.13	NA	None	Moderate Petroleum

TABLE 1 CONT'D GROUNDWATER MONITORING DATA (Measured in Feet)

Date	Well No.	Well Head Elevation	Depth-to- Water	Water Elevation	Petroleum Thickness	Odor	
10/18/94	STMW-3	8.33	8.00	0.33	Brown Oily Sheen	Strong Petroleum	
	STMW-5	NA	9.51	NA	None	None	
2/14/95	STMW-3	8.33	5.64	2.69	Brown Non Measurable	Strong Petroleum	
	STMW-6	NA	7.87	NA	None	Light Sewerage	

NA - Not Applicable

TABLE 2 GROUNDWATER ANALYTICAL RESULTS IN MILLIGRAM PER LITER (mg/L)

I. TPHd, TPHg, BTEX and TOG Analytical Results

Date	Well #	TPHd	TPHg	В	Т	E	x	TOG
4/05/91	STMW-1	NA	180	11	20	3.2	18	NA
	STMW-2	NA	ND	ND	ND	ND	ND	NA
	STMW-3	NA	260	20	34	3.6	19	NA
	STMW-4	NA	ND	0.3	0.3	ND	0.7	NA
7/04/91	STMW-1	NA	58	14	7	2.7	8.3	NA
	STMW-2	NA	ND	ND	ND .	ND	ND	NA
	STMW-3	11	66	11	17	1.9	8.9	ND
	STMW-4	NA	ND	ND	ND	ND	ND	NA
10/21/91	STMW-1	NA	112.6	19.6	19	ND	16.4	NA
	STMW-2	NA	ND	0.004	NID	ND	ND	NA
	STMW-3	ND	165	48.5	19	ND	46	20
	STMW-4	NA	0.186	0.011	0.005	ND	0.037	NA

TABLE 2 CONT'D GROUNDWATER ANALYTICAL RESULTS IN MILLIGRAM PER LITER (mg/L)

I. TPHd, TPHg, BTEX and TOG Analytical Results

Date	Well #	TPHd	TPHg	В	T	E	x	TOG
1/17/91	STMW-1	NA	160	16	16 6.8		16	NA
	STMW-2	NA	ND	ND	ND	ND	ND	NA
	STMW-3	ND	390	21	41	6.4	4.7	7.9
	STMW-4	NA	0.06	0.0008	0.0024	0.0005	0.004	NA
4/27/92	STMW-1	NA	54	0.72	0.2	0.5	1.3	NA
	STMW-2	NA	ND	ND	ND	ND	ND	NA
	STMW-3	3	120	0.66	0.9	0.48	1.8	4.7
	STMW-4	NA	ND	ND	ND	ND	ND	NA
7/30/92	STMW-1	NA	73	1.2	0.77	1.1	2.74	NA
	STMW-2	NA	0.05	ND	0.0025	0.0009	0.011	NA
	STMW-3	1.5	340	1.2	2.2	1.4	9.3	6
	STMW-4	NA	ND	ND	ND	ND	ND	NA

File No. 8-90-418-SI

.

TABLE 2 CONT'D GROUNDWATER ANALYTICAL RESULTS IN MILLIGRAM PER LITER (mg/L)

I. TPHd, TPHg, BTEX and TOG Analytical Results

Date	Well #	TPHd	TPHg	В	T	E	x	TOG
2/08/93	STMW-1	NA	66	0.21	0.48	0.51	1.2	NA
	STMW-2	NA	NA	NA	NA	NA	NA	NA
	STMW-3	ND	330	0.62	1.9_	2.2	6.0	3.9
	STMW-4	NA	NA	NA	NA	NA	NA	NA
	STMW-5	NA	ND	ND	ND	ND	ND	NA
	STMW-6	NA	33	0.1	0.23	0.27	0.5	AN
4/27/94	STMW-1	NA	90	3.6	3.2	1.2	5.3	NA
	STMW-2	NA	ND	ND	ND	ND	ND	NA
	STMW-3	NA	160	1.3	6.3	1.4	12	NA
	STMW-4	NA	NA	NA	NA	NA	NA	NA
	STMW-5	NA	ND	ND	ND	ND	ND	NA
	STMW-6	NA	38	3.0	1.2	0.71	2.0	NA

TABLE 2 CONT'D GROUNDWATER ANALYTICAL RESULTS IN MILLIGRAM PER LITER (mg/L)

I. TPHd, TPHg, BTEX and TOG Analytical Results

Date	Well #	TPHd	TPHg	В	T	E	X	TOG
10/18/94	STMW-1	NA	NA	NA	NA	NA	NA	NA
	STMW-2	NA	NA	NA	NA	NA	NA	NA
	STMW-3	NA	77	5.2	6.2	2.2	13	ND
	STMW-4	NA	NA	NA	NA	NA	NA	NA
	STMW-5	NA	ND	ND	ND	ND	ND	NA
	STMW-6	NA	NA	NA	NA	NA	NA	NA
2/14/95	STMW-1	NA	NA	NA	NA	NA	NA	NA
	STMW-2	NA	NA	NA	NA	NA	NA	NA
	STMW-3	NA	68	0.12	0.2	0.18	0.71	2.3
	STMW-4	NA	NA	NA	NA	NA	NA	NA
	STMW-5	NA	NA	NA	NA	NA	NA	NA
	STMW-6	NA	4.1	0.053	0.021	0.02	0.046	NA

TPHd - Total Petroleum Hydrocarbons as diesel

TPHg - Total Petroleum Hydrocarbons as gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Total Xylenes

TOG - Total Oil and Grease

ND - Not Detected (Below Laboratory Detection Limit)

NA - Not Analyzed

TABLE 2 CONT'D GROUNDWATER ANALYTICAL RESULTS

II. VOLATILE ORGANIC COMPOUNDS (VOC's) RESULTS

Date	Monitoring Well No.	VOC Compounds Detected Per EPA Metho Results in Parts Per Billion (ppb)	od 601	DHS-DWS (ppb)
4/05/91	STMW-1	1,2-Dichloroethane Trichloroethylene 1,1,2-Trichloroethane (PEC) Tetrachloroethene cis-1,2-Dichloroethene	350 4 0.5 0.9	0.5 5 32 5 6
	STMW-2	1,2-Dichloroethane Trichloroethylene Tetrachloroethene	8 4 27	0.5 5 5
	STMW-3	1,2-Dichloroethane	450	0.5
	STMW-4	None Detected		
7/04/91	STMW-1	1,2-Dichloroethane	290	
	STMW-2	Trichloroethene (Trichloroethylene) Tetrachloroethene	1.3 18	
	STMW-3	Methylene Chloride Trichloroethene	9 230	
	STMW-4	None Detected		
10/21/91	STMW-1	Carbon Tetrachloride	48	
	STMW-2	None Detected		
	STMW-3	Carbon Tetrachloride	40	
	STMW-4	None Detected		

TABLE 2 CONT'D GROUNDWATER ANALYTICAL RESULTS

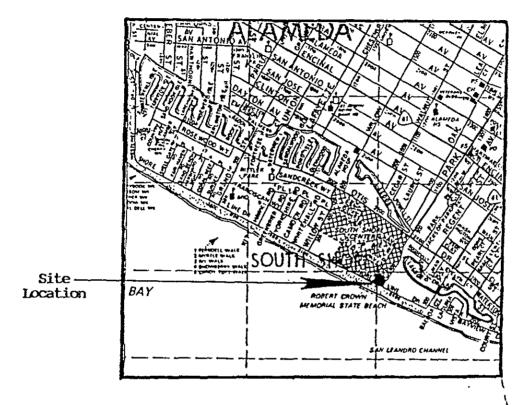
II. VOLATILE ORGANIC COMPOUNDS (VOC's) RESULTS

Date	Monitoring Well No.	VOC Compounds Detected Per RPA Method 601 Results in Parts Per Billion (ppb)	DHS-DWS (ppb)					
1/17/92	STMW-1 None Detected							
	STMW-2	Trichloroethene 0.0028 Tretrachloroethene 0.011						
	STMW-3	None Detected						
	STMW-4	None Detected						
4/27/92	STMW-1	None Detected						
	STMW-2	None Detected						
	STMW-3	None Detected						
	STMW-4	None Detected						
7/30/92	STMW-1	Trichloroethene 1.7 Tetrachloroethene 9.2						
	STMW-2	None Detected						
	STMW-3	STMW-3 Trichloroethene 9.8 Tetrachloroethene 24						
	STMW-4	None Detected						

DHS-DWS - Department of Health Services--Drinking Water Standards

TABLE 2 CONT'D GROUNDWATER ANALYTICAL RESULTS

II. VOLATILE ORGANIC COMPOUNDS (VOC's) RESULTS


Date	Monitoring Well No.	VOC Compounds Detected Per RPA Method 601 Results in Parts Per Billion (ppb)	DHS-DWS (ppb)
2/08/93	STMW-1	Trichloroethene 0.00	195
	STMW-2	Not Analyzed	
	STMW-3	Trichloroethene 0.00	24
	STMW-4	Not Analyzed	
	STMW-5	None Detected	
	STMW-6	Trichloroethene 0.01	.1

III. TOTAL DISSOLVED SOLIDS (TDS) RESULTS

Date	Well Number	Total Dissolved Solids				
4/27/94	STMW-1	2,570				
	STMW-2	1,230				
	STMW-3	510				
	STMW-5	560				
	STMW-6	2,550				

DHS-DWS - Department of Health Services--Drinking Water Standards

File No. 8-90-418-SI

Thomas Brothers Map 1993 Edition San Francisco, Alameda and Contra Costa Counties

Page 11 D7

File No. 8-90-418-SI

APPENDIX "C"

GROUNDWATER SAMPLING

Prior to collection of groundwater samples, all of the sampling equipment (i.e. bailer, cables, bladder pump, discharge lines and etc...) was cleaned by pumping TSP water solution followed by distilled water.

Prior to purging, the well "Water Sampling Field Survey Forms" were filled out (depth to water and total depth of water column were measured and recorded). The well was then bailed or pumped to remove four to ten well volumes or until the discharged water temperature, conductivity and pH stabilized. "Stabilized" is defined as three consecutive readings within 15% of one another.

The groundwater sample was collected when the water level in the well recovered to 80% of its static level.

Forty milliliter (ml.), glass volatile organic analysis (VOA) vials with Teflon septa were used as sample containers. The groundwater sample was decanted into each VOA vial in such a manner that there was a meniscus at the top. The cap was quickly placed over the top of the vial and securely tightened. The VOA vial was then inverted and tapped to see if air bubbles were present. If none were present, the sample was labeled and refrigerated for delivery under chain-of-custody to the laboratory. The label information would include a sample identification number, job identification number, date, time, type of analysis requested, and the sampler's name.

File No. 8-90-418-SI

A POPENDIA X D

SOIL TECH ENGINEERING, INC.

PRIORITY ENVIRONMENTAL LABS

Precision Environmental Analytical Laboratory

February 17, 1995

PEL # 9502050

SOIL TECH ENGINEERING

Attn: Noori Ameli

Re: Two water samples for Gasoline/BTEX and Oil & Grease analyses.

Project name: 2351 Shoreline Dr., - Alameda

Project number: 8-90-418-SI

Date sampled: Feb 14, 1995

Date submitted: Feb 15, 1995 Date extracted: Feb 15-17, 1995 Date analyzed: Feb 15-17, 1995

RESULTS:

SAMPLE I.D.	Gasoline	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Oil & Grease	\
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)	
STMW-3			<u>-</u> ,			-	_
(MW-12) STMW-6	68000	120	200	180	710	2.3	
(MW-24)	4100	53	21	20	46		
Blank	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Spiked Recovery	106.2%	82.0%	103.2%	92.3%	103.1%		
Detection limit	50	0.5	0.5	0.5	0.5	0.5	
Method of Analysis	5030 / 8015	602	602	602	602	5520 C & F	

David Duong Laboratory Director

CHAIN OF CUSTOUY RECORD Park Ses NAME PROJ. NO. 2351 Shorline Dr. ALAMEDA 18-90-48-SI SAMPLERS. (Signature) REMARKS N-Amilia CON TAINER 50 L LOCATION DATE TIME NO. STMW-3 (MW-12) 2/14/95 2/14/25 14 STMW-6 (MW-24) 2 Date / Time Receive by (Signature) Date / Time Relinquished by: (Signature) Received by: (Signature) Relinquished by: (Signature) Date / Time Received by (Signature) Relinquished by: (Signature) Date / Time Received by: (Signatura) Relinquished by: (Signature) Date / Time Remarks Received for Laboratory by: Date / Time Relinquished by: (Signature) 7:40 Am 2/15/95

SOIL TECH ENGINEERING

Soil, Foundation and Geological Engineers

2050
02050
677
<u> </u>
DY (Signatura)
by (Signeture)

SOIL TECH ENGINEERING

Soil, Foundation and Geological Engineers

SHORELINE DRIVE Parking Lot 2351 SHORELINE DRIVE, ALAMEDA, CALIFORNIA * Monitoring Well Well SIMW-4 was abandoned on 2/17/95 DRAWN BY: N.A. FIGURE 2 PROJECT NO. 8-90-418-SI SCALE: 1"=30' 2/14/95 SOIL TECH ENGINEERING, INC. 298 BROKAW ROAD, SANTA CLARA, CALIFORNIA 95050

Appendix E

South Shore Shopping Center Texaco, Harsch, and Kamur

Well No	Date Sampled	TOS	TPH as Diesel	TPH as Gasoline	Pontono	Toluono	Vulonaa	Ethyl-		1,2-Dichloro-	1,1-Dichloro-	trans-1,2-Di-	Tetra-	Trichloro
		103	Diesei	Gasonie	Benzene	Toluene	Xylenes	benzene	benzene	ethane	ethene	chloroethene	chloroethene	elhene
Texaco \	Wells	·												
MW-2	01/27/94	650	<0.05	<0.05	<0 0005	<0.0005	<0.0005	<0.0005	<0 001	<0.002	<0 002	<0.001	<0.001	<0.002
, MW-3	04/27/94	8 50	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0 002	<0.002	<0.001	0.0082	0.0014
, MW-58	04/28/94	2 7 00	<0.05	<0.05	<0 0005	<0.0005	<0.0005	<0.0005	<0 001	<0.002	<0.002	0.014	0 0012	0 01
MW 9	04/28/94	920	<0.05	19	0 52	0.0028	<0.0005	0 035	<0.001	<0.002	<0.002	<0.001	<0.001	<0.002
MW-14	04/27/94	8 40	<0.05	0.053	0 00095	<0 0005	0 015	0.0033	<0 001	0 0084	<0 002	<0 001	<0 001	<0 002
MW-14B	04/27/94	1 8 00	<0.05	0.054	0.00096	<0 0005	0.015	0 0034	<0 001	0 0097	<0.002	<0 001	<0.001	<0.002
f MW-15	04/27/94	1 500	<0.05	<0.05	<0.0005	<0.0005	<0,0005	<0.0005	<0.001	<0 002	<0 002	<0.001	<0.001	<0.002
MW-22	04/28/94	2 0 00	<0.05	<0.05	<0 0005	<0.0005	<0.0005	<0.0005	<0.001	0.015	<0.002	<0.001	<0.001	<0 002
Harsch V	Vells							ļ						ĺ
MW-7B	04/29/94	1,300	<0.05	5,6	0 19	<0.0005	0.027	<0.0005	0 031	<0.002	0.0058	0 013	0.19	0.012
MW-88	05/02/94	2 900	<0.05	0 14	0.0092	<0.0005	<0.0005	<0.0005	<0 001	<0.002	<0.002	0 023	0.07	0.057
MW-16	05/02/94	25,0 00	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0 001	<0,002	<0,002	<0.001	<0.001	<0.002
MW-17	04/29/94	18,0 00	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0,002	<0.002	<0.001	0.0024	<0.002
MW-18	04/29/94	19,0 00	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0,002	<0.002	<0.001	0.0014	<0.002
MW-19	04/29/94	20,0 00	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.002	<0.002	<0.001	0.0011	<0.002
MW-20	04/29/94	13,0 00	<0.05	0.057	0.021	<0.0005	<0.0005	<0.0006	<0.001	<0.002	<0.002	0 058	0.057	0.032
MW-21	04/29/94	20,0 00	<0.05	<0.05	<0 0005	<0.0005	<0.0005	<0 0005	<0.001	<0.002	<0.002	<0,001	<0.001	<0.002
MW-23	05/02/94	. 54	<0.05	<0.05	<0.0005	<0.0005	<0.0005	<0.0005	<0.001	<0.002	<0.002	<0.001	<0.001	<0.002
Kemur W	/ells	Ì												
MW-10	04/27/94	2,5 70	NT	90	3.6	3.2	5,3	1.2	<0 001	0,013	<0.002	0 002	0.0039	<0.002
MW-11	04/27/94	1 2 30	NT	<0 050	<0.0005	<0.0005	<0.0005	<0.0005	<0 001	<0.002	<0.002	0.0015	0.0025	0.0042
MW-12	04/27/94	510	NT	160	1,3	6.3	12	1.4	<0 001	<0.002	<0 002	<0.001	0.0039	<0.002
MW-24	04/27/94	560	NT	<0.050	<0.0005	<0 0005	<0.0005	<0,0005	<0.001	0.0065	<0.002	0.0018	0.0003	<0.002
MW-25 *	04/27/94	2 550	NT	38	3.0	1.2	2.0	0.71	<0.001	0.0003	<0.002	<0.001	0.0039	<0.002
Regulato	ory Limits					· • • · · · · · · · · · · · · · · · · ·				2 3234	-0.002	-0.001	0.0009	
PMCL	,	NΑ	NA	NA	0.001	1.0	1.75	0 68	0,03	0,0005	0.006	0 07	0.005	0 005

Explanation

All results are in milligrams per liter,

NT = Not tested

NA ≈ Not available

1DS = Total Dissolved Solids Method 160,1,

TPH as Gasoline = Total Petroleum Hydrocarbons as Gasoline analyzed using EPA methods 5030 and TPH LUFT Benzene, Toluene, Xylenes and Ethylbenzene analyzed using method 602.

TPH as Oiesel = Total Petroleum Hydrocarbons as Diesel analyzed using EPA method 3510 and TPH LUFT

Priority Pollutants analyzed using EPA methods 5030 and 601

PMCL = Primary Maximum Contaminant Level

MW-14B = Dublicate sample of MW-14

^{*} Note: Analytical shown for Monitoring Wells MW-24 and MW-25 appears to be reversed, based on October 1994 field notes and historical results of analyses.

Table 3-3 Analytical Summary for Groundwater Samples Collected in February 1993 All Concentrations in Micrograms per Liter (µg/l)

Sample 1.D.	PCE	TCE	1,2-DCA	1,2-DCE	Benzene	Toluene	Xylenes	Ethylbenzene	Gas	Diesel	Oll & Grease	TDS	DTW	W.E.	C.E.
MW-5B	ND	3.4	0.4	5.0	210	4.2	2.0	1.9	640	2,400	NA	1,400	2.42	+2.66	5.08
MW-7B	5,800	540	ДИ	150	NA	NA	NA	NA	NA	NA	NA	1,100	3.33	+2.19	5.52
MW-8B	5.0	14	ND	9.0	NA	NA	NA	NA	NA	NA	NA	930	4.92	+1.23	6.15
MW-10	ND	9.5	ДИ	ND .	210	480	1,200	510	66,000	NA	NA	NA	6.04	+2.06	8.10
MW-11	5.8	2.0	ND	ND	NA	NA	NA	NA NA	NA	NA	NA	630	4.95	+2.26	7.01
MW-12	ND	2.4	ND	ND	620	1,900	6,000	2,200	330,000	_ NA	3,900	NA	5.92	+2.41	8.33
MW-13	NΛ	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	4.75	+2.70	7.45
MW-14	ND	ND	3.4	ND	ND	ND	ND	ND	ND	660	NA	2,000	3.42	+2.35	5.77
MW-15	ND	ND	ND	ND	ND	ND	ND	ND	ND	200	NA	880	3.50	+0.96	4.46
MW-16	ND	ND	ND	ND	ND	ND '	ND	ND	ND	ND	NA	24,000	0.42	+3.10	3.52
MW-17	ND	ND	ND	NA.	NA	NA	NA	NA	NA	NA	NA	18,000	2.50	+0.82	3.32
MW-18	ND	ND	ND	NA.	NA	NA	NA	NA	NA	NA	NA	19,000	4.38	+0.34	4.72
MW-19	ND	ND	ИD	NA	NA	NA	NA	NA	NA	NA.	NA	NA	4.46	+0.82	5.28
MW-20	ND	ND	ДИ	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	5.71	+0.95	6.66
MW-21	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.48
MW-22	ND	ND	22	ND	ND	ND	ND	ND	ND	120	NA	2,100	6.33	NΛ	NA
MW-23	ND	ND	ND	ND	ND	ND	ND	ND	ND	DND	ND	160	3.42	NA	NA
MW-24 *	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NΛ	NΛ	NA
MW-25 *	ND	11	ИD	ND .	100	230	500	270	33,000	NA	NA	NA	NΛ	NA	NA
MCL	5	5	0.5	6.0	1.0	NP	1,750	680	NP	NP	NP				

ND Not detected at or above analytical detection limits
 NA Not analyzed

DTW Depth to waterW.E. Water elevation

^{*} Note Analytical shown for Monitoring Wells MW-24 and MW-25 appears to be reversed, based on October 1994 field notes and historical results of analyses.