AGENCY

DAVID.J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway. Suite 250 Alameda. CA 94502-6577 (510) 567-6700

FAX (510) 337-9335

REMEDIAL ACTION COMPLETION CERTIFICATION

StID 1773 - Park Street and Shoreline Drive, Alameda, CA
(USTs removed from the former Goodyear, Texaco, and Chevron sites)

February 20, 2001

Mr. Gregory Baum Harsch Investment Corp P.O. Box 2708

Portland, OR 97208

Mr. Murray Stevens Kamur Industries 2351 Shoreline Drive Alameda, CA 94501 Ms. Karen Petryna Equiva Services P.O. Box 7869 Burbank, CA 94510

Dear Messrs. Baum and Stevens, and Ms. Petryna:

This letter confirms the completion of site investigation and corrective action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tanks are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank site is in compliance with the requirements of subdivisions (a) and (b) of Section 25299.37 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.77 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

This notice is issued pursuant to subdivision (h) of Section 25299.37 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Mee Ling Tung, Director

cc: Chuck Headlee, RWQCB Allan Patton, SWRCB files-ec (soshore-3)

ALAMEDA COUNTY

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

StID 1773

February 20, 2001

Mr. Gregory Baum

Portland, OR 97208

P.O. Box 2708

Harsch Investment Corp

Mr. Murray Stevens Kamur Industries 2351 Shoreline Drive Alameda, CA 94501

Ms. Karen Petryna Equiva Services P.O. Box 7869

Burbank, CA 94510

ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250

Alameda. CA 94502-6577

(510) 567-6700 FAX (510) 337-9335

ENVIRONMENTAL HEALTH SERVICES

Re: Fuel Leak Site Case Closure for Park Street and Shoreline Drive, Alameda, CA

Dear Messrs. Baum and Stevens, and Ms. Petryna:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25299.37[h]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Protection Division is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed.

SITE INVESTIGATION AND CLEANUP SUMMARY

Please be advised that the following conditions exist at the site:

- up to 46,000ppb TPH as gasoline, 3,800ppb TPH as diesel, 180ppb benzene, 820ppb PCE, 890ppb TCE, and 1,100ppb 1,2-DCE exists in groundwater beneath the site;
- a risk management plan has been prepared for the site to protect construction workers in the event trenching/excavation is proposed in the area with residual contamination;
- a risk assessment is required if a building structure is proposed over the area of the former USTs at the former Chevron car wash.

If you have any questions, please contact me at (510) 567-6762.

eva chu

Hazardous Materials Specialist

enlosures:

Case Closure Letter

2. Case Closure Summary

City of Alameda, Planning Dept, Vivian Day-City Hall, 2263 Santa Clara Ave, Alameda, CA 94501

files (soshore-4)

CASE CLOSURE SUMMARY Leaking Underground Fuel Storage Tank Program

I. AGENCY INFORMATION

Date: April 21, 2000

Agency name: Alameda County-HazMat City/State/Zip: Alameda, CA 94502

Address: 1131 Harbor Bay Pkwy

Phone: (510) 567-6700

Responsible staff person: Eva Chu

Title: Hazardous Materials Spec.

II. CASE INFORMATION

Site facility name: South Shore Shopping Center

Site facility address: Park Street and Shoreline, Alameda, CA

RB LUSTIS Case No: N/A

Local Case No./LOP Case No.: 1773

URF filing date: 7/25/90 SWEEPS No: N/A

Responsible Parties:		Addresses:	Phone Numbers:	
1.	Gregory Baum Harsch Investment Corp	P.O. Box 2708 Portland, OR 97208	(503) 242-2900	
2.	Murray Stevens Kamur Industries	2351 Shoreline Drive Alameda, CA 94501	(510) 523-7866 (510) 526-7434	
3.	Deborah Pryor Texaco Refining	10 Universal City, 7 th Floor Universal City, CA 91608		

Tank No:	Size in gal.:	Contents:	Closed in-place or removed?:	Date:
1	500	Waste Oil (Goodyear)	Removed	4/90
2	6,000	Gasoline (Texaco)	, Removed	1981
3	4,000	u	н	· ·
4	4,000	17	II .	Ħ
5	550	Waste Oil (Texaco)	11	71
6	10,000	Gasoline (Chevron)	Removed	7/90
7	11	п	н	71
8	11	11	n	11

III. RELEASE AND SITE CHARACTERIZATION INFORMATION

Cause and type of release: **Unknown** Site characterization complete? **YES**

Date approved by oversight agency: 11/23/98

Monitoring Wells installed? Yes Number: 30 total

Proper screened interval? Yes

Highest GW depth below ground surface: 3.00' Lowest depth: 9.55' bgs

Flow direction: Groundwater generally flows northwest, west and southwest. However, there are

localized steep gradients and some variations.

Most sensitive current use: Commercial development and the Alameda Shoreline

Are drinking water wells affected? **No** Aquifer name: **Merritt Sand** Is surface water affected? **No** Nearest affected SW name: **NA**

Off-site beneficial use impacts (addresses/locations): NA

Report(s) on file? YES Where is report(s) filed? Alameda County

1131 Harbor Bay Pkwy Alameda, CA 94502

Treatment and Disposal of Affected Material:

<u>Material</u>	Amount (include units)	Action (Treatment or Disposal w/destination)	<u>Date</u>
Tank	8 USTs	Unknown Disposal Facility	1981-1990
Soil	~575 cy (Texaco) 1,000cy (Chevron) 700 tons (Chevron) 250 cy Th	Unknown Redwood & MtnView L.F. Gibson Oil ermally treated at an approved facility	Unknown Feb 1991

Maximum Documented Contaminant Concentrations - - Before and After Cleanup

at Former Goodyear Building

Contaminant	Soil (ppm)	Water (ppb)	
	Before ¹ After ²	Before ³	After ⁴
TPH (Gas)	ND	20,000	NA
TPH (Diesel)	ND	NA	NA
Benzene	NA	15	1.8
Toluene	NA	45	5.6
Ethylbenzene	NA	26	1.1
Xylenes	NA	59	5.8
Oil & Grease	340	NA	NA
Other HVOCs	ND	NĐ	ND

- NOTE: 1 soil sample from tank pit at time of UST removal (4/90) or borings advanced inside building,
 - 2 no overexcavation required at the site
 - 3 most recent data from well MW-12, located downgradient of building, 12/96
 - 4 most recent data from well MW-9, located upgradient of building, 11/95
 - NA Not Analyzed ND Not Detected

at Former Dry Cleaner Site

Contaminant	Soil (ppm)		Water (ppb)		
	Before ¹	After ²	<u>Before³</u>	After ⁴	
PCE	280	1.1	7,800	820	
TCE	ND	ND	1,200	890	
1,2-DCE	ND	ND	440	1,100	
VC	ND	ND	ND	ND	

- NOTE: 1 soil sample collected from tank pit, 11/89
 - soil sample collected after overexcavation, 11/90. PCE concentration are from stockpiled soil which was re-used to backfill the pit.
 - 3 maximum concentrations from well MW-7/7B
 - 4 most recent data, 8/96

at Former Texaco Service Station Site

Contaminant	Soil (ppm)	Water (ppb)	
	Before ¹ After ²	Before ³ After	4
TPH (Gas)	5,300	2,500 ND	
TPH (Diesel)	180	3,800 NA	
Benzene	150	10,000 0.77	,
Toluene	680	260 ND	
Ethylbenzene	850	2,600 0.73	}
Xylenes	260	1,600 ND	
Oil & Grease	400	NA NA	
Other MTBE	NA	NA ND	ļ
1,2 DCA	ND	22 11	
PCE	25	16 ND	

NOTE: 1 soil sample collected after overexcavation, 12/90

- 2 no additional excavation after 12/90
- 3 data from well MW-1, installed in 6/89
- 4 recent data from well MW-5B (1,2 DCA from well MW-22)

at Former Chevron Carwash/Service Station

Contaminant	Soil (p	pm)		Water (ppb)		
	Before ^{1A}	Before ^{1B}	After ²	Before ³	After⁴	
TPH (Gas)	9,500	20,000	ND	390,000	46,000	
Benzene	94	400	ND	21,000	180	
Toluene	410	2,000	ND	41,000	330	
Ethylbenzene	120	490	ИD	6,400	140	
Xylenes	590	2,400	ND	16,400	300	
MTBE		ND	ND		ND	
TOG	NA	1,400		NA	ND	

NOTE: 1A soil sample collected from tank pit at time of UST removal, 6/90

- 1B soil samples from boring B-9 at 'bgs, or from sidewalls after overexcavation, 2/91
- 2 soil samples from borings advanced in area of residual soil contamination 7 years later, 3/98
- 3 maximum historic concentrations from well STMW-1 or STMW-3
- 4 most recent sampling event, 12/96

IV. CLOSURE

,	
Does completed corrective action protect existing beneficial and Basin Plan? Does completed corrective action protect potential beneficial Board Basin Plan? Does corrective action protect public health for current Site management requirements: A site safety plan must event excavation/trenching is proposed in the vicinity of Should corrective action be reviewed if land use change Monitoring wells Decommissioned: Yes Number Decommissioned: 6 (MW-1, MW-5, MW-6, Must enforcement actions taken: NOV issued 6/26/91, 10 List enforcement actions rescinded:	eficial uses per the land use? YES t be prepared for construction workers in the f residual soil and groundwater contamination es? YES IW-8, MW-9, STMW-4) Number Retained:
V. LOCAL AGENCY REPRESENTATIVE DATA	
Name: Eva Chu	Title: Haz Mat Specialist
Signature: escur	Date: 6/14/00
Reviewed by	
Name: Larry Seto	Title: Sr. Haz Mat Specialist
Signature:	Date: 5-15-2000
Name: Thomas Peacock	Title: Supervisor
Signature: Mes Caux	Date: 6-14-00
VI. RWQCB NOTIFICATION	
Date Submitted to RB: 6 (1660	RB Response: Concur
RWQCB Staff Name: Chuck Headlee	Title: AEG
Signature: Chuch Headle	Date: 4/22/00

24

VII. ADDITIONAL COMMENTS, DATA, ETC.

This is a large piece of property where many buildings were previously leased to various businesses, including a pet hospital, a dry cleaner/laundromat, Chevron car wash/service station, Goodyear Tires, and Texaco service station. Prior to the redevelopment of the site into the South Shore Shopping Center, a preliminary site assessment was conducted in June 1989. Five exploratory borings (boring 1 through 5) were advanced inside the **former Goodyear** building. Two borings (B-1 and B-2) and one groundwater monitoring well (MW-1) were located at the **former Texaco** station, one monitoring well (MW-2) near the **former South Shore Carwash/Chevron Service Station**, and one monitoring well (MW-3) south of the **former Dry Cleaners**. Of significance was the detection of elevated TPHg, TPHd, and benzene in well MW-1 and elevated PCE, TCE, and 1,2-DCE in well MW-2 (see Map 1, Fig 1, 2, Table 1, 2). A more detailed account of investigations conducted at each of these sites is discussed below. Case closure is recommended for each of the fuel-related sites (Goodyear, Chevron/Carwash, and Texaco). A historic account of investigations performed in the vicinity of the former dry cleaner, which released chlorinated solvents to the subsurface, is also detailed below. A no further action letter was issued by this agency in December 1996 for the former dry cleaners.

All of the above structures were removed, except for the Goodyear building which was remodeled into a Big 5 sporting goods store. Currently there is a newly constructed South Shore Car Wash (at a different location) and Lyons Restaurant at the site. Environmental investigations conducted at the site include the installation of a total of 30 groundwater monitoring wells. During construction and re-paving of the shopping center and parking lot, various wells (MW-1, MW-5, MW-6, MW-8 and MW-9) were destroyed and replacement wells (MW-5B, MW-7B, MW-8B and MW-9B) were later installed.

Former Goodyear Building

In February 1990 five soil borings were advanced inside the Goodyear Building in the vicinity of the former hydraulic lifts. Three of the five shallow borings contained oil and grease in concentrations ranging from 30ppm to 340ppm.

In April 1990 a 500-gallon waste oil tank was removed from the former Goodyear Building. Soil samples were collected at 6'bgs from the northeast, southwest, and northwest walls, corresponding to sample locations NS, WS, and BSNW, respectively. Groundwater was encountered at "8'bgs, the bottom of the excavation. Soil analytical results were not above the detection limits for TPHg, TPHd, TOG, or VOCs (see Fig 3, Table 3). No additional investigations were required at this site.

Former Dry Cleaner Site

The location of the former dry cleaner is now occupied by an asphalt covered parking lot. In November 1989 during the demolition of the former dry cleaner building, two tanks containing dry cleaning fluid were punctured, releasing ~10 to 50 gallons of solvent. Contaminated soil (~150cy total) was removed and eight soil samples were collected from the sidewalls of the pit from 2' to 4' bgs and analyzed for VOCs using EPA Method 8010. A maximum of 280ppm PCE was identified from the south wall of the

excavation (see Fig 4). The south wall was further excavated and terminated when the organic vapor analyzer did not detect any vapors from the soil. Confirmatory soil samples were not collected. The soil removed was mostly sand fill material. The excavation was terminated at the top of the Bay Mud, at ~5'bgs.

In April 1990 six borings (B-1 through B-6) were drilled to a maximum depth of 6.5'bgs around the former tank excavation. Groundwater was encountered at ~6'bgs. Soil samples collected from ~4 to 5'bgs were taken to a laboratory for chemical analysis. PCE was detected in all the soil samples analyzed at concentrations ranging from 9.8ppb to 1,100ppb. (See Fig 5, Table 4)

Monitoring wells MW-7 and MW-8 were installed downgradient of the former dry cleaner by Woodward Clyde Consultants. In November 1990 well MW-7 revealed up to 1,900ppb PCE, 520ppb TCE, and 440ppb 1,2-DCE in groundwater. The levels of VOCs in well MW-8 were below MCLs. At this time trenching and excavation was also performed within and around the former excavation. Seven soil samples (V-1 through V-7) were collected at 5'bgs from six trenches (refer to Fig 6) and analyzed for VOCs. A grab groundwater sample was also collected from one of the trenches. Analytical results did not identify VOCs in soil or groundwater, except for 0.07ppm PCE in soil sample V-3 (see Fig 6). It did not appear further soil remediation was necessary.

In February 1992 groundwater monitoring wells (MW-15 through MW-21) were installed to assess the vertical and horizontal extent of chlorinated hydrocarbon contamination in soil and groundwater. PCE was not found in the six borings. In March/April 1992 an aquifer test was performed using well MW-7B. Approximately 13,000 gallons of groundwater was removed.

Groundwater monitoring wells MW-7/7B, MW-8/8B, MW-11, and MW-15 through MW-21, which surround the former dry cleaners, have been sampled periodically from February 1993 to August 1996. Maximum historic PCE concentrations (7,800ppb) and TCE concentrations (1,200ppb) have been detected in well MW-7/7B. The most recent sampling event in August 1996 identified up to 820ppb PCE and 890ppb TCE in this well. Groundwater from the other surrounding wells has not contained in excess of 57ppb PCE or TCE in the recent August 1996 sampling event. VOCs have not been detected in wells MW-14 and MW-16, located downgradient and nearest the shoreline (see Fig 7). It appears that the VOC plume is not migrating and may be naturally biodegrading. A comparison of recent VOC concentrations with the ASTM RBCA Tier 1 Look up Table suggests that current levels do not pose a risk to human health (see Table 5). And, the VOC plume is limited in extent and is not expected to impact the Alameda Shoreline.

A risk management plan (RMP), dated December 18, 1996, was prepared for the site. The RMP addresses mitigation of residual VOCs in soil and groundwater, protection of construction workers during earth moving activities, prevention of the creation of vertical and lateral conduits for the migration of residual contaminants, and evaluation of human health risk in the event of land use change at the site. The RMP must be provided to the current and any future property owners. A copy is also maintained at this agency. A no further action letter for the former dry cleaners was issued in December 1996.

Former Texaco Service Station Site

Four underground storage tanks (3 fuel and 1 waste oil tank) were removed from the site in 1981. There is no information available to this office regarding the removal of these tanks.

In June and August 1990 six groundwater monitoring wells (MW-1 through MW-5 and MW-9) were installed at the site. Wells MW-1, MW-2, and MW-3 were re-named MW-6, MW-7, and MW-8, respectively, in reports prepared by Woodward-Clyde. Well MW-6 was later destroyed during onsite construction activities. Soil samples collected from the well boreholes did not contain significant levels of TPHg, TPHd or TOG. Trenching (Trenches T-1 through T-7) was also conducted at this time to delineate the extent of soil contamination. Four soil samples (T4A, T4B, T4C and T7) were collected from the trenches. Obvious soil contamination was observed in samples T4A and T4B. In December 1990 an area 70' in length and 40' in width, which included the locations of soil samples that were collected from the trenches (T4A, T4B, T4C, and T7), was excavated. The excavation extended down to "6" to 7"bgs, removing "575cy of soil. Stained soil was noted at "6"bgs along the east-half of the excavation and at "3"bgs along the west-half of the excavation. Twelve confirmatory soil samples were collected at "2" to 7"bgs. The eastern wall sample (sample 4E-6") contained up to 5,300ppm TPHg and 150ppm benzene at 6'bgs. Another sample from the same location, but at 6.5'bgs, contained 2ppm TPHg and 0.13ppm benzene. (See fig 8, 9, Table 6, 7, 8)

Additional groundwater monitoring wells (MW-5B, MW-14, MW-15, and MW-22) were subsequently installed to further delineate the extent of the groundwater plume. Of all monitoring wells located downgradient of the former Texaco USTs, well MW-5B contained the highest levels of BTEX (maximum of 1,300ppb benzene in April 1991). Monitoring well MW-22 that is located downgradient of the former Texaco USTs and nearest the shoreline has not identified TPHg, TPHd, or BTEX constituents in groundwater. The sampling events in April 1994 and April 1997 indicated BTEX concentrations in the wells surrounding the former Texaco station to be below MCLs. It appears the plume is stable and naturally degrading (see Table 16). No additional work is required at the former Texaco site.

1,2-DCA and chloroform have been detected in wells MW-14, and MW-22. Well MW-22 is located across Shoreline Drive and ~100' downgradient of the former Texaco site. A limited ecological risk assessment was conducted to evaluate if residual DCA and chloroform in groundwater would pose significant impacts to aquatic organisms, fish, as well as endangered species, specifically the California clapper rail and the saltwater marsh harvest mouse. The report concluded that the compounds would not adversely effect the biota in the area.

Former Chevron Carwash/Service Station

Three 10,000-gallon USTs were reportedly removed in July 1990. Soil samples were collected from six locations (S1 through S6) at 8.5'bgs. Up to 9,500ppm TPHg and 94ppm benzene were identified from these samples. Six hand-augured borings (EB-1 through EB-6) were advanced to 5' and 7'bgs around the tank pit. Soil samples S-7 through S-14 were collected from the hand-augured borings at depths ranging from 5' to 6.5'bgs. Elevated TPHg and BTEX were also detected from these samples (see Fig 10, Table 8). Additional overexcavation in and around the former UST area (to depths ranging from 8' to 14'bgs) took place in December 1990. Confirmatory soil samples still contained elevated TPHg (up to 20,000ppm) and benzene (400ppm) along the north and east walls of the excavation (see fig 11, 12, 13, and Table 10, 11). Approximately 1,000cy of soil was taken to class III landfills, and ~700 tons to Gibson Oil in Bakersfield, CA.

In February 1991 ten exploratory borings (B-1 through B-10) and four groundwater monitoring wells (STMW-1 through STMW-4) were completed around the former tank excavation to delineate the extent of hydrocarbon contamination in soil. Soil samples from B-2, B-8, B-9, STMW-1 (sample SW-1-6) and STMW-3 (sample SW-3-6) contained elevated TPHg and BTEX at 6'bgs. TPHg, BTEX, and VOCs (including chlorinated solvents) were found in groundwater (see Fig 14, Table 12, 13). In March 1993 two additional wells (STMW-5 and STMW-6) were installed further downgradient (to north) to delineate the extent of the hydrocarbon plume (see Fig 15). Well STMW-4 was decommissioned in February 1995 due to considerable damage to the well head. And in March 1998 five exploratory borings (#1 through #5) were advanced in locations northeast and southeast of the former tank excavation where elevated TPHg and benzene were previously identified. Soil samples were collected at 3' to 4'bgs. The soil samples were analyzed for TPHg, BTEX, MTBE. In addition, sample #2 was also analyzed for chlorinated solvents. None of these compounds were detected above the laboratory detection limits. (See Fig 16, Table 14)

Groundwater has been sampled regularly since April 1991. The most recent results (12/96) identified a maximum of 180 ppb benzene in well MW-10/STMW-1 (see Table 15). Note that wells STMW-1 through STMW-6 are also called MW-10 though MW-13, MW-25, and MW-24, respectively, in reports prepared by Clayton Environmental.

In 1997, a risk assessment was submitted which demonstrated that there was no excess risk for volatilization of chemicals of concern (COC), namely BTEX constituents, from groundwater to indoor and outdoor air for onsite and offsite commercial workers. In addition, risk to construction workers (dermal contact, ingestion, and inhalation of COC) was estimated to be negligible. The risk assessment for volatilization of BTEX from soil to indoor or outdoor air was not evaluated. This exposure route was not evaluated since soil contamination is under the paved parking lot of the shopping center. Recent soil borings advanced in the location of residual hydrocarbons did not identify TPHg or BTEX constituents in soil. After 7 years, residual hydrocarbons may have naturally bioattenuated. However, if a building structure is proposed over the area of the former USTs, a risk analysis is still required to address potential soil vapor intrusion from soil into buildings.

SOMA Environmental Engineering, Inc. prepared a risk management plan (RMP), dated September 28, 1999, for the site. The RMP presented measures that will be implemented to mitigate potential impacts to human health and the environment during construction activities. The property owner should keep a copy of the RMP. The RMP must be disclosed to potential future buyers as well as to workers and contractors, as needed.

In summary, case closure for the <u>fuel related</u> sites is recommended because:

- the leak and ongoing sources have been removed;
- the site has been adequately characterized;
- the dissolved plume is not migrating;
- no water wells, surface water, or other sensitive receptors are likely to be impacted; and,
- the site presents no significant risk to human health or the environment under current use scenario.

SITE LOCATION MAP

Supplemental Monitoring Program Southshore Shopping Center Corner of Shoreline Drive & Park Avenue Alameda, California PROJECT NO 93-1175306 DEANING NO. MAP 1

PREPAR**ED BY**

REVIEWED BY

"Former Goodyear Building"

8910116A	i Alameda, California i-Clyde Consultants
Project No	Harson Investment Corp Shoreline Dr. & Park St

SAMPLE LOCATION MAP
Goodyear Tank Removal

May 1990 FIGURE 3

(W-2) + =(MW-7)

Approxims to the form Texaco se

Legend

Soil Sample Location and Depth

O L feet

Project No 8910116A	Harsch Inv		IN LIMIT AND SAMPLE LOCAT ILEVARD AND SHORELINE DE	
AAOOGW	vard-Clyde Consultants		ALEMEDA	

N-13-90 WED 10:35

B-1 - Approximate Boring Locations

W-2 Approximate Groundwater Monitoring Weil Location

	,		
Protect Na			June 1990
8910116A	Harsh Investments, Inc	FORMER EXCAVATION AND BORING	
		LOCATION PLAN	Flaure D

F16.12

Isoconcentration Map for Tetrachloroethene SOUTH SHORE SHOPPING CENTER Corner of South Shore Drive and Park Street Alameda, California

Clayton Project No. 45040.08

Clayton ENVIRONMENTAL CONSULTANTS 45040-PC-16

FIGURE & 8
SITE PLAN AND
AREA OF EXCAVATION
PROPOSED BY
CLAYTON FOR SITE TANKED
CONTROL TO THE TANKED

SAMPLE LOCATION

File No. 8-90-418-SI FRANCISCAN-WAY LS TRANSFORMER 78' 234' EB6 KAMUR INDUSTRIES 2351 SHORELINE DR ALAMEDA, CA E) EB5 # EB1 Ð (F) B C KB2 * KB4 BUILDING 10' 20' 30' 40' STOCKPILE SHORELINE DR Figure \$ \\ SOIL TECH ENGINEERING, INC.

2351 SHOR	E LINE DI	R ALAMED	A CA
(= 30		0.00.418.61	FIG-413
DRAWN BY N.A.	PROJECT NO	8-90-410-51	12-13-90
SOIL TECH ENG	INEERING INC.	CLARA CA	95050

• Soil Sample Locations Taken Previously During
Over-Excavation as reported 2/11/91
First # is # of sample;
Second # is it's depth

- Locations of Borings Drilled on 3/30/98

2351 SHORE LINE DR ALAMEDA CA

T=30 PROJECT NO 8-90-418-SI FIGURE 16

SOIL TECH ENGINEERING INC.

298 BROKAW RD. SANTA CLARA CA 95050

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Pable 1

. 2008 (653) WHEELER WEELER FO Woodward-Clyde Consultants 500 12th St., Suite 100 Oakland, CA 94607-4041

Attention: Al Ridley

Client Project ID: Matrix Descript: Analysis Method: 8910116A-4000

Soil

EPA 5030/8015/8020

906-1220 First Sample #:

Sampled: Received:

See Below Jun 9, 1989

Jun 22, 1989 Analyzed: Jul 10, 1989 Reported:

TOTAL PETROLEUM FUEL HYDROCARBONS with BTEX DISTINCTION (EPA 8015/8020)

Sample Number	Sample Description	Low/Medium B.P. Hydrocarbons mg/kg (ppm)	Benzene mg/kg (ppm)	Toluene mg/kg (ppm)	Ethyl Benzene mg/kg (ppm)	Xylenes mg/kg (ppm)
9061220 A	B-1 @ 8.5 - 10.0A 6/8/89	130	N.D.	N.D.	4.1	4.5
9061221 A	B-1 @ 13.5 - 15.0A 6/8/89	N.D.	N.D.	N.D.	N.D.	N.D.
9061223 A	B-2 @8.5 - 10.0A 6/8/89	N.D.	N.D.	N.D.	N.D.	N.D.
9061224 A	B-2 @13.5 - 15.0 A 6/8/89	N.D.	N.D.	N.D.	N.D.	N.D.
9061225 A	MW - 1 @3.5-5.0 A 6/8/89	N.D.	N.D.	N.D.	N.D.	N.D.
9061226 A	MW-1 @8.5 - 10.00 6/8/89	A N.D.	0.43	N.D.	0.10	N.D.
9061229 A	MW - 3 @3.5 - 5.0.	A N.D.	N.D.	N.D.	N.D.	N.D.
9061230 A	MW - 3 @8.5-10.0 6/9/89	A N.D.	N.D.	N.D.	N.D.	N.D.

,						
	Detection Limits:	1.0	0.05	0.1	0.1	0.1
-						

Low to Medium Boiling Point Hydrocarbons are quantitated against a gasoline standard Analytes reported as N.D. were not present above the stated limit of detection

SEQUOIA ANALYTICAL

Please Note

The chromatographic pattern for sample #9061220 is not typical of gasoline contamination

Arthur G. Burton Laboratory Director

Table 2. LABORATORY ANALYSIS OF WATER SAMPLES, PARK AVENUE AND SHORE LINE DRIVE, ALAMEDA, CALIFORNIA

Total	Petroleum	n Hydrocarb	ons and BT		ograms (ppt	(EPA 503	0/8015/8020) (Other)
Well Number	LBH ¹	Benzene	Toluene	Ethyl Benzene	Xylenes	HBH ²	Ethylene Glycol
MW-1 MW-2 MW-3	2,500 43 ND	400 2 ND	3.4 ND ND	7.9 ND ND	78 ND ND	3,800 ND ND	 ND ₃
Detection Limit:	30	0.3	0.3	0.3	0.3	50.0	10.0

 $¹_{LBH} = Low/Medium Boiling Point Hydrocarbons = TPH (as gasoline)$

Volatile	Organics	in	micrograms/L	(ppb)
	(FP	8 A	240)	

	Benzene	Toluene	Ethyl Benzene	Xylenes	1,2-DCE	PCE	TCE
MW-1 MW-2 MW-3	10,000, , 2.0 ND	' 260 ' ND ND	2,600 ND ND	1,600 ND ND	ND 26 ND	ND -48_ ND	ND 160 ND
Detection Limits:	2.0	100	100	100	2.0	2.0	2.0
State Action Level	0.7	100	680	620	16.0	4.0	5.0
State or Federal DWL	1.0	2,000	680	1,750	0.5	5.0	5.0
EPA Saltwater Acute Toxicity	5,000	6,300	430		224,000	10,200	2,000

²HBH = High Boiling Point Hydrocarbons = TPH (as diesel)

³ = Not tested

Table 3. SOIL SAMPLES - LABORATORY ANALYTICAL RESULTS

			Sample Name		Detection
PARAMETER	UNITS	NS	WS	BSNW	Limits
Total Petroleum H ydrocarbons (EPA Method 8015) Gasoline Diesel Oil and Grease (Method 503D)	mg/kg mg/kg mg/kg	ND ND ND	ND ND ND	ND ND ND	10 10 20
Haiogenated Volatile Organics (EPA Method 8010) (a)	ug/kg	ND	ND	ND	(a)

⁽a) The parameters tested and their corresponding detection limits are listed in the laboratory reports in Appendix A.

⁽b) ND indicates parameter not found above the reported detection limit.

Table 1. SOIL SAMPLES - LABORATORY ANALYTICAL RESULTS
8910116A - Harsh Invesments, Former Dry Cleaners Excavation, Southshore Shopping Center, Atameda, California

		Sample Event						Detection Limits
PARAMETER	UNITS	TS		,				
<u>'</u>		B-1-5	B-2-4.5	B-3-4	B-4-4	B-5-4	B-6-4	
Halogenated Volatile Organics (E PA Method 8010) (a) tetrachloroethylene/1,1,2,2-tetrachloroethane	µgиkg	1100	340	18	290	62	9.8	5

⁽a) Only those parameters that were found above the detection limits are listed. All other parameters tested and their corresponding detection limits are listed in the laboratory reports in the attachment.

Table 5: Comparison of maximum detected values with RBSLs - Gw to aunisiant an

Table : Comparison of maxim			
	Maximum	RBSLs	
	Detected	Tier 1	Tier 1
Chemical	Values (pg/L)	(10 ⁻⁵) ^A	(10 ⁻⁴) ^B
Benzene	1,300	170,340	1,703,401/
Toluene	45		
Ethylbenzene	370		
Xylenes	100		
1,2-dichloroethane (1,2-DCA)	22	13,228	132,279
1,1-dichloroethylene (1,1-DCE)	5.8	125	1,246
cis-1,2-dichloroethylene (cis-1,2-DCE)	1,200		
trans-1,2-dichloroethylene (trans-1,2-DCE)	58		
dichloroethylene ("DCE")	440		
tetrachloroethylene (PCE)	7,800	5,499	54,994
trichloroethylene (TCE)	1,200	27,410	274,101
Chloroform	6.10	8,561	85,608
1,1,2-trichloroethane (1,1,2-TCA)	0.8		
Bromoform	1.7		
Chlorobenzene	31		

ARBCA Tier 1 concentrations at the 10⁻⁵ risk level.

As shown in Table 4, PCE was detected at concentrations between the 1×10^{-5} and 1×10^{-4} RBSLs in two rounds of sampling; once in 1991 and again in 1993. Otherwise, PCE was below the 1×10^{-5} RBSL in samples from four other sampling events. Figure 2 shows the relationship of the measured PCE concentrations compared with RBSLs based on risk management thresholds set at 1×10^{-5} and 1×10^{-4} .

Table 4: PCE in monitoring well MW-7/7B relative to risk management thresholds _____

PCE Concentrations in Monitoring Well MW-7/7B relative to RBSLs	Sample Dates
[PCE] < RBSL at 1×10 ⁻⁵ (170,000 μg/L)	11/90, 4/91, 4/94, 11/95
RBSL at 1×10 ⁻⁵ < [PCE] < RBSL at 1×10 ⁻⁴	7/91 & 2/93
[PCE] > RBSL at 1×10 ⁻⁴ (1,700,000 μg/L)	None

^BRBCA Tier 1 concentrations at the 10⁻⁴ risk level.

TABLE &6

ANALYTICAL RESULTS OF SOIL SAMPLES FROM INSTALLATION OF MONITORING WELLS JUNE 11 AND 12, 1990 AND AUGUST 24, 1990 AT FORMER TEXACO STATION CORNER OF PARK STREET AND SHORE LINE DRIVE, ALAMEDA, CA FOR

HARSCH INVESTMENTS CORPORATION

Constituent	MW-L-65	MW-2-6.0	MW-3-6.0	MW455	MW-54.0	MW-9-5.0
EPA Method 418.1 for Total Recoverable Hydrocarbons	20 ppm	30 ppm	not analyzed	not analyzed	160 ppm	<10 ppm
EPA Method 8015/3550 for Diesel	<2 ppm	<2 ppm	<2 ppm	<2 ppm	<2 ppm	<10 ppm ⁽¹⁾
EPA Method 8015/3510 for Gasoline	<300 ppb	<300 ppb	<300 ppb	<300 ppb	<300 ppb	<10 ppm ⁽¹⁾

ppm parts per million (approximately equal to milligrams per kilogram)
ppb parts per billion (approximately equal to micrograms per liter)
not detected at or above the indicated value (detection limit)

Gasoline and diesel fuel in soil samples from MW-9 were analyzed by EPA Method 8015 (modified).

Except for gasoline and diesel, Table 3 reports only detected compounds. All other compounds for which analyses were conducted were below analytical detection limits. See Section 3.3.1 for a complete list of analyses run on the samples.

TABLE 67

RESULTS OF SOIL SAMPLES COLLECTED JULY 26, 1990 FROM TRENCHING OPERATION

AT

CORNER OF PARK STREET AND SHORE LINE DRIVE ALAMEDA, CALIFORNIA

FOR HARSCH INVESTMENT CORPORATION

Constituent	Sample ID Number						
	T4C	T7	T4A	T4B			
EPA Method 8015/3550 for diesel	<2 ppm	<2 ppm	Sample was not	Sample was not			
EPA Method 8015/5020 for gasoline	<300 ppb	<300 ppb	analyzed because the soil	analyzed because the soil			
EPA Method 418.1 (modified) for hydrocarbon oil and grease	was was	was obviously contaminated	was obviously contaminated				

ppm ppb

parts per million (approximately equal to milligrams per kilogram) parts per billion (approximately equal to micrograms per liter) not detected at or above the indicated value (detection limit)

TABLE & \$\frac{8}{2}\$
EXCAVATION SOIL SAMPLING RESULTS
TEXACO SHORELINE, ALAMEDA

McLaren	_	Concentration (ppm)								
Sample	_	Ethyl-						2-Hex-		
I.D	Location	Benzene	Toluene	Xylenes	benzene	TPH/G	TPH/D	TPH/O&G	anone	PCE
56551	3A-4'	<0.005	<0.005	<0.005	<0.005	<1.0	*N.A.	<50	N.A.	N.A.
56552	OB-2'	<0.005	<0.005	<0.005	<0.005	<1.0	N.A.	N.A.	N.A.	N.A.
56553	0A-5'	9.6	55	81	21	580	<5.0	100	N.A.	N.A.
56554	OE-6'	3.4	5.2	6.7	1.5	48	N.A.	N.A.	N.A.	N.A.
**56555	4E-6'	150/85	620/680	715/850	190/260	5300	180	400	<0.05	25
56568	4E-6.5'	0.13	0.14	0.2	0.06	2.	N.A.	N.A.	N.A.	N.A.
56557	5A-6'	<0.005	0.006	0.008	<0.005	<1.0	N.A.	N.A.	N.A.	N.A.
56558	1E-2'	1	4	17	3.4	130	N.A.	N.A.	N.A.	N.A.
56563	6A-6′	<0.005	<0.005	0.009	<0.005	<1.0	N.A.	N.A.	N.A.	N.A.
56564	6C-6′	<0.005	<0.005	0.006	<0.005	<1.0	N.A.	N.A.	N.A.	N.A.
56565	6E-7'	<0.005	0.007	0.011	<0.005	<1.0	N.A.	N.A.	N.A.	N.A.
56566	3C-7′	0.19	1	2.4	0.55	17	N.A.	N.A.	N.A.	N.A.
55054	HA-1	<0.005	<0.005	<0.005	<0.005	<1.0	N.A.	<5.0	<0.005	<0.005
**56559/60	Composite	2.9/8.1	11/12	44/35	9.2/15	370	<5.0	100	12	<0.005

^{*} N.A. indicates sample not analyzed for constituent.

^{**} BTXE analyzed by EPA 8020 (first number) and EPA 8240 (second number).

TPH - total petroleum hydrocarbons as gasoline (G), diesel (D), or oil and grease (O&G).

PCE - tetrachloroethylene.

Table 10

RESULTS

The certified analytical report documenting the findings of sample analyses has been attached to this report.

Sample #S1 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 9,100 parts per million (ppm), benzene - 94 ppm, toluene - 410 ppm, xylenes - 530 ppm, ethylbenzene - 110 ppm.

Sample #S2 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 9,500 ppm, benzene - 67 ppm, toluene - 350 ppm, xylenes - 590 ppm, ethylbenzene - 120 ppm.

Sample #S3 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 360 ppm, benzenc - 4.0 ppm, toluene - 17 ppm, xylenes - 21 ppm, ethylbenzene - 4.6 ppm.

Sample #S4 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 2,600 ppm, benzene - 27 ppm, toluene - 130 ppm, xylenes - 180 ppm, ethylbenzene - 37 ppm.

Sample #S5 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 2,800 ppm, benzene - 26 ppm, toluene - 150 ppm, xylenes - 210 ppm, ethylbenzene - 43 ppm.

Sample #S6 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 3,000 ppm, benzene - 38 ppm, toluene - 230 ppm, xylenes - 250 ppm, ethylbenzene - 73 ppm.

Sample #S7 was placed on hold and not analyzed.*

Sample #S8 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 700 ppm, benzene - 6.8 ppm, toluene - 31 ppm, xylenes - 43 ppm, ethylbenzene - 8.9 ppm.

Sample #S9 was found to contain the following contaminants at the given concentrations: TPH calculated as gasoline - 830 ppm, benzene - 2.6 ppm, toluene - 13 ppm, xylenes - 38 ppm, ethylbenzene - 9.2 ppm.

Sample #\$10, #\$11, and #\$12 were placed on hold and not analyzed.*

Sample #S13 was found to contain the following contaminants at the given concentrations TPH calculated as gasoline - 50 ppm, benzene - .24 ppm, toluene - .052 ppm, xylenes 2.8 ppm, ethylbenzene - .6 ppm

* Refer to RECOMMENDATIONS section of this report for explanation of why these samples were not analyzed.

TABLE 1(
SUMMARY OF SOIL ANALYTICAL RESULTS
(SAMPLES COLLECTED ON 12/12/90)
CONCENTRATIONS IN PARTS PER MILLION (ppm)

Sample No.	Depth feet	ТРНд	B	T	E	X
S-1-3	3	ND	0.015	0.016	ND	. 0.012
S-1-6	6	34	1.7	2.7	0.5	2.3
S-2-3	3	2.4	0.17	0.21	0.033	0.150
S-2-6	6	120	7.8	13	2	8.8
S-3-3	3	5.3	0.29	0.3	0.051	0.22
S-3-6	6	20,000	400	2,000	490	2,400
S-4-3	3	4	0.15	0.18	0.031	0.15
S-4-6	6	35	4.1	4	0.57	2.8

TPHg = Total Petroleum Hydrocarbons as Gasoline
BTEX = Benzene, Toluene, Ethylbenzene, Xylene
ND = Not Detected (Below Detection Limit)

cont. TABLE 4! SUMMARY OF SOIL ANALYTICAL RESULTS (SAMPLES COLLECTED ON 12/13/90) CONCENTRATIONS IN PARTS PER MILLION (ppm)

File		CON UMMARY OF :	t, Table 41 Soil analy Collected o In Parts F	FICAL RESU		
Sample No.	Depth feet	ТРНд	В	T	E	x
S-5-3 S-5-6 S-6-3 S-6-6 S-7-3 S-7-6 S-8-3 S-8-6 S-9-3 S-9-6	3 6 3 6 3 6 3 6	ND 11 ND 13 ND 14 240 15 ND 6,600	ND 0.320 ND 0.490 ND 0.850 ND 0.084 ND	ND 0.20 ND 0.92 ND 2.60 3.90 0.21 ND	ND 0.58 ND 0.73 ND 0.66 9.50 0.37 ND	ND 1.4 ND 2.4 ND 2.3 21 1.5 ND 330
Detection L	imit	0.5	0.005	0.005	0.005	0.005

TPHg = Total Petroleum Hydrocarbons as Gasoline BTEX = Benzene, Toluene, Ethylbenzene, Xylene ND = Not Detected (Below Detection Limit)

TABLE 10/2 RESULTS OF LABORATORY ANALYSES OF EXPLORATORY BORING SOIL SAMPLES IN MILLIGRAM PER KILOGRAM (mg/kg)

Sample No.	Depth feet	TPHg	В	T	E	x	TOG
B-1-3	3	ND	ND	ND	ND	ND	••
B-1-6*	6	2.5	0.25	0.081	0.043	0.10	
B-2-3	3	0.7	ND	ИD	ND	0.016	
B-2-6 *	6	4,700	16	66	54	200	
B-3-3	3	ND	ND	ND	ND	ND	
B-3-6	6	ND	ND	ND	ND	ND	
B-4-3	3	ND	ND	ND	ND	ND	
B-4-6	6	ND	ND	ND	ND	ND	
B-5-3	3	ND	ND	ND	ND	ND	
B-6-3	3 3	ND	ND	ND	ND	ND	
B-6-6*	6	ИD	0.029	ND	ND	ND	
B-7-3	3	ND	ND	ND	ND	ND ND	
B-7-6	6	0.7	0.056	0.035	0.023	0.064	
B-8-3	3	ND	ND	0.008	ND	0.007	
B-8-6	6	1800	13	98	70	200	
B-8-10	10	ND	ND	ND	ND	ND	
B-9-3	3	7.0	ND	0.026	0.05	0.15	
B-9-6*	6	11,000	220	740	370	1,400	1 400
B-9-10	10	ND	ND	ND	ND	ND	1,400
B-10-3	3	ND	ND	0.006	ND		
B - 10-6	6	29	1.7	2.9	0.36	0.012 1.5	
Detection	Limit	0.5	0.00				.005 -

TPHg = Total Petroleum Hydrocarbons as gasoline BTEX = Benzene, Toluene, Ethylbenzene, Xylene

TOG = Total Oil and Grease

ND = Not Detected (Below Detection Limit)

* = Mobile Chem Labs, Inc.

TABLE # 13 RESULTS OF LABORATORY ANALYSES SOIL AND GROUNDWATER SAMPLES FROM MONITORING WELLS

I. Soil Analytical Results in Milligram Per Kilogram (mg/kg)

Sample No.	Depth feet	ТРНд	В	T	E .	x
SW-1-3 SW-1-6 SW-1-10 SW-2-3 SW-2-6 SW-3-3 SW-3-6 SW-4-3 SW-4-6 SW-4-10	3 6 10 3 6 3 6 3 6	ND 650 ND ND ND ND 2800 ND ND ND	ND . 4.5 0.006 ND ND . 0.054 14 ND ND ND ND ND ND ND ND	ND 30 0.005 ND ND 0.048 120 ND ND ND	ND 34 0.014 ND ND 0.009 75 0.005 ND	ND 79 0.018 ND ND 0.041 270 0.014 ND

II. A. Water Analytical Results in Milligram Per Liter (mg/l)

Monitoring Well No.	Water Depth feet	ТРНЭ	В	T	E	X
STMW-1	8.48	180	11.0	20	3.2	18
STMW-2	5.17	ND	ND	0.4	ND	0.5
STMW-3	7.08	260	20	34	3.6	19
STMW-4	7.08	ND	0.3	0.3	ND	0.7

TPHg = Total Petroleum Hydrocarbons as gasoline BTEX = Benzene, Toluene, Ethylbenzene, Xylene ND = Not Detected (Below Detection Limit)

TABLE CONT'D

B. Volatile Organic Compounds (VOC's) Results

Monitoring Well No.	VOC Compounds Detected Per 8010 Results in Parts Per	EPA Method Billion (ppb):	OHS-DWS
STMW _l	1,2-Dichloroethane Trichloroethylene 1,1,2-Trichloroethane (PEC) Tetrachloroethene cis-1,2-Dichloroethene	350 4 0.5 0.9	0.5 .5 .32 .5 .6
STMW 2	1,2-Dichloroethane Trichloroethylene Tetrachloroethene	8 4 27	0.5 5 5
STMW 3	1,2-Dichloroethane	450	0.5
STM% 4	None Detected		

DHS >WS = Department of Health Services-Drinking Water Standards

TABLE 14 SOIL SAMPLES ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/Kg)

Date	Sample Number	Depth feet	ТРНд	В	T	E	X	MTBE	8010
3/30/98	1-4	4	ND	ND	ND	ND	ND	ND	NA
	2-4	4	ND	ND	ND	ND	ND	ND	ND
	3-3	3	ND	ND	ND	ND	ND	ND	NA
	4-3	3	ND	ND	ND	ND	ND	ND	NA
	5-3	3	ND	ND	ND	ND	ND	ND	NA

TPHg - Total Petroleum Hydrocarbons as gasoline

BTEX - Benzene, Toluene, Ethylbenzene, Total Xylenes

MTBE - Methyl Tertiary Butyl Ether

ND - Not Detected (Below Laboratory Detection Limit)

NA - Not Analyzed

TABLE 15
GROUNDWATER MONITORING DATA (feet) AND
ANALYTICAL RESULTS (mg/L)

Date	Well No./	Depth	Depth	Depth to	GW	Well Observation	TPHd	TPHg	В	T	E	X	MTBE	TOG
ļ	Elevation	of Well	to Perf.	Water	Elev.									
07 08 91	SIMW-1	15	5	7.54	91.92	Rainbow sheen spots	NA	58	14	7	2.7	8.3	NA	NA
	(99.16)		ļ. <u></u>			Strong pet. odor							<u> </u>	
10 21 91				7.63	91.83	Rainbow sheen spots	NA	112.6	19.6	19	ND	16.4	NA	NA
						Strong pet. odor						<u> </u>		
01 17 92*	(8.10)		l	6.96	1.14	Rainbow sheen spots	NA	160	16	6.8	2.6	16	NA	NA.
04.27.92	<u> </u>			6.69	1.41	Strong pet. odor	NA	54	0.72	0.2	0.5	- , , -	ŇA	NA
04.17.91				0.09	1.41	Rainbow sheen spots	INA	34	0.72	0,2	0.5	1.3	NA	IVA
07 30 92				7.40	0.70	Mild pet, odor Rainbow sheen spots	NA	73	1.2	0.77	1.1	2.74	NA .	NA
07 50 72				/	0.70	Mild pet, odor	1 111	,,	1.2	0.,,	***	#"'		1,11,1
02,08 93				6.23	1.87	Rainbow sheen spots	NA	66	0.21	0.48	0.51	1.2	NA	NA
]						Strong pet. odor								
04:27:94		<u> </u>		6.55	1.55	No sheen	NA	90	3.6	3.2	1.2	5.3	NA	NA
	l					Strong pet. odor						ļ <u>.</u>		
10/18/94				N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA
004110				NI/A	D7/A		NYA -			374	NIA	774	N/A	
02/14/95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NĀ	NA	NA
05'09'95				N/A	Ñ/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
05077				14/21	14/21	17/75	1471	141.	1471	1471	1471	11/1	1 1 1	1177
111095				7.59	0.51	No sheen	NA	18.0	0.082	0.022	0.037	0.047	NA	NA
						Light sewage odor								
12/20/96	resurveyed			6.48	1.62	Rainbow sheen spots	NA	• 46.0	0.18	0.33	0.14	0.30	ND	NA
	(8.10)					Light pet, odor	<u> </u>				<u> </u>			

TABLE 15CONT'D GROUNDWATER MONITORING DATA (feet) AND ANALYTICAL RESULTS (mg/L)

Date	Well No./	Depth	Depth	Depth to	GW	Well Observation	TPHd	TPHg	В	T	E	X	MTBE	TOG
	Elevation	of Well	to Perf.	Water	Elev.									100
07 08 91	S1MW-2 (98-12)	15	5	6.23	91.89	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
10/21/91				6.33	91.79	No sheen or odor	NA	ND	0.004	ND	ND	ND	NA	NA
0147/92*	(7.01)			5.69	1.32	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
04 27,92			-	5.52	1.49	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
07 30 92				6.20	0.81	No sheen or odor	NA	0.05	ND	0.0025	0.0009	0.011	NA	NA
02/08/93				4.90	2.11	No sheen or odor	NA	NA	NA	NA	NA	NA	NA	NA
04 27, 94				5.52	1.49	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
10/18/91				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
02 14/95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
05 09 95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
11 10 95				N/A	N/A	N/A	NA	NA	NA NA	NA	NA	NA	NA	ÑA
12 20 96	(7 01)	- -		5.37	1.64	No sheen or odor	NA	ND	ND	ND	ND	ND	ND	NA

TABLE 15CONT'D GROUNDWATER MONITORING DATA (feet) AND ANALYTICAL RESULTS (mg/L)

Date	Well No./	Dep th	Depth	Depth to	GW	Well Observation	TPHd	TPHg	В	T	E	X	MTBE	TOG
	Elevation	of Well	to Perf.	Water	Elev.									
07/08/91	STMW-3	15	5	7.96	91.94	No sheen	11	66	11	17	1.9	8.9	NA	ND
	(99 90)					Mild pet. odor					ļ			
10,21,91				7.83	92.07	Brown sheen spots	ND	165	48.5	19	ND	46	NA	20
		l				Strong pet, odor				<u></u>	<u> </u>	<u> </u>		
01/17/92*	(8 33)			6.71	1.62	Brown sheen spots	ND	390	21	41	6.4	4.7	NA	7.9
						Strong pet, odor						 _		4.0
01 27 92				6.86	1.47	Brown sheen spots	3	120	0.66	0.9	0.48	1.8	NA	4.7
					0.60	Strong pet, odor		2.10	10	2.2		9.3	NIA	6
07 30 92				7.71	0.62	Brown sheen spots	1.5	340	1.2	2.2	1.4	9.3	NA	0
02.00.03			 	5.96	2.37	Strong pet. odor Brown NMFP	ND	330	0.62	1.9	2,2	6.0	NA	3.9
02 08 93				3.90	2.31	Strong pet. odor	ND	330	0.02	1.9	2.2	0.0	142	3.5
04 27 91	i			6.96	1.37	Brown sheen spots	NA	160	1.3	6.3	1.4	12	NA	NA
()·f -, / 9 f				0.70	1.57	Strong pet, odor	1111	1.00	.,,,	"-"	'''			
10/18/94	l		-	8.00	0.33	Brown sheen spots	NA	77	5.2	6.2	2.2	13	NA	ND
10 70 71				}		Strong pet, odor		\ \			<u> </u>		<u> </u>	<u></u>
02 14 95				5.64	2.69	Brown NMFP	NA	68	0.12	0.2	0.18	0.71	NA	2.3
						Strong pet, odor							<u> </u>	
05 09 95				6.48	1.85	Brown NMFP	NA	16.0	0.071	0.13	0.11	0.2	NA	ND
						Strong pet, odor							<u> </u>	
11 10 95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
	ļ		<u> </u>	<u> </u>			2.75		0.015	0.045	0.005	0.050	370	
12 20 96	resurveyed			6.28	2.05	Rainbow sheen spots	ND	20.0	0.015	0.045	0.026	0.059	ND	3.9
	(8.33)		<u> </u>		<u></u>	Mild pet, odor		L	<u> </u>	<u> </u>	<u> </u>		<u>. </u>	<u> </u>

TABLE ISCONT'D GROUNDWATER MONITORING DATA (feet) AND ANALYTICAL RESULTS (mg/L)

Date	Well No./ Elevation	Depth of Well	Depth to Perf.	Depth to Water	GW Elev.	Well Observation	TPHd	TPHg	В	T	E	X	MTBE	TOG
07-08/91	STMW-4 (98-78)	15	5	6.90	91.88	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
10/21/91				6.54	92.24	No sheen or odor	NA	0.186	0.011	0.005	ND	0.037	NA	NA
01/[7.95*	(745)			6.00	1.45	No sheen or odor	NA	0.06	0.0008	0.0024	0.0005	0.004	NA	NA
04/27/92				5.84	1.61	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
07 30 92				6.64	0.81	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
02 08/93				4.93	2.52	No sheen or odor	NA	NA	NA	NA	NA	NA	NA	NA
04′27/94				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
10./18./94			-	N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
02/14/95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 15CONT'D GROUNDWATER MONITORING DATA (feet) AND ANALYTICAL RESULTS (mg/L)

Date	Well No./ Elevation	Depth of Well	Depth to Perf.	Depth to Water	GW Elev.	Well Observation	TPHd	TPHg	В	T	E	X	MTBE	TOG
02 08/93	\$1MW-5 ((a))	15	3	8.67	N/A	No sheen or odor	NA	ND	ND	ND	ND	ND	NA.	NA
04 27 94	<u> </u>		<u></u>	8.88	N/A	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
10 18 94				9.51	N/A	No sheen or odor	NA	ND	ND	ND	ND	ND	NA	NA
02 14 95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
05/09/95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
11/10/95				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
12/20/96	resurveyed (9.52)			8.91	0.61	No sheen V. light sewage odor	NA	0.33	ND	ND	0.0008	0.0046	ND	NA

TABLE ISCONT'D GROUNDWATER MONITORING DATA (feet) AND ANALYTICAL RESULTS (mg/L)

Date	Well No./ Elevation	Depth of Well	Depth to Perf.	Depth to Water	GW Elev.	Well Observation	TPHd	ТРНд	В	T	E	X	MTBE	TOG
02 08 93	STMW-6			7.88	N/A	No sheen Light sewage odor	NA	33	0.1	0.23	0.27	0.5	NA	NA
04/27/94				N/A	8.13	No sheen Mild pet. odor	NA	38	3.0	1.2	0.71	2.0	NA	NA
10/18/94				N/A	N/A	N/A	NA	NA	NA	NA	NA	NA	NA	NA
02/14/95			770%.00	7.87	N/A	No sheen Light sewage odor	NA	4.1	0.053	0.021	0.02	0.046	NĄ	NA
05/09/95				8.15	N/A	No sheen Mild sewage odor	NA	8.9	0.18	0.048	0.061	0.15	NA	NA
11/10/95				8.97	N/A	No sheen Light sewage odor	NA	6.0	0.026	0.0017	0.011	0.0047	NA	NA
12/20/96	resurveyed (9.31)			8.11	1.2	Rainbow sheen spots Mild pet, odor	NA	20.0	0.054	0.027	0.022	0.031	ND	NA

Table 16

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95			
Benzene	ND	ND										
Toluene	ND	ND										
Ethylbenzene	ND	ND										
Xylenes	ND	ND										
1,2-DCA	ND											
1,1-DCE	ND	ND										
cis-1,2-DCE	ND	ND										
trans-1,2-DCE												
"DCE"	ND	ND		Ţ								
PCE	0.6	2.8										
TCE	ND	ND										
Chloroform												
1,1,2-TCA												
Bromoform						,						
Chlorobenzene												
	Blank cel	ls indicate	that not	hing was r	eported for	or the give	en chemic	al.				
				s reported								
	ND mear	ND means the chemical was analyzed, but "not detected." I means the chemicals was analyzed and reported below the given detection limit.										
	< means											
	"DCE" m	eans eitht	er total D	CE, or DC	E not diff	ferentiated	into cis o	or trans is	omers.			
	All values	All values in micrograms per liter.										

cont Public

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Арг-94	Oct-94	Feb-95	May-95	Nov-95			
Benzene	ND	ND	<0.4		<0.5				<0.5			
Toluene	ND	ND	<0.3		<0.5				<0.5			
	ND	ND	<0.3		<0.5				<0.5			
Ethylbenzene					<0.5				<0.5			
Xylenes	ND	ND	<0.4						<0.5			
1,2-DCA		ND	<0.3		<2				70.5			
1,1-DCE	ND	ND	<0.2		<2							
cis-1,2-DCE	ND	ND	<0.4	<u> </u>					<0.5			
trans-1,2-DCE			<0.4]	<1				<0.5			
"DCE"	ND	ND	<0.4			<u> </u>						
PCE	ND	ND	<0.5		<1				<0.5			
TCE	<u> </u>	ND	<0.3		<2				<0.5			
Chloroform									<0.5			
1,1,2-TCA			<0.6									
Bromoform			<0.7									
Chlorobenzene			<0.7		<1			ļ				
	Plank co	lle indicat	e that not	hing was i	reported f	or the give	en chemic	 cal.				
	DIAIIK CE	no the obs	e that hot	s reported	es *not s	nalyzed *	1	1				
	INA mear	is the che	THICH WE	s reported	4 5.4 54	Halyted.	#	+	 			
	ND mea	ND means the chemical was analyzed, but "not detected." < means the chemicals was analyzed and reported below the given detection limit. "DCE" means eithter total DCE, or DCE not differentiated into cis or trans isomers.										
	< means											
	"DCE" m	eans eith	ter total C	CE, or DO	CE not dif	ferentiate	d into cis	or trans is	omers.			
		All values in micrograms per liter.										

Cort. Table 16

	Al 00	A == 04	11.04	Feb-93	Ans Of	Oct-94	Feb-95	May-95	Nov-95		
Chemical	Nov-90	Apr-91	Jul-91	Pep-83	Apr-94	OG-84	Len-93	May-05	<0.5		
Benzene	ND	ND	<0.4		<0.5	<u> </u>					
Toluene	0.5	ND	< 0.3	<u> </u>	<0.5				<0.5		
Ethylbenzene	ND	ND	<0.3		<0.5	<u> </u>	<u></u> _		<0.5		
Xylenes	ND	ND	<0.4		<0.5	<u> </u>			<0.5		
1,2-DCA	ND	ND	<0.3		<2				<0.5		
1,1-DCE	ND	ND	<0.2		<2			<u> </u>			
cis-1,2-DCE	ND	ND	<0.4					<u> </u>	0.77		
trans-1,2-DCE		ND	<0.4	1	<1		<u> </u>		<0.5		
"DCE"	ND		<0.4								
PCE	ND	3	<0.5		8.2			<u> </u>	20		
TCE	0.5	ND	<0.3		1.4				4		
Chloroform					,				<0.5		
1,1,2-TCA			<0.6								
Bromoform			<0.7			<u> </u>					
Chlorobenzene			<0.7		<1	<u> </u>	<u> </u>				
	Blank ce	lls indicat	e that not	hing was I	reported f	or the giv	en chemic	al.			
	NA mear	NA means the chemical was reported as "not analyzed."									
	ND mear	ns the che	mical wa	s analyze	d, but "no	t detected	.*	<u></u>	<u> </u>		
	< means	the chem	icals was	analyzed	and repo	rted belov	v the give	n detection	<u>n limit.</u>		
	"DCE" m	eans eith	ter total C	CE, or DO	CE not dif	ferentiate	d into cis	or trans is	omers.		
		s in micro									

cont. Table 16

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95		
Benzene	800	1300	3.1	210	<0.5						
Toluene	12	45	3.7	4.2	<0.5						
Ethylbenzene	320	370	13	1.9	<0.5	[
Xylenes	6 6	100	2.2	2	<0.5						
1,2-DCA	ND	ND	<0.3	0.4	<2		<u> </u>		<u> </u>		
1,1-DCE	ND	ND	<0.2		<2		<u> </u>				
cis-1,2-DCE	ND	ND	<0.4								
trans-1,2-DCE			<0.4		14		<u> </u>				
"DCE"	ND	ND	<0.4	5							
PCE	ND	ND	<0.5	ND	1.2				<u></u>		
TCE	ND	ND	<0.3	3.4	10						
Chloroform						<u> </u>			<u> </u>		
1,1,2-TCA			<0.6			<u> </u>		_	<u> </u>		
Bromoform		<u> </u>	<0.7		<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Chlorobenzene			<0.7	<1	<1				<u> </u>		
						<u> </u>	<u> </u>				
	Blank ce	lls indicat	e that not	hing was	reported f	or the giv	en chemi	cal.			
	NA mean	NA means the chemical was reported as "not analyzed." ND means the chemical was analyzed, but "not detected." < means the chemicals was analyzed and reported below the given detection line.									
	ND mea										
	< means	the chem	ricals was	analyzed	and repo	rted belov	w the give	n detection	on limit.		
	"DCE" m	eans eith	ter total C	CE, or D	CE not dit	ferentiate	d into cis	or trans is	somers.		
		s in micro					1				

cont. Table 16 MW-7 & 7B

						T 0 - 1 0 1	Cab OF	May 05	Nov-95		
Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95			
Benzene	ND N	ND	NA	NA	190				1.1		
Toluene	ND	ND	NA	NA	<0.5				<0.5		
Ethylbenzene	ND	ND	NA	NA	<0.5	L			<0.5		
Xylenes	ND	ND	NA	NA	27			<u> </u>	1.9		
1,2-DCA	ND	ND	<0.3	ND	<2	<u> </u>			<50		
1,1-DCE	ND	ND	4.6		5.8	<u> </u>					
cis-1,2-DCE	440	90	170						1200		
trans-1,2-DCE			2.6		13			<u> </u>	<50		
"DCE"		90	170	150							
PCE		1600	7800	5800	190				2100		
TCE		200	660	540	12				1200		
Chloroform									<50		
1,1,2-TCA		1	0.8		[T					
Bromoform			1.7		1	T					
Chlorobenzene			4.8	1	31						
	Monitorir	no well Mi	N-7B rep	laced mor	nitoring w	eli MW-7	after the	I/91sampi	ing date.		
	MW-	7B is dee	per and s	creened le	ower than	MW-7.	T				
	Blank ce	lls indicat	e that not	hing was	reported 1	or the giv	en chemi	cal.			
	NA mear	A means the chemical was reported as "not analyzed."									
	ND mea	ns the che	mical wa	s analyze	d, but "no	t detected	j."				
	< means	the chem	nicals was	analyzed	and repo	orted belo	w the give	en detection	on limit.		
	"DCF" m	eans eith	ter total F	CE. or D	CE not dif	fferentiate	d into cis	or trans is	somers.		
					T	T			[
	All values in micrograms per liter.										

cost. Table 16

8-WM

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Арг-94	Oct-94	Feb-95	May-95	Nov-95			
Benzene		ND	NA	NA	92				<0.5			
Toluene		ND	NA	NA	<0.5				<0.5			
Ethylbenzene		ND	NA	NA	<0.5				<0.5			
Xylenes		ND	NA	NA NA	<0.5				<0.5			
1,2-DCA		ND	<0.3	ND	<2				<0.5			
1,1-DCE		ND	<0.2		<2							
cis-1,2-DCE		6.8	11	 					44			
trans-1,2-DCE			<0.4		23				1.9			
"DCE"	1.2	6.8	11	8				<u> </u>	<u> </u>			
PCE		1.1	0.9	5	70				8			
TCE		7.7	19	14	57			<u> </u>	22			
Chloroform		 							<0.5			
1,1,2-TCA			<0.6			T						
Bromoform			<0.7									
Chlorobenzene			<0.7		<1		<u> </u>	ļ	<u> </u>			
					<u>l</u>	<u> </u>	<u>l</u>	<u> </u>	 			
	Blank ce	lls indicat	e that not	hing was	reported 1	or the giv	en chemi	cal.	<u> </u>			
	NA mea	ns the che	emical wa	s reported	as "not a	nalyzed."	<u> </u>		 			
	ND mea	ns the cho	emical wa	s analyze	d, but "no	t detected	<u>!."</u>	1	1 11 11			
	means the chemicals was analyzed and reported below the given detection limit. "DCE" means eithter total DCE, or DCE not differentiated into cis or trans isomers.											
	DCE" I	neans eith	ter total I	DCE, or D	CE not dif	ferentiate	a into cis	or trans is	somers.			
	All value	s in micro	ograms pe	er liter.			<u> </u>	<u> </u>	<u> </u>			

cont. Table 16

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95			
Benzene	ND	ND	<0.4		520				1.8			
Toluene	ND	ND	<0.3		2.8				5.6			
	ND	ND	<0.3		35				1.1			
Ethylbenzene			<0.4		<0.5	 			5.8			
Xylenes		ND							<0.5			
1,2-DCA		ND	<0.3		<2	<u> </u>		}				
1,1-DCE		ND	<0.2	<u> </u>	<2	<u> </u>	<u> </u>	ļ	<0.5			
cis-1,2-DCE	ND	ND	<0.4					<u> </u>				
trans-1,2-DCE			<0.4		<1	<u> </u>			<0.5			
"DCE"	ND	ND	<0.4									
PCE	1.5	3.3	<0.5		<1				<0.5			
TCE	ND	ND	<0.3		<2	-			<0.5			
Chloroform			-						<0.5			
1,1,2-TCA	<u></u>		<0.6	 								
Bromoform			<0.7			 						
		 		 	<1		 	 				
Chlorobenzene			<0.7	 	1 1		 	 				
		4	1 1 -1 -2 -1	<u> </u>		or the civ	en chemie		 			
	Blank ce	ils indicat	e that not	hing was	eporteu i	OI LITE GIV	T	Jan.	 			
	NA mear	is the che	mical wa	s reported	as mot a	naryzeo."	<u> </u>	 				
	ND mea	iD means the chemical was analyzed, but "not detected." means the chemicals was analyzed and reported below the given detection limit. DCE" means either total DCE, or DCE not differentiated into cis or trans isomers.										
	< means											
	"DCE" m	eans eith	ter total C	OCE, or D	CE not dif	ferentiate	d into cis	or trans is	omers.			
		s in micro				1	<u> </u>	<u> </u>	1			

land. Table 16

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Арг-94	Oct-94	Feb-95	May-95	Nov-95		
Benzene		***************************************		210	3600				82		
Toluene				480	3200				22		
Ethylbenzene				510	1200				37		
Xylenes				1200	5300				47		
1,2-DCA				ND	13				<0.5		
1,1-DCE					<2						
cis-1,2-DCE									<0.5		
trans-1,2-DCE					2				<0.5		
"DCE"				ND							
PCE				ND	3.9				<0.5		
TCE			 	9.5	<2				<0.5		
Chloroform				† - 					<0.5		
1,1,2-TCA											
Bromoform			 	 							
Chlorobenzene					<1						
	Blank ce	lls indicat	e that not	hing was I	reported f	or the giv	en chemic	cal.			
	NA mear	s the che	mical wa	s reported	as "not a	nalyzed."					
	ND mean	ID means the chemical was analyzed, but "not detected."									
	< means	the chem	icals was	analyzed	and repo	rted belov	w the give	n detection	n limit.		
	"DCE" m	eans eith	ter total E	CE, or DO	CE not dif	ferentiate	d into cis	or trans is	omers.		
		s in micro					1				

cont. Table (6 MW-11

Chemical	Nov-90	Арг-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95
Benzene	1101 00	745.01		NA	<0.5				<0.5
Toluene				NA	<0.5				<0.5
				NA NA	<0.5				<0.5
Ethylbenzene				NA NA	<0.5				<0.5
Xylenes				ND	<2				1.4
1,2-DCA				ND	₹2	 	 	 	
1,1-DCE				<u> </u>	- 42	ļ		 -	<0.5
cis-1,2-DCE				<u> </u>	<u> </u>		<u> </u>	 	<0.5
trans-1,2-DCE				<u> </u>	1.5	<u> </u>		ļ	₹0.5
"DCE"				ND				<u> </u>	
PCE				5.8	2.5	<u> </u>	<u> </u>	<u> </u>	1.3
TCE				2	4.2				3
Chloroform									<0.5
1,1,2-TCA					<u> </u>				
Bromoform					<u> </u>	<u> </u>		 	ļ
Chlorobenzene					<1	ļ		 	<u> </u>
	Blank ce	lls indicat	e that not	hing was	reported f	or the giv	en chemi	cal	
	NA mea	ns the che	emical wa	s reported	i as "not a	ınalyzed."	<u> </u>		<u> </u>
	ND mea	as the che	mical wa	s analyze	d. but "no	t detected	ļ. "		<u> </u>
	< means	the chem	nicals was	s analyzed	and repo	rted belov	w the give	en detection	on limit.
	"DCE" m	eans eith	ter total C	OCE, or D	CE not dif	ferentiate	d into cis	or trans is	somers.
				per liter.					

and. Tolders MW-12

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-84	Feb-95	Feb-95	May-95	Nov-95		
Benzene	1101-00	740.0.		620	1300	5200	1100	120	71	NA		
Toluene			 	1900	6300	6200	6200	200	130	NA		
			 	2200	1400	13000	2000	180	110	NA		
Ethylbenzene				6000	12000	22000	15000	710	200	NA		
Xylenes			}	ND	<2	NA	<2		3	NA		
1,2-DCA			 	110								
1,1-DCE		 	 	 	NR	<0.5	<2		<0.5	NA.		
cis-1,2-DCE		<u></u>	 	 	<1	NA	<2		<0.5	NA		
trans-1,2-DCE				ND		101		 				
"DCE"				ND	1.9	NA	<2	 	<0.5	NA		
PCE		<u> </u>	ļ		<2	NA NA	<2	 	<0.5	NA		
TCE				2.4	<1	NA NA	<2	 	<0.5	NA		
Chloroform			 -		<u> </u>	N/A		 	10.0	 •••		
1,1,2-TCA			ļ	<u> </u>	ļ	ļ	<u> </u>	├	 -	 		
Bromoform				 			 		<0.5	 		
Chiorobenzene			ļ	ļ	<1	NA	<2		10.5	 		
			<u> </u>	<u> </u>	1 7 7 7	<u> </u>			 	 		
	Blank ce	lls indicat	e that no	hing was	reported t	or the giv	en chemi	Cal.		 		
	NA mea	ns the che	emical wa	s reported	as "not a	inalyzed."	1			 		
	ND mea	ns the che	emical wa	s analyze	d, but no	t detected	1,"			 		
	The first	"Feb-95"	column i	s for samp	oling by th	e Mark G	roup; the	secona co	olumin	 		
	is fo	ie first "Feb-95" column is for sampling by the Mark Group; the second column is for sampling performed by Soil Tech Engineers (BTEX only).										
	< means	means the chemicals was analyzed and reported below the given detection limit.										
	NR mea	ns not rep	orted by	the labora	tory.		<u></u>					
	"DCE" m	neans eith	ter total l	OCE, or D	CE not di	fferentiate	ed into cis	or trans i	somers.			
· · · · · · · · · · · · · · · · · · ·		s in micro					<u> </u>		1	1		

صلا. Table الله Groundwater Analytical Data

MW-14					<u></u>
Chemical	4/91	7/91	2/93	4/94	4/97
Benzene	2.9	0.8	ND	0.95	0.77
Toluene	ND	0.8	ND	<0.5	<0.5
Ethylbenzene	ND	<0.3	ND	3.3	0.73
Xylenes	0.5	0.8	ND	15	<0.5
1, 2 - DCA	4.6	6.6	3.4	8.4	1.4
1, 1 - DCE	0.5	<0.2		<2	<1
cis - 1, 2 - DCE	ND	<0.4			<1
trans - 1, 2 - DCE		<0.4		<1	<1
"DCE"	ND	<0.4	ND		
PCE	16	<0.5	ND	<1	<1
TCE	0.4	<0.3	ND	<2	<1
Chloroform					<1
1, 1, 2 - TCA		<0.6			<1
Bromoform		<0.7			<1
Chlorobenzene	<u></u>	<0.7		<1	<1
TPH - g					<50

NOTES:

Blank cells mean that nothing was reported for the given chemical.

"NA" means that the chemical was reported as "Not Analyzed."

"ND" means the chemical was analyzed but "Not Detected."

"<" means the chemical was analyzed and reported below the given detection limit.

"DCE" means either total DCE, or DCE not differentiated into cis-or trans-isomers.

All values in mg/L.

Cost Table 2 1/6 Groundwater Analytical Data

MW-15			
Chemical	2/93	4/94	4/97
Benzene	ND	<0.5	<0.5
Toluene	ND	<0.5	<0.5
Ethylbenzene	ND	<0.5	<0.5
Xylenes	ND	<0.5	<0.5
1, 2 - DCA	ND	<2	<1
1, 1 - DCE		<2	<1
cis - 1, 2 - DCE			<1
trans - 1, 2 - DCE		<1	<1
"DCE"	ND		
PCE	ND	<1	<1
TCE	ND	<2	<1
Chloroform			<1
1, 1, 2 - TCA			<1
Bromoform			<1
Chlorobenzene			<1
TPH - g			<50

NOTES:

Blank cells mean that nothing was reported for the given chemical.

"NA" means that the chemical was reported as "Not Analyzed."

"ND" means the chemical was analyzed but "Not Detected."

"<" means the chemical was analyzed and reported below the given detection limit.

"DCE" means either total DCE, or DCE not differentiated into cis-or trans-isomers.

All values in mg/L.

10-3005-91/(1017R493)/sh © 1997, Kleinfelder, Inc

Court Table 16 16 Groundwater Analytical Data

MW-22				······································			
Chemical	2/93	4/94	10/94	2/95	5/95	11/95	4/97
Benzene	ND	<0.5	<0.5	<0.5	-0.5		
Toluene	ND	<0.5	<0.5	<0.5	<0.5	NA	<0.5
Ethylbenzene	ND			<0.5	<0.5	NA	<0.5
		< 0.5	<0.5	<0.5	<0.5	NA	<0.5
Xylenes	ND	<0.5	<0.5	<0.5	<0.5	NA	<0.5
1, 2 - DCA	22	15	14	8.2	11	NA	
1, 1 - DCE		<2					<u> </u>
cis - 1, 2 - DCE		NR	<0.5	<0.5	<0.5	NA	<1
trans - 1, 2 - DCE		<1	<0.5	<0.5	<0.5	NA	<1
"DCE"	ND						<u> </u>
PCE	ND	<1	<0.5	<0.5	<0.5	NA	<1
TCE	ND	<2	<0.5	<0.5	<0.5	NA	<1
Chloroform		<1	0.65	<0.5	<0.5	NA	<1
1, 1, 2 - TCA			,				<1
Bromoform							<1
Chlorobenzene		<1	<0.5	<0.5		<u> </u>	<1
TPH - g			,			<u> </u>	<50

NOTES:

Blank cells mean that nothing was reported for the given chemical.

"NA" means that the chemical was reported as "Not Analyzed."

"ND" means the chemical was analyzed but "Not Detected."

"<" means the chemical was analyzed and reported below the given detection limit.

"DCE" means either total DCE, or DCE not differentiated into cis-or trans-isomers.

All values in mg/L.

cont. Table 16 MW-17

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95	
Benzene				NA	<0.5	<0.5	<0.5	<0.5	NA	
Toluene			1	NA	<0.5	<0.5	<0.5	<0.5	NA	
Ethylbenzene		NA <0.5 <0.5 <0.5 <0.5							NA	
Xylenes				NA	<0.5	<0.5	<0.5	<0.5	NA	
1,2-DCA				ND	<2	<0.5	<0.5	<0.5	NA	
1,1-DCE					 					
cis-1,2-DCE				 	NR	<0.5	<0.5	<0.5	NA	
trans-1,2-DCE					<1	<0.5	<0.5	<0.5	NA	
"DCE"				NA NA						
PCE				ND	2.4	<0.5	<0.5	<0.5	NA	
TCE				ND	<2	<0.5	<0.5	<0.5	NA	
Chloroform				1	ব	4	<0.5	<0.5	NA	
1,1,2-TCA				 		 				
Bromoform				 	 -					
Chlorobenzene				 	<1	<0.5	<0.5	<0.5		
	Blank cells indicate that nothing was reported for the given chemical. NA means the chemical was reported as "not analyzed." ND means the chemical was analyzed, but "not detected."									
	< means	the chem	icals was	analyzed	and repo	rted belov	w the give	n detection	n limit.	
	"DCE" m	eans eith	ter total C	CE, or DO	E not dif	ferentiate	d into cis	or trans is	omers.	
		s in micro			1	1	T	1]	

rant Tobbello MW-18

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Арг-94	Oct-94	Feb-95	May-95	Nov-95			
Benzene				NA	<0.5							
Toluene				NA	<0.5							
Ethylbenzene				NA	<0.5							
Xyienes				NA	<0.5							
1,2-DCA				ND	<2							
1,1-DCE					<2							
cis-1,2-DCE												
trans-1,2-DCE					<1							
"DCE"				NA					L			
PCE				ND	1.4							
TCE				ND	<2		<u> </u>		<u> </u>			
Chloroform												
1,1,2-TCA							L					
Bromoform							<u> </u>					
Chlorobenzene					<1			 	<u> </u>			
	Blank cells indicate that nothing was reported for the given chemical. NA means the chemical was reported as "not analyzed."											
	ND means the chemical was analyzed, but "not detected."											
	means the chemicals was analyzed and reported below the given detection limit.											
	"DCE" means eithter total DCE, or DCE not differentiated into cis or trans isomers.											
		s in micro			T							

and Table 16 MW-19

		1 1 2 4	(= L 60	A == 64	0-4.04	Eab 05	May 05	Nov-95		
Nov-90	Apr-91	Jul-91								
			NA					NA NA		
			NA	<0.5	<0.5			NA NA		
			NA	<0.5	<0.5	<0.5		NA		
			NA	<0.5	<0.5	<0.5	<0.5	NA_		
ND <2 <0.5 <0.5										
				NR	<0.5	<0.5	<0.5	NA		
				<1	<0.5	<0.5	<0.5	NA		
			NA							
				1.1	<0.5	<0.5	<0.5	NA		
					<0.5	<0.5	<0.5	NA		
			1.00				<0.5	NA		
			 	 -	 					
		<u> </u>	 	 		 	 			
		<u> </u>	 		40 E	-0 E	-0.5	 		
			<u> </u>	<1	₹0.5	40.5	70.5	 		
		<u> </u>	<u> </u>	L	<u> </u>	<u> </u>		 		
Blank cel	Is indicate	e that not	hing was I	reported t	or the giv	en chemic				
NA mean	s the che	mical wa	s reported	as "not a	nalyzed."	<u> </u>				
ND means the chemical was analyzed, but "not detected."										
means the chemicals was analyzed and reported below the given detection limit.										
"DCE" m	eans eith	er total C	CE, or DO	CE not dif	ferentiate	d into cis	or trans is	omers.		
				T	T	Ţ				
	NA mean ND mean < means "DCE" m	Blank cells indicated the second	Blank cells indicate that not NA means the chemical was means the chemicals was "DCE" means eithter total E	Blank cells indicate that nothing was in NA means the chemical was analyzed means the chemicals was analyzed.	NA <0.5 ND <2 ND <2 ND <1.1 ND <1.1 ND <2 <1 ND <1.1 ND <2 <1 ND means the chemical was reported for the chemical was analyzed, but "no emeans the chemicals was analyzed and reported in the chemical was analyzed and reported in the c	NA <0.5 <0.5 ND <2 <0.5 ND <2 <0.5 ND <1 <0.5 ND <1 <0.5 ND <1 <0.5 ND <2 <0.5 ND <1 <0.5 ND means the chemical was reported for the given in the chemical was analyzed, but "not detected in the chemical was analyzed, but "not detected in the chemical was analyzed and reported below "DCE" means either total DCE, or DCE not differentiate	NA	NA		

conditable lb MW-20

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Арг-94	Oct-94	Feb-95	May-95	Nov-95		
	1404-90	Api-o i	00.01	NA	21				<0.5		
Benzene				NA NA	<0.5			<u> </u>	<0.5		
Toluene						 	ļ	 	<0.5		
Ethylbenzene				NA	<0.5	ļ		 	<0.5		
Xylenes				NA	<0.5	<u> </u>		 -			
1,2-DCA				ND	<2	<u> </u>	<u> </u>	<u> </u>	<0.5		
1,1-DCE					<2						
cis-1,2-DCE			1	1		·	l		16		
trans-1,2-DCE					58	T	J		0.61		
"DCE"				NA	 						
PCE				ND	57			<u> </u>	<0.5		
TCE				ND	32	1		<u> </u>	3.7		
Chloroform									<0.5		
1,1,2-TCA											
Bromoform								<u> </u>			
Chlorobenzene					<1		 	 			
	Blank cells indicate that nothing was reported for the given chemical.										
	NA means the chemical was reported as "not analyzed." ND means the chemical was analyzed, but "not detected."										
	MD theans the Chemical was analyzed, but not detection limit. The state of the chemical was analyzed and reported below the given detection limit.										
	< means	the chen	nicais wa:	sanalyzec	and teb	Med Delo	A mic Aise	or trancis	omers		
				OCE, or D	CF vot al	rerentiate	a into cis	Ut traits to	orners.		
	All values in micrograms per liter.										

cont. Table 16 MW-21

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95	
Benzene	1404-80	741-01		NA	<0.5				<0.5	
			<u> </u>	NA NA	<0.5				<0.5	
Toluene				NA NA	<0.5	-		 	<0.5	
Ethylbenzene			} _		<0.5			-	<0.5	
Xylenes				NA NA		 	 	 	<0.5	
1,2-DCA			<u> </u>	ND	<2		 -		70.5	
1,1-DCE			<u></u>		<2			 	-0 E	
cis-1,2-DCE				<u> </u>					<0.5	
trans-1,2-DCE				\	<1			<u> </u>	<0.5	
"DCE"				NA			<u> </u>			
PCE				ND	<1		l		<0.5	
TCE				ND	<1			<u> </u>	<0.5	
Chloroform								<u> </u>	<0.5	
1,1,2-TCA				Τ			<u> </u>	<u> </u>	<u> </u>	
Bromoform								 	<u> </u>	
Chlorobenzene					<1	<u> </u>	 	 	 _	
			<u> </u>	<u> </u>		1	1	1	 	
	Blank cells indicate that nothing was reported for the given chemical. NA means the chemical was reported as "not analyzed." ND means the chemical was analyzed, but "not detected." < means the chemicals was analyzed and reported below the given detection limit.									
	maans	the chen	nicale wa	s anaivzer	and repo	orted belor	w the aive	en detection	on limit.	
	"DCE" m	eans eith	ter total [OCE, or D	CE not di	fferentiate	ed into cis	or trans is	somers.	
 _	All value	s in micr	ograms p	er liter.	7	1				

Could Table 16 MW-22

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95		
Benzene	1101 00	74.5		ND	<0.5	<0.5	<0.5	<0.5	NA		
Toluene		_		ND	<0.5	<0.5	<0.5	<0.5	NA		
Ethylbenzene				ND	<0.5	<0.5	<0.5	<0.5	NA		
Xylenes				ND	<0.5	<0.5	<0.5	<0.5	NA		
1,2-DCA				22	15	14	8.2	11	NA		
1,1-DCE				† 	<2						
cis-1,2-DCE					NR	<0.5	<0.5	<0.5	NA		
trans-1,2-DCE				 	<1	<0.5	<0.5	<0.5	NA		
"DCE"				ND							
PCE				ND	<1	<0.5	<0.5	<0.5	NA		
TCE			 	ND	<2	<0.5	<0.5	<0.5	NA		
Chloroform			}	1,1,5	<1	0.65	<0.5	<0.5	NA		
1,1,2-TCA				 	 	1					
			 -	 	 	 	 	1	1		
Bromoform			 -	 	<1	<0.5	<0.5	<0.5			
Chlorobenzene			<u> </u>	 	 - ` ' -	1			 		
	Blank ce	lle indicat	e that not	hing was	reported t	or the giv	en chemi	cal.	 		
	NA mass	e the che	mical wa	s reported	l as "not a	nalvzed."	T	Ţ			
	NA means the chemical was reported as "not analyzed." ND means the chemical was analyzed, but "not detected." < means the chemicals was analyzed and reported below the given detection limit.										
	*OCE" =	cone ofth	tor total F	OCE, or D	CE not dit	ferentiate	d into cis	or trans is	omers.		
	DUE III	eans em	IEI IOIGI F	or liter	1 1101 (01)	To to the co	1	1	T		
	All values in micrograms per liter.										

cast, Table 16 MW-23

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Арг-94	Oct-94	Feb-95	May-95	Nov-95		
Benzene				ND	<0.5						
Toluene				ND	<0.5						
Ethylbenzene											
Xylenes				ND	<0.5		<u> </u>				
1,2-DCA				ND	<2	0.53	<0.5	0.99	NA		
1,1-DCE									<u> </u>		
cis-1,2-DCE					NR	<0.5	<0.5	<0.5	NA		
trans-1,2-DCE		<1 <0.5 <0.5 <0.5									
*DCE"				ND				<u> </u>			
PCE				ND	<1	<0.5	<0.5	<0.5	NA		
TCE				ND	<2	<0.5	<0.5	<0.5	NA		
Chloroform					<1	<0.5	<0.5	<0.5	NA		
1,1,2-TCA								· · · · · · · · · · · · · · · · · · ·	<u> </u>		
Bromoform											
Chiorobenzene					<1	<0.5	<0.5	<0.5			
	Blank cells indicate that nothing was reported for the given chemical.										
	NA mear	is the che	mical wa	s reported	as "not a	nalyzed."					
	ND means the chemical was analyzed, but "not detected."										
	< means	the chem	icals was	analyzed	and repo	nted belov	w the give	n detection	on limit.		
<u> </u>	"DCE" m	eans eith	ter total C	CE, or DO	E not dif	ferentiate	d into cis	or trans is	omers.		
		s in micro				T	<u> </u>	Ţ			

cont. Table 16 MW-24

Chemical	Nov-90	Арг-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	Feb-95	May-95	Nov-95		
Benzene				ND	<0.5		7700	53	71	NA		
Toluene				ND	<0.5		1600	21	130	NA		
Ethylbenzene				ND	<0.5		1200	20	110	NA		
Xylenes		ND <0.5 2100 46							200	NA		
1,2-DCA		ND <2 6.6								NA		
1,1-DCE							t					
cis-1,2-DCE				 	NR		<0.5		1.1	1.1		
trans-1,2-DCE				 	<1		<0.5		<0.5	<0.5		
"DCE"				ND								
PCE				ND	1.9		<0.5		<0.5	<0.5		
TCE				ND	<2		<0.5		<0.5	<0.5		
Chloroform		 		 	<1		<0.5		<0.5	<0.5		
1,1,2-TCA		 	 	 	 	1						
Bromoform			 									
Chlorobenzene		 	}	+	<1	1	<0.5		<0.5			
CHOIODCHZCHC	 		 	 	 	†	<u> </u>	 				
	Blank ce	lle indicat	e that not	hing was	reported f	or the giv	en chemic	al.				
	NA mean	s the che	mical wa	s reported	as "not a	nalvzed."	T	Ţ	 			
	NO mean	s the che	mical wa	s analyze	d. but "no	detected	i. "			1		
	The first	"Feb-95"	column is	s for samp	ling by th	e Mark G	roup: the	second co	lumn			
	is fo	r samplin	a nerform	ed by Soi	Tech En	oineers (STEX only	<i>(</i>).	Τ	T		
	is for sampling performed by Soil Tech Engineers (BTEX only). < means the chemicals was analyzed and reported below the given detection limit.											
<u> </u>	NR mea	as not cen	orted by	the labora	tory.	1	1	1	1	T		
	*DCE" m	eans eith	ter total F	OCE, or D	CE not dif	ferentiate	d into cis	or trans is	somers.	T		
 	All value	s in micro	or total E	er liter	T	1	T	T	T	T		
<u> </u>	IVII Agine	s ar micro	Alianis h	or inci.		<u> </u>						

Chemical	Nov-90	Apr-91	Jul-91	Feb-93	Apr-94	Oct-94	Feb-95	May-95	Nov-95			
Benzene	****			100	<0.5	<0.5	i		NA			
Toluene				230	<0.5	<0.5			NA			
Ethylbenzene				270	<0.5	<0.5			NA			
Xylenes				500	<0.5	<1			NA			
1,2-DCA				ND	9.3	5.2	NA	NA	NA			
1,1-DCE												
cis-1,2-DCE					NR	<0.5	NA	NA	NA			
trans-1,2-DCE					<1	<0.5	NA	NA	NA			
"DCE"				ND								
PCE			<u> </u>	ND	3.9	<0.5	NA	NA	NA			
TCE				11	<2	<0.5	NA	NA	NA			
Chloroform				 	<1	1.3	NA	NA	NA			
1,1,2-TCA				 								
Bromoform									<u> </u>			
Chlorobenzene					<1	<0.5	NA	NA				
	Blank ce	ls indicat	that not	hing was	reported f	or the giv	en chemic	cal.				
	NA mear	s the che	mical wa	s reported	as "not a	nalyzed."	<u> </u>	<u> </u>	<u> </u>			
	ND means the chemical was analyzed, but "not detected."											
	< means	the chem	icals was	analyzed	and repo	nted below	w the give	n detection	n limit.			
	"DCE" m	eans eith	ter total C	OCE, or DO	E not dif	ferentiate	d into cis	or trans is	omers.			
		All values in micrograms per liter.										

Woodward-Clyde Consultants 🐣

PROJECT NAME Alameda-Harsch Investments

25—		dward-Ciyde Consultant:			P!	ROJECT	NAME	Ala	meda-	Harsch	investm	ents NO. 8910116A
DRILLING EQUIPMENT CME 75 DRILLING METHOD Of Hollowstein Augers Number 1 Stand Type Water First NA UNDST. 3 Water First NA Comp. NA 6-16-89 Water First NA Comp. NA 6-16-89 Water First NA Comp. NA 6-16-89 N. Gorczyca OF Hollowstein Augers N. Gorczyca OF Hollowstein Augers N. Gorczyca N. Gorczyca OF Hollowstein Augers N. Gorczyca OF Hollowstein Augers N. Gorczyca N. Gorczyca OF Hollowstein Augers N. Gorczyca OF Hollowstein Augers N. Gorczyca N. Gorczyca OF Hollowstein Augers N. Gorczyca OF Hol		Alameda - Harsch Investi		ELEV	ATION	AND	DATU	4				
DRILLING METHOD METHO	L		DRILLER K.	Tea	gue		DATE	STAR	TED	Jui	ne 8, 19	989
STEZ AND TYPE OF CASING 2° PVC	DRILLIN	G EQUIPMENT CME 75					COMP	LETK		10.	D'	SAMPLER 2" Modified
MATER PRINT NA COMPL NA 6-16-89	DRILLIN	G METHOD 8" Hollowstern Augers	DRILL BIT				NO. O	F :	DIST	· N	4	i
TYPE OF PACK NO. 1 Dentonite FROM 2.5 To 3.0 P.	SIZE AN	D TYPE OF CASING 2" PVC					WATE	R	FIRS	τ ,	iA	COMPL. NA 6-16-89
No. Sard S	TYPE OF	PERFORATION 0.010" Slotted PVC	FROM 4.0	TO	9.0	Pt.			Y:			
No. 1 Bentonite FROM 2.5 TO 3.0 P.	SIZE AN		FROM 3.0	το	9.0	PL.	K. 1	Teagu	le			1
DESCRIPTION DESCR		NO. 1 Bentonite	FROM 2.5	70	3.0	FL						
DESCRIPTION Piestometer Instillation ASPHALT, coarse rock SAND (SP) - brown, medium, moderately sorted - trace sit, with claryey blebs approximately 1 diameter; abundant cyster shells, red oxidized concretions - grey, cohesive Caved Sand (SP) Bottom of Boring at 15.0' DESCRIPTION Piestometer Instillation Piestometer I	SEAL	NO. 2 Volciay Grout	FROM 0	οr	2.5							
ASPHALT, coarse rock SAND (SP) brown, medium, moderately sorted trace siit, with clayery blebs approximately 1" diameter; abundant oyster shells, red oxidized concretions 10 - grey, cohesive Caved Sand (SP) Bottom of Boring at 15.0' Bottom of Boring at 15.0'			<u> </u>		GRAP	IIC FOG	1					4
SAND (SP) - brown, medium, moderately sorted - trace silt, with clayey blebs approximately 1" diameter; abundant cyster shells, red oxidized concretions - grey, cohesive - caved Sand (SP) Bottom of Boring at 15.0' - OVA = 7.0 ppm hydrocarbon odor 15 - Bottom of Boring at 15.0' - OVA = 7.0 ppm decreased hydrocarbon odor	DEPTI (feet)	DESCRIPTION					rter	E ÷	ive	mple		(Drill Rate, Fluid Loss, Odor, etc.)
SAND (SP) - brown, medium, moderately sorted - trace sit, with clayey blebs approximately 1" diameter; abundant cyster shells, red oxidized concretions 10 - grey, cohesive 15 - Jah		ASPHALT, coarse rock					\ <u>≯</u> ŏ	3.5	ᅙᇎ	S Z	E = m &	
brown, medium, moderately sorted trace sit, with clayey blebs approximately indiameter; abundant cyster shells, red oxidized concretions 10 - grey, cohesive 10 - grey, cohesive 15 - grey, cohesive 15 - grey, cohesive 16 - grey, cohesive 17 - A - OVA = 1.2 ppm hydrocarbon odor Caved Sand (SP) 18 - OVA = 7.0 ppm hydrocarbon odor Caved Sand (SP) 20 - grey, cohesive 30 - grey, cohesive 40 - grey,								-				
trace sit, with clayey blebs approximately 1" diameter; abundant oyster shells, red oxidized concretions 10 - grey, cohesive 15 - 1 1, 4 1/19 - OVA = 1.2 ppm - OVA = 7.0 ppm hydrocarbon odor Caved Sand (SP) 15 - 3 1 1, 4 1/19 - OVA = 7.0 ppm hydrocarbon odor Caved Sand (SP) 15 - 3 1 1, 4 1/19 - OVA = 7.0 ppm hydrocarbon odor 16 - 2 2 1/19 - OVA = 7.0 ppm decreased hydrocarbon odor 20 - 25 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3	-	· · ·			ŹŹ	Ż] _				
- trace sit, with clayey blebs approximately 1" diameter; abundant syster shells, red oxidized concretions 10 - grey, cohesive 15 - Jah 10 - OVA = 1.2 ppm hydrocarbon odor Caved Sand (SP) 15 - Bottom of Boring at 15.0" 20 - 25 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3		- brown, medium, moderatel	y sorted					-				
oxidized concretions grey, cohesive -OVA = 7.0 ppm hydrocarbon odor Caved Sand (SP) Bottom of Boring at 15.0' 20 25 25 30 30 30 30 30 30 30 30 30 3	5 —	- trace silt, with clayey blebs	approximately				1	5 —	-	1-A		- OVA = 1.2 ppm_
10 - grey, cohesive 10 - 2 24 10 10 15 15 15 15 15 15]	1" diameter; abundant oyst oxidized concretions	er shells, red					-		}		
10 - grey, cohesive 10 - 2 24 10 10 15 15 15 15 15 15	4				The state of the s			-				
Bottom of Boring at 15.0' Bottom of Boring at 15.0' 15 Bottom of Boring at 15.0' 20 25 25 25 25 27 30 30 30 30 30 30 30 30 30 3	4							_		-		0)// 70
Sand (SP) 15 3 3 7 12	10	- grey, cohesive						10 —	-	2-A		
Sand (SP) 15 3 3 7 12]							-				
Bottom of Boring at 15.0' 20]				San	ea d (SP)		-		-		
Bottom of Boring at 15.0' 20	4								2	-	7	
20 — 20 — 25 — 25 — 30 — 30 — 330 — 335	15					`; · .		15 —	-	3A	12 12	• •
25—	4	Bottom of Boting at 15.0'						-				
25—]				}			-				
25—	4				İ					1		
30 —	20							20 -			-	
30 —	4							4				
30 —				;	1			4				
30 —]			ļ				4				
30 —	25-							25]				
	4								}			
	4			,				4				
	رَ			į				4				
	30 🖳				}			30 -	-			
35	-											
35	4							4	ļ	ļ		
35	٦							4	7			
	35							ا ج	-			

LOGOF Project No.: 39744.00 Date: 2/24/92 BORING NO. Harsch Investment Corporation Client: MW-15 Location: Park & Shore Line Drive EXPLORATORY BORING D. Dastmalchi Logged By: Driller: B&F Sheet 1 of 2 Field Location of Boring: Drilling Method: Hollow stem Hole Diameter: 8" Casing Installation Data: 2" casing, 15' of 0.01 Schedule 40 PVC screen, 5' of blank, Ground Elevation: Datum: 16' sand, 1' bentonite, 3' concrete Water Level Time a M E P T PID Date Group Symbol P Litho-Biow OVA grapitic Symbol DESCRIPTION н (uscs) Connt (ppm) Asphalt & packing material Reddish-yellow sand (5 YR 6/6). little to no silt, well rounded, poorly sorred, moist 1 2 3 0 5 Shell fragments wet 6 7 SP 8 9 Grayish sand (2.5 YR 5/0), wet 10 11 12 13 14 15 16 17 18

J	EXPLOI	LOG RATO	OF RY I	SORING		Project No.: 39744.00 Date: 2/24/92 BORING NO. Client: Harsch Investment Corporation Location: Park & Shore Line Drive Logged By: D. Dastmalchi Driller: B&F Sheet 2 of 2			
Field Loca Ground El		ing:			Datum:	Drilling Method: Hollow stem Hole Diameter: 8" Casing Installation Data: 2" casing, 15' of 0.01 Schedule 40 PVC screen, 5' of blank, 16' sand, 1' bentonite, 3' cement			
						Water Level			
		ъ	S			Time			
	PTD 	D E P	M P	Sall Group	Litho-	Date			
Riow Comi	OVA (ppm)	T H	I E	Symbol (ascs)	graphic Symbol	DESCRIPTION			
		19							
		20				Gray, clayey sand (2.5 VR 5/0) sulfur smell (bay mud) TD = 20'			
		21							
		22		Cl,					
		23							
		24							
		7			Ì				
		25							
		26							
		27							
		28							
		29	}						
 	 	30							
		31							
 	 	22	 						
		32		!					
		33	-						
		34		1					
		-	-						
	 	35							
		36		1					
	1	H	₩	11					

39744.00 Project No.: Date: 2/24/92 BORING NO. LOG OF Harsch Investment Corporation Park & Shore Line Drive Client: MW-16 EXPLORATORY BORING Location: Logged By: D. Dastmalchi Driller: B&F Sheet 1 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Diameter: 8" Casing Installation Data: 5' of 0.01 Schedule 40 PVC screen, 25' of blank, 6' sand, 1' bentonite, 23' concrete (2" casing) Datum: Ground Elevation: Water Level Time Ö A M E P Sell PID Group Symbol Lithe-DESCRIPTION graphic Symbol OVA (uses) E u Count (ppm) Asphalt & packing Reddish-yellow (5 YR 6/6), clayey sand 1 2 Reddish-vellow (5 YR 6/6) sand with little to no silt or clay 3 Sample refusal 4 5 6 7 8 SP 9 Grav (2.5 YR 5/0) sand with shell fragments 10 11 12 13 14 15 16 17 18

Date: 2/24/92 Project No.: 39744.00 BORING NO. LOG OF Harsch Investment Corporation Client: MW-16 Location: Park & Shore Line Drive EXPLORATORY BORING Driller: B&F Logged By: D. Dastmalchi Sheet 2 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Diameter: 8" Casing Installation Data: 5' of 0.01 Schedule 40 PVC screen, 25' of blank, 6' sand, 1' bentonite, 23' concrete (2" casing) Ground Elevation: Datum: Water Level Time M P E P PID Group Symbol (uses) Lithe graphic Symbol DESCRIPTION Blow OVA Ħ Count (ppm) 19 20 21 22 23 24 SP 25 26 27 28 29 30 Gravish (2.5 YR 5/0) clay, no sand, sulfur odor, shell fragments $70 = 30^{\circ}$ CL 31 32 33 34 35 36

39744.00 Project No.: Date: 2/25/92 BORING NO. LOG OF Client: Harsch Investment Corporation MW-17 Location: Park & Shore Line Drive EXPLORATORY BORING Logged By: D. Dastmalchi Driller: B&F Sheet 1 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Diameter: 8" Casing Installation Data: 5' 0.01 Schedule 40 PVC screen, 20' blank, 6' sand, 1' bentonite, 18' grout (2" casing) Ground Elevation: Datum: Water Level Time D E P M P PID Date Group Symbol Limo. DESCRIPTION graphic Symbol OVA Blow Count H (ppm) (uses) Reddish yellow (5 YR 6/6) sand, well rounded, poorly sorted, little to no silt, moist 1 2 3 4 5 6 Wet SP 7 8 9 10 11 12 13 14 15 Gray (2.5 YR 5/0) silts sand with little clay 16 17 18

39744.00 Project No.: Date: 2/25/92 BORING NO. LOG OF Client: Harsch Investment Corporation MW-17 Park & Shore Line Drive Location: EXPLORATORY BORING Driller: B&F D. Dastmalchi Logged By: Sheet 2 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Diameter: 8" Casing Installation Data: 5' 0.01 Schedule 40 PVC screen, 20' blank, 6' sand, 1' bentonite, 18' grout (2" casing) Datum: Ground Elevation: Water Level Time A M P L Ð PID Ł SAU Date Group P T Litio-DESCRIPTION Symbol (uses) graphic Symbol OVA Biom (ppm) Count . 19 Gray (2.5 YR 5/0) silty sand, very fine with little clay, sulfur odor 20 21 22 SP 23 24 TD = 25'25 Grav (2.5 YR 5/0) silty clay with little sand CL 26 27 28 29 30 31 32 33 34 35 36

Field Location of Borting: Common Elevation: Datum: Datum: Section Common Common		expl0)	LOG RATO	OF RY I	BORING		Project No.: 39744.00 Date: 2/25/92 BORING NO Client: Harsch Investment Corporation Location: Park & Shore Line Drive Logged By: D. Dastmalchi Driller: B&F Sheet 1 of 2			
10 12 14 15 16 16 16 16 16 16 16			ing:			Datum:	Casing Installation Data: 5' screen, 20' blank, 6' sand, 1' bentonite, 18' grout (2"			
Pro R							Water Level			
Proceedings				5000A A003			Time			
1		P110					Date			
Reddish-sellow (5 YR 66) sand well rounded, poorly sorted, moist 1	200000000000000000000000000000000000000				Symbol	graphic	DESCRIPTION			
3	Count	(binu)	1		(uscs)	Syduxi	Reddish-yellow (5 YR 6/6) sand, well-rounded, poorly sorted, moist			
5			3							
7										
SP SP Grayish (2.5 YR 50) sand with some silt			6			▼				
9 Grayish (2.5 YR 5/0) sand with some silt			7							
10			8		SP					
11			9							
12]				Grayish (2.5 YR 5/0) sand with some silt			
13			1							
Grayish (2.5 YR 5/0) sand with little silt.			_							
16			14							
			15				Grayish (2.5 YR 5/0) sand with little sili.			
	······································	-			The second secon	NAME OF THE PARTY				
18		-	_							

Project No.: 39744.00 Date: 2/25/92 BORING NO. LOG OF Harsch Investment Corporation Client: MW-18 Location: Park & Shore Line Drive EXPLORATORY BORING D. Dastmalchi Driller: B&F Logged By: Sheet 2 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Diameter: 8" Casing Installation Data: 5' screen, 20' blank, 6' sand, 1' bentonite, 18' grout Datum: Ground Elevation: Water Level Time Soll Date PID Group Symbol Litho-P DESCRIPTION graphic Symbol OYA Ŧ Blow Ħ (HESCE) (ppm) Count 19 20 21 SP 22 23 24 25 Gravish green silty clay with little sand CL 26 27 28 29 30 31 32 33 34 35 36

39744.00 Project No.: Date: 2/25/92 BORING NO. LOG OF Harsch Investment Corporation Client: MW-19 Location: Park & Shore Line Drive EXPLORATORY BORING Driller: B&F Logged By: D. Dastmalchi Sheet 1 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Dismeter: 8" Casing Installation Data: 5' 0.01 Schedule 40 PVC screen, 20' blank, 6' sand, 1' bentonite, 18' grout (2" casing) Datum: Ground Elevation: Water Level ---Time ъ PID E Soli Date P Group Litte-DESCRIPTION OVA Blow T Symbol graphic Ħ (BSCS) Count (ppm) Reddish-vellow (5 YR 6/6) sand, well rounded, poorly sorted, moist 1 2 3 4 5 0 6 7 SP 8 9 Gravish (2.5 YR 5/0) sand with very little to no silt. 10 11 12 13 14 15 16 17 18

39744.00 Date: 2/25/92 BORING NO. Project No.: LOG OF Client: Harsch Investment Corporation MW-19 EXPLORATORY BORING Park & Shore Line Drive Location: D. Dastmalchi Driller: B&F Logged By: Sheet 2 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Diameter: 8" Casing Installation Data: 5' 0.01 Schedule 40 PVC screen, 20' blank, 6' sand, 1' Datum: bentonite, 18' grout (2" casing) Ground Elevation: Water Level Time A M Ð PID E Soll Date P Group Lithographic Symbol DESCRIPTION Symbol T OVA Blow Ħ (uscs) (ppm) Count 19 20 21 SP 22 23 24 TD = 25'25 Silty clay with little to no sand CL 26 27 28 29 30 31 32 33 34 35 36

39744.00 Project No.: Date: 2/26/92 BORING NO. LOG OF Client: Harsh Investment Corporation MW-20 Park & Shore Line Drive Location: EXPLORATORY BORING Logged By: D. Dastmalchi Driller: B&F Sheet 1 of 2 Field Location of Boring: Drilling Method: Hollow stem Hole Diameter: 8" Casing Installation Data: 2" casing, 5' screen (0.01 Schedule 40 PVC), 15' blank, 6' Ground Elevation: Datum: sand, 1' bentonite, 18' grout Water Level-Time Ē PM Sall Date Liibo. Group OVA I H graphic Symbol DESCRIPTION Blow Symbol Count (ppm) (uscs) Reddish yellow (5 YR 6/6) sand 1 2 Asphalt and packing material 3 I ight brown sand 5 6 7 8 SP 9 10 Grayish green silty sand with shell fragments 11 12 13 14 15 16 17 18

Date: 2/26/92 39744.00 Project No.: BORING NO. LOG OF Client: Harsch Investment Corporation MW-20 Park & Shore Line Drive Location: EXPLORATORY BORING Driller: B&F D. Dastmalchi Logged By: Sheet 2 of 2 Drilling Method: Hollow stem Field Location of Boring: Hole Diameter: 8" Casing Installation Data: 2" casing, 5' screen (0.01 Schedule 40 PVC), 15' blank, 6' sand, 1' bentonite, 18' grout Datum: Ground Elevation: Water Level Time Sell Date 44 PID Group Symbol (uses) Litho-DESCRIPTION graphic Symbol I H OVA Blow Count E (ppm) 19 20 21 22 23 24 TD = 25'25 Sandy clay to silty clay CL Silty clay 26 27 28 29 30 31 32 33 34 35 36