STELLAR ENVIRONMENTAL SOLUTIONS, INC.
2198 SIXTH STREET, SUITE 201, BERKELEY, CA 94710
TEL: 510.644.3123 ★ FAX: 510.644.3859

|                          | TRANSMITTAL ME                                                                                                                            | EMORANDUM                    |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Env<br>AL/<br>Ser<br>113 | CAL OVERSIGHT PROGRAM VIRONMENTAL HEALTH SERVICE AMEDA COUNTY HEALTH CARE RVICES AGENCY B1 HARBOR BAY PARKWAY AMEDA, CALIFORNIA 94502-657 |                              |
| ATTENTION:               | Mr. Don Hwang                                                                                                                             | FILE: SES 2003-43            |
| SUBJECT:                 | OAKLAND AUTO WORKS<br>240 W. MACARTHUR BLVD<br>OAKLAND, CALIFORNIA                                                                        |                              |
|                          | ACEH FUEL LEAK CASE No. R00000142                                                                                                         |                              |
| WE ARE SEN               | DING: HEREWITH                                                                                                                            | ☐ UNDER SEPARATE COVER       |
|                          | Via Mail                                                                                                                                  | □ Via                        |
| THE FOLLOW               | ING: THIRD QUARTER 2004 G                                                                                                                 | ROUNDWATER MONITORING REPORT |
|                          | ☐ As REQUESTE                                                                                                                             | ED ☐ FOR YOUR APPROVAL       |
|                          | ☐ FOR REVIEW                                                                                                                              | FOR YOUR USE                 |
|                          | □ For signatu                                                                                                                             | FOR YOUR FILES               |
|                          |                                                                                                                                           |                              |
| 0<br>2                   | R. GLEN POY-WING<br>AKLAND AUTO WORKS<br>40 WEST MCARTHUR BLVD.<br>AKLAND, CA 94711                                                       | BY: BRUCE RUCKER             |
|                          |                                                                                                                                           |                              |

# 

October 11, 2004

Mr. Don Hwang Hazardous Materials Specialist Alameda County Environmental Health Department Local Oversight Program 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject:

Third Quarter 2004 Groundwater Monitoring Report

Oakland Auto Works Facility - 240 W. MacArthur Boulevard, Oakland, California

No. 6814 Exp. 9/05

Alameda County Health Department Fuel Leak Case No. RO0000142

Dear Mr. Hwang:

Enclosed is the Stellar Environmental Solutions, Inc. (SES) report summarizing recent activities conducted at the referenced site. This report presents the findings of the Third Quarter 2004 groundwater monitoring event (the 24<sup>th</sup> site groundwater monitoring event since August 1997).

If you have any questions regarding this report, please contact us at (510) 644-3123.

Sincerely,

Bruce M. Rucker, R.G., R.E.A.

Project Manager

Richard S. Makdisi, R.G., R.E.A.

Principal

cc: Mr. Glen Poy-Wing, Property Owner

## THIRD QUARTER 2004 GROUNDWATER MONITORING REPORT

# 240 W. MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

#### Prepared for:

MR. GLEN POY-WING
OAKLAND AUTO WORKS
240 W. MACARTHUR BOULEVARD
OAKLAND, CALIFORNIA 94612

#### Prepared by:

STELLAR ENVIRONMENTAL SOLUTIONS, INC. 2198 SIXTH STREET BERKELEY, CALIFORNIA 94710

October 11, 2004

Project No. 2003-43

## TABLE OF CONTENTS

|      |                          |                                                                                                                               | Page        |
|------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.0  | INTR                     | ODUCTION                                                                                                                      | 1           |
|      | Regul<br>Scope<br>Site D | et Background atory Status of Report escription ical Environmental Activities                                                 | 1<br>2<br>2 |
| 2.0  | PHYS                     | SICAL SETTING                                                                                                                 | 6           |
|      | Lithol                   | graphy and Surface Water Drainageogydwater Hydrology                                                                          | 6           |
| 3.0  | SEPT                     | MEBER 2004 GROUNDWATER MONITORING AND SAMPLING                                                                                | 10          |
| 4.0  |                          | JLATORY CONSIDERATIONS, ANALYTICAL RESULTS FINDINGS                                                                           | 12          |
|      | Groun<br>Groun           | atory Considerationsdwater Sample Analytical Methodsdwater Sample Results                                                     | 15<br>15    |
| 5.0  | SUM                      | MARY, CONCLUSIONS, AND PROPOSED ACTIONS                                                                                       | 22          |
|      |                          | nary and Conclusionssed Actions                                                                                               |             |
| 6.0  | REFE                     | RENCES AND BIBLIOGRAPHY                                                                                                       | 24          |
| 7.0  | LIMIT                    | TATIONS                                                                                                                       | 27          |
| Appe | endices                  |                                                                                                                               |             |
|      | ndix A                   | Current Event Groundwater Monitoring Field Records                                                                            |             |
| ~ ~  | ndix B                   | Current Event Analytical Laboratory Report and Chain-of-Custody Record Historical Groundwater Monitoring Well Analytical Data | d           |

## TABLES AND FIGURES

| Tables   |                                                                                                                                                | Page |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 1  | Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California                        | 11   |
| Table 2  | Groundwater Sample Analytical Results – September 13, 2004 Hydrocarbons, BTEX, and MTBE 240 W. MacArthur Boulevard, Oakland, California        | 13   |
| Table 3  | Groundwater Sample Analytical Results – September 13, 2004 Lead Scavengers and Fuel Oxygenates 240 W. MacArthur Boulevard, Oakland, California | 14   |
| Figures  |                                                                                                                                                | Page |
| Figure 1 | Site Location Map                                                                                                                              | 3    |
| Figure 2 | Site Plan                                                                                                                                      | 4    |
| Figure 3 | Groundwater Elevation Map – September 13, 2004                                                                                                 | 8    |
| Figure 4 | Gasoline Isoconcentration Contours – September 2004                                                                                            | 16   |
| Figure 5 | Diesel Isoconcentration Contours – September 2004                                                                                              | 18   |
| Figure 6 | Benzene Isoconcentration Contours – September 2004                                                                                             | 19   |
| Figure 7 | MTBE Isoconcentration Contours – September 2004                                                                                                | 20   |

## 1.0 INTRODUCTION

#### PROJECT BACKGROUND

The subject property, located at 240 W. MacArthur Boulevard, Oakland, Alameda County, California, is owned by Glen Poy-Wing and his wife of Oakland Auto Works, for whom Stellar Environmental Solutions, Inc. (SES) has provided environmental consulting services since July 2003. The site has undergone contaminant investigations and remediation since 1991 (discussed below). A list of all known environmental reports is included in Section 6.0, References and Bibliography. This report presents finding for the 24<sup>th</sup> site groundwater monitoring event since monitoring began in August 1997.

In 2002, the current property owners purchased the property and assumed responsibility for continued environmental investigations. The property was formerly owned by Mr. Warren Dodson (Dodson Ltd.) and operated as Vogue Tyres.

#### **REGULATORY STATUS**

The Alameda County Environmental Health Department (Alameda County Health) is the lead regulatory agency for the case, acting as a Local Oversight Program (LOP) for the Regional Water Quality Control Board – San Francisco Bay Region (RWQCB). There are no Alameda County Health or RWQCB cleanup orders for the site; however, all site work has been conducted under oversight of Alameda County Health. In our August 2003 review of the Alameda County Health case file, we determined that all known technical reports for the site were included in that file.

The previous consultant requested site closure in March 2003 (AEC, 2003a). Alameda County Health denied that request and, in a letter dated April 16, 2003, requested additional site characterization prior to considering case closure. That work was subsequently conducted by SES, and was summarized in our April 2004 Soil and Groundwater Investigation Report (SES, 2004c). Alameda County Health has not yet responded to that report.

The site is in compliance with State of California "GeoTracker" requirements. Tasks conducted include: uploading field point (well) names; surveying groundwater monitoring well horizontal and vertical coordinates, and uploading that data; and uploading groundwater monitoring

analytical data from groundwater monitoring events conducted by SES (beginning in August 2003.

The site has been granted a Letter of Commitment (and has been receiving financial reimbursement) from the California Underground Storage Tank Cleanup Fund.

#### SCOPE OF REPORT

This report discusses the following activities, conducted between July 1 and September 30, 2004:

■ 24<sup>th</sup> groundwater monitoring and sampling event, September 13, 2004.

#### SITE DESCRIPTION

The project site is located at 240 W. MacArthur Boulevard in Oakland, California (see Figure 1). The rectangular-shaped project site is approximately 14,000 square feet (140 feet long by 100 feet wide), and is oriented with its long axis parallel to W. MacArthur Boulevard (approximately northwest-southeast). The project site is essentially flat and is wholly paved. One structure currently exists on the property—an automobile servicing shop that covers approximately 50 percent of the property. The building is currently occupied by Oakland Auto Works. Figure 2 is a site plan showing adjacent land uses.

Adjacent land use includes: a Shell-branded service station (to the south); W. MacArthur Boulevard (to the west); Howe Street (to the north); and a paved driveway, then a multi-story (with basement) health services building (to the east).

#### HISTORICAL ENVIRONMENTAL ACTIVITIES

This section summarizes historical (prior to the current quarter) environmental remediation and site characterization activities, based on documentation provided by the current property owners as well as Alameda County Health files. Figure 2 shows the site plan with the current groundwater well and former underground fuel storage tanks (UFSTs) locations.

Historical remediation and site characterization activities include:

- Pre-1991. Three 10,000-gallon gasoline UFSTs from a former Gulf service station occupancy were removed prior to 1991 (there is no available documentation regarding their removals).
- 1991. A waste oil sump was removed. Limited overexcavation was conducted, and there was no evidence of residual soil contamination, with the exception of 360 mg/kg of petroleum oil & grease (Mittelhauser Corporation, 1991b).



Oakland, CA

Geoscience & Engineering Consulting



- 1996. A 350-gallon waste oil UST was removed. Elevated levels of diesel and oil & grease were detected in confirmation soil samples. Subsequent overexcavation was conducted, and there was no evidence of residual soil contamination (All Environmental, Inc., 1997a).
- January 1997. In accordance with a request by Alameda County Health, a subsurface investigation was conducted (All Environmental, Inc., 1997b). Six exploratory boreholes were advanced to a maximum depth of 20 feet, and soil samples were collected.
- August 1997. Additional site characterization was conducted, which included sampling three boreholes, installing four groundwater monitoring wells, and conducting the initial groundwater sampling event.
- February 2001. Four additional groundwater monitoring wells were installed. Maximum historical soil concentrations were detected in well MW-5 in the northeastern corner of the subject property: 11,700 mg/kg gasoline and 25.6 mg/kg benzene (AEC, 2001b).
- October 2001. Short-term (less than 1-day duration) groundwater and vapor extraction from five wells was conducted over 4 days (AEC, 2001e) (referred to by that consultant as "Hi-Vac" process).
- 2003. A sensitive receptor and vicinity water well survey was conducted.
- April 2004. Additional site characterization was conducted, including: advancing and sampling 12 exploratory boreholes; analyzing 64 soil and 12 grab-groundwater sample results; and further evaluating site hydrogeology and contaminant extent and magnitude.

To date, a total of 24 groundwater monitoring events have been conducted at the site.

### 2.0 PHYSICAL SETTING

The following evaluation of the physical setting of the site—including topography, surface water drainage, and geologic and hydrogeologic conditions—is based on previous (1991 through April 2003) site investigations conducted by others, and site inspections and groundwater monitoring data collected by SES since 2003.

#### TOPOGRAPHY AND SURFACE WATER DRAINAGE

The site is on a gently-sloping alluvial fan at the base of the Berkeley/Oakland Hills, which rise approximately 1,100 feet above mean sea level (amsl) and are located approximately 3 miles east of San Francisco Bay. The mean elevation of the subject property is approximately 82 feet amsl. The subject property is essentially flat, with a local topographic gradient to the west. The nearest surface water bodies are: 1) Glen Echo Creek, a northeast-southwest trending creek located approximately 800 feet southeast of the subject property; and 2) Rockridge Branch, a north-south trending creek located approximately 1,000 feet northwest of the subject property. Both creeks are culverted underground in the areas nearest to the subject property.

#### LITHOLOGY

A previous SES report included geologic cross-sections through the area of historical investigations (SES, 2004c). The following summarizes site lithologic conditions.

The unsaturated zone (from ground surface to approximately 20 feet below ground surface [bgs]) consists of interbedded silty/sandy clays with silty/clayey sand, with occasional gravelly zones. In the sand zones, clay and/or silt content is high, and the sand is generally very fine- to fine-grained—such that the unit is, in essence, gradational between a clayey sand and a sandy clay. The most laterally-extensive unsaturated zone unit is a sandy clay encountered between ground surface and approximately 15 feet, locally pinching out and displaying lenticular form. Locally, this unit is interbedded with a sandy clay. The sediment types and geometry are suggestive of channel deposits, which is a common depositional facies in this area.

Depth to groundwater in all onsite April 2004 boreholes was approximately 20 to 21 feet bgs, predominantly in a saturated, loose, clayey sand. The saturated portion of this clayey sand constitutes the bottom of the unit; the saturated zone is approximately 0.5 to 2.5 feet thick, underlain in all boreholes by a cohesive, non-water-bearing clay. The top of this clay was consistently at a depth between approximately 21 and 23 feet. Of the 12 boreholes, 9 were

advanced at least 1.5 feet into this clay before terminating (and not encountering visible moisture or sand). One of the boreholes was advanced deeper, documenting a thickness of at least 4.5 feet. The lithologic data (supported by soil sample analytical data) strongly suggest that this clay unit inhibits downward migration of groundwater contamination.

The site lithology is consistent with that documented at the adjacent Shell service station site. Specifically, those boreholes have documented the thin upper, water-bearing zone underlain by the likely non-water-bearing clay unit. In three of the four Shell well boreholes, that clay unit was at least 2 feet thick. In one of the well boreholes, the clay unit was underlain by a saturated clayey sand unit (from approximately 22 to 25.5 feet bgs, which was underlain by a non-waterbearing clay). There are insufficient data to conclude whether the second deepest saturated clayey sand is connected to the more shallow sitewide saturated zone. The subsequent (March 2004) Shell boreholes SB-1 and SB-2 (between the Shell wells and the subject property) all terminated at 20 feet bgs, which was too shallow to encounter the underlying clay unit.

#### GROUNDWATER HYDROLOGY

The number and positioning of the existing eight site monitoring wells is currently adequate to evaluate the general groundwater flow direction and gradient. Four of the wells (MW-1, MW-2, MW-3, and MW-4) are screened between approximately 25 and 15 feet bgs, and the other four (MW-5, MW-6, MW-7, and MW -8) are screened at a depth of 10 to 20 feet.

Following the September 26, 2003 well surveying, SES evaluated groundwater flow direction of events (from October 2001 to March 2003), finding groundwater flow to be generally westward, with a slight northern component in some events. Figure 4 is a groundwater elevation map that shows elevations and contours from the current (September 2004) groundwater monitoring event. Groundwater flow direction in this event was to the west. A generally westward (with a slight southern component) groundwater flow direction has also been measured at the adjacent Shell-branded service station (Cambria Environmental Technology, 2004). Subject property groundwater gradient in the September 2004 event was relatively flat, at approximately 0.005 feet/foot. Historical groundwater gradient has varied between approximately 0.002 feet/foot and 0.008 feet/foot, averaging approximately 0.005 feet/foot.

Figure 3 includes a rose diagram that shows historical groundwater flow direction measured at the site. The rose diagram is a histogram that has been wrapped around a circle and has the following characteristics:

- Each wedge represents a 15-degree arc of groundwater flow direction.
- The length of each wedge (circle radius) represents the number of sampling events with data falling within the 15-degree arc.



- The bold black line from the center of the circle to the outer edge is the mean groundwater flow direction.
- The arcs extending to either side of the mean groundwater flow direction line represent the 95-degree confidence interval of the data.

Historical equilibrated water levels (in wells) have been measured at depths of approximately 13 to 16 feet (slightly higher than first occurrence of groundwater encountered during drilling), indicating that groundwater occurs under slightly confining conditions. The range of water level elevations has varied by approximately 3 feet, and shows a strong seasonal variation, with highest elevations during the rainy winter-spring seasons and lowest elevations during the dry summer-fall seasons.

## 3.0 SEPTMEBER 2004 GROUNDWATER MONITORING AND SAMPLING

This section presents the groundwater sampling and analytical methods for the current event (Third Quarter 2004), conducted on September 13, 2004. Table 1 summarizes monitoring well construction and groundwater monitoring data. Groundwater analytical results are presented and discussed in Section 5.0. Monitoring and sampling protocols were in accordance with the SES technical workplan (SES, 2003) submitted to Alameda County Health, and subsequent technical revision requested by Alameda County Health. The September 2004 groundwater sampling event involved the collection of one set of "post-purge" samples from all wells, in accordance with recent revisions to the quarterly monitoring program approved by Alameda County Health. Specific activities for this event included:

- Measuring static water levels and field measurement of "pre-purge" groundwater samples for hydrogeochemical parameters (temperature, pH, electrical conductivity, turbidity, and dissolved oxygen) in the eight site wells;
- Collecting "post-purge" groundwater samples from the eight onsite wells for field measurement of the aforementioned hydrogeochemical parameters, and for offsite laboratory analyses for contaminants of concern.

The locations of all site monitoring wells are shown on Figure 2. Well construction information and water level data are summarized in Table 1. All site wells are 2-inch-diameter PVC, although the borehole geologic logs for MW-1 through MW-4 completed by the previous consultant mistakenly indicated that they are 4-inch-diameter. Appendix A contains the groundwater monitoring field records for the current event.

Groundwater monitoring well water level measurements, sampling, and field analyses were conducted by Blaine Tech Services (San Jose, California) on September 13, 2004, under the direct supervision of SES personnel. To minimize the potential for cross-contamination, wells were purged and sampled in order of increasing contamination (based on the previous quarter analytical results).

As the first monitoring task, static water levels were measured in the eight site wells using an electric water level indicator. Grab-groundwater samples were then collected from each well

Table 1
Groundwater Monitoring Well Construction and Groundwater Elevation Data 240 W. MacArthur Boulevard, Oakland, California

|      |                          | Well Screen     | ed Interval         | Groundwater                                      | Groundwater Elevation (b) September 13, 2004 |  |
|------|--------------------------|-----------------|---------------------|--------------------------------------------------|----------------------------------------------|--|
| Well | Well Depth<br>(feet bgs) | Depth<br>(feet) | Elevation<br>(feet) | Level Depth <sup>(a)</sup><br>September 13, 2004 |                                              |  |
| MW-1 | 25                       | 19.5 to 24.5    | 54.5 to 49.5        | 17.03                                            | 62.12                                        |  |
| MW-2 | 25                       | 14.5 to 24.5    | 64.2 to 54.2        | 16.48                                            | 61.97                                        |  |
| MW-3 | 25                       | 14.5 to 24.5    | 63.4 to 53.4        | 15.61                                            | 61.97                                        |  |
| MW-4 | 25                       | 14.5 to 24.5    | 63.6 to 53.6        | 15.17                                            | 62.57                                        |  |
| MW-5 | 20                       | 9 to 19         | 70.6 to 60.6        | 17.07                                            | 62.29                                        |  |
| MW-6 | 20                       | 9 to 19         | 69.7 to 59.7        | 16.13                                            | 62.3                                         |  |
| MW-7 | 20                       | 9 to 19         | 69.6 to 59.6        | 16.33                                            | 61.94                                        |  |
| MW-8 | 20                       | 9 to 19         | 67.7 to 57.7        | 14.43                                            | 61.96                                        |  |

#### Notes:

(using a new disposable bailer) and field-analyzed for aquifer stability parameters—including temperature, pH, electrical conductivity, turbidity, and dissolved oxygen.

Each well was then purged (by hand bailing with a new disposable bailer) of three wetted casing volumes, and aquifer stability parameters (pH, temperature, electrical conductivity, and turbidity) were measured between each purging. When measurements indicated that representative formation water was entering the well, a groundwater sample set was collected from each well with the purging bailer. These samples were field-measured for pH, temperature, electrical conductivity, turbidity, and dissolved oxygen. Samples were then transferred to appropriate sampling containers (40-ml VOA vials with hydrochloric acid preservative, and 1-liter amber glass jars), labeled, and placed in coolers with "blue ice." All groundwater samples were managed under chain-of-custody procedures from the time of sample collection until samples were received in the laboratory.

Wastewater (purge water and equipment decontamination rinseate) was containerized in a labeled, 55-gallon steel drum that will be temporarily stored on site. This non-hazardous water will continue to be accumulated onsite until it is cost-effective to coordinate its disposal, at which time it will be profiled and disposed of at a permitted wastewater treatment facility.

<sup>(</sup>a) Pre-purge measurement, feet below top of well casing.

<sup>(</sup>b) Pre-purge measurement, feet above mean sea level.

### 4.0 REGULATORY CONSIDERATIONS, ANALYTICAL RESULTS AND FINDINGS

This section presents analytical results of the most recent monitoring event, preceded by a summary of relevant regulatory considerations. Tables 2 and 3 summarize the contaminant analytical results of the current monitoring event. Appendix B contains the certified analytical laboratory report and chain-of-custody record. Appendix C contains historical site groundwater monitoring well analytical data.

#### REGULATORY CONSIDERATIONS

#### **Environmental Screening Levels**

There are no published cleanup goals for detected site contaminants in groundwater. The RWQCB has published "Environmental Screening Levels" (ESLs), which are screening-level concentrations for soil and groundwater that incorporate both environmental and human health risk considerations, and are used as a preliminary guide in determining whether additional remediation and/or investigation are warranted. The ESLs are not cleanup criteria; rather, they are conservative screening-level criteria designed to be protective of both drinking water resources and aquatic environments in general. The groundwater ESLs are composed of one or more components, including ceiling value, human toxicity, indoor air impacts, and aquatic life protection. Exceedance of ESLs suggests that additional remediation and/or investigation may be warranted, such as monitoring plume stability to demonstrate no risk to sensitive receptors in the case of sites where drinking water is not threatened.

The City of Oakland, via its Urban Land Redevelopment (URL) Program, utilizes a similar ESL approach in evaluating whether active remediation is necessary at sites proposed for redevelopment. This program is not currently applicable to the site, as no redevelopment is proposed.

For all site contaminants with published drinking water standards (BTEX and MTBE), the drinking water standards are equal to or greater than the published ESLs.

#### **Sensitive Receptors**

Risk evaluation commonly includes the identification of sensitive receptors, including vicinity groundwater supply wells. As discussed in a previous report (SES, 2004c), the California

Table 2
Groundwater Sample Analytical Results – September 13, 2004
Hydrocarbons, BTEX, and MTBE <sup>(a)</sup>
240 W. MacArthur Boulevard, Oakland, California

| Well                                     | TVHg           | TEHd  | Benzene            | Toluene | Ethyl-<br>benzene | Total<br>Xylenes | мтве  |  |  |  |
|------------------------------------------|----------------|-------|--------------------|---------|-------------------|------------------|-------|--|--|--|
| MW-1                                     | 9,100          | 97    | 920                | 19      | 82                | 201              | 7.2   |  |  |  |
| MW-2                                     | 1,500          | 280   | 14                 | < 0.5   | < 0.5             | 0.6              | 130   |  |  |  |
| MW-3                                     | 5,400          | 1,500 | 70                 | 3.2     | 16                | 12.7             | 110   |  |  |  |
| MW-4                                     | < 50           | NA.   | < 0.5              | < 0.5   | < 0.5             | < 0.5            | 2.3   |  |  |  |
| MW-5                                     | 13,000         | 1,900 | 580                | 240     | 260               | 1,260            | < 4.2 |  |  |  |
| MW-6                                     | 350            | 600   | < 0.5              | 2.4     | < 0.5             | < 0.5            | < 0.5 |  |  |  |
| MW-7                                     | < 50           | NA.   | < 0.5              | < 0.5   | < 0.5             | < 0.5            | < 0.5 |  |  |  |
| MW-8                                     | 280            | 2,600 | < 0.5              | < 0.5   | < 0.5             | < 0.5            | 120   |  |  |  |
| RWQCB Environmental Screening Levels (b) |                |       |                    |         |                   |                  |       |  |  |  |
|                                          | NLP            | NLP   | 1.0                | 40      | 30                | 20               | 5.0   |  |  |  |
| Drinking Wa                              | ater Standards | (c)   |                    |         |                   |                  |       |  |  |  |
|                                          | 100            | 100   | 1.0 <sup>(d)</sup> | 40      | 30                | 13               | 5.0   |  |  |  |

#### Notes:

MTBE = Methyl tertiary-butyl ether

TEHd = Total extractable hydrocarbons - diesel range

TVHg = Total volatile hydrocarbons - gasoline range

NA = Not analyzed for this contaminant.

NLP = No level published.

Department of Water Resources identified only one groundwater supply well within 1,500 feet of the site. Based on its distance and upgradient location relative to the site, there is no reasonable potential for this well to intercept shallow groundwater emanating from the subject property.

As specified in the RWQCB's San Francisco Bay Region Water Quality Control Plan, all groundwaters are considered potential sources of drinking water unless otherwise approved by the RWQCB, and are assumed to ultimately discharge to a surface water body and potentially impact aquatic organisms. In the case of groundwater contamination, ESLs are published for

<sup>(</sup>a) All concentrations in micrograms per liter (µg/L), equivalent to parts per billion (ppb).

<sup>(</sup>b) For commercial/industrial sites where a known or potential drinking water resource is threatened.

<sup>(</sup>c) Drinking water standards are State of California Secondary Maximum Contaminant Levels (MCLs) - Proposed, unless specified otherwise.

<sup>(</sup>d) State of California Primary MCL.

Table 3
Groundwater Sample Analytical Results – September 13, 2004
Lead Scavengers and Fuel Oxygenates <sup>(a)</sup>
240 W. MacArthur Boulevard, Oakland, California

| Well             | EDC                      | EDB               | TBA   | DIPE  |
|------------------|--------------------------|-------------------|-------|-------|
| MW-1             | < 5.0                    | < 5.0             | 120   | < 5.0 |
| MW-2             | 1.2                      | < 0.5             | 130   | 0.9   |
| MW-3             | < 0.5                    | < 0.5             | 82    | 1.5   |
| MW-4             | < 0.5                    | < 0.5             | < 10  | < 0.5 |
| MW-5             | 18                       | < 4.2             | 87    | < 4.2 |
| MW-6             | 31                       | < 0.5             | 43    | 1.0   |
| MW-7             | < 0.5                    | < 0.5             | < 10  | < 0.5 |
| MW-8             | < 1.0                    | < 1.0             | 96    | 1.1   |
| Drinking Water S | Standards <sup>(b)</sup> |                   | ····· |       |
|                  | NLP                      | NLP               | NLP   | NLP   |
| RWQCB Enviror    | nmental Screening Leve   | ls <sup>(c)</sup> |       |       |
|                  | 0.5                      | 0.05              | 12    | NLP   |

#### Notes:

(a) All concentrations in micrograms per liter (µg/L), equivalent to parts per billion (ppb).

(b) Drinking water standards are State of California Secondary Maximum Contaminant Levels (MCLs) - Proposed, unless specified otherwise.

(e) For commercial/industrial sites where known/potential drinking water resource is threatened.

DIPE – Isopropyl Ether.

EDB = Ethylene dibromide (1,2-dibromoethane).

EDC = Ethylene dichloride (1,2-dichloroethane).

TBA = tertiary-Butyl alcohol.

NLP = No level published.

Table includes only detected fuel oxygenates. Appendix C contains the full list of analytical compounds.

two scenarios: groundwater is a source of drinking water, and groundwater is not a source of drinking water. Qualifying for the higher ESLs (applicable to groundwater is not a source of drinking water) requires meeting one of the following two criteria:

1. The RWQCB has completed the "East Bay Plain Groundwater Basin Beneficial Use Evaluation Report" (RWQCB, 1999) that delineates three types of areas with regard to beneficial uses of groundwater: Zone A (significant drinking water resource), Zone B (groundwater unlikely to be used as drinking water resource), and Zone C (shallow groundwater proposed for designation as Municipal Supply Beneficial Use). The subject site falls within Zone A.

2. A site-specific exemption can be obtained from the RWQCB. Such an exemption has not been obtained for this site.

As discussed below, multiple groundwater contaminants have been detected in excess of ESLs, for both groundwater beneficial scenarios (groundwater *is* versus *is not* a potential drinking water resource). These data indicate that continued site characterization is warranted until it can be demonstrated that site-sourced contamination poses no unacceptable risk to sensitive receptors. Our subsequent discussion of groundwater contamination is in the context of the ESL criteria for sites where groundwater *is* a potential drinking water resource.

#### GROUNDWATER SAMPLE ANALYTICAL METHODS

Groundwater samples were analyzed in accordance with the methods proposed in the SES technical workplan. Analytical methods included:

- Total volatile hydrocarbons gasoline range (TVHg), by EPA Method 8015B (all wells);
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl *tertiary*-butyl ether (MTBE), by EPA Method 8260B;
- The lead scavengers 1,2-dichloroethane (EDC) and 1,2-dibromoethane (EDB), by EPA Method 8260B (wells MW-1, MW-5, and MW-6—the only wells with detectable concentrations in the previous monitoring event);
- Total extractable hydrocarbons diesel range (TEHd), by EPA Method 8015M (all wells except MW-4 and MW-7, which historically have never detected diesel); and
- Fuel oxygenates by EPA Method 8260B.

#### GROUNDWATER SAMPLE RESULTS

#### **Gasoline and Diesel**

Figure 4 shows gasoline isoconcentration contours for the recent event. Gasoline was detected in all site wells except MW-4 and MW-7, with concentrations between 280  $\mu$ g/L (well MW-8) and 13,000  $\mu$ g/L (well MW-5). All of the gasoline concentrations exceeded the 100- $\mu$ g/L ESL criterion. The gasoline plume extends to the south along the Howe Street side of the property, and to the east (toward well MW-4). To the south, the plume extends somewhat offsite into W. MacArthur Boulevard. Well MW-5, at the northern corner of the site, near the original source area, had the highest gasoline concentration, as it has historically. The gasoline plume extends offsite to the north (beneath Howe Street).



Figure 5 shows diesel isoconcentration contours for the recent event. Diesel was detected in all six of the wells analyzed for diesel, but is of secondary concern relative to gasoline, with concentrations historically at significantly lesser levels than gasoline. Diesel concentrations ranged from 97  $\mu$ g/L (well MW-1) to 5,400  $\mu$ g/L (well MW-8), with all concentrations except MW-1 exceeding the 100  $\mu$ g/L ESL criterion. The center of mass of the diesel plume appears to have migrated downgradient from the source area to well MW-3. The diesel plume footprint is similar to that of the gasoline plume. Diesel is present offsite under Howe Street (to the north) and under W. MacArthur Boulevard (to the west).

#### Benzene, Toluene, Ethylbenzene, and Total Xylenes

Benzene was detected in four of the eight site wells, at concentrations ranging from  $14 \mu g/L$  to  $920 \mu g/L$ . Figure 6 shows benzene isoconcentration contours for the recent event. Maximum benzene concentrations were detected in wells MW-1 and MW-5, as historically has been the case. The lateral extent of the benzene plume is constrained to the east. Current event well data and April 2004 borehole grab-groundwater data indicate that benzene extends across Howe Street to the north (approximately 1 to  $3 \mu g/L$ ), and under W. MacArthur Boulevard to the west and south (up to  $73 \mu g/L$ ). The benzene plume configuration is generally the same as for gasoline and diesel.

Toluene, ethylbenzene, and xylenes were detected in generally the same wells in which benzene was detected, and contaminant concentrations exceeded respective ESL criteria in several of the wells.

#### Methyl tertiary-Butyl Ether

Figure 7 shows MTBE isoconcentration contours for the recent event. MTBE was detected in five of the eight site wells, at concentrations ranging from 2.3  $\mu$ g/L to 130  $\mu$ g/L. MTBE concentrations above 100  $\mu$ g/L were present in wells MW-2, MW-3, and MW-8. The lateral extent of the MTBE plume is constrained onsite in all directions except to the south, where MTBE concentrations above 100  $\mu$ g/L extends into W. MacArthur Boulevard. The center of mass of the MTBE plume has migrated downgradient from the source area to the southern side of the property (adjacent to W. MacArthur Boulevard).

As discussed in a previous report (SES, 2004c), MTBE appears to be migrating onto the subject property from the adjacent (to the east) Shell-branded service station. This contamination, however, is unrelated to the separate site-sourced MTBE contamination.







#### **Lead Scavengers and Fuel Oxygenates**

In its May 3, 2004 letter, Alameda County Health requested that two lead scavengers (EDB and EDC) be analyzed in selected wells (MW-1, MW-5, and MW-6). In the current event, all wells were sampled for both analytes. EDC was detected in three of the site wells, at concentrations between 1.2  $\mu$ g/L (MW-2) and 31  $\mu$ g/L (MW-6), all in excess of the 0.5- $\mu$ g/L ESL criterion. EDB was not detected in any of the wells.

The Alameda County Health letter stipulated that all groundwater samples from the June 2004 event be analyzed for fuel oxygenates, and that analysis for fuel oxygenates be continued in wells with detections. Only two fuel oxygenates have been detected: TBA and DIPE. In the current event, TBA was detected in six of the eight site wells, at a maximum concentration of  $130 \mu g/L$ . DIPE was detected in four of the eight site wells, at a maximum concentration of  $1.5 \mu g/L$ . The only wells without detected fuel oxygenates were MW-4 and MW-7.

#### Summary

Maximum concentrations of gasoline and benzene were detected in wells MW-5 or MW-1, located in the northeastern corner of the property (near the former UFSTs). Maximum concentrations of diesel and MTBE were detected in downgradient wells (adjacent to W. MacArthur Boulevard), indicating that the center of mass of these contaminants has migrated downgradient. Groundwater contamination extends offsite to the south and west (into Howe Street and W. MacArthur Boulevard).

#### QUALITY CONTROL SAMPLE ANALYTICAL RESULTS

Laboratory QC samples (e.g., method blanks, matrix spikes, surrogate spikes, etc.) were analyzed by the laboratory in accordance with requirements of each analytical method. All laboratory QC sample results and sample holding times were within the acceptance limits of the methods (Appendix C).

## 5.0 SUMMARY, CONCLUSIONS, AND PROPOSED ACTIONS

#### SUMMARY AND CONCLUSIONS

- The site has undergone site investigations and remediation since 1991 (SES has been involved since August 2003) to address soil and groundwater contamination resulting from leaking UFSTs that were reportedly removed. Alameda County Health is the lead regulatory agency.
- A total of 24 groundwater monitoring/sampling events have been conducted in the eight site wells between August 1997 and September 2004 (the most recent event).
- Additional site characterization (exploratory borehole drilling and sampling) in 2004 provided additional data on the extent and magnitude of residual soil and groundwater contamination.
- Groundwater at the site appears to be slightly confined, with a flow direction ranging between northwest and west, with a relatively flat hydraulic gradient averaging approximately 0.005 ft/ft.
- The primary site chemicals of concern, with regard to concentrations and risk issues, are gasoline, benzene, and MTBE. Diesel, aromatic hydrocarbons, lead scavengers, and fuel oxygenates are present at lesser concentrations and over a smaller area.
- As stipulated by Alameda County Health, analysis for lead scavengers will continue to be conducted in wells MW-1, MW-5, and MW-6. Fuel oxygenates were detected in those wells, and in MW-2, MW-3, and MW-8. Because lead scavengers and fuel oxygenates are analyzed by the same method at no additional cost, the responsible party has elected to continue analysis for lead scavengers and fuel oxygenates lead scavengers in all wells except MW-4 and MW-7.
- The greatest concentrations of gasoline and benzene in groundwater are located in the northern corner of the site (near the source area). Maximum groundwater contamination by diesel and MTBE was detected in the downgradient portion of the property, indicating that the center of mass of these contaminants has migrated downgradient. Groundwater contamination above ESL criteria extends offsite (likely a limited distance) beneath Howe Street and W. MacArthur Boulevard.
- A previous water well survey identified no vicinity water wells with the potential to intercept site-sourced groundwater contamination.

- Potential preferential pathways identified include deep sanitary sewer lines beneath Howe Street and W. MacArthur Boulevard (adjacent to the subject property). Based on the detection of gasoline and MTBE in well MW-7 (beyond the Howe Street deep utilities), it appears unlikely that the Howe Street deep utilities are acting as a preferential pathway for site-sourced groundwater contamination. The influence of deep utilities beneath W. MacArthur Boulevard is not known.
- The adjacent Shell service station is contributing minor MTBE groundwater contamination to the eastern corner of the subject property. This contamination is unrelated to the separate, site-sourced MTBE groundwater contamination in the northern and western portions of the subject property.
- Sufficient site characterization has been conducted to evaluate the risks associated with residual soil contamination, and to evaluate corrective action options. Alameda County Health has not yet indicated if residual contamination risks warrant conducting corrective action (active remediation) and/or additional investigation.
- The data indicate that, if corrective action is not conducted, residual site contamination will remain at elevated levels for at least several years and likely longer.
- If corrective action is deemed warranted, the appropriate next step would be to evaluate corrective action options and determine the most feasible method. The findings should be submitted to Alameda County Health for its evaluation. Implementation of additional work should be conducted following Alameda County Health directives.

#### PROPOSED ACTIONS

The property owner proposes to implement the following action to address regulatory concerns:

- Continue the program of quarterly groundwater sampling and reporting, with the objectives of obtaining site closure and continuing reimbursement requests under the State of California Petroleum UST Cleanup Fund.
- Continue the modified quarterly groundwater monitoring program to include analysis for fuel oxygenates and lead scavengers in all wells except MW-4 and MW-7.
- Continue to upload Electronic Data Format analytical and water level results to the California GeoTracker database.
- Follow up with Alameda County Health on its review of the previous Soil and Groundwater Investigation Report and this quarterly report, specifically with regard to whether corrective action and/or additional site characterization, beyond continued groundwater monitoring, will be required.

### 6.0 REFERENCES AND BIBLIOGRAPHY

- Advanced Environmental Concepts, Inc. (AEC), 2003a. 1<sup>st</sup> Quarter Groundwater Sampling Report (2003) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. March 7.
- AEC, 2003b. 2<sup>nd</sup> Quarter Groundwater Sampling Report (2003) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 30.
- AEC, 2002a. December 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 30.
- AEC, 2002b. March 2002 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 19.
- AEC, 2002c. 2<sup>nd</sup> Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. July 17.
- AEC, 2002d. 4<sup>th</sup> Quarter Groundwater Sampling Report (2002) Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 11.
- AEC, 2001a. December 2000 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January.
- AEC, 2001b. Additional Soil and Groundwater Assessment 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. March.
- AEC, 2001c. May 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. May 27.
- AEC, 2001d. July 2001 Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 31.
- AEC, 2001e. Summary "Hi-Vac" Workplan Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. September 11.

- AEC, 2001f. October 2001 Quarterly Groundwater Sampling and Summary "Hi-Vac" Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California.

  December 15.
- AEC, 2000a. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 11.
- AEC, 2000b. Additional Groundwater Assessment Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, County of Alameda, California. October.
- AEC, 1999. Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. January 22.
- AEC, 1998a. Second Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. April 2.
- AEC, 1998b. Request for Site Closure Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June 29.
- AEC, 1998c. Third Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August 2.
- AEC, 1998d. Fourth Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. November 6.
- AEC, 1997a. Subsurface Soil and Groundwater Investigation Workplan for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. June.
- AEC, 1997b. Continuing Soil and Groundwater Assessment for Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. August.
- AEC, 1997c. First Quarterly Groundwater Sampling Report Former Vogue Tyres Facility 240 W. MacArthur Boulevard, Oakland, California. December 21.
- All Environmental, Inc., 1997a. Underground Storage Tank Removal and Excavation, Transport and Disposal of Contaminated Soil Report 240 W. MacArthur Boulevard, Oakland, California. January 3.
- All Environmental, Inc., 1997b. Phase II Subsurface Investigation Report 240 W. MacArthur Boulevard, Oakland, California. February 14.

- All Environmental, Inc., 1997c. Soil and Groundwater Investigation Workplan 240 W. MacArthur Boulevard, Oakland, California. April 15.
- Cambria Environmental Technology, Inc., 2004. Second Quarter 2004 Monitoring Report, Shell-branded Service Station, 230 W. MacArthur Boulevard, Oakland, California. July 29.
- Guidici, 2003. Supervisor, City of Oakland Public Works Department Sewer Maintenance. Personal communication to Joe Dinan of SES. September 8.
- Mittelhauser Corporation, 1991a. Magnetic Survey for Underground Utilities and Recommendations at 240 W. MacArthur Boulevard, Oakland, California. February 21.
- Mittelhauser Corporation, 1991b. Sump Removal and Waste Oil Cleanup at 240 W. MacArthur Boulevard, Oakland, California. April 9.
- Regional Water Quality Control Board, 2003. Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final July 2003).
- Stellar Environmental Solutions, Inc. (SES), 2004a. Fourth Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. January 12.
- SES, 2004b. First Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. April 12.
- SES, 2004c. Soil and Groundwater Investigation Report, 240 W. MacArthur Boulevard, Oakland, California. June 8.
- SES, 2004d. Second Quarter 2004 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. July 12.
- SES, 2003a. Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. August 20.
- SES, 2003b. Third Quarter 2003 Groundwater Monitoring Report, 240 W. MacArthur Boulevard, Oakland, California. September 5.
- SES, 2003c. Amended Workplan for Additional Site Characterization, 240 W. MacArthur Boulevard, Oakland, California. December 10.

#### 7.0 LIMITATIONS

This report has been prepared for the exclusive use of the current property owners (Mr. and Mrs. Glen Poy-Wing, d.b.a. Oakland Auto Works) their representatives, and the regulators. No reliance on this report shall be made by anyone other than those for whom it was prepared.

The findings and conclusions presented in this report are based on the review of previous investigators' findings at the site, as well as site activities conducted by SES since August 2003. This report provides neither a certification nor guarantee that the property is free of hazardous substance contamination. This report has been prepared in accordance with generally accepted methodologies and standards of practice of the area. The SES personnel who performed this limited remedial investigation are qualified to perform such investigations and have accurately reported the information available, but cannot attest to the validity of that information. No warranty, expressed or implied, is made as to the findings, conclusions, and recommendations included in the report.

The findings of this report are valid as of the present. Site conditions may change with the passage of time, natural processes, or human intervention, which can invalidate the findings and conclusions presented in this report. As such, this report should be considered a reflection of the current site conditions as based on the investigation and remediation completed.

| WELL GAUGING DATA | WELL | GAT | IGNIG | DATA |
|-------------------|------|-----|-------|------|
|-------------------|------|-----|-------|------|

| Project#_ | 040913-MDY Date_ | 9/ | 13/00/ Client | Stellar | - |
|-----------|------------------|----|---------------|---------|---|
|           | yow, MacArthu    |    |               |         |   |

|         | <del></del> j |         |              | Thickness    | Volume of   |                |              |            |            |
|---------|---------------|---------|--------------|--------------|-------------|----------------|--------------|------------|------------|
|         | Well          | •       | Depth to     | of           | Immiscibles |                |              | Survey     |            |
|         | Size          | Sheen / |              | Immiscible   |             | Depth to water |              | Point: TOB |            |
| Well ID | (in.)         | Odor    | Liquid (ft.) | Liquid (ft.) | (ml)        | (ft.)          | hottom (ft.) | 0/100      |            |
| /we-/   | 2             | Øe√     |              |              |             | 17,03          | 24.36        |            |            |
| Mer-2   | 2             |         |              |              |             | 16,48          | 24.3)        | )          |            |
| Mrs 3   | 7             |         |              |              |             | 15.61          | 74.25        |            |            |
| mu y    | 2             |         |              |              |             | 15.17          | 24.29        |            |            |
| MW-5    | 2             | edox    | ,            |              |             | 17.07          | .20.09       |            | <u> </u>   |
| MME     | 2             |         |              |              |             | 16.13          | 20.15        |            |            |
| ₹′      | 2             |         |              |              |             | 16.33          | 19.96        |            | -3"<br>"1" |
| MW-7    | 2             |         |              |              |             | 14,43          | 19,98        | +          | ·          |
|         |               |         |              |              |             |                |              |            |            |
|         |               |         |              |              |             |                | ·            |            |            |
|         |               |         |              |              |             |                |              |            |            |
|         |               |         |              |              |             | ·              |              |            |            |
|         |               |         |              |              |             |                |              |            |            |
|         |               |         |              |              |             |                |              | 1          |            |
|         |               |         |              |              |             |                |              |            |            |
|         |               |         |              |              |             |                |              |            |            |
|         |               |         |              |              |             |                |              |            |            |

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

## WELLHEAD INSPECTION CHECKLIST

| Date 9/13 Site Address Job Number | 04                                                   | _ Client                              | Ste                              | llar            | En                                   | UI.              |                                             | ·                                           |
|-----------------------------------|------------------------------------------------------|---------------------------------------|----------------------------------|-----------------|--------------------------------------|------------------|---------------------------------------------|---------------------------------------------|
| Site Address                      | 240 0                                                | U, Me                                 | acAr'                            | thur            | Blue                                 | y Ca             | Klaud                                       |                                             |
| Job Number                        | 040913-                                              | -m0,                                  | 1                                | Ted             | chnician                             | MO               | )                                           |                                             |
| Well ID                           | Well Inspected -<br>No Corrective<br>Action Required | Water Bailed<br>From<br>Wellbox       | Wellbox<br>Components<br>Cleaned | Cap<br>Replaced | Debris<br>Removed<br>From<br>Wellbox | Lock<br>Replaced | Other Action<br>Taken<br>(explain<br>below) | Well Not<br>inspected<br>(explain<br>below) |
| mu-                               |                                                      |                                       |                                  |                 |                                      |                  | D                                           | 02.0.17                                     |
| MW-Z                              | レ                                                    |                                       |                                  |                 |                                      |                  |                                             |                                             |
| mw-z                              | /                                                    |                                       |                                  |                 |                                      |                  |                                             |                                             |
| MW-4                              | /                                                    |                                       |                                  |                 |                                      |                  |                                             |                                             |
| Mw .5                             | ~                                                    |                                       |                                  |                 |                                      |                  |                                             |                                             |
| MG 6                              | /                                                    |                                       |                                  |                 |                                      |                  |                                             |                                             |
| Men-7                             | 1                                                    |                                       |                                  |                 |                                      |                  |                                             |                                             |
| mur-8                             | _/                                                   |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
| NOTES:                            | D No (30)                                            | 143                                   |                                  |                 |                                      |                  |                                             |                                             |
|                                   |                                                      |                                       |                                  |                 |                                      |                  |                                             |                                             |
|                                   | <u></u>                                              |                                       | <u> </u>                         | · · ·           |                                      |                  | ·                                           | · <del></del>                               |
|                                   |                                                      | · · · · · · · · · · · · · · · · · · · | · · .                            | <u> </u>        |                                      |                  |                                             | <del></del>                                 |
|                                   |                                                      | <u> </u>                              |                                  | <del></del>     | <del>-</del>                         | <del> </del>     |                                             |                                             |

## WELL MONITORING DATA SHEET

| Project #:                                                                                                                                                                       | 64091                             | 3-1/40         | 4                                          | Client:        | 5                   | tellar                            | -3        | Cakland outo                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|--------------------------------------------|----------------|---------------------|-----------------------------------|-----------|----------------------------------------|--|
| Sampler:                                                                                                                                                                         | M                                 |                | λ <sub>0</sub> .                           | Date: 9/13/04  |                     |                                   |           |                                        |  |
| Well I.D.:                                                                                                                                                                       | M                                 | WI             |                                            | Well Di        | ameter:             | <b>②</b> 3                        | 4         | 6 8                                    |  |
| Total Well I                                                                                                                                                                     | Depth (TD                         | ): <u>`</u> 2' | 4,36                                       | Depth to       | Water               | (DTW)                             |           | 7.03                                   |  |
| Depth to Fre                                                                                                                                                                     | e Product                         |                |                                            | Thickne        | ss of Fr            | ee Prodi                          | ict (feet | );                                     |  |
| Referenced to: Grade D.O. Meter (if req'd): SI HACH                                                                                                                              |                                   |                |                                            |                |                     |                                   |           |                                        |  |
| DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]:                                                                                                                   |                                   |                |                                            |                |                     |                                   |           |                                        |  |
| Purge Method: Bailer Waterra Sampling Method: Bailer Disposable Bailer Peristaltic Disposable Bailer Positive Air Displacement Extraction Pump Electric Submersible Other Other: |                                   |                |                                            |                |                     |                                   |           |                                        |  |
| 1.5                                                                                                                                                                              |                                   | ``             | 3 6                                        | \ <sup>*</sup> | Vell Diameter<br>1" | <u>Multiplier</u><br>0.04<br>0.16 | 4"<br>6"  | 0,65<br>1.47                           |  |
| 1 Case Volume                                                                                                                                                                    | Jals.) X                          | Fied Volum     | $= \frac{2 \cdot 6}{\text{Calculated Vo}}$ | _Gals.<br>lume | 2"<br>3"            | 0.18                              | Other     | radius <sup>2</sup> * 0.163            |  |
| Time 1558 1600                                                                                                                                                                   | Temp<br>(°F or ©)<br>20,5<br>20,1 | 6.5            | Cond.<br>(mS or (LS))<br>936<br>/017       | <del> </del>   | - 1                 | Gals. Re                          | 2         | Observations Cloudy, adam Cloudy, adam |  |
| 1609                                                                                                                                                                             | /7,1                              | 6.5            | 7/0_                                       |                |                     |                                   | us Fr     | - 4                                    |  |
|                                                                                                                                                                                  |                                   |                |                                            |                |                     |                                   |           |                                        |  |
| Did well de                                                                                                                                                                      | water?                            | Yes (          | No                                         | Gallons        | actuall             | y evacua                          | ated:     | 3.6                                    |  |
| Sampling D                                                                                                                                                                       | ate: 9//                          | 3/04           | Sampling Tim                               | e: <i>16</i>   | /0                  | Depth t                           | o Water   | :: <i>1</i> 8, <i>5</i> 0              |  |
| Sample I.D                                                                                                                                                                       | .: <i>'M</i>                      | W-/            |                                            | Laborat        | ory:                | Kiff C                            | alScience | Other Cf                               |  |
| Analyzed for                                                                                                                                                                     | or: TPH-G                         | BTEX           | MTBE TPH-D                                 | Oxygena        | tes (5)             | Other:                            | Sec       | -scope                                 |  |
| EB I.D. (if                                                                                                                                                                      | applicable                        | ):             | @<br>Time                                  | Duplica        | ite I.D.            | (if appli                         | cable):   |                                        |  |
| Analyzed for                                                                                                                                                                     | or: TPH-G                         | BTEX           | мтве трн-р                                 | Oxygena        | ites (5)            | Other:                            |           |                                        |  |
| D.O. (if rec                                                                                                                                                                     | ı'd): P                           | re-purge:      |                                            | mg/L           | <u> </u>            | ost purge                         | :         | <sup>mg</sup> /L                       |  |
| O.R.P. (if r                                                                                                                                                                     | eq'd): P                          | re-purge:      |                                            | пV             | F                   | ost-purge                         | ):        | mV                                     |  |

# WELL MONITORING DATA SHELL

| Project #:    | 0400                                                       | 713-NV          | <b>ከ</b> ዛ                       | Client:                                                  | 510            | llar ox            | sakland auto                                       |  |  |  |  |
|---------------|------------------------------------------------------------|-----------------|----------------------------------|----------------------------------------------------------|----------------|--------------------|----------------------------------------------------|--|--|--|--|
| Sampler:      | MO                                                         | •               |                                  | Date:                                                    | 9/12           | 100/               |                                                    |  |  |  |  |
| Well I.D.:    | MW - 2                                                     | 2               |                                  | Well Diameter 2 3 4 6 8                                  |                |                    |                                                    |  |  |  |  |
| Total Well I  |                                                            |                 | 4.31                             | Depth to Water (DTW): \( \alpha \) /6, \( \frac{1}{8} \) |                |                    |                                                    |  |  |  |  |
| Depth to Fre  | ee Product                                                 |                 |                                  | Thickness of Free Product (feet):                        |                |                    |                                                    |  |  |  |  |
| Referenced    | to:                                                        | PVC             | Grade                            | D.O. Me                                                  | ter (if 1      | req'd):            | YSI HACH                                           |  |  |  |  |
| DTW with 8    | 80% Recha                                                  | arge [(H        | eight of Water                   | Column                                                   | c 0.20)        | + DTW]:            | 18,05                                              |  |  |  |  |
| _             | Bailer<br>Disposable Ba<br>Positive Air I<br>Electric Subm | Displaceme      | nt Extrac<br>Other               | Waterra<br>Peristaltic<br>ction Pump                     |                | Sampling Metho     | Qisposable Bailer Extraction Port Dedicated Tubing |  |  |  |  |
| 1 Case Volume | Gals.) X<br>Speci                                          | 3<br>fied Volum | $\frac{3}{\text{Calculated Vo}}$ | _ Gals.                                                  | l"<br>2"<br>3" | 0.04 4"<br>0.16 6" | ther midius * 0.163                                |  |  |  |  |
| Time          | Temp                                                       | pН              | Cond.<br>(mS or μS)              | Turbic<br>(NTU                                           | -              | Gals. Remove       | d Observations                                     |  |  |  |  |
| 1505          | 21,7                                                       | 6.9             | 684                              | 188                                                      | <u> </u>       | 1,3                | Cloudy, addr                                       |  |  |  |  |
| 1510          | 21.3                                                       | 6.7             | 693                              | 7/2                                                      |                | 2.6                | 11                                                 |  |  |  |  |
| 1514          | 21,1                                                       | 6.7             | 695                              | 710                                                      | 00             | 3.9                | Cloudy, odo.                                       |  |  |  |  |
|               |                                                            | ·               |                                  |                                                          |                | FOROUS I           | con=1.8                                            |  |  |  |  |
|               |                                                            |                 |                                  |                                                          |                | •                  |                                                    |  |  |  |  |
| Did well de   | water?                                                     | Yes (           | No                               | Gallons                                                  | actuall        | y evacuated:       | 3.9                                                |  |  |  |  |
| Sampling D    | Date: 0//                                                  | 3/04            | Sampling Tim                     | ie: (52                                                  | 0              | Depth to Wa        | ter: 16.53                                         |  |  |  |  |
| Sample I.D.   | : /N                                                       | w2              |                                  | Laborato                                                 | ory:           | Kiff CalScie       | nce Other C+I                                      |  |  |  |  |
| Analyzed fo   | or: TPH-G                                                  | BTEX            | MTBE TPH-D                       | Oxygenate                                                | es (5)         | Other: $5\tau$     | e Scope                                            |  |  |  |  |
| EB I.D. (if   | applicable)                                                | ):              | @<br>Time                        | Duplicat                                                 | e I.D.         | (if applicable     | ):                                                 |  |  |  |  |
| Analyzed for  | or: TPH-G                                                  | втех            | MTBE TPH-D                       | Oxygenat                                                 | es (5)         | Other:             |                                                    |  |  |  |  |
| D.O. (if req  | 'd): P                                                     | re-purge:       |                                  | mg/ <sub>L</sub>                                         | P              | ost-purge:         | 0.7 ""                                             |  |  |  |  |
| O.R.P. (if re | eq'd): P                                                   | re-purge:       |                                  | mV                                                       | F              | ost-purge:         | mV                                                 |  |  |  |  |

# WELL MONITORING DATA SHEET

| Project #:    | 0409                                                  | 13-M                | 4) 4                                                      | Client:                             | 5.fc           | llar@a                           | ak(and)                                            |  |  |  |  |
|---------------|-------------------------------------------------------|---------------------|-----------------------------------------------------------|-------------------------------------|----------------|----------------------------------|----------------------------------------------------|--|--|--|--|
| Sampler:      | MD                                                    |                     |                                                           | Date:                               | 9/13           | /orl                             |                                                    |  |  |  |  |
| Well I.D.:    | MW-                                                   | 3                   |                                                           | Well Diameter: ② 3 4 6 8            |                |                                  |                                                    |  |  |  |  |
| Total Well I  | Depth (TD                                             | ): 7                | 24.25                                                     | Depth to Water (DTW): 2475 (5.6)    |                |                                  |                                                    |  |  |  |  |
| Depth to Fro  | ee Product                                            | •                   |                                                           | Thicknes                            | ss of Fi       | ree Product (fee                 | et):                                               |  |  |  |  |
| Referenced    | · · · · · · · · · · · · · · · · · · ·                 | PV                  | Grade                                                     | D.O. Me                             | ter (if        | req'd):                          | YSI) HACH                                          |  |  |  |  |
| DTW with 8    | 30% Rech                                              | arge [(H            | eight of Water                                            | Column 2                            | x 0.20)        | + DTW]:                          | 17,34                                              |  |  |  |  |
| Purge Method: | Bailer  Ssposable Bailer  Beitive Air I Electric Subm | ailer<br>Displaceme |                                                           | Waterra<br>Peristaltic<br>tion Pump |                | Sampling Method: Other:          | Disposable Bailer Extraction Port Dedicated Tubing |  |  |  |  |
|               |                                                       |                     |                                                           | <u>W</u> t                          | ell Diameter   |                                  | Diameter Multiplier<br>0,65                        |  |  |  |  |
| 1 Case Volume | Gals.) X<br>Speci                                     | 3<br>fied Volum     | $\frac{1}{\text{les}} = \frac{4.7}{\text{Calculated Vo}}$ | Gals.                               | 1"<br>2"<br>3" | 0.04 4"<br>0.16 6"<br>0.37 Other | 1.47                                               |  |  |  |  |
|               |                                                       |                     |                                                           |                                     |                |                                  |                                                    |  |  |  |  |
| Time          | Temp                                                  | pН                  | Cond.<br>(mS or (£\$)                                     | Turbid<br>(NTU                      | - I            | Gals. Removed                    | Observations                                       |  |  |  |  |
| 1533          | 22,3                                                  | 7.0                 | 802                                                       | 7/00                                | 00             | 1,4                              | Cloudy, odor                                       |  |  |  |  |
| 1535          | 21.9                                                  | 6.7                 | 801                                                       | 710                                 | 60             | 7,8                              | <i>il'</i>                                         |  |  |  |  |
| 1538          | 721                                                   | 6.7                 | 791                                                       | 7/9                                 | 000            | 4,2                              | cloudyour                                          |  |  |  |  |
|               |                                                       |                     |                                                           |                                     |                | Ferrous Fron                     | 1=2,4                                              |  |  |  |  |
|               |                                                       | ·                   |                                                           |                                     |                |                                  |                                                    |  |  |  |  |
| Did well de   | water?                                                | Yes (               | N <sub>0</sub>                                            | Gallons a                           | actually       | y evacuated:                     | 4.2                                                |  |  |  |  |
| Sampling D    | ate: 9 17                                             | 3(04)               | Sampling Time                                             | e: /54.                             | 5              | Depth to Wate                    | r: 15,61                                           |  |  |  |  |
| Sample I.D.   | : 1                                                   | NW-3                |                                                           | Laborato                            | ry:            | Kiff CalScience                  | Other_CTT                                          |  |  |  |  |
| Analyzed fo   | or: TPH-G                                             | BTEX                | MTBE TPH-D                                                | Oxygenate                           | es (5)         | Other: Scc                       | Soge                                               |  |  |  |  |
| EB I.D. (if a | applicable)                                           | ):                  | @<br>Time                                                 | Duplicate                           | e I.D. (       | (if applicable):                 |                                                    |  |  |  |  |
| Analyzed fo   | or: TPH-G                                             | втех                | MTBE TPH-D                                                | Oxygenate                           | es (5)         | Other:                           |                                                    |  |  |  |  |
| D.O. (if req  | 'd): Pi                                               | e-purge:            |                                                           | mg/L                                | P              | ost-purge:                       | Oi y mg/L                                          |  |  |  |  |
| O.R.P. (if re | eq'd): Pi                                             | e-purge:            |                                                           | mV                                  | P              | ost-purge:                       | m∇                                                 |  |  |  |  |

|               |                                                          | W               | ELL MONIT                                                 | ORING DATA              | SHELT                                        |                                                                   |  |  |  |  |  |
|---------------|----------------------------------------------------------|-----------------|-----------------------------------------------------------|-------------------------|----------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|
| Project #:    | 0409/3                                                   | -M)i            |                                                           | Client: Sfc             | llar@C                                       | okland                                                            |  |  |  |  |  |
| Sampler:      | M                                                        |                 |                                                           | Date: 9/13/04           |                                              |                                                                   |  |  |  |  |  |
| Well I.D.:    | Mu                                                       |                 |                                                           | Well Diameter 2 3 4 6 8 |                                              |                                                                   |  |  |  |  |  |
| Total Well I  | Depth (TD                                                | ): 15           | AT 24,29                                                  | Depth to Water          | (DTW): Z                                     | 4.29 15,17                                                        |  |  |  |  |  |
| Depth to Fre  | ee Product                                               | : ~             | ,                                                         | Thickness of F          | ree Product (fee                             | t):                                                               |  |  |  |  |  |
| Referenced    | to:                                                      | (PVC)           | Grade                                                     | D.O. Meter (if:         | req'd): (                                    | YSI HACH                                                          |  |  |  |  |  |
| DTW with 8    | 30% Recha                                                | urge [(H        | leight of Water                                           | Column x 0.20)          | + DTW]:                                      | 16.99                                                             |  |  |  |  |  |
| · ·           | Bailer  Disposable Bailer  Positive Air I  Electric Subm | Displaceme      |                                                           | Waterra Peristaltic     | Sampling Method: Other:                      | Bailer Disposable Bailer Extraction Port Dedicated Tubing         |  |  |  |  |  |
| 1 Case Volume | fals.) X                                                 | 3<br>Fied Volun | $\frac{1}{\text{ces}} = \frac{4.5}{\text{Calculated Vo}}$ | Gols. June              | Multiplier Well D 0.04 4" 0.16 6" 0.37 Other | iameter Multiplier<br>0.65<br>1.47<br>radius <sup>2</sup> * 0.163 |  |  |  |  |  |
| Time          | Temp<br>(°F or Ĝ                                         | pН              | Cond.<br>(mS or (μS)                                      | Turbidity<br>(NTUs)     | Gals. Removed                                | Observations                                                      |  |  |  |  |  |
| 1303          | 22,2                                                     | 6.3             | 540                                                       | 71000                   | 1.5                                          | closery, tan                                                      |  |  |  |  |  |
| 1306          | 210                                                      | 6.Z             | 545                                                       | 71000                   | 3                                            | 'ul                                                               |  |  |  |  |  |
| 1309          | 20.7                                                     | 6.2             | 571                                                       | 7/200                   | 4,5                                          | dowly, tan                                                        |  |  |  |  |  |
|               |                                                          |                 |                                                           |                         | Ferrious Fire                                | n = 0.0                                                           |  |  |  |  |  |
|               |                                                          | :               |                                                           |                         | *                                            | *                                                                 |  |  |  |  |  |
| Did well de   | water?                                                   | Yes             | No)                                                       | Gallons actuall         | y evacuated:                                 | 4.5                                                               |  |  |  |  |  |
| Sampling D    | ate: 9/1                                                 | 3/04            | Sampling Time                                             | : 13th 13Z              | Depth to Water                               | r: <i>16.99</i>                                                   |  |  |  |  |  |
| Sample I.D.   | : //                                                     | we              | /                                                         | Laboratory:             | Kiff CalScience                              | Other GT                                                          |  |  |  |  |  |
| Analyzed fo   | r: TPH-G                                                 | BTEX            | MTBE TPH-D                                                | Oxygenates (5)          | Other: See                                   | Soft                                                              |  |  |  |  |  |
| EB I.D. (if a | pplicable)                                               | :               | @<br>Time                                                 | Duplicate I.D. (        | (if applicable):                             | ,                                                                 |  |  |  |  |  |
| Analyzed fo   | or: TPH-G                                                | BTEX            | MTBE TPH-D                                                | Oxygenates (5)          | Other:                                       |                                                                   |  |  |  |  |  |

mV

D.O. (if req'd):

O.R.P. (if req'd):

Pre-purge:

Pre-purge:

Post-purge:

Post-purge:

# WELL MONITORING DATA SHEET

| Project #:    | 04091                                                                  | 3-M)            | 14                  | Client:                             | Ste                               | (lar                 | @                 | ookland                                                   |  |  |  |  |  |
|---------------|------------------------------------------------------------------------|-----------------|---------------------|-------------------------------------|-----------------------------------|----------------------|-------------------|-----------------------------------------------------------|--|--|--|--|--|
| Sampler:      | M                                                                      |                 | ,                   | Date:                               | 9/1                               | 3/04                 |                   |                                                           |  |  |  |  |  |
| Well I.D.:    | Mw                                                                     | -5              |                     | Well D                              | iameter:                          | 2 3                  | 4_                | 6 8                                                       |  |  |  |  |  |
| Total Well I  | Depth (TD)                                                             | ): Z            | 90,09               | Depth to Water (DTW): 17.07         |                                   |                      |                   |                                                           |  |  |  |  |  |
| Depth to Fre  | e Product:                                                             | ,               |                     | Thickne                             | Thickness of Free Product (feet): |                      |                   |                                                           |  |  |  |  |  |
| Referenced t  | to:                                                                    | PVO             | Grade               | D.O. M                              | eter (if i                        | req'd):              |                   | YSI HACH                                                  |  |  |  |  |  |
| DTW with 8    | 30% Recha                                                              | rge [(H         | eight of Water      | Column                              | x 0.20)                           | +DTW]                | :                 | 1767                                                      |  |  |  |  |  |
|               | Bailer<br><del>Bis</del> posable Ba<br>Positive Air E<br>Electric Subm | isplaceme       | nt Extrac<br>Other  | Waterra<br>Peristaltic<br>tion Pump | Well Diamete                      | Sampling Sampling    | Other:            | Bailer Disposable Bailer Extraction Port Dedicated Tubing |  |  |  |  |  |
| <u> </u>      | Sals.) X                                                               | 3<br>Tied Volum | es Calculated Vo    | Gals.                               | 1"<br>2"<br>3"                    | 0.04<br>0.16<br>0.37 | 4"<br>6"<br>Other | 0.65<br>1.47<br>rndius <sup>2</sup> * 0.163               |  |  |  |  |  |
| Time          | Temp<br>(°F or                                                         | pH              | Cond.<br>(mS or as) | 1                                   | oidity<br>'Us)                    | Gals. Rei            | noved             | Observations                                              |  |  |  |  |  |
| 1621          | 70,6                                                                   | 66              | 900                 | 66                                  | $\widehat{\mathfrak{I}}$          | 0.                   | 5                 | clardy, shows, Do                                         |  |  |  |  |  |
| 1623          | 19,8                                                                   | 66              | 834                 | 7.                                  | (000)                             | /                    | <u>'</u>          | 111                                                       |  |  |  |  |  |
| 1625          | 704                                                                    | 66              | 834                 | 7                                   | 1000                              | 1.                   | 5                 | Chody Sheen on                                            |  |  |  |  |  |
|               |                                                                        |                 |                     |                                     |                                   | Feel                 | 005 1             | ron=3.8                                                   |  |  |  |  |  |
|               |                                                                        |                 |                     |                                     |                                   |                      |                   |                                                           |  |  |  |  |  |
| Did well de   | water?                                                                 | Yes (           | No)                 | Gallon                              | s actuall                         | y evacua             | ted:              | 105                                                       |  |  |  |  |  |
| Sampling D    | ate: 9/                                                                | 3/04            | Sampling Tim        | e: <i>[6]</i>                       | 30                                | Depth to             | Water             | r: 17.45                                                  |  |  |  |  |  |
| Sample I.D.   | : alu                                                                  | 5-5             |                     | Labora                              | tory:                             | Kiff Ca              | IScience          | Other CF/                                                 |  |  |  |  |  |
| Analyzed fo   | or: TPH-G                                                              | BTEX            | мтве <b>т</b> рн-D  | Oxygena                             | ates (5)                          | Other:               | Sec               | Scape                                                     |  |  |  |  |  |
| EB I.D. (if a | applicable)                                                            | ):              | @<br>Time           | Duplic                              | ate I.D.                          | (if applic           | able):            |                                                           |  |  |  |  |  |
| Analyzed fo   | or: TPH-G                                                              | втех            | MTBE TPH-D          | Oxygen                              | ates (5)                          | Other:               |                   |                                                           |  |  |  |  |  |
| D.O. (if req  | 'd): P                                                                 | re-purge:       |                     | mg/L                                | 7                                 | ost-purge:           |                   | 0.9 mg/L                                                  |  |  |  |  |  |
| O.R.P. (if re | eq'd): Pr                                                              | re-purge:       |                     | mV                                  | P                                 | ost-purge:           |                   | mV                                                        |  |  |  |  |  |

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

# WELL MONITORING DATA SHEET

| Project #:    | 0409                                                  | 713-1           | M)4                    | Client:                           | 5te                   | lor tavi                                    | r. a Coklund Auto                                  |  |  |  |  |
|---------------|-------------------------------------------------------|-----------------|------------------------|-----------------------------------|-----------------------|---------------------------------------------|----------------------------------------------------|--|--|--|--|
| Sampler:      | MO                                                    |                 |                        | Date:                             | 9/1                   | 3/4                                         |                                                    |  |  |  |  |
| Well I.D.:    | MM                                                    | -6              | Non                    | Well Diameter: 3 3 4 6 8          |                       |                                             |                                                    |  |  |  |  |
| Total Well 1  | Depth (TD                                             | ): <del></del>  | # 20.15                | Depth to Water (DTW): 25 16,13    |                       |                                             |                                                    |  |  |  |  |
| Depth to Fre  | ee Product                                            | :               | •                      | Thickness of Free Product (feet): |                       |                                             |                                                    |  |  |  |  |
| Referenced    | to:                                                   | PV              | Grade                  | D.O. M                            | leter (if             | req'd):                                     | YSI HACH                                           |  |  |  |  |
| DTW with 8    | 80% Rech                                              | arge [(H        | leight of Water        | Colum                             | 1 x 0.20)             | ) + DTW]:                                   | 16.93                                              |  |  |  |  |
| Purge Method: | Bailer Disposable Bailer Positive Air I Electric Subm | Displaceme      |                        | Waterra Peristaltic tion Pump     |                       | Sampling Method Other                       | Disposable Bailer Extraction Port Dedicated Tubing |  |  |  |  |
| O, 6 (C       | ials.) X                                              | 5<br>fied Volum | = //S<br>Calculated Vo | _ Gals.                           | Well Diamete 1" 2" 3" | r Multiplier Well 0.04 4" 0.16 6" 0.37 Othe | Diameter   Multiplier                              |  |  |  |  |
|               |                                                       |                 |                        | ]                                 |                       | <u> </u>                                    | ]                                                  |  |  |  |  |
| Time          | Temp                                                  | pН              | Cond.<br>(mS or µS)    | 1                                 | oidity<br>(TUs)       | Gals. Removed                               | Observations                                       |  |  |  |  |
| 14/2          | 218                                                   | 62              | 1052                   | 7                                 | \QQQ                  | i6                                          | C/OUDY, Octor                                      |  |  |  |  |
| 1415          | 21.5                                                  | 68              | 1055                   | 7                                 | (000)                 | 1,2                                         | 11/                                                |  |  |  |  |
| 1417          | 21.4                                                  | 6.7             | 1057                   | 70                                | vod                   | 18                                          | Cloudy, odor                                       |  |  |  |  |
|               |                                                       |                 |                        | -                                 |                       | FUlio-5 Iro                                 | = 0.8                                              |  |  |  |  |
|               |                                                       |                 |                        |                                   |                       | NW-17.7                                     |                                                    |  |  |  |  |
| Did well dev  | water?                                                | Yes             | WS.                    | Gallons                           | s actuall             | y evacuated:                                | 1,8                                                |  |  |  |  |
| Sampling D    | ate: 9/1                                              | 3/04            | Sampling Time          | e: <i>170</i>                     | 00)                   | Depth to Wate                               | er: 16.55                                          |  |  |  |  |
| Sample I.D.   | : <u>'                                   </u>         | mura            | ?<br>?                 | Labora                            | tory:                 | Kiff CalScience                             | e Other <u>C+T</u>                                 |  |  |  |  |
| Analyzed fo   | т: трн-с                                              | втех            | MTBE TPH-D             | Oxygena                           | ates (5)              | Other: Srr                                  | Scope                                              |  |  |  |  |
| EB I.D. (if a | pplicable)                                            | :               | @<br>Time              | Duplica                           | ate I.D. (            | (if applicable):                            | ,                                                  |  |  |  |  |
| Analyzed fo   | r: TPH-G                                              | BTEX            | MTBE TPH-D             | Oxygena                           | ates (5)              | Other:                                      |                                                    |  |  |  |  |
| D.O. (if req' | d): Pr                                                | e-purge:        |                        | աñ\ <sup>r</sup>                  | P                     | ost-purge:                                  | Or T mg/L                                          |  |  |  |  |
| O.R.P. (if re | eq'd): Pr                                             | e-purge:        |                        | mV                                | P                     | ost-purge:                                  | mV                                                 |  |  |  |  |

# WELL MONITORING DATA SHELL

| Project #:    | 09091                                                      | 3-M        | 14                      | Client:                             | 51916                          | 4/ (8) C-6                                              | ek (ava                                                   |
|---------------|------------------------------------------------------------|------------|-------------------------|-------------------------------------|--------------------------------|---------------------------------------------------------|-----------------------------------------------------------|
| Sampler:      | n $M$ )                                                    |            |                         | Date:                               | 9/13                           | 104                                                     |                                                           |
| Well I.D.:    | Min                                                        | 1-7        |                         | Well D                              | iameter:                       | <u> 3 4</u>                                             | 6 8                                                       |
| Total Well I  | Depth (TD)                                                 | ): /9      | 1,96                    | Depth t                             | o Water                        | (DTW): /                                                | 6,33                                                      |
| Depth to Fre  | ee Product                                                 |            | programme of the second | Thickn                              | ess of Fi                      | ree Product (fee                                        | et):                                                      |
| Referenced    | to:                                                        | PVC        | Grade                   | D.O. M                              | leter (if                      | req'd): <                                               | YSI HACH                                                  |
| DTW with 8    | 30% Recha                                                  | rge [(H    | eight of Water          | Columr                              | x 0.20)                        | + DTW]:                                                 | 17.06                                                     |
| Purge Method: | Bailer<br>Disposable Ba<br>Positive Air D<br>Electric Subm | isplaceme  |                         | Waterra<br>Peristaltic<br>tion Pump |                                | Sampling Method: Other:                                 | Disposable Bailer Extraction Port Dedicated Tubing        |
| 6 (C          | Gals.) X<br>Specil                                         | Fied Volum | es Calculated Vo        | _Gals.                              | Well Diamete<br>1"<br>2"<br>3" | r Multiplier Well 1<br>0.04 4"<br>0.16 6"<br>0.37 Other | Dinmeter Multiplier 0.65 1.47 radius <sup>2</sup> * 0.163 |
| Time          | Temp                                                       | pН         | Cond.<br>(mS or μS)     |                                     | oidity<br>(TUs)                | Gals. Removed                                           | Observations                                              |
| 1347          | 21.5                                                       | 6.9        | 756                     | 7                                   | /60G                           | ι6                                                      | Chudy fun                                                 |
| 1349          | 21,1                                                       | 6.7        | 793                     | 7/                                  | 1000                           | 1,2                                                     | cl                                                        |
| 1351          | 21,0                                                       | 66         | 804                     | 70                                  | 000                            | 1.8                                                     | Cloudy, tal                                               |
|               |                                                            |            |                         |                                     |                                | FUNEYS IN                                               | ~= 2.4                                                    |
|               |                                                            |            |                         | :                                   |                                |                                                         |                                                           |
| Did well de   | water?                                                     | Yes (      | No)                     | Gallon                              | s actuall                      | y evacuated:                                            | 1.8                                                       |
| Sampling D    | ate: 9/13                                                  | 3/04       | Sampling Time           | a:                                  | 1400                           | Depth to Wate                                           | r: 17,06                                                  |
| Sample I.D.   | : M                                                        | W-7        | -                       | Labora                              | tory:                          | Kiff CalScience                                         | Other C+T                                                 |
| Analyzed fo   | or: TPH-G                                                  | втех       | MTBE TPH-D              | Oxygena                             | ates (5)                       | Other: 50 - 5                                           | ape                                                       |
| EB I.D. (if a | applicable)                                                | :          | @<br>Time               | Duplic                              | ate I.D.                       | (if applicable):                                        |                                                           |
| Analyzed for  | or: TPH-G                                                  | втех       | МТВЕ ТРН-D              | Oxygen                              |                                | Other:                                                  |                                                           |
| D.O. (if req  | 'd): Pr                                                    | e-purge:   |                         | <sup>ը</sup> /Ը                     | P                              | ost-purge:                                              | 2.6 mg/L                                                  |
| O.R.P. (if re | eq'd): Pr                                                  | e-purge:   |                         | mV                                  | P                              | ost-purge:                                              | mV                                                        |

# WELL MONITORING DATA SHEET

| Project #:      | 040                                                        | 2913-           | MY                                   | Client:                             | GAC                            | 1016                                 | <u> </u>                    | De lo q                                                      |  |  |  |
|-----------------|------------------------------------------------------------|-----------------|--------------------------------------|-------------------------------------|--------------------------------|--------------------------------------|-----------------------------|--------------------------------------------------------------|--|--|--|
| Sampler:        | ALL                                                        | 8=              | M)                                   | Date:                               | 9/1                            | 3/04                                 |                             |                                                              |  |  |  |
| Well I.D.:      | m                                                          | w-8             |                                      | Well D                              | iameter:                       | 2 3                                  | 4                           | 6 8                                                          |  |  |  |
| Total Well I    | Depth (TD                                                  | ): /            | 7.90                                 | Depth to Water (DTW): /4.43         |                                |                                      |                             |                                                              |  |  |  |
| Depth to Fre    | ee Product                                                 | :               |                                      | Thickness of Free Product (feet):   |                                |                                      |                             |                                                              |  |  |  |
| Referenced      | to:                                                        | PVC             | Grade                                | D.O. M                              | leter (if                      | req'd):                              | (                           | YSI HACH                                                     |  |  |  |
| DTW with 8      | 30% Recha                                                  | arge [(H        | leight of Water                      | Colum                               | ı x 0.20)                      | + DTW                                | <b>]</b> :                  | 15.54                                                        |  |  |  |
| Purge Method:   | Builer<br>Disposable Ba<br>Positive Air I<br>Electric Subm | Displaceme      |                                      | Waterra<br>Peristaltic<br>tion Pump |                                | Sampling                             | Method: Other:              | Bailer  Disposable Bailer  Extraction Port  Dedicated Tubing |  |  |  |
| O. (Case Volume | Jals.) X                                                   | 3<br>fied Volun | $= \frac{2.7}{\text{Calculated Vo}}$ | Gals.                               | Well Diamete<br>t"<br>2"<br>3" | r Multipiier<br>0.04<br>0.16<br>0.37 | Well D<br>4"<br>6"<br>Other | figracter Multiplier 0.65 1.47 radius <sup>2</sup> * 0.163   |  |  |  |
| Time            | Temp                                                       | рН              | Cond.<br>(mS or (15)                 | 1                                   | oidity<br>TUs)                 | Gals. Re                             | moved                       | Observations                                                 |  |  |  |
| 1432            | 21.8                                                       | 7.1             | 913                                  | 7                                   | (000)                          | 0.                                   | 9                           | y                                                            |  |  |  |
| 1434            | 21,4                                                       | 68              | 504                                  | 7/9                                 | pac,                           | lit                                  | 3                           | ι( <sup>′</sup>                                              |  |  |  |
| 1436            | 21.2                                                       | 68              | 542                                  | 7/                                  | 1000                           | 7.                                   | 7                           | ckidy                                                        |  |  |  |
|                 |                                                            |                 |                                      |                                     |                                | Francius                             | From                        | ~=0.0                                                        |  |  |  |
|                 |                                                            |                 |                                      |                                     |                                |                                      |                             |                                                              |  |  |  |
| Did well de     | water?                                                     | Yes C           | No                                   | Gallons                             | actuall                        | y evacua                             | ted: -                      | 7.7                                                          |  |  |  |
| Sampling D      | ate: 9/13                                                  | 3/04            | Sampling Time                        | e: (4                               | 10                             | Depth to                             | Water                       | :: 15.21                                                     |  |  |  |
| Sample I.D.     | : pu                                                       | <u>8-ٺر</u>     |                                      | Labora                              | tory:                          | Kiff Ca                              | Science                     | Other Ct/                                                    |  |  |  |
| Analyzed fo     | r: TPH-G                                                   | BTEX            | MTBE TPH-D                           | Oxygena                             | ites (5)                       | Other:                               | Sec                         | Scope                                                        |  |  |  |
| EB I.D. (if a   | pplicable)                                                 | ) <b>:</b>      | @ Time                               | Duplic                              | ate I.D. (                     | (if applic                           | able):                      |                                                              |  |  |  |
| Analyzed fo     | r: TPH-G                                                   | BTEX            | MTBE TPH-D                           | Oxygena                             |                                | Other:                               |                             |                                                              |  |  |  |
| D.O. (if req'   | d): Pr                                                     | e-purge:        |                                      | mg/ <sub>L</sub>                    | .P                             | ost-purge:                           |                             | 1.3 mg/L                                                     |  |  |  |
| O.R.P. (if re   | q'd): Pr                                                   | e-purge:        |                                      | mV                                  | P                              | ost-purge:                           |                             | mV                                                           |  |  |  |

| •                                                                                                                                                    |                 |            | Chain of             | Cus          | tody Re                               | ecc                | ord |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                  |      |                                         | 4                | , ,    |          |          | Lab          | job no. | 3/100       | 1    | <b>/</b> /\ |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|----------------------|--------------|---------------------------------------|--------------------|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------|------|-----------------------------------------|------------------|--------|----------|----------|--------------|---------|-------------|------|-------------|
| Address 2323 FFTH ST  ROLLINGY, CA                                                                                                                   |                 | Shi        |                      |              | <del></del>                           | -<br>-<br>-        |     | /         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7    | 4                                                | 7    | Sept Sept Sept Sept Sept Sept Sept Sept |                  | SIS Ro | quired   |          | Pag          | »       | L 61        | 1    |             |
| Project Owner STELLAR Site Address 2.98 STOTH ST ROCKBERT, CA  Project Name OFCHIST Amp L  Project Number OFO7/3 MD4  Field Sample Number Death Date |                 | Pro<br>Tel | implers: (Signature) | 3123<br>3859 |                                       | -<br>-<br>-<br>- / |     | Parloy ON | To the state of th | 2000 |                                                  |      |                                         | 1                | T /    | //       | 1        |              | //      | Remark      | 5    |             |
| 1/W-1 1/13/24                                                                                                                                        | V m             |            | 3vedSZ/LAND          |              | Chemical                              | <i></i>            | 5   | X         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y    | y<br>V                                           | 7-1  | 1                                       | $\neg$           |        |          |          |              |         |             |      |             |
| ·                                                                                                                                                    | 1 .             | 1          | 3 Vog \$14Amb        |              | <u> </u>                              | K                  |     | V         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | ×                                                | -    | 十                                       |                  |        |          | $\vdash$ | ┢,           |         |             |      |             |
| /ws·2                                                                                                                                                | 1520            | 1          | 30005 24 Ambo        |              | <del>-</del>                          |                    |     | X         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | <del>                                     </del> | -    | 1                                       |                  |        | -        | -        |              |         |             |      |             |
| mis-3                                                                                                                                                | 1915            | T          |                      |              |                                       |                    | 2   | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14   | K                                                |      | $\dashv$                                | _                |        |          |          | -            |         | <del></del> |      |             |
| MW-4                                                                                                                                                 | 325             |            | 3000 BLANK           |              | /                                     |                    | 3   | .1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | K                                                |      |                                         |                  |        | $\vdash$ | ╁        | 1            |         |             |      | 1           |
| NW-5                                                                                                                                                 | 630             |            | 3000521Land          |              | <del>/</del>                          |                    | 5   | X         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X    | 4                                                | ╂╼╌╂ |                                         |                  |        | -        | $\vdash$ | <del> </del> |         | ·           |      |             |
| men-6                                                                                                                                                | 100             | 105        | 300012 ILAND         |              | <del></del>                           | ļ                  | 5   |           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t .  |                                                  |      |                                         |                  |        | <u> </u> | $\vdash$ | -            |         |             |      | 1           |
| Aw-7                                                                                                                                                 | 4               | Ď.         | 30005 zutal          |              | <i>-</i>                              | _                  | 3   | 1         | 基                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ╁    | X                                                |      |                                         |                  |        | <b> </b> | -        | -            |         |             |      | ļ           |
| Mu-8                                                                                                                                                 | 1940            | )          | 3wasz IIAW           | Ø            | · · · · · · · · · · · · · · · · · · · |                    | 5   | K         | ¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | አ    | א                                                |      |                                         |                  |        |          | <u> </u> |              |         |             |      |             |
|                                                                                                                                                      |                 |            |                      |              |                                       |                    | -   | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                  |      |                                         |                  |        |          |          |              |         |             |      |             |
|                                                                                                                                                      |                 |            |                      |              | 1                                     |                    |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1                                                |      |                                         |                  |        |          |          |              |         |             |      | -<br> <br>  |
| Relinquished by Carlo                                                                                                                                | Receive<br>Sign | ature 1    | ougher               | Date         | Relinquished<br>Signature             | -                  |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                  | Date | 1                                       | celved<br>Signal | •      |          |          | <u></u>      | ·       |             | Date |             |
| Printed John Velong Time Company Blaine Tech 320                                                                                                     | Print           | ted        | eny Rojas            | Time         | Printed                               |                    |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | _                                                | Time |                                         | Printe           |        | <u></u>  |          |              |         |             | Time |             |
| Company Ulay                                                                                                                                         | Com             | ipany ——   |                      | 1            | Company                               |                    |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                  | Dale |                                         | Comp             |        |          |          |              |         |             | Date | +           |
| Turnaround Time:                                                                                                                                     |                 | ( )        | <u> </u>             |              | Relinquished<br>Signature             | -                  |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                  | 2015 |                                         | Signa            | _      |          |          |              | _       | <del></del> |      |             |
| Comments: ERECEIVE D                                                                                                                                 | ON              |            | <u></u>              | ·            | Printed                               |                    |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ,  <br>                                          | Time | -                                       | Printe           | nd     |          |          |              |         |             | Time | 4           |
|                                                                                                                                                      |                 |            |                      |              | Сотралу                               |                    |     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                  |      |                                         | Comp             | any .  |          |          |              |         |             |      |             |



# Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

#### ANALYTICAL REPORT

Prepared for:

Stellar Environmental Solutions 2198 6th Street Suite 201 Berkeley, CA 94710

Date: 20-SEP-04

Lab Job Number: 174642

Project ID: STANDARD

Location: Oakland Auto Works

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

perazions Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of \_59



#### CASE NARRATIVE

Laboratory number: 174642

Client: Stellar Environmental Solutions

Location: Oakland Auto Works

Request Date: 09/14/04 Samples Received: 09/14/04

This hardcopy data package contains sample and QC results for eight water samples, requested for the above referenced project on 09/14/04. The samples were received cold and intact.

#### TPH-Purgeables and/or BTXE by GC (EPA 8015B):

Response exceeding the instrument's linear range was observed for trifluorotoluene (FID) in MW-3 (lab # 174642-003); affected data was qualified with "b". High surrogate recoveries were observed for trifluorotoluene (FID) in MW-2 (lab # 174642-002) and MW-3 (lab # 174642-003), due to interference from coeluting hydrocarbon peaks. High surrogate recovery was observed for bromofluorobenzene (FID) in MW-3 (lab # 174642-003), due to interference from coeluting hydrocarbon peaks. No other analytical problems were encountered.

#### TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

#### Volatile Organics by GC/MS (EPA 8260B):

High surrogate recovery was observed for bromofluorobenzene in the method blank for batch 94737. No other analytical problems were encountered.

|                                                      |                                                  |            |              |                | С            | hain of                               | Cus      | tody F                  | leco        | ord      |          | ,           |          | • •           |      |              |                  | _          |            | ٠        |             | 9/3/          | <u>01. 2</u><br>04 |
|------------------------------------------------------|--------------------------------------------------|------------|--------------|----------------|--------------|---------------------------------------|----------|-------------------------|-------------|----------|----------|-------------|----------|---------------|------|--------------|------------------|------------|------------|----------|-------------|---------------|--------------------|
| aboratory Curens                                     | st Ton                                           | PK.        | ٤.           | Me             | thod of Ship | oment                                 | Con      | ren                     | _           |          |          |             |          | _             | `    |              | 20               | eil .      |            |          | Page        |               | <u> </u>           |
| Address 2323 Fi                                      | =574 57                                          |            |              | — Shi          | pment No.    |                                       |          |                         | _           |          | ,        | <del></del> |          | 4             |      | S J          | 'في              |            |            |          |             |               |                    |
| portuelle                                            | <i>y</i> , 01                                    |            |              |                |              | · · · · · · · · · · · · · · · · · · · |          |                         | _           |          |          |             | \alpha   | <u>9` /</u>   | 7    | <b>170 C</b> | uffallys<br>7    | ls Req     | uired<br>/ | 7        | <del></del> | <del></del> / |                    |
| Project Owner STELL                                  | 122                                              |            |              | Co             | oler No      | ger Ben                               | er 6     | 2. chen                 | -           |          | / ,      | / g         |          | V L           |      | '\           | ' /              | / /        | / /        | / /      | / /         |               |                    |
| Site Address 2196                                    | J14771                                           | 57         | <del> </del> | — Pro          | oject Manag  | er (510) 644                          | 3123     |                         |             |          | Delle /  | ule III     | \$//     | 9)<br>3)      | 4    | */           |                  | /          |            |          |             | /             |                    |
|                                                      | way.                                             |            |              |                |              |                                       | 3859     |                         | _           | /4       | No. of   |             |          | 7 8           | 9    | { /          | /                | Γ,         | Ι,         | Ι,       | / /         | Ren           | narks              |
| Project Name <u>DARCA</u> Project Number <u>C401</u> | 13-MD                                            | 1          | عسر ان د     |                |              | gnature)                              |          |                         | _ /         | / /      | ' /      | H           | */       | Z.            |      |              | /                |            |            |          |             |               |                    |
| Field Sample Number                                  | Location/                                        | Date       | Time         | Sample<br>Type | Type/Size    | of Container                          | Pri      | eservation<br>Chemical  | 7/          |          | 1        | V           | †<br>D   | $\frac{1}{2}$ | 7 /  |              | /                | Ι,         | / ,        | Ι.       |             |               |                    |
| (NW-1                                                | Depth                                            | 1/13/04    | Y: fo        | iype           | 3vex         | SZILAM                                | 1        | - Cricinal              | 1           | 5        | ×        | X           | y        | У             |      |              |                  | Í          |            |          |             |               |                    |
| /WW-2                                                |                                                  | 1 1        | 1520         |                |              | s 11KAmi                              |          | ,                       | A.          | 塔        |          | X           | 1        | У             |      |              |                  |            |            |          |             |               |                    |
| m-3                                                  |                                                  |            | 1545         |                |              | 21 Ambo                               |          | /                       |             | 5        | χ        | K           | ×        | K             |      |              |                  |            |            |          |             |               |                    |
| ms-4_                                                |                                                  |            | 1325         |                |              | 244                                   |          | 7                       |             | 3        | X        | É           | 7        | ĸ             |      |              |                  |            |            |          |             |               |                    |
| mu-s                                                 |                                                  |            | (30          |                |              | 2 / Lamb                              |          | /                       |             | 5        | X        | K           | x        | 4             |      |              |                  |            |            |          |             |               |                    |
| nw-6                                                 |                                                  |            | l'Iric       |                | 1            | 12 KAN                                |          | -/                      |             | 5        | k        | 4           | ×        | X             |      |              | _                |            |            |          | <b></b>     |               |                    |
| nw-7                                                 |                                                  |            | 1            | OD T           | T " '        | 2 <b>444</b>                          |          | 1                       |             | 3        | X        | 悪           | 7        | X             |      | _            |                  |            |            |          |             |               |                    |
| mu-8                                                 |                                                  | V          | 1940         | 1              | 3000         | SZ IDAN                               | Der _    | *                       | _           | 5        | X        | ¥           | 1 %      | X             |      | _            |                  |            |            |          |             |               |                    |
|                                                      |                                                  |            | ,            |                |              |                                       |          |                         |             | ļ        | _        |             | ļ        |               |      |              |                  |            | -          | <u> </u> | į           | <u> </u>      |                    |
|                                                      |                                                  |            |              |                |              |                                       |          |                         | 1-          | <u> </u> | <u> </u> | -           | <u> </u> | _             |      |              |                  |            |            | ļ        |             | <u> </u>      | <del></del>        |
|                                                      |                                                  |            |              |                |              |                                       |          |                         |             |          | <u> </u> | <u> </u>    | ļ        |               |      |              |                  | <b></b>    | ļ          | ┞        |             | <u>.</u>      |                    |
|                                                      |                                                  |            |              |                |              |                                       | <u> </u> | <u> </u>                |             | <u> </u> |          | <u> </u>    | <u> </u> | <u> </u>      |      |              |                  |            | <u>L</u>   |          |             |               |                    |
| Relinquished by                                      | وروس                                             | Cate /     | Receive      | id by:         | onyl         | in                                    | Date     | Relinquishe<br>Signatur | -           |          |          |             |          | _             | Date | l l          | eived<br>Signat  | by:<br>ure |            |          |             |               | Date               |
| Signature                                            | <del>/                                    </del> | /ey/<br>64 |              |                | •            | ijas                                  | _        |                         | -           |          |          |             |          | -             |      | ╣ .          |                  |            |            |          |             |               | <u> </u>           |
| Printed DIN VC                                       | 000                                              | Time       |              |                |              |                                       | - Time   | Printed                 | <del></del> |          |          |             |          | -             | Time | '            | Printe           | <b>-</b>   |            |          |             |               | — Time             |
| Company Blaine Tec                                   | <u> </u>                                         | 320        | Com          | pany           | CAT          |                                       |          | Compar                  | у           |          |          |             |          | _             |      |              | Compa            | any _      |            |          |             |               | _                  |
| Turnaround Time:                                     |                                                  |            |              |                |              |                                       |          | Relinquish<br>Signatur  | •           |          |          |             |          |               | Date | 1            | ceived<br>Signat | -          |            |          |             |               | Date               |
| Comments:                                            | CEIVE                                            | D_         | ON           |                | ck           | <u>-</u>                              |          | - Signator              | ·           |          |          |             |          |               |      | 4            | -                |            |            |          |             |               |                    |
|                                                      |                                                  |            |              |                |              |                                       | ·-       | Printed                 |             |          | -        | _           |          | -             | Time | f            | Printe           | d          |            |          |             |               | Time               |
|                                                      |                                                  |            |              |                |              |                                       |          | Compai                  | γ <u> </u>  |          |          |             |          | _             |      |              | Сотр             | any _      |            |          |             |               |                    |

\* Stellar Environmental Solutions

2198 Sixth Street #201, Berkeley, CA 94710



Total Volatile Hydrocarbons Oakland Auto Works 174642 Location: Lab #: EPA 5030B Stellar Environmental Solutions Client: Prep: EPA 8015B Analysis: STANDARD Project#: 09/13/04 Sampled: Matrix: Water 09/14/04 ug/L Received: Units: 94628 Batch#:

Field ID:

MW-1 SAMPLE

Type: Lab ID:

174642-001

Diln Fac: Analyzed: 20.00

09/16/04

Analyte Gasoline C7-C12 Result 9,100 ,000

\*RBC Surrogate 101 70-141 Trifluorotoluene (FID) 100 80-143 Bromofluorobenzene (FID)

Field ID: Type:

MW-2

SAMPLE

Diln Fac:

1.000

Analyzed:

09/15/04

174642-002 Lab ID:

Result Analyte Gasoline C7-C12 1,500 L

Limite Surrogate 70-141 148 Trifluorotoluene (FID) 80-143 Bromofluorobenzene (FID) 120

Field ID:

Type: Lab ID: MW - 3SAMPLE

174642-003

Diln Fac:

1.000

Analyzed:

09/16/04

Analyte Result 5,400 L Y 50 Gasoline C7-C12

311594001240 212 \* >LR b 70-141 151 \* 80-143 Trifluorotoluene (FID) Bromofluorobenzene (FID)

Field ID:

Lab ID:

Type:

MW-4SAMPLE

174642-004

Diln Fac:

Analyzed:

1.000 09/15/04

Result RL Analyte Gasoline C7-C12 ND <u>50</u>

RECOMPANIES Surrogate Trifluorotoluene (FID) 96 70-141 105 80-143 Bromofluorobenzene (FID)

<sup>\*=</sup> Value outside of QC limits; see narrative L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected

RL= Reporting Limit

<sup>&</sup>gt;LR= Response exceeds instrument's linear range Page 1 of 3

Sample Name : 174642-001,94628,tvh

leName : G:\GC07\DATA\259A029.raw

ethod : TVHBTXE

tart Time : 0.00 min Scale Factor: 1.0

.00 min End Time : 26.00 min

Plot Offset: 10 mV

Sample #: a1.0

al.0 Page 1 of 1

Date : 9/16/04 10:29 AM

Time of Injection: 9/16/04 04:14 AM
Low Point: 9.63 mV High Point: 115.43 mV

Plot Scale: 105.8 mV





ample Name : 174642-002,94628,tvh ileName

: G:\GC07\DATA\259A021.raw

ethod : TVHBTXE

tart Time : 0.00 min cale Factor: 1.0

End Time : 26.00 min

Plot Offset: -1 mV

Sample #: a1.0 Date : 9/16/04 10:29 AM

Time of Injection: 9/15/04 11:34 PM

High Point : 326.91 mV Low Point : -1.15 mV

Page 1 of 1

Plot Scale: 328.1 mV



Bample Name : 174642-003,94628,tvh : G:\GC07\DATA\259A028.raw leName

: TVHBTXE eart Time : 0.00 min

thod

End Time : 26.00 min Plot Offset: -11 mV

Sample #: a1.0

Page 1 of 1

Date: 9/16/04 10:29 AM Time of Injection: 9/16/04 03:39 AM

High Point : 523.41 mV Low Point : -10.82 mV

Plot Scale: 534.2 mV





Total Volatile Hydrocarbons Oakland Auto Works Lab #: 174642 Location: Prep: Analysis: EPA 5030B Stellar Environmental Solutions Client: EPA 8015B STANDARD Project#: Sampled: 09/13/04 Matrix: Water 09/14/04 Received: ug/L Units: Batch#: 94628

Field ID:

Type:

Lab ID:

MW-5 SAMPLE

174642-005

Diln Fac: Analyzed: 20.00

09/16/04

Analyte Gasoline C7-C12 Result <u>1,000</u> 13,000

daima ka Suzrogate Trifluorotoluene (FID) 100 70-141 98 80-143 Bromofluorobenzene (FID)

Field ID:

Type:

MW-6 SAMPLE

Diln Fac:

Analyzed:

1.000

09/16/04

174642-006 Lab ID:

Result Analyte 50 350 L Gasoline C7-C12

Surrogate 70-141 Trifluorotoluene (FID) 80-143 107 Bromofluorobenzene (FID)

Field ID:

Type: Lab ID:

MW - 7

SAMPLE

174642-007

Diln Fac:

Analyzed:

1.000

09/15/04

Analyte Result Gasoline C7-C12

RREC Limits Surrogate 91 Trifluorotoluene (FID) 70-141 100 80-143 Bromofluorobenzene (FID)

Field ID:

Type: Lab ID: 8-WM SAMPLE

174642-008

Diln Fac:

Analyzed:

1.000

09/16/04

Result Analyte 50 280 L Y Gasoline C7-C12

| Surrogate                | REC | Limits |
|--------------------------|-----|--------|
| Trifluorotoluene (FID)   | 104 | 70-141 |
| Bromofluorobenzene (FID) | 105 | 80-143 |

<sup>\*=</sup> Value outside of QC limits; see narrative L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND≈ Not Detected

RL≈ Reporting Limit

<sup>&</sup>gt;LR= Response exceeds instrument's linear range Page 2 of 3

Sample Name : 174642-005,94628,tvh

ileName : G:\GC07\DATA\259A030.raw

ethod : TVHBTXE

End Time : 26.00 min art Time : 0.00 min

Scale Factor: 1.0 Plot Offset: 10 mV

Page 1 of 1 Sample #: al.0

Date: 9/16/04 10:29 AM

Time of Injection: 9/16/04 04:49 AM

Low Point : 9.84 mV High Point : 113.61 mV

Plot Scale: 103.8 mV





Sample Name : 174642-006,94628,tvh ?ileName : G:\GC07\DATA\259A026.raw

: TVHBTXE 4ethod

Scale Factor:

3tart Time : 0.00 min

1.0

End Time : 26.00 min

Plot Offset: 9 mV

Sample #: a1.0

Page 1 of 1 Date: 9/16/04 10:29 AM

Time of Injection: 9/16/04 02:29 AM

High Point: 117.70 mV Low Point : 9.41 mV

Plot Scale: 108.3 mV



ample Name : 174642-008,94628,tvh leName : G:\GC07\DATA\259A027.raw

: TVHETXE

End Time : 26.00 min

art Time : 0.00 min cale Factor: 1.0

thod

Plot Offset: 7 mV

Sample #: a1.0

Date: 9/16/04 03:29 AM

Time of Injection: 9/16/04 03:03 AM

High Point : 162.33 mV Low Point : 7.20 mV

Page 1 of 1

Plot Scale: 155.1 mV





Sample Name : ccv/lcs,qc264775,94628,04ws1636,5/5000

: g:\gc07\data\259a002.raw FileName

Method : TVHBTXE

Start Time : 0.00 min

Plot Offset: 0 mV

End Time : 26.00 min

Sample #:

Page 1 of 1

Date : 9/15/04 02:02 PM

Time of Injection: 9/15/04 12:10 PM Low Point : 0.30 mV

High Point : 306.21 mV

Plot Scale: 305.9 mV





Total Volatile Hydrocarbons 174642 Stellar Environmental Solutions STANDARD Lab #: Location: Oakland Auto Works EPA 5030B Prep: Analysis: Client: EPA 8015B 09/13/04 09/14/04 Project#: Sampled: Water Matrix: ug/L 94628 Units: Received: Batch#:

'ype: Lab ID: BLANK QC264774

Diln Fac: Analyzed:

1.000 09/15/04

| Analyte         |    | RL |  |
|-----------------|----|----|--|
| Gasoline C7-C12 | ND | 50 |  |
|                 |    |    |  |

| Surrogate                | %REC | 1556 \$ 65.    |  |
|--------------------------|------|----------------|--|
| Trifluorotoluene (FID)   | 89   | 70-141         |  |
| Bromofluorobenzene (FID) | 93   | 80- <u>143</u> |  |

<sup>\*=</sup> Value outside of QC limits; see narrative L= Lighter hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected

RL= Reporting Limit

<sup>&</sup>gt;LR= Response exceeds instrument's linear range Page 3 of 3



Batch QC Report

|           | Total Volati                    | ile Hydrocarbo | M8                 |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | : STANDARD                      | Analysis:      | EPA 8015B          |
| Type:     | LCS                             | Diln Fac:      | 1.000              |
| Lab ID:   | QC264775                        | Batch#:        | 94628              |
| Matrix:   | Water                           | Analyzed:      | 09/15/04           |
| Units:    | ug/L                            |                |                    |

| Analyte         | Spiked      | Result | %REC | Limits |
|-----------------|-------------|--------|------|--------|
| Gasoline C7-C12 | 2,000       | 2,277  | 114  | 80-120 |
| <u> </u>        | <del></del> |        |      |        |

| Surrogate                | %RE( | Limits |
|--------------------------|------|--------|
| Trifluorotoluene (FID)   | 109  | 70-141 |
| Bromofluorobenzene (FID) | 98   | 80-143 |



Batch QC Report

|            | Total Volat                     | ile Hydrocarbo  | ing                |
|------------|---------------------------------|-----------------|--------------------|
|            | 10021 7010.                     | 3220 11/1200000 |                    |
| Lab #:     | 174642                          | Location:       | Oakland Auto Works |
| Client:    | Stellar Environmental Solutions | Prep:           | EPA 5030B          |
| Project#:  | STANDARD                        | Analysis:       | EPA 8015B          |
| Field ID:  | ZZZZZZZZZZ                      | Batch#:         | 94628              |
| MSS Lab ID | : 174661-007                    | Sampled:        | 09/10/04           |
| Matrix:    | Water                           | Received:       | 09/14/04           |
| Units:     | ug/L                            | Analyzed:       | 09/16/04           |
| Dìln Fac:  | 1.000                           |                 |                    |

MS

Lab ID: QC264777

| Analyte         | MSS Result | Spiked | Result | 4 RJ | (4) primite |
|-----------------|------------|--------|--------|------|-------------|
| Gasoline C7-C12 | 8.377      | 2,000  | 1,987  | 99   | 80-120      |

| Surrogate              | %REC   | Limits |  |
|------------------------|--------|--------|--|
| Trifluorotoluene (FID) | 110    | 70-141 |  |
| Bromofluorobenzene (FI | D) 102 | 80-143 |  |

Type:

MSD

Lab ID: QC264778

| Analyte         | Spiked | Result | %REC | Limits | RPD | Lim |
|-----------------|--------|--------|------|--------|-----|-----|
| Gasoline C7-C12 | 2,000  | 1,997  | 99   | 80-120 | 1   | 20  |

| Surrogat           | 8     | %REC_ | Limits |
|--------------------|-------|-------|--------|
|                    | FID)  | 105   | 70-141 |
| Bromofluorobenzene | (FID) | 100   | 80-143 |



Total Extractable Hydrocarbons Oakland Auto Works Lab #: 174642 Location: Client: EPA 3520C Stellar Environmental Solutions Prep: EPA 8015B 09/13/04 Project#: STANDARD <u> Analysis:</u> Sampled: Matrix: Water 09/14/04 Received: Units: ug/L 09/16/04 1.000 Prepared: Diln Fac: <u> Analyzed:</u> 09/17/04 94684 <u>Batch#:</u>

ield ID: ype:

MW-1

SAMPLE

Lab ID:

174642-001

RL Analyte 50 Diesel Cl0-C24

Surrogate \*REC 53-143 Hexacosane

'ield ID: 'ype:

MW-2

SAMPLE

Lab ID:

174642-002

Analyte Result 50 280 L Y Diesel C10-C24

Surrogate Limits Hexacosane 53-143

'ield ID:

MW - 3

Lab ID:

174642-003

SAMPLE 'ype:

Analyte Result 1,500 L 50 Diesel C10-C24

Surrogate 53-143 Hexacosane

?ield ID:

Type:

MW-5

SAMPLE

Lab ID:

174642-005

Result Analyte 50

1,900 L Y Diesel Cl0-C24

RRC Limits Surrogate 53-143 Hexacosane 84

ield ID: Cype:

MW-6 SAMPLE Lab ID:

174642-006

Result RL Analyte Diesel Clo-C24 600 L Y 50

Surrogate &REC Limits Hexacosane

L= Lighter hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard TD= Not Detected

REPORTING Limit Page 1 of 2

Sample Name : 174642-001,94684

: G:\GC11\CHA\260A058.RAW

ethod : ATEH244S.MTH

tart Time : 0.01 min Scale Factor: 0.0

End Time : 20.45 min

Plot Offset: 11 mV

Sample #: 94684

Date: 9/19/04 12:49 PM

Time of Injection: 9/17/04 08:13 PM

Low Point : 10.82 mV

High Point : 369.99 mV Plot Scale: 359.2 mV

Page 1 of 1

mw-l



Sample Name : 174642-002,94684

: G:\GC11\CHA\260A059.RAW

: ATEH244S.MTH Method

Start Time : 0.01 min Scale Factor:

End Time : 20.45 min

Plot Offset: 11 mV

Sample #: 94684

Date: 9/19/04 12:49 PM Time of Injection: 9/17/04 08:43 PM

Low Point : 10.80 mV

High Point : 369.98 mV

Page 1 of 1

Plot Scale: 359.2 mV



Sample Name : 174642-003,94684

: G:\GC11\CHA\260A060.RAW

ethod : ATEH244S.MTH

tart Time : 0.01 min Scale Factor: 0.0

End Time : 20.45 min Plot Offset: 15 mV

Page 1 of 1 Sample #: 94684

Date: 9/19/04 12:50 PM

Time of Injection: 9/17/04 09:12 PM

High Point : 441.80 mV Low Point : 14.54 mV

Plot Scale: 427.3 mV



Sample Name: 174642-005,94684

: G:\GC11\CHA\260A061.RAW FileName

: ATEH244S.MTH

Start Time : 0.01 min Scale Factor: 0.0

End Time : 20.45 min

Plot Offset: -1 mV

Sample #: 94684 Date: 9/19/04 12:50 PM

Time of Injection: 9/17/04 09:41 PM

Low Point : -0.70 mV

High Point: 747.95 mV

Page 1 of 1

Plot Scale: 748.6 mV





Sample Name: 174642-006,94684

: G:\GC11\CHA\260A062.RAW LleName

: ATEH244S.MTH

art Time : 0.01 min Scale Factor: 0.0

End Time : 20.45 min Plot Offset: 11 mV

Sample #: 94684

Date: 9/19/04 12:51 PM

Time of Injection: 9/17/04 10:11 PM

Low Point : 10.75 mV

Plot Scale: 325.2 mV

High Point: 335.93 mV

Page 1 of 1







Total Extractable Hydrocarbons 174642 Oakland Auto Works Location: Lab #: EPA 3520C Stellar Environmental Solutions Prep: Client: EPA 8015B Project#: STANDARD Analysis: 09/13/04 09/14/04 09/16/04 Sampled: Matrix: Water Units: ug/L Received: Prepared: 1.000 Diln Fac: 09/17/04 Batch#: 94684 <u> Analyzed:</u>

'ield ID: 'ype: 8-WM

SAMPLE

Lab ID:

174642-008

| Analyte        | Result    | RI |
|----------------|-----------|----|
| Diesel C10-C24 | 2,600 L Y | 50 |

Surrogate \*REC Limits
Hexacosane 112 53-143

'ype: .ab ID: BLANK

QC264988

Cleanup Method: EPA 3630C

| Anais          | te Result |    |  |
|----------------|-----------|----|--|
| Diesel Cl0-C24 | ND        | 50 |  |

Surrogate %REC Limits
Hexacosane 100 53-143

L= Lighter hydrocarbons contributed to the quantitation
Y= Sample exhibits chromatographic pattern which does not resemble standard
ND= Not Detected
RL= Reporting Limit
Page 2 of 2

Sample Name : 174642-008,94684

lleName : G:\GC11\CHA\260A063.RAW

ethod : ATEH244S.MTH

Part Time : 0.01 min Scale Factor: 0.0 End Time : 20.45 min

Plot Offset: 3 mV

Sample #: 94684

Date: 9/19/04 12:52 PM

Time of Injection: 9/17/04 10:40 PM

Low Point : 3.18 mV

High Point : 468.29 mV

Page 1 of 1

Plot Scale: 465.1 mV



le Name : ccv,04ws1621,dsl

0.0

: G:\GC13\CHB\261B003.RAW Name

od t Time : 0.01 min

e Factor:

: BTEH247S.MTH

: 19.99 min End Time

Plot Offset: 25 mV

Sample #: 500mg/L Date : 9/17/04 11:16 AM

Time of Injection: 9/17/04 10:53 AM

Low Point : 24.96 mV

High Point : 175.56 mV

Page 1 of 1

Plot Scale: 150.6 mV







Batch QC Report

Total Extractable Hydrocarbons

ab #: 174642 Location: Oakland Auto Works

EPA 3520C lient: Stellar Environmental Solutions Prep: Project#: STANDARD Analysis: EPA 8015B

atrix: Water Batch#: 94684 nits: ug/L Prepared: 09/16/04 Diln Fac: 1.000 09/17/04 Analyzed:

уре:

ВŞ

Cleanup Method: EPA 3630C

b ID: QC264989

%REC Limits Analyte Spiked Result iesel C10-C24 2,500 2,453 98 51-131

Surrogate %REC Limits

92 53-143 <u>H</u>exacosane

BSD

Cleanup Method: EPA 3630C

QC264990 ID:

| <b>A</b> nalyte | Spiked | Result | %REC | Limits | RPD | ) Lim |
|-----------------|--------|--------|------|--------|-----|-------|
| iesel C10-C24   | 2,500  | 2,460  | 98   | 51-131 | 0   | 42    |

Surrogate %REC Limits exacosane 86 53-143



|           | Purgeable Am                   | comatics by GC | :/ms               |
|-----------|--------------------------------|----------------|--------------------|
| Lab #: 17 | 74642                          | Location:      | Oakland Auto Works |
|           | tellar Environmental Solutions | Prep:          | EPA 5030B          |
|           | TANDARD                        | Analysis:      | EPA 8260B          |
| Field ID: | MW-1                           | Batch#:        | 94737              |
| Lab ID:   | 174642-001                     | Sampled:       | 09/13/04           |
| Matrix:   | Water                          | Received:      | 09/14/04           |
| Units:    | ug/L                           | Analyzed:      | 09/20/04           |
| Diln Fac: | 10.00                          |                |                    |

| Analyte             | Result | RL  |  |
|---------------------|--------|-----|--|
| MTBE                | 7.2    | 5.0 |  |
| Benzene             | 920    | 5.0 |  |
| Toluene             | 19     | 5.0 |  |
| Chlorobenzene       | ND     | 5.0 |  |
| Ethylbenzene        | 82     | 5.0 |  |
| m,p-Xylenes         | 140    | 5.0 |  |
| o-Xylene            | 61     | 5.0 |  |
| 1,3-Dichlorobenzene | ND     | 5.0 |  |
| 1,4-Dichlorobenzene | ND     | 5.0 |  |
| 1,2-Dichlorobenzene | ND     | 5.0 |  |

| Surrogate             | %REC | Limits |      |   |
|-----------------------|------|--------|------|---|
| 1,2-Dichloroethane-d4 | 104  | 80-120 | <br> |   |
| Toluene-d8            | 105  | 80-120 |      | • |
| Bromofluorobenzene    | 106  | 80-122 | <br> | · |



|           | Pu                    | rgeable Aroma | itics by  | gc/ms              |
|-----------|-----------------------|---------------|-----------|--------------------|
| T - 1 - 4 | 174642                |               | ion       | Oakland Auto Works |
| Lab #:    | 174642                |               | ocation:  |                    |
| Client:   | Stellar Environmental | Solutions I   | rep:      | EPA 5030B          |
| Project#: | STANDARD              | P             | malysis:  | EPA 8260B          |
| Field ID: | MW-2                  | E             | Batch#:   | 94710              |
| Lab ID:   | 174642-002            | 9             | Sampled:  | 09/13/04           |
| Matrix:   | Water                 | F             | Received: | 09/14/04           |
| Units:    | ug/L                  | P             | malyzed:  | 09/18/04           |
| Diln Fac: | 1.000                 |               |           |                    |

| Analyte             | Result | RL    |
|---------------------|--------|-------|
| MTBE                | 130    | 0.5   |
| Benzene             | 14     | 0.5   |
| Toluene             | ND     | 0.5   |
| Chlorobenzene       | ND     | 0.5   |
| Ethylbenzene        | ND     | 0.5   |
| m,p-Xylenes         | 0.6    | . 0.5 |
| o-Xylene            | ND     | 0.5   |
| 1,3-Dichlorobenzene | ND     | 0.5   |
| 1,4-Dichlorobenzene | ND     | 0.5   |
| 1,2-Dichlorobenzene | ND     | 0.5   |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 86   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 116  | 80-122 |



|           | Purgeable An                    | romatics by GC | J/MS               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:      | EPA 8260B          |
| Field ID: | 1, 2224,7                       | Batch#:        | 94710              |
| Lab ID:   | 174642-003                      | Sampled:       | 09/13/04           |
| Matrix:   | Water                           | Received:      | 09/14/04           |
| Units:    | ug/L                            | Analyzed:      | 09/18/04           |
| Diln Fac: |                                 |                |                    |

| Analyte             | Result | RL  |
|---------------------|--------|-----|
| MTBE                | 110    | 0.5 |
| Benzene             | 70     | 0.5 |
| Toluene             | 3.2    | 0.5 |
| Chlorobenzene       | ND     | 0.5 |
| Ethylbenzene        | 16     | 0.5 |
| m,p-Xylenes         | 9.6    | 0.5 |
| o-Xylene            | 3.1    | 0.5 |
| 1,3-Dichlorobenzene | ND     | 0.5 |
| 1,4-Dichlorobenzene | ND     | 0.5 |
| 1,2-Dichlorobenzene | ND     | 0.5 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 86   | 80-120 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 109  | 80-122 |  |



|           | Purgeable A                     | romatics by GO | :/MS               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:      | EPA 8260B          |
| Field ID: | MW-4                            | Batch#:        | 94662              |
| Lab ID:   | 174642-004                      | Sampled:       | 09/13/04           |
| Matrix:   | Water                           | Received:      | 09/14/04           |
| Units:    | ug/L                            | Analyzed:      | 09/17/04           |
| Diln Fac: | 1.000                           |                |                    |

| Analyte             | Result | RL  |
|---------------------|--------|-----|
| MTBE                | 2.3    | 0.5 |
| Benzene             | ND     | 0.5 |
| Toluene             | ND     | 0.5 |
| Chlorobenzene       | ND     | 0.5 |
| Ethylbenzene        | ND     | 0.5 |
| m,p-Xylenes         | ND     | 0.5 |
| o-Xylene            | ND     | 0.5 |
| 1,3-Dichlorobenzene | ND     | 0.5 |
| 1,4-Dichlorobenzene | ND     | 0.5 |
| 1,2-Dichlorobenzene | ND     | 0.5 |

| 1,2-Dichloroethane-d4 85 80-120 |  |
|---------------------------------|--|
|                                 |  |
| Toluene-d8 96 80-120            |  |
| Bromofluorobenzene 119 80-122   |  |



|           | Purgeable An                   | comatics by GC | Z/MS               |
|-----------|--------------------------------|----------------|--------------------|
| Lab #: 1  | 74642                          | Location:      | Oakland Auto Works |
| i         | tellar Environmental Solutions | Prep:          | EPA 5030B          |
| 1         | TANDARD                        | Analysis:      | EPA 8260B          |
| Field ID: | MW-5                           | Batch#:        | 94716              |
| Lab ID:   | 174642-005                     | Sampled:       | 09/13/04           |
| Matrix:   | Water                          | Received:      | 09/14/04           |
| Units:    | ug/L                           | Analyzed:      | 09/17/04           |
| Diln Fac: | 8.333                          | -              |                    |

| Analyte             | Result | RL  |  |
|---------------------|--------|-----|--|
| MTBE                | ND     | 4.2 |  |
| Benzene             | 580    | 4.2 |  |
| Toluene             | 240    | 4.2 |  |
| Chlorobenzene       | ND     | 4.2 |  |
| Ethylbenzene        | 260    | 4.2 |  |
| m,p-Xylenes         | 750    | 4.2 |  |
| o-Xylene            | 510    | 4.2 |  |
| 1,3-Dichlorobenzene | ND     | 4.2 |  |
| 1,4-Dichlorobenzene | ND     | 4.2 |  |
| 1,2-Dichlorobenzene | ND     | 4.2 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 104  | 80-120 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-122 |  |



| Purgeable A                             | romatics by GC | /ms                |
|-----------------------------------------|----------------|--------------------|
| Lab #: 174642                           | Location:      | Oakland Auto Works |
| Client: Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: STANDARD                      | Analysis:      | EPA 8260B          |
| Field ID: MW-6                          | Batch#:        | 94716              |
| Lab ID: 174642-006                      | Sampled:       | 09/13/04           |
| Matrix: Water                           | Received:      | 09/14/04           |
| Units: ug/L                             | Analyzed:      | 09/17/04           |
| Diln Fac: 1.000                         |                |                    |

|                     | Result | RL  |
|---------------------|--------|-----|
| Analyte             | Result |     |
| MTBE                | ND     | 0.5 |
| Benzene             | 2.4    | 0.5 |
| Toluene             | ND     | 0.5 |
| Chlorobenzene       | ND     | 0.5 |
| Ethylbenzene        | 0.8    | 0.5 |
| m,p-Xylenes         | ИD     | 0.5 |
| o-Xylene            | ND     | 0.5 |
| 1,3-Dichlorobenzene | ND     | 0.5 |
| 1,4-Dichlorobenzene | ND     | 0.5 |
| 1,2-Dichlorobenzene | ND     | 0.5 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 106  | 80-120 |
| Toluene-d8            | 100  | 80-120 |
| Bromofluorobenzene    | 105  | 80-122 |



|           | Purgeable Ar                   | romatics by GC | !/MS               |
|-----------|--------------------------------|----------------|--------------------|
| Lab #: 17 | 74642                          | Location:      | Oakland Auto Works |
|           | tellar Environmental Solutions | Prep:          | EPA 5030B          |
|           | TANDARD                        | Analysis:      | EPA 8260B          |
| Field ID: | MW - 7                         | Batch#:        | 94676              |
| Lab ID:   | 174642-007                     | Sampled:       | 09/13/04           |
| Matrix:   | Water                          | Received:      | 09/14/04           |
| Units:    | ug/L                           | Analyzed:      | 09/16/04           |
| Diln Fac: | 1.000                          | <del>-</del>   |                    |

| Analyte             | Result | Ri  |   |
|---------------------|--------|-----|---|
| MTBE                | ND     | 0.5 |   |
| Benzene             | ND     | 0.5 |   |
| Toluene             | ND     | 0.5 |   |
| Chlorobenzene       | ND     | 0.5 |   |
| Ethylbenzene        | ND     | 0.5 |   |
| m,p-Xylenes         | ND     | 0.5 |   |
| o-Xylene            | ND     | 0.5 |   |
| 1,3-Dichlorobenzene | ND     | 0.5 |   |
| 1,4-Dichlorobenzene | ND     | 0.5 |   |
| 1,2-Dichlorobenzene | ND     | 0.5 | · |

| Surrogate             | %RBC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 110  | 80-120 |  |
| Toluene-d8            | 103  | 80-120 |  |
| Bromofluorobenzene    | 103  | 80-122 |  |



|           | Purgeable An                    | romatics by GO | :/MS               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:      | EPA 8260B          |
| Field ID: | MW-8                            | Batch#:        | 94716              |
| Lab ID:   | 174642-008                      | Sampled:       | 09/13/04           |
| Matrix:   | Water                           | Received:      | 09/14/04           |
| Units:    | ug/L                            | Analyzed:      | 09/17/04           |
| Diln Fac: | 2.000                           |                |                    |

| 200000000000000000000000000000000000000 |        |     |   |
|-----------------------------------------|--------|-----|---|
| Analyte                                 | Result | RL  |   |
| MTBE                                    | 120    | 1.0 |   |
| Benzene                                 | ND     | 1.0 |   |
| Toluene                                 | ND     | 1.0 |   |
| Chlorobenzene                           | ND     | 1.0 |   |
| Ethylbenzene                            | ND     | 1.0 |   |
| m,p-Xylenes                             | ND     | 1.0 |   |
| o-Xylene                                | ND     | 1.0 |   |
| 1,3-Dichlorobenzene                     | ND     | 1.0 |   |
| 1,4-Dichlorobenzene                     | ND     | 1.0 |   |
| 1,2-Dichlorobenzene                     | ND     | 1.0 | • |

| Surrogate             | %REC | Limits |         |
|-----------------------|------|--------|---------|
| 1,2-Dichloroethane-d4 | 104  | 80-120 |         |
| Toluene-d8            | 103  | 80-120 |         |
| Bromofluorobenzene    | 106  | 80-122 | <u></u> |



|            | Purgeable A                  | romatics by GC | :/MS               |
|------------|------------------------------|----------------|--------------------|
| Lab #: 174 | 642                          | Location:      | Oakland Auto Works |
|            | llar Environmental Solutions | Prep:          | EPA 5030B          |
|            | MDARD                        | Analysis:      | EPA 8260B          |
| Type:      | BLANK                        | Diln Fac:      | 1.000              |
| Lab ID:    | QC264891                     | Batch#:        | 94662              |
| Matrix:    | Water                        | Analyzed:      | 09/16/04           |
| Units:     | ug/L                         | -              |                    |

| Analyte             | Result | RL  |
|---------------------|--------|-----|
| MTBE                | ND     | 0.5 |
| Benzene             | ND     | 0.5 |
| Toluene             | ND     | 0.5 |
| Chlorobenzene       | ND     | 0.5 |
| Ethylbenzene        | ND     | 0.5 |
| m,p-Xylenes         | ND     | 0.5 |
| o-Xylene            | ND     | 0.5 |
| 1,3-Dichlorobenzene | ND     | 0.5 |
| 1,4-Dichlorobenzene | ND     | 0.5 |
| 1,2-Dichlorobenzene | ND     | 0.5 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 82   | 80-120 |
| Toluene-d8            | 96   | 80-120 |
| Bromofluorobenzene    | 117  | 80-122 |



|           | Purgeable Ar                    | omatics by G | C/MS               |
|-----------|---------------------------------|--------------|--------------------|
| Lab #:    | 174642                          | Location:    | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:        | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:    | EPA 8260B          |
| Type:     | BLANK                           | Diln Fac:    | 1.000              |
| Lab ID:   | QC264892                        | Batch#:      | 94662              |
| Matrix:   | Water                           | Analyzed:    | 09/16/04           |
| Units:    | ug/L                            |              |                    |

| Analyte             | Result | RL  |  |
|---------------------|--------|-----|--|
| MTBE                | ND     | 0.5 |  |
| Benzene             | ND     | 0.5 |  |
| Toluene             | ND     | 0.5 |  |
| Chlorobenzene       | ND     | 0.5 |  |
| Ethylbenzene        | ND     | 0.5 |  |
| m,p-Xylenes         | ND     | 0.5 |  |
| o-Xylene            | ND     | 0.5 |  |
| 1,3-Dichlorobenzene | ND     | 0.5 |  |
| 1,4-Dichlorobenzene | ND     | 0.5 |  |
| 1,2-Dichlorobenzene | ND     | 0.5 |  |

| Surrogate             | %RBC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 82   | 80-120 |
| Toluene-d8            | 96   | 80-120 |
| Bromofluorobenzene    | 118  | 80-122 |



|           | Purgeable A:                    | romatics by GC | J/MS               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | : STANDARD                      | Analysis:      | EPA 8260B          |
| Type:     | BLANK                           | Diln Fac:      | 1.000              |
| Lab ID:   | QC264950                        | Batch#:        | 94676              |
| Matrix:   | Water                           | Analyzed:      | 09/16/04           |
| Units:    | ug/L                            | -              |                    |

| Analyte             | Result | RL  |
|---------------------|--------|-----|
| MTBE                | ND     | 0.5 |
| Benzene             | ND     | 0.5 |
| Toluene             | ND     | 0.5 |
| Chlorobenzene       | ND     | 0.5 |
| Ethylbenzene        | ND     | 0.5 |
| m,p-Xylenes         | ND     | 0.5 |
| o-Xylene            | ND     | 0.5 |
| 1,3-Dichlorobenzene | ND     | 0.5 |
| 1,4-Dichlorobenzene | ND     | 0.5 |
| 1,2-Dichlorobenzene | ND     | 0.5 |

| Surrogate             | %REC | Limits |  |      |
|-----------------------|------|--------|--|------|
| 1,2-Dichloroethane-d4 | 102  | 80-120 |  |      |
| Toluene-d8            | 104  | 80-120 |  |      |
| Bromofluorobenzene    | 104  | 80-122 |  | <br> |



|                  | ±                               |                |                    |
|------------------|---------------------------------|----------------|--------------------|
|                  | Purgeable A                     | comatics by GC | C/MS               |
| Lab #:           | 174642                          | Location:      | Oakland Auto Works |
| Client:          | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#:        | STANDARD                        | Analysis:      | EPA 8260B          |
| Type:            | BLANK                           | Diln Fac:      | 1.000              |
| Type:<br>Lab ID: | QC265104                        | Batch#:        | 94710              |
| Matrix:          | Water                           | Analyzed:      | 09/17/04           |
| Units:           | ug/L                            |                |                    |
|                  |                                 |                |                    |

|                     |        |     | 000000000000000000000000000000000000000 |
|---------------------|--------|-----|-----------------------------------------|
| Analyte             | Result | RL  |                                         |
| MTBE                | ND     | 0.5 |                                         |
| Benzene             | ND     | 0.5 |                                         |
| Toluene             | ND     | 0.5 |                                         |
| Chlorobenzene       | ND     | 0.5 |                                         |
| Ethylbenzene        | ND     | 0.5 |                                         |
| m,p-Xylenes         | ND     | 0.5 |                                         |
| o-Xylene            | ND     | 0.5 |                                         |
| 1,3-Dichlorobenzene | ND     | 0.5 |                                         |
| 1,4-Dichlorobenzene | ND     | 0.5 |                                         |
| 1,2-Dichlorobenzene | ND     | 0.5 |                                         |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 82   | 80-120 |  |
| Toluene-d8            | 95   | 80-120 |  |
| Bromofluorobenzene    | 120  | 80-122 |  |



|           | Purgeable An                    | romatics by GC | ?/MS               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:      | EPA 8260B          |
| Type:     | BLANK                           | Diln Fac:      | 1.000              |
| Lab ID:   | QC265133                        | Batch#:        | 94716              |
| Matrix:   | Water                           | Analyzed:      | 09/17/04           |
| Units:    | ug/L                            |                |                    |

| Analyte             | Result | RL  |
|---------------------|--------|-----|
| MTBE                | ND     | 0.5 |
| Benzene             | ND     | 0.5 |
| Toluene             | ND     | 0.5 |
| Chlorobenzene       | ND     | 0.5 |
| Ethylbenzene        | ND     | 0.5 |
| m,p-Xylenes         | ND     | 0.5 |
| o-Xylene            | ND     | 0.5 |
| 1,3-Dichlorobenzene | ND     | 0.5 |
| 1,4-Dichlorobenzene | ND     | 0.5 |
| 1,2-Dichlorobenzene | ND     | 0.5 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 104  | 80-120 |  |
| Toluene-d8            | 105  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-122 |  |



|           | Purqeable Ar                    | omatics by GO | C/MS               |
|-----------|---------------------------------|---------------|--------------------|
|           |                                 |               |                    |
| Lab #:    | 174642                          | Location:     | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:         | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:     | EPA 8260B          |
| Type:     | BLANK                           | Diln Fac:     | 1.000              |
| Lab ID:   | QC265225                        | Batch#:       | 94737              |
| Matrix:   | Water                           | Analyzed:     | 09/20/04           |
| Units:    | ug/L                            |               |                    |

|                     | <u>-</u> |     | **** |
|---------------------|----------|-----|------|
| Analyte             |          | RL  |      |
| MTBE                | ND       | 0.5 |      |
| Benzene             | ND       | 0.5 |      |
| Toluene             | ND       | 0.5 |      |
| Chlorobenzene       | ND       | 0.5 |      |
| Ethylbenzene        | ND       | 0.5 |      |
| m,p-Xylenes         | ND       | 0.5 |      |
| o-Xylene            | ND       | 0.5 |      |
| 1,3-Dichlorobenzene | ND       | 0.5 |      |
| 1,4-Dichlorobenzene | ND       | 0.5 |      |
| 1,2-Dichlorobenzene | ND       | 0.5 | •    |

| Surrogate             | %REC  | Limits |
|-----------------------|-------|--------|
| 1,2-Dichloroethane-d4 | 104   | 80-120 |
| Toluene-d8            | 100   | 80-120 |
| Bromofluorobenzene    | 124 * | 80-122 |

 $<sup>\</sup>star=$  Value outside of QC limits; see narrative

ND= Not Detected

RL= Reporting Limit



|           | Purgeable A                     | romatics by GC | :/MS               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:      | EPA 8260B          |
| Type:     | LCS                             | Diln Fac:      | 1.000              |
| Lab ID:   | QC264890                        | Batch#:        | 94662              |
| Matrix:   | Water                           | Analyzed:      | 09/16/04           |
| Units:    | ug/L                            |                |                    |

| Analyte       | Spiked | Result | %RE | C Limits |  |
|---------------|--------|--------|-----|----------|--|
| MTBE          | 50.00  | 43.58  | 87  | 74-128   |  |
| Benzene       | 25.00  | 24.50  | 98  | 79~120   |  |
| Toluene       | 25.00  | 24.36  | 97  | 80-120   |  |
| Chlorobenzene | 25.00  | 24.58  | 98  | 80-120   |  |
| Ethylbenzene  | 25.00  | 23.32  | 93  | 80-121   |  |
| m,p-Xylenes   | 50.00  | 41.99  | 84  | 80-120   |  |
| o-Xylene      | 25.00  | 21.08  | 84  | 80-120   |  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 81   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 113  | 80-122 |



|            | Purgeable A                     | romatics by GC | /MS                |
|------------|---------------------------------|----------------|--------------------|
| Lab #:     | 174642                          | Location:      | Oakland Auto Works |
| Client:    | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#:  | STANDARD                        | Analysis:      | EPA 8260B          |
| Field ID:  | 22222222                        | Batch#:        | 94662              |
| MSS Lab II | 9: 174639-001                   | Sampled:       | 09/13/04           |
| Matrix:    | Water                           | Received:      | 09/14/04           |
| Units:     | ug/L                            | Analyzed:      | 09/16/04           |
| Diln Fac:  | 1.000                           |                |                    |
| )          |                                 |                |                    |

MS

Lab ID:

QC264893

| Analyte       | MSS Result | Spiked | Result | %REC | Limits |
|---------------|------------|--------|--------|------|--------|
| MTBE          | <0.06800   | 50.00  | 45.12  | 90   | 73-120 |
| Benzene       | <0.04900   | 25.00  | 24.67  | 99   | 77-120 |
| Toluene       | <0.06300   | 25.00  | 24.32  | 97   | 72-120 |
| Chlorobenzene | <0.03000   | 25.00  | 24.32  | 97   | 80-120 |
| Ethylbenzene  | <0.04600   | 25.00  | 23.44  | 94   | 73-120 |
| m,p-Xylenes   | <0.1600    | 50.00  | 42.66  | 85   | 71-120 |
| o-Xylene      | <0.06200   | 25.00  | 21.63  | 87   | 67-120 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 83   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 113  | 80-122 |

Type:

MSD

| Analyte       | Spiked | Result | *REC | Limite | RPE | Lim |
|---------------|--------|--------|------|--------|-----|-----|
| MTBE          | 50.00  | 44.64  | 89   | 73-120 | 1   | 20  |
| Benzene       | 25.00  | 25.08  | 100  | 77-120 | 2   | 20  |
| Toluene       | 25.00  | 24.94  | 100  | 72-120 | 3   | 20  |
| Chlorobenzene | 25.00  | 24.90  | 100  | 80-120 | 2   | 20  |
| Ethylbenzene  | 25.00  | 24.35  | 97   | 73-120 | 4   | 20  |
| m,p-Xylenes   | 50.00  | 45.25  | 90   | 71-120 | 6   | 20  |
| o-Xylene      | 25.00  | 22.78  | 91   | 67-120 | 5   | 20  |

| Surrogate             | %REC        | Limits |
|-----------------------|-------------|--------|
| 1,2-Dichloroethane-d4 | 84          | 80-120 |
| Toluene-d8            | 96          | 80-120 |
| Bromofluorobenzene    | 111         | 80-122 |
|                       | <del></del> |        |



|           | Purgeable A                     | romatics by GC | ?/MS               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:      | EPA 8260B          |
| Matrix:   | Water                           | Batch#:        | 94676              |
| Units:    | $\mathtt{ug}/\mathtt{L}$        | Analyzed:      | 09/16/04           |
| Diln Fac: | 1.000                           |                |                    |

Type:

BS

Lab ID: QC264948

| Analyte       | Spiked | Result | %REC | Limits |
|---------------|--------|--------|------|--------|
| MTBE          | 50.00  | 44.67  | 89   | 74-128 |
| Benzene       | 25.00  | 24.17  | 97   | 79-120 |
| Toluene       | 25.00  | 24.62  | 98   | 80-120 |
| Chlorobenzene | 25.00  | 23.96  | 96   | 80-120 |
| Ethylbenzene  | 25.00  | 24.62  | 98   | 80-121 |
| m,p-Xylenes   | 50.00  | 49.86  | 100  | 80-120 |
| o-Xylene      | 25.00  | 23.99  | 96   | 80-120 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 97   | 80-120 |  |
| Toluene-d8            | 100  | 80-120 |  |
| Bromofluorobenzene    | 98   | 80-122 |  |

Type:

BSD

| Analyte       | Spiked | Result | %RE( | C Limits | EPI | ) Lim |
|---------------|--------|--------|------|----------|-----|-------|
| MTBE          | 50.00  | 46.00  | 92   | 74-128   | 3   | 20    |
| Benzene       | 25.00  | 23.01  | 92   | 79-120   | 5   | 20    |
| Toluene       | 25.00  | 24.16  | 97   | 80-120   | 2   | 20    |
| Chlorobenzene | 25.00  | 23.51  | 94   | 80-120   | 2   | 20    |
| Ethylbenzene  | 25.00  | 24.16  | 97   | 80-121   | 2   | 20    |
| m,p-Xylenes   | 50.00  | 46.98  | 94   | 80-120   | 6   | 20    |
| o-Xylene      | 25.00  | 24.32  | 97   | 80-120   | 1   | 20    |

| Surrogate             | *REC | Limite |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 100  | 80-120 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 100  | 80-122 |  |



# Purgeable Aromatics by GC/MS

Lab #: 174642 Location: Oakland Auto Works

Client: Stellar Environmental Solutions Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B

Matrix: Water Batch#: 94710

Units: ug/L Analyzed: 09/17/04
Diln Fac: 1.000

Type:

BS

Lab ID:

QC265102

| _             |        | Result | %RE(                      | Limits | 8000000 |
|---------------|--------|--------|---------------------------|--------|---------|
| Analyte       | Spiked |        | 0,000,000,000,000,000,000 |        |         |
| MTBE          | 50.00  | 45.60  | 91                        | 74-128 |         |
| Benzene       | 25.00  | 24.63  | 99                        | 79-120 |         |
| Toluene       | 25.00  | 24.22  | 97                        | 80-120 |         |
| Chlorobenzene | 25.00  | 24.57  | 98                        | 80-120 |         |
| Ethylbenzene  | 25.00  | 23.01  | 92                        | 80-121 |         |
| m,p-Xylenes   | 50.00  | 41.27  | 83                        | 80-120 |         |
| o-Xylene      | 25.00  | 20.65  | 83                        | 80-120 |         |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 83   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 115  | 80-122 |

Type:

BSD

Lab ID:

QC265103

| Analyte       | Spiked | Result | %REC | Limits | RPD | Lim |
|---------------|--------|--------|------|--------|-----|-----|
| MTBE          | 50.00  | 44.38  | 89   | 74-128 | 3   | 20  |
| Benzene       | 25.00  | 25.39  | 102  | 79-120 | 3   | 20  |
| Toluene       | 25.00  | 25.35  | 101  | 80-120 | 5   | 20  |
| Chlorobenzene | 25.00  | 25.52  | 102  | 80-120 | 4   | 20  |
| Ethylbenzene  | 25.00  | 24.56  | 98   | 80-121 | 7   | 20  |
| m,p-Xylenes   | 50.00  | 45.20  | 90   | 80-120 | 9   | 20  |
| o-Xylene      | 25.00  | 22.72  | 91   | 80-120 | 10  | 20_ |
|               |        |        |      |        |     |     |

| Surrogate             | %REC | Limite |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 82   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 111  | 80-122 |



|           | Purgeable An                    | comatics by GC | е/ив               |
|-----------|---------------------------------|----------------|--------------------|
| Lab #:    | 174642                          | Location:      | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:      | EPA 8260B          |
| Matrix:   | Water                           | Batch#:        | 94716              |
| Units:    | ug/L                            | Analyzed:      | 09/17/04           |
| Diln Fac: | 1.000                           |                |                    |

Type:

BS

Lab ID: QC265131

| Analyte       | Spiked | Result | %RBC | Limits |  |
|---------------|--------|--------|------|--------|--|
| MTBE          | 50.00  | 46.08  | 92   | 74-128 |  |
| Benzene       | 25.00  | 25.52  | 102  | 79-120 |  |
| Toluene       | 25.00  | 25.80  | 103  | 80-120 |  |
| Chlorobenzene | 25.00  | 25.53  | 102  | 80-120 |  |
| Ethylbenzene  | 25.00  | 26.83  | 107  | 80-121 |  |
| m,p-Xylenes   | 50.00  | 53.17  | 106  | 80-120 |  |
| o-Xylene      | 25.00  | 25.99  | 104  | 80-120 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 102  | 80-120 |  |
| Toluene-d8            | 102  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-122 |  |

Type:

BSD

| Analyte       | Spiked | Result | %REC | Limits | RPD | Lin |
|---------------|--------|--------|------|--------|-----|-----|
| MTBE          | 50.00  | 45.37  | 91   | 74-128 | 2   | 20  |
| Benzene       | 25.00  | 23.27  | 93   | 79-120 | 9   | 20  |
| Toluene       | 25.00  | 24.88  | 100  | 80-120 | 4   | 20  |
| Chlorobenzene | 25.00  | 24.25  | 97   | 80-120 | 5   | 20  |
| Ethylbenzene  | 25.00  | 24.09  | 96   | 80-121 | 11  | 20  |
| m, p-Xylenes  | 50.00  | 48.57  | 97   | 80-120 | 9   | 20  |
| o-Xylene      | 25.00  | 24.34  | 97   | 80-120 | 7   | 20  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 99   | 80-120 |
| Toluene-d8            | 100  | 80-120 |
| Bromofluorobenzene    | 102  | 80-122 |



| Purgeable Ar                    | comatics by GC | C/MS               |
|---------------------------------|----------------|--------------------|
| 174642                          | Location:      | Oakland Auto Works |
| Stellar Environmental Solutions | Prep:          | EPA 5030B          |
| STANDARD                        | Analysis:      | EPA 8260B          |

94737 Batch#: Matrix: Water 09/20/04 Units: Analyzed: ug/L

Diln Fac: 1.000

Project#: STANDARD

Type:

Lab #:

Client:

BS

Lab ID:

QC265223

| Analyte       | Spiked | Result | %REC | Limits |
|---------------|--------|--------|------|--------|
| MTBE          | 50.00  | 51.54  | 103  | 74-128 |
| Benzene       | 25.00  | 26.55  | 106  | 79-120 |
| Toluene       | 25.00  | 27.46  | 110  | 80-120 |
| Chlorobenzene | 25.00  | 25.91  | 104  | 80-120 |
| Ethylbenzene  | 25.00  | 27.53  | 110  | 80-121 |
| m,p-Xylenes   | 50.00  | 54.86  | 110  | 80-120 |
| o-Xylene      | 25.00  | 26.93  | 108  | 80-120 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| 1,2-Dichloroethane-d4 | 109  | 80-120 |  |
| Toluene-d8            | 104  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-122 |  |

BSD

Lab ID:

QC265224

| Analyte       | Spiked | Result | %REC | Limits | RPD | Lim |
|---------------|--------|--------|------|--------|-----|-----|
| MTBE          | 50.00  | 51.06  | 102  | 74-128 | 1   | 20  |
| Benzene       | 25.00  | 25.80  | 103  | 79-120 | 3   | 20  |
| Toluene       | 25.00  | 26.68  | 107  | 80-120 | 3   | 20  |
| Chlorobenzene | 25.00  | 25.43  | 102  | 80-120 | 2   | 20  |
| Ethylbenzene  | 25.00  | 26.80  | 107  | 80-121 | 3   | 20  |
| m,p-Xylenes   | 50.00  | 53.05  | 106  | 80-120 | 3   | 20  |
| o-Xylene      | 25.00  | 26.13  | 105  | 80-120 | 3   | 20  |
|               |        |        |      |        | •   | ,   |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| 1,2-Dichloroethane-d4 | 107  | 80-120 |
| Toluene-d8            | 103  | 80-120 |
| Bromofluorobenzene    | 102  | 80-122 |



Gasoline Oxygenates by GC/MS Oakland Auto Works 174642 Location: Lab #: Prep: Analysis: EPA 5030B Client: Stellar Environmental Solutions **EPA 8260B** Project#: STANDARD 09/13/04 Sampled: Received: Matrix: Water 09/14/04 uq/L Units:

Field ID: Type: Lab ID:

MW-1SAMPLE 174642-001

Diln Fac: Batch#: Analyzed: 10.00 94737 09/20/04

| Analyte                       | Result | 3.5 |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | 120    | 100 |  |
| MTBE                          | 7.2    | 5.0 |  |
| Isopropyl Ether (DIPE)        | ND     | 5.0 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 5.0 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 5.0 |  |
| 1,2-Dichloroethane            | ND     | 5.0 |  |
| 1,2-Dibromoethane             | ND     | 5.0 |  |

| Surrogate             | *REC | Limits |   |
|-----------------------|------|--------|---|
| Dibromofluoromethane  | 101  | 80-120 |   |
| 1,2-Dichloroethane-d4 | 104  | 80-120 | • |
| Toluene-d8            | 105  | 80-120 |   |
| Bromofluorobenzene    | 106  | 80-122 |   |

Field ID: Type: Lab ID:

MW-2 SAMPLE 174642-002 Diln Fac: Batch#: Analyzed:

1.000 94710 09/18/04

| Analyte                       |     | RL  |  |
|-------------------------------|-----|-----|--|
| tert-Butyl Alcohol (TBA)      | 130 | 10  |  |
| MTBE                          | 130 | 0.5 |  |
| Isopropyl Ether (DIPE)        | 0.9 | 0.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND  | 0.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND  | 0.5 |  |
| 1,2-Dichloroethane            | 1.2 | 0.5 |  |
| 1,2-Dibromoethane             | ИD  | 0.5 |  |

| Surrogate             | *REC | Limite |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 91   | 80-120 |  |
| 1,2-Dichloroethane-d4 | 86   | 80-120 |  |
| Toluene-d8            | 95   | 80-120 |  |
| Bromofluorobenzene    | 116  | 80-122 |  |

\*= Value outside of QC limits; see narrative NA= Not Analyzed ND= Not Detected

RL= Reporting Limit Page 1 of 9



Gasoline Oxygenates by GC/MS Oakland Auto Works EPA 5030B 174642 Location: Lab #: Prep: Analysis: Sampled: Stellar Environmental Solutions Client: EPA 8260B 09/13/04 09/14/04 STANDARD Project#: Water Matrix: Units: uq/L Received:

1.000 Diln Fac: Field ID: MW-3 SAMPLE 94710 Batch#: Гуре: 09/18/04 Lab ID: 174642-003 Analyzed:

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | 82     | 10  |  |
| MTBE                          | 110    | 0.5 |  |
| Isopropyl Ether (DIPE)        | 1.5    | 0.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5 |  |
| 1,2-Dichloroethane            | ND     | 0.5 |  |
| 1,2-Dibromoethane             | ND     | 0.5 |  |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 88   | 80-120 |  |
| 1,2-Dichloroethane-d4 | 86   | 80-120 |  |
| Toluene-d8            | 98   | 80-120 |  |
| Bromofluorobenzene    | 109  | 80-122 |  |
|                       |      |        |  |

1.000 Diln Fac: Field ID: Type: Lab ID: 94662 SAMPLE Batch#: 09/17/04 174642-004 Analyzed:

| Analyte                       | Rest | ilt | RI  |
|-------------------------------|------|-----|-----|
| tert-Butyl Alcohol (TBA)      | ND   |     | 10  |
| MTBE                          |      | 2.3 | 0.5 |
| Isopropyl Ether (DIPE)        | ND   |     | 0.5 |
| Ethyl tert-Butyl Ether (ETBE) | ND   |     | 0.5 |
| Methyl tert-Amyl Ether (TAME) | ND   |     | 0.5 |
| 1,2-Dichloroethane            | ND   |     | 0.5 |
| 1,2-Dibromoethane             | ND   |     | 0.5 |

| Surrogate             | REC | Limita |
|-----------------------|-----|--------|
| Dibromofluoromethane  | 90  | 80-120 |
| 1,2-Dichloroethane-d4 | 85  | 80-120 |
| Toluene-d8            | 96  | 80-120 |
| Bromofluorobenzene    | 119 | 80-122 |

RL= Reporting Limit Page 2 of 9

<sup>\*=</sup> Value outside of QC limits; see narrative

NA= Not Analyzed ND= Not Detected



Gasoline Oxygenates by GC/MS Oakland Auto Works EPA 5030B Lab #: 174642 Location: Prep: Analysis: Client: Stellar Environmental Solutions EPA 8260B 09/13/04 STANDARD Project#: Sampled: Matrix: Water Units: uq/L Received: 09/14/04

Field ID: Type: Lab ID:

MW-5 SAMPLE 174642-005 Diln Fac: Batch#: Analyzed:

8.333 94716 09/17/04

| Analyte                       | Result | ĘB S |  |
|-------------------------------|--------|------|--|
| tert-Butyl Alcohol (TBA)      | 87     | 83   |  |
| MTBE                          | ND     | 4.2  |  |
| Isopropyl Ether (DIPE)        | ND     | 4.2  |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 4.2  |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 4.2  |  |
| 1,2-Dichloroethane            | 18     | 4.2  |  |
| 1,2-Dibromoethane             | NDND_  | 4.2  |  |

| Surrogate             | 2507 |        |  |
|-----------------------|------|--------|--|
|                       |      |        |  |
| Dibromofluoromethane  | 104  | 80-120 |  |
| 1,2-Dichloroethane-d4 | 104  | 80-120 |  |
| Toluene-d8            | 101  | 80-120 |  |
| Bromofluorobenzene    | 102  | 80-122 |  |

Field ID: Type: Lab ID:

MW-6 SAMPLE 174642-006 Diln Fac: Batch#: Analyzed:

1.000 94716 09/17/04

| Analyte                       | Result | RL  |  |
|-------------------------------|--------|-----|--|
| tert-Butyl Alcohol (TBA)      | 43     | 10  |  |
| MTBE                          | ND     | 0.5 |  |
| Isopropyl Ether (DIPE)        | 1.0    | 0.5 |  |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5 |  |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5 |  |
| 1,2-Dichloroethane            | 31     | 0.5 |  |
| 1,2-Dibromoethane             | ND     | 0.5 |  |

| Surrogate             | *REC | Limits |   |
|-----------------------|------|--------|---|
| Dibromofluoromethane  | 101  | 80-120 |   |
| 1,2-Dichloroethane-d4 | 106  | 80-120 |   |
| Toluene-d8            | 100  | 80-120 | i |
| Bromofluorobenzene    | 105  | 80-122 |   |

\*= Value outside of QC limits; see narrative

NA= Not Analyzed ND= Not Detected

RL= Reporting Limit Page 3 of 9



Gasoline Oxygenates by GC/MS Location: Oakland Auto Works 174642 Lab #: EPA 5030B Client: Stellar Environmental Solutions Prep: STANDARD Analysis: EPA 8260B Project#: 09/13/04 09/14/04 Sampled: Matrix: Water Units: uq/L <u>Received:</u>

Field ID: уре: Lab ID:

SAMPLE 174642-007

Diln Fac: Batch#: Analyzed:

1.000 94676 09/16/04

Result Analyte tert-Butyl Alcohol (TBA) ND 10 0.5 ND0.5 Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Methyl tert-Amyl Ether (TAME) ND 0.5 ND0.5 NDND 0.5 1,2-Dichloroethane 1,2-Dibromoethane ND

| Surrogate             | *REC | is in the |
|-----------------------|------|-----------|
| Dibromofluoromethane  | 100  | 80-120    |
| 1,2-Dichloroethane-d4 | 110  | 80-120    |
| Toluene-d8            | 103  | 80-120    |
| ■ Bromofluorobenzene  | 103  | 80-122    |
|                       |      |           |

Field ID: Гуре:

ab ID:

8 - WM SAMPLE 174642-008 Diln Fac: Batch#: Analyzed:

2.000 94716 09/17/04

Result Analyte tert-Butyl Alcohol (TBA) 20 96 1.0 120 Isopropyl Ether (DIPE)
Ethyl tert-Butyl Ether (ETBE)
Methyl tert-Amyl Ether (TAME) 1.0 1.1 ND 1.0 1.0 ND1.0 1,2-Dichloroethane ND 2-Dibromoethane 1.0

| <b>:</b>     | rrogate   | *REC | Limits |  |
|--------------|-----------|------|--------|--|
| Dibromofluor |           | 103  | 80-120 |  |
| 1,2-Dichloro | ethane-d4 | 104  | 80-120 |  |
| Toluene-d8   |           | 103  | 80-120 |  |
| Bromofluorob | enzene    | 106  | 80-122 |  |

\*= Value outside of QC limits; see narrative

NA= Not Analyzed ND= Not Detected

RL= Reporting Limit Page 4 of 9



Gasoline Oxygenates by GC/MS Oakland Auto Works EPA 5030B Location: Lab #: 174642 Stellar Environmental Solutions Client: Prep: EPA 8260B 09/13/04 09/14/04 Analysis: Sampled: STANDARD Project#: Matrix: Water Units: uq/LReceived:

Type: Lab ID: Diln Fac:

BLANK OC264891 1.000

Batch#: Analyzed:

94662 09/16/04

| Analyte                   | Result   | RL  |                                       |
|---------------------------|----------|-----|---------------------------------------|
| tert-Butyl Alcohol (TBA)  | ND       | 10  |                                       |
| MTBE                      | ND       | 0.5 | •                                     |
| Isopropyl Ether (DIPE)    | ND       | 0.5 |                                       |
| Ethyl tert-Butyl Ether (E | TBE) ND  | 0.5 |                                       |
| Methyl tert-Amyl Ether (T | CAME) ND | 0.5 |                                       |
| 1,2-Dichloroethane        | ND       | 0.5 |                                       |
| 1,2-Dibromoethane         | ND       | 0.5 | · · · · · · · · · · · · · · · · · · · |

| Surrogate             | *REC | Limits |   |
|-----------------------|------|--------|---|
| Dibromofluoromethane  | 84   | 80-120 | 1 |
| 1,2-Dichloroethane-d4 | 82   | 80-120 | • |
| Toluene-d8            | 96   | 80-120 |   |
| Bromofluorobenzene    | 117  | 80-122 |   |

Type: Lab ID: Diln Fac:

BLANK OC264892 1.000 Batch#: Analyzed:

94662 09/16/04

| Analyte                       | Resu | lt RL |
|-------------------------------|------|-------|
| tert-Butyl Alcohol (TBA)      | ND   | 10    |
| MTBE                          | ND   | 0.5   |
| Isopropyl Ether (DIPE)        | ND   | 0.5   |
| Ethyl tert-Butyl Ether (ETBE) | ND   | 0.5   |
| Methyl tert-Amyl Ether (TAME) | ND   | 0.5   |
| 1,2-Dichloroethane            | ND   | 0.5   |
| 1,2-Dibromoethane             | ND   | 0.5   |

| Surrogate             | *REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 86   | 80-120 |  |
| 1,2-Dichloroethane-d4 | 82   | 80-120 |  |
| Toluene-d8            | 96   | 80-120 |  |
| Bromofluorobenzene    | 118  | 80-122 |  |

<sup>\*=</sup> Value outside of QC limits; see narrative NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 5 of 9



| Taration Oakland Auto Morks                             | Gasoline Ox        | cygenates by GC   | ?/MS               |
|---------------------------------------------------------|--------------------|-------------------|--------------------|
|                                                         | Lab #: 174642      | Location:         | Oakland Auto Works |
| Client: Stellar Environmental Solutions Prep: EPA 5030B |                    | Prep:             |                    |
| Project#: STANDARD Analysis: EPA 8260B                  | Project#: STANDARD | <u> Analysis:</u> | EPA 8260B          |
| Matrix: Water Sampled: 09/13/04                         |                    | Sampled:          | 09/13/04           |
| Units: uq/L Received: 09/14/04                          | Units: uq/L        | Received:         | 09/14/04           |

Type: Lab ID: Diln Fac:

BLANK QC264950 1.000

Batch#: Analyzed:

94676 09/16/04

| Analyte                                           | Result | RL  |
|---------------------------------------------------|--------|-----|
| tert-Butyl Alcohol (TBA)<br>MTBE                  | ND     | 10  |
| T MTBE                                            | ND     | 0.5 |
| Isopropyl Ether (DIPE)                            | ND     | 0.5 |
| Ethyl tert-Butyl Ether (ETB                       | E) ND  | 0.5 |
| Methyl tert-Amyl Ether (TAM<br>1,2-Dichloroethane | E) ND  | 0.5 |
| 1,2-Dichloroethane                                | ND     | 0.5 |
| 1,2-Dibromoethane                                 | ND     | 0.5 |

| Dibromofluoromethane 99 80-120<br>1,2-Dichloroethane-d4 102 80-120<br>Toluene-d8 104 80-120 | Surrogate             | *REC | Limits |
|---------------------------------------------------------------------------------------------|-----------------------|------|--------|
|                                                                                             | Dibromofluoromethane  | 99   | 80-120 |
| Toluene-d8 104 80-120                                                                       | 1,2-Dichloroethane-d4 | 102  | 80-120 |
|                                                                                             | Toluene-d8            | 104  | 80-120 |
| Bromofluorobenzene 104 80-122                                                               | Bromofluorobenzene    | 104  | 80-122 |

Туре:

BLANK

| Analyte                       | Result |
|-------------------------------|--------|
| tert-Butyl Alcohol (TBA)      | NA     |
| MTBE                          | NA     |
| Isopropyl Ether (DIPE)        | NA     |
| Ethyl tert-Butyl Ether (ETBE) | NA     |
| Methyl tert-Amyl Ether (TAME) | NA     |
| 1,2-Dichloroethane            | NA     |
| 1,2-Dibromoethane             | NA     |
|                               |        |

| Surrogate             | Resul |  |
|-----------------------|-------|--|
| Dibromofluoromethane  | NA    |  |
| 1,2-Dichloroethane-d4 | NA    |  |
| Toluene-d8            | NA    |  |
| Bromofluorobenzene    | NA    |  |
|                       |       |  |

<sup>\*=</sup> Value outside of QC limits; see narrative NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 6 of 9



| Gasoline Ox                                                                    | rygenates by GC                 |                                              |
|--------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|
| Lab #: 174642<br>Client: Stellar Environmental Solutions<br>Project#: STANDARD | Location:<br>Prep:<br>Analysis: | Oakland Auto Works<br>EPA 5030B<br>EPA 8260B |
| Matrix: Water Units: ug/L                                                      | Sampled:<br>Received:           | 09/13/04<br>09/14/04                         |

Type: Lab ID: Diln Fac:

BLANK

OC265104 1.000

Batch#: 94710 Analyzed: 09/17/04

| Analyte                                              | Resu | t RL |
|------------------------------------------------------|------|------|
| tert-Butyl Alcohol (TBA)                             | ND   | 10   |
| MTBE                                                 | ND   | 0.5  |
| Isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) | ND   | 0.5  |
| Ethyl tert-Butyl Ether (ETBE)                        | ND   | 0.5  |
| Methyl tert-Amyl Ether (TAME)                        | ND   | 0.5  |
| 1,2-Dichloroethane                                   | ND   | 0.5  |
| 1,2-Dibromoethane                                    | ND   | 0.5  |

| Surrogate             | 2,507 |                                       |  |
|-----------------------|-------|---------------------------------------|--|
|                       |       | A A A A A A A A A A A A A A A A A A A |  |
| Dibromofluoromethane  | 86    | 80-120                                |  |
| 1,2-Dichloroethane-d4 | 82    | 80-120                                |  |
| Toluene-d8            | 95    | 80-120                                |  |
| Bromofluorobenzene    | 120   | 80-122                                |  |
| DIOMOIIGOIO           |       |                                       |  |

Type:

BLANK

| tert-Butyl Alcohol (TBA) NA MTBE NA Isopropyl Ether (DIPE) NA Ethyl tert-Butyl Ether (ETBE) NA |  |
|------------------------------------------------------------------------------------------------|--|
| MTBE NA Isopropyl Ether (DIPE) NA                                                              |  |
| Isopropyl Ether (DIPE) NA                                                                      |  |
| Debir   Fore Duty   Debor /PTDE   NA                                                           |  |
| Prulit refr-parit Pruet (Prop) - MY                                                            |  |
| Metĥyl tert-Amŷl Ether (TAME) NA                                                               |  |
| 1,2-Ďichloroetĥane NA                                                                          |  |
| 1,2-Dibromoethane NA                                                                           |  |
|                                                                                                |  |

| Surrogate             | Rei | n. k |
|-----------------------|-----|------|
| Dibromofluoromethane  | NA  |      |
| 1,2-Dichloroethane-d4 | AN  |      |
| Toluene-d8            | NA  |      |
| Bromofluorobenzene    | NA  |      |
| ·                     |     |      |

<sup>\*=</sup> Value outside of QC limits; see narrative NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 7 of 9



Gasoline Oxygenates by GC/MS Lab #: Oakland Auto Works 174642 Location: EPA 5030B EPA 8260B Prep: Analysis: Sampled: Stellar Environmental Solutions Client: Project#: STANDARD 09/13/04 09/14/04 Water Matrix: Units: uq/L Received:

Type: Lab ID:

BLANK QC265133

Batch#: Analyzed:

94716 09/17/04

Diln Fac:

1.000

| Analyte                   | Result   | RL  |
|---------------------------|----------|-----|
| tert-Butyl Alcohol (TBA)  | ND       | 10  |
| MTBE                      | ND       | 0.5 |
| Isopropyl Ether (DIPE)    | ND       | 0.5 |
| Ethyl tert-Butyl Ether (1 | ETBE) ND | 0.5 |
| Methyl tert-Amyl Ether (  | TAME) ND | 0.5 |
| 1,2-Dichloroethane        | ND       | 0.5 |
| 1,2-Dibromoethane         | ND       | 0.5 |

| 1,2-Dichloroethane-d4 104 80-120<br>Toluene-d8 105 80-120 | Sire # 4(*)**; i= 0   | <b>EREC</b> | Limits |  |
|-----------------------------------------------------------|-----------------------|-------------|--------|--|
| Toluene-d8 105 80-120                                     | Dibromofluoromethane  | 100         | 80-120 |  |
|                                                           | 1,2-Dichloroethane-d4 | 104         | 80-120 |  |
| Bromofluorobenzene 102 80-122                             | Toluene-d8            | 105         | 80-120 |  |
|                                                           | Bromofluorobenzene    | 102         | 80-122 |  |

āb ID:

BLANK QC265225 1.000

Batch#: Analyzed: 94737 09/20/04

iln Fac:

| Analyte                       | Result | RL  |
|-------------------------------|--------|-----|
| tert-Butyl Alcohol (TBA)      | ND     | 10  |
| MTBE                          | ND     | 0.5 |
| Isopropyl Ether (DIPE)        | ND     | 0.5 |
| Ethyl tert-Butyl Ether (ETBE) | ND     | 0.5 |
| Methyl tert-Amyl Ether (TAME) | ND     | 0.5 |
| 1,2-Dichloroethane            | ND     | 0.5 |
| 1,2-Dibromoethane             | ND     | 0.5 |

| Surrogate             | %REC  | Limits |
|-----------------------|-------|--------|
| Dibromofluoromethane  | 102   | 80-120 |
| 1,2-Dichloroethane-d4 | 104   | 80-120 |
| Toluene-d8            | 100   | 80-120 |
| Bromofluorobenzene    | 124 * | 80-122 |

\*= Value outside of QC limits; see narrative

NA= Not Analyzed ND= Not Detected RL= Reporting Limit Page 8 of 9



|              | Gasoline Ox                    | ygenates by GC | C/NS               |
|--------------|--------------------------------|----------------|--------------------|
| Lab #: 1     | 74642                          | Location:      | Oakland Auto Works |
| Client: St   | tellar Environmental Solutions | Prep:          | EPA 5030B          |
| Project#: S' | TANDARD                        | Analysis:      | EPA 8260B          |
| Type:        | LCS                            | Diln Fac:      | 1.000              |
| Lab ID:      | QC264890                       | Batch#:        | 94662              |
| Matrix:      | Water                          | Analyzed:      | 09/16/04           |
| Units:       | ug/L                           | _              |                    |

| Analyte                       | Spiked | Result | %REC | Limits |  |
|-------------------------------|--------|--------|------|--------|--|
| tert-Butyl Alcohol (TBA)      | 125.0  | 128.4  | 103  | 74-135 |  |
| MTBE                          | 50.00  | 43.58  | 87   | 74-128 |  |
| Isopropyl Ether (DIPE)        | 25.00  | 22.01  | 88   | 80-120 |  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 22.53  | 90   | 80-120 |  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.04  | 92   | 80-120 |  |

| Surrogate             | *REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 86   | 80-120 |
| 1,2-Dichloroethane-d4 | 81   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 113  | 80-122 |



|            |          | Gasoline Ожу            | genates by G | C/MS               |
|------------|----------|-------------------------|--------------|--------------------|
| Lab #:     | 174642   |                         | Location:    | Oakland Auto Works |
| Client:    | Stellar  | Environmental Solutions | Prep:        | EPA 5030B          |
| Project#:  | STANDARI | o                       | Analysis:    | EPA 8260B          |
| Field ID:  | 2        | ZZZZZZZZZ               | Batch#:      | 94662              |
| MSS Lab ID | : 1      | 174639-001              | Sampled:     | 09/13/04           |
| Matrix:    | V        | Nater                   | Received:    | 09/14/04           |
| Units:     | ι        | ıg/L                    | Analyzed:    | 09/16/04           |
| Diln Fac:  | -        | 1.000                   |              |                    |

MS

Lab ID: QC264893

| Analyte                       | MSS Result | Spiked | Result | %REC | Limits |
|-------------------------------|------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | <8.600     | 125.0  | 129.7  | 104  | 53-153 |
| MTBE                          | <0.06800   | 50.00  | 45.12  | 90   | 73-120 |
| Isopropyl Ether (DIPE)        | <0.04500   | 25.00  | 22.47  | 90   | 70-120 |
| Ethyl tert-Butyl Ether (ETBE) | <0.06100   | 25.00  | 23.11  | 92   | 71-120 |
| Methyl tert-Amyl Ether (TAME) | <0.06500   | 25.00  | 23.35  | 93   | 72-120 |

| Surrogate             | %REC | Limits |  |
|-----------------------|------|--------|--|
| Dibromofluoromethane  | 87   | 80-120 |  |
| 1,2-Dichloroethane-d4 | 83   | 80-120 |  |
| Toluene-d8            | 95   | 80-120 |  |
| Bromofluorobenzene    | 113  | 80-122 |  |

MSD

| Analyte                       | Spiked | Result | *REC | : Limite | RPD | Lim |
|-------------------------------|--------|--------|------|----------|-----|-----|
| tert-Butyl Alcohol (TBA)      | 125.0  | 117.1  | 94   | 53-153   | 10  | 26  |
| MTBE                          | 50.00  | 44.64  | 89   | 73-120   | 1   | 20  |
| Isopropyl Ether (DIPE)        | 25.00  | 22.24  | 89   | 70-120   | 1   | 20  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 22.67  | 91   | 71-120   | 2   | 20  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.18  | 93   | 72-120   | 1   | 20  |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 87   | 80-120 |
| 1,2-Dichloroethane-d4 | 84   | 80-120 |
| Toluene-d8            | 96   | 80-120 |
| Bromofluorobenzene    | 111  | 80-122 |



|           |                                 | genates by GC |                    |
|-----------|---------------------------------|---------------|--------------------|
| Lab #:    | 174642                          | Location:     | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:         | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:     | EPA 8260B          |
| Matrix:   | Water                           | Batch#:       | 94676              |
| Units:    | ug/L                            | Analyzed:     | 09/16/04           |
| Diln Fac: | 1.000                           |               |                    |

Type:

BS

Lab ID: QC264948

| Analyte                       | Spiked | Result | 4RE | Limite |  |
|-------------------------------|--------|--------|-----|--------|--|
| tert-Butyl Alcohol (TBA)      | 125.0  | 115.6  | 93  | 74-135 |  |
| MTBE                          | 50.00  | 44.67  | 89  | 74-128 |  |
| Isopropyl Ether (DIPE)        | 25.00  | 24.05  | 96  | 80-120 |  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 24.65  | 99  | 80-120 |  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.24  | 93  | 80-120 |  |

| Surrogate             | %REC | Limits |  |      |
|-----------------------|------|--------|--|------|
| Dibromofluoromethane  | 95   | 80-120 |  |      |
| 1,2-Dichloroethane-d4 | 97   | 80-120 |  |      |
| Toluene-d8            | 100  | 80-120 |  |      |
| Bromofluorobenzene    | 98   | 80-122 |  | <br> |

Type:

BSD

| Analyte                       | Spiked | Result | %RE(       | 7 Limits | RPI | ) Lim |
|-------------------------------|--------|--------|------------|----------|-----|-------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 124.1  | 99         | 74-135   | 7   | 25    |
| MTBE                          | 50.00  | 46.00  | 92         | 74-128   | 3   | 20    |
| Isopropyl Ether (DIPE)        | 25.00  | 23.47  | 94         | 80-120   | 2   | 20    |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 24.20  | 97         | 80-120   | 2   | 20    |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.82  | <u>9</u> 5 | 80-120   | 2   | 20    |

| Dibromofluoromethane          | Surrogate             | %RI | C Limits |  |
|-------------------------------|-----------------------|-----|----------|--|
| Toluene-d8 101 80-120         | Dibromofluoromethane  | 97  | 80-120   |  |
|                               | 1,2-Dichloroethane-d4 | 100 | 80-120   |  |
| Bromofluorobenzene 100 80-122 | Toluene-d8            | 101 | 80-120   |  |
| 100 00 122                    | Bromofluorobenzene    | 100 | 80-122   |  |



|           | Gasoline Oxy                    | genates by GO                           | ?/MS               |
|-----------|---------------------------------|-----------------------------------------|--------------------|
| Lab #:    | 174642                          | Location:                               | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:                                   | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:                               | EPA 8260B          |
| Matrix:   | Water                           | Batch#:                                 | 94710              |
| Units:    | ug/L                            | Analyzed:                               | 09/17/04           |
| Diln Fac: | 1.000                           | ** ************************************ |                    |

Type:

BS

Lab ID: QC265102

| Analyte                       | Spiked | Result | *REC | Limits |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 135.5  | 108  | 74-135 |
| _                             | 50.00  | 45.60  | 91   | 74-128 |
| MTBE                          |        |        |      | 80-120 |
| Isopropyl Ether (DIPE)        | 25.00  | 21.78  | 87   |        |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 22.43  | 90   | 80-120 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 22.98  | 92   | 80-120 |

| Surrogate             | %REC | Limite |
|-----------------------|------|--------|
| Dibromofluoromethane  | 88   | 80-120 |
| 1,2-Dichloroethane-d4 | 83   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 115  | 80-122 |

Type:

BSD

| Analyte                       | Spiked | Result | %REC | Limits | RPI | Lim |
|-------------------------------|--------|--------|------|--------|-----|-----|
| tert-Butyl Alcohol (TBA)      | 125.0  | 125.9  | 101  | 74-135 | 7   | 25  |
| MTBE                          | 50.00  | 44.38  | 89   | 74-128 | 3   | 20  |
| Isopropyl Ether (DIPE)        | 25.00  | 21.80  | 87   | 80-120 | 0   | 20  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 22.28  | 89   | 80-120 | 1   | 20  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 22.95  | 92   | 80-120 | 0   | 20  |

| Surrogate             | %RBC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 86   | 80-120 |
| 1,2-Dichloroethane-d4 | 82   | 80-120 |
| Toluene-d8            | 95   | 80-120 |
| Bromofluorobenzene    | 111  | 80-122 |



|           | Gasoline Ox                     | genates by GC | :/мs               |
|-----------|---------------------------------|---------------|--------------------|
| Lab #:    | 174642                          | Location:     | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:         | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:     | EPA 8260B          |
| Matrix:   | Water                           | Batch#:       | 94716              |
| Units:    | ug/L                            | Analyzed:     | 09/17/04           |
| Diln Fac: | 1.000                           |               |                    |

Type:

BS

Lab ID: QC265131

| Analyte                       | Spiked | Result | *REC | Limits |  |
|-------------------------------|--------|--------|------|--------|--|
| tert-Butyl Alcohol (TBA)      | 125.0  | 117.2  | 94   | 74-135 |  |
| MTBE                          | 50.00  | 46.08  | 92   | 74-128 |  |
| Isopropyl Ether (DIPE)        | 25.00  | 24.25  | 97   | 80-120 |  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 25.55  | 102  | 80-120 |  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 24.76  | 99   | 80-120 |  |

| *************************************** | ******************************* | 0.000.000.000.000.000.000.000.000.000. | <br>*************************************** |  |
|-----------------------------------------|---------------------------------|----------------------------------------|---------------------------------------------|--|
| Surrogate                               | *REC                            | Limits                                 |                                             |  |
| Dibromofluoromethane                    | 98                              | 80-120                                 | <br>                                        |  |
| 1,2-Dichloroethane-d4                   | 102                             | 80-120                                 |                                             |  |
| Toluene-d8                              | 102                             | 80-120                                 |                                             |  |
| Bromofluorobenzene                      | 102                             | 80-122                                 | <br>                                        |  |

Type:

BSD

| Analyte                       | Spiked | Result | %REC | Limits | RPI | ) Lin |
|-------------------------------|--------|--------|------|--------|-----|-------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 124.2  | 99   | 74-135 | 6   | 25    |
| MTBE                          | 50.00  | 45.37  | 91   | 74-128 | 2   | 20    |
| Isopropyl Ether (DIPE)        | 25.00  | 24.12  | 96   | 80-120 | 1   | 20    |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 24.99  | 100  | 80-120 | 2   | 20    |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 24.27  | 97   | 80-120 | 2   | 20    |

| Surrogate             | %REC | Limits |                                                                                                               |
|-----------------------|------|--------|---------------------------------------------------------------------------------------------------------------|
| Dibromofluoromethane  | 98   | 80-120 |                                                                                                               |
| 1,2-Dichloroethane-d4 | 99   | 80-120 |                                                                                                               |
| Toluene-d8            | 100  | 80-120 | i de la companya de |
| Bromofluorobenzene    | 102  | 80-122 |                                                                                                               |



|           | Gasoline Oxy                    | genates by G | C/MS               |
|-----------|---------------------------------|--------------|--------------------|
| Lab #:    | 174642                          | Location:    | Oakland Auto Works |
| Client:   | Stellar Environmental Solutions | Prep:        | EPA 5030B          |
| Project#: | STANDARD                        | Analysis:    | EPA 8260B          |
| Matrix:   | Water                           | Batch#:      | 94737              |
| Units:    | ug/L                            | Analyzed:    | 09/20/04           |
| Diln Fac: | 1.000                           |              |                    |

Type:

BS

Lab ID: QC265223

| Analyte                       | Spiked | Result | %REC | Limita |
|-------------------------------|--------|--------|------|--------|
| tert-Butyl Alcohol (TBA)      | 125.0  | 124.2  | 99   | 74-135 |
| MTBE                          | 50.00  | 51.54  | 103  | 74-128 |
| Isopropyl Ether (DIPE)        | 25.00  | 25.18  | 101  | 80-120 |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 24.37  | 97   | 80-120 |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.08  | 92   | 80-120 |

| Surrogate             | %REC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 104  | 80-120 |
| 1,2-Dichloroethane-d4 | 109  | 80-120 |
| Toluene-d8            | 104  | 80-120 |
| Bromofluorobenzene    | 102  | 80-122 |

Type:

BSD

| Analyte                       | Spiked | Result | %RBC | Limits | RPD | Lim |
|-------------------------------|--------|--------|------|--------|-----|-----|
| tert-Butyl Alcohol (TBA)      | 125.0  | 111.4  | 89   | 74-135 | 11  | 25  |
| MTBE                          | 50.00  | 51.06  | 102  | 74-128 | 1   | 20  |
| Isopropyl Ether (DIPE)        | 25.00  | 24.90  | 100  | 80-120 | 1   | 20  |
| Ethyl tert-Butyl Ether (ETBE) | 25.00  | 24.35  | 97   | 80-120 | 0   | 20  |
| Methyl tert-Amyl Ether (TAME) | 25.00  | 23.19  | 93   | 80-120 | 1   | 20  |

| Surrogate             | %RBC | Limits |
|-----------------------|------|--------|
| Dibromofluoromethane  | 104  | 80-120 |
| 1,2-Dichloroethane-d4 | 107  | 80-120 |
| Toluene-d8            | 103  | 80-120 |
| Bromofluorobenzene    | 102  | 80-122 |

## Historical Groundwater Monitoring Well Groundwater Analytical Results Petroleum and Aromatic Hydrocarbons (μg/L) 240 W. MacArthur Boulevard, Oakland, Alameda, California

| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g   | TEH-d               | Benzene | Toluene | Ethylbenzene | Total Xylenes | МТВЕ     |
|---------------|-----------------------|-----------------|---------|---------------------|---------|---------|--------------|---------------|----------|
|               |                       |                 |         |                     | MW-1    |         |              |               |          |
| Yes           | 1                     | Aug-97          | 1,140   | < 1,000             | 110     | 16      | 15           | 112           |          |
| Yes           | 2                     | Dec-97          | ND      | - NA                | ND      | ND      | ND           | 31            | . ⊋. ÆMA |
| Yes           | 3                     | Mar-98          | 370     | , NA                | 8.9     | < 0.5   | < 0.5        | 2.2           | 18       |
| Yes           | 4                     | Jul-98          | 6,400   | <u> </u>            | 1,300   | 23      | 3.7          | 58            | 97       |
| Yes           | 5                     | Oct-98          | 2,500   | : <b>N</b> A        | 360     | 44      | 1.3          | 150           | < 0.5    |
| Yes           | 6                     | Jan-99          | 2,700   | ∍MA                 | 1,200   | 28      | 140          | 78            | 130      |
| (a)           | 7                     | Jun-00          | 27,000  | : MA                | 5,200   | 500     | 320          | 3,100         | 1,300    |
| (a)           | 8                     | Dec-00          | 976,000 | : NA                | 2,490   | 1,420   | 3,640        | 10,100        | < 150    |
| (a)           | 9                     | Feb-01          | . NA    | ‡1. ∃XA             | ∃ MA    | ₩ MA    | à BA         | M             | ₩<br>T   |
| (a)           | 10                    | May-01          | 20,000  | + NA                | 2,900   | 310     | 230          | 1,900         | < 30     |
| (a)           | 11                    | Jul-01          | 92,000  | MA                  | 2,900   | 580     | 2,800        | 20,000        | 560      |
| Pre"hi-vac"   | 12                    | Oct 22-01       | 20,000  | ) u=NA              | 3,700   | 560     | 410          | 4,600         | 2,600    |
| Post "hi-vac" | 12                    | Oct 26-01       | < 0.05  | . ≓.NA              | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5    |
| (a)           | 13                    | Dec-01          | 3,300   | ∵ <u>≕</u> , NA     | 200     | 12      | 5.7          | 43            | 44       |
| No            | 14                    | Mar-02          | 4,600   | -E MA               | 820     | 4.4     | 100          | 300           | 210      |
| No            | 15                    | May-02          | 1,600   | 喜 MA                | 100     | 23      | 20           | 190           | 7.7      |
| No            | 16                    | Jul-02          | 2,300   | ≟ NA                | 250     | 15      | 13           | 180           | 180      |
| No            | 17                    | Oct-02          | 1,820   | .::⊒:.NA            | 222     | 16      | < 0.3        | 59            | 58       |
| No            | 18                    | Jan-03          | 2,880   | · · · · · · · · · · | 188     | < 50    | < 50         | 157           | 20       |
| No            | 19                    | Mar-03          | 6,700   |                     | 607     | 64      | 64           | 288           | < 0.18   |
| No            | 20                    | Aug-03          | 4,900   | 5,000               | 740     | 45      | 85           | 250           | 14       |
| Pre-Purge     | 21                    | Dec-03          | 5,060   | 400                 | 654     | 11      | 79           | 92            | 129      |
| Post-Purge    | 21                    | Dec-03          | 8,930   | 800                 | 1,030   | 55      | 127          | 253           | 212      |
| Yes           | 22                    | Mar-04          | 11,300  | 1,100               | 483     | 97      | 122          | 452           | 67       |
| Yes           | 23                    | Jun-04          | 9,300   | 4,000               | 1,700   | 75      | 92           | 350           | 6.0      |
| Yes           | 24                    | Sep-04          | 9,100   | 97                  | 920     | 19      | 82           | 201           | 7.2      |

|               | MW-2                  |                 |       |                               |         |         |                                       |               |       |  |  |  |  |  |
|---------------|-----------------------|-----------------|-------|-------------------------------|---------|---------|---------------------------------------|---------------|-------|--|--|--|--|--|
| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g | TEH-d                         | Benzene | Toluene | Ethylbenzene                          | Total Xylenes | МТВЕ  |  |  |  |  |  |
| Yes           | 1                     | Aug-97          | 5,350 | < 1,000                       | 108     | 36      | 33                                    | 144           | MA WA |  |  |  |  |  |
| Yes           | 2                     | Dec-97          | 1,600 | AM ±                          | 73      | ND      | ND                                    | ND            | NA NA |  |  |  |  |  |
| Yes           | 3                     | Mar-98          | 3,400 | MA                            | 830     | 100     | 210                                   | 240           | 870   |  |  |  |  |  |
| Yes           | 4                     | Jul-98          | 3,100 | ± NA<br>⊥                     | 25      | 2.2     | < 0.5                                 | 0.9           | 1,900 |  |  |  |  |  |
| Yes           | 5                     | Oct-98          | 4,300 |                               | < 0.5   | 1.2     | < 0.5                                 | 1             | 4,200 |  |  |  |  |  |
| Yes           | 6                     | Jan-99          | 2,900 | A MA                          | 160     | 8.9     | 6.9                                   | 78.4          | 2,100 |  |  |  |  |  |
| (a)           | 7                     | Jun-00          | 2,700 | - NA<br>F                     | 200     | 17      | 30                                    | 16            | 680   |  |  |  |  |  |
| (a)           | 8                     | Dec-00          | 3,020 | · · · · · · · · · · · · · · · | 56.7    | < 1.5   | < 1.5                                 | < 3.0         | 3,040 |  |  |  |  |  |
| (a)           | 9                     | Feb-01          | 基 整   | E MA                          | . NA    | . NA    | · · · · · · · · · · · · · · · · · · · | ±° NA         | ž Z   |  |  |  |  |  |
| (a)           | 10                    | May-01          | 720   | - M                           | 49      | < 3.0   | 4.6                                   | < 3.0         | 380   |  |  |  |  |  |
| (a)           | 11                    | Jul-01          | 8,400 | . 🚉 📈                         | 350     | 44      | 77                                    | 78            | 550   |  |  |  |  |  |
| Pre"hi-vac"   | 12                    | Oct 22-01       | 850   | A MA                          | 170     | 4.9     | 5.1                                   | 14            | 260   |  |  |  |  |  |
| Post "hi-vac" | 12                    | Oct 26-01       | 770   | NA                            | 86      | 5.5     | 9.6                                   | 8.5           | 310   |  |  |  |  |  |
| (a)           | 13                    | Dec-01          | 1,300 | NA                            | 9.2     | < 2.0   | < 2.0                                 | < 2.0         | 370   |  |  |  |  |  |
| No            | 14                    | Mar-02          | 1,300 | MA.                           | 76      | 3.8     | 21                                    | 15            | 460   |  |  |  |  |  |
| No            | 15                    | May-02          | 320   | NA.                           | 12      | 1.1     | 4.6                                   | 4.8           | 160   |  |  |  |  |  |
| No            | 16                    | Jul-02          | 1,300 | <b>≣ M</b> A                  | 130     | 1.0     | 9.4                                   | 5.6           | 420   |  |  |  |  |  |
| No            | 17                    | Oct-02          | 1,060 | ∴ ≧ NA                        | 12      | 2.2     | 4.2                                   | 3.5           | 270   |  |  |  |  |  |
| No            | 18                    | Jan-03          | 581   | ,₃° :NA                       | 6.5     | < 5.0   | < 5.0                                 | < 5.0         | 130   |  |  |  |  |  |
| No            | 19                    | Mar-03          | 1,250 | ,⊭: NA                        | < 0.22  | < 0.32  | < 0.31                                | < 0.4         | 155   |  |  |  |  |  |
| No            | 20                    | Aug-03          | 2,200 | 730                           | 58      | 9.2     | < 0.5                                 | 28            | 240   |  |  |  |  |  |
| Pre-Purge     | 21                    | Dec-03          | 2,120 | 100                           | 45      | 9.4     | 9.5                                   | 20            | 289   |  |  |  |  |  |
| Post-Purge    | 21                    | Dec-03          | 1,980 | 100                           | 29      | 22.0    | 7.4                                   | 13            | 295   |  |  |  |  |  |
| Yes           | 22                    | Mar-04          | 2,700 | 100                           | 12      | 16.0    | 9                                     | 12            | 249   |  |  |  |  |  |
| Yes           | 23                    | Jun-04          | 1,200 | 370                           | 42      | 0.7     | 2.6                                   | 1             | 170   |  |  |  |  |  |
| Yes           | 24                    | Sep-04          | 1,500 | 280                           | 14      | < 0.5   | < 0.5                                 | 1             | 130   |  |  |  |  |  |

|               | MW-3                  |                 |        |         |         |         |              |               |        |  |  |  |  |  |
|---------------|-----------------------|-----------------|--------|---------|---------|---------|--------------|---------------|--------|--|--|--|--|--|
| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g  | TEH-d   | Benzene | Toluene | Ethylbenzene | Total Xylenes | МТВЕ   |  |  |  |  |  |
| Yes           | 1                     | Aug-97          | 8,500  | < 1,000 | 450     | 30      | 53           | 106           | i zina |  |  |  |  |  |
| Yes           | 2                     | Dec-97          | 5,200  | = NA    | 180     | 6.0     | 5.0          | 9.3           | T EZWA |  |  |  |  |  |
| Yes           | 3                     | Маг-98          | 1,000  | NA      | 6.0     | < 0.5   | < 0.5        | < 0.5         | 810    |  |  |  |  |  |
| Yes           | 4                     | Jul-98          | 6,400  | ₩ NA    | 490     | 57      | 23           | 78            | 220    |  |  |  |  |  |
| Yes           | 5                     | Oct-98          | 2,100  | ₩ NA    | < 5.0   | < 5.0   | < 5.0        | < 5.0         | 2,100  |  |  |  |  |  |
| Yes           | 6                     | Jan-99          | 4,400  | ₃≟ NA   | 450     | 65      | 26           | 42            | 1,300  |  |  |  |  |  |
| (a)           | 7                     | Jun-00          | 1,700  | ₹ NA    | 110     | 13      | 34           | 13            | 96     |  |  |  |  |  |
| (a)           | 8                     | Dec-00          | 5,450  | 泉燈      | 445     | < 7.5   | 23.8         | < 7.5         | 603    |  |  |  |  |  |
| (a)           | 9                     | Feb-01          | * W    | XX      | NA.     | , ZYA   | No.          | ž EM          | , A4   |  |  |  |  |  |
| (a)           | 10                    | May-01          | 1,900  | . NA    | 180     | 12      | < 3.0        | 19            | 330    |  |  |  |  |  |
| (a)           | 11                    | Jul-01          | 10,000 | - NA    | 830     | 160     | 150          | 260           | 560    |  |  |  |  |  |
| Pre"hi-vac"   | 12                    | Oct 22-01       | 1,400  | S MA    | 240     | 7.8     | 4.1          | 15            | 220    |  |  |  |  |  |
| Post "hi-vac" | 12                    | Oct 26-01       | 1,900  | i NA    | 200     | 16      | 51           | 30            | 290    |  |  |  |  |  |
| (a)           | 13                    | Dec-01          | 5,800  | MA.     | 93      | < 20    | 31           | < 20          | 330    |  |  |  |  |  |
| No            | 14                    | Mar-02          | 1,900  | 皇 · 妻NA | 220     | 16      | 31           | 24            | 400    |  |  |  |  |  |
| No            | 15                    | May-02          | 1,600  | · NA    | 110     | 3.4     | 29           | 14            | 320    |  |  |  |  |  |
| No            | 16                    | Jul-02          | 1,900  | EMA     | 210     | 27      | 30           | 55            | 200    |  |  |  |  |  |
| No            | 17                    | Oct. 2002       | 3,030  | , AM    | 178     | 19      | 6.2          | 36            | 178    |  |  |  |  |  |
| No            | 18                    | Jan-03          | 2,980  | ≥ NA    | 47      | < 5.0   | 7.6          | 6.3           | 105    |  |  |  |  |  |
| No            | 19                    | Mar-03          | 3,620  | -, NA   | 124     | < 0.32  | 22           | 12            | 139    |  |  |  |  |  |
| No            | 20                    | Aug-03          | 3,800  | 2,400   | 170     | 28      | 31           | 31            | 170    |  |  |  |  |  |
| Pre-Purge     | 21                    | Dec-03          | 5,550  | 400     | 311     | 20      | 41           | 48            | 357    |  |  |  |  |  |
| Post-Purge    | 21                    | Dec-03          | 6,860  | 500     | 312     | 20      | 55           | 58            | 309    |  |  |  |  |  |
| Yes           | 22                    | Маг-04          | 5,490  | 500     | 82      | 34      | 46           | 49            | 249    |  |  |  |  |  |
| Yes           | 23                    | Jun-04          | 5,400  | 1,100   | 150     | 30      | 45           | 66            | 130    |  |  |  |  |  |
| Yes           | 24                    | Sep-04          | 5,400  | 1,500   | 70      | 3       | 16           | 13            | 110    |  |  |  |  |  |

|               |                       |                 |       |            | MW-4       |         |              |               |         |
|---------------|-----------------------|-----------------|-------|------------|------------|---------|--------------|---------------|---------|
| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g | ТЕН-ф      | Benzene    | Toluene | Ethylbenzene | Total Xylenes | МТВЕ    |
| Yes           | 1                     | Aug-97          | < 500 | < 1,000    | < 0.5      | < 0.5   | < 0.5        | < 1.5         | ₩ F WA  |
| Yes           | 2                     | Dec-97          | ND    | NA         | ND         | ND      | ND           | ND            | → Em NA |
| Yes           | 3                     | Mar-98          | < 50  | MA.        | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| Yes           | 4                     | Jul-98          | < 50  | , NA       | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| Yes           | 5                     | Oct-98          | < 50  |            | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| Yes           | 6                     | Jan-99          | < 50  |            | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| (a)           | 7                     | Jun-00          | < 50  | 岩池         | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| (a)           | 8                     | Dec-00          | < 500 |            | < 0.3      | < 0.3   | < 0.6        | < 0.3         | < 0.3   |
| (a)           | 9                     | Feb-01          | , NA  | WA NA      | 囊. 🂆       | i NA    | E & M        | ± ;₩A         | ₩ NA    |
| (a)           | 10                    | May-01          | < 50  | it. NA     | 1.2        | < 0.3   | 0.55         | 1.2           | 2.9     |
| (a)           | 11                    | Jul-01          | < 5.0 |            | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| Pre"hi-vac"   | 12                    | Oct 22-01       | < 5.0 |            | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| Post "hi-vac" | 12                    | Oct 26-01       | < 5.0 |            | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| (a)           | 13                    | Dec-01          | ND    |            | ND         | ND      | ND           | ND            | ND      |
| No            | 14                    | Mar-02          | < 50  |            | < <i>I</i> | < 1     | < 1          | < 1           | < 1     |
| No            | 15                    | May-02          | < 50  | <b>建</b> ※ | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| No            | 16                    | Jul-02          | < 50  | <u> </u>   | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| No            | 17                    | Oct-02          | < 100 | <u> </u>   | < 0.3      | < 0.3   | < 0.3        | < 0.6         | < 0.3   |
| No            | 18                    | Jan-03          | < 100 | ≓ NA       | < 0.3      | < 0.3   | < 0.3        | < 0.6         | 14      |
| No            | 19                    | Mar-03          | < 15  | E NA       | < 0.4      | < 0.02  | < 0.02       | < 0.06        | 5.2     |
| No            | 20                    | Aug-03          | < 50  | NA.        | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5   |
| Pre-Purge     | 21                    | Dec-03          | 71    | i NA       | < 0.3      | < 0.3   | < 0.3        | < 0.6         | < 5.0   |
| Post-Purge    | 21                    | Dec-03          | 63    | - W        | < 0.3      | < 0.3   | < 0.3        | < 0.6         | < 5.0   |
| Yes           | 22                    | Mar-04          | < 50  | : NA       | < 0.3      | < 0.3   | < 0.3        | < 0.6         | < 5.0   |
| Yes           | 23                    | Jun-04          | < 50  | <u>.</u> ₩ | < 0.5      | < 0.5   | < 0.5        | < 0.5         | 0.9     |
| Yes           | 24                    | Sep-04          | < 50  | ∴ ≀NA      | < 0.5      | < 0.5   | < 0.5        | < 0.5         | 2.3     |

|               |                       |                 |        | · · · · · · · · · · · · · | MW-5    |         |              |               |        |
|---------------|-----------------------|-----------------|--------|---------------------------|---------|---------|--------------|---------------|--------|
| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g  | TEH-d                     | Benzene | Toluene | Ethylbenzene | Total Xylenes | МТВЕ   |
| (a)           | 9                     | Feb-01          | 5,660  | NA NA                     | 76.9    | 21.1    | 47.3         | 312           | < 0.3  |
| (a)           | 10                    | May-01          | 22,000 | NA                        | 2,600   | 480     | 220          | 2,700         | < 30   |
| (a)           | 11                    | Jul-01          | 72,000 | ∷ NA                      | 3,500   | 1,100   | 4,300        | 22,000        | 2,500  |
| Pre"hi-vac"   | 12                    | Oct 22-01       | 26,000 | 畫 NA                      | 2,800   | 980     | 6,000        | 950           | 2,300  |
| Post "hi-vac" | 12                    | Oct 26-01       | 17,000 | ∃. NA                     | 1,200   | 470     | 2,900        | 440           | 900    |
| (a)           | 13                    | Dec-01          | 2,000  | - ₩ NA                    | 620     | 190     | 110          | 910           | < 20   |
| No            | 14                    | Мат-02          | 8,800  | - NA                      | 1,200   | 72      | 7.4          | 350           | 1,200  |
| No            | 15                    | May-02          | 2,000  | . E. NA                   | 150     | 38      | 21           | 260           | 13     |
| No            | 16                    | Jul-02          | 4,200  | :::.NA                    | 480     | 68      | 29           | 280           | 450    |
| No            | 17                    | Oct-02          | 5,370  | NA GERNA                  | 236     | 45      | 23           | 39            | 135    |
| No            | 18                    | Jan-03          | 8,270  | NA                        | 615     | 156     | 174          | 1,010         | < 10   |
| No            | 19                    | Mar-03          | 12,400 |                           | 824     | 195     | 213          | 1,070         | < 0.18 |
| No            | 20                    | Aug-03          | 18,000 | 10,000                    | 950     | 290     | 330          | 1,820         | < 2.0  |
| Pre-Purge     | 21                    | Dec-03          | 12,800 | 600                       | 1,140   | 327     | 354          | 1,530         | 682    |
| Post-Purge    | 21                    | Dec-03          | 11,900 | 800                       | 627     | 263     | 288          | 1,230         | 595    |
| Yes           | 22                    | Маг-04          | 20,700 | 850                       | 867     | 266     | 305          | 678           | 145    |
| Yes           | 23                    | Jun-04          | 12,000 | 1,700                     | 920     | 240     | 260          | 1,150         | < 3.1  |
| Yes           | 24                    | Sep-04          | 13,000 | 1,900                     | 580     | 240     | 260          | 1,260         | < 4.2  |

|               | MW-6                  |                 |       |        |         |         |              |               |        |  |  |  |  |  |  |
|---------------|-----------------------|-----------------|-------|--------|---------|---------|--------------|---------------|--------|--|--|--|--|--|--|
| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g | TEH-d  | Benzene | Toluene | Ethylbenzene | Total Xylenes | МТВЕ   |  |  |  |  |  |  |
| (a)           | 9                     | Feb-01          | 1,340 | NA.    | 17      | 0.967   | 11.1         | 51.4          | < 0.3  |  |  |  |  |  |  |
| (a)           | 10                    | May-01          | 610   | ≇; NA  | 15      | 0.97    | < 0.5        | 46            | < 0.5  |  |  |  |  |  |  |
| (a)           | 11                    | Jul-01          | 2,500 | , NA   | 130     | 4.7     | 53           | 170           | 120    |  |  |  |  |  |  |
| Pre"hi-vac"   | 12                    | Oct 22-01       | 280   | NA.    | 18      | 1.2     | 6.2          | 4.7           | 6.0    |  |  |  |  |  |  |
| Post "hi-vac" | 12                    | Oct 26-01       | 3,600 | . A    | 210     | 20      | 170          | 62            | 120    |  |  |  |  |  |  |
| (a)           | 13                    | Dec-01          | 5,300 | .≧NA   | 69      | 5.6     | 14           | 17            | < 2.0  |  |  |  |  |  |  |
| No            | 14                    | Mar-02          | 71    | - j∙NA | 54      | 4.2     | 27           | 17            | 8.5    |  |  |  |  |  |  |
| No            | 15                    | May-02          | 150   | 支煙     | 9.3     | < 0.5   | < 0.5        | < 0.5         | 1.5    |  |  |  |  |  |  |
| No            | 16                    | Jul-02          | 2,200 | K MA   | 98      | 32      | 46           | 150           | 66     |  |  |  |  |  |  |
| No            | 17                    | Oct-02          | 786   | i. NA  | 48      | 5.0     | 2.2          | 44            | 16     |  |  |  |  |  |  |
| No            | 18                    | Jan-03          | 497   | NA     | 6.8     | < 5.0   | < 5.0        | 11            | < 1.0  |  |  |  |  |  |  |
| No            | 19                    | Маг-03          | 258   | E JNA  | 5.4     | < 0.32  | 3.3          | < 1.1         | < 0.18 |  |  |  |  |  |  |
| No            | 20                    | Aug-03          | 1,600 | 2,800  | 37      | 4.1     | 23           | 58            | < 0.5  |  |  |  |  |  |  |
| Pre-Purge     | 21                    | Dec-03          | 444   | 100    | 4.7     | 4.9     | 1.8          | 5.9           | 4.4    |  |  |  |  |  |  |
| Post-Purge    | 21                    | Dec-03          | 365   | 200    | 2.5     | 3.8     | 1.4          | 6.1           | < 5.0  |  |  |  |  |  |  |
| Yes           | 22                    | Маг-04          | 215   | 140    | 4.0     | 1.2     | 1.4          | 1.4           | 3.7    |  |  |  |  |  |  |
| Yes           | 23                    | Jun-04          | 710   | 830    | 14.0    | 0.7     | 5.2          | 6.6           | < 0.5  |  |  |  |  |  |  |
| Yes           | 24                    | Sep-04          | 350   | 600    | < 0.5   | 2.4     | < 0.5        | < 0.5         | < 0.5  |  |  |  |  |  |  |

|               |                       |                 |       |         | MW-7    | <u></u> | *-           |               |           |
|---------------|-----------------------|-----------------|-------|---------|---------|---------|--------------|---------------|-----------|
| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g | TEH-d   | Benzene | Toluene | Ethylbenzene | Total Xylenes | МТВЕ      |
| (a)           | 9                     | Feb-01          | ND    | - NA    | ND      | ND      | ND           | ND            | NE        |
| (a)           | 10                    | May-01          | < 50  | NA.     | 0.75    | 0.77    | 0.48         | 2.4           | 1.1       |
| (a)           | 11                    | Jul-01          | < 5.0 | . NA    | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5     |
| Pre"hi-vac"   | 12                    | Oct 22-01       | < 5.0 |         | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5     |
| Post "hi-vac" | 12                    | Oct 26-01       | 6,000 | NA.     | 170     | 550     | 110          | 120           | 970       |
| (a)           | 13                    | Dec-01          | < 50  | NA      | < 0.5   | < 0.5   | < 0.5        | < 0.5         | 43        |
| No            | 14                    | Mar-02          | < 50  | .÷., NA | < 1.0   | < 1.0   | < 1.0        | < 1.0         | < 1.0     |
| No            | 15                    | May-02          | < 50  | -E NA   | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5     |
| No            | 16                    | Jul-02          | < 50  | , = NA  | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5     |
| No            | 17                    | Oct-02          | < 100 |         | < 0.3   | < 0.3   | < 0.3        | < 0.6         | < 5.0     |
| No            | 18                    | Jan-03          | . NA  | − NA    | ∷, NA   | NA NA   | . NA         | NA            | i, Ale MA |
| No            | 19                    | Mar-03          | < 15  | . 💢 MA  | < 0.04  | < 0.02  | < 0.02       | < 0.06        | < 0.03    |
| No            | 20                    | Aug-03          | < 50  | NA      | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5     |
| Pre-Purge     | 21                    | Dec-03          | < 50  | M       | < 0.3   | < 0.3   | < 0.3        | < 0.6         | < 5.0     |
| Post-Purge    | 21                    | Dec-03          | < 50  | ;NA     | < 0.3   | < 0.3   | < 0.3        | < 0.6         | < 5.0     |
| Yes           | 22                    | Маг-04          | 86    | , E.MA  | < 0.3   | < 0.3   | < 0.3        | < 0.6         | 57        |
| Yes           | 23                    | Jun-04          | < 50  | j, NA   | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5     |
| Yes           | 24                    | Sep-04          | < 50  | NA.     | < 0.5   | < 0.5   | < 0.5        | < 0.5         | < 0.5     |

|               |                       |                 |       |                                       | MW-8       |         |              |               |        |
|---------------|-----------------------|-----------------|-------|---------------------------------------|------------|---------|--------------|---------------|--------|
| Well Purged?  | Sampling<br>Event No. | Date<br>Sampled | TVH-g | TEH-d                                 | Benzene    | Toluene | Ethylbenzene | Total Xylenes | MTBE   |
| (a)           | 9                     | Feb-01          | 1,000 | NΑ                                    | 3.97       | < 0.3   | 3.78         | 1.63          | 620    |
| (a)           | 10                    | May-01          | < 50  | ŇA                                    | < 0.5      | < 0.5   | < 0.5        | < 0.5         | 4.4    |
| (a)           | 11                    | Jul-01          | < 5.0 | . NA                                  | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.4  |
| Pre"hi-vac"   | 12                    | Oct 22-01       | < 5.0 | NA                                    | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5  |
| Post "hi-vac" | 12                    | Oct 26-01       | < 5.0 | NA                                    | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5  |
| (a)           | 13                    | Dec-01          | < 50  | NA.                                   | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5  |
| No            | 14                    | Mar-02          | < 50  | NA.                                   | < 1.0      | < 1.0   | < 1.0        | < 1.0         | < 1.0  |
| No            | 15                    | May-02          | < 50  | , NA                                  | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5  |
| No            | 16                    | Jul-02          | < 50  | E NA                                  | < 0.5      | < 0.5   | < 0.5        | < 0.5         | < 0.5  |
| No            | 17                    | Oct-02          | 458   | NA.                                   | 1.7        | < 0.3   | < 0.3        | < 0.6         | 233    |
| No            | 18                    | Jan-03          | < 100 | NA                                    | < 0.3      | < 0.3   | < 0.3        | < 0.6         | < 5.0  |
| No            | 19                    | Mar-03          | < 15  | · · · · · · · · · · · · · · · · · · · | < 0.22     | < 0.32  | < 0.31       | < 0.4         | < 0.18 |
| No            | 20                    | Jul-03          | 190   | < 50                                  | < 0.5      | < 0.5   | < 0.5        | 0.6           | < 0.5  |
| Pre-Purge     | 21                    | Dec-03          | 144   | < 100                                 | < 0.3      | < 0.3   | < 0.3        | < 0.6         | 7.6    |
| Post-Purge    | 21                    | Dec-03          | 163   | < 100                                 | < 0.3      | < 0.3   | < 0.3        | < 0.6         | 66     |
| Yes           | 22                    | Mar-04          | 412   | < 100                                 | I.2        | < 0.3   | 1.7          | 3.9           | 66     |
| Yes           | 23                    | Jun-04          | 370   | <100<br>≤ ♀?                          | 4.2<br>4.5 | 403     | 1.7          | 3.9<br><      | 120    |
| Yes           | 24                    | Sep-04          | 280   | 2,600                                 |            | < 0.5   | < 0.5        |               | 120    |

#### Notes:

<sup>(</sup>a) Data not available to SES as to whether the samples were collected "post-purge" or without purging.

<sup>&</sup>quot;No Purge" means no purging was conducted before the groundwater sample was collected.

 $TVH-g = Total\ volatile\ hydrocarbons-gasoline\ range.\ \ TEH-d-Total\ extractable\ hydrocarbons-diesel\ range.$ 

NA = Not analyzed for this constituent in this event.

ND = Not Detected (method reporting limit not specified in information available to SES).

### Historical Groundwater Monitoring Well Groundwater Analytical Results Fuel Oxygenates and VOCs (µg/L) 240 W. MacArthur Boulevard, Oakland, California

| Well I.D. Samplif Event N 7 114 18 MW-1 19 20 21 22 23 24 7 14 18 18 19 MW-2 21 22 23 24 7 14 18 18 19 MW-3 20 24 7 14 18 18 19 MW-3 20 21 22 23 24 7 14 18 18 19 MW-4 19 20 21 22 23 24 17 14 18 18 19 MW-5 20 21 22 23 24 24 19 19 MW-5 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                       |     | Date Sampled Jun-00 Mar-02 Jan-03 Mar-03 Dec-03 Mar-04 Jun-00 Mar-04 Jun-00 Mar-02 Jan-03 Dec-03 Aug-03 Dec-03 Aug-03 Dec-04 Aug-03 Dec-04 Aug-04 Jun-04 Sep-04 Jun-04 | <ul> <li>EDB</li> <li>&lt; 5.0</li> <li>&lt; 1.0</li> <li>&lt; 0.26</li> <li>&lt; 1.0</li> <li>&lt; 5.0</li> <li>&lt; 0.26</li> <li>&lt; 5.0</li> <li>&lt; 5.0</li> <li>&lt; 5.0</li> <li>&lt; 5.0</li> <li>&lt; 5.0</li> <li>&lt; 0.26</li> <li>&lt; 0.6</li> <li>&lt; 0.7</li> <li>&lt; 0.26</li> <li>&lt; 0.26<th>\$5.0 &lt; 5.0 &lt; 5.0 &lt; 7.2 &lt; 5.0 &lt; 0.17 &lt; 5.0 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.5 &lt; 0.17 &lt; 0.5 &lt; 0.17 &lt; 0.10 &lt; 0.10</th><th>1,2,4<br/>TMB<br/>51<br/>&lt;1<br/>150<br/>373<br/>AM<br/>NA<br/>NA<br/>NA<br/>NA<br/>NA<br/>&lt; 0.5<br/>&lt; 1</th><th>1,3,5-<br/>TMB &lt; 5<br/>1.6 &lt; 50<br/>&lt; 0.49<br/>NA<br/>NA<br/>NA<br/>NA<br/>NA<br/>NA<br/>&lt; 0.5</th><th>t-Butanol &lt; 1,000 &lt; 10</th><th>MATHEMATICAL STREET</th><th><pre></pre></th><th>  Saphthalene<br/>  &lt; 5<br/>  &lt; 1<br/>  &lt; 50<br/>  &lt; 0.88</th><th>cis-1,2-<br/>DCE<br/>&lt; 5<br/>&lt; 1<br/>&lt; 50<br/>&lt; 0.30</th><th><pre></pre></th><th><pre></pre></th><th>Others  ND  ND  ND  ND  ND</th></li></ul> | \$5.0 < 5.0 < 5.0 < 7.2 < 5.0 < 0.17 < 5.0 < 0.17 < 5.0 < 0.17 < 5.0 < 0.17 < 5.0 < 0.17 < 5.0 < 0.17 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.17 < 0.5 < 0.17 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 | 1,2,4<br>TMB<br>51<br><1<br>150<br>373<br>AM<br>NA<br>NA<br>NA<br>NA<br>NA<br>< 0.5<br>< 1 | 1,3,5-<br>TMB < 5<br>1.6 < 50<br>< 0.49<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>< 0.5 | t-Butanol < 1,000 < 10                   | MATHEMATICAL STREET           | <pre></pre>           | Saphthalene<br>  < 5<br>  < 1<br>  < 50<br>  < 0.88 | cis-1,2-<br>DCE<br>< 5<br>< 1<br>< 50<br>< 0.30 | <pre></pre>                           | <pre></pre> | Others  ND  ND  ND  ND  ND |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|-------------------------------|-----------------------|-----------------------------------------------------|-------------------------------------------------|---------------------------------------|-------------|----------------------------|
| 7 14 18 MW-1 19 20 21 21 22 23 24 7 14 18 18 19 MW-2 21 22 23 24 7 14 18 18 19 MW-3 20 21 21 22 23 24 7 14 18 18 19 MW-3 20 21 22 23 24 7 14 18 18 19 MW-4 19 20 21 21 22 23 24 14 18 18 19 MW-5 20 21 21 22 23 24 24 14 18 18 19 MW-5 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                          |     | Jun-00 Mar-02 Jan-03 Mar-03 Aug-03 Dec-03 Mar-04 Jun-04 Sep-04 Jun-02 Jan-03 Mar-03 Dec-03 Aug-03 Dec-03 Aug-03 Dec-04 Jun-04 Sep-04                                   | < 1.0<br>< 50<br>< 0.26<br>< 1.0<br>< 5.0<br>< 5.0<br>< 5.0<br>< 5.0<br>< 5.0<br>< 5.0<br>< 0.5<br>< 1.0<br>< 0.5<br>< 1.0<br>< 5.0<br>< 6.0<br>< 7.0<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <1.0 <50 <0.17 7.2 <5.0 <0.17 <5.0 <0.17 <5.0 <1.0 <0.17 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51<br>< 1<br>150<br>373<br>NA<br>NA<br>NA<br>NA<br>NA<br>A<br>A<br>A<br>A                  | < 5<br>1.6<br>< 50<br>< 0.49<br>NA<br>NA<br>NA<br>NA                                 | < 10<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA | -NA<br>68<br>< 10<br>NA<br>NA | < 2<br>< 10<br>< 0.29 | < 50<br>< 0.88                                      | < 5<br>< 1<br>< 50<br>< 0.30                    | < 1<br>< 50                           | < 1<br>< 50 | ND<br>ND                   |
| 18   MW-1   19   20   21   22   23   24   14   18   19   MW-5   20   21   22   23   24   14   18   19   MW-6   21   22   23   24   14   18   18   19   MW-6   21   22   23   24   24   24   27   27   27   28   28   28   28   28                                                                                                                                                                                                                                                                                                                  |     | Jan-03<br>Mar-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-00<br>Mar-02<br>Jan-03<br>Mar-03<br>Dec-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-04                               | < 500 < 0.26 < 1.00 < 0.26 < 5.00 < 0.26 < 5.00 < 5.00 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6 < 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 5.0<br>< 0.17<br>7.2<br>< 5.0<br>< 0.17<br>< 5.0<br>< 0.5<br>< 0.5<br>< 1.0<br>< 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150<br>373<br>NA<br>NA<br>NA<br>NA<br>NA<br>VA<br>< 0.5                                    | < 50<br>< 0.49<br>NA<br>NA<br>NA<br>NA                                               | NA<br>NA<br>NA<br>NA<br>NA               | 68<br>< 10<br>NA<br>NA        | < 10<br>< 0.29        | < 50<br>< 0.88                                      | < 50<br>< 0.30                                  | < 50                                  | < 50        | ND                         |
| MW-1 19 20 21 22 23 24 7 14 18 18 19 MW-2 21 22 23 24 7 14 18 19 MW-3 20 21 22 23 24 7 14 18 18 19 MW-4 19 20 21 21 22 23 24 14 18 18 MW-4 19 20 21 21 22 23 24 14 18 18 19 MW-5 20 21 22 23 24 14 18 18 19 MW-5 20 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 24 24 24 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                    |     | Mar-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04<br>Jun-00<br>Mar-02<br>Jan-03<br>Mar-03<br>Dec-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Sep-04                     | <0.26 <1.0 <5.0 <5.0 <0.26 <5.0 <5.0 <5.0 <5.0 <0.5 <4.0 <5.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0.17 7.2 < 5.0 < 0.17 < 5.0 < 5.0 < 5.0 < 0.5 < 1.0 < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 373<br>NA<br>NA<br>NA<br>NA<br>NA<br>VA<br>< 0.5                                           | < 0.49<br>NA<br>NA<br>NA<br>NA<br>NA                                                 | NA<br>MA<br>NA<br>NA                     | < 10<br>NA<br>NA              | < 0.29                | < 0.88                                              | < 0.30                                          |                                       |             |                            |
| 20 21 22 23 24 7 14 18 19 MW-2 21 22 23 24 7 14 18 19 20 21 22 23 24 7 14 18 18 19 MW-3 20 21 22 23 24 7 14 18 18 19 MW-5 20 21 22 23 24 14 18 18 19 MW-5 20 21 22 23 24 14 18 18 19 MW-5 20 21 22 23 24 24 24 27 29 20 20 21 20 21 21 22 23 24 24 24 27 29 20 20 20 21 20 21 21 22 22 23 24 24 24 24 27 29 20 20 MW-6 21 20 20 MW-6 21 20 20 MW-6 21 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                              |     | Aug-03 Dec-03 Mar-04 Jun-04 Sep-04 Jun-00 Mar-02 Jan-03 Mar-03 Dec-03 Aug-03 Dec-03 Mar-04 Jun-04 Sep-04                                                               | < 1.0 < 5.0 < 0.26 < 5.0 < 5.0 < 5.0 < 0.5 < 1.0 < 5.6 < 0.26 < 0.6  MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.2<br>< 5.0<br>< 0.17<br>< 5.0<br>< 5.0<br>< 0.5<br>< 1.0<br>< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA<br>NA<br>NA<br>NA<br>NA<br>< 0.5                                                        | NA<br>NA<br>NA<br>NA<br>NA                                                           | MA<br>NA<br>NA                           | NA<br>NA                      | ⇒ •NA                 |                                                     |                                                 | < 0.23                                | < 0.50      |                            |
| 21 22 23 24 7 14 18 18 19 MW-2 21 22 23 24 7 14 18 18 19 20 21 22 23 24 14 18 MW-3 20 21 22 23 24 14 18 18 19 20 21 22 23 24 14 18 18 19 20 21 22 23 24 14 18 18 19 20 21 22 23 24 24 24 24 24 24 24 24 24 24 25 26 27 27 28 29 20 20 20 21 20 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                            |     | Dec-03<br>Mar-04<br>Jun-04<br>Sep-04<br>Jun-00<br>Mar-02<br>Jan-03<br>Mar-03<br>Dec-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                         | < 5.0<br>< 0.26<br>< 5.0<br>< 5.0<br>< 0.5<br>< 1.0<br>< 5<br>< 0.26<br>< 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 5.0<br>< 0.17<br>< 5.0<br>< 5.0<br>< 0.5<br>< 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA<br>NA<br>NA<br>NA<br>< 0.5                                                              | NA<br>NA<br>NA<br>NA                                                                 | NA<br>NA<br>NA                           | NA                            |                       |                                                     | A TOTAL                                         | · · · NA                              | MA. NA      | - NA                       |
| 22 23 24 7 14 18 18 9 19 MW-2 21 22 23 24 7 14 18 18 19 MW-3 20 21 22 23 24 7 14 18 18 19 MW-4 19 20 20 21 21 22 23 24 14 18 18 19 MW-5 20 20 MW-6 21 22 23 24 14 18 18 19 MW-5 20 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                                                                              |     | Mar-04 Jun-04 Sep-04 Jun-00 Mar-02 Jan-03 Mar-03 Dec-03 Aug-03 Dec-03 Mar-04 Jun-04 Sep-04                                                                             | < 0.26<br>< 5.0<br>< 5.0<br>< 0.5<br>< 1.0<br>< 5<br>< 0.26<br>< 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 0.17<br>< 5.0<br>< 5.0<br>< 0.5<br>< 1.0<br>< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA<br>NA<br>NA<br>< 0.5                                                                    | NA<br>NA<br>NA                                                                       | NA<br>NA                                 |                               | · NA                  | - × NA                                              | NA.                                             | · · · NA                              | T≡NA        | . NA                       |
| 24 7 14 18 19 MW-2 21 22 23 24 7 14 18 18 19 MW-3 20 21 22 23 24 7 14 18 MW-3 20 21 22 23 24 24 27 21 22 23 24 24 24 26 27 27 28 29 20 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                             |     | Sep-04<br>Jun-00<br>Mar-02<br>Jan-03<br>Mar-03<br>Dec-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                                             | < 5.0<br>< 0.5<br>< 1.0<br>< 5<br>< 0.26<br>< 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < 5.0<br>< 0.5<br>< 1.0<br>< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>NA</b> < 0.5                                                                            | . NA                                                                                 |                                          | arrested transfer and         | NA                    | -NA                                                 | ······································          | . NA                                  | - NA        | - NA                       |
| 7 14 18 19 MW-2 21 20 21 21 22 23 33 24 7 14 18 19 MW-3 20 21 22 23 24 7 14 18 18 MW-4 19 20 21 22 23 24 14 18 18 19 MW-5 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 19 20 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 29 29 20 20 20 20 20 20 21 21 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                         |     | Jun-00<br>Mar-02<br>Jan-03<br>Mar-03<br>Dec-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                                                       | < 0.5<br>< 1.0<br>< 5<br>< 0.26<br>< 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.5<br>< 1.0<br>< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                      | C. De Hi da Sandidila                                                                |                                          | 270                           | < 5.0                 | . NA                                                | - NA                                            | NA.                                   | NA.         | NA.                        |
| MW-2 21  MW-2 21  20  21  21  22  23  24  7  14  18  18  19  MW-3 20  21  22  23  24  7  14  18  MW-4 19  20  21  22  23  24  14  18  MW-5 20  MW-5 20  MW-6 21  22  23  24  14  18  19  MW-7 20                                                                                                                                                                                                               |     | Mar-02<br>Jan-03<br>Mar-03<br>Dec-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                                                                 | < 1.0<br>< 5<br>< 0.26<br>< 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 1.0<br>< 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            | < 11.5                                                                               | NA                                       | 120                           | < 5.0                 | . NA                                                | NA .                                            | - NA                                  | NA NA       | NA<br>ND                   |
| 18   19   19   18   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Jan-03<br>Mar-03<br>Dec-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                                                                           | < 5<br>< 0.26<br>< 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \ \ \ \ \                                                                                  | < 1                                                                                  | < 100<br>220                             | < 100<br>NA                   | < 5.0                 | < 0.5                                               | < 0.5<br>< 1                                    | < 0.5<br>< 1                          | < 0.5       | ND<br>DN                   |
| 19 MW-2 21 20 21 22 23 24 7 14 18 18 19 MW-3 20 21 22 23 24 7 14 18 18 19 20 21 22 23 24 7 21 22 23 24 14 18 18 19 20 20 21 22 22 23 24 14 18 18 19 20 MW-5 20 21 22 23 24 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 21 22 23 24 14 18 18 19 20 MW-6 21 21 22 23 24 14 18 18 19 20 MW-7 20 20 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                      |     | Mar-03<br>Dec-03<br>Aug-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                                                                                     | < 0.26<br>< 0.6<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 5                                                                                        | < 5                                                                                  | NA.                                      | 34                            | 1>                    | < 5                                                 | 24                                              | < 5                                   | < 5         | ND                         |
| 20 21 21 22 23 24 7 14 18 19 MW-3 20 21 22 23 24 7 14 18 18 MW-4 19 20 21 21 22 23 24 14 18 18 19 MW-5 20 21 21 22 23 24 14 18 18 19 20 21 21 22 23 24 14 18 18 19 20 21 21 22 23 24 14 18 18 19 20 20 MW-6 21 21 22 23 24 14 18 18 19 19 20 20 21 21 22 23 24 24 24 24 24 24 24 24 24 29 20 20 20 21 21 22 22 23 24 24 24 29 20 20 MW-6 21 21 22 22 23 24 24 29 20 20 MW-6 21 20 20 MW-7 20 20 20 20 21 21 22 22 23 24 24 24 24 29 29 20 20 20 20 20 20 20 21 21 22 22 23 24 24 24 24 24 24 24 24 24 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 |     | Aug-03<br>Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                                                                                                         | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.49                                                                                     | < 0.26                                                                               | NA                                       | 94                            | < 0.29                | < 0.88                                              | 15                                              | < 0.23                                | < 0.36      | ND                         |
| 21 22 23 24 7 14 18 18 19 MW-3 20 21 22 23 24 7 14 18 MW-4 19 20 21 21 22 23 24 14 18 18 19 MW-5 20 21 21 22 23 24 14 18 18 19 MW-5 20 21 22 23 24 24 24 24 27 20 21 21 22 23 24 24 24 24 26 27 27 28 29 20 20 20 21 21 21 22 22 23 24 24 24 24 24 24 24 24 24 26 27 29 20 20 20 21 21 21 22 22 23 24 24 24 24 24 26 27 29 20 20 20 20 21 20 20 20 21 21 22 22 23 24 24 24 26 27 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                         |     | Dec-03<br>Mar-04<br>Jun-04<br>Sep-04                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TO NA                                                                                      | NA                                                                                   | - NA                                     | ·····NA                       | NA                    | / NA                                                | *. ÷=NA                                         | • , / NA                              | NA          | . ×NA                      |
| 22 23 24 7 14 18 18 9 19 MW-3 20 21 22 23 24 7 14 18 18 MW-4 19 20 21 22 23 23 24 14 18 18 19 19 MW-5 20 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 20 MW-6 21 21 22 23 24 14 18 18 19 20 MW-6 21 21 22 23 24 24 24 24 24 24 24 24 24 29 20 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                    |     | Mar-04<br>Jun-04<br>Sep-04                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 器 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ₽ NA                                                                                       | ST IN                                                                                | NA.                                      | → NA                          | NA                    | NA NA                                               | - NA                                            | NA<br>NA                              | NA<br>NA    | ANTE                       |
| 23 24 77 14 18 19 MW-3 20 21 22 23 24 77 14 18 18 MW-4 19 20 21 22 23 24 14 18 18 19 19 20 20 21 22 23 24 14 18 18 19 20 20 21 21 22 23 24 14 18 18 19 19 20 20 21 21 22 23 24 14 18 18 19 19 20 20 21 21 22 23 24 14 18 18 19 19 19 20 20 21 21 22 23 24 24 24 24 24 24 24 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                           |     | Jun-04<br>Sep-04                                                                                                                                                       | . MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | → MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZE NA                                                                                      | - NA<br>NA                                                                           | - MA<br>- MA                             | aaa NA<br>≥u≥NA               | NA<br>NA              | MA MA                                               | NA NA                                           | NA<br>NA                              | NA.         | NA NA                      |
| 24 7 14 18 19 MW-3 20 22 23 24 7 144 18 MW-4 19 20 21 22 23 24 14 18 18 19 MW-5 20 21 22 23 24 14 18 18 19 20 21 22 22 23 24 14 18 18 19 20 21 22 22 23 24 14 18 18 19 20 21 22 22 23 24 14 18 18 19 19 MW-6 21 22 23 24 14 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                           |     | Sep-04                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                                                                         | · ≒NA                                                                                | NA.                                      | 190                           | 1.1                   | · · · · · · · · · · · · · · · · · · ·               | ∠ NA                                            | • NA                                  | . NA        | . NA                       |
| 14 18 19 19 MW-3 20 21 22 23 24 7 14 18 MW-4 19 20 21 22 23 24 14 18 18 19 19 20 21 22 23 24 14 18 18 19 20 20 21 22 23 24 14 18 18 19 19 20 20 21 21 22 23 24 14 18 18 19 19 MW-6 21 22 23 24 14 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                     |     | T                                                                                                                                                                      | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - NA                                                                                       | - UNA                                                                                | . NA                                     | 130                           | 0.9                   | - NA                                                | - NA                                            | i⊒ NA                                 | * NA        | . NA                       |
| 18 19 19 19 20 21 22 23 24 11 18 18 19 20 21 24 24 24 20 20 21 21 22 23 24 14 18 18 19 20 20 21 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                                                                                                                                                                    |     | Jun-00                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                      | < 0.5                                                                                | < 100                                    | < 100                         | < 5.0                 | < 0.5                                               | < 0.5                                           | < 0.5                                 | < 0.5       | ND                         |
| MW-3 20 21 22 23 24 14 18 19 20 MW-6 21 22 23 24 14 18 19 20 MW-6 21 22 22 23 24 14 18 18 19 20 20 MW-6 21 22 22 23 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                                                                                                                                                                                                                    | 1   | Mar-02                                                                                                                                                                 | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                                                                                        | 4.7                                                                                  | 180                                      | NA                            | < 2                   | 2.2                                                 | 21                                              | < 1<br>< 5                            | < 1<br>< 5  | (a)                        |
| MW-3 20 21 22 23 24 7 14 18 MW-4 19 20 21 22 23 24 14 18 18 19 MW-5 20 21 22 23 24 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 19 20 MW-6 21 21 22 23 24 24 24 24 24 29 20 20 21 20 20 21 21 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                                                                             | 7   | Jan-03<br>Mar-03                                                                                                                                                       | < 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.49                                                                                     | 5.0<br>< 0.26                                                                        | MA<br>NA                                 | 76<br>< 10                    | < 0.29                | < 0.88                                              | 24                                              | < 0.23                                | < 0.36      | (a)<br>ND                  |
| 21 22 23 24 7 14 18 MW-4 19 20 21 22 23 24 14 18 18 19 20 21 22 23 24 14 18 18 19 20 MW-6 21 22 23 24 14 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                              | 1   | Aug-03                                                                                                                                                                 | < 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA.                                                                                        | N <sub>A</sub>                                                                       | a - NA                                   | , Ata                         | AZ NA                 | . PMA                                               | AL NA                                           | NA                                    | ₹ NA        | ⇒ NA                       |
| 23 24 7 14 18 MW-4 19 20 21 22 23 24 14 18 18 19 20 21 22 23 24 14 18 19 20 21 22 23 24 14 18 19 20 MW-6 21 22 23 24 14 18 19 20 MW-6 21 21 22 23 24 24 24 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                         | ╛   | Dec-03                                                                                                                                                                 | T NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - NA                                                                                       | ሂፋ                                                                                   | NA                                       | NA.                           |                       | ≥ AVA                                               | . NA                                            | ∠NA                                   | -+ NA       | NA                         |
| 24 7 14 18 MW-4 19 20 21 22 23 23 24 114 18 18 19 20 21 22 22 23 24 24 24 24 24 24 24 24 24 34 38 39 20 MW-6 21 22 23 24 34 34 38 39 49 40 40 40 40 40 40 40 40 40 40 40 40 40                                                                                                                                                                                                                                                                                                                                                                     | _   | Mar-04                                                                                                                                                                 | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24*NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA.                                                                                        | - NA                                                                                 | - NA                                     | - NA                          | z NA                  | A TANA                                              | ₽ NA                                            | NA                                    | THA         | NA.                        |
| 7 14 18 18 19 20 21 21 22 23 24 14 18 19 20 20 21 21 22 23 24 24 24 24 24 24 24 24 24 24 24 29 20 20 20 20 21 21 22 23 24 24 24 24 29 29 20 20 20 20 20 21 21 22 20 21 21 22 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                          | -   | Jun-04                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA<br>NA                                                                                   | ·····NA                                                                              | - ∸NA<br>1NA                             | 130<br>82                     | 1.9                   | M NA                                                | NA NA                                           | NA EV                                 | NA<br>NA    | NA NA                      |
| 14   18   18   20   21   22   23   24   14   18   19   20   21   22   23   24   24   24   24   24   24                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┪   | Sep-04<br>Jun-00                                                                                                                                                       | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 0.5                                                                                      | < 0.5                                                                                | < 100                                    | < 100                         | < 5.0                 | < 0.5                                               | < 0.5                                           | < 0.5                                 | < 0.5       | ND.                        |
| MW-4 19 20 20 21 22 23 24 14 18 19 19 20 20 21 22 23 24 14 24 24 24 20 MW-6 21 22 23 24 24 24 24 29 20 MW-6 21 20 20 MW-6 21 20 MW-6 21 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                     | 7   | Mar-02                                                                                                                                                                 | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1                                                                                        | <1                                                                                   | < 10                                     |                               | < 2                   | < 1                                                 | 2.9                                             | 3.7                                   | 5.0         | ND                         |
| 20 21 22 23 24 14 18 19 MW-5 20 21 22 23 24 14 18 19 20 21 22 23 24 14 18 19 20 MW-6 21 22 23 24 14 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                      |     | Jan-03                                                                                                                                                                 | · · · · NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a Part WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MA                                                                                         | YE NA                                                                                | NA                                       | · NA                          | 基 NA                  | <b>韓 M</b>                                          | NA.                                             | , #NA                                 | NA:         | ND                         |
| 21 22 23 24 14 18 19 MW-5 20 21 22 23 24 14 18 19 20 MW-6 21 22 23 24 14 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Mar-03                                                                                                                                                                 | . NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · WA                                                                                       | - NA                                                                                 | -a-470A                                  | iz: NA                        | · NA                  | 注 NA                                                | .:∴NA                                           | - NA                                  | NA          | ND<br>d NA                 |
| 22 23 24 14 18 18 19 MW-5 20 21 22 23 24 14 18 19 20 MW-6 21 22 23 24 14 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4   | Aug-03<br>Dec-03                                                                                                                                                       | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - NA<br>- NA                                                                               | ™ NA                                                                                 | MA<br>NA                                 | NA<br>NA                      | NA CA                 | A MA                                                | WA<br>- ∵WA                                     | -NA<br>NA                             | NA<br>NA    | NA<br>NA                   |
| 23 24 14 18 19 19 20 21 22 23 24 14 18 19 20 MW-6 21 22 23 34 14 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                         | ┪   | Mar-04                                                                                                                                                                 | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - NA                                                                                       | - NA                                                                                 | NA.                                      | - ANA                         | - AA                  | - NA                                                | → MA                                            | N/A                                   | NA.         | HA                         |
| 14 18 19 19 19 19 10 10 20 21 22 23 24 14 18 19 20 10 20 10 10 21 22 23 24 14 18 19 19 19 10 10 11 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                           | ┪   | Jun-04                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                         | NA                                                                                   | NA.                                      | < 10                          | < 0.5                 |                                                     | - NA                                            | NA                                    | . NA        | NA.                        |
| 18 19 19 20 21 22 23 24 14 18 19 20 MW-6 21 22 23 44 14 18 19 40 14 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | Sep-04                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | == NA                                                                                      | - 344 NA                                                                             | NA.                                      | < 10                          | < 0.5                 | / S : NA                                            | - NA                                            | ∍ NA                                  | ± NA        | MA                         |
| 19<br>MW-5 20<br>21<br>22<br>23<br>24<br>14<br>18<br>19<br>20<br>MW-6 21<br>22<br>23<br>24<br>14<br>18<br>19<br>19<br>20<br>19<br>19<br>20<br>19<br>19<br>20<br>19<br>21<br>21<br>21<br>23<br>24<br>14<br>18<br>19<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                     |     | Mar-02                                                                                                                                                                 | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 1                                                                                        | 2.7                                                                                  | 640                                      | - NA                          | < 2                   | 120                                                 | < 1<br>< 50                                     | < 1<br>< 50                           | < 1<br>< 50 | ND<br>ND                   |
| MW-5 20 21 22 23 24 14 18 19 22 22 23 23 24 24 14 15 22 25 21 21 14 18 18 19 19 MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ┥   | Jan-03<br>Mar-03                                                                                                                                                       | < 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 512<br>554                                                                                 | 122<br>107                                                                           | MA<br>NA                                 | < 100<br>< 10                 | < 0.29                | 251                                                 | < 0.3                                           | < 0.23                                | < 0.36      | (b)                        |
| 22 23 24 14 18 19 20 MW-6 21 22 23 24 14 18 18 19 19 MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ┪   | Aug-03                                                                                                                                                                 | < 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | -NA                                                                                  | NA.                                      | NA                            | AVA:                  | - ₽NA                                               | · NA                                            | NA                                    | - NA        | ₩A.                        |
| 23 24 14 18 19 20 MW-6 21 22 23 24 14 18 19 19 MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | Dec-03                                                                                                                                                                 | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                         | M                                                                                    | . NA                                     | JOIA                          | NA.                   | = ₽NA                                               | zawa NA                                         | · · · · · · · · · · · · · · · · · · · | — NA        | aris. NA                   |
| 24 14 18 19 20 MW-6 21 22 23 24 14 18 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4   | Mar-04                                                                                                                                                                 | < 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - NA                                                                                       | NA.                                                                                  | 5 17VA                                   | NA.                           | NA                    | ₩ WA                                                | ATT NA                                          | - NA                                  | - 744       | NA                         |
| 14 18 19 20 MW-6 21 22 23 24 14 18 18 19 MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ᆉ   | Jun-04<br>Sep-04                                                                                                                                                       | < 3.1<br>< 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 3.1<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M<br>M                                                                                     | AM.                                                                                  | - YA<br>- WA                             | 120<br>87                     | < 3.1<br>< 4.2        | NA<br>NA                                            | E NA<br>≒= NA                                   | NA<br>NA                              | NA<br>NA    | - NA                       |
| 19 20 MW-6 21 22 23 24 14 18 19 MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _   | Mar-02                                                                                                                                                                 | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < J                                                                                        | 2.2                                                                                  | < 10                                     | . NA                          | < 2                   | 1.6                                                 | < 1                                             | < 1                                   | < 1         | ND                         |
| 20<br>MW-6 21<br>22<br>23<br>24<br>14<br>18<br>19<br>MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | Jan-03                                                                                                                                                                 | < 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                         | < 5                                                                                  | - WA                                     | 46                            | < 3                   | < 5                                                 | < 5                                             | < 5                                   | < 5         | ND                         |
| MW-6 21 22 23 24 14 18 19 MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | Mar-03                                                                                                                                                                 | < 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.49                                                                                     | < 0.26                                                                               | * NA                                     | 40                            | < 0.29                | < 0.88                                              | < 0.3                                           | < 0.23                                | < 0.36      | (c.)                       |
| 22<br>23<br>24<br>14<br>18<br>19<br>MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Aug-03<br>Dec-03                                                                                                                                                       | < 0.5<br>< 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | R. NA                                                                                | Samuel Samuel Sales Samuel               | . NA                          | .≝M                   | 提 NA                                                | * NA                                            | NA                                    | : NA        | NA.                        |
| 23<br>24<br>14<br>18<br>19<br>MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4   |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA.                                                                                        | ⊕ MA                                                                                 | * * NA                                   | - NA                          | ₽NA.                  | _ A                                                 | · · ·NA                                         | . NA                                  | - NA        | NA.                        |
| 24<br>14<br>18<br>19<br>MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1 | Mar-04                                                                                                                                                                 | < 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - NA                                                                                       | ** NA                                                                                | NA.                                      | s; -Na                        |                       | ± M                                                 | NA.                                             | MA                                    | NA          | NA.                        |
| 14<br>18<br>19<br>MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -   | Jun-04                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | == NA                                                                                      | - NA                                                                                 | : NA                                     | 54                            | 1.0                   |                                                     | 章 M                                             | → NA                                  | NA          | NA.                        |
| 18<br>19<br>MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Sep-04                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ≅ MA                                                                                     | - NA                                                                                 | NA NA                                    | 43                            | 1.0                   | = NA                                                | · 漢· XA                                         | × NA                                  | NA NA       | - NA                       |
| 19<br>MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | Mar-02<br>Jan-03                                                                                                                                                       | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1.0<br>₩A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 1<br>2-+NA                                                                               | < ]<br>- NA                                                                          | < 10<br>- NA                             | ∴NA<br>NA                     | < 2                   | < 1<br>-NA                                          | < /i>                                           | < /                                   | < /         | ND<br>ND                   |
| MW-7 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Mar-03                                                                                                                                                                 | - NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | . NA                                                                                 | NA<br>NA                                 | -                             |                       | - NA                                                | - NA                                            | n NA                                  | -NA         | ND<br>ND                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | Aug-03                                                                                                                                                                 | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . NA                                                                                       |                                                                                      | i Na                                     | NA                            |                       | ia ≃M                                               | - ∠ NA                                          | · · · · · NA                          |             |                            |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Dec-03                                                                                                                                                                 | MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - NA                                                                                       | NA                                                                                   |                                          | NA.                           | · XX                  |                                                     | ∗ NA                                            |                                       | ₩           | - RA                       |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Mar-04                                                                                                                                                                 | NA<br>Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≃ NA                                                                                       | - NA                                                                                 |                                          |                               | . NA                  | <u> M</u>                                           | NA NA                                           | NA<br>NA                              | NA<br>NA    | NA<br>VA                   |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Jun-04                                                                                                                                                                 | < 0.5<br>< 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - NA<br>NA                                                                                 | NA NA                                                                                |                                          | < 10                          | < 0.5                 | NA NA                                               |                                                 | NA<br>NA                              | NA<br>NA    | NA<br>NA                   |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Sep D4                                                                                                                                                                 | < 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 1                                                                                        | < /                                                                                  | < 10                                     | NA                            | < 2                   | < J                                                 | < 1                                             | < 1                                   | < 1         | ND                         |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Sep-04<br>Mar-02                                                                                                                                                       | ,NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            | . NA                                                                                 |                                          | . NA                          |                       | ······································              |                                                 | -NA                                   | NA          | ND                         |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Sep-04<br>Mar-02<br>Ian-03                                                                                                                                             | < 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.49                                                                                     | < 0.26                                                                               | Z NA                                     | < 10                          | < 0.29                | < 0.88                                              | < 0.3                                           | < 0.23                                | < 0.36      | ND                         |
| MW-8 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Mar-02<br>Jan-03<br>Mar-03                                                                                                                                             | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA.                                                                                        | F 24                                                                                 |                                          | NA.                           | T TAX                 | - MA                                                |                                                 | - NA                                  | NA NA       | NA<br>NA                   |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Mar-02<br>Jan-03<br>Mar-03<br>Aug-03                                                                                                                                   | NA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                            | NA<br>NA                                                                             |                                          | NA<br>NA                      | - NA<br>- NA          | = NA                                                | - NA<br>NA                                      | NA<br>NA                              | NA<br>NA    | NA<br>NA                   |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Mar-02<br>Ian-03<br>Mar-03<br>Aug-03<br>Dec-03                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |                                                                                      |                                          |                               | 1.0                   | - NA                                                | NA NA                                           | NA.                                   | - NA        |                            |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Mar-02<br>Jan-03<br>Mar-03<br>Aug-03                                                                                                                                   | = NA<br>< 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - Ala                                                                                      | N4                                                                                   | - NA                                     | 61                            | 1.0                   |                                                     |                                                 | NA                                    | . NA        | VA                         |

Notes: Table includes only detected contaminants.

EDB = Ethylene dibromide, aka 1,2-Dibromoethane (lead scavenger)

DIPE = Isopropyl Ether (a.k.s. di-isopropyl ether)
TBA = Tertiary butyl alenhol
NLP = No Level Published

EDC = Ethylene dichloride, aka 1,2-Dichloruethane (lead scavenger)
PCE = Tetrachloroethylene
DCE = Dichloroethylene

TCE = Trichloroethyene TMB = Trimethylbenzene NA = Not analyzed for this constituent. ND = Not Detected

(a) Also detected were n-propythenzene (3.4 µg/L), p-Isopropythenzene (12 µg/L), see-Butythenzene (7.2 µg/L).

(b) Also detected were isopropythenzene (3.8 µg/L), n-Butythenzene (20 µg/L), n-propythenzene (3.6 µg/L), p-Isopropythenzene (14 µg/L).

(c) Also detected were isopropythenzene (3.4 µg/L), n-propythenzene (2.3 µg/L).

(d) Pre-purge / post-purge sampling, conducted in same event.