

June 18, 2001

JUN 2 2 2001

Mr. Don Hwang Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite #250 Alameda, CA 94502-6577

Regarding:

May 2001 Quarterly Groundwater Sampling Report

Vogue Tyres

240 W. McArthur Blvd. Oakland, California

Stld 6059

Dear Mr. Hwang:

Please find enclosed the May 2001 Quarterly Groundwater Sampling Report prepared by **Advanced Environmental Concepts, Inc.** (AEC) for the above referenced project/location.

Enclosed please find that report, which AEC is submitting for your review.

Should you have any questions or require clarification on any aspects of the enclosed, please do not hesitate to contact our office at (661) 831-1646.

Respectfully yours,

Advanced Environmental Concepts, Inc.

Debbie Irwin

Project Coordinator / Office Administrator

Attachments:

Reports (1)

CC:

Mr. Warren Dodson

May 27, 2001

Mr. Warren Dodson Dodson Ltd. 1323 South Flower Street Los Angeles, California 90015

JUN 2 2 2001

Regarding:

May 2001 Quarterly Groundwater Sampling Report

Former Vogue Tyres Facility 240 West MacArthur Boulevard

Oakland, California

Dear Mr. Dodson:

Advanced Environmental Concepts, Inc. (AEC) is pleased to present this report of groundwater sampling performed at the former Vogue Tyres facility, 240 West MacArthur Boulevard, Oakland, California (Attachment A. Figure 1).

Background

The Gulf Service Station originally operated three 10,000 gallon gasoline underground storage tanks (USTs), and one 350 gallon waste oil UST. Historical records indicate that the Gulf station existed since at least 1950. The current location of the Shell Service Station, located adjacent to, and south of the subject site was a fueling station since at least 1952. The three Gulf gasoline USTs were located at the northern portion of the property, (underneath the current building), and the waste oil UST was west of the service bays. The two pump islands were west of the northern portion of the existing building. The 350 gallon waste oil UST was removed in October 1996 by All Environmental, Inc (AEI).

On October 3, 1996, AEI removed the previously identified 350 gallon waste oil UST located west of the service bays. Visual staining of waste oil range hydrocarbons was identified on the floor and sidewalls of the excavation. Confirmation soil samples collected from the excavation indicated that soil beneath the former UST emplacement were impacted with minor concentrations of petroleum hydrocarbons. At the request of ACHCS, AEI expanded the size of the excavation, then collected additional confirmation soil samples which indicated the successful removal of the contamination. Groundwater was not encountered during this excavation phase, however, due to the estimated proximity of the contamination to groundwater, a subsurface investigation was required by the County.

On January 8, 1997, AEI conducted a subsurface investigation consisting of six borings using a Geoprobe. Borings BH-1, BH-2, BH-4, and BH-6 were advanced to 20 feet below grade level (BGL), and BH-3 and BH-5 were probed to 16 feet BGL. Soil samples were collected at intervals of 5 feet, and "grab" groundwater samples were collected from inside the borings. Groundwater was identified at approximately 16 feet BGL.

The soil samples were analyzed in accordance with California Department of Health Services (CA DHS) method for total petroleum hydrocarbons as gasoline and diesel (TPH-g,d) and EPA Method 8020 for volatile aromatics (BTXE), and methyl tertiary butyl ether (MTBE). The soil samples were also analyzed for total lead, oil and grease, and poly nuclear aromatics (PNAs). Results of the laboratory analyses are summarized below. Units are in milligrams per kilograms (mg/kg) which are equivalent to parts per million (ppm). Results of these analyses are listed in **Table 1**.

1

TABLE 1 Analytical Results of Soil Samples January 10, 1997

Sample ID	TPH-d	TPH-g	Benzene	Toluene	Xylenes	Ethylbenzene
BH-1-15'	ND	ND	ND	ND	ND	ND
BH-2-15'	ND	ND	ND	ND	ND	ND
BH-3-15'	ND	ND	ND	ND	ND	ND
BH-4-15'	370	1100	ND	ND	14	4.4
BH-5-15'	1.9	2.1	0.009	0.006	0.016	ND
BH-6-15'	140	190	0.25	0.5	3.6	0.84
Detection Limits		1.0	0.005	0.005	0.005	0.005

ND:

Non-detected at indicated level of detection.

Total lead concentrations ranged from 4.6 mg/kg to 23 mg/kg which is below the recommended action level of 50 mg/kg. MTBE was non-detect for all samples analyzed, oil and grease were only run on BH-2 and BH-3 and was less than 50 mg/kg, and the PNAs exhibited trace concentrations ranging between 1.1 and 41 μ g/kg.

The groundwater samples were analyzed in accordance with California Department of Health Services (CA DHS) method for total petroleum hydrocarbons as gasoline and diesel (TPH-g,d) and EPA Method 8020 for volatile aromatics (BTXE), and methyl tertiary butyl ether (MTBE). Groundwater samples were also analyzed for total lead, oil and grease, and poly nuclear aromatics (PNAs). Results of the laboratory analyses are summarized below. Units are in micrograms per Liter (μ g/L) which are equivalent to parts per billion (ppb). Results of these analyses are listed in **Table 2**.

TABLE 2
Analytical Results of Groundwater Samples
January 10, 1997

Sample ID	TPH-d	ТРН-д	Benzene	Toluene	Xylenes	Ethylbenzene
BH1W	490	330	2.0	0.72	1.3	ND
BH2W	320	ND	ND	ND	ND	ND
BH4W	NA	6600	58	13	2740	110
BH6W	450	13,000	870	65	570	130
Detection Limits		1.0	0.005	0.005	0.005	0.005

ND:

Non-detected at indicated level of detection.

NA:

Not analyzed

2

ENVIRONMENTAL CONCEPTS WITH DESIGN IN MIND •

Soluble lead concentrations were below detection limits, MTBE ranged from below detection limits to 320 ug/L in BH6W, oil and grease were only run on BH2W and was less than 5 mg/L, and the PNAs exhibited non detectable concentrations.

On August 7, 1997, AEC supervised three Geoprobe soil borings (BH-7, BH-8, and BH-9), and four groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) were drilled proximal to the western dispenser islands, and south, west, and north of the former UST emplacement. The investigative groundwater wells and Geoprobe borings were positioned to assess the vertical and lateral migration of hydrocarbons in the subsurface and to evaluate groundwater quality.

Soil analyses were performed by Associated Laboratories, Inc. to determine the presence and concentrations of hydrocarbons at the subject site by EPA methods 8015M and 8020. Analytical results for soil samples are presented in **Table 3**. Units are in milligrams per kilogram (mg/kg) which are equivalent to parts per million (ppm).

TABLE 3
Analytical Results - Soil Boring
August 7, 1997
(ppm)

Sample ID	TPH-d	TPH-g	Benzene	Toluene	Xylenes	Ethylbenzene
BH-7-12'	ND	ND	ND	ND	ND	ND
BH-7-16'	ND	ND	ND	ND	ND	ND
BH-8-8'	ND	ND	ND	ND	ND	ND
BH-8-12'	ND	168	0.02	ND	5.1	0.45
BH-8-16'	ND	21	0.027	0.07	0.75	ND
BH-9-8'	ND	ND	ND	0.032	0.28	0.029
BH-9-12'	ND	ND	ND	0.012	ND	ND
BH-9-16'	ND	ND	ND	ND	ND	ND
MW-1-10'	ND	ND	ND	ND	ND	ND
MW-1-17'	ND	ND	ND	0.031	ND	ND
MW-2-10'	ND	ND	ND	ND	ND	ND
MW-2-17'	ND	16	0.035	0.037	0.15	0.018
MW-3-10'	ND	ND	ND	ND	ND	ND
MW-3-15'	ND	ND	0.027	ND	ND	ND
MW-4-10'	ND	ND	ND	ND	ND	ND
MW-4-17'	ND	ND	ND	ND	ND	ND
Detection Limits		5.00	0.0050	0.0050	0.0050	0.0050

3

ND: Non Detected at indicated limit of detection

Water analyses were performed by Associated Laboratories, Inc. to determine the presence and concentrations of hydrocarbons at the subject site by EPA methods and 8015M and 8020. Analytical results for soil samples are presented in **Table 4**. Units are in micrograms per Liter (μ g/L) which are equivalent to parts per billion (ppb).

TABLE 4 Analytical Results - Monitoring Wells August 8, 1997 (ppb)

Sample ID	TPH-d	TPH-g	Benzene	Toluene	Xylenes	Ethylbenzene
MVV-1	ND	1,140	110	16	112	15
MW-2	ND	5,530	108	36	144	33
MVV-3	ND	8,500	450	30	106	53
MW-4	ND	ND	ND	ND	ND	ND
Detection Limits		5.00	0.0050	0.0050	0.0050	0.0050

ND: Non Detected at indicated limit of detection

TABLE 5 **Biological Factors** August 8, 1997 (ppb)

Sample ID	2580 B	300.0 (Nitrate)	300.0 Sulfate	310.1	3500 FED	360.1
MVV-1	311	7.1	92	238	0.10	8.2
MW-2	331	0	43	398	0.50	6.3
MVV-3	330	0	56	368	ND	7.9
MW-4	307	19.5	87	140	ND	7.8
Detection Limits		5	5	5.0	0.10	

2580B:

Redox Potential @ Temp

300.0:

Nitrate As NO3 by Ion Chromatograph

310.1 3500FED: Alkalinity

Ferrous Iron

360.1:

Dissolved Oxygen, Membrane Electrode

In accordance with directives issued by ACHCS in a letter dated May 16, 2000, groundwater samples collected during June 2000 were also analyzed for the presence of ether oxygenates, specifically: Tertiary Amyl Methyl Ether (TAME), Diisopropyl Ether (DIPS), Ethyl Tertiary Butyl Ether (ETBE), Tertiary Butyl Alcohol (TBA) and the following lead scavengers: Ethylene Dibromide (EDB), Ethylene Dichloride (EDC), and 1,2-Dichloroethane (1,2-DCA). The following Table 7 presents the results of these additional analyses.

Table 6
Analytical Results
Ether Oxygenates & Lead Scavengers

Sample ID:	Date:	TAME	DIPE	ETBE	TBA	EDB	EDC	1,2-DCA
MW-1	06/26/00	<50.0	<50.0	<50.0	<1,000			<5.0
MW-2	06/26/00	<5.0	<5.0	<5.0	<100.0			<0.5
MW-3	06/26/00	<5.0	<5.0	<5.0	<100.0			<0.5
MW-4	06/26/00	<5.0	<5.0	<5.0	<100.0			<0.5
Units:	N/A	μ g /l	μg/l	μ g/ l	μg/l	μ g/l	μ g/ l	μ g /l

On February 13, 2001 AEC drilled, sampled, and installed four additional groundwater monitoring wells (MW-5, MW-6, MW-7, and MW-8) on the subject property and offsite in MacArthur Boulevard and Howe Street. Soil samples, and groundwater samples were collected from the newly installed wells and are presented in **Tables 7 and 8**.

TABLE 7
Analytical Results - Soil Boring
February 13, 2001
(ppm)

Sample ID	TPH-g	MTBE	Benzene	Toluene	Xylenes	Ethylbenzene
MVV-5-5'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-5-10'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-5-15'	11,700	<0.005	25.6	12.0	38.6	55.8
MW-5-20'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-7-10'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-7-15'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-7-20'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-5'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-10'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-15'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-20'	<10	<0.0723	<0.005	<0.005	<0.015	<0.005

5

ENVIRONMENTAL CONCEPTS WITH DESIGN IN MIND •

In accordance with directives issued by ACHCS in a letter dated May 16, 2000, groundwater samples collected during June 2000 were also analyzed for the presence of ether oxygenates, specifically: Tertiary Amyl Methyl Ether (TAME), Diisopropyl Ether (DIPS), Ethyl Tertiary Butyl Ether (ETBE), Tertiary Butyl Alcohol (TBA) and the following lead scavengers: Ethylene Dibromide (EDB), Ethylene Dichloride (EDC), and 1,2-Dichloroethane (1,2-DCA). The following Table 7 presents the results of these additional analyses.

TABLE 6
Analytical Results
Ether Oxygenates & Lead Scavengers

Sample ID:	Date:	TAME	DIPE	ETBE	ТВА	EDB	EDC	1,2-DCA
MW-1	06/26/00	<50.0	<50.0	<50.0	<1,000			<5.0
MW-2	06/26/00	<5.0	<5.0	<5.0	<100.0		ļ ————	<0.5
MW-3	06/26/00	<5.0	<5.0	<5.0	<100.0			<0.5
MW-4	06/26/00	<5.0	<5.0	<5.0	<100.0			<0.5
Units:	N/A	μ g/l	μ g /l	μ g/ l	μ g /l	μ g/ l	μ g /l	μg/l

On February 13, 2001 AEC drilled, sampled, and installed four additional groundwater monitoring wells (MW-5, MW-6, MW-7, and MW-8) on the subject property and offsite in MacArthur Boulevard and Howe Street. Soil samples, and groundwater samples were collected from the newly installed wells and are presented in **Tables 7 and 8**.

TABLE 7 Analytical Results - Soil Boring February 13, 2001 (ppm)

Sample ID	TPH-g	MTBE	Benzene	Toluene	Xylenes	Ethylbenzene
MW-5-5'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-5-10'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-5-15'	11,700	<0.005	25.6	12.0	38.6	55.8
MW-5-20'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-7-10'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-7-15'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-7-20'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-5'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-10'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-15'	<10	<0.005	<0.005	<0.005	<0.015	<0.005
MW-8-20'	<10	<0.0723	<0.005	<0.005	<0.015	<0.005

5

• ENVIRONMENTAL CONCEPTS WITH DESIGN IN MIND •

TABLE 8 Analytical Results - Monitoring Wells February 14, 2001 (ppb)

Sample ID	TPH-g	MTBE	Benzene	Toluene	Xylenes	Ethylbenzene
MW-5	5,660	<0.3	76.9	21.1	312	47.3
MW-6	1,340	<0.3	17.0	0.967	51,4	11.1
MW-7	<0.005	284	<0.3	<0.3	<0.3	<0.3
MW-8	1,000	620	3.97	<0.3	1.63	3.78

This groundwater sampling report documents the methods and procedures used and the laboratory analytical results obtained from the latest groundwater sampling event conducted at the subject property on May 11, 2001.

Groundwater Sampling

The groundwater samples were collected in accordance with the following protocol.

- Depth to ground water was measured in each of the wells;
- A bailer was used to collect a water sample from the potentiometric surface to visually determine whether free hydrocarbons or a sheen can be identified;
- Initial readings of pH, Temperature, and Conductivity were obtained (Attachment B);
- 4) The water samples were collected in a clean, stainless steel bailer, then transferred to 40-ml. glass VOA vials with Teflon septa. Care was exercised to ensure that no air bubbles were present in the vials;
- The VOA vials were labeled, sealed with tape, wrapped in a protective covering, and placed in an ice chest chilled with frozen Blue Ice with two (2) bailer blanks for transport to the laboratory. Chain-of-custody protocol was followed to ensure sample integrity and traceability;
- The May 2001 samples were analyzed by BC Laboratories, Inc. a California-certified laboratory in Bakersfield, California, for total petroleum hydrocarbons as gasoline (TPH-g), volatile aromatics (BTXE), and MTBE by EPA methods 8015-modified and 8020, respectively. Volatile Organic Compounds results were confirmed by EPA Method 8260. The laboratory reports and chain-of-custody documentation are presented in **Attachment C**.

The following table summarizes the analytical results for **AEC**'s groundwater sampling program. Units are in micrograms per liter (μ g/L) which are equivalent to parts per billion (ppb).

TABLE 9
Analytical Results - Monitoring Wells
(ppb)

Sample ID	Date	ТРН-д	Benzene	Toluene	Xylenes	Ethylbenzene	MTBE
MW-1	08/8/97	1,140	110	16	112	15	NA
	12/3/97	ND	ND	ND	31	ND	NA
	03/16/98	370	8.9	ND	2.2	ND	18
!	07/9/98	6,400	1,300	23	58	3.7	97
	10/19/98	2,500	360	44	150	1.3	ND
	01/19/99	2,700	1,200	28	78	140	130
	6/26/00	27,000	5,200	500	3,100	320	1,300
	12/15/00	976,000	2,490	1,420	10,100	3,640	<150
	02/14/01	NA	NA	NA	NA	NA	NA
	05/11/01	20,000	2,900	310	1,900	230	<30
MW-2	08/08/97	5,350	108	36	144	33	NA
	12/3/97	1,600	73	ND	ND	ND	NA
	3/16/98	3,400	830	100	240	210	870
	07/09/98	3,100	25	2.2	0.9	ND	1,900
	10/19/98	4,300	ND	1.2	1	ND	4,200
	01/19/99	2,900	160	8.9	7.4	6.9	2,100
	06/26/00	2,700	200	17.0	16.0	30.0	680
	12/15/00	3,020	56.7	<1.5	<1.5	<3.0	3,040
	02/14/01	NA	NA	NA	NA	NA	NA
	05/11/01	720	4 9	<3	<3	4.6	380
MW-3	08/08/97	8,500	450	30	106	53	NA
	12/03/97	5,200	180	6	9.3	5	NA NA
	03/16/98	1,000	6.0	ND	ND	ND	810
	07/09/98	6,400	490	57	78	23	220
	10/19/98	2,100	ND	ND	ND	ND	ND

7

Sample ID	Date	ТРН-g	Benzene	Toluene	Xylenes	Ethylbenzene	MTBE
MW-3	01/19/99	4,400	450	65	42	26	1,300
	06/26/00	1,700	110	13.0	13.0	34.0	96.0
	12/15/00	5,450	445	<7.5	<7.5	23.8	603
	02/14/01	NA	NA	NA	NA	NA	NA
	05/11/01	1,900	180	12	19	<3	330
MW-4	08/08/97	ND	ND	ND	ND	ND	NA
	12/03/97	ND	ND	ND	ND	ND	NA
	03/16/98	ND	ND	ND	ND	ND	ND
	07/09/98	ND	ND	ND	ND	ND	ND
	10/19/98	ND	ND	ND	ND	ND	ND
] 	01/19/99	ND	ND	ND	ND	ND	ND
	06/26/00	<50.0	<0.5	<0.5	<0.5	<0.5	<0.5
	12/15/00	<500	<0.3	<0.3	<0.3	<0.6	<0.3
	02/14/01	NA	NA	NA	NA	NA	NA
	05/11/01	<50	1.2	<0.3	1.2	0.55	2.9
MW-5	02/14/01	5,660	76.9	21.1	312	47.3	<0.3
	05/11/01	22,000	2,600	480	2,700	220	<30
MW-6	02/14/01	1,340	17.0	0.967	51.4	11.1	<0.3
	05/11/01	610	15	0.97	46	<0.5	<0.5
MW-7	02/14/01	<0.005	<0.3	<0.3	<0.3	<0.3	284
	05/11/01	<50	0.75	0.77	2.4	0.48	1.1
8-WM	02/14/01	1,000	3.97	<0.3	1.63	3.78	620
	05/11/01	<50	<0.5	<0.5	<0.5	<0.5	4.4

TPH-g: Total Petroleum Hydrocarbons as gasoline

The current state maximum contaminant levels (MCLs) for drinking water set by the California Department of Health Services, Title 22 are as follows:

Benzene	1 µg/L
Toluene	2000 μg/L
Ethylbenzene	680 µg/L
Total Xylenes	

Conclusions

The groundwater sampling results continue to indicate trace to non detectable concentrations of gasoline constituents analyzed within MW-4 (upgradient well) and MW-7 (downgradient well). MTBE concentrations decreased significantly for MW-7.

MW-1 and MW-5 continue to exhibit significant elevated concentrations for TPH-gasoline and volatile organic concentrations, however, MW-1 was significantly less than the previous sampling event while MW-5 exhibited a marked increase over its previous sampling event. MW-8, (lateral gradient well), also exhibited a sharp decrease in gasoline concentrations. It is the opinion of AEC that the groundwater concentrations will stabilize over time and that more consistent results will occur.

MW-2, MW-3, and MW-6 continue to indicate gasoline in the groundwater, although at lower concentrations, signifying that the primary source area for the contamination were the USTs.

Based on the absence of detectable concentrations of ether oxygenates groundwater samples collected in June 2000, oxygenate analyses were not performed on the samples collected on May 11, 2001.

The current gradient was calculated to be North 50° West and the gradient is 0.66 ft/100ft. Flow direction and gradient have remained relatively consistent with previous sampling rounds. The monitoring wells yielded adequate water volume and could not be bailed dry. Recharge was adequate in all eight wells.

Recommendations

Advanced Environmental Concepts, Inc. recommends continued sampling of the groundwater wells for this site. Additionally, it does not appear that this contamination will mitigate itself through natural attenuation, therefore, AEC recommends using a vacuum truck to remove the contaminated groundwater from MW-1 and MW-5, and concurrently with the water removal perform vapor extraction on the two wells. This remediation method is termed "hi-vac", or "bio-slurping", and has proven effective in gasoline plume removal in areas that have limited access and space for a soil and groundwater treatment system. If "hi-vac" proves to be effective then AEC will recommend installation of two 4-inch diameter groundwater wells to facilitate removal of the hydrocarbons.

Closing

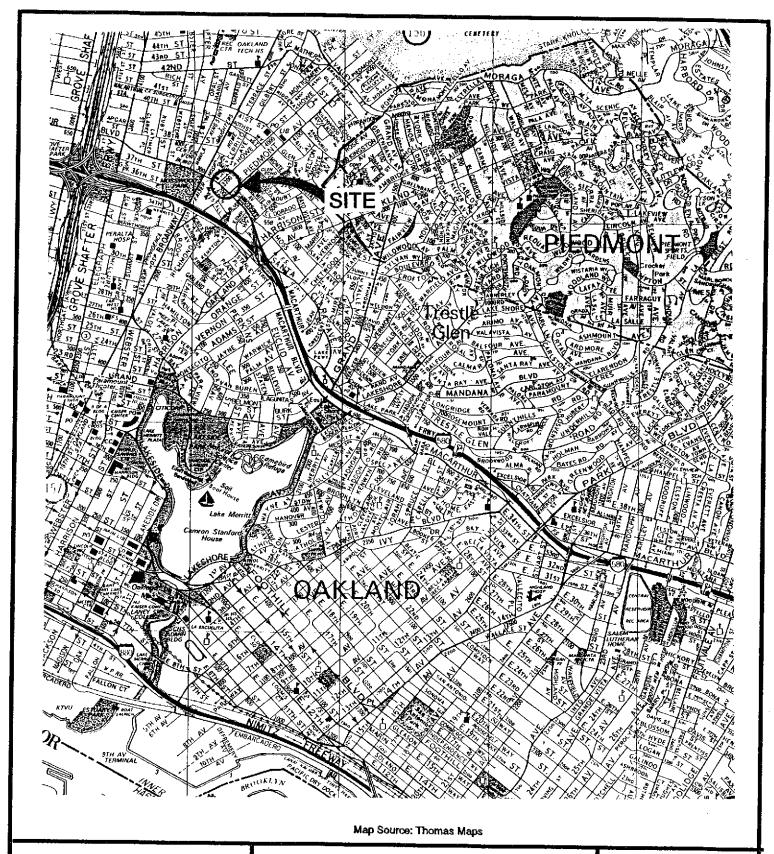
Advanced Environmental Concepts, Inc. appreciates the opportunity of providing our professional services to Mr. Warren Dodson. Should there be any questions or additional information required, please do not hesitate to contact our office at your convenience.

Respectfully yours,

Advanced Environmental Concepts, Inc.

Jonathan L. Buck

Registered Environmental Assessor II #20017



All environmental site work with which **Advanced Environmental Concepts, Inc.** was involved, was performed under my supervision to ensure proper sampling protocol and environmental assessment. This report has been technically reviewed by the undersigned.

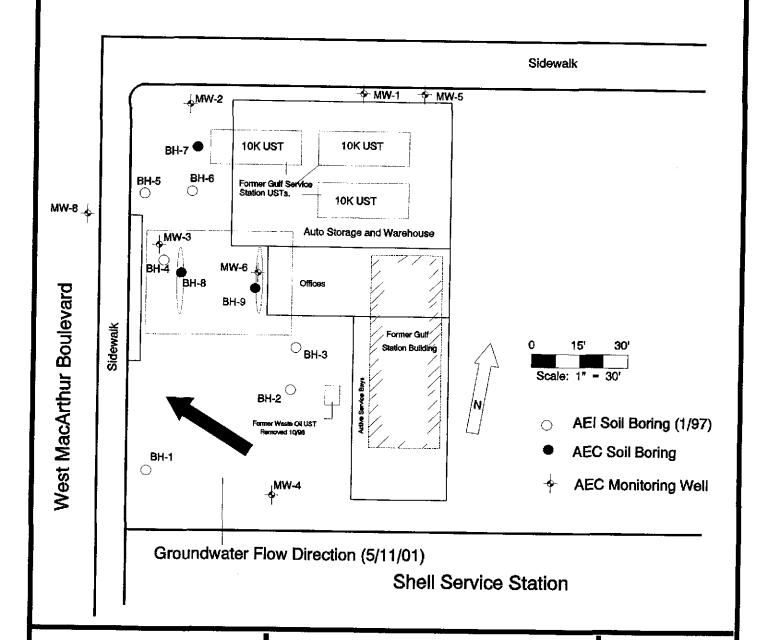
Christian Bellue

Registered Professional Engineer #C53934

Doc30ID

- SITE AREA -

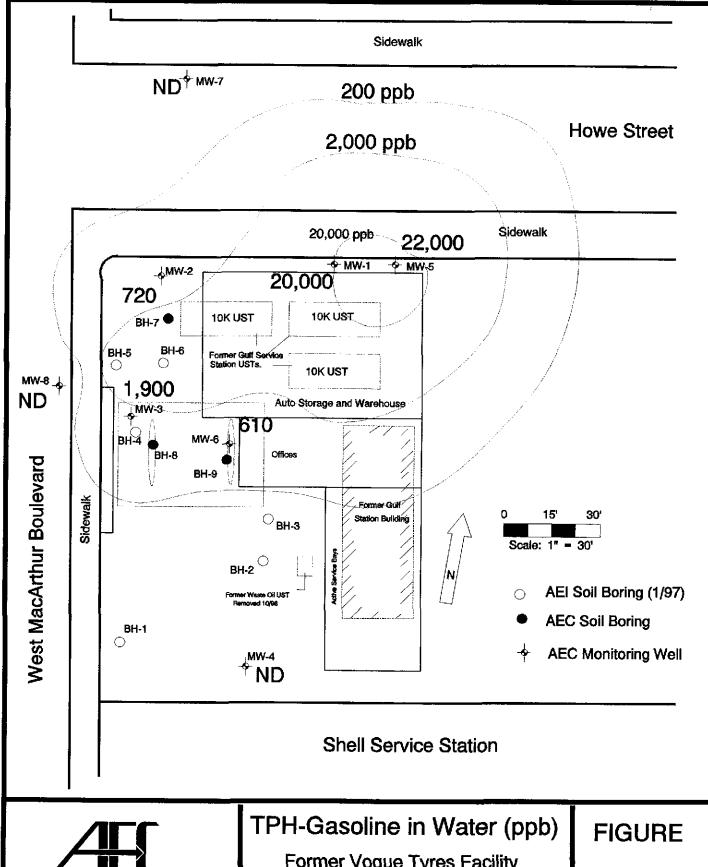
Prestige Products Corporation
240 West MacArthur Blvd.
County of Alameda - Oakland, California


FIGURE

1

Sidewalk

💠 MW-7


Howe Street

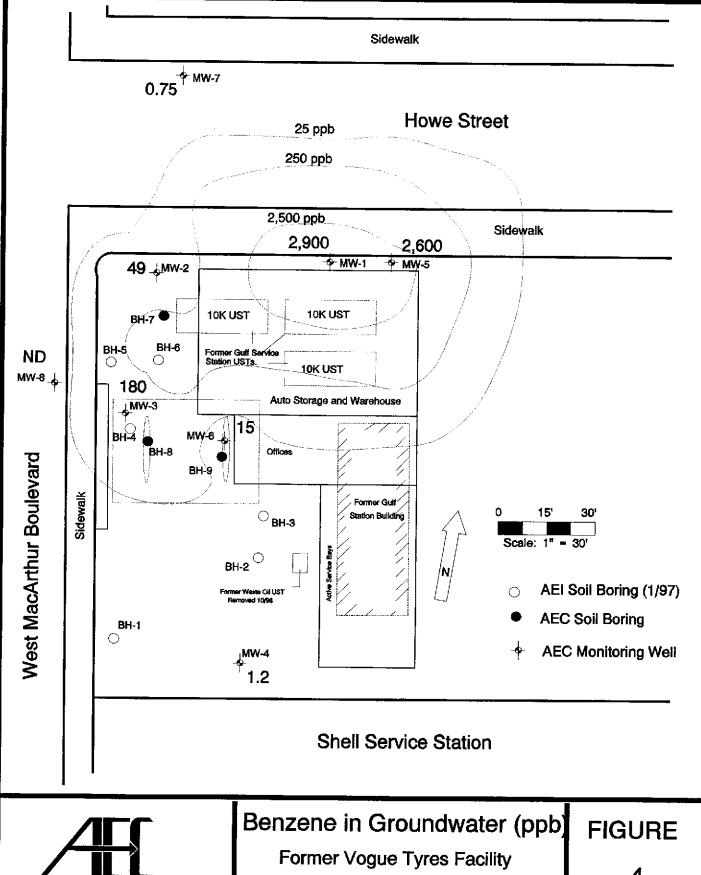
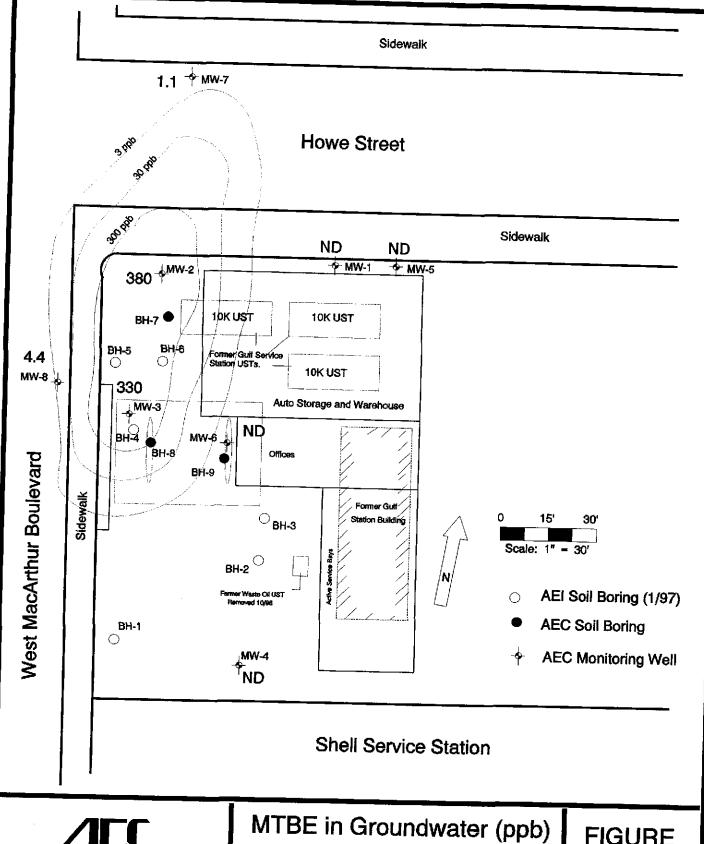

Location Map Former Vogue Tyres Facility
 240 West MacArthur Boulevard
 County of Alameda • Oakland, CA

FIGURE 2

Former Vogue Tyres Facility 240 West MacArthur Boulevard County of Alameda • Oakland, CA



ADVANCED ENVIRONMENTAL CONCEPTS INC.

ADVANCED ENVIRONMENTAL CONCEPTS
P.O. BOX 40672 BAKERSFIELD, CA 93384

Former Vogue Tyres Facility
240 West MacArthur Boulevard
County of Alameda • Oakland, CA

4

Former Vogue Tyres Facility
240 West MacArthur Boulevard
County of Alameda • Oakland, CA

FIGURE 5

Groundwater Parameters

Site Name:	_	ue Tyres West MacArthur			
		kland, CA	•	May 11, 2001	
TIME		GALLONS PURGED	CONDUCTIVITY	TEMPERATURE	pН
			MONITORING	WELL#1_	
		1 bailer	1,920	65.7	7.01
			MONITORING	WELL # _ 2	
		1 bailer	1,670	65.5	6.97
	-				
			MONITORING	WELL# 3	<u> </u>
		1 bailer	1,660	65.3	7.39
	-				
3 Casing Vol	umes	<u> </u>			
4" Screen = (.66 gal	/ft) (ft) =	2" Scree	n = (.17 gal/ft) (ft) =
MW # _1_	Dept	th to Groundwater = <u>15.5</u>	Corrected Dept	h: <u>15.80'</u> S	urvey: <u>4.38'</u>
MW # _2_	Dept	th to Groundwater = <u>14.9</u>	Corrected Depti	h: <u>16.63'</u> S	urvey:5.80'
MW # <u>3</u>	Dept	th to Groundwater = <u>14.0</u>	8' Corrected Depti	h: <u>15.90'</u> S	urvey: <u>5.97'</u>

Groundwater Parameters

Site Name:	Vogue Tyres	AEC P.O. #:	
Location:	240 West MacArthur	Project #:	
	Oakland, CA	Date:	May 11, 2001

TIME	GALLONS PURGED	CONDUCTIVITY	TEMPERATURE	рН
		MONITORING	WELL#_4_	
	1 bailer	1,640	65.8	7.43
·				
			•	
		MONITORING	WELL#_5_	
,	1 bailer	1,940	65.9	7.05
		·		
<u>.</u>		MONITORING	WELL# 6	
	1 bailer	1,870	66.1	7.42

2	Casing	1/-1-	
	Casino	vol	mues

4" Screen = (.	66 gal/ft) (ft) =	_ 2" Screen = (.17 gal/ft) (ft) =
MW # _ 4	Depth to Groundwater = <u>13.65'</u>	Corrected Depth:15.35'	Survey: <u>5.85'</u>
MW # _5	Depth to Groundwater = <u>15.65</u>	Corrected Depth: <u>15.65'</u>	Survey: <u>4.15'</u>
MW# 6	Denth to Groundwater = 15.54'	Corrected Donth: 16 E2	S.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Groundwater Parameters

Site Name: Vogue Tyres AEC P.O. #:

Location:	<u>240 \</u>	West MacArthur	Project #:		
	<u>Oakl</u>	and, CA	Date:	May 11, 2001	
TIME	;	GALLONS PURGED	CONDUCTIVITY	TEMPERATURE	рН
			MONITORING	WELL #	
		1 bailer	1,660	65.9	7.61
, ,					
-					·
			MONITORING	WELL # _ 8 _	
		1 bailer	1,940	66.1	7.49
<u> </u>					.
100-			MONITORING	WELL#	
	_				
					
					
Casing Volu	umes			·	
Screen = (.	.66 gal/f	t) (ft) =	2" Scree	n = (.17 gal/ft) (ft) =
W # <u>7</u>		ı to Groundwater = <u>15.04</u>		h: <u>16.13'</u> Survey:	
W # <u>8</u>	Depth	to Groundwater = <u>12.75</u>		h: <u>15.78'</u> Survey:	
W #	Depth	to Groundwater =		th: Survey:	

Page 1

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

VOGUE TYRES

Sample ID:

MW-1

Sample Matrix:

Aqueous

Date Reported:

Date Received:

Laboratory No.: 01-05725-8

Date Collected: 05/11/2001

06/01/2001

05/16/2001

Date Extracted-8015M(g):

05/23/2001

Date Analyzed-8015M(g):

05/23/2001

Dilution Used-8015M(g):

<u>Constituents</u>	Analysis Results	ReportingUnits	Practical Quantitation <u>Limit</u>
Gasoline Range Organics (C4 - C12) a,a,a-Trifluorotoluene	20000.	μ g/ L	5000.
(Surrogate)	73.	8	70-130

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

PQL's were raised due to high concentration of target analytes

requiring sample dilution. Sample received at pH = 8.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

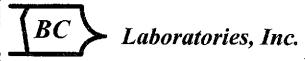
VOGUE TYRES

Sample ID: Sample Matrix:

MW-1

Aqueous

Date Reported: 06/01/2001 Date Received: 05/16/2001


Laboratory No.: 01-05725-8

Date Collected: 05/11/2001 Date Extracted: 05/24/2001 05/24/2001 Date Analyzed:

Dilution Used: 50

	Results	Reporting <u>Units</u>	Quantitation <u>Limit</u>	ו
Benzene	2900.	μg/L	30.	
Bromobenzene	None Detected	μg/L	30.	
Bromochloromethane	None Detected	μg/L	30.	
Bromodichloromethane	None Detected	μg/L	30.	
Bromoform	None Detected	μg/L	30.	
Bromomethane	None Detected	μg/L	50.	
n-Butylbenzene	31.	μg/L	30.	
sec-Butylbenzene	None Detected	μg/L	30.	
tert-Butylbenzene	None Detected	μα/L	30.	
Carbon tetrachloride	None Detected	μg/L	30.	
Chlorobenzene	None Detected	μg/L	30.	
Chloroethane	None Detected	μg/L	30.	
Chloroform	None Detected	μq/L	30.	
Chloromethane	None Detected	μg/L	30.	
2-Chlorotoluene	None Detected	μg/L	30.	
4-Chlorotoluene	None Detected	μg/L	30.	
Dibromochloromethane	None Detected	μg/L	30.	
1,2-Dibromo-3-Chloropropane	None Detected	μg/L	50.	*03
1,2-Dibromoethane	None Detected	μg/L	30.	0,5
Dibromomethane	None Detected	μα/L	30.	
1,2-Dichlorobenzene	None Detected	μg/L	30.	
1,3-Dichlorobenzene	None Detected	μg/L	30.	
1,4-Dichlorobenzene	None Detected	μg/L	30.	
Dichlorodifluoromethane	None Detected	μg/L	30.	
1,1-Dichloroethane	None Detected	μq/L	30.	
1,2-Dichloroethane	40.	μg/L	30.	
1,1-Dichloroethene	None Detected	μg/L	30.	
cis-1,2-Dichloroethene	None Detected	μg/L	30.	
trans-1,2-Dichloroethene	None Detected	μg/L	30.	
1,2-Dichloropropane	None Detected	μg/L	30.	
1,3-Dichloropropane	None Detected	μg/L	30.	
2,2-Dichloropropane	None Detected	μg/L	30.	*03
1,1-Dichloropropene	None Detected	μg/L	30.	*-
cis-1,3-Dichloropropene	None Detected	μg/L	30	
trans-1,3-Dichloropropene	None Detected	μg/L	30.	
Ethyl Benzene	230.	μq/L	30.	
Hexachlorobutadiene	None Detected	μg/L	30.	*03
Isopropylbenzene	43.	μg/L	30.	0.2
p-Isopropyltoluene	None Detected	μg/L	30.	
Methylene Chloride	None Detected	μg/L	50.	
Naphthalene	310.	μg/L	30.	
n-Propylbenzene	51.	μg/L	30.	

2

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-1, 05/11/2001

Date Reported: 06/01/2001 Date Received: 05/16/2001 Laboratory No.: 01-05725-8

Constituents	Analysis	Reporting	Practical Quantitati	- '
Constituents	Results	<u>Units</u>	<u>Limit</u>	.
Styrene	None Detected	μg/L	30.	
1,1,1,2-Tetrachloroethane	None Detected	μg/L	30.	
1,1,2,2-Tetrachloroethane	None Detected	μg/L	30.	*03
Tetrachloroethene	None Detected	μg/L	30.	
Toluene	310.	$\mu g/L$	30.	
1,2,3-Trichlorobenzene	None Detected	μg/L	30.	
1,2,4-Trichlorobenzene	None Detected	$\mu g/L$	30.	
1,1,1-Trichloroethane	None Detected	μg/L	30.	
1,1,2-Trichloroethane	None Detected	μg/L	30.	
Trichloroethene	None Detected	$\mu g/L$	30.	
Trichlorofluoromethane	None Detected	μg/L	30.	
1,2,3-Trichloropropane	None Detected	μg/L	50.	*03
1,1,2-Trichloro-				
1,2,2-trifluoroethane	None Detected	$\mu \mathbf{g}/\mathbf{L}$	30.	
1,2,4-Trimethylbenzene	730.	μg/L	30.	
1,3,5-Trimethylbenzene	170.	μg/L	30.	
Vinyl Chloride	None Detected	μ g/L	30.	
Total Xylenes	1900.	$\mu g/L$	50.	
t-Amyl methyl ether	None Detected	$\mu g/L$	50.	
t-Butyl alcohol	None Detected	μg/L	3000.	
Diisopropyl ether	None Detected	μg/L	50.	
Ethyl-t-butyl ether	None Detected	μg/L	50.	
Methyl-t-butylether	None Detected	μg/L	30.	

Quality Control Data

<u>Surrogates</u>	% Recovery	Control Limits
1,2-Dichloroethane-d4 Toluene-d8	88. 100.	76-11 4 88-110
4-Bromofluorobenzene	100.	86-115

Date Reported: 06/01/2001

Date Received: 05/16/2001

Laboratory No.: 01-05725-8

3

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

DEBBIE 805-831-1646

Sample Description: VOGUE TYRES, MW-1, 05/11/2001

Note: PQL's were raised due to high concentration of target analytes

requiring sample dilution.
Sample received at neutral pH.

Flag Explanations:

*03 = CCV recovery not within method limits.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Page

1

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

VOGUE TYRES

Sample ID: Sample Matrix:

Aqueous

MW - 2

Date Reported: Date Received:

06/01/2001 05/16/2001

Laboratory No.: 01-05725-4

Date Collected: 05/11/2001

Date Extracted-8015M(g): Date Analyzed-8015M(g): 05/23/2001 05/23/2001

Dilution Used-8015M(g):

Constituents	Analysis Results	Reporting <u>Units</u>	Practical Quantitation <u>Limit</u>
Gasoline Range Organics (C4 - C12) a,a,a-Trifluorotoluene	720.	μg/L	300.
(Surrogate)	84.	8	70-130

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

Note: PQL's were raised due to high concentration of target analytes

requiring sample dilution.

Chromatogram not typical of gasoline, due to light hydrocarbons

at the beginning of gas range.

Sample received at pH = 8.

California D.O.H.S. Cert. #1186

Stuart G. Buttram Department Supervisor

All results listed in this report are for the exclusive use of the submitting party, BC Laboratories, Inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court * Bakersfield, CA 93308 * (661)327-4911 * Fax(661)327-1918 * www.bclabs.com

Page

1

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672 4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

VOGUE TYRES

Sample ID: Sample Matrix: MW - 2 Aqueous

Date Reported: 06/01/2001 Date Received: 05/16/2001

Laboratory No.: 01-05725-4

Date Collected: 05/11/2001 Date Extracted: 05/23/2001 Date Analyzed: 05/23/2001

Dilution Used: 5

<u>Constituents</u>	Analysis Results	Reporting <u>Units</u>	Practical Quantitation <u>Limit</u>
Benzene	49.	μg/L	3.
Bromobenzene	None Detected	μg/L	3. 3.
Bromochloromethane	None Detected	μg/L	3.
Bromodichloromethane	None Detected	μg/L	3.
Bromoform	None Detected	μg/L	3.
Bromomethane	None Detected	μq/L	5. 5.
n-Butylbenzene	None Detected	μg/L μg/L	3.
sec-Butylbenzene	None Detected	μq/L	3.
tert-Butylbenzene	None Detected	μg/L	3.
Carbon tetrachloride	None Detected	μg/L	3.
Chlorobenzene	None Detected	μg/L	3.
Chloroethane	None Detected	μg/L	3.
Chloroform	None Detected	μq/L	. 3.
Chloromethane	None Detected	μg/L	3.
2-Chlorotoluene	None Detected	μg/L	3.
4-Chlorotoluene	None Detected	μg/L μg/L	3.
Dibromochloromethane	None Detected	μg/L	3.
1,2-Dibromo-3-Chloropropane	None Detected	μg/L	5. *03
1,2-Dibromoethane	None Detected	μg/L	3.
Dibromomethane	None Detected	μg/L	3.
1,2-Dichlorobenzene	None Detected	• • •	
1,3-Dichlorobenzene	None Detected	μg/L μg/L	3.
1,4-Dichlorobenzene	None Detected	μg/L μg/L	3. 3.
Dichlorodifluoromethane	None Detected	μg/L μg/L	3. 3.
1,1-Dichloroethane	None Detected	μg/L μg/L	- -
1,2-Dichloroethane	None Detected	μg/L μg/L	3.
1,1-Dichloroethene	None Detected	μg/L μg/L	3. 3.
cis-1,2-Dichloroethene	48.	μg/L	
trans-1,2-Dichloroethene	None Detected	μg/L	3. 3.
1,2-Dichloropropane	None Detected	μg/L μg/L	
1,3-Dichloropropane	None Detected	μg/L	3. 3.
2,2-Dichloropropane	None Detected		3. *03
1,1-Dichloropropene	None Detected	μg/L	
cis-1,3-Dichloropropene	None Detected	μg/L μg/L	3.
trans-1,3-Dichloropropene	None Detected	· - · .	3.
Ethyl Benzene	4.6	μg/L "~/	3. 3.
Hexachlorobutadiene	None Detected	μg/L	= -
Isopropylbenzene	None Detected	μg/L	3. *03
p-Isopropyltoluene	None Detected	μg/L "~/	3.
Methylene Chloride	None Detected	μg/L	3.
Naphthalene	3.7	μg/L	5.
n-Propylbenzene	None Detected	μg/L	3.
	Home Detected	μ g/L	3.

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-2, 05/11/2001

Date Reported:	06/01/2001
Date Received:	05/16/2001
Laboratory No.:	01-05725-4

			Practical
State of the state	Analysis	Reporting	Quantitation
<u>Constituents</u>	<u>Results</u>	<u>Units</u>	<u>Limit</u>
Styrene	None Detected	$\mu { t g}/{ t L}$	3.
1,1,1,2-Tetrachloroethane	None Detected	$\mu g/L$	3.
1,1,2,2-Tetrachloroethane	None Detected	μg/L	3. *03
Tetrachloroethene	None Detected	μg/L	3.
Toluene	None Detected	μg/L	3.
1,2,3-Trichlorobenzene	None Detected	μg/L	3.
1,2,4-Trichlorobenzene	None Detected	$\mu g/L$	3.
1,1,1-Trichloroethane	None Detected	μg/L	3.
1,1,2-Trichloroethane	None Detected	μg/L	3.
Trichloroethene	4.3	μg/L	3.
[richlorofluoromethane	None Detected	μg/L	3.
1,2,3-Trichloropropane	None Detected	μg/L	5. *03
l,1,2-Trichloro-		, 2.	
1,2,2-trifluoroethane	None Detected	$\mu {f g}/{f L}$	3.
l,2,4-Trimethylbenzene	None Detected	$\mu g/L$	3.
1,3,5-Trimethylbenzene	None Detected	μg/L	3.
/inyl Chloride	None Detected	μg/L	3,
Total Xylenes	None Detected	μg/L	5.
t-Amyl methyl ether	None Detected	μg/L	5.
:-Butyl alcohol	None Detected	μg/L	300.
iisopropyl ether	None Detected	μg/L	5.
Sthyl-t-butyl ether	None Detected	μg/L	5.
Methyl-t-butylether	380.	μg/L	3.

Quality Control Data

Surrogates	% Recovery	Control Limits
1,2-Dichloroethane-d4 Toluene-d8	96. 101.	76-114 88-110
4-Bromofluorobenzene	99.	86-115

Date Reported: 06/01/2001

Date Received: 05/16/2001

Laboratory No.: 01-05725-4

3

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-2, 05/11/2001

Note: PQL's were raised due to high concentration of target analytes

requiring sample dilution.

Sample received at neutral pH.

Flag Explanations:

*03 = CCV recovery not within method limits.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Page 1

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

VOGUE TYRES

Sample ID:

Sample Matrix:

MW - 3

Aqueous

Date Collected:

Date Received:

05/11/2001

Date Extracted-8015M(g):

05/23/2001 05/23/2001

05/16/2001

Date Analyzed-8015M(g):

Date Reported: 06/01/2001

Laboratory No.: 01-05725-5

Dilution Used-8015M(g): 10

Practical Analysis Reporting Quantitation <u>Constituents</u> Results Units <u>Limit</u> Gasoline Range Organics (C4 - C12)1900. μg/L 500. a, a, a-Trifluorotoluene (Surrogate) 75. 70-130

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

PQL's were raised due to high concentration of target analytes

requiring sample dilution. Sample received at pH = 8.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672 4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE 805-831-1646

Project Number:

VOGUE TYRES

Sample ID:

MW-3

Sample Matrix: Aqueous Date Reported: 06/01/2001 Date Received: 05/16/2001

Laboratory No.: 01-05725-5

Date Collected: 05/11/2001 Date Extracted: 05/24/2001 Date Analyzed: 05/24/2001

Dilution Used: 5

<u>Constituents</u>	Analysis Results	Reporting 	Practical QuantitationLimit
Benzene	180.	μg/L	3.
Bromobenzene	None Detected	μg/L	3.
Bromochloromethane	None Detected	μg/L	3.
Bromodichloromethane	None Detected	μg/L	3.
Bromoform	None Detected	μg/L	3.
Bromomethane	None Detected	μg/L	5.
n-Butylbenzene	None Detected	μg/L	3.
sec-Butylbenzene	None Detected	μq/L	3.
tert-Butylbenzene	None Detected	μg/L	3.
Carbon tetrachloride	None Detected	μg/L	3.
Chlorobenzene	None Detected	μg/L	3.
Chloroethane	None Detected	μg/L	3,
Chloroform	None Detected	μg/L	3.
Chloromethane	None Detected	μg/L	3.
2-Chlorotoluene	None Detected	μg/L	3.
4-Chlorotoluene	None Detected	μg/L	3.
Dibromochloromethane	None Detected	μg/L	3.
1,2-Dibromo-3-Chloropropane	None Detected	μg/L	· - · - ·
1,2-Dibromoethane	None Detected	μg/L	5. *03 3.
Dibromomethane	None Detected	μg/L	3.
1,2-Dichlorobenzene	None Detected	μg/L μg/L	_ ·
1,3-Dichlorobenzene	None Detected		3. 3.
1,4-Dichlorobenzene	None Detected	μg/L	3. 3.
Dichlorodifluoromethane	None Detected	μg/L μg/L	3.
1,1-Dichloroethane	None Detected	· - · -	
1,2-Dichloroethane	None Detected	μg/L /T	3.
1,1-Dichloroethene	None Detected	μ g/ L	3,
cis-1,2-Dichloroethene	32.	μg/L	3.
trans-1,2-Dichloroethene	None Detected	μg/L	3.
1,2-Dichloropropane	None Detected	μg/L	3.
1,3-Dichloropropane	None Detected	μg/L	3.
2,2-Dichloropropane	None Detected	μg/L	3.
1,1-Dichloropropene	None Detected	μg/L	3. *03
cis-1,3-Dichloropropene	None Detected	μg/L	3.
trans-1,3-Dichloropropene	None Detected	μg/L	3.
Ethyl Benzene	None Detected	μg/L	3.
Hexachlorobutadiene	None Detected	μg/L	3.
Isopropylbenzene	None Detected	μg/L	3. *03
p-Isopropyltoluene		μg/L	3.
Methylene Chloride	None Detected	μg/L	3.
Naphthalene	None Detected	μg/L	5.
n-Propylbenzene	3.3	μg/L	3.
** 110PY 1Dell2elle	None Detected	μg/L	3.

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672 4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-3, 05/11/2001

Date Reported: 06/01/2001 Date Received: 05/16/2001 Laboratory No.: 01-05725-5

<u>Constituents</u>	Analysis Results	Reporting <u>Units</u>	Practical Quantitatio <u>Limit</u>	on
Styrene	None Detected	μg/L	3.	
1,1,1,2-Tetrachloroethane	None Detected	μg/L	3.	
1,1,2,2-Tetrachloroethane	None Detected	μg/L	3.	*03
Tetrachloroethene	None Detected	μg/L	3.	
Toluene	12.	μg/L	3.	
1,2,3-Trichlorobenzene	None Detected	μg/L	3.	
1,2,4-Trichlorobenzene	None Detected	μg/L	3.	
1,1,1-Trichloroethane	None Detected	μg/L	3.	
1,1,2-Trichloroethane	None Detected	$\mu g/L$	3.	
Trichloroethene	None Detected	$\mu g/L$	3.	
Trichlorofluoromethane	None Detected	μg/L	3.	
1,2,3-Trichloropropane	None Detected	μg/L	5.	*03
1,1,2-Trichloro-		. 5		
1,2,2-trifluoroethane	None Detected	μg/L	3.	
1,2,4-Trimethylbenzene	None Detected	μg/L	3.	
1,3,5-Trimethylbenzene	6.8	μg/L	3.	
Vinyl Chloride	None Detected	μg/L	3.	
Total Xylenes	19.	μg/L	5.	
t-Amyl methyl ether	None Detected	μg/L	5.	
t-Butyl alcohol	None Detected	μg/L	300.	
Diisopropyl ether	None Detected	μg/L	5.	
Ethyl-t-butyl ether	None Detected	μg/L	5.	
Methyl-t-butylether	330.	μg/L	3.	

Quality Control Data

Surroqates	_ % Recovery	Control Limits
1,2-Dichloroethane-d4	93.	76-114
Toluene-d8	104.	88-110
4-Bromofluorobenzene	95.	86-115

Date Reported: 06/01/2001

Date Received: 05/16/2001

Laboratory No.: 01-05725-5

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672 4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-3, 05/11/2001

Note: PQL's were raised due to high concentration of target analytes

requiring sample dilution. Sample received at pH = 6.

Flag Explanations:

*03 = CCV recovery not within method limits.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

VOGUE TYRES

Sample ID: Sample Matrix: MW - 4

Aqueous

Date Collected: Date Extracted-8020: Date Analyzed-8020:

05/11/2001 05/22/2001 05/22/2001

Dilution Used-8020:

05/22/2001

Date Extracted-8015M(g): Date Analyzed-8015M(g):

05/22/2001

Dilution Used-8015M(g):

Date Reported: 06/01/2001

Date Received: 05/16/2001

Laboratory No.: 01-05725-1

<u>Constituents</u>	Analysis Results	Reporting Units	Practical Quantitation <u>Limit</u>
Benzene	1.2	$\mu {f g}/{f L}$	0.3
Toluene	None Detected	μg/L	0.3
Ethyl Benzene	0.55	μg/L	0.3
Methyl-t-butylether	2.9	μg/L	1.
Total Xylenes	1.2	μg/L	0.6
Gasoline Range Organics	- · -	<i>p-31</i> –	0.0
(C4 - C12)	None Detected	μq/L	50.
a,a,a-Trifluorotoluene	******	<i>~</i> 3/ ~	30.
(Surrogate)	82.	8	70-130

TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015 Individual constituents by EPA Method 5030/8020.

Sample received at pH = 8. Results confirmed by GC/MS.

California D.O.H.S. Cert. #1186

Stuart G. Buttram Department Supervisor

Page 1

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

Sample Matrix:

Sample ID:

VOGUE TYRES

MW-5

Aqueous

Date Reported: 06/01/2001 Date Received: 05/16/2001

Laboratory No.: 01-05725-7

Date Collected: 05/11/2001

Date Extracted-8015M(g): Date Analyzed-8015M(g):

05/23/2001 05/23/2001

Dilution Used-8015M(g):

100

Practical

Analysis Reporting Quantitation Constituents Units <u>Results</u> <u>Limit</u>

Gasoline Range Organics

(C4 - C12)a, a, a-Trifluorotoluene

(Surrogate)

22000.

μg/L

¥

5000.

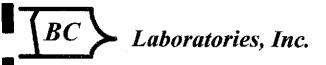
77.

70-130

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

PQL's were raised due to high concentration of target analytes Note:


requiring sample dilution. Sample received at pH = 8.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

VOGUE TYRES

Sample ID: Sample Matrix:

MW-5

Aqueous

Date Reported: 06/01/2001

Date Received: 05/16/2001

Laboratory No.: 01-05725-7

Date Collected: 05/11/2001 Date Extracted: 05/23/2001 Date Analyzed: 05/23/2001

Dilution Used: 50

<u>Constituents</u>	Analysis Results	Reporting Units	Practical Quantitation <u>Limit</u>
Benzene	2600.	μg/L	30.
Bromobenzene	None Detected	μg/L μg/L	30.
Bromochloromethane	None Detected	μg/L μg/L	30.
Bromodichloromethane	None Detected	μg/L μg/L	30.
Bromoform	None Detected	μg/L	30.
Bromomethane	None Detected	μg/L μg/L	50. 50.
п-Butylbenzene	None Detected	μg/L μg/L	30.
sec-Butylbenzene	None Detected	μg/L	30.
tert-Butylbenzene	None Detected	μg/L	
Carbon tetrachloride	None Detected	μ9/L μ 9 /L	30. 30.
Chlorobenzene	None Detected	μg/L μg/L	30. 30.
Chloroethane	None Detected	μg/L μg/L	30.
Chloroform	None Detected		
Chloromethane	None Detected	μg/L	30. 30.
2-Chlorotoluene	None Detected	μg/L	30.
4-Chlorotoluene	None Detected	μg/L	= = =
Dibromochloromethane	None Detected	μg/L /T	30.
1,2-Dibromo-3-Chloropropane	None Detected	μg/L /T	30.
1,2-Dibromoethane	None Detected	μg/L	50.
Dibromomethane	None Detected	μg/L	30.
1,2-Dichlorobenzene	None Detected	μg/L	30.
1,3-Dichlorobenzene	None Detected	μg/L	30.
1,4-Dichlorobenzene	None Detected	μg/L	30.
Dichlorodifluoromethane		μg/L	30.
1,1-Dichloroethane	None Detected	μg/L	30.
1,2-Dichloroethane	None Detected	μg/L	30.
1,1-Dichloroethene	None Detected	μg/L	30.
cis-1,2-Dichloroethene	None Detected	μg/L	30.
trans-1,2-Dichloroethene	None Detected	μg/L	30.
1 2-Dighloroprope	None Detected	μg/L	30.
1,2-Dichloropropane 1,3-Dichloropropane	None Detected	μg/L	30.
2.2-Dichloropropane	None Detected	μg/L	30.
2,2-Dichloropropane	None Detected	μg/L	30.
1,1-Dichloropropene	None Detected	μg/L	30. '
cis-1,3-Dichloropropene	None Detected	μg/L	30.
trans-1,3-Dichloropropene	None Detected	μg/L	30.
Ethyl Benzene	220.	μg/L	30.
Hexachlorobutadiene	None Detected	$\mu {f g}/{f L}$	30.
Isopropylbenzene	None Detected	μg/L	30.
p-Isopropyltoluene	None Detected	μg/L	30.
Methylene Chloride	None Detected	μ g/L	50.
Naphthalene	290.	μg/L	30.
n-Propylbenzene	None Detected	$\mu { t g}/{ t L}$	30.

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672 4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-5, 05/11/2001

Date Reported: 06/01/2001 Date Received: 05/16/2001 Laboratory No.: 01-05725-7

	71	.	Practical
Constituents	Analysis	Reporting	Quantitation
Consciedencs	Results	<u>Units</u>	<u>Limit</u>
Styrene	None Detected	μg/L	30.
1,1,1,2-Tetrachloroethane	None Detected	μg/L	30.
1,1,2,2-Tetrachloroethane	None Detected	μg/L	30.
Tetrachloroethene	None Detected	μg/L	30.
Toluene	480.	μg/L	30.
1,2,3-Trichlorobenzene	None Detected	μg/L	30.
1,2,4-Trichlorobenzene	None Detected	μg/L	30.
1,1,1-Trichloroethane	None Detected	μg/L	30.
1,1,2-Trichloroethane	None Detected	μg/L	30.
Trichloroethene	None Detected	μg/L	30.
Trichlorofluoromethane	None Detected	μg/L	30.
1,2,3-Trichloropropane	None Detected	μ g/L	50.
1,1,2-Trichloro-		7-37	<u>-</u>
1,2,2-trifluoroethane	None Detected	μ g/L	30.
1,2,4-Trimethylbenzene	710.	μg/L	30.
1,3,5-Trimethylbenzene	240.	μg/L	30.
Vinyl Chloride	None Detected	μ g/L	30.
Total Xylenes	2700.	μg/L	50.
t-Amyl methyl ether	None Detected	μg/L	50.
t-Butyl alcohol	None Detected	μg/L	3000.
Diisopropyl ether	None Detected	μg/L	50.
Ethyl-t-butyl ether	None Detected	μg/L	50.
Methyl-t-butylether	None Detected	μg/L	30.

Quality Control Data

Surroqates	% Recovery	Control Limits
1,2-Dichloroethane-d4 Toluene-d8	92. 99.	76-114 88-110
4-Bromofluorobenzene	100.	86-115

Date Reported: 06/01/2001

Date Received: 05/16/2001

Laboratory No.: 01-05725-7

3

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-5, 05/11/2001

Note: PQL's were raised due to high concentration of target analytes

requiring sample dilution.

Sample received at neutral pH.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Page

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

Sample ID:

Sample Matrix:

MW-6

VOGUE TYRES

Aqueous

Date Reported: 06/01/2001 Date Received: 05/16/2001

Laboratory No.: 01-05725-6

Date Collected:

05/11/2001 05/24/2001

Date Extracted-8015M(q): 05/24/2001 Date Analyzed-8015M(q):

Dilution Used-8015M(g):

Constituents	Analysis Results	Reporting Units	Practical Quantitation Limit
Gasoline Range Organics (C4 - C12) a,a,a-Trifluorotoluene	610.	μg/L	300.
(Surrogate)	79.	ક	70-130

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015

Individual constituents by EPA Method 5030/8020.

PQL's were raised due to high concentration of target analytes requiring sample dilution. Chromatogram not typical of gasoline, due to light hydrocarbons at the beginning of gas range. Sample received at pH = 8.

California D.O.H.S. Cert. #1186

Stuart G. Buttram

Department Supervisor

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE 805-831-1646

Project Number:

VOGUE TYRES

Sample ID: Sample Matrix: MW-6

Aqueous

Date Reported: 06/01/2001 Date Received: 05/16/2001 Laboratory No.: 01-05725-6

Date Collected: 05/11/2001 Date Extracted: 05/23/2001 Date Analyzed: 05/23/2001

Dilution Used: 1

<u>Constituents</u>		Analysis Results	Reporting <u>Units</u>	Practical Quantitation <u>Limit</u>
Benzene		15.	μg/L	0.5
Bromobenzene	None	Detected	μg/L	0.5
Bromochloromethane	None	Detected	μg/L	0.5
Bromodichloromethane	None	Detected	μg/L	0.5
Bromoform		Detected	μg/L	0.5
Bromomethane	None	Detected	μg/L	1.
n-Butylbenzene		1.8	μg/L	0.5
sec-Butylbenzene	None	Detected	$\mu g/L$	0.5
tert-Butylbenzene	None	Detected	$\mu_{ m g}/{ m L}$	0.5
Carbon tetrachloride	None	Detected	μg/L	0.5
Chlorobenzene	None	Detected	μg/L	0.5
Chloroethane	None	Detected	μg/L	0.5
Chloroform	None	Detected	μg/L	0.5
Chloromethane	None	Detected	μg/L	0.5
2-Chlorotoluene	None	Detected	μg/L	0.5
4-Chlorotoluene	None	Detected	μg/L	0.5
Dibromochloromethane	None	Detected	μg/L	0.5
1,2-Dibromo-3-Chloropropane	None	Detected	μg/L	1.
1,2-Dibromoethane	None	Detected	μg/L	0.5
Dibromomethane	None	Detected	$\mu g/L$	0.5
1,2-Dichlorobenzene	None	Detected	μg/L	0.5
1,3-Dichlorobenzene	None	Detected	μg/L	0.5
1,4-Dichlorobenzene	None	Detected	μg/L	0.5
Dichlorodifluoromethane	None	Detected	μg/L	0.5
1,1-Dichloroethane	None	Detected	μ g/L	0.5
1,2-Dichloroethane		54.	μg/L	0.5
1,1-Dichloroethene		Detected	μ g/L	0.5
cis-1,2-Dichloroethene		Detected	μg/L	0.5
trans-1,2-Dichloroethene	None	Detected	$\mu { m g/L}$	0.5
1,2-Dichloropropane		3.1	μg/L	0.5
1,3-Dichloropropane		Detected	μg/L	0.5
2,2-Dichloropropane		Detected	μg/L	0.5
1,1-Dichloropropene		Detected	μ g/L	0.5
cis-1,3-Dichloropropene		Detected	μg/L	0.5
trans-1,3-Dichloropropene		Detected	μ g/L	0.5
Ethyl Benzene		Detected	μg/L	0.5
Hexachlorobutadiene		Detected	μg/L	0.5
Isopropylbenzene	None	Detected	μg/L	0.5
p-Isopropyltoluene		2.7	μg/L	0.5
Methylene Chloride	None	Detected	μg/L	1.
Naphthalene		3.3	μg/L	0.5
n-Propylbenzene	None	Detected	μg/L	0.5

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672 4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-6, 05/11/2001

Date Reported: 06/01/2001 Date Received: 05/16/2001 Laboratory No.: 01-05725-6

<u>Constituents</u>	Analysis Results	Reporting <u>Units</u>	Practical Quantitation Limit
Styrene	None Detected	μg/L	0.5
1,1,1,2-Tetrachloroethane	None Detected	$\mu g/L$	0.5
1,1,2,2-Tetrachloroethane	None Detected	μg/L	0.5
Tetrachloroethene	None Detected	μg/L	0.5
Foluene	0.97	μ g/L	0.5
1,2,3-Trichlorobenzene	None Detected	μg/L	0.5
1,2,4-Trichlorobenzene	None Detected	μg/L	0.5
l,1,1-Trichloroethane	None Detected	μg/L	0.5
I,1,2-Trichloroethane	None Detected	μg/L	0.5
lrichloroethene	None Detected	μg/L	0.5
Frichlorofluoromethane	None Detected	μg/L	0.5
1,2,3-Trichloropropane 1,1,2-Trichloro-	None Detected	μg/L	1.
1,2,2-trifluoroethane	None Detected	μg/L	0.5
1,2,4-Trimethylbenzene	None Detected	μg/L	0.5
1,3,5-Trimethylbenzene	30.	μg/L	0.5
Vinyl Chloride	None Detected	μg/L	0.5
Total Xylenes	46.	μg/L	1.
-Amyl methyl ether	None Detected	μg/L	1.
-Butyl alcohol	83.	μg/L	50.
Diisopropyl ether	1.8	μg/L	1.
Ethyl-t-butyl ether	None Detected	μg/L	1.
Methyl-t-butylether	None Detected	μg/L	0.5

Quality Control Data

Surrogates	% Recovery	Control Limits
1,2-Dichloroethane-d4	105.	76-114
Toluene-d8	106.	88-110
4-Bromofluorobenzene	108.	86-115

California D.O.H.S. Cert. #1186

Stuart G. Buttram Department Supervisor

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number: Sample ID:

VOGUE TYRES MW - 7

Sample Matrix:

Aqueous

Date Collected: Date Extracted-8020:

Date Received:

05/11/2001 05/22/2001

05/16/2001

Date Analyzed-8020:

05/22/2001

Dilution Used-8020: 1 Date Extracted-8015M(g):

05/22/2001

Date Analyzed-8015M(g):

05/22/2001

Dilution Used-8015M(g):

Date Reported: 06/01/2001

Laboratory No.: 01-05725-2

<u>Constituents</u>	Analysis Results	Reporting Units	Practical Quantitation <u>Limit</u>
Benzene	0.75	μg/L	0.3
Toluene	0.77	μg/L	0.3
Ethyl Benzene	0.48	μg/L	0.3
Methyl-t-butylether	1.1	μg/L	1.
Total Xylenes	2.4	μg/L	0.6
Gasoline Range Organics		F37-	0.3
(C4 - C12)	None Detected	μg/L	50.
a,a,a-Trifluorotoluene		F37 =	50.
(Surrogate)	81.	કૃ	70-130

TEST METHOD: TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015 Individual constituents by EPA Method 5030/8020.

Sample received at pH = 8.

California D.O.H.S. Cert. #1186

Stuart G. Buttram Department Supervisor

Page

Purgeable Aromatics and Total Petroleum Hydrocarbons

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number:

VOGUE TYRES

Sample ID: Sample Matrix: 8-WM

Aqueous

Date Reported: Date Received:

06/01/2001 05/16/2001

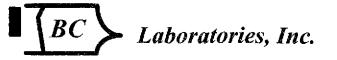
Laboratory No.: 01-05725-3

Date Collected: 05/11/2001

Date Extracted-8015M(g): Date Analyzed-8015M(g): 05/22/2001 05/22/2001

Dilution Used-8015M(g):

1


<u>Constituents</u>	Analysis Results	Reporting Units	Practical Quantitation <u>Limit</u>
Gasoline Range Organics (C4 - C12) a,a,a-Trifluorotoluene	None Detected	μg/L	50.
(Surrogate)	78.	ક	70-130

TPH by D.O.H.S. / L.U.F.T. Manual Method - Modified EPA 8015 TEST METHOD: Individual constituents by EPA Method 5030/8020.

Sample received at pH = 8.

California D.O.H.S. Cert. #1186

Stuart G. Buttram Department Supervisor

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672 4400 ASHE ROAD #206

BAKERSFIELD, CA 93313

Attn: DEBBIE

805-831-1646

Project Number: Sample ID:

VOGUE TYRES MW-8

Sample Matrix:

Aqueous

Date Reported: 06/01/2001
Date Received: 05/16/2001

Laboratory No.: 01-05725-3

Date Collected: 05/11/2001 Date Extracted: 05/23/2001

Date Analyzed: 05/23/2001 Dilution Used: 1

Constituents	Analysis Results	Reporting Units	Practical Quantitation <u>Limit</u>
Benzene	None Detected	μg/L	0.5
Bromobenzene	None Detected	μg/L	0.5
Bromochloromethane	None Detected	μg/L	0.5
Bromodichloromethane	None Detected	μg/L	0.5
Bromoform	None Detected	μg/L	0.5
Bromomethane	None Detected	μg/L	1.
n-Butylbenzene	None Detected	μg/L	0.5
sec-Butylbenzene	None Detected	μg/L	0.5
tert-Butylbenzene	None Detected	μg/L	0.5
Carbon tetrachloride	None Detected	μg/L	0.5
Chlorobenzene	None Detected	μg/L	0.5
Chloroethane	None Detected	μg/L	0.5
Chloroform	None Detected	μg/L	0.5
Chloromethane	None Detected	μg/L μg/L	0.5
2-Chlorotoluene	None Detected	μg/L	0.5
4-Chlorotoluene	None Detected	μg/L	0.5
Dibromochloromethane	None Detected	μg/L	0.5
1,2-Dibromo-3-Chloropropane	None Detected	•	1.
1,2-Dibromoethane	None Detected	μg/L μg/L	0.5
Dibromomethane	None Detected		0.5
1,2-Dichlorobenzene	None Detected	μg/L	0.5
1,3-Dichlorobenzene	None Detected	μg/L /T	0.5
1,4-Dichlorobenzene	None Detected	μg/L	0.5
Dichlorodifluoromethane	None Detected	μg/L /Σ	· ·
1,1-Dichloroethane	None Detected	μg/L /3	0.5
1,2-Dichloroethane	None Detected	μ g/L /I	0.5
1,1-Dichloroethene	None Detected	μg/L "~/I	0.5
cis-1,2-Dichloroethene	None Detected	μ g /L	0.5
trans-1,2-Dichloroethene	None Detected	μg/L	0.5
1,2-Dichloropropane	None Detected	μg/L	0.5
1,3-Dichloropropane	None Detected	μg/L	0.5
2,2-Dichloropropane		μg/L	0.5
1,1-Dichloropropene	None Detected	μg/L -	0.5
cis-1,3-Dichloropropene	None Detected	μg/L	0.5
	None Detected	μg/L	0.5
trans-1,3-Dichloropropene Ethyl Benzene	None Detected	μg/L	0.5
Hexachlorobutadiene	None Detected	μg/L	0.5
·	None Detected	μg/L	0.5
Isopropylbenzene	None Detected	$\mu g/L$	0.5
p-Isopropyltoluene Methylene Chloride	None Detected	μg/L	0.5
	None Detected	μg/L	1.
Naphthalene	None Detected	μg/L	0.5
n-Propylbenzene	None Detected	$\mu {f g}/{f L}$	0.5

Page 2

Date Reported: 06/01/2001

Date Received: 05/16/2001

Laboratory No.: 01-05725-3

Volatile Organic Analysis (EPA Method 8260)

ADVANCED ENVIRONMENTAL CONCEPTS

P.O. BOX 40672

4400 ASHE ROAD #206 BAKERSFIELD, CA 93313

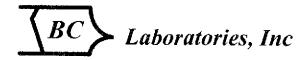
Attn: DEBBIE

805-831-1646

Sample Description: VOGUE TYRES, MW-8, 05/11/2001

<u>Constituents</u>	Analysis Results	Reporting <u>Units</u>	Practical Quantitation Limit
Styrene	None Detected	μg/L	0.5
1,1,1,2-Tetrachloroethane	None Detected	$\mu g/L$	0.5
1,1,2,2-Tetrachloroethane	None Detected	μg/L	0.5
Tetrachloroethene	None Detected	μg/L	0.5
Toluene	None Detected	μg/L	0.5
1,2,3-Trichlorobenzene	None Detected	μg/L	0.5
1,2,4-Trichlorobenzene	None Detected	$\mu g/L$	0.5
1,1,1-Trichloroethane	None Detected	$\mu g/L$	0.5
1,1,2-Trichloroethane	None Detected	μg/L	0.5
Trichloroethene	None Detected	μg/L	0.5
Trichlorofluoromethane	None Detected	μg/L	0.5
1,2,3-Trichloropropane 1,1,2-Trichloro-	None Detected	μg/L	1.
1,2,2-trifluoroethane	None Detected	μg/L	0.5
1,2,4-Trimethylbenzene	None Detected	μg/L	0.5
1,3,5-Trimethylbenzene	None Detected	μg/L	0.5
Vinyl Chloride	None Detected	$\mu g/L$	0.5
Total Xylenes	None Detected	μg/L	1.
t-Amyl methyl ether	None Detected	μg/L	1.
t-Butyl alcohol	None Detected	μg/L	50.
Diisopropyl ether	None Detected	μg/L	1.
Ethyl-t-butyl ether	None Detected	μg/L	- · 1.
Methyl-t-butylether	4.4	μg/L	0.5

Quality Control Data


Surrogates _ %	Recovery	Control Limits
1,2-Dichloroethane-d4	92.	76-114
Toluene-d8	99.	88-110
4-Bromofluorobenzene	99.	86-115

Sample received at neutral pH.

California D.O.H.S. Cert. #1186

Stuart G. Buttram Department Supervisor

All results listed in this report are for the exclusive use of the submitting party, BC Laboratories, Inc. assumes no responsibility for report alteration, detachment or third party interpretation. 4100 Atlas Court * Bakersfield, CA 93308 * (661)327-4911 * Fax(661)327-1918 * www.bclabs.com

B C LABORATORIES
QUALITY CONTROL REPORT
(Precision & Accuracy)

ADVANCED ENVIRONMENTAL CONCEPTS
P.O. BOX 40672
4400 ASHE ROAD #206
BAKERSFIELD, CA 93313
DEBBIE

Date of Report: 06/13/2001 Sample Matrix: Aqueous

QC Batch ID: 200105725-1*8020

Samples Affected: 01-05725-1 - 01-05725-8

 Constituents	 QC Sample ID	 Sample Result	 MS Result	 MSD Result	MS Spike Level	MSD Spike Level	 Units	Spike R.P.D.	Precision Control Limits	Ms	 MSD % Rec	Accuracy Control Limits
Benzene	05608-1	1.7	48.20	43.70	50.00	50.00	lug/L	10. 1	10	93.	84.	80 - 120
Toluene	05608-1	0.4	45.30	41.04	50.00	50.00	µq/L	1 10.		90.	81.	80 - 120
Ethyl Benzene	05608-1	0.8	44.93	41.56	50.00	50.00	μg/L	8.		88.	81.	80 - 120
Methyl-t-butylether	05608-1] < 1.	46.47	42.62	50.00	50.00	μq/L	9.		92.	85.	80 - 120
p&m Xylenes	05608-1	1.8	88.45	82.65	100.00	100.00	μg/L	_ 7.		87.	81.	80 - 120
o Xylene	05608-1	0.3	43.90	47.14	50.00	50.00	μg/L	1 7.	10	87.	94.	80 - 120
Gasoline Range Organics	1	1	ī		1			[]		i	[1
(C4 - C12)	05608-1	< 50.	1012.	1021.	928.	928.	μg/L	9-	20	109.	110.	B5 - 115

MS = Matrix Spike; MSD = Matrix Spike Duplicate; RPD = Relative Percent Difference

Quality Control Officer

Danette Bohm

B C LABORATORIES
QUALITY CONTROL REPORT
(Precision & Accuracy)
Method 8260

ADVANCED ENVIRONMENTAL CONCEPTS
P.O. BOX 40672
4400 ASHE ROAD #206
BAKERSFIELD, CA 93313
DEBBIE

Samples Affected: 01-05725-3 - 01-05725-8

Date of Report: 06/09/2001 Sample Matrix: Aqueous

QC Batch ID: 200105725-3*8260

 Constituents	 QC Sample ID	Sample Result	 MS Result	MSD Result	MS Spike Level	MSD Spike Level	 Units	 Spike R.P.D.]	:	MS	MSD Rec	Accuracy Control Limits
Benzene	05737-7	< 0.5	27.516	27.648	25.000	25.000	 µq/L	0.		110.	110.	80 - 120
Bromodichloromethane	05737-7	< 0.5	22.235	22.557	25.000	25.000		1. 1		89.	1 90.	80 ~ 120
Chlorobenzene	05737-7	< 0.5	25.225	23.877	25.000	25.000	μg/L	5.		101,	96.	80 - 120
Chloroethane	05737-7	< 0.5	28.062	27.692	25.000	25.000		1.		114.	112.	80 - 120
1,4-Dichlorobenzene	05737-7	< 0.5	23.664	23.424	25.000	25.000		1 1. 1		95.	94.	80 - 120
1,1-Dichloroethane	05737-7	< 0.5	27.444	26.929	25.000	25.000		2. [110.	108.	BO - 120
1,1-Dichloroethene	05737-7	< 0.5	25.156	24.463	25.000	25.000		1 3. 1	20		98.	80 - 120
Toluene	05737-7	< 0.5	25.595	25.847	25.000	25.000		1.		102.	103.	80 - 120
Trichloroethene	05737-7	< 0.5	23.810	23.968	25.000	25.000	μg/L	1.	20	95.	96.	B0 - 120

MS = Matrix Spike; MSD = Matrix Spike Duplicate; RPD = Relative Percent Difference

Quality Control Officer

Danette Bohm

BC LABORATORIES INC.						SAI	MPI	FR	ECI	EIPT	·ΕΩ	RM			Rev	No 2	 -	10/	03/0	`	Pag		Of	7
		3 9	1.	_				- 1			-	11101		 7					03100				===	<u>-</u>
Submission #: 0 -05	_				ect	Coc	ie:		•								tch							
SHIPPING INFO		ГΑΝ	ION	j	~	٠.									HIPE	INC	CC	TNC	AIN:	ER 、	,			-
Federal Express □ UPS □	}	Hand	d De	live	·y 🔀	}	٠.		Ice Chest □ None Box □ Other □ (Specify)															
BC Lab Field Service □ Othe	r 🗆	(Sp	ecif	y)				_	l		В	ox ()	•	•	Oth	er (⊐ (S	peci	fy)				
									<u> </u>														<u></u> -	
Refrigerant: Ice Blue Ice		ı	Noit	e /Z	_	Ot	her i		Ç	omi	nent	ts:	,								_			===
Custody Seals: ☐ Ice Chest ☐	Ī	Co	ntaii	ners	n		No	ne	K	Con	nme	nts:												—
Intact? Yes □ No □	1 .	11 .	Yes	C 100 (200			•••	,	_ \	· · · · ·		•••••												
1/									7												Α.			
All samples received? Yes No 🗆									Yes	1				D	escri	ption	(s) n	natch	CO	C? Y	es A	No		
COC Received		lo	e Ch	nest	ID _		·	Dat	e/Tir	ne S	/(]-0 35		lc	e Ch	est I	D _			Date	/Tim	е		
		Te	mpei	atur	a: <u> </u>	34	<u></u> °0	2			14	35		Te	mpe	ratur	e:		°C					
Y YES D NO	T	101111	ome Emis		<u>. ر</u>	10	_	Ana	lyst	lnit _	5.	1V	- ™	herm	ome	ter II): —			Anal	yst in	iit		<u>-</u>
			Cont	aine	γ <u>τε</u> ε, ς	$(\sim 0.$	 _,_e						-			aine								
	<u> </u>									<u>=</u> =			1											
CAMPIE COLUMNIA	L										S .	AMPL	E N	JMBE	RS									
SAMPLE CONTAINERS	Ī	2	1	4		•	7	•	7	T :	1	12	1	7	,	1	1	٠	7	1.	1	10	11	112
OT GENERAL MINERAL/ GENERAL PHYSICAL	├-	+	 	╁	╁	╁	╁	┼	╫	+°	╁┶	† 	+-	╁	╁	╫	十	╁	† -	+-	┿	╪	+-	+-
PT PE UNPRESERVED	 	 	\vdash	\vdash	\vdash	\vdash	┼	 -	╁	+-	┼-	+-	╁	1-	\vdash	╁		+-	 	†~	+	+-	+-	+
OT INORGANIC CHEMICAL METALS		+-	├	\vdash	\vdash	-	t	 	†		\vdash	 	1-	+	\vdash		†	†	1	1-	\top	+-	+	+-
PT INORGANIC CHEMICAL METALS		 		\vdash			\vdash	\vdash	 	 	 	<u> </u>	1	╁		_	 	1.	 	†	1	1	1	+-
PT CYANIDE		 		┪	l	_	 			_	1	1						1	1	1	1-	1	1	+-
PT NITROGEN FORMS				<u>├</u>								1.	1								1	\top		\top
PT TOTAL SULFIDE																					I			
20z. NITRATE / NITRITE																								$oxed{\Box}$
100ml TOTAL ORGANIC CARBON		<u> </u>					<u> </u>	_		<u> </u>		<u> </u>		ļ	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	┷	
OT TOX		L	ļ		ļ		_		<u> </u>	<u> </u>	ļ			<u> </u>		_		 	 	<u> </u>	ļ	↓	ـــــــ	
PT CHEMICAL OXYGEN DEMAND	<u> </u>	<u> </u>		<u> </u>	_		ļ	<u> </u>	ļ	ļ	<u> </u>	<u> </u>	 	ļ			ļ	ļ	 	╀	ļ	↓	┼	╁
100ml PHENOLICS		_			<u> </u>		<u> </u>		<u> </u>	 	<u> </u>	ļ	ļ	ļ		 	ļ	 	┦—	 	╂	╀	┼	ــــ
40ml VOA VIAL TRAVEL BLANK	フ	2	7	2	<u></u>	2	-	1		├╌				├─	 	 				╂──		╀	+	┼─-
40mi VOA VIAL QT EPA 413.1, 413.2, 418.1	_	_	_	-	_		<u> </u>	4	-				-			_		 -	 	╁	╁	╁	+	┼
PT ODOR				-		 	_	├	1	-	1		┢┈	╁╌	├		 	1	1-	 	 	┼─	1	
RADIOLOGICAL				_			一	 	\vdash	 			\vdash	 	├─			 	1	†	1	┼─	†	${\dagger}$
BACTERIOLOGICAL						_			 	\vdash			_					 	Ι	1	 	1		\top
PT EPA 504								_																
QT EPA 508/608/8080																							L	
QT EPA 515.1/8150					•															L			辶	<u> </u>
OT EPA 525																			<u> </u>	<u> </u>	ļ	<u> </u>	↓	ـــ
QT EPA 525 TRAVEL BLANK			Щ				L			ļ		ļ	l						ļ			Щ	 	ــــ
100ml EPA 547							·	ļi												-	 	}	₩	<u> </u>
100ml EPA 531.1		<u> </u>							\vdash	<u> </u>		\square	<u> </u>	 	_			<u> </u>	-		 	 	\vdash	\vdash
QT EPA 548							.						<u> </u>	 					-	-	-		 	\vdash
OT EPA 622			\vdash					-		 		Ш		-				_		-	\vdash		 	-
QT EPA 632 QT EPA 8015M	-	 	$\vdash \vdash$			-			\vdash		\vdash		\vdash						 				 	
QT QA/QC	 														-					 		 		F
QT AMBER						-				_									\vdash	 				
8 OZ. JAR																\neg			 					
32 OZ. JAR	一						\dashv							\Box	\neg									
SOIL SLEEVE														·										
PCB VIAL																								
PLASTIC BAG																								
	-	\dashv			-	-	\dashv	_						$\vdash \vdash$	\dashv	{								
											—					}			ļ					
	- 1													_ 1	_	1								<u> </u>
																								<u> </u>
																	<u></u>							

Date/Time: _

Sample Numbering Completed By:

5/16 /650 [F:\WP80\LAB_DOCS\FORMS\SAMFEC2.WPD

01-05725 CHAIN-OF-CUSTODY RECORD

Project Name VOGUE TYRES Project Address 240 West MACAMM VAKIANL CA 9 Sampler's Signature Munth Fruit Sample Sample Location	48-Hour-Rush Normal Mobile Lab		Sample Matrix: Soil(S) Sludge(SL), Aqueous(A) Sludge(SL), Aqueous(A) F2 be (Full Oxyyen, Ku) TVH - A	20129779	Page of Lab Use Only. Sample Condition as received: Chilled Yes / No Sealed Yes / No Container / Comments
1 MW-4	5/11/01		H /		2
2 MW-7	11		A /		2
3 UW-8	\(\)		8//		Z VOL 10-87
4 MW-2	11		4//		7
5 MW-3	5/11/01		A //		7 0000
4 MW-6	1		A //		2
1 Mw-5	11		A //		2
8 Mw-1	5/11/01		1//		2
Polinguished by (Signature)		assisted by Classic	3		
million	5/16/01	eceived by: (Signature)	w	5-16-01	Total Number of Containers
VAEC	1433	pany: eceived by Laboratory: (S		Time 1 43.2 Date	-ADVANCED ENVIRONMENTAL CONCEPTS INC-
Сотрапу:	ime Comp	pany:		Time	661/831-1646 4400 ASHE ROAD, #206 FAX 661/831-1771 BAKERSFIELD, CA 93313 E-mall: advanced@lightspeed.net