

RECEIVED

2:23 pm, Jul 25, 2007

Alameda County
Environmental Health

July 17, 2007

VIA ALAMEDA COUNTY FTP SITE

Ms. Donna Drogos Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Site Investigation Report

Former Exxon Station 5175 Broadway Street Oakland, California ACEH Fuel Leak Case No. RO0000139

Dear Ms. Drogos:

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. has prepared this *Site Investigation Report* for the subject site. This report describes offsite soil borings upgradient and crossgradient from the source, the abandonment of four monitoring wells, and the installation of twelve monitoring wells.

If you have any questions or comments, please call me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely,

Pangea Environmental Services, Inc.

t Whileller

Bob Clark-Riddell, P.E.

Principal Engineer

Attachment: Site Investigation Report

cc: Rockridge Heights, LLC, C/O Gary Feiner, 34 Schooner Hill, Oakland, California 94618 RWQCB – SF Bay Region, Cherie McCaulou, 1515 Clay Street, Oakland, California 94612 Vera Stanovich, 1956 Stratton Circle, Walnut Creek, California 94598 SWRCB Geotracker (Electronic copy)

SITE INVESTIGATION REPORT

Former Exxon Station 5175 Broadway Oakland, California

July 17, 2007

Prepared for:

Rockridge Heights, LLC C/O Gary Feiner 34 Schooner Hill Oakland, California 94618

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

David S. Diamond, Ph.D., C.Hg.

Senior Hydrogeologist

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

SITE INVESTIGATION REPORT

Former Exxon Station 5175 Broadway Oakland, California

July 17, 2007

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	SITE BACKGROUND	
2.0	SITE BACKGROUND	1
2.1	SITE LOCATION AND DESCRIPTION	1
2.2	SUMMARY OF PREVIOUS ENVIRONMENTAL INVESTIGATIONS	2
2.3	CONDUIT STUDY	
2.4	POTENTIAL RECEPTORS	
3.0	SITE INVESTIGATION ACTIVITIES	3
3.1	Pre-Drilling Activities	_
3.2	DRILLING PROCEDURES	
3.3	SOIL BORING INSTALLATION	
3.4	MONITORING WELL ABANDONMENT AND INSTALLATION	
5.4		
4.0	SITE INVESTIGATION RESULTS	8
4.1	GEOLOGY AND HYDROGEOLOGY	8
4.2	SOIL ANALYTICAL RESULTS	10
4.3	HYDROCARBON DISTRIBUTION IN SOIL	
4.4	GROUNDWATER ANALYTICAL RESULTS	
4.5	HYDROCARBON AND FUEL OXYGENATE DISTRIBUTION IN GROUNDWATER	
5.0	CONCLUSIONS & RECOMMENDATIONS	14
6.0	REFERENCES	15

FIGURES

- Figure 1 Site Vicinity
- Figure 2 Site Map Showing Locations of Soil Borings, Monitoring Wells and Cross Sections
- Figure 3 Groundwater Elevation and Hydrocarbon Concentration Map (Shallow)
- Figure 4 Distribution of TPHg in Shallow Groundwater
- Figure 5 Distribution of Benzene in Shallow Groundwater
- Figure 6 Groundwater Elevation and Hydrocarbon Concentration Map (Deep)
- Figure 7 Geologic Cross Section A-A', Showing Benzene Concentrations
- Figure 8 Geologic Cross Section B-B', Showing MTBE Concentrations
- Figure 9 Geologic Cross Section B-B', Showing Benzene Concentrations
- Figure 10 Proposed Well Location Map

TABLES

- Table 1 Soil Analytical Data
- Table 2 Groundwater Analytical Data

APPENDICES

- Appendix A Permits and Access Agreements
- Appendix B Pangea's Standard Operating Procedures for Soil Borings and Monitoring Wells
- Appendix C Boring Logs & Well Construction Diagrams
- Appendix D Laboratory Analytical Reports
- Appendix E Well Development Field Data Sheets
- Appendix F Surveyor's Report

1.0 INTRODUCTION

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. (Pangea) prepared this *Site Investigation Report* (report) for the subject site. The scope of work was outlined in Pangea's *Addendum to Preliminary Results of Site Characterization: Proposed Additional Activities* (Addendum) dated November 8, 2006, which amended the report *Preliminary Results of Site Characterization: Proposed Additional Activities-former Exxon Station, 5175 Broadway, Oakland, California* dated May 8, 2006, and submitted to you by Golden Gate Tank Removal, Inc (GGTR) on behalf of the former property owner, Ms. Mojdeh Mehdizadeh. The final scope consisted of the following:

- Completion of offsite soil borings B-18 and B-19 to evaluate offstie groundwater contamination upgradient and crossgradient from the source.
- Destruction of monitoring wells MW-2, MW-3, STMW-4 and STMW-5 to eliminate potential dilution of groundwater samples and vertical contaminant migration due to the wells being screened across multiple water-bearing zones.
- Installation of twelve monitoring wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C) to allow better determination of the vertical and lateral extent of contamination and site hydrogeology and refinement of the site conceptual model (SCM).

Pangea also attempted to advance soil borings B-16, B-17 and B-20 northeast and east of the site, respectively, but reached refusal and was unable to collect groundwater samples. The proposed offsite investigation work downgradient (south) of the property boundary, including soil gas sampling both at and south of the property boundary, has not yet been conducted because access to the adjacent southern property has not yet been obtained. Pangea hopes to complete this offsite well installation and soil gas sampling in the near future. The feasibility testing of dual-phase extraction (DPE) and air sparging (AS) conducted in April 2007 will be reported separately.

2.0 SITE BACKGROUND

2.1 Site Location and Description

The subject property is located at 5175 Broadway Street, at the southwest corner of the intersection of Broadway and Coronado Avenue in Oakland, California in Alameda County (Figure 1). The site is approximately 0.6 miles south-southeast of Highway 24 and approximately 2.3 miles east of Interstate 80 and the San Francisco Bay. The property is relatively flat lying, with a slight slope to the south-southwest, and lies

at an elevation of approximately 160 feet above mean sea level. Topographic relief in the area surrounding the site also slopes generally towards the south-southwest. The western site boundary is the top of an approximately 10 foot high retaining wall that separates the site from an adjacent apartment complex.

The property has been vacant since 1979 and was formerly occupied by an Exxon Service Station used for fuel sales and automobile repair. The site is approximately 13,200 square feet in area with about 10% of the area occupied by a vacant station/garage structure. The majority of the ground surface is paved with concrete and/or asphalt. Land use to the west and northwest is residential, including apartment buildings and single family homes. Properties to the northeast, east and south of the site are commercial. The site and adjacent properties are shown on Figure 2.

2.2 Summary of Previous Environmental Investigations

Environmental compliance work commenced when three 8,000-gallon steel single-walled USTs, associated piping, and a 500-gallon steel single-walled waste oil tank were removed in January 1990. Tank Protect Engineering, Inc. (TPE) conducted the tank removal and observed holes in all four tanks. Groundwater was reportedly observed to stabilize in the UST excavation between 10.5 and 11 feet bgs. Approximately 700 tons of contaminated soil was excavated during tank removal and was subsequently remediated and reused for onsite backfill by TPE. In April 1990, TPE installed and sampled monitoring wells MW-1, MW-2 and MW-3. In June 1991, Soil Tech Engineering (STE), subsequently renamed Environmental Soil Tech Consultants (ESTC), installed monitoring wells STMW-4 and STMW-5. Groundwater monitoring was conducted on the site intermittently until October 2002. Golden Gate Tank Removal (GGTR) performed additional assessment in January and February 2006, including collection of soil and/or groundwater samples from ten onsite soil borings. In June 2006, the property was purchased by Rockridge Heights, LLC. Pangea commenced quarterly groundwater monitoring at the site in July 2006.

2.3 Conduit Study

To evaluate the potential for contaminant migration via preferential pathways, GGTR surveyed subsurface utilities in the vicinity of the site and compared utility depths to groundwater depth in site monitoring wells. This survey was reported in the GGTR *Workplan for Additional Site Characterization* dated September 12, 2005. The report concluded that no utilities likely serve as preferential pathways for migration of contaminated groundwater.

2.4 Potential Receptors

A risk assessment study conducted by SOMA (Conducting Human Health Risk Assessment, dated February 17, 2004) concluded that the primary human health risk was inhalation by residential receptors of benzene volatilized from site groundwater, and that concentrations measured in site monitoring wells were below thresholds of concern for those receptors, with the exception of well STMW-4. In an October 6, 2004 letter, Alameda County Environmental Health (ACEH) requested modifications to the risk assessment method used by SOMA and consideration of soil exposure pathways not considered by SOMA in future risk assessment work. ACEH also indicated that further risk assessment efforts should be postponed until additional site characterization work was completed. In addition, the recent grab groundwater sampling data collected by GGTR indicated that chemicals of concern may be present at the downgradient edge of the site at concentrations exceeding those found in site monitoring wells. Therefore, Pangea concurs with the ACEH's statement that additional risk assessment should not be conducted until further downgradient characterization has been completed. It should also be noted that the high levels of petroleum hydrocarbons (230,000 ug/L TPHg, 13,000 ug/L benzene) detected in the GGTR grab groundwater sample (B-11) collected at the downgradient edge of the site significantly exceeded those concentrations previously detected onsite; these results increase the possibility that vapor intrusion hazards may be present for the residential pathway discussed by SOMA, or potentially for workers in commercial buildings, since the California Regional Water Quality Control Board (CRWQCB) Environmental Screening Levels (ESL) for the commercial or industrial land use vapor intrusion pathway is 540 µg/L for benzene in groundwater.

Land use at the site and adjacent buildings along Broadway is currently commercial, so, in the absence of an approved risk assessment, commercial ESLs are applicable for assessing of sampling data immediately downgradient (south) of the site. However, with residential properties located west of the site in the down/crossgradient direction, residential ESLs would apply to contaminants that might migrate west from the site. The Final ESLs for TPHg and benzene, the primary site contaminants, are the same for commercial and residential land use for shallow and deep soil where groundwater is a potential source of drinking water.

3.0 SITE INVESTIGATION ACTIVITIES

Pangea's site investigation included offsite boring installation, onsite well installation into shallow, intermediate and deeper soil/groundwater, and well abandonment, as described below.

Soil Boring: Soil borings B-18 and B-19 were installed to evaluate groundwater contamination upgradient and crossgradient from the source. Pangea also attempted to advance soil borings B-16, B-17 and B-20 northeast and east of the site, but reached refusal and was unable to collect groundwater samples. These findings indicate that the resistant bedrock that crops out across Broadway east of the site is present in the shallow subsurface in the vicinity of the boring locations.

Well Abandonment: Monitoring wells MW-2, MW-3, STMW-4 and STMW-5 were previously installed with very long screen lengths, potentially resulting in dilution of groundwater samples, vertical contaminant migration, and difficulty in determining the vertical distribution of groundwater contamination. These wells were destroyed by overdrilling the well borings. The well borings were used to reconstruct new wells MW-2C, MW-3C, MW-4A and MW-5C, with shorter screened intervals targeted to the horizons of interest.

Onsite Well Installation: Twelve monitoring wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C) were installed to allow better determination of the vertical and lateral extent of contamination and site hydrogeology, and refinement of the site conceptual model (SCM).

Feasibility Testing: DPE/AS testing conducted in April 2007 will be reported separately.

Pending Offsite Work: Pangea's November 8, 2006 Workplan Addendum also included the installation of offsite monitoring wells and soil borings downgradient (south) of the property boundary, and soil gas sampling onsite, south, and west of the property boundary. This work has been delayed because access to the adjacent southern, downgradient property could not be obtained. Pangea hopes to finally obtain access and conduct this work in the near future.

3.1 Pre-Drilling Activities

A comprehensive site Safety Plan was prepared to protect site workers and the plan was kept onsite during all field activities. Boring and well installation permits were obtained from the Alameda County Public Works Agency (ACPWA). Encroachment and excavation permits were obtained from the City of Oakland, and access agreements were obtained from nearby property owners west and east of the site. Copies of the permits are presented in Appendix A. The proposed drilling locations were marked and Underground Service Alert was notified at least 72 hours before the proposed field activities. Pangea cleared the offsite boring locations using a private line locator. Prior to drilling, concrete coring was performed for soil borings B-16 and B-18.

3.2 Drilling Procedures

All soil borings and monitoring wells were installed in general accordance with the procedures described in Pangea's Addendum dated November 8, 2006. All offsite borings were hand-augered to 5 ft below ground surface (bgs), when feasible, to help avoid subsurface utilities. Pangea retained RSI Drilling (RSI) of Woodland, California, to drill the borings and install the monitoring wells. The drilling was observed in the field by Pangea hydrologist Bryce Taylor and staff Greg Bentley, and supervised by Bob Clark-Riddell, a California Registered Civil Professional Engineer (P.E.). Soil characteristics such as color, texture, and

relative water contents were described in the field using the USCS classification system and entered onto a field boring log. Field screening of soil samples for potential hydrocarbons and volatile organic compounds included visual and olfactory observations and photo-ionization detector (PID) readings. Undisturbed soil samples were collected for laboratory analysis in acetate liners, and capped with Teflon tape and plastic end caps. All samples were shipped under chain of custody to McCampbell Analytical, Inc., a California-certified laboratory.

3.3 Soil Boring Installation

Drilling Activities

On January 23, March 16 and 19, and April 4, 2007, Pangea attempted to drill five soil borings (B-16, B-17, B-18, B-19 and B-20) to help evaluate subsurface conditions northeast, northwest, west and south of the site, respectively. Soil boring B-16 was advanced near the northwest corner of Broadway and Coronado Avenue. Boring B-18 was located in the street in front of the apartment complex at 5230 Coronado Avenue and boring B-19 was located in the backyard of the apartment complex. Borings B-17 and B-20 were located across Broadway from the site as shown on Figure 2.

Concrete coring was performed for borings B-16 and B-18. All borings were hand-augered to approximately 5 ft bgs to ensure that drilling activities did not damage unmarked utilities. After hand-augering, RSI drilled the borings using direct-push drilling methods to collect continuously cored soil samples. Boring B-18 was advanced to approximately 16 ft depth, temporary casing was installed and a groundwater sample was collected using a peristaltic pump with new polyethylene tubing. A hand auger was used to advance boring B-19 (whose surface elevation was approximately 10 ft below the ground surface elevation of the site due to the presence of a tall retaining wall separating the site from the apartment complex) to a depth of approximately 4.5 ft bgs, and a groundwater sample was then collected with a disposable bailer. Borings B-16, B-17 and B-20 reached direct-push refusal at approximately 12, 9 and 8.5 ft bgs, respectively, and no groundwater samples could be collected.

After evaluation of the importance of each boring to the investigation, Pangea decided to move the proposed location of boring B-20 further south and construct a monitoring well at this location if any field observations of hydrocarbons were observed. Pangea proposed a monitoring well since extensive drilling would be required to drill through the rock based on site conditions, and because a well would allow collection of repeatable data. Pangea negotiated a new access agreement with the property owner, Safeway, Inc., and began drilling boring B-20 on March 16 using a Powerprobe 9630 Hollow-Stem-Auger/Direct-Push combo rig, but reached refusal at approximately 7 ft bgs. On April 4 Pangea returned with a larger drill rig (CME 75), but again reached refusal at approximately 8.5 ft bgs after 3 hours of drilling, so attempts to complete the boring

or install a well were halted. Soil and water samples were collected from each boring in accordance with Pangea's Standard Operating Procedures for Soil Borings (Appendix B).

Soil from borings B-16, B-18 and B-20 consisted primarily of sandy gravel and clay underlain by mudstone to the total depth of each boring, while soil from boring B-19 consisted of sandy silt. No hydrocarbon odors or staining were observed in any of the borings. Boring logs for B-16, B-18, B-19 and B-20 are included in Appendix C.

Soil Boring Sampling and Analysis

No soil samples were collected from the borings, while grab groundwater samples were collected from borings B-18 and B-19. Groundwater samples were analyzed for TPHd by EPA Method 8015C, TPHg by modified EPA Method 8015C, and benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tertbutyl ether (MTBE) by EPA Method 8021B.

3.4 Monitoring Well Abandonment and Installation

On January 18, 19, 22, 23, 25, 26 and March 16, 2007, Pangea installed twelve monitoring wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7A, MW-7C, MW-8A and MW-8C) to help define the vertical and lateral extent of groundwater contamination. On January 18, 25, 26 and March 16, 2007, Pangea abandoned wells MW-2, MW-3, STMW-4 and STMW-5 to reduce the risk of vertical contaminant migration and improve the quality of monitoring data.

Well Drilling Activities

Monitoring wells MW-2, MW-3, STMW-4 and STMW-5 were abandoned by overdrilling with the appropriate size hollow-stem augers. After each casing was removed and all well construction materials had been drilled out, the open boreholes were used to install new wells MW-2C, MW-3C, MW-4A and MW-5C, respectively. Monitoring wells MW-3A, MW-5B, MW-6A, MW-7C and MW-8C were first continuously cored using direct-push drilling methods to evaluate soil lithology. After reaching the total depth or direct push refusal, each boring was reamed using the appropriate sized hollow-stem auger to facilitate the installation of the well. Shallower monitoring wells MW-5A, MW-7B and MW-8A were drilled adjacent to the other wells using the appropriately sized hollow-stem auger. Due to the prevalence of mudstone bedrock at the site, drilling was difficult and time consuming.

Soil Sampling During Well Installation

During drilling, soil samples were collected continuously for select wells to the total depth of each boring. Soil consisted primarily of brown clay and gravel to a depth of approximately 2 to 16 ft bgs, underlain by

mudstone. The observed soil type was similar to prior soil logging at the site, except that GGTR classified some of the fine-grained soil at the site as silt, while Pangea classified most of the fine-grained soil as clay. Boring logs and well construction diagrams for monitoring wells are included in Appendix C.

Select soil samples were analyzed for TPHg by modified EPA Method 8015C, and benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) by EPA Method 8021B. Soil samples collected from select wells in the vadose zone and capillary fringe were submitted for analysis

Well Construction

The monitoring wells were constructed of 2-inch diameter, 0.010-inch slotted and blank PVC casing. Monitoring wells MW-3A, MW-4A, MW-5A, MW-6A and MW-8A were screened in the shallow water-bearing zone, which is composed of clayey gravel, gravelly clay and mudstone to provide better assessment of contamination in this shallow zone. Monitoring wells in the "A" zone were screened between approximately 8 to 17 ft bgs. Monitoring well MW-5B was screened from approximately 17 to 20 ft bgs, while MW-7B was screened from approximately 15.5 to 18.5 ft bgs to assess contamination of intermediate-depth mudstone bedrock immediately below the surficial soils. Monitoring wells MW-2C, MW-3C, MW-5C, MW-7C and MW-8C were screened between approximately 18 to 27 ft bgs in deeper mudstone to provide better assessment of contamination at depth within the bedrock. The wells were protected by traffic-rated vaults and locking well caps. The soil characteristics and hydrogeology are detailed in the boring logs (Appendix C). Additional soil logging and sampling procedures are presented in Pangea's Standard Operating Procedures for soil borings in Appendix B.

Well Development & Sampling

Pangea retained Blaine Tech Services, Inc. (Blaine) of San Jose, California to develop the wells by surge block agitation and evacuation on February 14 through 16 and March 26. Groundwater evacuation continued until turbidity was reduced to below 100 Nephelometric Turbidity Units (NTU), the well dewatered, or 25 case volumes had been removed. All of the wells dewatered during development and were slow to recharge, except for well MW-6A, whose screen intercepts the former UST excavation backfill, and which was purged until 25 case volumes of groundwater had been removed. The investigation-derived waste generated during drilling and development was temporarily stored onsite DOT approved 55-gallon drums pending analysis. Additional well installation and development procedures are presented in Pangea's Standard Operating Procedures for monitoring wells in Appendix B. The well development field data sheets are presented in Appendix E. Groundwater samples from the newly installed wells were collected for analysis on March 9 and April 16, 2007.

4.0 SITE INVESTIGATION RESULTS

The following discussion of site geology, hydrogeology and sampling results is based on both prior investigations and data collected during the site assessment activities described above. The findings of the investigations are summarized on the report figures. Figure 3 presents groundwater elevation contours and hydrocarbon concentrations for shallow groundwater. Figures 4 and 5 present the distribution of elevated TPHg and benzene concentrations in shallow groundwater, respectively. Figure 6 presents groundwater elevation contours, hydrocarbon concentration data and the distribution of elevated TPHg and benzene concentrations in deep groundwater. Cross sections A-A', B-B' and C-C', showing soil type, groundwater depth, and the distribution of TPHg in groundwater, are shown on Figures 7, 8 and 9, respectively. Soil and groundwater analytical data are summarized on Tables 1 and 2. The laboratory analytical reports for samples collected during the investigation described above are included in Appendix D. The laboratory analytical reports for groundwater samples collected during routine quarterly monitoring are included in Pangea's *Groundwater Monitoring Report – First Quarter 2007* for the site.

4.1 Geology and Hydrogeology

Regional Geology and Hydrogeology

The site lies at the foot of the Oakland Hills on a low ridge composed of Cretaceous sandstone, siltstone, and serpentinite of the Franciscan Complex, as mapped by Graymer (2000). The bedrock is onlapped several hundred feet to the west and southwest of the site by Pleistocene and younger alluvial and fluvial deposits derived from westward flowing streams draining the hills to the east. The Hayward Fault, a major active regional fault of the San Andreas Fault system, lies 1.5 miles northeast of the site.

The site lies immediately east of the East Bay Plain groundwater basin. Most of the East Bay Plain is underlain by deep Tertiary depositional basins whose current depocenters are the San Francisco Bay (the San Francisco Basin) and San Pablo Bay (San Pablo Basin) (Figuers, 1998). The site lies on bedrock forming the eastern boundary of the San Francisco Basin. Groundwater in the San Francisco Basin is designated beneficial for municipal and domestic water supply and industrial process, service water, and agricultural water supply.

Local Hydrogeology

Most of the site is underlain at relatively shallow depths by impermeable bedrock composed of fractured Cretaceous sandstone, serpentinite and siltstone of the Franciscan Complex. The bedrock is overlain by variable thicknesses (from 2 to 20+ feet) of native soil and artificial fill, consisting of unconsolidated clay,

silt, sand and gravel. Figures 7, 8 and 9 are geologic cross sections showing the distribution of these units in the subsurface. The locations of the geologic cross sections are shown on Figures 3 through 6.

Prior investigations indicate that the water table intersects the contact between the unconsolidated units and bedrock units, so in some areas shallow groundwater is present in both the unconsolidated units and the bedrock, and in other areas groundwater is present only within the bedrock. The only newly installed well where shallow groundwater was encountered during drilling was well MW-6A, drilled through the backfill of the former UST excavation, where it was encountered at approximately 8 ft bgs and was measured at a depth of 7.17 ft on March 26, 2007. This observation, and similar observations made during prior drilling of shallow wells at the site indicates that groundwater is present under unconfined conditions within the shallow soil/fill units, and possibly present under unconfined conditions within the shallowest portion of the underlying bedrock.

All of the other newly installed wells were installed into relatively impermeable clay or bedrock that did not yield evidence of the presence of groundwater during well installation, or were not logged because they were installed within the borings of existing monitoring wells. In general, past investigations have reported that the clay or bedrock sections do not yield appreciable volumes of groundwater, with the exception of thin zones within the bedrock. During drilling of the onsite monitoring wells for which the entire saturated zone is in bedrock (MW-1, MW-2 [now reconstructed as MW-2C] and MW-3 [now reconstructed as MW-3C]), prior consultants reported that bedrock yielded no water, with the exception of thin, discrete, slightly productive water-bearing zones encountered between 20 and 22 feet bgs in MW-1 and MW-2. Water levels rose substantially in these deep wells shortly after completion, and appear to define a southward to southwestward sloping piezometric surface. These observations indicate that the bedrock is relatively impermeable, and that the thin water-bearing zones within the bedrock are permeable layers or fracture zones (i.e. fracture porosity) of unknown continuity and orientation. Field observations of nearby bedrock outcrops east of the site on the opposite side of Broadway corroborate this interpretation. These thin zones are under confined or semiconfined conditions on the scale of the well borings, but may be unconfined at the scale of the site.

Groundwater Flow

Shallow Groundwater: Based on depth-to-water data collected March 26, 2007, elevation data and the inferred flow directions for shallow A-zone groundwater are shown on Figure 3. As shown on Figure 3, groundwater in A-zone groundwater appears to have mounded in the former UST excavation, and the apparent gradient radiates outwards towards the east, south and west, although regional groundwater flow is generally towards the south and southwest. This observation suggests that the unpaved former UST excavation has acted as a collector for rainwater during the rainy season, and that the asphalt pavement covering the remainder of the site serves to reduce infiltration elsewhere and likely directs rainwater to the unpaved UST excavation area. The current inferred flow direction in A-zone groundwater southwest of the

former UST excavation area is generally consistent with previous quarterly monitoring events, while the new A-zone wells provide additional data to infer the radial groundwater flow from the former UST area.

Deep Groundwater: Elevation data for both B-zone and C-zone groundwater and the inferred flow direction for C-zone groundwater are shown on Figure 6. The horizontal component of flow for the C-zone groundwater is westwards to southwestwards, as shown on Figure 6. The elevation of the piezometric surface for deep C-zone wells is lower than elevations for A-zone wells, indicating that a downward gradient is present. No previous data have been collected regarding the direction of flow of C-zone groundwater.

4.2 Soil Analytical Results

For the current investigation, the highest concentrations of TPHg (260 mg/kg) and benzene (0.31 mg/kg) in soil were detected in the boring for well MW-8A at a depth of 12 ft bgs. In general, the highest detected concentration of petroleum hydrocarbons in soil is between 9 to 12 ft bgs, with primarily non-detect concentrations in shallower soil samples, and hard bedrock (which was generally not sampled) present in most areas at greater depths. Soil analytical results are summarized on Table 1. The laboratory analytical report is included in Appendix D.

4.3 Hydrocarbon Distribution in Soil

Residual soil contamination detected in soil samples collected from onsite soil borings reported in the GGTR Report was generally less than ESLs for all soil samples except for those collected at a depth of 9 feet in borings B-3, B-4 and B-9. TPHg in these borings ranged from 140 to 180 mg/kg, slightly exceeding the ESL of 100 mg/kg. Benzene was detected at 0.65 mg/kg in B-3, exceeding the ESL of 0.044 mg/kg. Benzene was not detected in either B-4 or B-9, although the detection level for the samples collected at 9 feet bgs was 0.5 mg/kg due to sample dilution, so it is not known whether the ESL for benzene was exceeded in those borings. During the current investigation, only TPHg (260 mg/kg) and benzene (0.31 mg/kg) encountered at 12 feet bgs in MW-8A exceeded the ESLs. Based on the results of the soil boring program, residual vadose zone soil contamination only appears to exceed ESLs in samples that lie close to the water table elevation, suggesting that a zone of capillary fringe soil contamination at concentrations slightly exceeding ESLs is probably present throughout much of the site where groundwater impacts are present. Vadose zone soil is relatively uncontaminated and is unlikely to represent a significant threat to human health, although impacts to groundwater are likely to continue while capillary fringe soil contamination is present.

4.4 Groundwater Analytical Results

No contaminants were detected in either of the groundwater samples collected from borings B-18 and B-19. Groundwater samples were collected from new and existing site monitoring wells as part of the scheduled

first quarter 2007 groundwater monitoring event. Current and historical analytical results for both grab groundwater sampling and groundwater monitoring are summarized on Table 2. The laboratory analytical report for grab groundwater sampling from B-18 and B-19 is included in Appendix D. The laboratory analytical report for the first quarter 2007 groundwater monitoring event is presented separately in Pangea's first quarter 2007 groundwater monitoring report.

4.5 Hydrocarbon and Fuel Oxygenate Distribution in Groundwater

The primary contaminants at the site are total petroleum hydrocarbons as gasoline (TPHg) and benzene, which substantially exceed CRWQCB Tier 1 Final ESLs for groundwater that is a potential source of drinking water, as noted in the GGTR Report. Secondary contaminants that also exceed ESLs are toluene, ethylbenzene, xylenes, and 1,2-dichloroethane (EDC). In particular, TPHg concentrations throughout the site exceed the ceiling ESL of 5,000 μ g/L, and benzene concentrations exceed the ESL of 540 μ g/L for indoor air impacts.

Review of the historical groundwater concentration data (Table 2) indicates that although substantial concentration fluctuations have occurred in site wells since monitoring began in 1989, no consistent concentration trends have been observed, and concentration data collected in 2007 are generally of similar magnitude to concentration data collected at the beginning of monitoring. This observation suggests that groundwater velocities at the site are very low and that natural attenuation mechanisms have not been effective in reducing contaminant concentrations.

Free Product (SPH): A thin layer of SPH has been observed in well STMW-4 during the last three quarters of monitoring. The SPH was often discovered after initiating well purging but not during initial well gauging. SPH was also detected in newly installed deep well MW-3C after initiating well purging during the second quarter of 2007. One possible explanation of the discovery of SPH in these wells is that well purging induces SPH trapped within the fractured bedrock to enter the well casing. One possible explanation for SPH in well MW-3C is that dual phase extraction testing in that well in April 2007 induced downward migration of SPH into the well. No SPH have been detected in any other site wells, including well MW-4A, which was subsequently installed (though with a shallower screened interval) in the drilled out borehole of STMW-4.

Contaminant Distribution in Shallow Groundwater: As shown on Figures 4 and 5, shallow (A-zone) unconfined groundwater contains petroleum hydrocarbons at elevated concentrations in the following two primary areas near the former UST excavation: 1) a northern area in the vicinity of well MW-4A (the location where free product has previously been observed), and 2) a southwestern area in the vicinity of wells MW-3A and MW-8A and which extends to the southern site boundary in the vicinity of wells MW-7B and MW-7C. This distribution of hydrocarbons in shallow A-zone groundwater is tentatively interpreted to be due to the

mounding of groundwater within the uncapped former UST excavation during the rainy season, likely encouraging plume migration radially away from the excavation area into areas that are protected from infiltration by paved surfaces. The lack of elevated hydrocarbon concentrations in well MW-5A and boring B19, both located downgradient from the former UST excavation, is unexpected, and may be due to the presence of a thick, relatively impermeable clay section observed in boring logs of shallow soil in that area that impedes migration of contaminated groundwater in shallow soil in that area (Figure 9). It should also be noted that the northernmost extent of the northeasternmost area has not been completely defined, since boring B-4 contained elevated hydrocarbon concentrations. Similarly, the southward offsite extent of the southernmost area has not yet been defined, since boring B-11 contained elevated hydrocarbons.

Contaminant Distribution in Deeper Groundwater: As shown on Figure 6, the distribution of deep groundwater containing elevated concentrations of petroleum hydrocarbons differs significantly from the distribution of hydrocarbons in shallow groundwater. High levels of contamination within deeper (B- and C-zone) groundwater only appear to be present in the central and southern, downgradient portion of the site, based on elevated hydrocarbon concentrations detected in wells MW-3C, MW-7B and MW-7C. The hydrocarbon impact in the deeper wells may be explained by the apparent downward vertical gradient indicated by elevation data from the clustered shallow and deep wells. The lateral extent of the deeper contamination appears to be well defined, except in the downgradient, offsite direction. It should also be noted that because permeable zones within the bedrock are thin, and discrete permeable layers and fractures, the impacted groundwater within the bedrock shown on the cross sections (Figures 7, 8 and 9) is likely to be less extensive than depicted on the cross sections, and to be present only within narrow permeable preferential pathways within the shown impacted areas.

Vertical Distribution of Contaminants Based on New Well Data: Our evaluation of concentration data from abandoned wells and from the new well clusters suggest that the *shallow groundwater is more impacted than the deeper groundwater* for much of the site.

• In the impacted area *north* of the UST source area, benzene concentrations are higher in shallow A-zone well MW-4A (1,600 µg/L) than in deeper well MW-1 (maximum of 160 µg/L benzene within past 15 years) which is screened in the B- and C-zones. Comparison of these data to the recent maximum benzene concentrations of 960 µg/L (July 2006) and 1,600 µg/L (May 1999) in abandoned well STMW-4 (which was screened across the A- and B-zones) suggests that most of the well's groundwater contamination was from shallower soil/groundwater and that less water is present in the deeper, cleaner soil/bedrock to dilute the shallower impacted zone. This interpretation seems reasonable due to the presumed fractured groundwater flow within the bedrock where the deeper portion of well STMW-4 was screened.

- In the *western* downgradient area between the source area and the adjacent offsite residence (MW-8A/8B well pair), an elevated impact was detected in shallow well MW-8A (10,000 μg/L TPHg and 430 μg/L benzene), while an insignificant impact was detected in deeper well MW-8C (150 μg/L TPHg and 9.8 μg/L benzene) which is screened in bedrock.
- In the *southeastern* corner of the site and downgradient of the source (MW-5A/5B/5C well cluster), negligible contaminants were detected in A-zone well MW-5A, slightly greater but still negligible concentrations were detected in well MW-5B, and no hydrocarbons were detected in deep well MW-5C.
- In the source and *central* portion of the site (MW-3 well cluster), benzene concentrations are higher in shallow A-zone well MW-3A (3,800 µg/L) than in deep well MW-3C (1,200 µg/L). Benzene concentrations in wells MW-3A and MW-3C are higher than in abandoned well MW-3, which had a maximum benzene concentration of 770 µg/L within the past 15 years (MW-3 was screened across the A-, B- and C-zones). This data suggests that contaminants have migrated downward through bedrock fractures in this area so that deeper groundwater has been impacted in this area. However, since well MW-3 was reportedly installed dry due to low permeability and lack of water encountered during drilling, it is unlikely that significant contaminant mass is present at this location.
- The *deeper* groundwater zone within the fractured bedrock apparently has limited contaminant mass due to limited permeability and low water yield during well purging (wells MW-5B, MW-7B, MW-7C, and MW-8C all dewatered after purging 1 or 2 well volumes). These wells also produced little water during well development and DPE testing (reported separately).

MTBE Not a Concern: MTBE was *not* detected in sampled groundwater and it is not a compound of concern at this site.

5.0 CONCLUSIONS & RECOMMENDATIONS

Based on the above information, Pangea offers the following conclusions and recommendations:

- Knowledge of the lateral extent of hydrocarbon contamination has been significantly improved by the newly installed site monitoring wells. Hydrocarbon contaminated groundwater, including SPH, is primarily located in the shallower site subsurface (A-zone wells) in areas surrounding the former UST excavation. Infiltration of rainwater into the uncapped former UST excavation appears to have driven shallow contaminated groundwater laterally away from the excavation area, except in the downgradient (southward) direction where a thick clay section is present.
- The recent boring and well installation provided significant additional delineation of the vertical extent of contamination. Hydrocarbon-contaminated deep groundwater is present within thin fractures or other permeable zones within relatively impermeable site bedrock. The area of significant contamination in deeper groundwater lies at the southeastern portion of the site.
- Pangea recommends installing additional monitoring well locations downgradient of the site (Figure 10), as indicated in Pangea's November 8, 2006 Addendum, upon obtaining access to the southern downgradient property. However, since groundwater contaminant concentrations in well MW-5A, well MW-5C, and boring B19 were all lower than ESLs, and since concentrations of TPHg (14 μg/L) and benzene (1.3 μg/L) in MW-5B only slightly exceeded ESLs for drinking water sources (100 μg/L and 1.0 μg/L for TPHg and benzene, respectively), Pangea does not recommend installing the wells and the soil gas probe that were previously proposed to be installed downgradient (south) of the well MW-5A/5B/5C cluster. Therefore, Pangea recommends that only the wells and soil gas probes shown in Figure 10 be installed. The proposed "A zone" wells will be installed to intercept the water table, based on field observations (estimated to be screened approximately 10 to 15 feet bgs). The "C zone" wells are anticipated to be screened at approximately 20 to 25 feet bgs. These offsite wells will also help evaluate the downgradient effects of any future remediation conducted onsite.
- Pangea also recommends conducting soil gas sampling, as proposed in Pangea's November 8, 2006 Addendum, upon obtaining access to the southern downgradient property. The proposed soil gas sampling locations are shown on Figure 10. The proposed soil gas sampling will help evaluate the potential risk to human health due to potential vapor intrusion into indoor air.
- Pangea performed feasibility testing of dual-phase extraction (DPE) and air sparging (AS) to evaluate the
 effectiveness of DPE, AS, and associated techniques for remediating residual hydrocarbons beneath the
 site. Pangea will prepare a technical report documenting feasibility test results, evaluating remediation
 alternatives, and proposing interim remedial action.

6.0 REFERENCES

Figuers, S., 1998, Groundwater study and water supply history of the East Bay Plain, Alameda and Contra Costa Counties, California: Norfleet Consultants, June 15.

Graymer, R.W., 2000, Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa and San Francisco Counties, California, U.S. Geological Survey Miscellaneous Field Studies Map MF-2342, 1:50,000 scale. (http://geopubs.wr.usgs.gov/map-mf/mf2342/mf2342f.pdf).

Rockridge-Site Assessment Report.doc

Proposed Well and Soil Vapor Probe Locations

Site Map Showing Locations of Soil Borings, Monitoring Wells and Cross Sections

Groundwater Elevation and Hydrocarbon Concentration Map (Shallow)

Distribution of Benzene in Shallow Groundwater

Distribution of TPHg in Shallow Groundwater

Groundwater Elevations, Hydrocarbon Concentrations and TPHg Distribution in Deep Groundwater

Geologic Cross Section A-A'

Geologic Cross Section B-B'

Geologic Cross Section C-C'

 Table 1. Soil Analytical Data - Rockridge Heights, 5175 Broadway, Oakland, California

	Date	Sample Depth	TPHd	TPHg	Benzene	Toluene	Ethyl benzene	Xylenes	MTBE	TBA
Sample ID	Sampled	(ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg
	L, drinking water		100	100	0.044	2.9	3.3	2.3	0.023	0.073
	L, non-drinking v		500	400	0.38	9.3	32	11	5.6	110
Commercial ES	L, vapor pathway		NV	NV	0.51	310	390	420	5.6	NV
WELL INSTAL	LATION & BO	RINGS - 2007								
MW-6B-12	1/22/2007	12.0		<50	<0.5	<0.5	< 0.5	<0.5	<5.0	
MW-6B-15	1/22/2007	15.0		3	< 0.5	0.0087	< 0.5	< 0.5	< 5.0	
MW-8A-8.5	1/22/2007	8.5		14	0.027	0.027	0.013	0.072	< 5.0	
MW-8A-10	1/22/2007	10.0		13	0.027	< 0.5	< 0.5	0.039	<5.0	
MW-8A-12	1/22/2007	12.0		260	0.31	0.16	0.083	0.73	< 0.25	
MW-8A-15	1/22/2007	15.0		<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	
BORINGS - 20	006									
B1-6	2/1/2006	6.0	<100	0.058	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	
B1-10	2/1/2006	10.0	<100	0.11	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B2-6	2/1/2006	6.0		0.15	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B2-9	2/1/2006	9.0		<0.05	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B3-5	2/6/2006	5.0		0.22	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B3-9	2/6/2006	9.0		160	< 0.65	< 0.500	< 0.500	<1.000	< 0.500	
B4-5	2/6/2006	5.0		< 0.05	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B4-9	2/6/2006	9.0		140	< 0.500	< 0.500	0.66	<1.000	< 0.500	
B5-5	2/6/2006	5.0		< 0.05	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B5-9	2/6/2006	9.0	<2.5	13	<0.003	<0.003	<0.003	<0.01	<0.003	
B6-5	2/6/2006	5.0		< 0.05	< 0.005	< 0.005	< 0.005	<0.01	< 0.25	
B6-9	2/6/2006	9.0	<2.5	0.10	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B7-5	2/6/2006	5.0	~2.3	< 0.05	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B7-9	2/6/2006	9.0	<2.5	< 0.05	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B8-5	2/6/2006	5.0	<2.3 	0.053	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
B8-9	2/6/2006	9.0		22	<0.003	<0.003	<0.003	<0.01	<0.003	
B9-5		5.0		1.8	<0.25	< 0.23	< 0.23	<0.01	< 0.23	
B9-9	2/6/2006 2/6/2006	9.0	 <2.5	180	< 0.500	< 0.500	< 0.500	<1.000	< 0.500	
B10-5	2/6/2006	5.0		0.052	<0.005	< 0.005	< 0.005	<0.01	< 0.005	
B10-3 B10-9	2/6/2006	9.0		0.032	< 0.005	< 0.005	< 0.005	<0.01	< 0.005	
	LATION - 1990									
MW-1	4/17/1990	8.0-8.5		190	0.24	0.21	0.92	0.6		
MW-1	4/17/1990	13.5-14		180	1.7	1.4	2.4	6.4		
MW-2	4/24/1990	3.0-4.5		≤5	0.0061	0.005	0.0057	0.026		
MW-2	4/24/1990	8.0-9.0		≤5	0.006	0.005	0.0089	0.013		
MW-3	4/17/1990	4.0-5.5		14	≤5.0	≤5.0	≤5.0	0.1		
MW-3	4/17/1990	9.0-10.0		46	0.05	≤5.0	0.4	0.2		
MW-3	4/17/1990	14.0-14.5		11	≤5.0	≤5.0	≤5.0	0.1		
STMW-4	6/21/1991	5.0		≤5	≤5.0	≤5.0	≤5.0	≤5.0		
STMW-4	6/21/1991	10.0		≤5	≤5.0	≤5.0	≤5.0	≤5.0		
STMW-5	6/21/1991	5.0		≤5	≤5.0	≤5.0	≤5.0	≤5.0		
STMW-5	6/21/1991	10.0		≤5	≤5.0	≤5.0	≤5.0	≤5.0		

Table 1. Soil Analytical Data - Rockridge Heights, 5175 Broadway, Oakland, California

Sample ID	Date Sampled	Sample Depth (ft bgs)	TPHd (mg/kg)	TPHg (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl benzene (mg/kg)	Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)
Commercial E	SL, drinking wate	r	100	100	0.044	2.9	3.3	2.3	0.023	0.073
Commercial E	SL, non-drinking	water	500	400	0.38	9.3	32	11	5.6	110
Commercial E	SL, vapor pathway	у	NV	NV	0.51	310	390	420	5.6	NV
TANK REMO	VAL & OVERE	XCAVATION								
S-1-W	1/10/1990	7.0	10	≤5	≤5.0	≤5.0	≤5.0	≤5.0		
S-2-N	1/10/1990	10.0		970	≤5.0	≤5.0	13	15		
S-3-N	1/10/1990	10.0		120	≤5.0	≤5.0	≤5.0	≤5.0		
S-3-S	1/10/1990	10.0		930	≤5.0	≤5.0	≤5.0	14		
S-4-N	1/10/1990	10.0		12	≤5.0	≤5.0	≤5.0	0.13		
S-4-S	1/10/1990	10.0		55	≤5.0	≤5.0	≤5.0	0.8		
L1-L4										
(water)	1/10/1990	10.5		6.9	0.053	≤5.0	≤5.0	0.81		
S-P-1	1/31/1990	2.0-3.0		≤5	≤5.0	≤5.0	≤5.0	≤5.0		
S-P-2	1/31/1990	2.0-3.0		≤5	≤5.0	≤5.0	≤5.0	≤5.0		
S-P-3	1/31/1990	2.0-3.0		34	≤5.0	≤5.0	≤5.0	≤5.0		

Abbreviations and Methods:

Commercial ESL, drinking water = Table A - Environmental Screening Levels for Shallow Soil (<3 meters) where groundwates a current or potential source of drinking water, as established by the RWQCB-SFBR, Interim Final February 2005 (Revised November 2006).

Commercial ESL, non-drinking water = Table B - Environmental Screening Levels for Shallow Soil (<3 meters) where groundwater is <u>not</u> current or potential source of drinking water, as established by the RWQCB-SFBR, Interim Final February 2005 (Revised November 2006).

Commercial ESL, Vapor Pathway / Intrusion Into Building Concerns = Table A-2 Environmental Screening Levels for Soil (<3 meters) where groundwatds a current or potential source of drinking water, as established by the RWQCB-SFBR, Interim Final February 2005 (Revised November 2006).

7.1 = Concentrations in **bold** are soil exceeding the commercial ESL protective of groundwater as a drinking water resource.

NV = No ESL value, use soil gas ESL and compare to soil gas concentrations.

ft bgs = feet below ground surface.

mg/kg = milligrams per kilogram.

TPHd = Total petroleum hydrocarbons as diesel by modified EPA Method 8015C.

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015C.

Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020.

 $MTBE = Methyl \ tertiary \ butyl \ ether \ by \ EPA \ Method \ 8260.$

-- = Not collected, not analyzed, or not applicable.

ND = Not detected above laboratory reporting limits.

See analytical report for notes.

 Table 2. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —				→	mg/L
Commercial ESL,	, drinking water				100	100	1	40	30	20	5		0.50	
Commercial ESL,	, non-drinking water				640	500	46	130	290	100	1,800		200	
Commercial ESL,	, vapor pathway				NV	NV	540	380,000	170,000	160,000	24,000		200	
GRAB GROUNL	DWATER SAMPL	ING - 2007												
B-18	01/23/07			7.1	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
B-19	03/19/07			4	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
GRAB GROUND	DWATER SAMPL	ING - 2006												
B1-W	02/01/06			9.5	<84	710	(0.52)	(0.59)	(<0.50)	(0.66)	<1.0	<5.0	< 0.50	
B3-W	02/08/06			9.63	<280	23,000	(3,300)	(660)	(170)	(910)	<50	380	<25	
B4-W	02/08/06			8.24		9,700	(320)	(13)	(200)	(180)	<20	1,300	12	
B5-W	02/08/06			6.96		10,000	(150)	(11)	(210)	(190)	<10	<50	< 5.0	
B6-W	02/06/06			12.1		5,600	(3.9)	(3.1)	(54)	(61)	< 5.0	<25	<2.5	
B7-W	02/08/06			11.72		8,000	(2,200)	(300)	(240)	(830)	<20	<100	53	
B8-W	02/08/06			9.97		18,000	(330)	(53)	(440)	(1,200)	<20	<100	11	
B10-W	02/06/06			13.3		6,800	(<5.0)	(5.7)	(170)	(69)	<10	<50	<5.0	
B11-W	02/10/06			14.3		230,000	(13,000)	(19,000)	(960)	(20,000)	<200	<1,000	150	
B12-W	02/03/06			7.92		460	(1.6)	(2.1)	(1.6)	(3.5)	<1.0	<5.0	0.62	
B13-W	02/03/06			11.67	<60	1,700	(12)	(9.4)	(18)	(22)	<5.0	<25	<2.5	
B14-W	02/06/06			13.1		38,000	(410)	(25)	(290)	(95)	<50	<250	<25	
B15-W	02/01/06			8.75	<620	2,700	(3.2)	(2.7)	(22)	(4.3)	<5.0	<25	<2.5	
						,	()	,	. ,					
GROUNDWATE	R MONITORING	WELLS												
MW-1	04/30/89					200	18	5	2	12				
(97.71)	05/17/90		88.45	9.26										
	09/26/90		87.79	9.92		1,300	55	31	120	100				
	01/14/91		88.17	9.54		3,100	350	83	86	130				
(102.04)	07/03/91		92.62	9.42		580	32	41	40	55				
	11/11/91		92.59	9.45		330	20	2	2	11				
(101.83)	03/04/92		93.90	7.93		810	11	5	10	23				
	06/02/92		92.85	8.98		2,200	93	32	40	120				
	09/28/92		92.54	9.29		2,900	24	78	19	37				
	01/11/93		94.27	7.56		1,700	5.7	6	11	28				
	08/15/94		92.64	9.19		2,000	120	3	6	16				
(97.50)	11/07/96		88.77	8.73	270	1,200	3	1.1	1.5	3.8	< 0.5			
	02/12/97		89.58	7.92	< 50	1,800	13	5.7	4.8	17	< 0.5			
	06/16/97		88.46	9.04	< 50	330	27	< 0.5	< 0.5	1.2	< 0.5			
	09/30/97		89.94	7.56	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(97.50)	01/27/98		89.54	7.96	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			

 Table 2. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —				→	mg/L
Commercial ESL,	drinking water			-	100	100	1	40	30	20	5		0.50	-
Commercial ESL,	non-drinking water				640	500	46	130	290	100	1,800		200	
Commercial ESL,	vapor pathway				NV	NV	540	380,000	170,000	160,000	24,000		200	
NOV 1	0.1.0.1.00		00.52	7 .00		50	0.5	0.7	0.5	0.5	0.5			
MW-1	04/24/98		89.52	7.98	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
(continued)	08/17/98		88.52	8.98	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
	11/16/98		88.60	8.90	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
	02/16/99		88.86	8.64	< 50	110	<0.5	<0.5	<0.5	<0.5	<0.5			
	05/17/99		89.00	8.50		280	1.1	0.6	<0.5	<0.5	<0.5			
	08/17/99		88.26	9.24	86	790	5.6	4.3	4.5	11	<5.0			
	11/17/99		87.06	10.44		1,300	3.6	1.9	2.7	6.6	<1.0			
	02/17/00		89.02	8.48		580	1.1	2.3	3.6	4.9	<5.0			
	05/17/00		89.26	8.24		1,500	130	6.8	6.1	<5.0	<5.0			
	08/17/00		88.73	8.77		550	160	<25	<25	<25	<25			
	11/15/00		88.46	9.04		130	<5.0	<5.0	<5.0	<5.0	<5.0			
	02/16/01		89.90	7.60	160	400	26	<5.0	<5.0	<5.0	<5.0			
(161.02)	01/11/02		89.42	8.08	160	600	74	53	14	52	110			
(161.03)	07/01/02		152.01	9.02	280	670	25	<5.0	<5.0	<5.0	<5.0			
	10/04/02		151.29	9.74	520	1,800	130	7.8	8.1	14	<5.0			
	07/28/06		151.93	9.10	86	250	42	1.7	1.4	3.1	<1.0	51	1.5	0.21
(161.10)	10/16/06		151.98	9.05	110	390	16	< 0.5	1.5	2.2	<0.5	41	1.6	0.17
(161.10)	01/09/07		152.90	8.20	160	530	21	1.7	2.8	5.1				0.22
	03/26/07		152.84	8.26										
MW-2	04/30/89					230	39	18	5	23				
(97.78)	05/17/90		87.78	10.00										
(,	09/29/90		86.95	10.83		850	970	5	25	47				
	01/14/91		87.15	10.63		3,100	30	52	24	34				
(102.02)	07/03/91		91.94	10.08		1,590	30	52	24	34				
, ,	11/11/91		91.81	10.21		960	320	15	4	29				
	03/04/92		93.32	8.70		1,500	9.5	8.4	9.8	22				
	06/02/92		92.50	9.52		2,800	84	41	59	95				
	09/28/92		91.93	10.09		1,600	47	20	47	97				
	01/11/93		93.50	8.52		2,500	8.6	10	17	32				
(97.49)	08/15/94		87.58	9.91		6,000	450	60	100	95				
	11/07/96		87.47	10.02	780	4,200	25	4.9	8.1	14	< 0.5			
	02/12/97		88.58	8.91	5,700	1,800	16	3.1	3.4	8.8	<0.5			
	06/16/97		87.74	9.75	<50	2,500	22	5.1	7.8	11	<0.5			
	09/30/97		89.60	7.89	<50	<50	<0.5	<0.5	< 0.5	< 0.5	<0.5			
	01/27/98		89.11	8.38	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
	04/24/98		88.81	8.68	1,400	2,100	18	6.5	4.8	21	<0.5			
	08/17/98		87.75	9.74	<50	2,900	5.1	4.5	5.8	17	<0.5			
	11/16/98		87.35	10.14	<50	1,400	2.1	1.9	2.3	4.8	<0.5			

 Table 2. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L				→	mg/L
Commercial ESL,	drinking water				100	100	1	40	30	20	5		0.50	
Commercial ESL,	non-drinking water				640	500	46	130	290	100	1,800		200	
Commercial ESL,	vapor pathway				NV	NV	540	380,000	170,000	160,000	24,000	-	200	-
MW-2	02/16/99		88.57	8.92	<50	1,600	82	16	<2.5	40	59			
	05/17/99		88.23	9.26		8,200	43	73	140	100	<250			
(continued)	08/17/99		87.45	10.04	260	2,900	20	81	1 40 17	38	<5.0			
	11/17/99		85.97	11.52	<50	2,600	20 7	3.7	5.3	12.9	<1.0			
	02/17/00		87.99	9.50		1,700	3.2	6.8	11	12.3	<5.0			
	05/17/00		88.65	8.84		3,800	450	65	110	80	<25			
	08/17/00		88.99	8.50		4,300	440	<50	78	<50	<50			
	11/15/00		87.55	9.94		5,800	320	41	78 78	64	<25			
	02/16/01		88.97	8.52		2,200	110	20	38	33	<5.0			
	01/11/02		88.67	8.82	620	3,100	280	86	84	110	<50			
(160.98)	07/01/02		151.34	9.64	940	2,600	300	29	45	27	<10			
(100.50)	10/04/02		150.46	10.52	390	4,000	440	66	140	120	<25			
	07/28/06		150.96	10.02	340	1,300	150	9.9	6	18	<0.5	3.6	< 0.5	0.17
	10/16/06		150.45	10.53	76	150	16	1.0	3.5	2.2	<0.5	1.2	<0.5	0.19
	01/09/07		151.65	9.33	84	210	27	2.6	8.1	6.8				0.14
	01/05/07		131.03	7.55	04	210	2,	2.0	0.1	0.0				0.14
MW-3	04/30/90					56,000	3,600	8,600	1,300	7,200				
(98.14)	05/17/90		85.72	12.42										
	09/26/90		84.64	13.50		54,000	5,100	420	1,600	8,000				
	01/14/91		85.56	12.58		35,000	2,600	6,600	1,500	5,700				
(102.46)	07/03/91		90.38	12.08		33,000	4,120	4,300	1,400	4,800				
	11/11/91		90.17	12.29		57,000	3,900	8,400	2,100	14,000				
(102.18)	03/04/92		91.92	10.26		57,000	720	870	81	3,100				
(97.94)	06/02/92		86.54	11.40		50,000	240	240	220	740				
	09/28/92		85.30	12.64		64,000	110	93	97	250				
	01/11/93		87.84	10.10		68,000	210	280	360	990				
	08/15/94		85.74	12.20		50,000	870	1,200	1,300	3,000				
	11/07/96		85.54	12.40	470	68,000	33	27	63	120	< 0.5			
	02/12/97		87.71	10.23	3,500	25,000	39	43	15	91	< 0.5			
	06/16/97		86.15	11.79	< 50	9,700	26	29	45	81	< 0.5			
	09/30/97		88.54	9.40	1,600	6,000	43	36	12	11	< 0.5			
	01/27/98		88.14	9.80	560	380	5.7	4.1	1.7	9.1	< 0.5			
	04/24/98		88.04	9.90	680	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		86.48	11.46	< 50	16,000	200	18	31	82	< 0.5			
	11/16/98		85.54	12.40	< 50	68,000	86	54	69	130	< 0.5			
	02/16/99		87.22	10.72	< 50	33,000	270	110	< 5.0	770	170			
	05/17/99		87.40	10.54		72,000	280	230	320	890	<250			
	08/17/99		85.99	11.95	1,800	20,000	51	41	61	130	< 5.0			
	11/17/99		84.34	13.60		1,700	39	22	31	84	<1.0			

Table 2. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	<u> </u>				μg/L				<u> </u>	mg/L
Commercial ESL,	-				100	100	1	40	30	20	5		0.50	
	, non-drinking water				640	500	46	130	290	100	1,800		200	-
Commercial ESL,	, vapor pathway				NV	NV	540	380,000	170,000	160,000	24,000		200	-
MW-3	02/17/00		87.26	10.68		8,800	16	39	74	90	<5.0			
(continued)	05/17/00		87.69	10.08		22,000	300	260	410	940	<5.0			
(continuea)	08/17/00		86.10	11.84		15,000	230	140	470	750	<50			
	11/15/00		86.12	11.82		12,000	250	210	390	700	<25			
	02/16/01		88.26	9.68		7,400	40	72	700	250	<25			
	01/11/02		88.36	9.58	1,900	9,300	230	200	290	580	<25			
(161.43)	07/01/02		150.29	11.14	5,200	13,000	230	220	450	890	<13			
	10/04/02		148.61	12.82	4,900	11,000	280	170	450	730	<25			
	07/28/06				led - Unable to l									
	10/16/06			-	led - Unable to l									
	01/09/07				led - Unable to l									
	01/22/07		149.81	11.62	93,000	34,000	770	250	760	2,000	<1,000	-		
STMW-4	07/03/91		92.58	11.00		3,100	610	62	39	150				
(103.58)	11/11/91		92.50	11.08		3,600	990	15	2.6	180				
(101.08)	03/04/92		91.64	9.44		5,000	35	20	22	71				
(98.80)	06/02/92		88.48	10.32		13,000	140	45	63	210				
(20.00)	09/28/92		88.04	10.76		40,000	35	20	48	110				
	01/11/93		89.52	9.28		24,000	26	88	92	280				
	08/15/94		88.26	10.54		9,000	500	34	46	130				
	11/07/96		88.43	10.34	180		40	2.9	7.8	19	<0.5			
						13,000								
	02/12/97		89.44	9.36	5,700	5,300	95 25	5.3	5.9	18	<0.5			
	06/16/97		88.40	10.40	<50	5,300	37	6.2	1.7	11	<0.5			
	09/30/97		90.30	8.50	<50	2,700	42	7.7	5.7	26	<0.5			
	01/27/98		89.90	8.90	300	3,000	60	17	12	49	<0.5			
	04/24/98		89.30	9.50	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<0.5			
	08/17/98		88.44	10.36	<50	29,000	36	24	59	160	< 0.5			
	11/16/98		88.24	10.56	<50	13,000	26	21	20	41				
	02/16/99		89.16	9.64	< 50	32,000	660	16	16	150	<100			
	05/17/99		88.84	9.96		13,000	1600	30	45	78	<250			
	08/17/99		88.16	10.64	990	12,000	260	22	33	72	< 5.0			
	11/17/99		86.78	12.02		7,900	21	12	17	40	<1.0			
	02/17/00		89.48	9.32		4,900	8.9	21	38	50	< 5.0			
	05/17/00		89.15	9.65		9,600	840	< 50	61	< 50	< 50			
	08/17/00		88.46	10.34		5,100	680	< 50	62	< 50	< 50			
	11/15/00		88.28	10.52		3,900	640	<25	26	27	<25			
	02/16/01		89.60	9.20		5,700	560	<25	<25	<25	<25			
	01/11/02		89.22	9.58	930	4,900	560	59	25	<25	<250			
(162.13)	07/01/02		151.85	10.28	6,700	6,700	470	18	32	45	<13			

Table 2. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth					- 		- 	- 		Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	<u> </u>				μg/L				→	mg/L
Commercial ESL,					100	100	1	40	30	20	5		0.50	
	, non-drinking water				640	500	46	130	290	100	1,800		200	
Commercial ESL,	, vapor pathway				NV	NV	540	380,000	170,000	160,000	24,000	-	200	
STMW-4	10/04/02		151.05	11.08	2,900	13,000	590	26	65	110	<25			
(continued)	07/28/06	0.04	151.53	10.60	39,000	25,000	960	21	73	130	<5.0	65	<5.0	0.22
(commueu)	10/16/06	0.04	151.30	10.83	14,000	14,000	790	28	81	130	<5.0	30	<5.0	0.26
	01/09/07	0.03	152.20	9.93	14,000		Not Sampled - S		61	130	√3.0	30	\3.0	0.24
	01/09/07	0.03	132.20	9.93			Not Sampled - S.							0.24
STMW-5	07/03/91		88.70	13.29		690	99	81	19	98				
(101.99)	11/11/91		87.99	14.00		410	61	2.4	1.4	20				
(101.36)	03/04/92		89.56	11.80		460	13	6.5	11	18				
	06/02/92		88.30	13.06		1,800	27	20	21	43				
	09/28/92		87.32	14.04		1,500	14	6.1	18	22				
	01/11/93		89.75	11.61		800	1.8	3	3.1	9.4				
	08/15/94		87.51	13.85		3,000	320	62	34	220				
(97.14)	11/07/96		83.47	13.67	330	1,200	11	1.7	4.4	13	< 0.5			
	02/17/97		85.07	12.07	3,700	1,000	11	17	1.7	9.7	< 0.5			
	06/19/97		83.81	13.33	2,300	950	7.4	1	1	7.2	< 0.5			
	09/30/97		85.90	11.24	1,100	710	5.8	4	1	1	< 0.5			
	01/27/98		85.50	11.64	1,100	340	2	1.8	1.6	8.2	< 0.5			
	04/24/98		85.30	11.84	< 50	3,300	12	9.4	8.5	37	< 0.5			
	08/17/98		83.94	13.20	< 50	5,300	26	17	14	39	< 0.5			
	11/16/98		83.40	13.74	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	02/16/99		84.92	12.22	< 50	950	150	3.8	1.4	14	11			
	05/17/99		84.56	12.58		2,800	67	9.4	<2.5	16	30			
	08/17/99		83.66	13.48	230	2,800	18	17	18	36	< 5.0			
	11/17/99		82.26	14.88		1,600	3.9	2.3	3.2	7.5	<1.0			
	02/17/00		84.58	12.56		770	1.5	3.2	5.8	7	< 5.0			
	05/17/00		85.06	12.08		4,500	<25	<25	<25	<25	<25			
	08/17/00		83.58	13.56		2,900	170	64	100	250	<10			
	11/15/00		83.86	13.28		2,100	120	24	40	54	<5.0			
	02/16/01		85.54	11.60		850	58	9.8	9.4	18	<5.0			
	01/11/02		85.42	11.72	<50	920	76	16	16	28	13			
(160.65)	07/01/02		147.51	13.14	1,500	4,300	71	14	14	36	<5.0			
(100.05)	10/04/02		146.13	14.52	60	1,400	71	17	26	35	<5.0			
	07/28/06		147.30	13.35	370	700	22	4.3	1.2	6.6	<0.5	< 0.5	< 0.5	0.24
	10/16/06		146.91	13.74	240	590	14	1.6	1.3	3.2	<0.5	<0.5	<0.5	0.24
	01/09/07		148.19	12.46	180	390	30	3.2	1.8	3.2				0.17
	31/0//0/		140.17	12.40	100	370	30	٠.٤	1.0	3.2				0.17
MW-2C	03/09/07		152.24	8.41	140	450	40	9.3	2.9	16	<10			
(160.65)	03/26/07		151.93	8.72										

Table 2. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth					<u></u>					Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L				——	mg/L
Commercial ESL	, drinking water				100	100	1	40	30	20	5		0.50	
Commercial ESL	, non-drinking water				640	500	46	130	290	100	1,800		200	
Commercial ESL	, vapor pathway				NV	NV	540	380,000	170,000	160,000	24,000		200	
MW-3A	03/09/07		152.20	9.35	4,500	39,000	3,800	220	830	2,800	< 500			
(161.55)	03/26/07		152.33	9.22										
MW-3C	03/26/07		151.15	10.64										
(161.79)	04/16/07		150.87	10.92	36,000	32,000	1,200	710	600	1,900	<500			
MW-4A	03/09/07		152.88	9.56	3,600	16,000	1,600	36	37	150	<250			
(162.44)	03/26/07		152.56	9.88										
MW-5A	03/09/07		150.40	10.42	56	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
(160.82)	03/26/07		150.00	10.82										
MW-5B	03/09/07		146.42	15.08	59	140	1.3	0.77	<0.5	1.6	<5.0			
(161.50)	03/26/07	-	148.88	12.62										
MW-5C	03/09/07	_	148.12	12.91	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
(161.03)	03/26/07		148.41	12.62										
MW-6A	03/09/07		154.91	6.67	380	<50	< 0.5	<0.5	<0.5	< 0.5	<5.0			
(161.58)	03/26/07		154.41	7.17										
MW-7B	03/09/07		147.97	11.18	930	18,000	1,500	1,600	140	1,800	<600			
(159.15)	03/26/07		148.10	11.05										
MW-7C	03/09/07	-	145.44	13.09	190	3,600	970	100	12	90	<120			
(158.53)	03/26/07		147.53	11.00										
MW-8A	03/09/07		152.05	9.52	4,200	10,000	430	18	<10	88	<100			
(161.57)	03/26/07		151.74	9.83										
MW-8C	03/09/07	-	149.18	12.15	<50	150	9.8	1.3	2.0	3.9	<5.0			
(161.33)	03/26/07		149.56	11.77										

Pangea

Table 2. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)		(ft)	(ft)	(ft)	←				—— μg/L —				─	mg/L
Commercial ESL,	drinking water				100	100	1	40	30	20	5		0.50	
Commercial ESL,	non-drinking water				640	500	46	130	290	100	1,800		200	
Commercial ESL,	vapor pathway				NV	NV	540	380,000	170,000	160,000	24,000		200	

Abbreviations:

Commercial ESL, drinking water = Table A - Environmental Screening Levels for Shallow Soil (<3 meters) where groundwater a current or potential source of drinking water, as established by the RWQCB-SFBR, Interim Final February 2005 (Revised November 2006).

Commercial ESL, non-drinking water = Table B - Environmental Screening Levels for Shallow Soil (<3 meters) where groundwater is anot current or potential source of drinking water, as established by the RWQCB-SFBR, Interim Final February 2005 (Revised November 2006).

Commercial ESL, Vapor Intrusion / Pathway Into Building Concerns = Table F-1A Environmental Screening Levels for Soil (<3 meters) where groundwate is a current or potential source of drinking water, as established by the RWQCB-SFBR, Interim Final February 2005 (Revised November 2006).

NV = No ESL value, use soil gas ESL and compare to soil gas concentrations.

7.1 = Concentrations in **bold** are soil exceeding the commercial ESL protective of groundwater as a drinking water resource.

μg/L = micrograms per liter - approximately equal to parts per billion = ppb

mg/L = milligrams per liter - approximately equal to parts per million = ppm

SPH = Separate-phase hydrocarbons encountered in well (value in parentheses is thickness in feet)

Groundwater elevation is calculated according to the relationship: groundwater elevation = TOC (elevation) - (depth to water) + (0.8)(SPH thickness)

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015Cm.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C.

BTEX by EPA Method 8021B.(Concentrations in parentheses are by EPA Method 8260B).

MTBE = Methyl tertiary-butyl ether by EPA Method 8260B prior to January 1, 2007. MTBE analyses after January 1, 2007 by EPA Method 8021B.

DIPE = Diisopropyl ether by EPA Method 8260B.

1,2-DCA = 1,2-Dichloroethane by EPA Method 8260B.

APPENDIX A

Permits

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 01/09/2007 By jamesy

Permit Numbers: W2007-0010 to W2007-0020

City of Project Site: Oakland

Permits Valid from 01/17/2007 to 02/28/2007

Application Id:

1167786724530

Site Location:

5175 Broadway

5230 Coronado 5151 Broadway

5130 Broadway

Project Start Date:

01/17/2007

Applicant:

Pangea Environmental Services, Inc. - Morgan

Phone: 408-910-1783

1710 Franklin Street, Suite 200, Oakland, CA 94612

Phone: --

Completion Date: 02/28/2007

Property Owner:

Heights, LLC Rockridge

34 Shooner Hill, Oakland, CA 94618

Client:

** same as Property Owner **

Total Due:

\$3200.00

Receipt Number: WR2007-0010 Payer Name: Robert Clark-Riddell Paid By: VISA

Total Amount Paid:

\$3200.00

PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 7 Wells

Driller: RSI Drilling, Inc. - Lic #: 802334 - Method: hstem

Work Total: \$2100.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2007- 0010	01/09/2007	04/17/2007	MW-10A	8.00 in.	2.00 in.	9.00 ft	15.00 ft
W2007- 0011	01/09/2007	04/17/2007	MW-2B	8.00 in.	2.00 in.	17.00 ft	23.00 ft
W2007- 0012	01/09/2007	04/17/2007	MW-4A- (MW-4)	8.00 in.	2.00 in.	7.00 ft	15.00 ft
W2007- 0013	01/09/2007	04/17/2007	MW-5A- (MW-5)	8.00 in.	2.00 in.	8.00 ft	14.00 ft
W2007- 0014	01/09/2007	04/17/2007	MW-5B	8.00 in.	2.00 in.	15.00 ft	20.00 ft
W2007- 0015	01/09/2007	04/17/2007	MW-5C	8.00 in.	2.00 in.	21.00 ft	27.00 ft
W2007- 0016	01/09/2007	04/17/2007	MW-9A	8.00 in.	2.00 in.	9.00 ft	15.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no

case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.
- 5. Drill out & Replace with New Well
- 6. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 7. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 8. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times.
 Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 9. Minimum surface seal thickness is two inches of cement grout placed by tremie
- Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 11. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- Well MW-4 (Destroy) Replace MW-4A-Condition #5
 Well MW-5 (Destroy) Replace MW-5A-Condition #5

Note: Two State DWR-188 forms needed.

Borehole(s) for Investigation-Environmental/Monitorinig Study - 5 Boreholes

Driller: RSI Drilling, Inc. - Lic #: 802334 - Method: hstem Work Total: \$200.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2007-	01/09/2007	04/17/2007	5	6.25 in.	25.00 ft
0017					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or

with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site.

- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Well Destruction-Monitoring - 3 Wells

Driller: RSI Drilling, Inc. - Lic #: 802334 - Method: hstem Work Total: \$900.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	State Well #	Orig. Permit #	DWR#
W2007- 0018	01/09/2007	04/17/2007	MW-2	10.00 in.	4.00 in.	6.00 ft	23.00 ft			
W2007- 0019	01/09/2007	04/17/2007	STMW-4	8.00 in.	4.00 in.	6.00 ft	19.50 ft			
W2007- 0020	01/09/2007	04/17/2007	STMW-5	8.00 in.	2.00 in.	7.00 ft	24.00 ft			

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the

Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

- 4. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.
- 5. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 7. Remove the Christy box or similar structure.

Destroy well by grouting neat cement with a tremie pipe or pressure grouting (25 psi for 5min.) to the bottom of the well and by filling with neat cement to three (3-5) feet below surface grade. Allow the sealing material to spill over the top of the casing to fill any annular space between casing and soil.

After the seal has set, backfill the remaining hole with concrete or compacted material to match existing conditions.

8. Remove well by excavation. After the seal has set, backfill the remaining hole with concrete or compacted material to match existing.

Application Id: Site Location:

Client:

Project Start Date:

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 01/09/2007 By jamesy

Permit Numbers: W2007-0021

Permits Valid from 01/17/2007 to 02/28/2007

City of Project Site:Oakland

Completion Date: 02/28/2007

Applicant: Pangea Environmental Services, Inc. - Morgan Phone: 408-910-1783

1710 Franklin St., Suite200, Oakland, CA 94612

Rockridge Heights, LLC

1168299112637

5175 Broadway

01/17/2007

Phone: --

Property Owner: 34 Schooner Hill, Oakland, CA 94618

** same as Property Owner *

Total Due: Total Amount Paid:

\$200.00 \$200.00

Receipt Number: WR2007-0011 Payer Name: Robert Clark-Riddell Paid By: VISA

PAID IN FULL

Work Total: \$200.00

Works Requesting Permits:

Remedian Well Construction-Extraction - 8 Wells

Driller: RSI Drilling, Inc. - Lic #: 802334 - Method: hstem

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2007- 0021	01/09/2007	04/17/2007	MW-3A	8.00 in.	2.00 in.	7.00 ft	16.00 ft
W2007- 0021	01/09/2007	04/17/2007	MW-3B	8.00 in.	2.00 in.	19.00 ft	25.00 ft
W2007- 0021	01/09/2007	04/17/2007	MW-6A	8.00 in.	2.00 in.	7.00 ft	16.00 ft
W2007- 0021	01/09/2007	04/17/2007	MW-6B	8.00 in.	2.00 in.	19.00 ft	25.00 ft
W2007- 0021	01/09/2007	04/17/2007	MW-7A	8.00 in.	2.00 in.	5.00 ft	16.00 ft
W2007- 0021	01/09/2007	04/17/2007	MW-7B	8.00 in.	2.00 in.	19.00 ft	25.00 ft
W2007- 0021	01/09/2007	04/17/2007	MW-8A	8.00 in.	2.00 in.	7.00 ft	16.00 ft
W2007- 0021	01/09/2007	04/17/2007	MW-8B	8.00 in.	2.00 in.	19.00 ft	25.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permitte, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

- 3. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Minimum seal depth (Neat Cement Seal) is 2 feet below ground surface (BGS).
- 6. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

KLAND • Community and Economic Development Agency
2nd Floor, Oakland, CA 94612 • Phone (510) 238-3443 • FAX (510) 238-2263

Parcel# 014 -1241-005-01

Appl# OB070080

Permit Issued 01/16/07

CITY OF BAKLAND Community & Economic Development Agency 150 Frank H. Ogawa Pl, Dakland CA, 94612 Thone: (510)238-3587 FAX: (510)238-2263

PRYMENT RECEIPT

ECORDS MANAGEMENT FEE (ECHNOLOGY ENHANCEMENT FE Subtotal: Application#: 08070000 Payme APPLICATION FEE ABSTRUCTION PERMIT ACCORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Application#: X0700000 Payme APPLICATION FEE EXCAVATION FEE EXCAVATION PERMIT ACCORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	nt#: 001
Application#: 08078080 Payme APPLICATION FEE DBSTRUCTION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Application#: X0708092 Payme APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$61.88
Subtotal: Application#: 08070000 Payme Application#: 08070000 Payme Application#: 08070000 Payme Application# FEE BESTRUCTION PERMIT RECORDS MANAGEMENT FEE (TECHNOLOGY ENHANCEMENT FE Subtotal: Application#: X0700000 Payme Application FEE EXCAVATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (TECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$300.08
Subtotal: Application#: 08070000 Payme APPLICATION FEE BESTRUCTION PERMIT RECORDS MANAGEMENT FEE (RECHNOLOGY ENHANCEMENT FE Subtotal: Application#: X0700000 Payme APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (RECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$34.38
Application#: 08078080 Payme APPLICATION FEE DBSTRUCTION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Application#: X0708092 Payme APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$18.95
APPLICATION FEE JBSTRUCTION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Application#: X8788892 Payme APPLICATION FEE EXCRUATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$414.25
DBSTRUCTION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Replication#: X8788892 Payme REPLICATION FEE EXCRUATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	nt#: 881
RECORDS MANAGEMENT FEE (RECHNOLOGY ENHANCEMENT FE Subtotal: Application#: X8788892 Payme APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (RECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$61.88
RECHNOLOGY ENHANCEMENT FE Subtotal: Repplication#: X0700092 Payme RECORDS MANAGEMENT FEE (RECORDS MANAGEMENT FEE (RECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$128.88
Subtotal: Application#: X0700092 Payme APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$17.28
Application#: X8788892 Payme Application FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$9.58
APPLICATION FEE EXCAVATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$287.78
EXCAVATION PERMIT RECORDS MANAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	nt#: 901
RECORDS MAMAGEMENT FEE (FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$61.88
FECHNOLOGY ENHANCEMENT FE Subtotal: Sales Tax:	\$300.00
Subtotal: Sales Tax:	\$34.38
Sales Tax:	\$18.95
	\$414.25
***** TOTAL PAID:	\$.00
	\$1,836.26
Check Payment:	\$1,888.88

Payor: GILLIES/MORGAN K

Date: 81/16/87 Time: 15:87:51

Credit Card Sale :

By: DLR Register R02 Receipt# 099511

JISA Card# ***************3887 Exp 0508
Auth# 054626 Ref# R02-099511-070116

ORIGINAL RECEIPT REQUIRED FOR REFUND

way	Loc	1,	and	on	Coronado	Av	Loc	2
met	ers	on	Bros	adwa	y B-5203	; -52	205	and
do 7	Aur at	- +3	100 100	ter	ed rate			

OF OAKLAND

ansportation Services every 30 days or whenever deviated dan.

\$36.28

PTS100-01 UPDATE/QUERY PROJECT INFORMATION 7/03/07 11:13:59

Next Option: 101

Applic#* X0700093 Type: 1

Date Filed: 01/16/07

Disposition: I ISSUED

01/16/07

NUMBER STREET NAME SUFFIX* SUITE ASSESSOR PARCEL#

Site addr: 1) 5175 BROADWAY

014 -1241-005-01

2) 3)

Prcl Cond: X Cond Aprvl: Viol: X

Proj Descr: soil boring on Broadway Loc 1; and on Coronado Av Loc 2

plus reserve parking meters on Broadway B-5203; -5205 and

two spaces on Coronado Av at the metered rate

Insp Div: DPW-CONS Dist:

Lic# Phone# Applicant Track:

Owner: CHOOBINEH MARYAM TR ETAL

Contractor: RESONANTSONIC 802334 (530)668-2424 X

Arch/Engr:

Agent: PANGEA ENVIRONM/M GILLIES (408)910-1783

Applicant Addr: 220 N EAST ST. No Fee:

Zip: 95776 Wrkrs Comp* NO City/State: WOODLAND CA

Other Related Applic#s: X0700092 OB070080

F3=Ext F5=Chg F6=Add F7=Fwd F8=Bck F11=Fnd F12=Prv F23=Dsc F24=Com 807 Press ENTER to view page 2 data

PTS100-01

UPDATE/QUERY PROJECT INFORMATION

7/03/07 11:14:27 Next Option: 101

Applic#* OB070080 Type: 1

Date Filed: 01/16/07

Disposition: I ISSUED 01/16/07

NUMBER STREET NAME SUFFIX* SUITE ASSESSOR PARCEL#

Site addr: 1) 5175 BROADWAY

014 -1241-005-01

2) 3)

Prcl Cond: X Cond Aprvl: Viol: X

Proj Descr: soil boring on Broadway Loc 1; and on Coronado Av Loc 2

plus reserve parking meters on Broadway B-5203; -5205 and

two spaces on Coronado Av at the metered rate

Insp Div: ENG-SVCS Dist:

_Lic# _ Phone# Applicant Track:

Owner: CHOOBINEH MARYAM TR ETAL

Contractor: RESONANTSONIC 802334 (530)668-2424 X

Arch/Engr:

Agent: PANGEA ENVIRONM/M GILLIES (408)910-1783

Applicant Addr: 220 N EAST ST. No Fee:

City/State: WOODLAND CA Zip: 95776 Wrkrs Comp* NO

Other Related Applic#s: X0700093 X0700092

F3=Ext F5=Chg F6=Add F7=Fwd F8=Bck F11=Fnd F12=Prv F23=Dsc F24=Com 807 Press ENTER to view page 2 data

PTS100-01 UPDATE/QUERY PROJECT INFORMATION

7/03/07 11:14:38 Next Option: 101

Applic#* X0700092 Type: 1

Date Filed: 01/16/07

Disposition: I ISSUED 01/16/07

NUMBER STREET NAME SUFFIX* SUITE ASSESSOR PARCEL#

Site addr: 1) 5175 BROADWAY

014 -1241-005-01

2)

3)

Prcl Cond: X Cond Aprvl: Viol: X

Proj Descr: soil boring on Broadway Loc 1; and on Coronado Av Loc 2

plus reserve parking meters on Broadway B-5203;-5205 and

two spaces on Coronado Av at the metered rate

Insp Div: DPW-CONS Dist:

_Lic# _ Phone# _ Applicant Track:

Owner: CHOOBINEH MARYAM TR ETAL

Contractor: RESONANTSONIC 802334 (530)668-2424 X

Arch/Engr:

Agent: PANGEA ENVIRONM/M GILLIES (408)910-1783

Applicant Addr: 220 N EAST ST. No F City/State: WOODLAND CA Zip: 95776 Wrkrs Comp* NO No Fee:

Other Related Applic#s: X0700093 OB070080

F3=Ext F5=Chg F6=Add F7=Fwd F8=Bck F11=Fnd F12=Prv F23=Dsc F24=Com 807 Press ENTER to view page 2 data

APPENDIX B

Pangea's Standard Operating Procedures for Soil Borings And Monitoring Wells

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Pangea Environmental Services' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist, scientist or engineer working under the supervision of a California Registered Engineer, California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic-push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. With hollow-stem drilling, samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. With hydraulic-push drilling, samples are typically collected using acetate liners. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes or cut acetate liners chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

Soil samples collected during drilling will be analyzed in the field for ionizable organic compounds using a photo-ionization detector (PID) with a 10.2 eV lamp. The screening procedure will involve placing an undisturbed soil sample in a sealed container (either a zip-lock bag, glass jar, or a capped soil tube). The container will be set aside, preferably in the sun or warm location. After approximately fifteen minutes, the head space within the container will be tested for total organic vapor, measured in parts per million on a volume to volume basis (ppmv) by the PID. The PID instrument will be calibrated prior to boring using hexane or isobutylene. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples collected from borings are either collected from the open borehole, from within screened PVC inserted into the borehole, or from a driven Hydropunch-type sampler. Groundwater is typically extracted using a bailer, check valve and/or a peristaltic pump. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Pangea often performs electrical conductivity (EC) logging and/or continuous coring to identify potential water-bearing zones. Hydropunch-type sampling is then performed to provide discrete-depth grab groundwater sampling within potential water-bearing zones for vertical contaminant delineation. Hydropunch-type sampling typically involves driving a cylindrical sheath of hardened steel with an expendable drive point to the desired depth within undisturbed soil. The sheath is retracted to expose a stainless steel or PVC screen that is sealed inside the sheath with Neoprene O-rings to prevent infiltration of formation fluids until the desired depth is attained. The groundwater is extracted using tubing inserted down the center of the rods into the screened sampler.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

This document describes Pangea Environmental Services' standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

APPENDIX C

Boring Logs & Well Construction Diagrams

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

WELL NUMBER MW-2C

PAGE 1 OF 1

ROJECT NUME	ER _1	145.00)1			PROJECT LOCATION 5175 Broadway					
				7.7.7.7.7		GROUND ELEVATION	HOLE SIZE 10°				
						GROUND WATER LEVELS:					
ILLING METH						AT TIME OF DRILLING					
				CHE	Bob Clark-Riddell	AT END OF DRILLING					
TES	_					AFTER DRILLING	_				
(ft bgs) SAMPLE TYPE NUMBER	PID (ppm)	BLOW	U.S.C.S.	GRAPHIC	MATE	ERIAL DESCRIPTION		WELL DIAGRAM			
				23.0	Protect Engineering dated (Well MW-2 was drilled out drilled out borehole.)	t and well MW-2C was constructed in the		Bentonite #2/12 Sand 0.010 slotted 2 Schedule 40 P			
+				23.0		The state of the s					
					Botto	m of hole at 23.0 feet.	1				

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700

WELL NUMBER MW-3A

PAGE 1 OF 1

ROJECT	einer NUMBER	11	45.0	01				PROJECT NAME Rockridge Heights PROJECT LOCATION 5175 Broadwa	an e	
							PLETED _1/19/07	GROUND ELEVATION		SIZE 8"
RILLING	THE REAL PROPERTY.	A.S.	-0.1	dest.	7	001111	ECTED THOOT.	GROUND WATER LEVELS:		- Oile
					Direct	Push/	Hollow Stern Auger			
							KED BY Bob Clark-Riddell			
OTES_		10)	101			01,120	THE BY BOO CHAIR PROGRAM	AFTER DRILLING		
								THE TOTAL CONTROL OF THE TOTAL		
(ft bgs)	NUMBER	PID (ppm)	COUNTS	U.S.C.S.	GRAPHIC		MATE	ERIAL DESCRIPTION		WELL DIAGRAM
<u> </u>		П			911	037	Asphalt			Concrete
						0.5	Baserock	house 60 700/ modium to blob stockie		Ø ·
-				CL		3.0	fines; 20-30% fine gravel to	s brown; 60-70% medium to high plastic o 1/2"; dry.	ny 📓	
1				GP	000		to 1"; 30-40% fine- to coan		ls	Cement
5				CL			Clay (CL); black; 90-100%	medium plasticity fines; no odor; soft.		
							odor; soft. Clay with gravel (CL); gree	medium plasticty fines; hydrocarbon enish brown; 70-80% medium plasticity to 1/2"; trace fine-grain sand; hydrocarb	on	Bentonite #2/12 Sand
-					× × × × × × × × × × × × × × × × × × ×	9.5	n santanti di Sin	ken with fingers; difficult to drill; dry.		0.010 slotted 2" Schedule 40 PV
T					-	10.0	Not logged.			
-						14.0		to 13' using direct push drilling method. 8" hollow stem auger to facilitate the	100	
						- 1	Botto	om of hole at 14.0 feet.		

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

WELL NUMBER MW-3C PAGE 1 OF 2

OATE STARTED ORILLING CONTR ORILLING METHO	3/16/ PACTO DD H /ce Ta	OR R	Sten	n Aug	er - 10" CHECKED BY Bob Clark-Riddell	AT TIME OF DRILLING	HOLE SIZE	
(ft bgs) SAMPLE TYPE NUMBER	PID (ppm)	BLOW	U.S.C.S.	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	v	VELL DIAGRAM
10					Protect Engineering dated	gy see boring log for well MW-3 from Tank April 17, 1990. It and well MW-3C was constructed in the		- Concrete
-							8	- Bentonite -#2/12 Sand

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700

WELL NUMBER MW-3C

PAGE 2 OF 2

Telephone: 510-836-3700 Fax: 510-836-3709 CLIENT Feiner PROJECT NAME Rockridge Heights PROJECT NUMBER _1145.001 PROJECT LOCATION 5175 Broadway SAMPLE TYPE NUMBER PID (ppm) GRAPHIC BLOW U.S.C.S. (ft bgs) MATERIAL DESCRIPTION WELL DIAGRAM 27.0 Bottom of hole at 27.0 feet. TOTAL WELL LOG FEINER MW-3C, GPJ GINT US, GDT 7/3/07

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

WELL NUMBER MW-4A

PAGE 1 OF 1

PROJECT NUMBE	1145.	001			PROJECT LOCATION 5175 Broadway			
					GROUND ELEVATION	HOLE SIZE 10"		
DRILLING CONTRA					GROUND WATER LEVELS:			
			_ CHECKED	Bob Clark-Riddell	AT END OF DRILLING			
NOTES					AFTER DRILLING			
O DEPTH (ft bgs) SAMPLE TYPE NUMBER	PID (ppm) BLOW	U.S.C.S.	DOG TOG	MATE	RIAL DESCRIPTION	À	WELL DIAGRAM	
10			Soil (Wel	Tech Engineering, Inc I STMW-4 was drilled of drilled out borehole.)	ry, see boring log for well STMW-4 from dated June 21, 1991. Out and well MW-4A was constructed in more of hole at 19.5 feet.		Cement Bentonite #2/12 Sand 0.010 slotted 2** Schedule 40 PV	

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 WELL NUMBER MW-5A

PAGE 1 OF 1

						PROJECT NAME Rockridge Heights PROJECT LOCATION 5175 Broadwa	зу		
ORILLING CONTRA	Ho Ho e Tay	R R	SI Stem	Auge	er - 10"	GROUND ELEVATION HOLE SIZE _10" GROUND WATER LEVELS: AT TIME OF DRILLING AFTER DRILLING			
(ft bgs) SAMPLE TYPE NUMBER	PID (ppm)	COUNTS	U.S.C.S.	GRAPHIC	MATE	ERIAL DESCRIPTION	WELL DIAGRAM		
5					14,0	w. of hole at 14.0 feet.	Cement Bentonite #2/12 Sand 0.010 slotted 2* Schedule 40 PV		

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

WELL NUMBER MW-5B PAGE 1 OF 1

ROJECT NUMBER 1145.00	01	PROJECT NAME Rockridge Heights PROJECT LOCATION 5175 Broadway		
ATE STARTED 1/18/07	COMPLETED 1/18/07	GROUND ELEVATION	HOLE SIZE 8°	
RILLING CONTRACTOR R	RSI			
RILLING METHOD _Dual Tu	ube Direct Push/Hollow Stern Auger	AT TIME OF DRILLING		
OGGED BY Bryce Taylor	CHECKED BY Bob Clark-Riddell			
OTES		AFTER DRILLING		
SAMPLE TYPE NUMBER PID (ppm) BLOW COUNTS	GRAPHIC LOG LOG	ERIAL DESCRIPTION	WELL DIAGRAM	
5	Gravelly Clay (CL); black; 4 fine gravel to 3/4"; hydrocal 8.0 Gravelly Clay (CL); black; 4 fine gravel to 3/4"; hydrocal odor; dry. GC Gravelly Clay (CL); black; 5 fine gravel to 3/4"; moist; hydrocal odor; dry. CL Clayey Gravel (GC); 70-809 plasticity fines; dry; no hydrocal odor; dry. Mudstone; grey; easily broit through. X X X X X X X X X X X X X X X X X X X	40-50% medium plasticity fines; 40-50% rbon odor; loose; moist. % coarse gravel to 1"; no hydrocarbon 50-60% medium plasticity fines; 40-50% ydrocarbon odor. % gravel (shale); 20-30% medium	Bentonite #2/12 Sand 0.010 slotted 2" Schedule 40 PV	

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612

, Inc.

WELL NUMBER MW-5C

PAGE 1 OF 2

PROJECT NUMBER	R 1145.0	.001		PROJECT NAME Rockridge Heights PROJECT LOCATION 5175 Broadway			
ORILLING CONTROPILLING METHO OGGED BY Bry	ACTOR _	RSI w Stem Aug	er - 8"	GROUND ELEVATION HOLE SIZE _8" GROUND WATER LEVELS: AT TIME OF DRILLING AT END OF DRILLING AFTER DRILLING			
(ft bgs) SAMPLE TYPE NUMBER	PID (ppm) BLOW COLINTS	U.S.C.S. GRAPHIC LOG	MATE	ERIAL DESCRIPTION	WELL DIAGRAM		
5 10 20				gy see boring log for well MW-5B and well ngineering, Inc. dated June 21, 1991. out and well MW-5C was constructed in	Concrete Cament Bentonite #2/12 Sand		

TOTAL WELL LOG FEINER MW-SC.GPJ. GINT US.GDT 7/3/07

Pangea Environmental Services, Inc.

WELL NUMBER MW-5C

1710 Franklin Street, Suite 200 PAGE 2 OF 2 Oakland, CA 94612 Telephone: 510-836-3700 Fax: 510-836-3709 CLIENT Feiner PROJECT NAME Rockridge Heights PROJECT LOCATION 5175 Broadway PROJECT NUMBER 1145.001 SAMPLE TYPE NUMBER PID (ppm) BLOW COUNTS GRAPHIC DEPTH (ft bgs) U.S.C.S. WELL DIAGRAM MATERIAL DESCRIPTION 25 Schedule 40 PVC 27.0 Bottom of hole at 27.0 feet.

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200

WELL NUMBER MW-6A
PAGE 1 OF 1

	Feiner T NUMBER	1.	145.0	01			ROJECT NAME Rockridge Heights ROJECT LOCATION 5175 Broadway		
ROJECT NUMBER1145.001									
						G			
RILLIN	G METHOD	H	ollow	Sten	n Aug	er - 8"/ Direct Push	AT TIME OF DRILLING _7.5 ft		
OGGE	BY Bryce	Та	ylor			CHECKED BY Bob Clark-Riddell	AT END OF DRILLING		
OTES							AFTER DRILLING		
(ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	BLOW	U.S.C.S.	GRAPHIC	MATER	IAL DESCRIPTION	v	VELL DIAGRAM
-				GP	000000	Poorly-graded Gravels (GP); 30-40% medium-grain sand;	brown; 60-70% fine gravels to 3/4"; dry; loose.		- Concrete
5				CL		Gravelly Clay (CL); 60-70% n gravels; moist.	nedium plasticity fines; 30-40% fine		Cement
0				GW			-100% fine gravels to 3/4"; dry; loose. 0-70% medium plasticity fines; 30-40%		- Bentonite - #2/12 Sand
5	MW-6A-12)			sw		sands; 30-40% fine gravel; tra	Providence (Charles Arts Arts)		-0.010 slotted 2" Schedule 40 PV
	MW-6A-15)				X X X X	Mudstone; grey; easily broker 16.0 Direct push refusal	n with fingers; dry; difficult to drill.		
+					- 0	Not logged.		1 =	
+							16' using direct push drilling method. hollow stem auger to facilitate the		
						Bottom	of hole at 17.0 feet,		

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 PANGEA

BORING NUMBER MW-7B

PROJECT NUMBER_	145.001		PROJECT NAME Rockridge Heights PROJECT LOCATION 5175 Broadway		
ORILLING CONTRACT	OR RSI Hollow Stem	n Auger - 8"/ Direct Push CHECKED BY Bob Clark-Riddell	GROUND ELEVATION HOLE SIZE 8* GROUND WATER LEVELS: AT TIME OF DRILLING		
NOTES		OTHER DE LOCALITY OF THE PARTY	AFTER DRILLING		
SAMPLE TYPE	PID (ppm) U.S.C.S.	GRAPHIC LOG LOG	ERIAL DESCRIPTION	BORING DIAGRAM	
5		Mudstone. Mudstone Mudstone	90-100% fine gravels to 3/4"; dry; loose. Ito 8' using direct push drilling method. 8" hollow stem auger to facilitate the om of hole at 18.5 feet.	Cement Bentonite #2/12 Sand 0.010 slotted 2° Schedule 40 PV	

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700

BORING NUMBER MW-7C

PAGE 1 OF 1

						PROJECT NAME Rockridge Heights			
ROJEC	T NUMBER	1145.	.001			PROJECT LOCATION 5175 Broadw	ray		
						GROUND ELEVATION	HOLE SIZE 8"		
RILLIN	G CONTRA	CTOR	RSI			GROUND WATER LEVELS:			
DRILLING METHOD Hollow Stern Auger - 8" LOGGED BY Bryce Taylor CHECKED BY Bob Clark-Riddell						AT TIME OF DRILLING			
						AFTER DRILLING			
(th bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC	мате	ERIAL DESCRIPTION	BORING DIAGRAM		
€	SAMP	PID	Ü.	SR_		2			
+						(e)	Concrete		
					See boring log for well MV	V-7B for representative lithology.			
5						*			
-						,s			
0							Cement		
5						e -			
				××	18.5 Soil logged from cuttings.		► Bentonite		
0				X X X X X X X X X X X X X X X X X X X	Mudstone.		##2/12 Sand		
-				X X X X X X X X X X X X X X X X X X X			0.010 slotted 2*		
-				X X 1 X X 1 X X X X X X X X X X X X X X			Schedule 40 PV		
5				XXI	25.0				

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200

WELL NUMBER MW-8A PAGE 1 OF 1

PROJE	CT NUMBER	1	145.0	01				PROJECT LOCATION	5175 Broadway		
PROJECT NUMBER1145.001								GROUND ELEVATION		THE STATE OF THE STATE OF	
DRILLING CONTRACTOR RSI								GROUND WATER LEVE	LS:		
ORILLI	NG METHOD	D	irect F	ush			е	AT TIME OF DRILL			
OGGE	ED BY Bryce	e Ta	ylor			CHEC	KED BY Bob Clark-Riddell				
								AFTER DRILLING			
	핖				-						
O (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	BLOW	U.S.C.S.	GRAPHIC		MATE	RIAL DESCRIPTION		w	ELL DIAGRAM
0	T	Т			911	03_1	Asphalt			MM	- Concrete
-				1		0.5	Baserock	70.000	4		Suinate
5				CL			Clay with gravel (CL); brow fines; 20-30% fine gravel to	3/4"; dry; stiff.	at plasticity		-Cement
						7.5				Sec 500	- Bentonite
-				GP	000	8.5	Poorly-graded Gravels (GI 30-40% fine- to medium-gr	ain sand; dry; loose.			-#2/12 Sand
	MW-8A-8.5						Clay (CL); black; 90-95% n coarse-grain sand; moist to	nedium to high plasticity fi wet: soft: hydrocarbon or	ines; 5-10% dor.		
10							obdise grain sone, moteric	may ading rijaradaraana			
	MW-8A-10			CL							
-	(MAA-OW-10)										
-	MW-8A-12)						Gravelly Clay (CL); grey; 6: 30-40% coarse-grain sand odor.				-0.010 slotted 2" Schedule 40 PV
- 1							Gravelly Clay (CL); brown;	60-70% medium to high p	plasticity fines;		
15							30-40% fine gravels; dry; s	un; hydrocarbon odor.		=	
	MW-8A-15			. }		16.0				10000 10000	
					x x x x x x		Mudstone; grey; easily bro	ken with fingers; difficult to	o drill; dry.		
-					XX						- Bentonite
-					XX						Demonite
					X X X X X X X X X X X X X X X X X X X						
					X X	20.0	Disease such soft and			2211	- Native soils
20				_	××	20.0	Direct push refusal.				
							(Pilot boring was advanced The boring was partially bac sand prior to reaming the bo- facilitate the installation of	ckfilled with bentonite and a pring with an 8" hollow sten be well.)	a small layer of		
			1 1				Botto	m of hole at 20.0 feet.			

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700

BORING NUMBER MW-8C

PAGE 1 OF 1

CLIENT	Feiner	10-836	3709			PROJECT NAME Rockridge Heights	
PROJEC	T NUMBER	1145	.001			PROJECT LOCATION 5175 Broadwa	ау
ATE ST	TARTED 1	26/07			COMPLETED 1/26/07	GROUND ELEVATION	HOLE SIZE 8"
RILLIN	G CONTRA	CTOR	RSI			GROUND WATER LEVELS:	
RILLIN	G METHOD	Hollo	w Ste	m Aug	ger - 8*	AT TIME OF DRILLING	
OGGE	BY Bryce	Taylor	r		CHECKED BY Bob Clark-Riddell	AT END OF DRILLING	
OTES						AFTER DRILLING	
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC	MAT	ERIAL DESCRIPTION	BORING DIAGRAM
					See boring log for well M	N-8A for representative lithology.	Concrete
5	(*)						
10							Cement
15						2×	
							- Bentonite
20					20.0		#2/12 Sand
20				X X X X X X X X X X X X X X X X X X X	Soil logged from cuttings. Mudstone.).*	0.010 slotted 2" Schedule 40 PV

Bottom of hole at 25.0 feet.

Pangea Environmental Services, Inc. **BORING NUMBER B-16** 1710 Franklin Street, Suite 200 PAGE 1 OF 1 Oakland, CA 94612 Telephone: 510-836-3700 Fax: 510-836-3709 CLIENT Feiner PROJECT NAME Rockridge Heights PROJECT NUMBER 1145.001 PROJECT LOCATION 5175 Broadway DATE STARTED 1/23/07 COMPLETED 1/23/07 GROUND ELEVATION HOLE SIZE 8" DRILLING CONTRACTOR RSI GROUND WATER LEVELS: DRILLING METHOD Macrocore Direct Push AT TIME OF DRILLING _---CHECKED BY Bob Clark-Riddell LOGGED BY Bryce Taylor AT END OF DRILLING ---NOTES Hand augered to 4'. AFTER DRILLING ---SAMPLE TYPE NUMBER GRAPHIC PID (ppm) U.S.C.S. (ft bgs) MATERIAL DESCRIPTION **BORING DIAGRAM** Concrete Coring Sandy Gravel (GP); hand augering. 0 Sandy Gravel (GP); 60-70% fine gravels to 1/2"; 25-30% fine- to medium-grain sand; 5-10% low plasticity fines; dry; loose. 6. **** Portland Cement Clayey Gravel (GC); 60-70% fine gravels to 3/4"; 30-40% low plasticity fines; dry. Mudstone; grey; easily broken with fingers; difficult to drill; dry. 10 Refusal Bottom of hole at 12.0 feet.

BH COPY FEINER B-16.GPJ GINT US GDT

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700

BORING NUMBER B-17

PAGE 1 OF 1

CLIENT Feiner				PROJECT NAME Rockridge Heights PROJECT LOCATION 5175 Broadway			
		COMPLETED		HOLE SIZE 2.25*			
ORILLING CONTRA	CTOR RSI		GROUND WATER LEVELS:	GROUND WATER LEVELS:			
DRILLING METHOD	Direct Pus	h - Dual Tube	AT TIME OF DRILLING				
OGGED BY Bryce	e Taylor	CHECKED BY	Bob Clark-Riddell AT END OF DRILLING	565			
NOTES Hand auge	ered to 4'.		AFTER DRILLING				
C (ft bgs) SAMPLE TYPE NUMBER	PID (ppm) U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	BORING DIAGRAM			
5	GP	medium Sandy (20-30%	Gravel (GP); brown; 60-70% fine gravel; 30-40% n-grain sand; dry; loose. Gravel (GP); grey; 70-80% fine to coarse gravel to fine sand; dry; loose.	1"; Portland Cemen			
		000	one; grey; easily broken with fingers; difficult to drill Bottom of hole at 9.0 feet.				

BH COPY FEINER B-18.GPJ GINT US.GDT 7/2/07

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700

BORING NUMBER B-18 PAGE 1 OF 1

	Fax: 5						
CLIEN	T Feiner		-15-5-7-			PROJECT NAME Rockridge Heights	
	CT NUMBER					PROJECT LOCATION 5175 Broadway	
DATE	STARTED 1/	23/07	9		COMPLETED 1/23/07	GROUND ELEVATION	HOLE SIZE
	NG CONTRAC					GROUND WATER LEVELS:	
					al Tube	AT TIME OF DRILLING	
				_	CHECKED BY Bob Clark-Riddell		
NOTES	Hand auge	red to	4'.			AFTER DRILLING	
O DEPTH (ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC		ERIAL DESCRIPTION	BORING DIAGRAM
					Concrete Coring		
				P-C	Sandy Gravel (GP): hand a	augering.	
 			GP		Sandy Gravel (GP); brown, 4.0 sand; tight.	60-70% fine gravel; 30-40% fine-grain nedium to high plasticity fines; trace	
5			CL		Clay (CL); brown; 90-95% coarse-grain sand; stiff; mo	medium to high plasticity fines; trace	Portland Cement
10						and collected grab groundwater sample.) om of hole at 16.0 feet.	

Pangea Environmental Services, Inc. **BORING NUMBER B-19** PANGEA 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700 Fax: 510-836-3709 PROJECT NAME Rockridge Heights **CLIENT** Feiner PROJECT NUMBER 1145.001 PROJECT LOCATION 5230 Cornado Avenue COMPLETED 3/19/07 GROUND ELEVATION HOLE SIZE 2" DATE STARTED 3/19/07 GROUND WATER LEVELS: DRILLING CONTRACTOR -- AT TIME OF DRILLING 4.0 ft DRILLING METHOD Hand Auger LOGGED BY Greg Bentley CHECKED BY Bob Clark-Riddell AT END OF DRILLING _--AFTER DRILLING ---SAMPLE TYPE NUMBER GRAPHIC PID (ppm) U.S.C.S. (ft bgs) MATERIAL DESCRIPTION **BORING DIAGRAM** 0 Sandy Silt (ML); dark brown; 75% non-plastic fines; 20% fine- to coarse-grain sand; 5% fine gravel; moist. B-19-1 ML Backfilled with soil cuttings ©4' Wet. (Boring terminated @4.5' and a grab groundwater sample was B-19-4 collected using a disposable bailer.) Bottom of hole at 4.5 feet.

BH COPY FEINER B-19,GPJ GINT US,GDT 7/3/07

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, CA 94612 Telephone: 510-836-3700

BORING NUMBER B-20 PAGE 1 OF 1

CLIENT	Feiner					PROJECT NAME Rockridge Heights		
	T NUMBER					PROJECT LOCATION 5175 Broadway		
DATE ST	TARTED 3	16/07			COMPLETED 4/4/07	GROUND ELEVATION	HOLE SIZE	
DRILLING CONTRACTOR RSI						GROUND WATER LEVELS:		
DRILLIN	G METHOD	Hollo	w Ste	m Aug	er	AT TIME OF DRILLING		
OGGE	Bryce	Taylor			CHECKED BY Bob Clark-Riddell	AT END OF DRILLING		
NOTES	Hand auge	red to	4".			AFTER DRILLING		
(ft bgs)	SAMPLE TYPE NUMBER	PID (ppm)	U.S.C.S.	GRAPHIC LOG	MATE	ERIAL DESCRIPTION	BORING DIAGRAM	
0	SAMI	- E	ב	9				
0					Not logged.		ा अल	
				.00	4.0 Sandy Carriel (CD): house	; 60-70% fine gravel; 30-40%	Soil cuttings	
5			GP	0000	medium-grain sand; dry; lo		Soil cuttings	
-				X X X X X X X X X X X X X X X X X X X	7.0 Mudstone; grey; easily bro	ken with fingers; difficult to drill; dry.		
1				× × ×	8.5 Refusal @8.5'.			
					(On March 16, 2007 attemp Stem Auger/Direct Push Co	oted boring with power probe 9630 Hollow ombo rig. Hit refusal at approximately 7' npted boring at same location with CME75 ately 8.5' bgs.)		
					Bott	om of hole at 8.5 feet.		
						5		
						F		
						-		

LOG OF EXPLORATORY BORING

PROJECT NUMBER

104

BORING NO MW-2

PROJECT NAME

5175 Broadway, Oakland, California

PAGE 1 Of 2

BY J. Mrakovich DATE 4/24/90

SURFACE ELEV 156 ±

teccvery	>10	Penetra- tion	GROUND HATER LEVELS	DEPTH IN FT.	MPLES	LITHO- SRAPHIC COLUMN	DESCRIPTION
(ft/ft)	(pon)	(blws/ft)	833	54	n d		
.25/1.5		97		5 -			Concrete Clayey silt (ML), mottled yellow-brown and olive brown, damp, slight odor. Claystone, mottled yellow-brown with minor blue-green, highly fractured (blocky), upper 9-inches weathered to a clayey consistency, very dense, damp, no odor.
1.0/1.0		84) -			 8.0' color change to include more blue-green, slight gasoline odor. 10.0' hard drilling 10-12 feet, strong gasoline odor while drilling.
.42/.42		80 for 5 inches					@ 13.0-13.4' insufficient sample for analysis, no odor.
.25/.25		50 for 3		-20	=		@ 18.0-18.25 insufficient sample for analysis, no odor.

REMARKS

Boring drilled with continuous-flight hollow-stem 10-inch O.D. (6.625-inch I.D.). Samples collected in a 3-inch O.D. modified California sampler.

LOG OF EXPLORATORY BORING

PROJECT NUMBER 104

BORING NO MW-2

PROJECT NAME 5175 Broadway, Oakland, California PAGE 2 Of 2

BY J. Mrakovich DATE 4/24/90

REMARKS

SURFACE ELEV 156 ±

ecovery 210 (ft/ft) (ppm	tion	AROUND UATER LEVELS	DEPTH IN FT.	SAMPLES	LITHO- GRAPHIC COLUMN	OESCRIPTION
17/.17	50 for 2 inches	-	25 -			@ 23.0-23.17 insufficient sample for analysis, no odor. Boring terminated at 23 feet. Sampled to 23.17 feet.

WELL DETAILS

PROJECT NUMBER 104

PROJECT NAME 5175 Broadway

LOCATION Oakland, CA

WELL PERMIT NO. 90222

BORING / WELL NO.MW-2

TOP OF CASING ELEV. 154.97

GROUND SURFACE ELEV. 156 ±

DATUM Mean sea level

INSTALLATION DATE 4/24/90

EXPLORATORY BORING

a. Total depth 23.0 ft.
b. Diameter 10 in.

Drilling method_Hollow-stem auger

WELL CONSTRUCTION

c. Total casing length 23.0 ft.

Material Schedule 40 pvc

e. Depth to top perforations 8.0 ft.

f. Perforated length 15.0 ft.

Perforated interval from 23.0 to 8.0 ft.

Perforation type Machine slot

Perforation size 020-inch

h. Backfill 4.0 ft.

Backfill material Cement

i. Seal 1.0 ft.
Seal material Bentonite

j. Gravel pack 17.0 ft.

Pack material 8x20 filter sand

k. Bottom seal 0.0 ft.

Seal material N/A

LOG OF EXPLORATORY BORING

PROJECT NUMBER

104

BORING NO. MW-3

PROJECT NAME

5175 Broadway, Oakland, California

PAGE 1 Of 2

BY J. Mrakovich DATE 4/17/90

SURFACE ELEV 156 ±

Recovery	>10	Penetra- tion	AROUND WATER LEVELS	DEPTH IN FT.	AMPLES	LITHO- GRUPHIC COLUMN	DESCRIPTION
(1:/11)	(ppm)	(blws/ft)	9-7	-	'n		
			-		_	0	Fill: Clayey, gravelly, sand (SW), dark brown and black. Hard object encoun- tered at 3 feet, dry, no odor.
			-	-			Silty clay (CL), black, slightly damp, firm, slight gasoline odor.
1.5/1.5		7					@ 7.0'color change to grey, gasoline odor, damp.
1.5/1.5		75	10				Claystone, yellow-brown, weathered to a clayey consistency, damp, strong gasoline odor. Claystone/serpentine, mottled green and dark brown, weathered, highly fractured,
.5/.5		50 for 6 inches	15				very dense, damp, strong gasoline odor. @ 14.0'-14.5', slight gasoline odor, damp.
.33/.33		50 for 4 inches					@ 19.0'-19.33', slight gasoline odor, insufficient sample for analysis, moist.

REMARKS

Boring drilled with continuous hollow-stem 10-inch O.D. augers (6.625-inch I.D.). Samples collected in a 3-inch O.D. modified California sampler.

LOG OF EXPLORATORY BORING

PROJECT NUMBER 104

BORING NO. MW-3

PROJECT NAME 5175 Broadway, Oakland, California

PAGE 2 Of 2

BY J. Mrakovich DATE 4/17/90

SURFACE ELEV 156 ±

			_				
ecovery	(bbw) 510	Penetra- tion (blws/ft)	GROUND LATER LEVELS	DEPTH IN FT.	SAMPLES	LITHO- GRAPHIC COLUMN	DESCRIPTION
				25 -			Boring terminated at 27 feet.

REMARKS

WELL DETAILS

PROJECT NUMBER ____ 104 PROJECT NAME _____5175 Broadway LOCATION _____ Qakland, CA ____ GROUND SURFACE ELEV 156 ±

BORING / WELL NO MW-3 TOP OF CASING ELEV. 155.93 DATUM Mean sea level INSTALLATION DATE 4/17/90

EXPLORATORY BORING

27.0 ft. a. Total depth 10___in. b. Diameter Drilling method Hollow-stem auger

WELL CONSTRUCTION

- 27.0 ft. c. Total casing length Material Schedule 40 PVC 4 __in. d. Diameter
- 7.0 ft. e. Depth to top perforations
- 20.0 ft. f. Perforated length Perforated interval from 27.0 to 7.0 ft. Perforation type Machine slot Perforation size __.020-inch
- 1.0 ft. g. Surface seal Seal material __Concrete
- h. Backfill 4.0 ft. Backfill material Cement
- 1.5_ft. i. Seal Seal material __Bentonite
- 21.5 ft. j. Cravel pack
 - Pack material 8x20 filter sand
- k. Bottom seal 0.0 ft. Seal material_N/A

Logged I	Noo:	ri Amelí		Exploratory Boring Log		Boring No STMW									
Date Drill	led 6/2	1/91		Approx Elevation	Boring Diameter 8-inch										
Mob		ll rig B-	40L	1	Sampling Method										
Sample No.	Field Test for Total Ionization	Penetration Restatance Blows/6"	Unified Soll Clessification	DE	SCRIPTION										
				2-inch asphalt, 2-inch baserock.											
3 4-5				Light brown :	n silty clay, stiff silty clay, stiff. silty gravelly clay clayey gravelly sil										
0-4-1	0			petroleum od	rocks ($\frac{1}{2}$ inch - 1 is ater level encounter, moist.	nch).	et.								
emarks															

.00	gged 8	y: Nooi	ri Ameli		Exploratory Boring Log		Boring No. STMW-
Dal	e Orill	ed: 6/2	1/91		Approx. Elevation		Boring Diameter 8-inch
Drill	ling M	ethod			- 40-	Sampling Method	
٦	_	Mobi	le dril	l rig	B-40L		
Det	Semple No.	Field Test for Total Ionization	Penatration Resistance Blows/6*	Uniting Soll	DES	CRIPTION	
,					Color changes	to darker.	
L8 .							
۱9 -					Boring termin	ated at 19-feet 6-	inches.
. ي							
1							
2							
3-							
4							
5.							*
6							
7							
3.							
9-							
)							
L							
1.							
	marke						

Lo	gged 8	By Noo	ri Ameli		Exploratory Boring Log		Boring No. STMW-5						
Da	te Dritt	led. 6/2	1/91		Approx. Elevation		Boring Diameter 8-inch						
		Helhod				Sempling Method							
_	Mob	ile dri	ll rig B-	-40L									
Depth, Ft.	Semple No.	Field Test for Total Ionization	Penetration Resistance Blows/Ft.	Uniffed Soit Clevellication	DES	CRIPTION							
1.					4-inch asphal	t, 3-inch baserock							
2.					Medium brown	silty clay with so	me gravel.						
3 -					-	g - 8							
4					Maddian brown (3h	e/						
6-	5-5				Medium Drownyo	dark grey silty cl	ay, firm.						
7-													
8-													
9.			10										
11.	5-1	0			Dark greenish-	grey silty clay w	ith some pea gravel.						
12-													
13-													
14-					Olive-green si	lty clay with some	e medium size gravel.						
15-					More gravel in Light petroleu								
16					Olive-green si	lty clayey gravel.							
Re	marks												

Lo	gged B	y: Noor	ri Ameli		Exploratory Boring Log		Boring No. STMW-									
Del	le Drilli	od: 6/21	/91		Approx. Elevation		Boring Diameter 8-inch									
Dri	lling M					Sampling Melhod										
-		Mobi	le dril	l rig	B-40L											
Depth, Ft.	Sample No.	Field Test for Total Ionization	Panairation Rasiatance Blows/6*	Uniffed Soil Classification	DESC	CRIPTION										
					Olive-green si	lty clayey gravel.										
' 7						*										
18																
L9 .																
0	5-20				Olive-green si	pea gravel.										
1					Olive-brown silty clay with small and medium size grav											
!2					☐ Groundwater level encountered at 22 feet.											
.3-																
4					Boring termina	ted at 24 feet.										
5																
6.																
7																
3.																
9-																
)																
,						_										
1.						•	*									
	marks															

APPENDIX D

Laboratory Analytical Reports

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway,	Date Sampled: 01/22/07
1710 Franklin Street, Ste. 200	Oakland CA	Date Received: 01/24/07
Oakland, CA 94612	Client Contact: Bruce Taylor	Date Reported: 01/31/07
Outdied, CFF 71012	Client P.O.:	Date Completed: 01/31/07

WorkOrder: 0701493

January 31, 2007

Dear Bruce:

Enclosed are:

- 1). the results of 8 analyzed samples from your #5175 Broadway, Oakland CA project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

PEO 0701493

McCAMPBELL ANALYTICAL, INC. 110 2"d AVENUE SOUTH, #D7													C	H	AI	N	OF	C	US	ST	OI	Y	R	EC	COI	RD							
		10 2nd A	VENUE SO	DUTH,	# D 7									T	'UR	N.	AR																X
Web	site: <u>www.mcc</u>		CO, CA 94			nccai	mph	ell.co	m															RUS		24			48 H		72 I	IR	5 DAY
	ne: (925) 798		23111					5) 79		22				E	DF F	lequ	uire	d? (Coel	lt (l	Vori	nal)	I	No	W	rite	On	(D	W)	No)		
Report To: Bryce	THE RESIDENCE OF THE PARTY OF T		E	ill To	e: Par	ngea	En	viror	me	ntal									A	lnal	ysis	Rec	ques	t						0	ther		Comments
Company: Pange	a Environmo	ental Sei	vices, In	c.																												Ι,	Filter
1710 I	ranklin Stre	et, Suite	200											3E		(F)																	Samples
Oakla	Oakland, CA 94612 E-Mail: btaylor@pangeaenv.com							8015)/MTBE		F/B&	3.1)									8310							or Metals						
	ele: (510) 836-3700 Fax: (510) 836-3709						_)15)/		E&1	(418									/0/							nalysis:						
	O#: 5175 Broadway, Oakland CA Project Name: Rockridge Heights							+		5520	ons		20)		>					/82	6	_				1	Yes / No						
	roject Location: 5175 Broadway, Oakland CA Project #: 1145.09 mpler Signature: Broadway									3020		se (arb		/ 80		N N					625 / 8270 /	602	020	6								
Sampler Signatur	ampler Signature:					Bri	oad	wey	,0	afel	avo	(602/8020		Gre	droc	11	602		s,s			09		PA	/ 01	9/0	601						
-	SAMPLE ID SAMPLING			S.	ners	MATRIX			ζ		IET ESE			Gas ((8015	Oil &	m Hy	0 / 802	(EPA	_	2 PCE	1	51	4 / 82	/827(s by E	ls (60	s (601	6.00				
SAMPLE ID Field Point Name) LOCATION Date Tim			Time	# Containers	Type Containers	Water	Soil	Air	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)				
MW-6B-12		1/22	1330	1	Acetale		X			X				X										в								T	
MW-6B-15		1	1335	-			V			X				X																			
MW-8A-8.5			1540				$\stackrel{\frown}{\times}$			\times				X																			
MW-8A-10		- 1	1545				Ź			X			1	$\stackrel{\frown}{\times}$																		T	
			1500				V	+		X			-	$\frac{\lambda}{\lambda}$																		T	
MW-8A-12		1/		1,	-	-	\ominus			X			-	$\langle \rangle$																	_	+	
MW-8A-15		./	1505	7-	Andre		<u> </u>		-	^			-	()	\/										-							+	
B-18		1/23	1550	5	Anden UDAS	X	_		-					\bigcirc	X																	-	
MW-3		1/22	1300	5	V	X	_		_		X	_	/	X	X																	_	
	>																															_	
																																T	
						-		_					\top																			T	
							-				-	\dashv	1	,																	_	+	
Relinquished By:		Date: /	Time:	Rece	iv ed 4B	V-			_	-2	an internal department		4	ICI	E/t°_/	7.	4	14	200	,	7	=-{	300	(7)				COM	IME	NTS:			
actiniquistica by:	Acce 1	100	72				_							$\mathbf{G}0$	OD	CON	DIT	ION			100) ~	101	1			`	- 35 41					
Relinquished By: Bate: Time: Received By:					7			AD S					AB																				
		6104	13501		/ 2	1	1	0:	In	M	01.	w	en .	AP	PRO	PRIA	ATE	CON	TAI		RS		-										
					74	PR	ESEI	(VE	DIN	LAE	5		,																				
					eccived By:							PR	ESEF	RVA'	TIO		AS	08		ME pH<		s	отн	ER									

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Oakland, CA 94612

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Date Received 01/24/2007

(925) 252-9262		WorkOrder: 07	701493	ClientID: PEO		
	☐ EDF	Fax	✓ Email	HardCop	ThirdPart	
Report to:		Bill t			Requested TAT:	5 days

Bruce Taylor Email: Both Pangea Environmental Svcs., Inc. TEL: (510) 836-370 FAX: (510) 836-370 ProjectNo: #5175 Broadway, Oakland CA 17

ProjectNo: #5175 Broadway, Oakland CA PO: Bob Clark-Riddell Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200

					Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0701493-001	MW-6B-12	Soil	1/22/2007 1:30:00		А											
0701493-002	MW-6B-15	Soil	1/22/2007 1:35:00		Α											
0701493-003	MW-8A-8.5	Soil	1/22/2007 3:40:00		Α											
0701493-004	MW-8A-10	Soil	1/22/2007 3:45:00		Α											
0701493-005	MW-8A-12	Soil	1/22/2007 3:00:00		Α											
0701493-006	MW-8A-15	Soil	1/22/2007 3:05:00		Α											
0701493-007	MW-3	Water	1/22/2007 3:50:00			Α	В									
0701493-008	B-18	Water	1/22/2007 3:50:00			Α	В									

Test Legend:

1	G-MBTEX_S	2 G-MBTI	EX_W 3	TPH(D)_W	1	5
6		7	8	9		10
11		12				

Prepared by: Sheli Cryderman

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Pangea Environmental Svcs., Inc.

Client Project ID: #5175 Broadway, Oakland CA

Date Sampled: 01/22/07

Date Received: 01/24/07

Client Contact: Bruce Taylor

Date Extracted: 01/24/07-01/29/07

Client P.O.:

Date Analyzed 01/25/07-01/29/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	on method SW5030B		Analy	ytical methods SV	V8021B/8015Cm			Work Order	r: 070	1493
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-6B-12	S	ND	ND	ND	ND	ND	ND	1	86
002A	MW-6B-15	S	2.9,g,m	ND	ND	0.0087	ND	ND	1	85
003A	MW-8A-8.5	S	14,g,m	ND	0.027	0.027	0.013	0.072	1	82
004A	MW-8A-10	S	13,g,m	ND	0.027	ND	ND	0.039	1	78
005A	MW-8A-12	S	260,g,m	ND<0.25	0.31	0.16	0.083	0.73	5	91
006A	MW-8A-15	S	ND	ND	ND	ND	ND	ND	1	96
007A	MW-3	W	34,000,a,h	ND<1000	770	250	760	2000	200	97
008A	B-18	W	ND	ND	ND	ND	ND	ND	1	90
Rep	orting Limit for DF =1;	0.5	0.5	1	μg/L					
	means not detected at or ove the reporting limit	S	1.0	5.0 0.05	0.5	0.5	0.005	0.005	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) value derived using a client specified carbon range; o) results are reported on a dry weight basis; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway, Oakland CA	Date Sampled: 01/22/07
1710 Franklin Street, Ste. 200	Oakialid CA	Date Received: 01/24/07
Oakland, CA 94612	Client Contact: Bruce Taylor	Date Extracted: 01/24/07
	Client P.O.:	Date Analyzed 01/26/07-01/29/07

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel* Analytical methods SW8015C Work Order: 0701493 Extraction method SW3510C Lab ID Client ID Matrix TPH(d) DF % SS 0701493-007B MW-3 W 93,000,d,b,h 50 0701493-008B B-18 W 100 ND 1

		<u> </u>	
Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0701493

EPA Method SW8015C	Е	xtraction	SW351	0C		BatchI	D: 25887	5	Spiked Sample ID: N/A							
Analyte	Sample Spiked MS		MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)					
, and yes	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD				
TPH(d)	N/A	1000	N/A	N/A	N/A	106	105	1.01	N/A	N/A	70 - 130	30				
%SS:	N/A	2500	N/A	N/A	N/A	100	101	0.630	N/A	N/A	70 - 130	30				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25887 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701493-007	1/22/07 3:50 PM	1/24/07	1/29/07 4:34 PM	0701493-008	1/22/07 3:50 PM	1/24/07	1/26/07 9:37 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder 0701493

EPA Method SW8021B/8015	Cm E	Extraction	SW503	0B		BatchI	D: 25903	S	Spiked Sample ID: 0701476-015A									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%)									
, unary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD						
TPH(btex [£]	ND	0.60	99.3	101	1.99	104	101	3.27	70 - 130	30	70 - 130	30						
MTBE	ND	0.10	94.5	90.9	3.88	85.6	87.8	2.61	70 - 130	30	70 - 130	30						
Benzene	0.006	0.10	91	91.7	0.765	94.4	94.8	0.409	70 - 130	30	70 - 130	30						
Toluene	0.0065	0.10	99.7	100	0.316	104	102	1.30	70 - 130	30	70 - 130	30						
Ethylbenzene	ND	0.10	102	102	0	101	97.9	2.64	70 - 130	30	70 - 130	30						
Xylenes	0.012	0.30	109	109	0	110	110	0	70 - 130	30	70 - 130	30						
%SS:	102	0.10	98	95	3.11	86	86	0	70 - 130	30	70 - 130	30						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25903 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701493-001	1/22/07 1:30 PM	1/24/07	1/25/07 6:32 AM	0701493-002	1/22/07 1:35 PM	1/24/07	1/25/07 6:48 PM
0701493-003	1/22/07 3:40 PM	1/24/07	1/25/07 6:17 PM	0701493-004	1/22/07 3:45 PM	1/24/07	1/26/07 1:17 PM
0701493-005	1/22/07 3:00 PM	1/24/07	1/25/07 7:17 PM	0701493-006	1/22/07 3:05 PM	1/24/07	1/25/07 9:28 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0701493

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 25	917	Spiked Sample ID: 0701493-008A									
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)								
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD					
TPH(btex)	ND	60	97	94.7	2.33	101	102	0.960	70 - 130	30	70 - 130	30					
MTBE	ND	10	95.6	83.2	13.9	92.5	115	21.4	70 - 130	30	70 - 130	30					
Benzene	ND	10	95.5	98.6	3.19	101	99.5	1.73	70 - 130	30	70 - 130	30					
Toluene	ND	10	94.5	97.1	2.66	109	109	0	70 - 130	30	70 - 130	30					
Ethylbenzene	ND	10	98	98.4	0.418	104	104	0	70 - 130	30	70 - 130	30					
Xylenes	ND	30	110	110	0	113	113	0	70 - 130	30	70 - 130	30					
%SS:	90	10	91	92	1.15	102	100	1.39	70 - 130	30	70 - 130	30					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 25917 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701493-007	1/22/07 3:50 PM	1/29/07	1/29/07 9:08 PM	0701493-008	1/22/07 3:50 PM	1/29/07	1/29/07 9:42 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; 5175	Date Sampled: 03/19/07
1710 Franklin Street, Ste. 200	Broadway, Oakland, CA	Date Received: 03/19/07
Oakland, CA 94612	Client Contact: Bryce Taylor	Date Reported: 03/23/07
Outdied, CFF 71012	Client P.O.:	Date Completed: 03/23/07

WorkOrder: 0703430

March 23, 2007

Dear Bryce:

Enclosed are:

- 1). the results of 1 analyzed sample from your #1145.001; 5175 Broadway, Oakland, CA project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

								_	_	_																							
M	(cCAMP)	10 2nd A	VENUE SO	DUTH	,#D7	AL	, II	VC.			Rel			Т	TIR	N	ΔR		H				C	US			Y	R	EC		RD	_	100
	••		CO, CA 94								•		- 1	•	-			00	71 12			_	1	RUS	н		HR	3	48 H		1	HR	5 DAY
	site: <u>www.mc</u> ne: (925) 798		.com Em	aii: m				en.co		22			- 1	EI)F I	Requ	uire	d? (Coel	t (I	Vori	nal)		No				(D)					JDAI
Report To: Bryce		1020	I	Bill T			_	-					\dashv	_		_			A	nal	vsis	Rec	ques	t						(ther	Т	Comments
Company: Pange		ental Sei			0. 1	ige	LJAK	11 011	IIICI	1001			7						1,		y 513	Itt	ues						\Box	\vdash	THEI	+	Comments
1710 Franklin Street, Suite 200													\dashv	(-)																			Filter
	nd, CA 9461			C-Mai	l: bt:	avlo	r@n	ange	aen	v.co	m		\dashv	TBE		B&F	_									310							Samples
Tele: (510) 836-3				ax:									╛	8015)/MTBE		&F/	118.									/ 8							for Metals analysis:
PO#: 5175 Broads		d CA		roje					e H	eigh	its		╛	801		20 E	ns (4		0							8270							Yes / No
Project Location:								#: 11					\neg	+ 02		e (55	rbo		802		ONLY					12	6020)	20)					1637110
Sampler Signatur	More	>					3						╛	Gas (602/8020		Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)		BTEX ONLY (EPA 602 / 8020)		S O			0		PAH's / PNA's by EPA 625 / 8270 / 8310)9/(LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)			-	
		SAMI	PLING		90	Ι.	MAT	rix			ЕТН			9) si	15)	S &	lydı	3021	9 V		CB,			826	023	EP	9010	010	9/6		-		
		DANI	I	L S	ner	H	VIZ.	11121		PRE	ESEI	RVE	ED	as Ga	(80	li Oil	m	8/0	(EF	1	2 P	41	51	24 /	/ 87	s by	ıls (ls (6	200				
SAMPLE ID	LOCATION		1	# Containers	Type Containers								- 1		TPH as Diesel (8015)	leun	role	EPA 601 / 8010 / 8021	ILY.	EPA 608 / 8081	EPA 608 / 8082 PCB's	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	NA	CAM-17 Metals (6010 /	Teta	8.				
(Field Point Name)	LOCATION	Date	Time	nta	၂ ပိ	er		96	<u> </u>			3	-	& T	as D	etro	Peti	501	O	808	808	3140	3150	524.	525	s/P	17]	5 1	(200			-	
				ပိ	ype	Water	Soil	Sludge	Other	ICE	HCL	HNO3	Other	BTEX & TPH	ЬН	otal]	otal	PA (TE	PA (PA (PA 8	PA 8	PA :	PA	AH,	AM	UFI	ead				
				#		2	SO .	c S	9	Ĕ	Ξ,	= '	의	m	Т	Ŧ	Т	內	В	E	E	F	迅	五	五	Ъ	0	L	7			\perp	
B-19-1		3/19	1100	1	55.		X			X																							HOLD
B-19-4		1	1120	1	1		X			×																			П				HOLD
B-19		1	1130	5	Mix	X				X	X	1	X	X	X														\Box			Ť	
			1170		14.7	()	\top		\dashv	1		1	7		/-														\Box			+	
at.						Н			\dashv	+	+	+	+																		-	+	
				\vdash	\vdash	Н	+		\dashv	+	+	+	+	-										-				\dashv	\dashv		+	+	
				<u> </u>	-	Н	-	-	\dashv	-	+	+	+			-									-				\vdash		_	+	
				_	_	Ш	_		_	_	_	4	4										_						\perp			4	
						Ш			\Box				4																			\perp	
													- 1																178				
													П																3330			Т	
									\exists			\top	7					- 1										\exists	\exists		\top	\top	
					\vdash			+	\dashv		+	+	+		_													\forall	\dashv		+	+	
				\vdash	\vdash		+		\dashv	+	+	+	+	+	-		+	-				-	\dashv		+	-		\dashv	\dashv	\rightarrow	+	+	
				\vdash	-	H	-		\dashv		+	+	+	-	-		-	-	-			-	\dashv	-	-	-	-	\dashv	+	-	-	+	
											4			\mathcal{A}	- 0												\perp		\perp	丄			
Relinguished By:	Relinquished By: Date: Time: Received By: 1230														DITI		\checkmark								. (OM	ME	NTS:					
									4	HE	AD S	PAC	E Al	BSE	NT_		_																
Relinquished By: Date: Time: Received By:							DECHLORINATED IN LAB APPROPRIATE CONTAINERS																										
Shirt In the same												DIN						-															
Relinquished By:	1/2	Date:	Time:	Rece	ived B	y:0	1	6	6	1	/							vo	AS	0.8	_G	ME	TAL!	sla	тн	ER							
4	15/19 65 400 Mil Vall										PRE	ESEF	RVA'	TION		V	1		pH<		<u> </u>	V											

+20

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

Requested TAT:

Date Received: 03/19/2007

Date Printed: 03/19/2007

WorkOrder: 0703430 ClientID: PEO

EDF Fax ✓ Email HardCopy ThirdParty

Bill to Report to: Email: Bob Clark-Riddell Bryce Taylor btaylor@pangeaenv.com

Pangea Environmental Svcs., Inc. TEL: (510) 836-370 FAX: (510) 836-370

Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 ProjectNo: #1145.001; 5175 Broadway, Oakland, C 1710 Franklin Street, Ste. 200

PO: Oakland, CA 94612 Oakland, CA 94612

				Requested Tests (See legend below)											
Sample ID	ClientSampID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
0703430-003	B-19	Water	03/19/07 11:30:00	A	В										

Test Legend:

1 G-MBTEX_W	2 TPH(D)_W	3	4	5	
6	7	8	9	10	
11	12				

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; 5175 Broadway,	Date Sampled: 03/19/07					
1710 Franklin Street, Ste. 200	Oakland, CA	Date Received: 03/19/07					
Oakland, CA 94612	Client Contact: Bryce Taylor	Date Extracted: 03/21/07					
outline, of 191012	Client P.O.:	Date Analyzed: 03/21/07					
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*							

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0703430

Extracti	on method: SW5030B		Analy	ticai metnods: Sv	SW8021B/8015Cm				Work Order: 0703430			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS		
003A	B-19	W	ND,i	ND	ND	ND	ND	ND	1	93		
	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L		
	means not detected at or ove the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg		

ND	**	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
* water and vapor samples and all TC	ID & CDI	D avtraats are re	norted in ug/L	oil/cludge/colid	complete in ma/	ka wina sample	oc in uc/wino		

water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; 5175	Date Sampled: 03/19/07
1710 Franklin Street, Ste. 200	Broadway, Oakland, CA	Date Received: 03/19/07
Oakland, CA 94612	Client Contact: Bryce Taylor	Date Extracted: 03/19/07
Summing 6.17 1012	Client P.O.:	Date Analyzed 03/22/07

Diesel Range (C10-C23) Extractable Hydrocarbons as Diesel*

Extraction method SW35	10C	Analytical metho	ds SW8015C	Work Order: 0	703430
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0703430-003B	B-19	w	ND,i	1	102

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range/jet fuel range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0703430

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Ba	tchID: 26	895	Sp	iked Samp	ole ID:	0703430-00	3A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 thaty to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	98.7	86.5	13.2	91.2	90.5	0.872	70 - 130	30	70 - 130	30
MTBE	ND	10	99.5	95.3	4.27	105	110	4.95	70 - 130	30	70 - 130	30
Benzene	ND	10	103	90.1	13.0	96.2	97.5	1.25	70 - 130	30	70 - 130	30
Toluene	ND	10	100	90.4	10.4	89.1	90.8	1.84	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	97.2	93.5	3.86	94.9	99.3	4.54	70 - 130	30	70 - 130	30
Xylenes	ND	30	90.3	85.7	5.30	95.7	96.3	0.694	70 - 130	30	70 - 130	30
%SS:	93	10	119	108	9.68	93	93	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 26895 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703430-003A	03/19/07 11:30 AM	03/21/07	03/21/07 4:02 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0703430

EPA Method SW8015C Extraction SW3510C						BatchID: 26896 Spiked Sample ID: N/A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
7 may to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	89.7	90.1	0.436	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	92	92	0	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 26896 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0703430-003B	03/19/07 11:30 AM	I 03/19/07	03/22/07 6:22 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

APPENDIX E

Well Development Field Data Sheets

WELL GAUGING DATA DIVING WELL DEVELORMENT

Project # 070214-DA1	Date _	2/14/07	Client	Pangea	2.5
----------------------	--------	---------	--------	--------	-----

Site Former Exxon @ 5175 Broadway Oakland, M

Well ID	Time	Well Size (in.)	Sheen / Odor	Thickness of Immiscible Liquid (ft.)		Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB or TOC	Post- DTB Notes
Min-26	0855	ż				8.35	22.97	Toc	22.97
MW-3A	0900	2				9.40	13,77		13.78
MW-4A	0823	2				9.20	14-70		14.70
MW-5A	0410	2			*	12.44	13.48		13.48
MW-58	0808	2%				12.95	19.20	-	19.20
MW-5C	0806	Z.	1			13.00	26.68		26.68
MN-6A	0853	2				6.18	14.89		14.92
MW-7B	0818	2				11.31	18.50	1	19,50
MW-70	0816	2	4.			13.21	24.51		24.55
MW-8A	0414	2	15"	1.0		9.16	14.83	4 .	14.85
MW-8C		2			nest.	12.40	24.77	1	25.0
						7.6			
3.					e	11.0			
						E.	at at		
	-				2 8	15.			
						, i			

Pangea ENVIRONMENTAL SERVICES, INC.

Well Gauging Data Sheet Dring Wall Development

Project.Ta	sk #10	70214	-DAI	Project	Name: F	rner	Exxan	Station	5175	Brown
Address:	Care Control			Oaklo		A		Date: 21		e
Name: >	avid	Allbu		Signatu	re: Da	rid A	Mont			
Well ID	Well Size (in.)	Time	Depth to Water (ft)		Depth to Water (ft)	Time	Depth to Water (ft)	Total Depth (ft)	Measu	nt
Mu-3A	2	ogza well de	12.30 vatered	0929	12.22	0934	12.10	~	700	
		1343 returne	10.57 b well	B57 weiden	12.74 vatered	1202 5min x	12.52 echarge	/		
MW-5A	2		13.23 ed@ 0.2g	5min	13.10 rechange	CON6/011	13.10	,		
		relive	13.02°	1410 wellder	13.29°	1415 5min ,	13.24 echange	~		
MW-8A	2	Hell de	13.44 watered	1110 5 min	12.83	1417 returne	9.33 1 towell			
		M37 well de	13.55 watered	1442	12.97	I				
MW-BC	2	1107 after mw-8	10.64 quaterin	1110	18:83	1439 dewat Mw-5	10.62 and A	-		
MW-4A	2.	1149 Well de	13.38 witered	1154	12.92	1318 pumed	10:39 25 0001 fr	-		
		1447 return	9.78	1507 Well der	12.85 vatered	1512	12.35			6
MW-6A	2	1150	6.15 ematerino	1155	6.15	1319 remove	12.34 1 25 well	-	l	

Comments:

415/07

Page 2 of 3 Well Gauging Data Sheet Oving Development Project Name: Former Exxon, Broadway Oakland Project. Task #:070214 - pQ1 Address: 5175 Roadway Date: 2/14/07 Oakland, CA Signature: Down Albert Name: David Allbut Well Depth to Depth to Depth to Water Water Total Measuring Size Well ID (in.) Time Water (ft) Time (ft) Time (ft) Depth (ft) Point 1324 10.73 MW-6A 15.72-1306 18.08 18.23 1311 1240 2 MW-SB wer devatered returned to well 5 min vechage MIN TB 17.22 1342 1337 17.44 12.11 1317 MW-7B 2 returned to well neil dematered 5 min recharge 12.97 1427 25.25 24.30 1347 1432 MW-52 returned to nell well demostered 5 min recharge 1438 10.80 MW-8C returned to well 1511 1718 2 MW-7C returned tower Gemments MW-20 1545 10.40 2 returned forell well denotered 5 min recharge

<u>Pangea</u>

Well Gauging Data Sheet Pring Pevelopmet

		070214		Project			T		
Address:	-		dway		land,			Date: 2)19	107
Name: Do		Hlbut		Signatu	re: Oav		but		
Well ID	Size (in.)	Time	Depth to Water (ft)	Time	Depth to Water (ft)	Time	Depth to Water (ft)	Total- Dopth (ft)	Measuring Reint
Mw-26	2	0730	8.30	1234 well de	21.12 watered			=-	
Mu-3A	. 2	0734	9.43		7.20 pm	1233 2,Ma-2	9.20 denate 10.	J	
MW-4A	2	0732	9.43	7					
MW-SA	2	0721	13.05	0821 (dewater	13.01 red Hwsh	0827	13.04	devoter	13.04 red MW-SC
MW-5B	2	0720	[2-19	0820 (nell d	18.30 enatered		18.16	1000 dematera	17.25 JMW-50
MW-5C	2	0719	12.07	0820 Chewater	12.10 ed MW5B	0827	12.10	0959 well de	25.00 Watered
MW-6A	2	0733	6.27		*			,	17.00
Mr-28	2	0726	11,30	0900 nellde	17.48 watered	0905	17.15		£
70	2	0724	11.45	0900 MW-76	11.46 dewater	0905	11.46		720
-9A	2	0728	9.26	1056	920	1101	9.30		
8 c	2	0727	10.73	1057	23.95 matere	1102	21.57	1143 well den	23.41 aleved
Comments			15.1	4	À				Annother St.
4W-3	2	0736	9.91						
			7	18					
		1	1						

Project #:	0702/1	4-DA1		Client: Panger						
Develope				Date Developed: 2/15/07						
Well I.D.	MW-2	C		Well Diameter: (circle one) (2) 3 4 6						
Total We				Depth to W	ater:					
Before 7	12.97	After 23	.03	Before 4.	30 After	20.94				
Reason no	ot develope	ed: +		If Free Proc	duct, thickne	ess:				
Volume Con (12 x) where (al 2 - m d - dir x = 3 231 - m	imeser (m.) 1416		Well dis. VC 2" - 01: 3" - 0.5 4" - 0.6 6" - 1.4 10" - 4.0 12" - 6.8	6 7 5 7	-purge	gallons				
	T	Type of Insta	cond.	TURBIDITY	VOLUME	Positive Air Displacement				
THE ART	TEMP (F)			/NITTI I-)	The state of the s	NOTATIONS				
TIME	1.	pH	(mS or AS)	(NTUs)	REMOVED:	notations:				
1211	66.0	9.11	1388	71000	REMOVED:	tan, fine silt, hard better				
1211	66.6	9.11	1388	71000	2.3 4.6	tan, fine silt, hard bettern agitated bottom				
1211	66.0 66.6 66.3	9.41	1388 1184 1150	71000 71000 71000	2.3 4.6 6.9	tan, fine silt, hard bettern agitated bottom				
1211 1214 1219 1225	66.0 66.6 66.3 65.9	9.11 9.63 9.41 9.01	1388 1184 1150 1161	71000	2.3 4.6 6.9 9.2	tan, fine silt, hard bettern agitated bottom				
1211 1219 1219 1225 1230	66.0 66.6 66.3 65.9 66.1	9.11 9.63 9.41 9.01 8.50	1388 1184 1150 1161 1192	71000 71000 71000 71000 71000	2.3 4.6 6.9 9.2	tan, fine silt, hard bettera agitated bottom				
1211 1214 1219 1225	66.0 66.6 66.3 65.9 66.1	9.11 9.63 9.41 9.01 8,50 demate	1388 1184 1150 1161	71000 71000 71000 71000 71000	2.3 4.6 6.9 9.2	tan, fine silt, hard bettern agitated bottom				
1211 1219 1219 1225 1230 1232 1244	66.0 66.6 66.3 65.9 66.1 well	9.11 9.63 9.41 9.01 8.50	1388 1184 1150 1161 1192	71000 71000 71000 71000 71000	2.3 4.6 6.9 9.2	tan, fine silt, hard bettera agitated bottom				
1211 1219 1219 1225 1230 1232	66.0 66.6 66.3 65.9 66.1 well	9.11 9.63 9.41 9.01 8,50 demate 20.03	1388 1184 1150 1161 1192 red@12	71000 71000 71000 71000 71000	REMOVED: 2.3 4.6 6.9 9.2 11,5	tan, fine silt, hard bettern agitated bottom				
1211 1219 1219 1225 1230 1232 1244 1545	66.0 66.6 66.3 65.9 66.1 well	9.11 9.63 9.41 9.01 8,50 Lewate 20.03	1388 1184 1150 1161 1192 red @ 12	71000 71000 71000 71000 71000	REMOVED: 2.3 4.6 6.9 9.2 11,5	tan, fine silt, hard bettera agitated bottom				

11

11

DTB= 23.03

18.4

20.7

71000

71000

@ 21.5 g. DTW = 20.94 Gallons Actually Evacuated:

DTW = 20.40 1609

65.5

65.7

well

1601

1604

1604

Did Well Dewater? 165

7.65

dewatered

If yes, note above.

1197

1236

WELL DEVELOPMENT DATA SHEET

Project #: 070214-DA1					Client: Pangea					
Developer: DA Well I.D. MW-3A Total Well Depth: Before 13.77 After 13.78					Date Developed: 2/14/07					
					Well Diameter: (circle one) (2) 3 4 6					
					Depth to Water: Before 9.40 After 12.72					
Reason not develope	Reason not developed:						ickn	iess:		
Additional Notations	: Surge	1-10	n, c	in.	ane-	- purge				
Volume Conversion Factor (VCF) {12 x (d²/4) x n} /231 where 12 = in / foot d = diameter (iii) x = 3.1416 231 = in 3/gal		Well dia 2" 3" 4" 6" 10" 12"		VCF 0.16 0.37 0.65 1.47 4.08 6.87	1	- Parje				
1 Case Volume	Х	- 5		ied \	/olumes			gallons		
Purging Device:		Baile Sucti	r on Pu	ımp				Electric Submersible Positive Air Displacement		
	Type of Instal	led P	ump							

Other equipment used

TIME	TEMP (F)	pН	Cond. (mS or (S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS
0921	58.1	11.00	2287	71000	07	tan, cloudy, navel buttons,
0023	59.2	11.60	2302	71000	1.4	gright alor
0925	60.1	11.79	2481	71000	2,1	(1.
0928	well d	ewatered	@ 2.19	DIN=17	1.30	
1343	returne	d DTW=	10.57	Surged	3 min	
1351	63.2	10.82	2047	71000	2-8	tan, cloudy, no silt
1353	64.3	11:49	2118	71000	3.5	н
1956	64.2	11.52	2163	71000	4.2	1,
B56	nell	dewater	ed @ 4.7	9.		
857	pTW:	12.74	12102 0	W: 12.	52 DT	8 = 13.78
2/16/07	returne	@ 095	3 pow=	8.78 9	urged 3	min .
1002	62.1	9.77	1246	71000	4.9	brown, some fine Silt
104	63.1	10.44	1300	71000	5.6	
id Well Dev	rater? YUS	If yes, note abo	ve.	Gallons Actual	ly Evacuated:	7

WELL DEVELOPMENT DATA SHEET

Well I.D. MW-3A	PAGE 2 OF 2
Project #: 07024-DAI	Client: Pangea

TIME	TEMP (F)	pН	Cond. (mS or as)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS.
1006	63.0	10.63	1310	71000	6.3	tan, some fine silf
1009	63.3	10.97	1352	71000	7.0	. 0
1009	well	devotered	e 7g	DTW:		DTB= 13.78
						
	-					*
	į.					
-110000						
					- 10 W	145

Project #:	170214	-091		Client: Par	naea		
Develope				Date Developed: 2/14/07			
Well I.D. MW-4A				Well Diam			
Total We	Total Well Depth:				ater:	-	
Before	14.70	After /L	1.70	Before q	.Zo Afte	er 12.85	
Reason no	ot develope			If Free Prod	duct, thickn	ess:	
Volume Con (12 x) where (2 = in	imeier (in) 1416		Well dia. VC 2". = 0.1 3" - 0.3 4" - 0.6 .6" - 1.4 10" - 4.0 12" - 68	F 6 6 7 5 7	wage		
7	0.9	X	16			9.0	
1 Case	Volume		Specified	Volumes	=	gallons	
Purging De				p		Electric Submersible Positive Air Displacement	
TIME	TEMP (F)	pH	Cond. (mS or as)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	
1132	62.1	8.55	2265	71000	0.9	agitated bottom, hard buffer	
1134	63.8	9.06	2400	71000	1.8	n'	
1136	63.5	9.43	2370	71000	2.7	less silf	
1139	64.4	9.53	2373	71000	3.6		
1140	64.8	9.46	2318	71000	4.5	tan, sility	
1142	64.7	9.39	2296	71000	5.4	11	
1143	64.6	9.23	2298	71000	6.3		
1145	65.1	8.91	2239	71000	7.2	less silty	

8.1

a

9.9

Gallons Actually Evacuated: 12-6

3 min

3.38

71000

DTW=

Surge

71000

71000

16

tan, cloudy, no silt

8.56

7.96

8.04

2186

1953

1966

64.9

63.5

63.5

returned

Did Well Dewater? 169 If yes, note above.

1148

1149

1447

1457

1459

Well I.D. MW-4A	PAGE 2 OF 2
Project #: 070214-DAI	Client: Pangea

TIME	TEMP (F)	pН	Cond. (mS or uS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS
1501	63.6	8.09	1858	71000	10.8	tan, cloudy
1503	63.9	8.03	1798	71000	11.7	
1506	63,7	8.00	1740	71000	12.6	tan, cloudy, some fine sil
1507	well	dem at ever	10126	9: 07	-: 12.85	OTB= 14.70
1512	OTW=	12.35				77
					,	
10			1,34	-		
			general interest			
444						
	1					4
			-			
	4.					
				1		

Project #:	070214	-DA 1		Client: Pangea				
Developer				Date Developed: 2/14/07				
Well I.D.	Mw-5	TA		Well Diameter: (circle one) @ 3 4 6				
Total Well	Depth:			Depth to W	ater:			
Before 13.45 After 13.56				Before 12.	44 Afte	r 13.13		
Reason not developed:				If Free Prod	duct, thickne	ess:		
	rsion Factor (VCF) /4) x x } /231 oot eter (in)	7 4 6	Well disa VC 2° - 0.1 3° - 0.3 4° - 0.6 6° - 1.4 10° - 4.0 12° - 6.8	F 6 7 5 7 8	voje			
0.2		X	16			2.0		
1 Case V	olume		Specified	d Volumes	, i w	gallons		
Purging Dev		0.00	PACE TO STATE OF THE PACE TO S	p		Electric Submersible Positive Air Displacement		
			Cond.	TURBIDITY	VOLUME			
TIME	TEMP (F)	pH	(mS or (LS)	(NTUs)	REMOVED:	Han, cloudy very little sitty		
1000	57.3	9.00	2894	71000	0.2	hard bottom, odor		
1006	well a	emotered	60.2g	DIM: 13		11 DTW= 13.10		
1406	PT	W=13.02	retur	ned. su	ged 3 v	n.n		
1410	well d	waterede	0.39 DT	V=13.29	3			
1415	DT مي	W=13.24	-					
2/16/07	return	ed to w	211 0 07	10 OTW	12.97	<u> </u>		
0713	Started			1 2 22		.5 a.		
0734		dematered		1	The state of the s	739 DJW212.95		
	eturned	. added	9	surged	3 min			
1029	58.7	9.55	455	71000	4.5	nown fine silt		
1031	58.6	9.12	347	71000	5.4	н		
1033	58.8	6.88	334	71000	6.3	4		
1035	59.3	8.53	550	71000	7.2	10		
		If yes, note abo		Gallons Actual	ly Evacuated:	2.8 added: 16.5 g		

Well I.D. MW-5A	PAGE 2 OF 2
Project #: 070214-091	Client: Pangea

TIME	TEMP (F)	pН	Cond. (mS or µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1240	returne	d DTW=	QB\$ 12	.15		
1245		8.19	0.00	71000	7.7	brown, finesilt
1245	well	denates	red. DTM	= 13.13		
1413	netur	red	07W=12	.95		
1428		ewatered			w= 13.13	
				3		
				7		
		-				

		WELL	DEVELO	OPMENT	DATA SI	IEET	P.	
Project #:	20214-	PA I		Client: Pa	ngea			
Developer				Date Developed: 2/15/03				
Well I.D.		1-5B		Well Diameter: (circle one) (2) 3 4 6				
Total Well	Depth:			Depth to W	ater:		######################################	
Before	19.20	After 19.	20	Before 12	19 Afte	er 18.30 18	170	
Reason not developed:				If Free Prod	duct, thickn			
Volume Conve (12 x (d where 12 = in /	ersion Factor (VCF) 17/4) x n 1 /23 i foot neter (in)	is: surged	Well diss. VC 2" = 0.1 3" = 0.3 4" - 0.6 6" - 1.4 10" - 4.6 12" - 6.8	6 57 55 67 788	rge	34 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		
1.1. x						11.0		
'l-Case \	/olumė		Specifie	d Volumes	=	gallons		
Purging Dev	***			p	8	Electric Submersit Positive Air Displ		
TIME	TEMP (F)	pН	Cond. (mS or MS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTAT		
0813	59.3	7.69	2049	71000	1.1.	bottom, han	11, agitated	
0814	59.4	7.48	1959	71000	2.2			
0.620	58.4	7.77	2154	71000	3.3			
0820	G 2	DTW=	1	nell den	externed @	3.39	83	
0827	pm:	18.16					0	
1249	return	1	15.72	surged	3 min	-	9.	
1301	62.0	7.98	1883	7,000	4.4	brown, some	finesilt	
1306	well	dewater			1311 -	DTW=18.08	4.	
2/10/07	returne	d to well			summed	3 min	1	
0759	55.5		1850	71000	5.5			

71000

1824

nell denatered @ 6.6

If yes, note above.

57.2

returned

0804

0805

1121

Did Well Dewater? 765

6.6

DW= 18,22

Gallons Actually Evacuated:

Well I.D. Mw-5B	PAGE 2 OF 2
Project #: 070214-041	Client: Panaga

TIME	TEMP (F)	pН	Cond. (mS or a\$)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS: brown, fine SIH
1129	60.9	6.93	1700	71000	7.7	brown, the sit
1133	well den		DTW= 18.		8.0	DTB219.20
			1. Surge	1 3 m	n 07	W=17-28
1348	64.0	6.89	1709	71000	8.8	
1421	DTW	- 18.70		ewatered		
	. 4.					
				,		
				+		
	*-		,			ť.
					8	
		77.11				
		_				
					w.	
						· fey
-						*
5 -						· e.1
						1
	-130000					
			10			
		970			(3)	1654

Project #: 070214-0A1		Client: Pangea		
Developer: DA		Date Developed: 2/15/07		
Well I.D. MW SC		Well Diameter: (circle one) @ 3 4 6		
Total Well Depth: Before 26.68 After 26	.68	Depth to Water: Before 12-07 After 23.75		
Reason not developed:	,	If Free Product, thickness:		
Additional Notations: Surge. Volume Conversion Factor (VCF) {12 x (d²/4) x x} /231 where 12 = in / foot d = diameter (in) x = 3 1416 231 = in 3/gal	Well dia. VC	CF 16 37 65 47 08		
2.3 X	Specifie	d Volumes = gallons		
Purging Device:	Bailer Suction Pum	Electric Submersible Positive Air Displacement		

Type of Installed Pump
Other equipment used

TIME	TEMP (F)	pН	Cond. (mS or as)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
0943	59.9	7.44	1894	71000	2.3	noun, odor, agitated bottom
0946	61.8	7-11	1821	71000 .	4.6	i)
0949	62.6	7.08	1818	71000	6.9	11
0957	61.2	7.66	1834	171000	9,2	11
1959	well dan	satered @	9.29	DTW= 2	5,00	1004 0TW = 24.02
1009	D	W= 23.3	3			
1347	DTW=	17.97	surged	3 min		
1359	62.3	7.25	1759	71000	11.5	tan, some fines. It
1404	63.0	6.97	1808	71000	13.8	(t.
1408	63.5	6.91	1797	71000	16.1	
1424	63.0	7.06	1800	71000	18.4	и
1427	Nell	dewatered	@19a.	DJW = 25	125	1432 DTW= 24.30 DTB= 264
15.	return	d one	15.78			
Did Well Dev	water? YES	If yes, note abo	ove.	Gallons Actual	ly Evacuated:	25.3

Well I.D. MW-5C	PAGE 2 OF 2
Project #: 070214-DA1	Client: Pangla

TEMP (F)		Cond.	7-50-5 PM 10-70-5 PM 10-50-5		
	pН	(mS or (S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
returne	d. DTW=	12.28	0 1142	SUVOLE	ed 3 min.
62.4	6.89	-		20.7	brown, some fine silt
62.9	6-91		71000		
63.6	Total man and the		71000		
neudo					DTR = 26.68
4.0					
-					
					246
		1			
					4
	- 11				2000
	62.4 62.9 63.6 Neudo	62.4 6.89 62.9 6-91 63.6 7.24 neudonatered	62.4 6.89 1720 62.9 6-91 1788 63.6 7.24 1817 neudonatered @ 25.30	62.4 6.89 1720 71000 62.9 6-91 1788 71000 63.6 7.24 1817 71000 neudonatered @ 25.39. OTA	62.9 6-91 1788 71000 23 63.6 7.24 1817 71000 25.3 Neudanatered @ 25.3 g. Orn = 23.75

(131

WELL DEVELOPMENT DATA SHEET

Project #: 07 0214-291		Client: Pangea				
Developer: OA		Date Developed:				
Well I.D. MW-6A		Well Diameter: (circle one) Ø 3 4 6				
Total Well Depth: Before 14.89 After 14	1.92	Depth to Water: Before 6.19 After 12.34				
Reason not developed:		If Free Product, thickness:				
Additional Notations: 50-79	d 10 mis	. p.e-puble				
Volume Conversion Factor (VCP) [12 x (d ³ /4) x n] /231 where 12 ~ in / foot d = diameter (in) n = 3 1416 231 - in 3/gal	2" - 0 3' - 0 4' - 0 6' - 1 10' - 4	CF 116 0.37 0.65 47 4.08 0.87				
1 Case Volume X	Specific	ed Volumes = gallons				
Purging Device:	Bailer Suction Pur	D Electric Submersible Positive Air Displacement				

Type of Installed Pump
Other equipment used

TIME	TEMP (F)	рН	Cond. (mS or as)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS
1215	61.1	8.07	1865	71000	1.5	gren, silly, agitated botton
1217	62.4	7-67	1560	71000	3	possible slight sheen
1220	62.0	7-56	1438	71000	4.5	nosheem
1222	62-8	7.55	1445	71000	6.0	11
1224	63.0	7.51	1365	71000	7.5	
1226	63.0	7.46	1295	7.1000	9	17
1228	62.8	7.46	1258	71000	10.5	11
1230	63.0	7.43	1241	71000	12	"
1233	62.6	7-42	1249	71000	13.5	11
1236	62.7	7.42	1252	71000	15	less silt
237	63.0	7.39	1235	71000	16.5	1' DTW=11.30
1240	62.7	7-39	1219	71000	18	11
1243	63.0	7.38	1213	71000	19.5	и
d Well Dev	vater? NO	If yes, note ab	ove.	Gallons Actual	ly Evacuated:	37.5

Well I.D. MW-6A	PAGE 2 OF 2
Project #: 070214-DQ1	Client: Pangea

TIME	TEMP (F)	pH	Cond. (mS or as)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1247	63.3	7.38	1203	71000	21	tan, cloudy, sometimesilt
1249	63.6	7-39	1227	71000	22.5	very littlesilt
1251	63.4	7.40	1198	71000	24	0
1254	63.5	7.37	1186	71000	25.5	Nosilt
1257	63.4	7.36	1186	71000	27	a ,
1300	63.5	7-35	1174	71000	28.5	" DTW = < 11.60
1303	62.6	7.37	1172	71000	30	C .
1306	63.1	7.37	1161	71000	31.5	fan, clouds
1309	62.9	7.37	1153	71000	33	ti -
1312	63.4	7.37	1144	71000	34.5	, 11
1315	63.2	7.35	1140	71000	36	11
1318	63.0	7.35	1148	7,000	37.5	tan, cloudy, hard botte
	ptw=	12.34	@ 1319	1324 OTW =	10,73	no silt ot 8-13-79
						34
- 1000					1	

Project #: 870214	-041	HKOCELII	Client: Pangea			
Developer: DA			Date Developed: 2/15/07			
Well I.D. MW-71	В		Well Diameter: (circle one) ② 3 4 6			
Total Well Depth: Before 18.50	After 18.50		Depth to Water: Before 11:30 After 17-57			
Reason not develope	ed:		If Free Product, thickness:			
Additional Notations Volume Conversion Factor (VCF) (12 x (d²/4) x x) /231 where 12 = in / foot d = diameter (in) π = 3.1416 231 = in 3/gal	20.0	ia.	VCF 016 037 0.65 147 4.08 6.87			
1.2 Case Volume	х	Specifi	fied Volumes = gallons	GI.		
	☐ Bai ☐ Suc Type of Installed Other equipment	tion Pur Pump				

TIME	TEMP (F)	pН	Cond. (mS or (LS))	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
0850	59.8	7.72	2209	71000	1.2	word, fine silt, agitabed
0854	59.8	7.70	2093	71000	2.4	possible Sheen
0900	nell den	ratered	DTW=17	48	2.8	1.
0905	orw =	17-15				,*
1317	return	ed Dru	1:12.11	Surge	d 3 n	in
1327	62-7	7.63	1950	71000	3.6	prown fine silt, no shee
1331	62.9	7.75	1794	71000	4.8	T, P
1336	61.4	8.01	1706	7.1000	6	D .
1337	nell	Lewatere	1 06	. DTW.	17-44	1342 Djus 17.22
	DTB =	18.48		3		1.7
2/16/07		JP 035	7 Dow:	11.64	Started	purging MW-70
		090	a prw:	11.64	Mw-7c	dewatered
ħ.	0925	exped 3	mir	34		9 4 1 E
Did Well Dev	THE STATE OF THE S	If yes, note abo	ve.	Gallons Actual	ly Evacuated:	1 1

Well I.D. MW-2B	PAGE 2 OF 2
Project #: 070214-DA1	Client: Panorea

TIME	TEMP (F)	pН	Cond. (mS or AS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
0928	63.0	7.59	1584	71000	7.2	proun, fine silt
0930	63.0	7.65	1573	71000	8.4	very little silt, brown
0939	well o		08.40		=17.50	DTR = 18:50
1231.			V= 12.97		d 3 min	,
1238	66.5		1477	71000	9.6	nrown, finesit
1247	68.2	8.10	1372	71000	10.8	
1247	well	dewater	red @ 10	.89	DTW=17	57
			Ref. *			*
31						
		#				
-				21.		
		•				
		-N		-		
	V					

Client: Pangea
Date Developed: 2/15/07
Well Diameter: (circle one) ② 3 4 6
Depth to Water: Before 11.45 After 23.55
If Free Product, thickness:
min. Dre-Durge
CF 0.16 0.37 0.65 1.47 4.08 6.87
ed Volumes = gallons
□ Electric Submersible pp Positive Air Displacement

Type of Installed Pump
Other equipment used

TIME	TEMP (F)	pH	Cond. (mS or (as)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1130	65.6	7-69	1947	71000	2.1	bottom, hand bottom
1134	67.3	7-88	2016	71000	4.2	ii ii
1142	66:8	8.11	2094	7,000	6.3	jt
1142	well d	ewatere	1 @ 6.3	9. 1142	DIW=	23.41 1148 DW=23.18
1153	DIW= 7	2.99		,		
1511.	returne	d to been	OTW=1	7.18	urged 3	min
1526	66.2	7.48	1584	71000	9:34	grey, fine sill, possibleshee
1530	65.1	8.08	1700	71000	10.5	
1532	well d	enotered (10.50.	DTW= 23	25 0	1B= 24.55 . 1537 DTW= 2
2/16/07	retime	1 to well	@084970	W= 12.05	SUV	ged 3 min
0859	59.0	7.90	1592	71000	12.6	grey, fire silt, possible shown
0904	61.6	7.49	1576	71000	14-7	no sheen, gray, some fine si
0909:	62.9	7.86	1493	71000	16.8	n
d Well Dev	vater? 785	If yes, note abo	ove.	Gallons Actual	ly Evacuated:	23.3

0909 well dewatered @ 16.89 DTW = 23.39 DTB = 24.55

Well I.D. MW-7C	PAGE 2 OF 2	7.6
Project #: 070214-DAI	Client: Pangea	

TIME	TEMP (F)	рН	Cond. (mS or (S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1256	returne	d DTA	1= 14.70	CUVO	ed 3 v	Min.
1308	66.5	7.55	1421	71000	19.9	grey, some fine sitt
1313	65.8	7-99	1430	71000	21	11
1321	64.2	8.12	1457	71000	23.3	13
1323	well	dewatere	16 23	.3 a. r	TW= 23.	55
)	i i	
	 					
	-					
	-		7			
			Y			
34.						
30-311						9
						(4
		-				
•						

Project #:	070214-	781		Client: Pangea			
Developer: DA				Date Developed: 2/14/67			
Well I.D.		A		Well Diam			
Total We				Depth to W			
Before	14.83	After 14	.85	Before 9.11	6 Afte	er 13.55	
Reason n	ot develop			If Free Prod			
Volume Con {12 s where 12 = 16	ameter (in) 1416	the state of the s	Well dia VC 2° = 0.1 3° - 0.3 4° - 0.6 6° - 1.4 10° - 4.0 12° - 6.8	F 6 7 7 5 7 8	vge		
	1.9	X	10			9.0	
1 Case	Volume		Specified	ed Volumes = gallons			
Purging Do		Type of Inst	Suction Pum	р	88	Electric Submersible Positive Air Displacement	
TIME	TEMP (F)	рН	Cond. (mS or (S)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:	
1056	58.2	8.38	2305	71000	0.9	agitated bottom, hard botto	
1057	59.3	8.05	2091	7,000	1.8	180()	
1059	59.8	7-78	2005	71000	2.7	in	
10.0							

TIME	TEMP (F)	pН	Cond. (mS or (S))	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1056	58.2	8.38	2305	71000	0.9	agitated bottom, hard botto.
1057	59.3	8.05	2091	7,000	1.8	,,,,
1059	59.8	7-78	2005	71000	2.7	n
1100	60,2	7.65	1972	71006	3.6	"
1103	60.1	7.72	1952	71000	4.5	n
1105	well	unatere	Je 4.5	a DTW:	13.44	1110 DJW= 12.83
1417	return	ed to me	el DTW	= 9.33	surged :	min
1427	61.3	9.35	1542	71000	5.4	tan, doudy, fine silt
1429	60.8	7.64	1587	71000	6.3	no silt
1431	60.5	7.28	1532	71000	7.2	A
1433	60.6	7.54	1488	7/000	9.1	N
1436	61.0	7.76	1567	71000	9.0	11
1436	well de	ratered a	e 9.0 q.	DTW=1	8.55	
Did Well Dev	vater? Yes	If yes, note abo			ly Evacuated: 9	

Well I.D. 0702140 MW-8A	PAGE 2 OF 2
Project #: 070214-041	Client: Panged

		i i	Cond.	TURBIDITY	VOLIDAE	
TIME	TEMP (F)	pH	(mS or fis)	(NTUs)	REMOVED:	NOTATIONS:
1442	DTW:	: 12.97	Smin	· recha	rge	
	+ +					
	1					
3000	-					100 100 1100 11 1100
						5
(0)						
		-				
	-					
æ						

			19	CUI D				
Project #:	070214	1-0A1		Client: Pangen				
Develope		Description of the Control of the Co		Date Developed:				
Well I.D.	MW-9	sc		Well Diameter: (circle one) ② · 3 4 6				
Total We	Il Depth:			Depth to W	ater:			
Before 2	4.77	After 25	.01	Before 10	.73 Afte	r 23.83		
Reason n	ot develope	ed:		If Free Proc				
Additiona	al Notation			n. Dr.	hurane			
/ (12 x) where, i) (2 = in	ameser (in) 1416	J	Well dia VC 2° - 0.1 3° - 0.3 4° - 0.6 6° - 1.4 10° - 4.0 12° - 6.8	6 7 5 7	, ,			
2	.2	X						
		/ 2						
1 Case	Volume		Specified Bailer	i Volumes	= >	gallons Electric Submersible		
	Volume evice:		Bailer Suction Pum					
1 Case	Volume evice:	Type of Insta	Bailer Suction Pum		0	Electric Submersible Positive Air Displacement NOTATIONS:		
I Case Purging De	Volume evice:	Type of Insta	Bailer Suction Pump alled Pump nent used Cond.	TURBIDITY	VOLUME	Electric Submersible Positive Air Displacement		
TIME	Volume evice:	Type of Insta Other equipm	Bailer Suction Pump alled Pump nent used Cond. (mS or us)	TURBIDITY (NTUs)	VOLUME REMOVED:	Electric Submersible Positive Air Displacement NOTATIONS:		
TIME 1033	Volume evice: TEMP (F) 61.7	Type of Insta Other equipm pH 7.35 7.30	Bailer Suction Pump alled Pump nent used Cond. (mS or (iS)) 1984 2015	TURBIDITY (NTUs) 71000 71000	VOLUME REMOVED:	Positive Air Displacement NOTATIONS: brown, fine s. 11, hourd		
TIME 1033 1037	Volume evice: TEMP (F) 61.7 62.6 62.9	Type of Insta Other equipm pH 7.35 7.30 7.70	Bailer Suction Pump alled Pump nent used Cond. (mS or us) 1984 2015	TURBIDITY (NTUs) 71000 71000	VOLUME REMOVED:	Positive Air Displacement NOTATIONS: brown, fine s. 11, hourd		
TIME 1033	Volume evice: TEMP (F) 61.7 62.6 62.9 well 6	Type of Insta Other equipm pH 7.35 7.30	Bailer Suction Pump alled Pump nent used Cond. (mS or us) 1984 2015	TURBIDITY (NTUs) 71000 71000	VOLUME REMOVED: 2.2 4.4 6.6 97-97	Positive Air Displacement NOTATIONS: brown, fine s. 11, hourd		
TIME 1033 1037 1040 1057	Volume evice: TEMP (F) 61.7 62.6 62.9 well 6	Type of Insta Other equipm pH 7.35 7.30 7.70 watered	Bailer Suction Pump alled Pump nent used Cond. (mS or (1S)) 1984 2015 2007	TURBIDITY (NTUs) 71000 71000 71000	VOLUME REMOVED: 2.2 4.4 6.6 97-97	NOTATIONS:		
1 Case Purging De TIME 1033 1037 1040 1055 1057 1438	Volume evice: TEMP (F) 61.7 62.6 62.9 well evice:	Type of Insta Other equipm pH 7.35 7.30 7.70 watere 23.95 Dru=	Bailer Suction Pump alled Pump nent used Cond. (mS or (1S)) 1984 2015 2007 102 PTM 10,80	TURBIDITY (NTUs) 71000 71000	VOLUME REMOVED: 2.2 4.4 6.6 97-97	NOTATIONS: Notati		
TIME 1033 1037 1040 1057	Volume evice: TEMP (F) 61.7 62.6 62.9 well 6	Type of Insta Other equipm pH 7.35 7.30 7.70 watered	Bailer Suction Pump alled Pump nent used Cond. (mS or (1S)) 1984 2015 2007 102 Pro	TURBIDITY (NTUs) 71000 71000 71000	VOLUME REMOVED: 2.2 4.4 6.6 37-37	NOTATIONS:		

DIW=

Gallons Actually Evacuated:

71000

71000

DTB = 25.03

1827

1838

returned to well \$ 0815

If yes, note above.

15 06 DJW 21.20 .

22

13.2

1501

0817

0830

Did Well Dewater? Yes

58:1

59.4

2/16/07

Well I.D. MW-8L	PAGE 2 OF 2
Project #: 070214-0A1	Client: Pangea

TIME	TEMP (F)	pН	Cond. (mS or \(\mu \S \)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
0834	58.3	7.66	1784	71000	17.6	tan, fine silt
0838			DTW = 23.	92	DTB=25.0	
1210	return	d own	10,90	Sura	ed 3 mi	
1221	64.4	7.27	1800		19.8	brown, fire silt
1224	64.7	7.45	1801	71000	22.0	
1227	well	dewater	ed @ 2	La DI	w= 23.8	7
				J .		
		10			,	
				Contract of the		
		54 5 12	0	1.17		
344.4132						
P.	- 8	Ad .				/
_20						
						х.
		7 (50)				

Project #: 070326 - h	x-2	Client: Pana	rea CE	Former Exxen	Broadway Ol
Developer: Will C		Date Developed: 3/26/07			
Well I.D. MW-3C		Well Diameter: (circle one) 2 3 4 6			
Total Well Depth:		Depth to Wat	er:		
Before 25.35 After 2	6.59	Before to-	64 After		
Reason not developed:		If Free Produc	ct, thickne	ess:	
Additional Notations: Sorae	ed well for	10 mm w/ 8	2' sorge	block prior 1	Durge
Volume Conversion Factor (VCF): {12 x (d²/4) x π} /231 where 12 = in / foot	Well dia. VC 2" = 0.8 3" = 0.3 4" - 0.6 6" = 1.4 10" - 4.0 12" = 6.8	6 7 5 7 8	30%=	13.58	5
2, 4 X 1 Case Volume	Specified	i Volumes	=	24 gallons	->
	Bailer Suction Pump installed Pump ipment used	140.1		Electric Submers Positive Air Disp	77.74.70
Other equ	Cond.	2 surge 6			
TIME TEMP (F) pH	(mS or us)	The Part of the State of the St	VOLUME EMOVED:	NOTA	TIONS:
1302 bean	pura	e w/ n	widdle	burg Dis	no
1305 63.6 8.3	552	1000		Odor, Silly G	ver / hard both
1308 Well dev	satered	@ 4	gallone	DUISEC	Oisht shee
Recharge info	mation			1000	
	25,20		,		
1310 DTW=		7,-	71 0	echarge	in 20 m
1311 DTW=			2 avg.	10	
1312 DTW =		1	0	A 11	101
1313 DTW=	CATALOG TO STATE OF THE STATE O	(2	n G	124 00	manutes
1317 DTW=				000	mariv 163
1324 OTW =				1	
1329 DTW =					
	15,70				
Did Well Dewater? If yes, note		Gallons Actually E	vacuated:		

Well I.D.	mw-	30		PAGE 2 O	F 2	
Project #:	070	326-W	e-2	Client: Do	ugea c	Former Exxon, Browding Caller
					2	, ,
TIME	TEMP (F)	pH	(mS or (µS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1347	301	ae w	ell 6	or ad	2. Hono	J 5 mhotes
1353	bec	in ou	rae @	Slow	ser ve	te (aigon 2 sec/off 12 sec)
1355	595	7.3	967	71000	4.8	adoralisht shen very
1400	62.3	6.9	1094	>1000	7.2	ator & isht show sity gray
1400	well	Den	patere	da	7.2	gallons
1430	->	DTW	= 16	.30%	Sura	e well for
as	Bitro	ra 5	nino	tes		
1435	bea	in pur	ac e	Same .	speed (air; on for 2 sec/off for 12
1442	59.8	6.9	1192	71006	9.6	ador & light sheer/STHY grey (le
1442	we	11 de	wate	red C	2 9-6	gallons
1515-	TOA	W =	16.6	5,5	wae u	rell for
29%	Honal	5 mm	stes	/	7	
1520	begi.	n purge	e @ se	me spe	ed (air	on 2 sec/off for 12)
1527	60.7	6.7	1312	71000	12.0	codost lightshen/grey w/some silf
1530	well	den	satere	da	12,	3 gallons
echera	e m	Corm	atton,		and	A. NO A
1531	DT	$\omega =$	25.44		erw.	120,26
1532			24.60			
1533		D	23.69			
1534		1	23.10	. /		
1535			22.264	2		
1536			21-088	6		
1537		->	21.69			
1538		<u>→</u>	21,40			
1539	-		21.11			
1540			20.93			

TEST EQUIPMENT CALIBRATION LOG

PROJECT NAM	ME Pargea @ F	WALL EXXON	Sroady Oakles	PROJECT NUM	IBER 07032	26-WC-2	ζ
EQUIPMENT NAME	EQUIPMENT NUMBER	DATE/TIME OF TEST	STANDARDS USED	EQUIPMENT READING	CALIBRATED TO: OR WITHIN 10%:	TEMP.	INITIALS
Myron L 6P Ultrameter	605785	3/26/07 @ 1250	41.0/2.0/10.0pH 3900ds	392625	3900als	61.2°F	ue
Hach 2100 Turbidimeter	041000	3/26/07 @1255		5.03/60.7/473 NTU	ok V	_	ul
			17.0				

WELL GAUGING DATA

Project # 070	326-WC-2 Date	3/26/07	Client Pargea	
Site Enner	ExxM @ 5	175 Brandin	Oakland	

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB of TOC	Ghal DTE
mw-(4					8.26	- 63		
mw-2C	2					8.72			
MW-3A	2					9,22			
MW-32	2					10.64	25.35		26.59
mw-4A	2					9.88			
mw-5A	2					10.82			
nw-5B	2					12-62			
MW-5C	2					12.62			(*)
mw-52 mw-64	2					7.17			
MW-7A	2				-	11.05			
MW-7B	2					11-00			
mw-84	2					9.83			
MW-84 MW-8C	2					11.77		U	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

APPENDIX F

Surveyor's Report

Virgil Chavez Land Surveying

721 Tuolumne Street Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

April 10, 2007 Project No.: 2588-04

Morgan Gillies Pangea Environmental Services, Inc. 1710 Franklin Street, Ste 200 Oakland, CA

Subject:

Monitoring Well Survey Former Exxon Station 5175 Broadway Oakland, CA

Dear Morgan:

This is to confirm that we have proceeded at your request to survey the ground water monitoring wells located at the above referenced location. The survey was completed on April 5, 2007. The benchmark for this survey was a cut square on top of easterly curb of Broadway, opposite entrance to house #5718 Broadway. The latitude, longitude and coordinates are for top of casings and are based on the California State Coordinate System, Zone III (NAD83). Benchmark Elevation = 180.06 feet (NGVD 29).

Latitude	Longitude	Northing	Easting	Elev.	Desc.
				161.28	RIM MW-1
37.8356915	-122.2519535	2131491.69	6055757.84	161.10	TOC MW-1
				161.18	RIM MW-2C
37.8355228	-122.2519238	2131430.11	6055765.28	160.65	TOC MW-2C
				161.86	RIM MW-3A
37.8355271	-122.2520974	2131432.62	6055715.16	161.55	TOC MW-3A
				162.08	RIM MW-3C
37.8355738	-122.2520889	2131449.55	6055717.94	161.79	TOC MW-3C
				162.88	RIM MW-4A
37.8356562	-122.2518599	2131478.33	6055784.63	162.44	TOC MW-4A
				161.11	RIM MW-5A
37.8355207	-122.2523005	2131431.37	6055656.48	160.82	TOC MW-5A
				161.69	RIM MW-5B
37.8355004	-122.2522497	2131423.70	6055671.02	161.50	TOC MW-5B
				161.38	RIM MW-5C
37.8355152	-122.2522822	2131429.26	6055661.72	161.03	TOC MW-5C
				161.94	RIM MW-6A
37.8356459	-122.2519958	2131475.30	6055745.31	161.58	TOC MW-6A
				159.33	RIM MW-7A
37.8354200	-122.2520260	2131393.22	6055735.04	159.15	TOC MW-7A

Virgil Chavez Land Surveying

721 Tuolumne Street Vallejo, California 94590 (707) 553-2476 • Fax (707) 553-8698

> April 10, 2007 Project No.: 2588-04 Page Two

Monitoring Well Survey Former Exxon Station 5175 Broadway Oakland, CA

Latitude	Longitude	Northing	Easting	Elev.	Desc.
37.8354092	-122.2519954	2131389.13	6055743.82	158.78 158.53	RIM MW-7C
				161.78	RIM MW-8A
37.8356541	-122.2521975	2131479.37	6055687.12	161.57 161.48	TOC MW-8A RIM MW-8C
37.8356713	-122.2521866	2131485.59	6055690.39	161.33	TOC MW-8C

He. 6323 Exalk 31-8 Sincerely,

Virgil D. Chavez, PLS 6323