RECEIVED

10:00 am, Dec 11, 2008

Alameda County
Environmental Health

December 4, 2008

VIA ALAMEDA COUNTY FTP SITE

Mr. Steven Plunkett Alameda County Environmental Health 1331 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Groundwater Monitoring Report – Second Half 2008

5175 Broadway Street Oakland, California ACEH Fuel Leak Case No. RO#0000139

Dear Mr. Plunkett:

On behalf of Rockridge Heights LLC, Pangea Environmental Services, Inc., has prepared this *Groundwater Monitoring Report*—Second Half 2008. The report describes groundwater monitoring, sampling, and other site activities.

The report will be uploaded to the Alameda County ftp site. As requested, Pangea will not submit a hard copy of this report to Alameda County Environmental Health.

If you have any questions or comments, please call me at (510) 435-8664.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E.

fallell

Principal Engineer

Attachment: Groundwater Monitoring Report – Second Half 2008

cc: Rockridge Heights, LLC, C/O Gary Feiner, 34 Schooner Hill, Oakland, California 94618 SWRCB Geotracker (Electronic copy)

GROUNDWATER MONITORING REPORT – SECOND HALF 2008

5175 Broadway Oakland, California

December 4, 2008

Prepared for:

Rockridge Heights, LLC C/O Gary Feiner 34 Schooner Hill Oakland, California 94618

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies Project Manager Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

INTRODUCTION

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. (Pangea) conducted groundwater monitoring and sampling at the subject site (Figure 1). The purpose of the monitoring and sampling is to evaluate dissolved contaminant concentrations, determine the groundwater flow direction, and inspect site wells for separate-phase hydrocarbons (SPH). Current groundwater analytical results and elevation data are shown on Figures 2 and 3. Current and historical data are summarized on Table 1.

SITE BACKGROUND

The subject property is located at 5175 Broadway Street, at the southwest corner of the intersection of Broadway and Coronado Avenue in Oakland, California in Alameda County (Figure 1). The site is approximately 0.6 miles south-southeast of Highway 24 and approximately 2.3 miles east of Interstate 80 and the San Francisco Bay. The property is relatively flat lying, with a slight slope to the south-southwest, and lies at an elevation of approximately 160 feet above mean sea level. Topographic relief in the area surrounding the site also slopes generally towards the south-southwest. The western site boundary is the top of an approximately 10 foot high retaining wall that separates the site from an adjacent apartment complex.

The property has been vacant since 1979 and was formerly occupied by an Exxon Service Station used for fuel sales and automobile repair. The site is approximately 13,200 square feet in area with about 10% of the area occupied by a vacant station/garage structure. The majority of the ground surface is paved with concrete and/or asphalt, although the former tank location is not paved. Land use to the west and northwest is residential, including apartment buildings and single family homes. Properties to the northeast, east and south of the site are commercial. The site and adjacent properties are shown on Figure 2.

Environmental compliance work commenced when the site USTs were removed in January 1990. Three 8,000-gallon steel single-walled USTs, associated piping, and a 500-gallon steel single-walled waste oil tank were removed. Tank Project Engineering, Inc. (TPE) conducted the tank removal and observed holes in all four tanks. Approximately 700 tons of contaminated soil was excavated during tank removal and was subsequently remediated and reused for onsite backfill by TPE. In April 1990, TPE installed and sampled monitoring wells MW-1, MW-2 and MW-3. In June 1991, Soil Tech Engineering (STE), subsequently renamed Environmental Soil Tech Consultants (ESTC) installed monitoring wells STMW-4 and STMW-5. Groundwater monitoring was conducted on the site intermittently until October 2002. Golden Gate Tank Removal (GGTR) performed additional assessment in January and February 2006. In June 2006, the property was purchased by Rockridge Heights, LLC. Pangea commenced quarterly groundwater monitoring at the site in July 2006. MTBE is not considered to be a contaminant of concern because use of the site for fuel sales

predates widespread use of MTBE in gasoline and because analytical results have not show significant detections of MTBE.

In January and March 2007, Pangea installed twelve wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C) and three offsite soil borings to help define the vertical and lateral extent of groundwater contamination. Pangea also abandoned four monitoring wells (MW-2, MW-3, STMW-4 and STMW-5) to reduce the risk of vertical contaminant migration and improve the quality of monitoring data. New wells installed at the site were categorized according to the depths of their screen intervals. Shallow (A-zone) wells have screen intervals of approximately 10 to 15 feet bgs, which generally straddle the top of the water table and are generally screened in surficial fill and alluvium. Intermediate-depth (B-zone) wells are screened at approximately 15 to 20 feet bgs, either in surficial strata or underlying fractured bedrock, while deep (C-zone) wells are generally screened at approximately 20 to 25 feet bgs and into fractured bedrock. Well MW-1 is screened across both the A-zone and B-zone.

In April 2007, Pangea performed a dual-phase extraction (DPE) pilot test to evaluate whether DPE is an appropriate remedial technology to remove residual hydrocarbons from beneath the site. In July 2007, Pangea submitted an Interim Remedial Action Plan for site corrective action.

In August 2007, Pangea installed three offsite monitoring wells (MW-9A, MW-9C and MW-10A) and conducted subslab vapor sampling in the commercial building located immediately south of the site. The purpose of the offsite well installation was to determine the downgradient extent of contaminant migration, and to help evaluate downgradient effects of any future remediation conducted onsite. The purpose of the subslab vapor sampling was to determine whether vapor migrating from underlying groundwater had impacted soil vapor. Soil gas sampling was also conducted near the southern and western edge of the property. Soil gas sampling and offsite monitoring well installation is described in Pangea's *Soil Gas Sampling and Well Installation Report* dated October 23, 2007. Further subslab/soil gas sampling was conducted at the two adjacent properties in June 2008 and reported in Pangea's *Additional Soil Gas Sampling Report* dated July 14, 2008.

In response to a letter from ACEH dated June 10, 2008, Pangea submitted a *Revised Site Conceptual Model and Corrective Action Plan* (Revised CAP) dated July 23, 2008. ACEH commented on the Revised CAP in a letter dated July 31, 2008 and Pangea prepared a *Corrective Action Plan Addendum* dated August 11, 2008 to address ACEH comments. In a letter dated August 22, 2008, ACEH approved the CAP and Addendum as a 'Draft CAP' and initiated the public-participation process.

GROUNDWATER MONITORING AND SAMPLING

On September 12, 2008, Pangea conducted groundwater monitoring and sampling at the site. Site monitoring wells were gauged for depth-to-water and inspected for separate-phase hydrocarbons (SPH). To obtain water levels representative of the piezometric surface, technicians removed all well caps (allowing water levels to equilibrate) the night prior to sampling. Groundwater samples were collected from all site monitoring wells this quarter except well MW-5A, which contained insufficient water to collect a sample.

Prior to sample collection, approximately three casing volumes of water were purged using disposable bailers, an electric submersible pump, or a clean PVC bailer (although fewer casing volumes were purged if the well dewatered). During well purging, field technicians measured the pH, temperature and conductivity of the water. A groundwater sample was collected from each well with a disposable bailer and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4° C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was stored onsite in DOT-approved 55-gallon drums. Groundwater monitoring field data sheets, including purge volumes and field parameter measurements, are presented in Appendix A.

MONITORING RESULTS

Current and historical groundwater elevation and analytical data are described below and summarized on Table 1, Figure 2 and Figure 3. To facilitate data evaluation, well construction details are summarized on Table 2. Groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015C with silica gel cleanup; total petroleum hydrocarbons as gasoline (TPHg) by modified EPA Method 8015C; and benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8021B. Samples were analyzed by McCampbell Analytical, Inc., of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is included in Appendix B.

Groundwater Flow Direction

Based on depth-to-water data collected September 12, 2008, shallow groundwater (A-zone) flows generally southwards to southwestwards throughout most of the site and in the area downgradient from the site, as shown on Figure 2. The relatively high groundwater elevations measured in well MW-6A suggest that shallow groundwater is mounded in the former UST excavation and that the local flow direction radiates outwards away from the former excavation area towards the northeast corner of the site in the direction of MW-4A. These observations are interpreted as indicating that the unpaved former UST excavation has acted as a collector for rainwater and that the asphalt pavement covering the remainder of the site serves to reduce

infiltration elsewhere while directing rainwater to the unpaved UST excavation area. The current inferred flow direction in shallow groundwater is generally consistent with previous monitoring results.

Groundwater flow in deep groundwater (C-zone) is generally south to southwestwards at approximately the same gradient as the A-zone wells, as shown on Figure 3. Generally, the elevation of the piezometric surface for C-zone wells is lower than elevations for A-zone wells, indicating that a downward gradient is present. The inferred flow direction is generally consistent with previous monitoring results.

Hydrocarbon Distribution in Groundwater

No measurable thickness of separate-phase hydrocarbons (SPH) was observed in any monitoring wells this quarter, although an immeasurable sheen was observed by the field technician in monitoring wells MW-1, MW-4A, MW-7B and MW-7C. During previous quarterly monitoring, a thin layer of SPH had been measured in well STMW-4, but no measurable SPH were detected this quarter in well MW-4A, which was installed in the drilled out borehole of STMW-4 but screened over a shallower depth interval than STMW-4. Monitoring well MW-5A had insufficient water to sample this quarter.

The maximum TPHg and TPHd concentrations detected this quarter were 110,000 μ g/L and 120,000 μ g/L, respectively, in shallow well MW-4A. The maximum benzene concentration was 2,100 μ g/L in shallow well MW-3A. The only hydrocarbon detected in the three downgradient offsite monitoring wells was 1.2 μ g/L benzene in MW-9A. *Historic low* concentrations of TPHg (130 μ g/L) and benzene (7.1 μ g/L) were detected in well MW-2C. *Historic low* concentrations of benzene were also detected in wells MW-3A (2,100 μ g/L) and MW-7B (450 μ g/L). A *historic low* concentration of TPHd (11,000 μ g/L) was detected in well MW-3C. Hydrocarbon concentrations were within historic ranges in all other site wells.

Shallow (A-zone) groundwater contains petroleum hydrocarbons at elevated concentrations in two primary areas near the former UST excavation: a northern area in the vicinity of well MW-4A, and a southwestern area in the vicinity of wells MW-3A and MW-8A. Prior shallow grab groundwater sampling data also indicates that the southern area of contamination extends to the southern site boundary in the vicinity of wells MW-7B and MW-7C, although *benzene* concentrations are apparently biodegrading quickly in these wells. The low to non-detect concentrations of hydrocarbons in wells MW-9A and MW-10A indicate that offsite migration of petroleum hydrocarbons in shallow groundwater is minimal. The observed distribution of hydrocarbons in A-zone groundwater is presumably due to plume migration radially away from the excavation area, likely caused by mounding of groundwater within the uncapped former UST excavation during the rainy season.

Contaminant distribution in deeper groundwater differs significantly from the distribution of hydrocarbons in shallow groundwater. High levels of contamination within deeper groundwater (B-zone and C-zone) only appear to be present in the vicinity of wells MW-3C, MW-7B and MW-7C in the central and southern portions of the site. Again, the apparent biodegradation of benzene and select other compounds in wells MW-7B and MW-7C suggests that deeper hydrocarbons are attenuating. In addition, the very low concentrations of petroleum hydrocarbons detected in newly installed offsite well MW-9C indicates that offsite plume migration is minimal. Well screen intervals for shallow and deep wells are summarized on Table 2.

Fuel Oxygenate Distribution in Groundwater

No MTBE was detected above reporting limits in any samples obtained from site monitoring wells this quarter. MTBE is not a contaminant of concern at this site both due to the lack of detections, and because the USTs were removed in 1990 prior to widespread use of MTBE as a fuel oxygenate.

OTHER SITE ACTIVITIES

Site Remediation

In a letter dated August 22, 2008, ACEH approved the CAP and Addendum as a 'Draft CAP' and initiated the public-participation process. Since Pangea understands that no comments were received during the public-participation period, the 'Draft CAP' can effectively serve as the 'Final CAP'. However, Pangea is preparing a Final CAP to reflect the revised site development plans. Pangea hopes to conduct active site remediation in January 2009 (well installation) and February/March 2009 (short-term extraction/air sparging), followed by remedial effectiveness monitoring (April/May) and excavation in June 2009.

Groundwater Monitoring

To help control project costs, Pangea has implemented a reduction in groundwater monitoring frequency from quarterly to semi-annually, as recommended in the *Groundwater Monitoring Report - First Quarter 2008*. Several rounds of monitoring data have been obtained from prior and new monitoring wells, and contaminant concentrations appear to be stable to decreasing in groundwater, despite the elevated concentrations in select wells. Pangea anticipates resuming quarterly groundwater monitoring during and after completion of site remediation to facilitate evaluation of remedial effectiveness on site conditions.

The next monitoring event is scheduled for March 2009. However, if two months of active dual-phase extraction and air sparging is conducted in February and March 2009 as tentatively proposed, groundwater monitoring may be delayed until afterwards (April or May) to control cost. Pangea will conduct gauging and sampling of all onsite and offsite groundwater monitoring wells. Groundwater samples will be analyzed for

TPHg/BTEX/MTBE by EPA Method 8015Cm/8021B, and for TPHd by EPA Method 8015C with silica gel cleanup. Pangea will summarize groundwater monitoring activities and results in a groundwater monitoring report.

Electronic Reporting

This report will be uploaded to the Alameda County ftp site. The report, laboratory data, and other applicable information will also be uploaded to the State Water Resource Control Board's Geotracker database. As requested, report hard copies will no longer be provided to the local agencies.

ATTACHMENTS

Figure 1 – Site Location Map

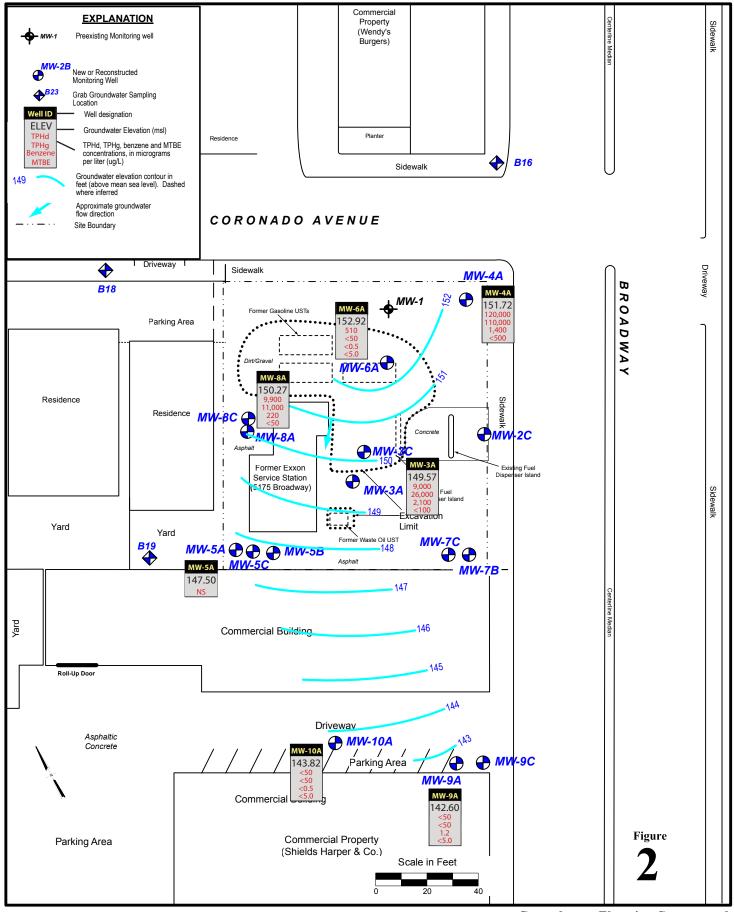
Figure 2 – Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)

Figure 3 – Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep)

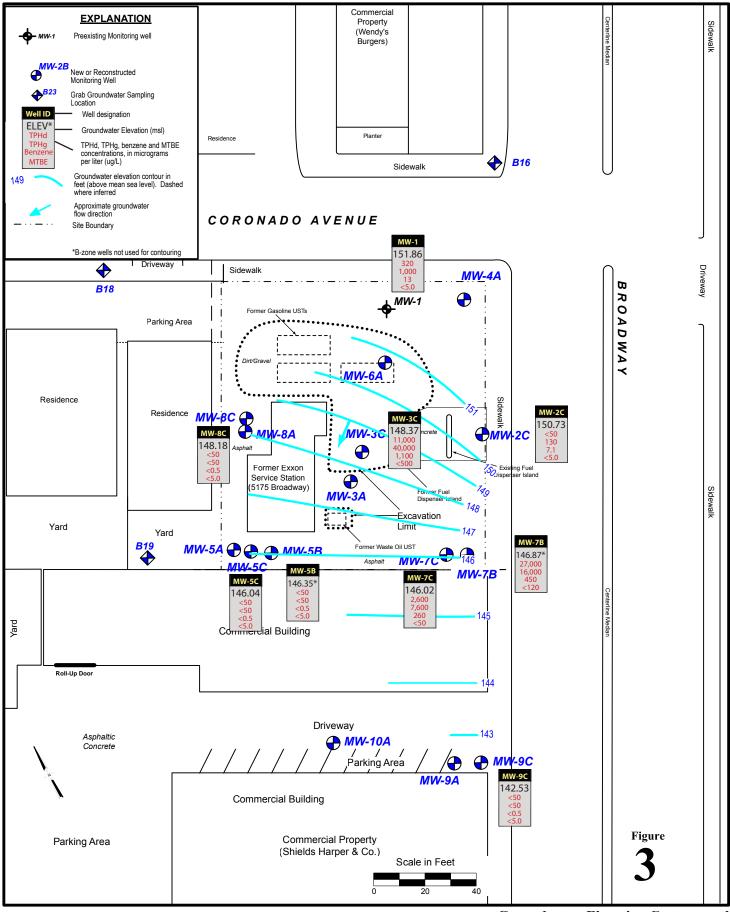
Table 1 – Groundwater Analytical Data

Table 2 – Well Construction Details

Appendix A – Groundwater Monitoring Field Data Sheets


Appendix B – Laboratory Analytical Report

Former Exxon Station 5175 Broadway Oakland, California


Site Location Map

Feiner Broadway site loc.ai 8/30/06

Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)

Former Exxon Station 5175 Broadway Oakland, California

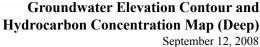


Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				µg/L				→	mg/L
MW-1	04/30/89					200	18	5	2	12				
(97.71)	05/17/90		88.45	9.26										
	09/26/90		87.79	9.92		1,300	55	31	120	100				
	01/14/91		88.17	9.54		3,100	350	83	86	130				
(102.04)	07/03/91		92.62	9.42		580	32	41	40	55				
	11/11/91		92.59	9.45		330	20	2	2	11				
(101.83)	03/04/92		93.90	7.93		810	11	5	10	23				
	06/02/92		92.85	8.98		2,200	93	32	40	120				
	09/28/92		92.54	9.29		2,900	24	78	19	37				
	01/11/93		94.27	7.56		1,700	5.7	6	11	28				
	08/15/94		92.64	9.19		2,000	120	3	6	16				
(97.50)	11/07/96		88.77	8.73	270	1,200	3	1.1	1.5	3.8	< 0.5			
	02/12/97		89.58	7.92	< 50	1,800	13	5.7	4.8	17	< 0.5			
	06/16/97		88.46	9.04	< 50	330	27	< 0.5	< 0.5	1.2	< 0.5			
	09/30/97		89.94	7.56	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(97.50)	01/27/98		89.54	7.96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		89.52	7.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.52	8.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	11/16/98		88.60	8.90	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	02/16/99		88.86	8.64	< 50	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	05/17/99		89.00	8.50		280	1.1	0.6	< 0.5	< 0.5	< 0.5			
	08/17/99		88.26	9.24	86	790	5.6	4.3	4.5	11	< 5.0			
	11/17/99		87.06	10.44		1,300	3.6	1.9	2.7	6.6	<1.0			
	02/17/00		89.02	8.48		580	1.1	2.3	3.6	4.9	< 5.0			
	05/17/00		89.26	8.24		1,500	130	6.8	6.1	< 5.0	< 5.0			
	08/17/00		88.73	8.77		550	160	<25	<25	<25	<25			
	11/15/00		88.46	9.04		130	< 5.0	< 5.0	<5.0	< 5.0	< 5.0			
	02/16/01		89.90	7.60		400	26	< 5.0	< 5.0	< 5.0	< 5.0			
	01/11/02		89.42	8.08	160	600	74	53	14	52	110			
(161.03)	07/01/02		152.01	9.02	280	670	25	< 5.0	<5.0	<5.0	< 5.0			
(10/04/02		151.29	9.74	520	1,800	130	7.8	8.1	14	< 5.0			
	07/28/06		151.93	9.10	86	250	42	1.7	1.4	3.1	<1.0	51	1.5	0.21
	10/16/06		151.98	9.05	110	390	16	<0.5	1.5	2.2	<0.5	41	1.6	0.17
(161.10)	01/09/07		152.90	8.20	160	530	21	1.7	2.8	5.1				0.22
(-31110)	03/26/07		152.84	8.26										
	06/24/07		152.12	8.98	220	500	24	1.1	2.2	4.2	<5.0			
	09/29/07		151.44	9.66	180	540	19	1.2	2.3	5.3	<5.0			
	12/27/07		152.60	8.50	200	290	10	0.65	1.2	3.0	<5.0			
	03/15/08		152.72	8.38	340	680	24	1.1	1.9	2.9	<10			
	09/12/08		151.86	9.24	340 320	1,000	13	<0.5	0.61	1.4	< 5.0		 	

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				µg/L				─	mg/L
MW-2	04/30/89					230	39	18	5	23				
(97.78)	05/17/90		87.78	10.00										
	09/29/90		86.95	10.83		850	970	5	25	47				
	01/14/91		87.15	10.63		3,100	30	52	24	34				
(102.02)	07/03/91		91.94	10.08		1,590	30	52	24	34				
	11/11/91		91.81	10.21		960	320	15	4	29				
	03/04/92		93.32	8.70		1,500	9.5	8.4	9.8	22				
	06/02/92		92.50	9.52		2,800	84	41	59	95				
	09/28/92		91.93	10.09		1,600	47	20	47	97				
	01/11/93		93.50	8.52		2,500	8.6	10	17	32				
(97.49)	08/15/94		87.58	9.91		6,000	450	60	100	95				
	11/07/96		87.47	10.02	780	4,200	25	4.9	8.1	14	< 0.5			
	02/12/97		88.58	8.91	5,700	1,800	16	3.1	3.4	8.8	< 0.5			
	06/16/97		87.74	9.75	< 50	2,500	22	5.1	7.8	11	< 0.5			
	09/30/97		89.60	7.89	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	01/27/98		89.11	8.38	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		88.81	8.68	1,400	2,100	18	6.5	4.8	21	< 0.5			
	08/17/98		87.75	9.74	< 50	2,900	5.1	4.5	5.8	17	< 0.5			
	11/16/98		87.35	10.14	< 50	1,400	2.1	1.9	2.3	4.8	< 0.5			
	02/16/99		88.57	8.92	< 50	1,600	82	16	<2.5	40	59			
	05/17/99		88.23	9.26		8,200	43	73	140	100	<250			
	08/17/99		87.45	10.04	260	2,900	20	81	17	38	<5.0			
	11/17/99		85.97	11.52	< 50	2,600	7	3.7	5.3	12.9	<1.0			
	02/17/00		87.99	9.50		1,700	3.2	6.8	11	12.3	< 5.0			
	05/17/00		88.65	8.84		3,800	450	65	110	80	<25			
	08/17/00		88.99	8.50		4,300	440	< 50	78	< 50	<50			
	11/15/00		87.55	9.94		5,800	320	41	78	64	<25			
	02/16/01		88.97	8.52		2,200	110	20	38	33	<5.0			
	01/11/02		88.67	8.82	620	3,100	280	86	84	110	< 50			
(160.98)	07/01/02		151.34	9.64	940	2,600	300	29	45	27	<10			
	10/04/02		150.46	10.52	390	4,000	440	66	140	120	<25			
	07/28/06		150.96	10.02	340	1,300	150	9.9	6	18	< 0.5	3.6	< 0.5	0.17
	10/16/06		150.45	10.53	76	150	16	1.0	3.5	2.2	< 0.5	1.2	< 0.5	0.19
	01/09/07		151.65	9.33	84	210	27	2.6	8.1	6.8				0.14
	01/25/07					Well A	Abandoned							

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

	Well ID	Date		Groundwater	Depth										Dissolved
MW-3 04/3090 - 8/512 12-42	TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
08.1190 08.1790 08.572 12.42	(ft)		(ft)	(ft)	(ft)	←				μg/L —					mg/L
08.1190 08.1790 08.572 12.42															
	MW-3	04/30/90					56,000	3,600	8,600	1,300	7,200				
10149	(98.14)	05/17/90		85.72	12.42										
100-460 107-039 . 99.38 12.08 . 33.00 3.700 3.800 3.800 1.400 4.800 		09/26/90		84.64	13.50		54,000	5,100	420	1,600	8,000				
11/119		01/14/91		85.56	12.58		35,000	2,600	6,600	1,500	5,700				
(102.18)	(102.46)	07/03/91		90.38	12.08		33,000	4,120	4,300	1,400	4,800				
1979-94 060292		11/11/91		90.17	12.29		57,000	3,900	8,400	2,100	14,000				
09/28-92 - 85.30 12.64 - 64.00 110 93 97 250 - - - - - - - - -	(102.18)	03/04/92		91.92	10.26		57,000	720	870	81	3,100				
01/1193	(97.94)	06/02/92		86.54	11.40		50,000	240	240	220	740				
08/15/94		09/28/92		85.30	12.64		64,000	110	93	97	250				
11/07/96		01/11/93		87.84	10.10		68,000	210	280	360	990				
02/12/97		08/15/94		85.74	12.20		50,000	870	1,200	1,300	3,000				
06/16/97		11/07/96		85.54	12.40	470	68,000	33	27	63	120	< 0.5			
09/30-97		02/12/97		87.71	10.23	3,500	25,000	39	43	15	91	< 0.5			
01/27/98		06/16/97		86.15	11.79	< 50	9,700	26	29	45	81	< 0.5			
04/24/98		09/30/97		88.54	9.40	1,600	6,000	43	36	12	11	< 0.5			
08/17/98		01/27/98		88.14	9.80	560	380	5.7	4.1	1.7	9.1	< 0.5			
11/1698		04/24/98		88.04	9.90	680	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
02/16/99		08/17/98		86.48	11.46	< 50	16,000	200	18	31	82	< 0.5			
05/17/99		11/16/98		85.54	12.40	< 50	68,000	86	54	69	130	< 0.5			
08/17/99		02/16/99		87.22	10.72	< 50	33,000	270	110	< 5.0	770	170			
11/17/99		05/17/99		87.40	10.54		72,000	280	230	320	890	<250			
02/17/00		08/17/99		85.99	11.95	1,800	20,000	51	41	61	130	< 5.0			
05/17/00 87.69 10.25 22,000 300 260 410 940 <5.0		11/17/99		84.34	13.60		1,700	39	22	31	84	<1.0			
08/17/00		02/17/00		87.26	10.68		8,800	16	39	74	90	< 5.0			
11/15/00 86.12 11.82 12.000 250 210 390 700 <25		05/17/00		87.69	10.25		22,000	300	260	410	940	< 5.0			
02/16/01 88.26 9.68 7,400 40 72 700 250 255		08/17/00		86.10	11.84		15,000	230	140	470	750	< 50			
01/11/02 88.36 9.58 1,900 9,300 230 200 290 580 <25 (161.43) 07/01/02 150.29 11.14 5,200 13,000 230 220 450 890 <13 (10/04/02 148.61) 10/04/02 148.61 12.82 4,900 11,000 280 170 450 730 <25 (10/04/02) 07/28/06 Not Sampled - Unable to locate well 10/16/06 Not Sampled - Unable to locate well 01/09/07 Not Sampled - Unable to locate well 01/22/07 149.81 11.62 93,000 34,000 770 250 760 2,000 <1,000		11/15/00		86.12	11.82		12,000	250	210	390	700	<25			
(161.43) 07/01/02 150.29 11.14 5,200 13,000 230 220 450 890 <13 10/04/02 148.61 12.82 4,900 11,000 280 170 450 730 <25		02/16/01		88.26	9.68		7,400	40	72	700	250	<25			
10/04/02 148.61 12.82 4,900 11,000 280 170 450 730 <25		01/11/02		88.36	9.58	1,900	9,300	230	200	290	580	<25			
07/28/06 Not Sampled - Unable to locate well 10/16/06 Not Sampled - Unable to locate well 01/09/07 Not Sampled - Unable to locate well 01/22/07 149.81 11.62 93,000 34,000 770 250 760 2,000 <1,000	(161.43)	07/01/02		150.29	11.14	5,200	13,000	230	220	450	890	<13			
10/16/06 Not Sampled - Unable to locate well 01/09/07 Not Sampled - Unable to locate well 01/22/07 149.81 11.62 93,000 34,000 770 250 760 2,000 <1,000		10/04/02		148.61	12.82	4,900	11,000	280	170	450	730	<25			
01/09/07 Not Sampled - Unable to locate well 01/22/07 149.81 11.62 93,000 34,000 770 250 760 2,000 <1,000		07/28/06			Not Sampl	led - Unable to l	ocate well								
01/22/07 149.81 11.62 93,000 34,000 770 250 760 2,000 <1,000		10/16/06			Not Sampl	led - Unable to l	ocate well								
		01/09/07			Not Sampl	led - Unable to l	ocate well								
03/16/07 Well Abandoned		01/22/07		149.81	11.62	93,000	34,000	770	250	760	2,000	<1,000			
		03/16/07						Well Abandon	ed						

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	<u> </u>				μg/L				→	mg/L
STMW-4	07/03/91		92.58	11.00		3,100	610	62	39	150				
(103.58)	11/11/91		92.50	11.08		3,600	990	15	2.6	180				
(101.08)	03/04/92		91.64	9.44		5,000	35	20	22	71				
(98.80)	06/02/92		88.48	10.32		13,000	140	45	63	210				
	09/28/92		88.04	10.76		40,000	35	20	48	110				
	01/11/93		89.52	9.28		24,000	26	88	92	280				
	08/15/94		88.26	10.54		9,000	500	34	46	130				
	11/07/96		88.43	10.37	180	13,000	40	2.9	7.8	19	< 0.5			
	02/12/97		89.44	9.36	5,700	5,300	95	5.3	5.9	18	< 0.5			
	06/16/97		88.40	10.40	< 50	5,300	37	6.2	1.7	11	< 0.5			
	09/30/97		90.30	8.50	< 50	2,700	42	7.7	5.7	26	< 0.5			
	01/27/98		89.90	8.90	300	3,000	60	17	12	49	< 0.5			
	04/24/98		89.30	9.50	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.44	10.36	< 50	29,000	36	24	59	160	< 0.5			
	11/16/98		88.24	10.56	< 50	13,000	26	21	20	41				
	02/16/99		89.16	9.64	< 50	32,000	660	16	16	150	<100			
	05/17/99		88.84	9.96		13,000	1600	30	45	78	<250			
	08/17/99		88.16	10.64	990	12,000	260	22	33	72	< 5.0			
	11/17/99		86.78	12.02		7,900	21	12	17	40	<1.0			
	02/17/00		89.48	9.32		4,900	8.9	21	38	50	< 5.0			
	05/17/00		89.15	9.65		9,600	840	< 50	61	<50	< 50			
	08/17/00		88.46	10.34		5,100	680	< 50	62	< 50	<50			
	11/15/00		88.28	10.52		3,900	640	<25	26	27	<25			
	02/16/01		89.60	9.20		5,700	560	<25	<25	<25	<25			
	01/11/02		89.22	9.58	930	4,900	560	59	25	<25	<250			
(162.13)	07/01/02		151.85	10.28	6,700	6,700	470	18	32	45	<13			
	10/04/02		151.05	11.08	2,900	13,000	590	26	65	110	<25			
	07/28/06	0.04	151.53	10.60	39,000	25,000	960	21	73	130	<5.0	65	< 5.0	0.22
	10/16/06	0.06	151.30	10.83	14,000	14,000	790	28	81	130	<5.0	30	<5.0	0.26
	01/09/07	0.03	152.20	9.93	•		Not Sampled - SI							0.24
	01/26/07						Well Abandone							0.24

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)		(ft)	(ft)	(ft)	←				——— μg/L —				→	mg/L
STMW-5	07/03/91		88.70	13.29		690	99	81	19	98				
(101.99)	11/11/91		87.99	14.00		410	61	2.4	1.4	20				
(101.36)	03/04/92		89.56	11.80		460	13	6.5	11	18				
	06/02/92		88.30	13.06		1,800	27	20	21	43				
	09/28/92		87.32	14.04		1,500	14	6.1	18	22				
	01/11/93		89.75	11.61		800	1.8	3	3.1	9.4				
	08/15/94		87.51	13.85		3,000	320	62	34	220				
(97.14)	11/07/96		83.47	13.67	330	1,200	11	1.7	4.4	13	< 0.5			
	02/17/97		85.07	12.07	3,700	1,000	11	17	1.7	9.7	< 0.5			
	06/19/97		83.81	13.33	2,300	950	7.4	1	1	7.2	< 0.5			
	09/30/97		85.90	11.24	1,100	710	5.8	4	1	1	< 0.5			
	01/27/98		85.50	11.64	1,100	340	2	1.8	1.6	8.2	< 0.5			
	04/24/98		85.30	11.84	<50	3,300	12	9.4	8.5	37	< 0.5			
	08/17/98		83.94	13.20	< 50	5,300	26	17	14	39	< 0.5			
	11/16/98		83.40	13.74	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	02/16/99		84.92	12.22	< 50	950	150	3.8	1.4	14	11			
	05/17/99		84.56	12.58		2,800	67	9.4	<2.5	16	30			
	08/17/99		83.66	13.48	230	2,800	18	17	18	36	< 5.0			
	11/17/99		82.26	14.88		1,600	3.9	2.3	3.2	7.5	<1.0			
	02/17/00		84.58	12.56		770	1.5	3.2	5.8	7	< 5.0			
	05/17/00		85.06	12.08		4,500	<25	<25	<25	<25	<25			
	08/17/00		83.58	13.56		2,900	170	64	100	250	<10			
	11/15/00		83.86	13.28		2,100	120	24	40	54	< 5.0			
	02/16/01		85.54	11.60		850	58	9.8	9.4	18	< 5.0			
	01/11/02		85.42	11.72	< 50	920	76	16	16	28	13			
(160.65)	07/01/02		147.51	13.14	1,500	4,300	71	14	14	36	< 5.0			
	10/04/02		146.13	14.52	60	1,400	71	17	26	35	< 5.0			
	07/28/06		147.30	13.35	370	700	22	4.3	1.2	6.6	< 0.5	< 0.5	< 0.5	0.24
	10/16/06		146.91	13.74	240	590	14	1.6	1.3	3.2	< 0.5	< 0.5	< 0.5	0.21
	01/09/07		148.19	12.46	180	390	30	3.2	1.8	3.2				0.17
	01/18/07						Well A	bandoned						
MW-2C	03/09/07		152.24	8.41	140	450	40	9.3	2.9	16	<10			
(160.65)	03/26/07		151.93	8.72										
	06/24/07		151.21	9.44	160	440	30	1.8	5.9	7.4	< 5.0			
	09/29/07		150.45	10.20	120	200	13	< 0.5	< 0.5	2.0	< 5.0			
	12/27/07		151.42	9.23	83	190	13	0.83	< 0.5	1.9	< 5.0			
	03/15/08		151.83	8.82	120	250	24	2.2	5.2	4.5	< 5.0			
	09/12/08		150.73	9.92	< 50	130	7.1	< 0.5	1.2	0.83	<5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date	SPH	Groundwater	Depth	TDIIA	TDII-	D	T-1	Dahadhanan	V-d	MTDE	DIDE	1.2 DC.	Dissolved
	Sampled		Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	\longrightarrow				μg/L				<u> </u>	mg/L
MW-3A	03/09/07		152.20	9.35	4,500	39,000	3,800	220	830	2,800	< 500			
(161.55)	03/26/07		152.33	9.22										
(161.57)	06/24/07		151.61	9.94	11,000	34,000	3,200	330	990	3,200	<250			
(,	09/29/07		150.21	11.36	11,000	43,000	3,500	150	730	2,200	<1,000			
	12/27/07		150.20	11.37	8,700	30,000	2,500	24	520	930	<100			
	03/15/08		152.27	9.30	10,000	26,000	2,400	110	700	1,200	<250			
	09/12/08		149.57	12.00	9,000	26,000	2,100	29	560	280	<100			
MW-3C	03/26/07		151.15	10.64										
(161.79)	04/16/07		150.87	10.92	36,000	32,000	1,200	710	600	1,900	< 500			
	06/24/07		149.43	12.36	200,000	50,000	2,200	4,100	860	6,100	< 500			
	09/29/07		148.33	13.46	48,000	37,000	1,700	3,300	830	4,800	<1,000			
	12/27/07		149.79	12.00	29,000	28,000	590	900	630	2,000	< 500			
	03/15/08		150.70	11.09	21,000	36,000	1,500	2,400	570	3,700	< 500			
	09/12/08		148.37	13.42	11,000	40,000	1,100	1,200	600	3,000	< 500			
MW-4A	03/09/07		152.88	9.56	3,600	16,000	1,600	36	37	150	<250			
(162.44)	03/26/07		152.56	9.88										
	06/24/07		152.02	10.42	110,000	87,000	1,500	59	290	800	< 500			
	09/29/07		151.33	11.11	170,000	130,000	2,700	69	400	1,400	<240			
	12/27/07		152.33	10.11	19,000	27,000	1,600	31	100	320	<90			
	03/15/08		152.51	9.93	38,000	17,000	1,300	< 50	120	380	< 500			
	09/12/08		151.72	10.72	120,000	110,000	1,400	< 50	210	660	< 500			
MW-5A	03/09/07		150.40	10.42	56	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
(160.82)	03/26/07		150.00	10.82										
	06/24/07		148.94	11.88	<50	180	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	09/29/07		147.86	12.96										
	12/27/07		148.40	12.42										
	03/15/08		149.96	10.86	<50	180	0.91	< 0.5	<0.5	< 0.5	<5.0			
	09/12/08		147.50	13.32					Insufficent	water to sample				
MW-5B	03/09/07		146.42	15.08	59	140	1.3	0.77	< 0.5	1.6	<5.0			
(161.50)	03/26/07		148.88	12.62										
(101.50)	06/24/07		147.98	13.52	53	52	1.1	<0.5	<0.5	<0.5	<5.0			
	09/29/07		146.60	14.90	<50	<50	0.95	<0.5	<0.5	<0.5	<5.0			
	12/27/07		148.41	13.09	<50	58	1.4	<0.5	0.60	<0.5	<5.0			
	03/15/08		148.95	12.55	<50	61	2.6	1.1	1.1	3.0	<5.0			
	09/12/08		146.35	15.15	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —					mg/L
7									, ,					
MW-5C	03/09/07		148.12	12.91	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
(161.03)	03/26/07		148.41	12.62										
	06/24/07		147.58	13.45	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		146.41	14.62	66	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	12/27/07		148.10	12.93	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		148.48	12.55	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		146.04	14.99	<50	< 50	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-6A	03/09/07		154.91	6.67	200	-50	<0.5	<0.5	<0.5	<0.5	-E O			
					380	<50					<5.0			
(161.58)	03/26/07		154.41	7.17	 500	140								
	06/24/07		153.79	7.79	590	140	<0.5	<0.5	<0.5	<0.5	<5.0			
	09/29/07		152.84	8.74	540	52	<0.5	<0.5	<0.5	<0.5	<5.0			
	12/27/07		154.27	7.31	170	94	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/15/08		154.42	7.16	150	<50	<0.5 < 0.5	<0.5	<0.5	<0.5	<5.0			
	09/12/08		152.92	8.66	510	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-		
MW-7B	03/09/07		147.97	11.18	930	18,000	1,500	1,600	140	1,800	<600			
(159.15)	03/26/07		148.10	11.05										
	06/24/07		147.54	11.61	40,000	30,000	1,800	2,400	240	2,800	< 700			
(159.02)	09/29/07		146.91	12.11	16,000	37,000	1,300	1,500	180	2,700	< 500			
	12/27/07		147.37	11.65	7,700	18,000	810	880	38	1,600	< 50			
	03/15/08		147.66	11.36	7,900	14,000	730	820	110	1,200	<250			
	09/12/08		146.87	12.15	27,000	16,000	450	340	19	1,300	<120			
MW-7C	03/09/07		145.44	13.09	190	3,600	970	100	12	90	<120			
(158.53)	03/26/07		147.53	11.00										
(130.33)	06/24/07		146.65	11.88	7,100	16,000	510	520	190	1,300	<100			
	09/29/07		146.21	12.32	11,000	29,000	580	1,400	600	4,800	<1,000			
	12/27/07		146.74	11.79	56,000	29,000	250	410	430	3,300	<50			
	03/15/08		147.45	11.08	7,000	13,000	170	58	170	1,300	<100			
	09/12/08		146.02	12.51	2,600	7,600	260	38	76	330	<50			
					,	,								
MW-8A	03/09/07		152.05	9.52	4,200	10,000	430	18	<10	88	<100			
(161.57)	03/26/07		151.74	9.83										
	06/24/07		151.40	10.17	17,000	12,000	720	500	230	880	<300			
	09/29/07		150.64	10.95	5,300	7,500	440	67	26	240	<90			
(161.59)	12/27/07		152.00	9.59	13,000	9,600	290	100	90	360	<100			
	03/15/08		152.00	9.59	7,500	7,200	170	28	270	110	<100			
	09/12/08		150.27	11.32	9,900	11,000	220	31	110	180	< 50			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)		(ft)	(ft)	(ft)	←				µg/L					mg/L
<u>0-7</u>		()	(-)	(=)										
MW-8C	03/09/07		149.18	12.15	<50	150	9.8	1.3	2.0	3.9	<5.0			
(161.33)	03/26/07		149.56	11.77										
	06/24/07		148.96	12.37	< 50	< 50	0.57	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		148.35	12.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	12/27/07		149.84	11.49	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		149.94	11.39	< 50	110	6.0	1.7	2.4	2.4	< 5.0			
	09/12/08		148.18	13.15	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-9A	09/29/07		142.76	12.61	86	<50	2.6	<0.5	<0.5	<0.5	<5.0			
(155.37)	12/27/07		143.51	11.86	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
(133.37)	03/15/08		143.35	12.02	<50	<50	0.85	<0.5	<0.5	<0.5	<5.0			
	09/12/08		143.53 142.60	12.02 12.77	< 50	< 50	1.2	<0.5	<0.5 < 0.5	<0.5	< 5.0			
	09/12/08	-	142.00	12.//	<30	<30	1,2	<0.5	<0.5	<0.5	<2.0			
MW-9C	09/29/07		142.67	12.27	390	68	2.2	0.88	< 0.5	< 0.5	< 5.0			
(154.94)	12/27/07		143.40	11.54	< 50	< 50	0.84	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		143.98	10.96	< 50	< 50	0.55	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		142.53	12.41	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-10A	09/29/07		144.35	10.53	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0			
(154.88)	12/27/07		145.50	9.38	<50	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0			
, , , ,	03/15/08		145.96	8.92	<50	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0			
	09/12/08		143.82	11.06	< 50	< 50	<0.5	<0.5	<0.5	< 0.5	<5.0			

Abbreviations:

 $\mu g/L = Micrograms per liter$ - approximately equal to parts per billion = ppb.

mg/L = Milligrams per liter - approximately equal to parts per million = ppm.

SPH = Separate-phase hydrocarbons encountered in well (value in parentheses is thickness in feet).

 $Groundwater\ elevation\ =\ TOC\ (elevation)\ -\ (depth\ to\ water)\ +\ (0.8)(SPH\ thickness).$

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015Cm.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8021B.

MTBE = Methyl tertiary-butyl ether by EPA Method 8021B. (Concentrations in parentheses are by EPA Method 8260B).

DIPE = Diisopropyl ether by EPA Method 8260B.

1,2-DCA = 1,2-Dichloroethane by EPA Method 8260B.

Table 2 – Well Construction Details –5175 Broadway, Oakland, CA

Well ID	PVC Slot Size	Total Depth of Well (feet bgs)	Screened Interval (ft bgs)	Drill Hole Diameter (inches)	Casing Diameter (inches)	Sand
MW-1	0.02	23	13-23	10	4	8x20
MW-2C	0.01	23	18-23	8	2	#2/12
MW-3A	0.01	14	9-14	8	2	#2/12
MW-3C	0.01	27	22-27	8	2	#2/12
MW-4A	0.01	15	8-15	8	2	#2/12
MW-5A	0.01	14	10-14	8	2	#2/12
MW-5B	0.01	20	17-20	8	2	#2/12
MW-5C	0.01	27	22-27	8	2	#2/12
MW-6A	0.01	17	8-17	8	2	#2/12
MW-7B	0.01	18.5	15.5-18.5	8	2	#2/12
MW-7C	0.01	25	20-25	8	2	#2/12
MW-8A	0.01	15	8-15	8	2	#2/12
MW-8C	0.01	25	20-25	8	2	#2/12
MW-9A	0.01	15.5	7.5-15.5	8	2	#2/12
MW-9C	0.01	21	17-21	8	2	#2/12
MW-10A	0.01	15.5	7.5-15.5	8	2	#2/12

APPENDIX A

Groundwater Monitoring Field Data Sheets

Comments:

Well Gauging Data Sheet

Project.Ta	ask #:1145	5.001 216		Project Name		175 Broadw	av
Address:	5175 Broa	idway, Oal	kland, CA	· · · · · · · · · · · · · · · · · · ·	/-	Date:9/12/0	
Name: Sa	anjiv Gill			Signature:			
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point
MD-1	ч"	11:09			9.24	22.97	TOC
Wn-3c	z"	10:59			9.92	23.03	
MU-3A	7"	11:15			12.00	13.83	
MN-3C	z "	11:13			13.42	26.75	
MU-4A	z"	n:n			10.72	14.73	
MU-SA	z"	10:55			13.32	13.52	
MH-5B	2"	10:53			15.15	19.23	
MN-SC	z"	10:51	7		14.99	26.70	
MU-6A	z ''	10:57			8.66	14.92	
MW-7B	z"	11:03			12.15	18.55	
MW-7C	z''	11:01			12.51	24.42	x

Well Gauging Data Sheet

Project.Ta	ask #:1145	.001 216		Project Name	: Feiner - 5	175 Broadw	/ay
Address:	5175 Broa	dway, Oak	kland, CA			Date:9/12/0	08
Name: Sa				Signature:	11		
			Depth to	Thickness of			PACKET CONTRACTOR
Well ID	Well Size (in.)	Time	Immiscible Liquid (ft)	Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point
vveii iD	(111.)	Time	Liquid (It)	Liquiu (11)	vvator (it)	Dopar (it)	1 Ontic
MW-8A	z ''	11:07			11.32	14-90	TOC
MN-8 C	2 "	11:05			13.15	24.89	
MW-9A	2"	10:47			12.77	15-19	
MW-9C	z //	10:45			12.41	20-45	
MU-10A	2"	10:49			11.06	17-96	*
							,
Comments	5.						

Project Name: Feiner - 5175 Broadway Project Name: Feiner - 5175 Broadway Address: 5175 Broadway, Oakland, CA Date: 9/12/08 Weather: C U	MONITORING FIELD DATA	SHEET Well ID: MW-1
Date: 9/12/08 Weather: C Ouc Y	Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway
Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47	Address: 5175 Broadway, Oakland, CA	
Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47	Date: 9/12/08	Weather: Cloudy
Depth to Water (DTW): 9.24 Product Thickness: Water Column Height: 13.73 1 Casing Volume: 8.92 gallons Reference Point: TOC 3 Casing Volumes: 26.76 gallons Purging Device: Disposable Bailer PVC Baile), Check Valve Tubing, Whal Pump Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 10:00 20.0 7.43 788 9 10:05 19.8 7.44 782 18 10:15 19.8 7.47 75.7 27 Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l Very turbid, very Si Try, valger, Steen Sample ID: MD-1 Sample Date: 9/13 /08	Well Diameter: 4	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163
Depth to Water (DTW): 9.24 Product Thickness: Water Column Height: 13.73 1 Casing Volume: 8.92 gallons Reference Point: TOC 3 Casing Volumes: 26.76 gallons Purging Device: Disposable Bailer (3" PVC Baile), Check Valve Tubing, Whal Pump Sampling Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 10:00 200 7.43 788 9 10:05 19-8 7.44 782 18 10:15 19-8 7.47 757 27 Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l Very 1 bid very Si 1+7, olas (7, Sleen) Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08	2 122	
Water Column Height: 13.73 1 Casing Volume: 8.92 gallons Reference Point: TOC 3 Casing Volumes: 26.76 gallons Purging Device: Disposable Bailer Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 10:00 20.0 7.43 788 10:05 19.8 7.44 782 10:15 19.8 7.47 75.7 27 Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l Very turbid very Si Ity, other, sheen Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08	_	
Reference Point: TOC Casing Volumes: 26.76 gallons		
Purging Device: Disposable Bailer Time Temp ©		
Sampling Device: Disposable Bailer Time		
Time Temp © pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 10:00 200 7.43 788 10:05 19-8 7.44 782 10:15 19-8 7.47 757 Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l Very turbid, very Si 1ty, odgr, sheen Sample ID: MD-1 Sample Date: 9/13/08		
10:05 19:8 7:44 782 18 10:15 19:8 7:47 75.7 27 Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l Very turbid, very Si Ity, odgr, sheen Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		NTU DO(mg/L) ORP (mV) Vol(gal) DTW
10:15	10:00 200 7.43 788	9
10:15	10:05 19.8 7.44 782	18
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		27
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08		
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08	Comments: YSI 550A DO meter	pre purge DO = mg/l
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08	Comments, 101 330A DO Meter	
Sample ID: MD-1 Sample Time: 10:20 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13 /08	yery turbid, very silty igdier.	
Laboratory: McCampbell Analytical, INC. Sample Date: 9/13 /08		
	Sample ID: MD-I	Sample Time: 10:20
Containers/Preservative: Voa/HCI, Amber Liter/HCI	Laboratory: McCampbell Analytical, INC.	Sample Date: 9/13 /08
	Containers/Preservative: Voa/HCI, Ambe	r Liter/HCI
Analyzed for: 8015, 8021	Analyzed for: 8015, 8021	
Sampler Name: Sanjiv Gill Signature:		Signature:

MONITORING FIELD DATA	A SHEET Well ID: MW-2C			
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway			
Address: 5175 Broadway, Oakland, CA				
Date: 9/12/08	Weather: Cloudy			
Well Diameter: 2	Veather: Cloud y Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius²* 0.163			
Total Depth (TD): 23.03	Depth to Product:			
Depth to Water (DTW): 9.92	Product Thickness:			
Water Column Height: 13.11	1 Casing Volume: 2.09 gallons			
Reference Point: TOC	3 Casing Volumes: 6.27 gallons			
Purging Device: Disposable Bailey, 3" PV	C Bailer, Check Valve Tubing, Whal Pump			
Sampling Device: Disposable Bailer				
Time Temp © pH Cond (μs) 9:35 20.2 7.56 9.26	NTU DO(mg/L) ORP (mV) Vol(gal) DTW 2			
7 7 70 70	У У			
9:40 20.2 7.49 930	6			
20.2				
Comments: YSI 550A DO meter	pre purge DO = mg/l			
Comments. Tol 330A Bo meter	post purge DO = mg/l			
very turbid, very silty				
Sample ID: MW-2C	Sample Time: 9:45			
Laboratory: McCampbell Analytical, INC.	Sample Date: 9/ /3/08			
Containers/Preservative: Voa/HCI, Ambe	er Liter/HCI			
Analyzed for: 8015, 8021				
Sampler Name: Sanjiv Gill	Signature:			

MONITORING FIELD DATA				A SHEET	Γ	Well ID	: MN-	3A	
Project.	Task #: 11	45.001 21	6	Project Name: Feiner - 5175 Broadway					
Address	: 5175 Bro	oadway, Oa	akland, CA						
				Weather: Sunny					
Well Diameter: 2"				Volume/ft.	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163				
Total Depth (TD): 13.83			Depth to	Depth to Product:					
Depth to	Water (D	TW): 12.	DD	Product	Thickness	3;			
Water C	olumn He	ight: /. '	83	1 Casing	y Volume:	0.29		gallons	
Reference	ce Point: 7	тос		_3 Ca	sing Volu	mes: O	.87	gallons	
Purging	Device D	isposable	Bailer, 3" PV					mp	
Sampling	g Device:	Disposable	e Bailer				,		
Time	Temp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW	
3:55	21.7	7.93	847				0•3		
400	De	ewater	ce	-			0.5		
							0		
Comments	s: YSI 550A	DO meter		pre purge	DO =	mg/l			
				post purge		mg/l			
				1 1 0		3.			
				,					
Sample ID: MU-3A			Sample Time: 1:45						
Laboratory: McCampbell Analytical, INC.									
Containe	ers/Preser	vative: Vo	a/HCl, Ambe	r Liter/HC	1				
Analyzed	d for: 801	5, 8021			/	,			
F 15	Name: Sa			Signature:					
32	Sample Paris			10.3.10.01		5			

MONITORING FIELD DATA				A SHEE	Т	Well ID	: MN-	36
Project.Task #: 1145.001 216			Project I	Project Name: Feiner - 5175 Broadway				
Address: 5	5175 Bro	adway, C	akland, CA					
Date: 9/12/08		Weather	Weather: Sun 1					
Well Diameter: 2"			Volume/ft.	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius²* 0.163				
Total Depth (TD): 26-75				Depth to Product:				
Depth to V		14.51	10 5		Thickness	3:		
Water Coli				1 Casing	g Volume:	2.13		gallons
Reference						mes: 6 . 1	39	gallons
Purging De	evice: Di	sposable	Bailer, 3" PV					
Sampling [
7	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW
			1740	-			2	
3:45		remate	red				735	
							\$	
Comments: Y	/SI 550A E	O meter		pre purge l	00 =	mg/l		
				post purge	DO =	mg/l		
verytu	whidy	very silt	y, odor					
Sample ID: MU-3C		Sample Time: //:35						
Laboratory	Laboratory: McCampbell Analytical, INC.		Sample Date: 9/13 /08					
Containers	/Preserv	ative: Vo	a/HCI, Ambe	r Liter/HC				
Analyzed fo	or: 8015	, 8021						
Sampler Na	ame: Sa	njiv Gill		Signature:				
					108			

MONITORING FIELD DAT	A SHEET Well ID: MW-4A			
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway			
Address: 5175 Broadway, Oakland, CA				
Date: 9/12/08	Weather: Cloudy			
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163			
Total Depth (TD): 14.73	Depth to Product:			
Depth to Water (DTW): 10.72	Product Thickness:			
Water Column Height: 4.0\	1 Casing Volume: 0.64 gallons			
Reference Point: TOC	3 Casing Volumes: 192 gallons			
Purging Device: Oisposable Bailer 3" PV	/C Bailer, Check Valve Tubing, Whal Pump			
Sampling Device: Disposable Bailer				
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW			
10:45 22.0 7.37 1092	F-9 10			
10:47 22.3 7.30 1105	LO HS			
10:50 22.2 7.35 1165	20 20			
	 			
Comments: YSI 550A DO meter	pre purge DO = mg/l			
	post purge DO = mg/l			
very turbid, very silty, odor,	sheen			
Sample ID: MD-4A	Sample Time: 10:35			
Laboratory: McCampbell Analytical, INC	Sample Date: 9/13/08			
Containers/Preservative: Voa/HCI, Amb	er Liter/HCI			
Analyzed for: 8015, 8021	<i>b</i> 2			
Sampler Name: Sanjiv Gill	Signature:			

MONITORING FIELD DATA	SHEET Well ID: MW-5A			
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway			
Address: 5175 Broadway, Oakland, CA				
Date: 9/12/08	Weather: Cloudy			
Well Diameter: 2"	Volume/ft. $1" = 0.04$ $3" = 0.37$ $6" = 1.47$ $2" = 0.16$ $4" = 0.65$ radius ² * 0.163			
Total Depth (TD): 13.52	Depth to Product:			
Depth to Water (DTW): 13.32	Product Thickness:			
Water Column Height: 0.20	1 Casing Volume: 0.03 gallons			
Reference Point: TOC	3 Casing Volumes: 0.09 gallons			
Purging Device: Disposable Bailer, 3" PV0	C Bailer, Check Valve Tubing, Whal Pump			
Sampling Device: Disposable Bailer	<u> </u>			
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW			
Insufficen	t water			
Comments: YSI 550A DO meter	pre purge DO = mg/l			
Somments. For 9997 Bo meter				
	post purge DO = mg/l			
Sample ID:	Sample Time:			
Laboratory: McCampbell Analytical, INC.	Sample Date: 9/ /08			
Containers/Preservative: Voa/HCI, Amber				
Analyzed for: 8015, 8021				
Sampler Name: Saniiy Gill	Signature:			

Well ID: MN-5B MONITORING FIELD DATA SHEET Project. Task #: 1145.001 216 Project Name: Feiner - 5175 Broadway Address: 5175 Broadway, Oakland, CA Date: 9/12/08 Weather: < 211 Volume/ft. Well Diameter: 4" = 0.65 radius2 * 0.163 19-23 Total Depth (TD): Depth to Product: Depth to Water (DTW): 15.15 Product Thickness: Water Column Height: 4.08 1 Casing Volume: 0.65 gallons Reference Point: TOC 3 Casing Volumes: 1-95 gallons Purging Device Disposable Bailer, 3" PVC Bailer, Check Valve Tubing, Whal Pump Sampling Device: Disposable Bailer Time Temp © pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 9-12-08 19-8 2:10 6.79 393 1.0 Dematered 2:20 1.5 Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l Sample ID: MU-5R Sample Time: 11:10 Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08 Containers/Preservative: Voa/HCI, Amber Liter/HCI Analyzed for: 8015, 8021 Sampler Name: Sanjiv Gill Signature:

MONITORING FIE	SHEET	-	Well ID:	MW-	5C	
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway					
Address: 5175 Broadway, Oakl	and, CA					
Date: 9/12/08	Weather: Sumy					
Well Diameter: 2'	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163					
Total Depth (TD): 26.70	Depth to Product:					
Depth to Water (DTW): 14.9	_	Product	Thickness	:		
Water Column Height: 11.7	11	1 Casing	Volume:	1.87		gallons
Reference Point: TOC		3 Ca	sing Volur	nes: 5.	61	gallons
Purging Device: Disposable Ba	iler, 3" PVC	Bailer, C	Check Valv	e Tubing,	Whal Pu	mp
Sampling Device: Disposable E						
	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW
1:45 19.7 6.71	17416		-		2	
1:50 18.9 6.78	1765				5. 5	
1.33 10-4 0-11	1105					
Comments: YSI 550A DO meter	pre purge	DO =	mg/l			
	post purge	DO =	mg/l			
very turbid, very si	177					
Comple ID: AALL CA		Comple	Time: 01	00		
Sample ID: MU-5C		Sample Date: 2:00				
Laboratory: McCampbell Analytical, INC. Sample Date: 9/12/08						
Containers/Preservative: Voa/	HCI, Ambe	r Liter/HC				
Analyzed for: 8015, 8021			10			
Sampler Name: Sanjiv Gill	Signature:					

MONITORING FIELD DATA	SHEET Well ID: MW-6A				
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway				
Address: 5175 Broadway, Oakland, CA					
Date: 9/12/08	Weather: Cloudy				
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163				
Total Depth (TD): 14.92	Depth to Product:				
Depth to Water (DTW): 8.66	Product Thickness:				
Water Column Height: 6.26	1 Casing Volume: 60 / 00 gallons				
Reference Point: TOC	3 Casing Volumes: 3.00 gallons				
Purging Device: Disposable Bailer, 3" PVC	Bailer, Check Valve Tubing, Whal Pump				
Sampling Device: Disposable Bailer					
Time Temp © pH Cond (μs) 9:15 20.3 7.31 1134	NTU DO(mg/L) ORP (mV) Vol(gal) DTW				
1.77	2				
	3				
9:20 20.2 7.27 1165					
Comments: YSI 550A DO meter	pre purge DO = mg/l				
vertturbid, very silty	post purge DO = mg/l				
Sample ID: ML-6A	Sample Time: 9:25				
Laboratory: McCampbell Analytical, INC.	Sample Date: 9//3 /08				
Containers/Preservative: Voa/HCI, Amber	r Liter/HCI				
Analyzed for: 8015, 8021	10				
Sampler Name: Sanjiv Gill	Signature:				

MONITORING FIELD DATA	SHEET Well ID: MN-7B				
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway				
Address: 5175 Broadway, Oakland, CA					
Date: 9/12/08	Weather: Sum y				
Well Diameter: 2"	Weather: 1" = 0.04 3" = 0.37 6" = 1.47 Volume/ft. 2" = 0.16 4" = 0.65 radius² * 0.163				
Total Depth (TD): \ \ 8.55	Depth to Product:				
Depth to Water (DTW): \2.15	Product Thickness:				
Water Column Height: 6.40	1 Casing Volume: 1.02 gallons				
Reference Point: TOC	3 Casing Volumes: 3.06 gallons				
Purging Device Disposable Bailer, 3" PVC					
Sampling Device: Disposable Bailer					
Time Temp © pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW				
3:25 20.1 7.31 1389					
3:30 Devatered	1.5				
	\$				
Comments: YSI 550A DO meter	pre purge DO = mg/l				
	post purge DO = mg/l				
very turbid, very silty, lights	heen				
Sample ID: MU-7B	Sample Time: //:30				
Laboratory: McCampbell Analytical, INC.	Sample Date: 9/13/08				
Containers/Preservative: Voa/HCI, Amber	Liter/HCI				
Analyzed for: 8015, 8021	00				
Sampler Name: Sanjiv Gill	Signature:				

MONITORING FIELD DATA SHEET Well ID: MN-7C Project.Task #: 1145.001 216 Project Name: Feiner - 5175 Broadway Address: 5175 Broadway, Oakland, CA Weather: Sunny Date: 9/12/08 Weather: Sunny Well Diameter: 2'' Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius² * 0.163 Total Depth (TD): 24.49 Depth to Product: Depth to Water (DTW): 12.51 Product Thickness: Water Column Height: 1.91 1 Casing Volume: 1.90 ga	allons			
Date: 9/12/08 Weather: Sunny Well Diameter: 2" Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius²* 0.163 Total Depth (TD): 24.49 Depth to Product: Depth to Water (DTW): 12.51 Product Thickness:	allons			
Well Diameter: 2" Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius²* 0.163 Total Depth (TD): 2 4.49 Depth to Product: Depth to Water (DTW): 12.51 Product Thickness:	allons			
Total Depth (TD): 24.42 Depth to Product: Depth to Water (DTW): 12.51 Product Thickness:	allons			
Depth to Water (DTW): \2.5\ Product Thickness:	allons			
Depth to Water (DTW): \2.5\ Product Thickness:	allons			
200	allons			
Ivvaler Column rieight. 11.71 Todaing volume. 1.70				
2	allons			
Purging Device: Disposable Bailer, 3" PVC Bailer, Check Valve Tubing, Whal Pump				
Sampling Device: Disposable Bailer				
	TW			
3:10 20.5 7.35 1496 2				
3:15 Den where! -3.5				
6	_			
Comments: YSI 550A DO meter pre purge DO = mg/l				
post purge DO = mg/l				
veryturbid, very silty, light sheen				
Sample ID: MD-7C Sample Time: 1/:20	Sample Time: //:20			
Laboratory: McCampbell Analytical, INC. Sample Date: 9/13/08	Sample Date: 9/13/08			
Containers/Preservative: Voa/HCI, Amber Liter/HCI				
Analyzed for: 8015, 8021				
Sampler Name: Sanjiv Gill Signature:	Signature:			

MONITORING FIELD DATA	SHEET Well ID: MW-8A				
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway				
Address: 5175 Broadway, Oakland, CA					
Date: 9/12/08	Weather: Sunny				
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163				
Total Depth (TD): 14.90	Depth to Product:				
Depth to Water (DTW): 11-32	Product Thickness:				
Water Column Height: 3.58	1 Casing Volume: 0.57 gallons				
Reference Point: TOC	3 Casing Volumes: 1.71 gallons				
Purging Device Disposable Bailer, 3" PVC	Bailer, Check Valve Tubing, Whal Pump				
Sampling Device: Disposable Bailer					
Time Temp © pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW				
2:55 20.1 7.04 1532	,5				
2:57 19.7 6.95 1520	1.0				
3:00 19.6 6.95 1514	1.5				
Comments: YSI 550A DO meter	pre purge DO = mg/l				
Commonto. 101000/120 motor	post purge DO = mg/l				
very turbid, very silty, odor	poor pange Be migh				
Sample ID: MW-8A	Sample Time: 3:05				
Laboratory: McCampbell Analytical, INC.	Sample Date: 9/ 12/08				
Containers/Preservative: Voa/HCI, Amber	Liter/HCI				
Analyzed for: 8015, 8021					
Sampler Name: Sanjiv Gill	Signature:				

Well ID: MN-8C MONITORING FIELD DATA SHEET Project. Task #: 1145.001 216 Project Name: Feiner - 5175 Broadway Address: 5175 Broadway, Oakland, CA Date: 9/12/08 Weather: 3" = 0.37 Volume/ft. 4" = 0.65 radius² * 0.163 Well Diameter: Total Depth (TD): 24.89 Depth to Product: Depth to Water (DTW): 13.15 Product Thickness: 1 Casing Volume: 1.87 Water Column Height: 11.74 gallons 3 Casing Volumes: 5.61 Reference Point: TOC gallons Purging Device: Disposable Bailer, 3" PVC Bailer, Check Valve Tubing, Whal Pump Sampling Device: Disposable Bailer Time Temp © рН Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 2:30 7.21 19.7 2 1558 4 2:40 1543 4.5 2:45 Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l very turbid, very silty Sample ID: MW-8C Sample Time: 11:15 Laboratory: McCampbell Analytical, INC. Sample Date: 9// 3/08 Containers/Preservative: Voa/HCI, Amber Liter/HCI Analyzed for: 8015, 8021 Sampler Name: Sanjiv Gill Signature:

MONITORING FIELD DATA	A SHEET Well ID: MW-9A				
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway				
Address: 5175 Broadway, Oakland, CA					
Date: 9/12/08	Weather: Cloudy				
Well Diameter: 2"	Veather: Coudy Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163				
Total Depth (TD): 15.19	Depth to Product:				
Depth to Water (DTW): 12.77	Product Thickness:				
Water Column Height: 2.42	1 Casing Volume: 0.38 gallons				
Reference Point: TOC	3 Casing Volumes: 1.14 gallons				
Purging Device Disposable Bailer, 3" PV	C Bailer, Check Valve Tubing, Whal Pump				
Sampling Device: Disposable Bailer					
Time Temp © pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW				
12:40 21.5 7.63 987	.3				
12:45 21.4 7.70 995	. 6				
12:50 21.3 7.70 1010	1.0				
Comments: YSI 550A DO meter	pre purge DO = mg/l				
	post purge DO = mg/l				
very turbid, very silty	Free Finge 2 mg/r				
Sample ID: MN-9A	Sample Time: 1:00				
Laboratory: McCampbell Analytical, INC.	Sample Date: 9/12 /08				
Containers/Preservative: Voa/HCI, Amber	Liter/HCI				
Analyzed for: 8015, 8021	11				
Sampler Name: Sanjiv Gill	Signature:				

MONITORING FIELD DATA	SHEET Well ID: MW-9C				
Project.Task #: 1145.001 216	Project Name: Feiner - 5175 Broadway				
Address: 5175 Broadway, Oakland, CA					
Date: 9/12/08	Weather: Cloudy				
Well Diameter: 2"	Volume/ft. $\frac{C \log 2}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$				
Total Depth (TD): 20.45	Depth to Product:				
Depth to Water (DTW): 12-41	Product Thickness:				
Water Column Height: 8.04	1 Casing Volume: 1.28 gallons				
Reference Point: TOC	3 Casing Volumes: 3.84 gallons				
Purging Device Disposable Baile, 3" PVC					
Sampling Device: Disposable Bailer	Taking Milati dilip				
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW				
12:00 21.3 7.71 563	1.5				
12:05 20.7 7.80 541	3				
12:15 20.5 7.80 567	Ч				
Comments: YSI 550A DO meter	pro purgo DO =				
Comments. 131330A DO Metel	pre purge DO = mg/l post purge DO = mg/l				
very turbid, very silty	post parge DO = mgn				
Sample ID: MW-9€	Sample Time: 12:25				
Laboratory: McCampbell Analytical, INC.	Sample Date: 9/ /2 /08				
Containers/Preservative: Voa/HCI, Amber	Liter/HCI				
Analyzed for: 8015, 8021					
Sampler Name: Sanjiv Gill	Signature:				

	MONITO	ORING F	IELD DATA	SHEET Well ID: MW-10A				IOA
Project.Task #: 1145.001 216				Project Name: Feiner - 5175 Broadway				
Address:	5175 Bro	adway, O	akland, CA					
Date: 9/1	2/08			Weather	: C/01	rdy		
Well Diar	meter:	2"		Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0.1	163
Total Dep	oth (TD):	17.96	2		Product:			
Depth to	Water (D	TW): 11.0	06	Product	Thickness);		
Water Co	olumn Hei	ght: 6	5-90	1 Casing	Volume:	1.10		gallons
Reference	e Point: T	OC		_3 Ca	sing Volur	mes: 3.	30	gallons
Purging [Device Di	isposable	Bailen 3" PV	C Bailer, C	Check Val	ve Tubing	, Whal Pu	mp
		Disposable		T				
/: 20	Temp ©	pH	933	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW
1:22	21.8	7.20 7.25	935				1	
1:25	21.9	7.28	887				7	
,		7 000	001					
Comments:	YSI 550A [DO meter		pre purge [00 =	mg/l		
				post purge		mg/l		
very	turbid,	very si	1 ty					
	- ^^				24	- 0		
Sample ID: MW-10A			Sample Time: 1:30					
Laboratory: McCampbell Analytical, INC.			alytical, INC.	Sample Date: 9//2/08				
Container	rs/Preserv	vative: Vo	a/HCI, Amber	Liter/HCI				
Analyzed	for: 8015	5, 8021			11	2		
Sampler I	Name: Sa	njiv Gill		Signature		<i>></i>		

APPENDIX B

Laboratory Analytical Report

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; Feiner-5175	Date Sampled:	09/12/08-09/13/08
1710 Franklin Street, Ste. 200	Broadway	Date Received:	09/15/08
Oakland, CA 94612	Client Contact: Celia Costarella	Date Reported:	09/22/08
Outstand, C11 3 1012	Client P.O.:	Date Completed:	09/22/08

WorkOrder: 0809413

September 22, 2008

T .	\sim 1	•
Dear	Δ'	10

Enclosed within are:

- 1) The results of the 15 analyzed samples from your project: #1145.001; Feiner-5175 Broadway,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; Feiner-	Date Sampled: 09/12/08-09/13/08
1710 Franklin Street, Ste. 200	5175 Broadway	Date Received: 09/15/08
	Client Contact: Celia Costarella	Date Extracted: 09/17/08-09/19/08
Oakland, CA 94612	Client P.O.:	Date Analyzed 09/17/08-09/19/08

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gas	onne Ka	inge (Co-C12) volatile i	Hydrocarboi	is as Gasom	ne with B I I	LA and MITBI	r.		
Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 08							der: 080	9413		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	W	1000,d1	ND	13	ND	0.61	1.4	1	115
002A	MW-2C	W	130,d1,b1	ND	7.1	ND	1.2	0.83	1	108
003A	MW-3A	W	26,000,d1	ND<100	2100	29	560	280	20	110
004A	MW-3C	W	40,000,d1	ND<500	1100	1200	600	3000	100	100
005A	MW-4A	W	110,000,d1,d7	ND<500	1400	ND<50	210	660	100	106
006A	MW-5B	W	ND,b1	ND	ND	ND	ND	ND	1	99
007A	MW-5C	W	ND,b1	ND	ND	ND	ND	ND	1	97
008A	MW-6A	W	ND,b1	ND	ND	ND	ND	ND	1	95
009A	MW-7B	W	16,000,d1,b6	ND<120	450	340	19	1300	10	98
010A	MW-7C	W	7600,d1	ND<50	260	38	76	330	10	108
011A	MW-8A	W	11,000,d1	ND<50	220	31	110	180	10	119
012A	MW-8C	W	ND	ND	ND	ND	ND	ND	1	96
013A	MW-9A	W	ND	ND	1.2	ND	ND	ND	1	103
014A	MW-9C	W	ND,b1	ND	ND	ND	ND	ND	1	95
015A	MW-10A	W	ND,b1	ND	ND	ND	ND	ND	1	98
-	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	μ	g/L
	eans not detected at or ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg	g/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- b6) lighter than water immiscible sheen/product is present
- d1) weakly modified or unmodified gasoline is significant
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; Feiner-5175 Broadway	Date Sampled:	09/12/08-09/13/08
1710 Franklin Street, Ste. 200	3173 Bloadway	Date Received:	09/15/08
	Client Contact: Celia Costarella	Date Extracted:	09/15/08
Oakland, CA 94612	Client P.O.:	Date Analyzed	09/17/08-09/18/08

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method SW3510C/3630C Analytical methods: SW8015C Work Order: 0809413

Extraction method 3 w 3310C/3030C		All	iarytical filetilous. 3 w 8015C work	WOIR Older. 0809413		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	
0809413-001B	MW-1	W	320,e11	1	118	
0809413-002B	MW-2C	W	ND,b1	1	119	
0809413-003B	MW-3A	W	9000,e4	1	123	
0809413-004B	MW-3C	W	11,000,e4	10	128	
0809413-005B	MW-4A	W	120,000,e11,b6	10	128	
0809413-006B	MW-5B	W	ND,b1	1	119	
0809413-007B	MW-5C	W	ND,b1	1	119	
0809413-008B	MW-6A	W	510,e7,e11,b1	1	119	
0809413-009B	MW-7B	W	27,000,e11,b6	10	127	
0809413-010B	MW-7C	W	2600,e4	1	120	
0809413-011B	MW-8A	W	9900,e11	1	118	
0809413-012B	MW-8C	W	ND	1	117	
0809413-013B	MW-9A	W	ND	1	119	
0809413-014B	MW-9C	W	ND,b1	1	118	
0809413-015B	MW-10A	W	ND,b1	1	118	

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in $\mu g/L$, wipe samples in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- b1) aqueous sample that contains greater than ~1 vol. % sediment
- b6) lighter than water immiscible sheen/product is present
- e4) gasoline range compounds are significant.
- e7) oil range compounds are significant
- e11) stoddard solvent/mineral spirit

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38218 WorkOrder 0809413

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B					;	Spiked Sa	mple IC): 0809406-	001B
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf	ND	60	109	111	2.00	78.3	80.5	2.69	70 - 130	20	70 - 130	20
МТВЕ	ND	10	81.1	81.3	0.273	92.6	95.9	3.43	70 - 130	20	70 - 130	20
Benzene	ND	10	84.4	86.3	2.13	89.9	96.6	7.13	70 - 130	20	70 - 130	20
Toluene	ND	10	84	84.9	1.04	80.3	85.7	6.52	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	85.8	87.7	2.16	89.2	94.9	6.14	70 - 130	20	70 - 130	20
Xylenes	ND	30	85.8	87.4	1.87	88.6	93.1	4.99	70 - 130	20	70 - 130	20
%SS:	115	10	98	96	1.65	99	102	3.59	70 - 130	20	70 - 130	20

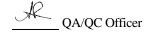
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38218 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809413-001A	09/13/08 10:20 AM	09/17/08	09/17/08 6:55 PM	0809413-002A	09/13/08 9:45 AM	09/17/08	09/17/08 7:25 PM
0809413-003A	09/13/08 11:45 AM	09/17/08	09/17/08 11:57 PM	0809413-004A	09/13/08 11:35 AM	09/17/08	09/17/08 6:42 AM
0809413-005A	09/13/08 10:55 AM	09/17/08	09/17/08 7:12 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38229 WorkOrder 0809413

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B						Spiked Sa	mple ID): 0809428-	001
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
ruidiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	97.2	97	0.242	97	102	4.93	70 - 130	20	70 - 130	20
MTBE	ND	10	101	97.5	3.27	116	114	1.55	70 - 130	20	70 - 130	20
Benzene	ND	10	90.3	87.7	2.80	95.7	94	1.80	70 - 130	20	70 - 130	20
Toluene	0.99	10	80.6	78.1	2.79	106	104	1.91	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	98.4	96.2	2.28	105	104	1.14	70 - 130	20	70 - 130	20
Xylenes	ND	30	109	107	1.98	116	115	0.728	70 - 130	20	70 - 130	20
%SS:	92	10	93	94	1.67	98	93	4.26	70 - 130	20	70 - 130	20

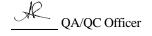
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38229 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809413-006A	09/13/08 11:10 AM	09/17/08	09/17/08 8:25 PM	0809413-007A	09/12/08 2:00 PM	09/17/08	09/17/08 8:24 AM
0809413-008A	09/13/08 9:25 AM	09/18/08	09/18/08 8:03 AM	0809413-009A	09/13/08 11:30 AM	09/18/08	09/18/08 9:09 AM
0809413-010A	09/13/08 11:20 AM	09/17/08	09/17/08 5:47 PM	0809413-011A	09/12/08 3:05 PM	09/19/08	09/19/08 1:24 AM
0809413-012A	09/13/08 11:15 AM	09/18/08	09/18/08 12:57 AM	0809413-013A	09/12/08 1:00 PM	09/19/08	09/19/08 3:20 PM
0809413-014A	09/12/08 12:25 PM	I 09/18/08	09/18/08 10:23 PM	0809413-015A	09/12/08 1:30 PM	09/17/08	09/17/08 4:40 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015C

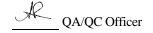
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 38228 WorkOrder 0809413

EPA Method SW8015C	Extra	ction SW	3510C/36	630C				;	Spiked Sa	mple ID): N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
, and y to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	99.7	95.9	3.83	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	118	116	1.16	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 38228 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0809413-001B	09/13/08 10:20 AM	09/15/08	09/17/08 6:02 AM	0809413-002B	09/13/08 9:45 AM	09/15/08	09/17/08 7:10 AM
0809413-003B	09/13/08 11:45 AM	09/15/08	09/18/08 2:37 AM	0809413-004B	09/13/08 11:35 AM	09/15/08	09/18/08 4:53 AM
0809413-005B	09/13/08 10:55 AM	09/15/08	09/17/08 11:12 PM	0809413-006B	09/13/08 11:10 AM	09/15/08	09/17/08 11:46 AM
0809413-007B	09/12/08 2:00 PM	09/15/08	09/17/08 9:29 AM	0809413-008B	09/13/08 9:25 AM	09/15/08	09/17/08 12:54 PM
0809413-009B	09/13/08 11:30 AM	09/15/08	09/17/08 8:55 PM	0809413-010B	09/13/08 11:20 AM	09/15/08	09/17/08 2:03 PM
0809413-011B	09/12/08 3:05 PM	09/15/08	09/17/08 3:13 PM	0809413-012B	09/13/08 11:15 AM	09/15/08	09/17/08 5:30 PM
0809413-013B	09/12/08 1:00 PM	09/15/08	09/17/08 6:38 PM	0809413-014B	09/12/08 12:25 PM	09/15/08	09/17/08 7:46 PM
0809413-015B	09/12/08 1:30 PM	09/15/08	09/18/08 3:45 AM				


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Telephone: 877-252-9262 Fax: 925-252-9269

Sample Receipt Checklist

Client Name:	Pangea Environmental	Svcs., Inc.			Date a	and Time Received:	09/15/08	10:16:01 AM
Project Name:	#1145.001; Feiner-517	5 Broadway			Check	list completed and i	reviewed by:	Maria Venegas
WorkOrder N°:	0809413 Matrix	<u>Water</u>			Carrie	r: Rob Pringle (M	(Al Courier)	
		Chain	of Cu	stody (C	COC) Informa	ntion		
Chain of custody	y present?		Yes	V	No 🗆			
Chain of custody	y signed when relinquished ar	nd received?	Yes	V	No 🗆			
Chain of custody	y agrees with sample labels?		Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	V	No 🗆			
Date and Time of	f collection noted by Client on 0	COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>Sa</u>	mple	Receipt	t Information	!		
Custody seals in	tact on shipping container/coo	oler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good condition?		Yes	V	No 🗆			
Samples in prop	er containers/bottles?		Yes	V	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicated test?		Yes	✓	No 🗌			
	<u>s</u>	ample Preser	vatio	n and Ho	old Time (HT)) Information		
All samples rece	ived within holding time?		Yes	V	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	2.6°C		NA 🗆	
Water - VOA via	ıls have zero headspace / no	bubbles?	Yes	✓	No 🗆	No VOA vials subm	nitted \square	
Sample labels cl	hecked for correct preservation	n?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receipt (pH<	2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗆			
		(Ice Type	: WE	TICE)			
* NOTE: If the "I	No" box is checked, see com	ments below.						
	=======	=====	===	:		=====		======
Client contacted:		Date contacte	ed:			Contacted	l by:	
Comments:								

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0809413 ClientCode: PEO WriteOn **✓** EDF Excel Fax ✓ Email HardCopy ThirdParty J-flag Bill to: Report to: Requested TAT: 5 days Celia Costarella ccostarella@pangeaenv.com Bob Clark-Riddell Email: Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 09/15/2008 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 Oakland, CA 94612 Date Printed: ProjectNo: #1145.001; Feiner-5175 Broadway 09/15/2008 FAX (510) 836-3709 (510) 836-3700

							Req	uested	Tests (See le	gend be	elow)			
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
0809413-015	MW-10A	Water	9/12/2008 13:30	Α		В									

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(D)WSG_W	4	5
6	7	8	9	10
11	12			
				Prepared by: Maria Venegas

Comments:

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565 Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	2-9262					Work	Order	: 08094	413	(Client(Code: Pl	EO				
			WriteOn	✓ EDF		Excel		Fax		✓ Email		Hard	Сору	Thi	dParty	☐ J-1	flag
-	ronmental Svcs., Inc. n Street, Ste. 200 94612	cc: PO: ProjectNo: #1145		angeaenv.com iner-5175 Broad	way		Pa 17	ob Clark Ingea E 10 Fran Ikland, (nvironr klin St	mental S reet, Ste		Inc.	Dat	uested e Rece e Prin	ived:	5 c 09/15/2 09/15/2	
									Pen	uested	Tosts	(See leg	and h	elow)			
Lab ID	Client ID	N	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
0809413-001	MW-1	\	Vater	9/13/2008 10:20		Α	Α	В									
0809413-002	MW-2C	\	Nater	9/13/2008 9:45		Α		В									
0809413-003	MW-3A	\	Nater	9/13/2008 11:45		Α		В									
0809413-004	MW-3C	\	Nater	9/13/2008 11:35		Α		В									
0809413-005	MW-4A	\	Nater	9/13/2008 10:55		Α		В									
0809413-006	MW-5B	\	Nater	9/13/2008 11:10		Α		В									
0809413-007	MW-5C	\	Nater	9/12/2008 14:00		Α		В									
0809413-008	MW-6A	\	Nater	9/13/2008 9:25		Α		В									
0809413-009	MW-7B	\	Nater	9/13/2008 11:30		Α		В									
0809413-010	MW-7C	\	Nater	9/13/2008 11:20		Α		В									
0809413-011	MW-8A	١	Nater	9/12/2008 15:05		Α		В									
0809413-012	MW-8C	١	Nater	9/13/2008 11:15		Α		В									
0809413-013	MW-9A	\	Nater	9/12/2008 13:00		Α		В									
0809413-014	MW-9C	\	Nater	9/12/2008 12:25		Α		В							<u> </u>		
Test Legend:																	
1 G-MBT	EX_W 2	PREDF REPORT		3 TPI	H(D)W	SG_W		4						5			
6	7			8				9						10			
11	12																
													Prepa	red by:	Maria	Venega	ıs

Comments:

0809413

Pa	ngea I		menta Franklin Str	IS			es,	Inc							-			4 P						C	US	ST	OD	Y	R	EC	0	RD		×
		Oakl	and, CA 946	512											T	UR	IN .	AR	UU	NL	1	LIVI	E	1	RUS	Н	24	HR		48 H	IR	72	HR	
Telephone			ww.pange	aenv			. (5	10)	836	_37	00				EI	OF I	Requ	iire	de	(es)	No	(No	rma				rite	On			No			
Report To: Celia Co	Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owne	0-3700	Bil	1 To	o: P	_	_	10)	050	-51	0)	_			_		_			_	_		Red	_							0	ther	Т	Comments
Company: Pangea I		ental Tec				-																											Т	Filter
			200, Oak		d, C	1 94	612								3E	-	0										0	*						Samples
			E-	Ma	il: co	ost	arell	la@	pan	gea	en	v.co	m		8015)/MTBE	Silica ge	F/B&	8.1)									/8310							for Metals
Tele: (510) 735-175					(510)								-	_	(\$10)	5	E&	s (41									270							analysis:
Project #: 1145.	001	0 1	Pr	ojec	t Na	me	Fe	ine	4-	51	75	Br	ced.	Ky.	+	34	(552)	-pou		020		LY					625/8270	6020)	(02					Yes / No
Project Location: Sampler Signature:	5175	15 road	nay, 0	Crk	Lan	dy	-	1:	-		18			-	Gas (602/8020	1	ease	ocar		12/8		O			_		A 62		/ 60	010)				
Sampler Signature.	Mus		LING	امم			3/	ATR	d	4	A.	MET	HOI)	s (60)	15)	& G	lydr	3021	14 66		CB's			8260	270	EP	0109	010	9/6			-	
		SAMP	LING	1.5	ner	-	IVIZ	AIR	IA	-	PR	ESE	RVI	ED	18 Ga	1 (80	0.0	ī	10/8	(EP	100	82 P	141	151	24/	5/8	's by	als (als (6	200			-	
SAMPLE ID LO	OCATION			Containers	Type Containers										LPH.	TPH as Diesel (8015) WITH \$	Total Petroleum Oil & Grease (\$520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 /	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	/T015			
(Field Point Name)	001111011	Date	Time	onts	o o	1	2		lge	er		L	ő	er	BTEX & TPH	38	Petr	l Pe	109	0 X	809	809	914	815	524	525	l's/	1-17	TS	d (20	T/1			
				# C	Į,	Wotor	Soil	Air	Sludge	Other	ICE	HCL	HNO3	Other	BTE	TPH	Total	Tota	EPA	BTE	EPA	EPA	EPA	EPA	EPA	EPA	PAI	2	5	Lea	T03			
200 1		0.12.02	10:20	3	Aw.	: 1	2			\forall	X	X			X	X																	\forall	
Mb-1		-	9:45	1	Aw \	vb -				\neg	4	1			H	1																	1	
MW-2C			11:45	+	+	+					1				\dagger	1																	1	
MU-3A			11:35	+		+	-	Н		\dashv	+	†			H	+					1												1	
MN-3C			10:55		\forall	\forall	+								H	1					1					1							1	
ML-4A				+	H	+				\dashv	+				\dagger	+					-	1									-		1	
MW-5B		9-13-08	2:00	H	H	††	+			\neg					H	+																		
MW-SC	2	9-13-08		H	+	╫																												
MN-6A			11:30	\vdash	1	$^{+}$				\dashv						+						-					1							
MN-7B		9-13-08			$\parallel +$	+	+								\parallel	1			-															
MW-7C				Н	#	+		Н								1						1												
MW-8A		9-12-08		Н	+	+										1					-													
MN-8C		9-13-08		Н	++	+					+				\parallel	1						-												
MN-9A MN-9C		9-12-02	1:00	X	1	1				-	1	1			1	1						100		-		1		\vdash	+		-			
Relinquished By:		Date:	Time:		ceive						1	1	_	-	IC	E/t°	2	6		-	/								CO	MM	ENT	S:	_	
1	_	9-15708		1		1				>	<	_			G	OOD	CO! SPA	NDIT			-	/												
Relinquished By-	-	Dirte:	Time:	Re	egive	LBy	:					_			DI	ECH	LOR	INA	TED	IN		D.0	1											
	- /	HS/08	430-	1	11	M	u.	1	11		X						PRI				AINE	RS_	V	-										
Relinquished By:	/	Date:	Time:	Re	ceive	d By	:	-											V	OAS	10	R.C.	M	ETA	LS	ОТ	HER	2						
															PF	RESE	RVA	TIC		7		a U	pH		KA3	UI	216.0							

							_			_		_		_	_	-	_	-	_		_	-							_	-			
	Pangea l		nmenta Franklin S			ice	s, l	Inc																C	US	ST	OI	Y	R	EC	CO	RD	N
			dand, CA 9												T	UF	IN.	AR	OU	INI) T	IM	E		ч		ш			ш			Ż
		Website: 1	www.pang	eaen											FI	DEI	Pegi	uire	126	Vac	No	(No	PIN		RUS			HR		48 1	HR No	72 H	R 5 DAY
THE RESERVE OF THE PARTY OF THE	ne: (510) 83		D	:11 7D				10)	836-	370	19	_	_	-	ESE	J1 1	cequ	unc	4.6	_			-	_	-	**	Tite	Oil	(D)	,			
Report To: Celia Company: Pange					o: P	ange	ea	_						\dashv	_					- 1	Ana	ysis	Re	ques	st						(ther	Comments
			-		-	0.4	612							\dashv																			Filter
1/10	Franklin St	reet, Suite			il: co		-	000	nana	***	07871		-	\dashv	LBE	30	(KF)	_									01						Samples
Tele: (510) 735-1	751				(510)			111111111111111111111111111111111111111	panş	gea	env.	.coi	ш	\dashv	J//	33	EF/B	90									/83						for Metals
Project #: 114					et Na	-	-	-	A F		10	2	La		Gas (602/8020 + 8015)/MTBE	127	20 E	18 (4		6		2000					8270						analysis: Yes / No
Project Location:	C176 1	2-md.	. u D.	k la	A	1	A	141	- 5	L	5	Sto	CILIC	4	+ 0	20	(552	rboi		8020		LY					5/8	(00)	50)				1 es / No
Project Location: Sampler Signatur	e: M., 6	CALL EN	al com	A10	1	X	C		01	* .		08	-	\dashv	2/802	3	rease	ося		32/		0			_		A 62	1 60	/ 60	010)			
	14/125/		PLING	me		Ť	MA			6	M	E 471	OD		(60)	15)	& G	lydr	021	A 66		CB's			8260	92	EP/	010	010	9/6			
		SAMI	LING	- 2	ner	\vdash	IVIA	IIK	UA	+	PRE	SEF	RVE	D	s Ga	(80	8	H	8/0	(EP	-	2 P(4	51	24 /	/ 82	s by	lls (6	9) s	200			
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH as	TPH as Diesel (8015) WITH SIVICE ge	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	TO3/TO15		
841 . 100		610.03	1130	3	Ani	1	X			-	x 7	_		-	X	-	_		_	-													
MW-101		9-12-08	1:30	2	Ani	4	^			+	Α,	1	-	-	^	^				-					-	-	-		-		-		
				-	-	+			-	+	-	-		-															_		_		
				1	_	1				4			_	_							_												
										T																							
										1			7	1																			
	-			\vdash		1				Ť				7								-									-		
					_	+		_	1	+	+	+	1	\forall											-				-		-		
				+	+	+		-	-	+	+	-	-	\dashv						-	-	-	-		-	-	-	-		-			-
				+	+	+			-	+	+	+	-	+			-			-						-		-			-		
				-		-			_	+	-	-		4																	_		
	77.					1				1	1			4																			
						L																											
2.0																																	
Relinquished By.		Date:	Time:	Re	ceived	By:		_	_			_	_	J		E/t°_													CO	MM	ENT	S:	
		915-08	9050	1		\geq		_				1		1				CE A															
Relinquished By:		Date:	Time:	Re	ceived	By:)/	86.7	_	V	7	DE	CHL	ORI	NAT	ED	IN I	AB		_										
	-17	1/3/00	100	1			w	/	//	//	1	2						ATE D IN			INE	KS_	-	-									
Relinquished By:		Date:	Time:	Re	ceived	By:															-	0.0	2.55	nown a n	10	OF	TEN						
															PR	ESE	RVA	TIO		JAS	O	oc G	pH		LS	on	HER						