#### **RECEIVED**

10:04 am, May 02, 2008

Alameda County Environmental Health



April 30, 2008

#### VIA ALAMEDA COUNTY FTP SITE

Mr. Steven Plunkett Alameda County Environmental Health 1331 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Groundwater Monitoring Report - First Quarter 2008

5175 Broadway Street Oakland, California ACEH Fuel Leak Case No. RO#0000139

Dear Mr. Plunkett:

On behalf of Rockridge Heights LLC, Pangea Environmental Services, Inc., has prepared this *Groundwater Monitoring Report – First Quarter 2008*. The report describes groundwater monitoring, sampling, and other site activities. This report also proposes a reduction in the groundwater monitoring frequency from quarterly to semi-annually to control project costs. To further evaluate subsurface conditions, Pangea also proposes to additional subslab and soil gas sampling as outlined in the Soil Gas Sampling and Well Installation Report dated October 23, 2007.

The report will be uploaded to the Alameda County ftp site. As requested, Pangea will not submit a hard copy of this report to Alameda County Environmental Health.

If you have any questions or comments, please call me at (510) 435-8664.

Sincerely,

Pangea Environmental Services, Inc.

Bot childell

Bob Clark-Riddell, P.E.

Principal Engineer

Attachment: Groundwater Monitoring Report - First Quarter 2008

cc: Rockridge Heights, LLC, C/O Gary Feiner, 34 Schooner Hill, Oakland, California 94618 SWRCB Geotracker (Electronic copy)



### **GROUNDWATER MONITORING REPORT - FIRST QUARTER 2008**

5175 Broadway Oakland, California

April 30, 2008

Prepared for:

Rockridge Heights, LLC C/O Gary Feiner 34 Schooner Hill Oakland, California 94618

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies Project Manager Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

#### INTRODUCTION

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. (Pangea) conducted groundwater monitoring and sampling at the subject site (Figure 1). The purpose of the monitoring and sampling is to evaluate dissolved contaminant concentrations, determine the groundwater flow direction, and inspect site wells for separate-phase hydrocarbons (SPH). Current groundwater analytical results and elevation data are shown on Figures 2 and 3. Current and historical data are summarized on Table 1.

#### SITE BACKGROUND

The subject property is located at 5175 Broadway Street, at the southwest corner of the intersection of Broadway and Coronado Avenue in Oakland, California in Alameda County (Figure 1). The site is approximately 0.6 miles south-southeast of Highway 24 and approximately 2.3 miles east of Interstate 80 and the San Francisco Bay. The property is relatively flat lying, with a slight slope to the south-southwest, and lies at an elevation of approximately 160 feet above mean sea level. Topographic relief in the area surrounding the site also slopes generally towards the south-southwest. The western site boundary is the top of an approximately 10 foot high retaining wall that separates the site from an adjacent apartment complex.

The property has been vacant since 1979 and was formerly occupied by an Exxon Service Station used for fuel sales and automobile repair. The site is approximately 13,200 square feet in area with about 10% of the area occupied by a vacant station/garage structure. The majority of the ground surface is paved with concrete and/or asphalt, although the former tank location is not paved. Land use to the west and northwest is residential, including apartment buildings and single family homes. Properties to the northeast, east and south of the site are commercial. The site and adjacent properties are shown on Figure 2.

Environmental compliance work commenced when the site USTs were removed in January 1990. Three 8,000-gallon steel single-walled USTs, associated piping, and a 500-gallon steel single-walled waste oil tank were removed. Tank Project Engineering, Inc. (TPE) conducted the tank removal and observed holes in all four tanks. Approximately 700 tons of contaminated soil was excavated during tank removal and was subsequently remediated and reused for onsite backfill by TPE. In April 1990, TPE installed and sampled monitoring wells MW-1, MW-2 and MW-3. In June 1991, Soil Tech Engineering (STE), subsequently renamed Environmental Soil Tech Consultants (ESTC) installed monitoring wells STMW-4 and STMW-5. Groundwater monitoring was conducted on the site intermittently until October 2002. Golden Gate Tank Removal (GGTR) performed additional assessment in January and February 2006. In June 2006, the property was purchased by Rockridge Heights, LLC. Pangea commenced quarterly groundwater monitoring at the site in July 2006. MTBE is not considered to be a contaminant of concern because use of the site for fuel sales

predates widespread use of MTBE in gasoline and because analytical results have not show significant detections of MTBE.

In January and March 2007, Pangea installed twelve wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C) and three offsite soil borings to help define the vertical and lateral extent of groundwater contamination. Pangea also abandoned four monitoring wells (MW-2, MW-3, STMW-4 and STMW-5) to reduce the risk of vertical contaminant migration and improve the quality of monitoring data. New wells installed at the site were categorized according to the depths of their screen intervals. Shallow (A-zone) wells have screen intervals of approximately 10 to 15 feet bgs, which generally straddle the top of the water table and are generally screened in surficial fill and alluvium. Intermediate-depth (B-zone) wells are screened at approximately 15 to 20 feet bgs, either in surficial strata or underlying fractured bedrock, while deep (C-zone) wells are generally screened at approximately 20 to 25 feet bgs and into fractured bedrock. Well MW-1 is screened across both the A-zone and B-zone.

In April 2007, Pangea performed a dual-phase extraction (DPE) pilot test to evaluate whether DPE is an appropriate remedial technology to remove residual hydrocarbons from beneath the site. In July 2007, Pangea submitted an Interim Remedial Action Plan for site corrective action.

In August 2007, Pangea installed three offsite monitoring wells (MW-9A, MW-9C and MW-10A) and conducted subslab vapor sampling in the commercial building located immediately south of the site. The purpose of the offsite well installation was to determine the downgradient extent of contaminant migration, and to help evaluate downgradient effects of any future remediation conducted onsite. The purpose of the subslab vapor sampling was to determine whether vapor migrating from underlying groundwater had impacted soil vapor. Soil gas sampling was also conducted near the southern and western edge of the property. Soil gas sampling and offsite monitoring well installation is described in Pangea's *Soil Gas Sampling and Well Installation Report* dated October 23, 2007.

#### GROUNDWATER MONITORING AND SAMPLING

On March 15 and 16, 2008, Pangea conducted groundwater monitoring and sampling at the site. Site monitoring wells were gauged for depth-to-water and inspected for separate-phase hydrocarbons (SPH). To obtain water levels representative of the piezometric surface, technicians removed all well caps (allowing water levels to equilibrate) the night prior to sampling. Groundwater samples were collected from all site monitoring wells this quarter.

Prior to sample collection, approximately three casing volumes of water were purged using disposable bailers, an electric submersible pump, or a clean PVC bailer (although fewer casing volumes were purged if the well dewatered). During well purging, field technicians measured the pH, temperature and conductivity of the water. A groundwater sample was collected from each well with a disposable bailer and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4°C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was stored onsite in DOT-approved 55-gallon drums. Groundwater monitoring field data sheets, including purge volumes and field parameter measurements, are presented in Appendix A.

#### **MONITORING RESULTS**

Current and historical groundwater elevation and analytical data are described below and summarized on Table 1, Figure 2 and Figure 3. Groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015C with silica gel cleanup; total petroleum hydrocarbons as gasoline (TPHg) by modified EPA Method 8015C; and benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8021B. Samples were analyzed by McCampbell Analytical, Inc., of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is included in Appendix B.

#### **Groundwater Flow Direction**

Based on depth-to-water data collected March 15, 2008, shallow groundwater (A-zone) flows generally southwards to southwestwards throughout most of the site and in the area downgradient from the site, as shown on Figure 2. The relatively high groundwater elevations measured in well MW-6A suggest that shallow groundwater is mounded in the former UST excavation and that the local flow direction radiates outwards away from the former excavation area towards the northeast corner of the site in the direction of MW-4A. These observations are interpreted as indicating that the unpaved former UST excavation has acted as a collector for rainwater and that the asphalt pavement covering the remainder of the site serves to reduce infiltration elsewhere while directing rainwater to the unpaved UST excavation area. The current inferred flow direction in shallow groundwater is generally consistent with previous monitoring results.

Groundwater flow in deep groundwater (C-zone) is generally southwestwards at approximately the same gradient as the A-zone wells, as shown on Figure 3. Except for the wells MW-9A and MW-9C to the south of the property, the elevation of the piezometric surface for C-zone wells is lower than elevations for A-zone wells indicating that a downward gradient is present. The inferred flow direction is generally consistent with previous monitoring results.

#### **Hydrocarbon Distribution in Groundwater**

No measurable thickness of separate-phase hydrocarbons (SPH) was observed in any monitoring wells this quarter, although an immeasurable sheen was observed by the field technician in monitoring wells MW-1, MW-3C, MW-4A and MW-7B. During previous quarterly monitoring, a thin layer of SPH had been measured in well STMW-4, but no measurable SPH were detected this quarter in well MW-4A, which was installed in the drilled out borehole of STMW-4 but screened over a shallower depth interval than STMW-4.

The maximum TPHg concentration detected this quarter was 36,000  $\mu$ g/L in deep well MW-3C, while the maximum benzene concentration was 2,400  $\mu$ g/L in shallow well MW-3A. The highest TPHd concentration was detected in shallow well MW-4A (38,000  $\mu$ g/L). No hydrocarbons except low concentrations of benzene were detected in downgradient offsite monitoring wells MW-9A (0.85  $\mu$ g/L) and MW-9C (0.55 $\mu$ g/L); no hydrocarbons were detected in downgradient well MW-10A.

Shallow (A-zone) groundwater contains petroleum hydrocarbons at elevated concentrations in two primary areas near the former UST excavation: a northern area in the vicinity of well MW-4A, and a southwestern area in the vicinity of wells MW-3A and MW-8A. Prior shallow grab groundwater sampling data also indicates that the southern area of contamination extends to the southern site boundary in the vicinity of wells MW-7B and MW-7C. The low to non-detect concentrations of hydrocarbons in newly installed wells MW-9A and MW-10A indicate that offsite migration of petroleum hydrocarbons in shallow groundwater is minimal. The observed distribution of hydrocarbons in A-zone groundwater is presumably due to plume migration radially away from the excavation area, likely caused by mounding of groundwater within the uncapped former UST excavation during the rainy season.

Contaminant distribution in deeper groundwater differs significantly from the distribution of hydrocarbons in shallow groundwater. High levels of contamination within deeper groundwater (B-zone and C-zone) only appear to be present in the vicinity of wells MW-3C, MW-7B and MW-7C in the central and southern portions of the site. The very low concentrations of petroleum hydrocarbons detected in newly installed offsite well MW-9C indicates that offsite plume migration is minimal.

#### **Fuel Oxygenate Distribution in Groundwater**

No MTBE was detected above reporting limits in any samples obtained from site monitoring wells this quarter. MTBE is not a contaminant of concern at this site. This is not surprising since the UST's were

removed in 1990.

#### OTHER SITE ACTIVITIES

#### **Groundwater Monitoring – Proposed Reduction to Semi-Annual**

To help control project costs, Pangea proposes to reduce the groundwater monitoring frequency from quarterly to semi-annually. Several rounds of monitoring data have been obtained from prior and new monitoring wells, and contaminant concentrations appear to be stable to decreasing in groundwater, despite the elevated concentrations in select wells. Pangea proposes to conduct the semi-annual monitoring in March and September of each year (first and third quarters). Therefore, unless otherwise instructed by the ACEH, Pangea plans to skip the second quarter 2008 monitoring event previously scheduled for June 2008 and the fourth quarter monitoring event scheduled for December 2008. Pangea anticipates resuming quarterly groundwater monitoring during and after completion of site remediation to facilitate evaluation of remedial effectiveness on site conditions.

During the next monitoring event (September 2008), Pangea will conduct gauging and sampling of all site groundwater monitoring wells. Groundwater samples will be analyzed for TPHg/BTEX/MTBE by EPA Method 8015Cm/8021B, and TPHd by EPA Method 8015C with silica gel cleanup. Pangea will summarize groundwater monitoring activities and results in a groundwater monitoring report.

### **Proposed Soil Gas and Subslab Gas Sampling**

Pangea plans to conduct additional soil gas sampling along the eastern edge of the residential building at 5230 Coronado Avenue as recommended in Pangea's *Soil Gas Sampling and Well Installation Report* (Report) dated October 23, 2007. As also recommended in the Report, Pangea plans to resample subslab locations SS-1 and SS-2 using the existing sampling probes, which were retained to facilitate cost-effective additional testing. If contaminant concentrations above ESLs are detected in the subslab locations, Pangea will conduct additional subslab sampling at step-out locations to delineate the extent of elevated contaminant concentrations in subslab gas.

#### Site Remediation

The relatively low petroleum hydrocarbon concentrations detected in offsite soil gas and groundwater suggest that the hydrocarbon impact is primarily limited to the 5175 Broadway property. Pangea recommends implementing site remediation at the 5175 Broadway property in accordance with Pangea's IRAP dated September 11, 2007. Based on an April 9, 2008 discussion between new case worker Steven Plunkett and

5

Lucy Armentrout (RP representative), Pangea understands that the ACEH plans to comment on the IRAP in the near future.

### **Electronic Reporting**

This report will be uploaded to the Alameda County ftp site. The report, laboratory data, and other applicable information will also be uploaded to the State Water Resource Control Board's Geotracker database. As requested, report hard copies will no longer be provided to the local agencies.

#### **ATTACHMENTS**

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)

Figure 3 – Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep)

Table 1 – Groundwater Analytical Data

Appendix A – Groundwater Monitoring Field Data Sheets

Appendix B – Laboratory Analytical Report

Former Exxon Station 5175 Broadway Oakland, California



**Site Location Map** 

Feiner Broadway site loc.ai 8/30/06



Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)





Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep) March 15, 2008



Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

| Well ID<br>TOC Elev | Date<br>Sampled | SPH  | Groundwater<br>Elevation | Depth<br>to Water | TPHd | TPHg  | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE  | DIPE | 1,2-DCA  | Dissolved<br>Oxygen |
|---------------------|-----------------|------|--------------------------|-------------------|------|-------|---------|---------|--------------|---------|-------|------|----------|---------------------|
| (ft)                | •               | (ft) | (ft)                     | (ft)              | ←    |       |         |         | μg/L —       |         |       |      | <b>→</b> | mg/L                |
|                     |                 |      |                          |                   |      |       |         |         |              |         |       |      |          |                     |
| MW-1                | 04/30/89        |      |                          |                   |      | 200   | 18      | 5       | 2            | 12      |       |      |          |                     |
| (97.71)             | 05/17/90        |      | 88.45                    | 9.26              |      |       |         |         |              |         |       |      |          |                     |
|                     | 09/26/90        |      | 87.79                    | 9.92              |      | 1,300 | 55      | 31      | 120          | 100     |       |      |          |                     |
|                     | 01/14/91        |      | 88.17                    | 9.54              |      | 3,100 | 350     | 83      | 86           | 130     |       |      |          |                     |
| (102.04)            | 07/03/91        |      | 92.62                    | 9.42              |      | 580   | 32      | 41      | 40           | 55      |       |      |          |                     |
|                     | 11/11/91        |      | 92.59                    | 9.45              |      | 330   | 20      | 2       | 2            | 11      |       |      |          |                     |
| (101.83)            | 03/04/92        |      | 93.90                    | 7.93              |      | 810   | 11      | 5       | 10           | 23      |       |      |          |                     |
|                     | 06/02/92        |      | 92.85                    | 8.98              |      | 2,200 | 93      | 32      | 40           | 120     |       |      |          |                     |
|                     | 09/28/92        |      | 92.54                    | 9.29              |      | 2,900 | 24      | 78      | 19           | 37      |       |      |          |                     |
|                     | 01/11/93        |      | 94.27                    | 7.56              |      | 1,700 | 5.7     | 6       | 11           | 28      |       |      |          |                     |
|                     | 08/15/94        |      | 92.64                    | 9.19              |      | 2,000 | 120     | 3       | 6            | 16      |       |      |          |                     |
| (97.50)             | 11/07/96        |      | 88.77                    | 8.73              | 270  | 1,200 | 3       | 1.1     | 1.5          | 3.8     | < 0.5 |      |          |                     |
|                     | 02/12/97        |      | 89.58                    | 7.92              | < 50 | 1,800 | 13      | 5.7     | 4.8          | 17      | < 0.5 |      |          |                     |
|                     | 06/16/97        |      | 88.46                    | 9.04              | < 50 | 330   | 27      | < 0.5   | < 0.5        | 1.2     | < 0.5 |      |          |                     |
|                     | 09/30/97        |      | 89.94                    | 7.56              | < 50 | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5 |      |          |                     |
| (97.50)             | 01/27/98        |      | 89.54                    | 7.96              | < 50 | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5 |      |          |                     |
|                     | 04/24/98        |      | 89.52                    | 7.98              | < 50 | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5 |      |          |                     |
|                     | 08/17/98        |      | 88.52                    | 8.98              | < 50 | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5 |      |          |                     |
|                     | 11/16/98        |      | 88.60                    | 8.90              | < 50 | < 50  | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5 |      |          |                     |
|                     | 02/16/99        |      | 88.86                    | 8.64              | <50  | 110   | < 0.5   | < 0.5   | < 0.5        | < 0.5   | < 0.5 |      |          |                     |
|                     | 05/17/99        |      | 89.00                    | 8.50              |      | 280   | 1.1     | 0.6     | < 0.5        | < 0.5   | < 0.5 |      |          |                     |
|                     | 08/17/99        |      | 88.26                    | 9.24              | 86   | 790   | 5.6     | 4.3     | 4.5          | 11      | < 5.0 |      |          |                     |
|                     | 11/17/99        |      | 87.06                    | 10.44             |      | 1,300 | 3.6     | 1.9     | 2.7          | 6.6     | <1.0  |      |          |                     |
|                     | 02/17/00        |      | 89.02                    | 8.48              |      | 580   | 1.1     | 2.3     | 3.6          | 4.9     | < 5.0 |      |          |                     |
|                     | 05/17/00        |      | 89.26                    | 8.24              |      | 1,500 | 130     | 6.8     | 6.1          | <5.0    | < 5.0 |      |          |                     |
|                     | 08/17/00        |      | 88.73                    | 8.77              |      | 550   | 160     | <25     | <25          | <25     | <25   |      |          |                     |
|                     | 11/15/00        |      | 88.46                    | 9.04              |      | 130   | < 5.0   | < 5.0   | <5.0         | < 5.0   | < 5.0 |      |          |                     |
|                     | 02/16/01        |      | 89.90                    | 7.60              |      | 400   | 26      | < 5.0   | <5.0         | < 5.0   | < 5.0 |      |          |                     |
|                     | 01/11/02        |      | 89.42                    | 8.08              | 160  | 600   | 74      | 53      | 14           | 52      | 110   |      |          |                     |
| (161.03)            | 07/01/02        |      | 152.01                   | 9.02              | 280  | 670   | 25      | < 5.0   | <5.0         | <5.0    | < 5.0 |      |          |                     |
|                     | 10/04/02        |      | 151.29                   | 9.74              | 520  | 1,800 | 130     | 7.8     | 8.1          | 14      | < 5.0 |      |          |                     |
|                     | 07/28/06        |      | 151.93                   | 9.10              | 86   | 250   | 42      | 1.7     | 1.4          | 3.1     | <1.0  | 51   | 1.5      | 0.21                |
|                     | 10/16/06        |      | 151.98                   | 9.05              | 110  | 390   | 16      | < 0.5   | 1.5          | 2.2     | < 0.5 | 41   | 1.6      | 0.17                |
| (161.10)            | 01/09/07        |      | 152.90                   | 8.20              | 160  | 530   | 21      | 1.7     | 2.8          | 5.1     |       |      |          | 0.22                |
|                     | 03/26/07        |      | 152.84                   | 8.26              |      |       |         |         |              |         |       |      |          |                     |
|                     | 06/24/07        |      | 152.12                   | 8.98              | 220  | 500   | 24      | 1.1     | 2.2          | 4.2     | < 5.0 |      |          |                     |
|                     | 09/29/07        |      | 151.44                   | 9.66              | 180  | 540   | 19      | 1.2     | 2.3          | 5.3     | <5.0  |      |          |                     |
|                     | 12/27/07        |      | 152.60                   | 8.50              | 200  | 290   | 10      | 0.65    | 1.2          | 3.0     | <5.0  |      |          |                     |
|                     | 03/15/08        |      | 152.72                   | 8.38              | 340  | 680   | 24      | 1.1     | 1.9          | 2.9     | <10   |      |          |                     |
| MW-2                | 04/30/89        |      |                          |                   |      | 230   | 39      | 18      | 5            | 23      |       |      |          |                     |
| (97.78)             | 05/17/90        |      | 87.78                    | 10.00             |      |       |         |         |              |         |       |      |          |                     |
|                     | 09/29/90        |      | 86.95                    | 10.83             |      | 850   | 970     | 5       | 25           | 47      |       |      |          |                     |
|                     | 01/14/91        |      | 87.15                    | 10.63             |      | 3,100 | 30      | 52      | 24           | 34      |       |      |          |                     |
| (102.02)            | 07/03/91        |      | 91.94                    | 10.08             |      | 1,590 | 30      | 52      | 24           | 34      |       |      |          |                     |
|                     | 11/11/91        |      | 91.81                    | 10.21             |      | 960   | 320     | 15      | 4            | 29      |       |      |          |                     |
|                     | 03/04/92        |      | 93.32                    | 8.70              |      | 1,500 | 9.5     | 8.4     | 9.8          | 22      |       |      |          |                     |
|                     | 06/02/92        |      | 92.50                    | 9.52              |      | 2,800 | 84      | 41      | 59           | 95      |       |      |          |                     |

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

| Well ID<br>TOC Elev | Date<br>Sampled      | SPH  | Groundwater<br>Elevation | Depth<br>to Water | TPHd  | TPHg             | Benzene        | Toluene        | Ethylbenzene | Xylenes         | MTBE  | DIPE | 1,2-DCA         | Dissolved<br>Oxygen |
|---------------------|----------------------|------|--------------------------|-------------------|-------|------------------|----------------|----------------|--------------|-----------------|-------|------|-----------------|---------------------|
| (ft)                | bumpieu              | (ft) | (ft)                     | (ft)              | ←     | *****            | Bennene        | Totache        | μg/L —       | 11,101103       |       |      | —— <del>—</del> | mg/L                |
|                     |                      |      |                          |                   |       |                  |                |                |              |                 |       |      |                 |                     |
| MW-2                | 09/28/92             |      | 91.93                    | 10.09             |       | 1,600            | 47             | 20             | 47           | 97              |       |      |                 |                     |
| (continued)         | 01/11/93             |      | 93.50                    | 8.52              |       | 2,500            | 8.6            | 10             | 17           | 32              |       |      |                 |                     |
| (97.49)             | 08/15/94             |      | 87.58                    | 9.91              |       | 6,000            | 450            | 60             | 100          | 95              |       |      |                 |                     |
|                     | 11/07/96             |      | 87.47                    | 10.02             | 780   | 4,200            | 25             | 4.9            | 8.1          | 14              | < 0.5 |      |                 |                     |
|                     | 02/12/97             |      | 88.58                    | 8.91              | 5,700 | 1,800            | 16             | 3.1            | 3.4          | 8.8             | < 0.5 |      |                 |                     |
|                     | 06/16/97             |      | 87.74                    | 9.75              | <50   | 2,500            | 22             | 5.1            | 7.8          | 11              | < 0.5 |      |                 |                     |
|                     | 09/30/97             |      | 89.60                    | 7.89              | < 50  | < 50             | < 0.5          | < 0.5          | < 0.5        | < 0.5           | < 0.5 |      |                 |                     |
|                     | 01/27/98             |      | 89.11                    | 8.38              | < 50  | < 50             | < 0.5          | < 0.5          | < 0.5        | < 0.5           | < 0.5 |      |                 |                     |
|                     | 04/24/98             |      | 88.81                    | 8.68              | 1,400 | 2,100            | 18             | 6.5            | 4.8          | 21              | < 0.5 |      |                 |                     |
|                     | 08/17/98             |      | 87.75                    | 9.74              | < 50  | 2,900            | 5.1            | 4.5            | 5.8          | 17              | < 0.5 |      |                 |                     |
|                     | 11/16/98             |      | 87.35                    | 10.14             | < 50  | 1,400            | 2.1            | 1.9            | 2.3          | 4.8             | < 0.5 |      |                 |                     |
|                     | 02/16/99             |      | 88.57                    | 8.92              | < 50  | 1,600            | 82             | 16             | <2.5         | 40              | 59    |      |                 |                     |
|                     | 05/17/99             |      | 88.23                    | 9.26              |       | 8,200            | 43             | 73             | 140          | 100             | <250  |      |                 |                     |
|                     | 08/17/99             |      | 87.45                    | 10.04             | 260   | 2,900            | 20             | 81             | 17           | 38              | <5.0  |      |                 |                     |
|                     | 11/17/99             |      | 85.97                    | 11.52             | < 50  | 2,600            | 7              | 3.7            | 5.3          | 12.9            | <1.0  |      |                 |                     |
|                     | 02/17/00             |      | 87.99                    | 9.50              |       | 1,700            | 3.2            | 6.8            | 11           | 12.3            | <5.0  |      |                 |                     |
|                     | 05/17/00             |      | 88.65                    | 8.84              |       | 3,800            | 450            | 65             | 110          | 80              | <25   |      |                 |                     |
|                     | 08/17/00             |      | 88.99                    | 8.50              |       | 4,300            | 440            | < 50           | 78           | <50             | < 50  |      |                 |                     |
|                     | 11/15/00             |      | 87.55                    | 9.94              |       | 5,800            | 320            | 41             | 78           | 64              | <25   |      |                 |                     |
|                     | 02/16/01             |      | 88.97                    | 8.52              |       | 2,200            | 110            | 20             | 38           | 33              | < 5.0 |      |                 |                     |
|                     | 01/11/02             |      | 88.67                    | 8.82              | 620   | 3,100            | 280            | 86             | 84           | 110             | < 50  |      |                 |                     |
| (160.98)            | 07/01/02             |      | 151.34                   | 9.64              | 940   | 2,600            | 300            | 29             | 45           | 27              | <10   |      |                 |                     |
|                     | 10/04/02             |      | 150.46                   | 10.52             | 390   | 4,000            | 440            | 66             | 140          | 120             | <25   |      |                 |                     |
|                     | 07/28/06             |      | 150.96                   | 10.02             | 340   | 1,300            | 150            | 9.9            | 6            | 18              | < 0.5 | 3.6  | < 0.5           | 0.17                |
|                     | 10/16/06             |      | 150.45                   | 10.53             | 76    | 150              | 16             | 1.0            | 3.5          | 2.2             | < 0.5 | 1.2  | < 0.5           | 0.19                |
|                     | 01/09/07             |      | 151.65                   | 9.33              | 84    | 210              | 27             | 2.6            | 8.1          | 6.8             |       |      |                 | 0.14                |
|                     | 01/25/07             |      |                          |                   |       | Well             | Abandoned      |                |              |                 |       |      |                 |                     |
|                     |                      |      |                          |                   |       |                  |                | 0.400          |              |                 |       |      |                 |                     |
| MW-3                | 04/30/90             |      |                          |                   |       | 56,000           | 3,600          | 8,600          | 1,300        | 7,200           |       |      |                 |                     |
| (98.14)             | 05/17/90             |      | 85.72                    | 12.42             |       |                  |                |                |              |                 |       |      |                 |                     |
|                     | 09/26/90             |      | 84.64                    | 13.50             |       | 54,000           | 5,100          | 420            | 1,600        | 8,000           |       |      |                 |                     |
| (102.46)            | 01/14/91             |      | 85.56                    | 12.58             |       | 35,000           | 2,600          | 6,600          | 1,500        | 5,700           |       |      |                 |                     |
| (102.46)            | 07/03/91<br>11/11/91 |      | 90.38<br>90.17           | 12.08<br>12.29    |       | 33,000<br>57,000 | 4,120<br>3,900 | 4,300<br>8,400 | 1,400        | 4,800<br>14,000 |       |      |                 |                     |
| (102.19)            | 03/04/92             |      |                          |                   |       |                  |                | 8,400<br>870   | 2,100        |                 |       |      |                 |                     |
| (102.18)<br>(97.94) | 05/04/92             |      | 91.92<br>86.54           | 10.26<br>11.40    |       | 57,000<br>50,000 | 720<br>240     | 240            | 81<br>220    | 3,100<br>740    |       |      |                 |                     |
| (97.94)             |                      |      | 85.30                    | 12.64             |       |                  | 110            | 93             | 97           | 250             |       |      |                 |                     |
|                     | 09/28/92<br>01/11/93 |      | 85.30<br>87.84           | 10.10             |       | 64,000<br>68,000 | 210            | 280            | 360          | 990             |       |      |                 |                     |
|                     | 08/15/94             |      | 85.74                    | 12.20             |       | 50,000           | 870            | 1,200          | 1,300        | 3,000           |       |      |                 |                     |
|                     | 11/07/96             |      | 85.54                    | 12.40             | 470   | 68,000           | 33             | 27             | 63           | 120             | <0.5  |      |                 |                     |
|                     | 02/12/97             |      | 85.54<br>87.71           | 10.23             | 3,500 | 25,000           | 33<br>39       | 43             | 15           | 91              | <0.5  |      |                 |                     |
|                     | 06/16/97             |      | 86.15                    | 11.79             | <50   | 9,700            | 26             | 29             | 45           | 81              | <0.5  |      |                 |                     |
|                     | 09/30/97             |      | 88.54                    | 9.40              | 1,600 | 6,000            | 43             | 36             | 12           | 11              | <0.5  |      |                 |                     |
|                     | 09/30/97             |      | 88.14                    | 9.40              | 560   | 380              | 5.7            | 4.1            | 1.7          | 9.1             | <0.5  |      |                 |                     |
|                     | 04/24/98             |      | 88.04                    | 9.90              | 680   | <50              | <0.5           | <0.5           | <0.5         | <0.5            | <0.5  |      |                 |                     |
|                     | 04/24/98             |      | 86.48                    | 11.46             | <50   | 16,000           | 200            | 18             | 31           | 82              | <0.5  |      |                 |                     |
|                     | 11/16/98             |      | 85.54                    | 12.40             | <50   | 68,000           | 86             | 54             | 69           | 130             | <0.5  |      |                 |                     |
|                     |                      |      | 00.01                    | 12.10             | ~~~   | 00,000           |                | ~ .            | 0,2          |                 | ~0.0  |      |                 |                     |

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

| Well ID<br>TOC Elev | Date<br>Sampled      | SPH  | Groundwater<br>Elevation | Depth<br>to Water | TPHd              | TPHg             | Benzene         | Toluene    | Ethylbenzene | Xylenes    | MTBE       | DIPE | 1,2-DCA  | Dissolved<br>Oxygen |
|---------------------|----------------------|------|--------------------------|-------------------|-------------------|------------------|-----------------|------------|--------------|------------|------------|------|----------|---------------------|
| (ft)                |                      | (ft) | (ft)                     | (ft)              | $\leftarrow$      |                  |                 |            | μg/L         |            |            |      | <u> </u> | mg/L                |
| MW 2                |                      |      |                          |                   |                   |                  | ***             | ***        | ***          |            |            |      |          |                     |
| MW-3                | 05/17/99             |      | 87.40                    | 10.54             |                   | 72,000           | 280             | 230        | 320          | 890        | <250       |      |          |                     |
| (continued)         | 08/17/99             |      | 85.99                    | 11.95             | 1,800             | 20,000           | 51              | 41         | 61           | 130        | <5.0       |      |          |                     |
|                     | 11/17/99             |      | 84.34                    | 13.60             |                   | 1,700            | 39              | 22<br>39   | 31           | 84<br>90   | <1.0       |      |          |                     |
|                     | 02/17/00             |      | 87.26                    | 10.68             |                   | 8,800            | 16              |            | 74           |            | <5.0       |      |          |                     |
|                     | 05/17/00<br>08/17/00 |      | 87.69                    | 10.25             |                   | 22,000           | 300             | 260        | 410          | 940        | <5.0       |      |          |                     |
|                     | 11/15/00             |      | 86.10<br>86.12           | 11.84<br>11.82    |                   | 15,000<br>12,000 | 230<br>250      | 140<br>210 | 470<br>390   | 750<br>700 | <50<br><25 |      |          |                     |
|                     | 02/16/01             |      | 86.12<br>88.26           | 9.68              |                   | 7,400            | 40              | 72         | 700          | 250        | <25<br><25 |      |          |                     |
|                     | 02/16/01             |      | 88.36                    | 9.58              | 1,900             | 9,300            | 230             | 200        |              | 580        | <25        |      |          |                     |
| (161.42)            |                      |      |                          |                   |                   |                  |                 |            | 290          |            |            |      |          |                     |
| (161.43)            | 07/01/02             |      | 150.29                   | 11.14<br>12.82    | 5,200             | 13,000           | 230             | 220<br>170 | 450          | 890        | <13        |      |          |                     |
|                     | 10/04/02             |      | 148.61                   |                   | 4,900             | 11,000           | 280             | 170        | 450          | 730        | <25        |      |          |                     |
|                     | 07/28/06             |      |                          |                   | led - Unable to l |                  |                 |            |              |            |            |      |          |                     |
|                     | 10/16/06<br>01/09/07 |      |                          | -                 | led - Unable to l |                  |                 |            |              |            |            |      |          |                     |
|                     |                      |      | 140.01                   | -                 | led - Unable to l |                  | 770             | 250        | 760          | 2,000      | -1.000     |      |          |                     |
|                     | 01/22/07             |      | 149.81                   | 11.62             | 93,000            | 34,000           | 770             | 250        | 760          | 2,000      | <1,000     |      |          |                     |
|                     | 03/16/07             |      |                          |                   |                   |                  | Well Abandon    | nea        |              |            |            |      |          |                     |
| STMW-4              | 07/03/91             |      | 92.58                    | 11.00             |                   | 3,100            | 610             | 62         | 39           | 150        |            |      |          |                     |
| (103.58)            | 11/11/91             |      | 92.50                    | 11.08             |                   | 3,600            | 990             | 15         | 2.6          | 180        |            |      |          |                     |
| (101.08)            | 03/04/92             |      | 91.64                    | 9.44              |                   | 5,000            | 35              | 20         | 22           | 71         |            |      |          |                     |
| (98.80)             | 06/02/92             |      | 88.48                    | 10.32             |                   | 13,000           | 140             | 45         | 63           | 210        |            |      |          |                     |
| (>0.00)             | 09/28/92             |      | 88.04                    | 10.76             |                   | 40,000           | 35              | 20         | 48           | 110        |            |      |          |                     |
|                     | 01/11/93             |      | 89.52                    | 9.28              |                   | 24,000           | 26              | 88         | 92           | 280        |            |      |          |                     |
|                     | 08/15/94             |      | 88.26                    | 10.54             |                   | 9,000            | 500             | 34         | 46           | 130        |            |      |          |                     |
|                     | 11/07/96             |      | 88.43                    | 10.37             | 180               | 13,000           | 40              | 2.9        | 7.8          | 19         | < 0.5      |      |          |                     |
|                     | 02/12/97             |      | 89.44                    | 9.36              | 5,700             | 5,300            | 95              | 5.3        | 5.9          | 18         | <0.5       |      |          |                     |
|                     | 06/16/97             |      | 88.40                    | 10.40             | <50               | 5,300            | 37              | 6.2        | 1.7          | 11         | <0.5       |      |          |                     |
|                     | 09/30/97             |      | 90.30                    | 8.50              | <50               | 2,700            | 42              | 7.7        | 5.7          | 26         | <0.5       |      |          |                     |
|                     | 01/27/98             |      | 89.90                    | 8.90              | 300               | 3,000            | 60              | 17         | 12           | 49         | <0.5       |      |          |                     |
|                     | 04/24/98             |      | 89.30                    | 9.50              | <50               | <50              | <0.5            | < 0.5      | < 0.5        | < 0.5      | <0.5       |      |          |                     |
|                     | 08/17/98             |      | 88.44                    | 10.36             | <50               | 29,000           | 36              | 24         | 59           | 160        | <0.5       |      |          |                     |
|                     | 11/16/98             |      | 88.24                    | 10.56             | <50               | 13,000           | 26              | 21         | 20           | 41         |            |      |          |                     |
|                     | 02/16/99             |      | 89.16                    | 9.64              | <50               | 32,000           | 660             | 16         | 16           | 150        | <100       |      |          |                     |
|                     | 05/17/99             |      | 88.84                    | 9.96              |                   | 13,000           | 1600            | 30         | 45           | 78         | <250       |      |          |                     |
|                     | 08/17/99             |      | 88.16                    | 10.64             | 990               | 12,000           | 260             | 22         | 33           | 72         | <5.0       |      |          |                     |
|                     | 11/17/99             |      | 86.78                    | 12.02             |                   | 7,900            | 21              | 12         | 17           | 40         | <1.0       |      |          |                     |
|                     | 02/17/00             |      | 89.48                    | 9.32              |                   | 4,900            | 8.9             | 21         | 38           | 50         | <5.0       |      |          |                     |
|                     | 05/17/00             |      | 89.15                    | 9.65              |                   | 9,600            | 840             | < 50       | 61           | <50        | <50        |      |          |                     |
|                     | 08/17/00             |      | 88.46                    | 10.34             |                   | 5,100            | 680             | <50        | 62           | <50        | <50        |      |          |                     |
|                     | 11/15/00             |      | 88.28                    | 10.52             |                   | 3,900            | 640             | <25        | 26           | 27         | <25        |      |          |                     |
|                     | 02/16/01             |      | 89.60                    | 9.20              |                   | 5,700            | 560             | <25        | <25          | <25        | <25        |      |          |                     |
|                     | 01/11/02             |      | 89.22                    | 9.58              | 930               | 4,900            | 560             | 59         | 25           | <25        | <250       |      |          |                     |
| (162.13)            | 07/01/02             |      | 151.85                   | 10.28             | 6,700             | 6,700            | 470             | 18         | 32           | 45         | <13        |      |          |                     |
|                     | 10/04/02             |      | 151.05                   | 11.08             | 2,900             | 13,000           | 590             | 26         | 65           | 110        | <25        |      |          |                     |
|                     | 07/28/06             | 0.04 | 151.53                   | 10.60             | 39,000            | 25,000           | 960             | 21         | 73           | 130        | <5.0       | 65   | < 5.0    | 0.22                |
|                     | 10/16/06             | 0.06 | 151.30                   | 10.83             | 14,000            | 14,000           | 790             | 28         | 81           | 130        | < 5.0      | 30   | <5.0     | 0.26                |
|                     | 01/09/07             | 0.03 | 152.20                   | 9.93              |                   |                  | Not Sampled - S | PH         |              |            |            |      |          | 0.24                |
|                     | 01/26/07             |      |                          |                   |                   |                  | Well Abandone   | ed         |              |            |            |      |          | 0.24                |

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

| Well ID<br>TOC Elev | Date<br>Sampled | SPH  | Groundwater<br>Elevation | Depth<br>to Water | TPHd   | TPHg   | Benzene | Toluene   | Ethylbenzene | Xylenes | MTBE   | DIPE  | 1,2-DCA           | Dissolved<br>Oxygen |
|---------------------|-----------------|------|--------------------------|-------------------|--------|--------|---------|-----------|--------------|---------|--------|-------|-------------------|---------------------|
| (ft)                |                 | (ft) | (ft)                     | (ft)              | -      |        |         |           | μg/L —       |         |        |       | $\longrightarrow$ | mg/L                |
| STMW-5              | 07/03/91        |      | 88.70                    | 13.29             |        | 690    | 99      | 81        | 19           | 98      |        |       |                   |                     |
| (101.99)            | 11/11/91        |      | 87.99                    | 14.00             |        | 410    | 61      | 2.4       | 1.4          | 20      |        |       |                   |                     |
| (101.36)            | 03/04/92        |      | 89.56                    | 11.80             |        | 460    | 13      | 6.5       | 11           | 18      |        |       |                   |                     |
| (101.50)            | 06/02/92        |      | 88.30                    | 13.06             |        | 1,800  | 27      | 20        | 21           | 43      |        |       |                   |                     |
|                     | 09/28/92        |      | 87.32                    | 14.04             |        | 1,500  | 14      | 6.1       | 18           | 22      |        |       |                   |                     |
|                     | 01/11/93        |      | 89.75                    | 11.61             |        | 800    | 1.8     | 3         | 3.1          | 9.4     |        |       |                   |                     |
|                     | 08/15/94        |      | 87.51                    | 13.85             |        | 3,000  | 320     | 62        | 34           | 220     |        |       |                   |                     |
| (97.14)             | 11/07/96        |      | 83.47                    | 13.67             | 330    | 1,200  | 11      | 1.7       | 4.4          | 13      | < 0.5  |       |                   |                     |
| ( , , ,             | 02/17/97        |      | 85.07                    | 12.07             | 3,700  | 1,000  | 11      | 17        | 1.7          | 9.7     | <0.5   |       |                   |                     |
|                     | 06/19/97        |      | 83.81                    | 13.33             | 2,300  | 950    | 7.4     | 1         | 1            | 7.2     | < 0.5  |       |                   |                     |
|                     | 09/30/97        |      | 85.90                    | 11.24             | 1,100  | 710    | 5.8     | 4         | 1            | 1       | <0.5   |       |                   |                     |
|                     | 01/27/98        |      | 85.50                    | 11.64             | 1,100  | 340    | 2       | 1.8       | 1.6          | 8.2     | < 0.5  |       |                   |                     |
|                     | 04/24/98        |      | 85.30                    | 11.84             | <50    | 3,300  | 12      | 9.4       | 8.5          | 37      | <0.5   |       |                   |                     |
|                     | 08/17/98        |      | 83.94                    | 13.20             | < 50   | 5,300  | 26      | 17        | 14           | 39      | < 0.5  |       |                   |                     |
|                     | 11/16/98        |      | 83.40                    | 13.74             | <50    | <50    | < 0.5   | < 0.5     | < 0.5        | < 0.5   | < 0.5  |       |                   |                     |
|                     | 02/16/99        |      | 84.92                    | 12.22             | < 50   | 950    | 150     | 3.8       | 1.4          | 14      | 11     |       |                   |                     |
|                     | 05/17/99        |      | 84.56                    | 12.58             |        | 2,800  | 67      | 9.4       | <2.5         | 16      | 30     |       |                   |                     |
|                     | 08/17/99        |      | 83.66                    | 13.48             | 230    | 2,800  | 18      | 17        | 18           | 36      | <5.0   |       |                   |                     |
|                     | 11/17/99        |      | 82.26                    | 14.88             |        | 1,600  | 3.9     | 2.3       | 3.2          | 7.5     | <1.0   |       |                   |                     |
|                     | 02/17/00        |      | 84.58                    | 12.56             |        | 770    | 1.5     | 3.2       | 5.8          | 7       | <5.0   |       |                   |                     |
|                     | 05/17/00        |      | 85.06                    | 12.08             |        | 4,500  | <25     | <25       | <25          | <25     | <25    |       |                   |                     |
|                     | 08/17/00        |      | 83.58                    | 13.56             |        | 2,900  | 170     | 64        | 100          | 250     | <10    |       |                   |                     |
|                     | 11/15/00        |      | 83.86                    | 13.28             |        | 2,100  | 120     | 24        | 40           | 54      | <5.0   |       |                   |                     |
|                     | 02/16/01        |      | 85.54                    | 11.60             |        | 850    | 58      | 9.8       | 9.4          | 18      | <5.0   |       |                   |                     |
|                     | 01/11/02        |      | 85.42                    | 11.72             | <50    | 920    | 76      | 16        | 16           | 28      | 13     |       |                   |                     |
| (160.65)            | 07/01/02        |      | 147.51                   | 13.14             | 1,500  | 4,300  | 71      | 14        | 14           | 36      | < 5.0  |       |                   |                     |
|                     | 10/04/02        |      | 146.13                   | 14.52             | 60     | 1,400  | 71      | 17        | 26           | 35      | <5.0   |       |                   |                     |
|                     | 07/28/06        |      | 147.30                   | 13.35             | 370    | 700    | 22      | 4.3       | 1.2          | 6.6     | < 0.5  | < 0.5 | < 0.5             | 0.24                |
|                     | 10/16/06        |      | 146.91                   | 13.74             | 240    | 590    | 14      | 1.6       | 1.3          | 3.2     | < 0.5  | < 0.5 | < 0.5             | 0.21                |
|                     | 01/09/07        |      | 148.19                   | 12.46             | 180    | 390    | 30      | 3.2       | 1.8          | 3.2     |        |       |                   | 0.17                |
|                     | 01/18/07        |      |                          |                   |        |        | Well A  | Abandoned |              |         |        |       |                   |                     |
| MW-2C               | 03/09/07        |      | 152.24                   | 8.41              | 140    | 450    | 40      | 9.3       | 2.9          | 16      | <10    |       |                   |                     |
| (160.65)            | 03/26/07        |      | 151.93                   | 8.72              |        |        |         |           |              |         |        |       |                   |                     |
|                     | 06/24/07        |      | 151.21                   | 9.44              | 160    | 440    | 30      | 1.8       | 5.9          | 7.4     | < 5.0  |       |                   |                     |
|                     | 09/29/07        |      | 150.45                   | 10.20             | 120    | 200    | 13      | <0.5      | <0.5         | 2.0     | <5.0   |       |                   |                     |
|                     | 12/27/07        |      | 151.42                   | 9.23              | 83     | 190    | 13      | 0.83      | <0.5         | 1.9     | <5.0   |       |                   |                     |
|                     | 03/15/08        |      | 151.83                   | 8.82              | 120    | 250    | 24      | 2.2       | 5.2          | 4.5     | <5.0   | -     |                   |                     |
| MW-3A               | 03/09/07        |      | 152.20                   | 9.35              | 4,500  | 39,000 | 3,800   | 220       | 830          | 2,800   | <500   |       |                   |                     |
| (161.55)            | 03/26/07        |      | 152.33                   | 9.22              |        |        |         |           |              |         |        |       |                   |                     |
| (161.57)            | 06/24/07        |      | 151.61                   | 9.94              | 11,000 | 34,000 | 3,200   | 330       | 990          | 3,200   | <250   |       |                   |                     |
| (-01.57)            | 09/29/07        |      | 150.21                   | 11.36             | 11,000 | 43,000 | 3,500   | 150       | 730          | 2,200   | <1,000 |       |                   |                     |
|                     | 12/27/07        |      | 150.20                   | 11.37             | 8,700  | 30,000 | 2,500   | 24        | 520          | 930     | <100   |       |                   |                     |
|                     | 03/15/08        |      | 152.27                   | 9.30              | 10,000 | 26,000 | 2,400   | 110       | 700          | 1,200   | <250   |       |                   |                     |

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

| Well ID<br>TOC Elev | Date<br>Sampled | SPH  | Groundwater<br>Elevation | Depth<br>to Water | TPHd    | TPHg    | Benzene | Toluene | Ethylbenzene | Xylenes | MTBE   | DIPE | 1,2-DCA  | Dissolved<br>Oxygen |
|---------------------|-----------------|------|--------------------------|-------------------|---------|---------|---------|---------|--------------|---------|--------|------|----------|---------------------|
| (ft)                |                 | (ft) | (ft)                     | (ft)              | ←       |         |         |         | μg/L         |         |        |      | <b>→</b> | mg/L                |
|                     |                 |      |                          |                   |         |         |         |         |              |         |        |      |          |                     |
| MW-3C               | 03/26/07        |      | 151.15                   | 10.64             |         |         |         |         |              |         |        |      |          |                     |
| (161.79)            | 04/16/07        |      | 150.87                   | 10.92             | 36,000  | 32,000  | 1,200   | 710     | 600          | 1,900   | <500   |      |          |                     |
|                     | 06/24/07        |      | 149.43                   | 12.36             | 200,000 | 50,000  | 2,200   | 4,100   | 860          | 6,100   | <500   |      |          |                     |
|                     | 09/29/07        |      | 148.33                   | 13.46             | 48,000  | 37,000  | 1,700   | 3,300   | 830          | 4,800   | <1,000 |      |          |                     |
|                     | 12/27/07        |      | 149.79                   | 12.00             | 29,000  | 28,000  | 590     | 900     | 630          | 2,000   | <500   |      |          |                     |
|                     | 03/15/08        |      | 150.70                   | 11.09             | 21,000  | 36,000  | 1,500   | 2,400   | 570          | 3,700   | < 500  |      |          |                     |
| MW-4A               | 03/09/07        |      | 152.88                   | 9.56              | 3,600   | 16,000  | 1,600   | 36      | 37           | 150     | <250   |      |          |                     |
| (162.44)            | 03/26/07        |      | 152.56                   | 9.88              |         |         |         |         |              |         |        |      |          |                     |
| (102.77)            | 06/24/07        |      | 152.02                   | 10.42             | 110,000 | 87,000  | 1,500   | 59      | 290          | 800     | <500   |      |          |                     |
|                     | 09/29/07        |      | 151.33                   | 11.11             | 170,000 | 130,000 | 2,700   | 69      | 400          | 1,400   | <240   |      |          |                     |
|                     | 12/27/07        |      | 152.33                   | 10.11             | 19,000  | 27,000  | 1,600   | 31      | 100          | 320     | <90    |      |          |                     |
|                     | 03/15/08        |      | 152.51                   | 9.93              | 38,000  | 17,000  | 1,300   | <50     | 120          | 380     | <500   |      |          |                     |
|                     | 03/13/08        |      | 132.31                   | 9.93              | 30,000  | 17,000  | 1,500   | <30     | 120          | 360     | <300   |      |          |                     |
| MW-5A               | 03/09/07        |      | 150.40                   | 10.42             | 56      | < 50    | < 0.5   | < 0.5   | < 0.5        | < 0.5   | <5.0   |      |          |                     |
| (160.82)            | 03/26/07        |      | 150.00                   | 10.82             |         |         |         |         |              |         |        |      |          |                     |
|                     | 06/24/07        |      | 148.94                   | 11.88             | <50     | 180     | < 0.5   | < 0.5   | <0.5         | < 0.5   | <5.0   |      |          |                     |
|                     | 09/29/07        |      | 147.86                   | 12.96             |         |         |         |         |              |         |        |      |          |                     |
|                     | 12/27/07        |      | 148.40                   | 12.42             |         |         |         |         |              |         |        |      |          |                     |
|                     | 03/15/08        |      | 149.96                   | 10.86             | <50     | 180     | 0.91    | <0.5    | <0.5         | <0.5    | <5.0   |      |          | -                   |
| MW-5B               | 03/09/07        |      | 146.42                   | 15.08             | 59      | 140     | 1.3     | 0.77    | < 0.5        | 1.6     | <5.0   |      |          |                     |
| (161.50)            | 03/26/07        |      | 148.88                   | 12.62             |         |         |         |         |              |         |        |      |          |                     |
|                     | 06/24/07        |      | 147.98                   | 13.52             | 53      | 52      | 1.1     | < 0.5   | < 0.5        | < 0.5   | < 5.0  |      |          |                     |
|                     | 09/29/07        |      | 146.60                   | 14.90             | < 50    | < 50    | 0.95    | < 0.5   | < 0.5        | < 0.5   | < 5.0  |      |          |                     |
|                     | 12/27/07        |      | 148.41                   | 13.09             | < 50    | 58      | 1.4     | < 0.5   | 0.60         | < 0.5   | <5.0   |      |          |                     |
|                     | 03/15/08        |      | 148.95                   | 12.55             | <50     | 61      | 2.6     | 1.1     | 1.1          | 3.0     | <5.0   |      |          |                     |
| MW-5C               | 03/09/07        |      | 148.12                   | 12.91             | <50     | <50     | <0.5    | < 0.5   | <0.5         | < 0.5   | <5.0   |      |          |                     |
| (161.03)            | 03/26/07        |      | 148.41                   | 12.62             |         |         |         |         |              |         |        |      |          |                     |
|                     | 06/24/07        |      | 147.58                   | 13.45             | <50     | <50     | < 0.5   | < 0.5   | < 0.5        | < 0.5   | <5.0   |      |          |                     |
|                     | 09/29/07        |      | 146.41                   | 14.62             | 66      | <50     | <0.5    | <0.5    | <0.5         | <0.5    | <5.0   |      |          |                     |
|                     | 12/27/07        |      | 148.10                   | 12.93             | <50     | <50     | < 0.5   | < 0.5   | <0.5         | < 0.5   | <5.0   |      |          |                     |
|                     | 03/15/08        |      | 148.48                   | 12.55             | <50     | <50     | <0.5    | <0.5    | <0.5         | <0.5    | <5.0   |      |          |                     |
| MW-6A               | 03/09/07        |      | 154.91                   | 6.67              | 380     | <50     | <0.5    | <0.5    | <0.5         | <0.5    | <5.0   | _    |          |                     |
| (161.58)            | 03/26/07        |      | 154.41                   | 7.17              |         |         |         |         |              |         |        |      |          |                     |
| ,202.50)            | 06/24/07        |      | 153.79                   | 7.79              | 590     | 140     | <0.5    | < 0.5   | <0.5         | <0.5    | <5.0   |      |          |                     |
|                     | 09/29/07        |      | 152.84                   | 8.74              | 540     | 52      | <0.5    | <0.5    | <0.5         | <0.5    | <5.0   |      |          |                     |
|                     | 12/27/07        |      | 154.27                   | 7.31              | 170     | 94      | <0.5    | <0.5    | <0.5         | <0.5    | <5.0   |      |          |                     |
|                     | 03/15/08        |      | 154.42                   | 7.16              | 150     | <50     | <0.5    | <0.5    | <0.5         | <0.5    | <5.0   |      |          |                     |
|                     |                 |      |                          |                   |         | 40.000  |         |         |              |         | -00    |      |          |                     |
| MW-7B               | 03/09/07        |      | 147.97                   | 11.18             | 930     | 18,000  | 1,500   | 1,600   | 140          | 1,800   | <600   |      |          |                     |
| (159.15)            | 03/26/07        |      | 148.10                   | 11.05             |         |         |         |         |              |         |        |      |          |                     |
|                     | 06/24/07        |      | 147.54                   | 11.61             | 40,000  | 30,000  | 1,800   | 2,400   | 240          | 2,800   | < 700  |      |          |                     |
| (159.02)            | 09/29/07        |      | 146.91                   | 12.11             | 16,000  | 37,000  | 1,300   | 1,500   | 180          | 2,700   | < 500  |      |          |                     |
|                     | 12/27/07        |      | 147.37                   | 11.65             | 7,700   | 18,000  | 810     | 880     | 38           | 1,600   | <50    |      |          |                     |
|                     | 03/15/08        |      | 147.66                   | 11.36             | 7,900   | 14,000  | 730     | 820     | 110          | 1,200   | <250   |      |          |                     |

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

| Well ID<br>TOC Elev | Date<br>Sampled | SPH  | Groundwater<br>Elevation | Depth<br>to Water | TPHd   | TPHg   | Benzene | Toluene | Ethylbenzene | Xylenes   | MTBE   | DIPE | 1,2-DCA         | Dissolve<br>Oxyger |
|---------------------|-----------------|------|--------------------------|-------------------|--------|--------|---------|---------|--------------|-----------|--------|------|-----------------|--------------------|
| (ft)                | Sumpled         | (ft) | (ft)                     | (ft)              | ←      |        | Benzene | Totache | μg/L —       | 11,101103 |        |      | ——— <b>&gt;</b> | mg/L               |
| 0.7                 |                 |      |                          |                   |        |        |         |         |              |           |        |      |                 | <u> </u>           |
| MW-7C               | 03/09/07        |      | 145.44                   | 13.09             | 190    | 3,600  | 970     | 100     | 12           | 90        | <120   |      |                 |                    |
| (158.53)            | 03/26/07        |      | 147.53                   | 11.00             |        |        |         |         |              |           |        |      |                 |                    |
|                     | 06/24/07        |      | 146.65                   | 11.88             | 7,100  | 16,000 | 510     | 520     | 190          | 1,300     | <100   |      |                 |                    |
|                     | 09/29/07        |      | 146.21                   | 12.32             | 11,000 | 29,000 | 580     | 1,400   | 600          | 4,800     | <1,000 |      |                 |                    |
|                     | 12/27/07        |      | 146.74                   | 11.79             | 56,000 | 29,000 | 250     | 410     | 430          | 3,300     | < 50   |      |                 |                    |
|                     | 03/15/08        |      | 147.45                   | 11.08             | 7,000  | 13,000 | 170     | 58      | 170          | 1,300     | <100   |      |                 |                    |
| MW-8A               | 03/09/07        |      | 152.05                   | 9.52              | 4,200  | 10,000 | 430     | 18      | <10          | 88        | <100   |      |                 |                    |
| (161.57)            | 03/26/07        |      | 151.74                   | 9.83              |        |        |         |         |              |           |        |      |                 |                    |
|                     | 06/24/07        |      | 151.40                   | 10.17             | 17,000 | 12,000 | 720     | 500     | 230          | 880       | <300   |      |                 |                    |
|                     | 09/29/07        |      | 150.64                   | 10.95             | 5,300  | 7,500  | 440     | 67      | 26           | 240       | <90    |      |                 |                    |
| (161.59)            | 12/27/07        |      | 152.00                   | 9.59              | 13,000 | 9,600  | 290     | 100     | 90           | 360       | <100   |      |                 |                    |
|                     | 03/15/08        |      | 151.79                   | 9.80              | 7,500  | 7,200  | 170     | 28      | 270          | 110       | <100   |      |                 |                    |
| MW-8C               | 03/09/07        |      | 149.18                   | 12.15             | <50    | 150    | 9.8     | 1.3     | 2.0          | 3.9       | <5.0   |      |                 |                    |
| (161.33)            | 03/26/07        |      | 149.56                   | 11.77             |        |        |         |         |              |           |        |      |                 |                    |
|                     | 06/24/07        |      | 148.96                   | 12.37             | < 50   | < 50   | 0.57    | < 0.5   | < 0.5        | < 0.5     | < 5.0  |      |                 |                    |
|                     | 09/29/07        |      | 148.35                   | 12.98             | < 50   | < 50   | < 0.5   | < 0.5   | < 0.5        | < 0.5     | < 5.0  |      |                 |                    |
|                     | 12/27/07        |      | 149.84                   | 11.49             | < 50   | < 50   | < 0.5   | < 0.5   | < 0.5        | < 0.5     | < 5.0  |      |                 |                    |
|                     | 03/15/08        |      | 149.94                   | 11.39             | <50    | 110    | 6.0     | 1.7     | 2.4          | 2.4       | <5.0   |      |                 |                    |
| MW-9A               | 09/29/07        |      | 142.76                   | 12.61             | 86     | <50    | 2.6     | < 0.5   | <0.5         | <0.5      | <5.0   |      |                 |                    |
| (155.37)            | 12/27/07        |      | 143.51                   | 11.86             | < 50   | < 50   | < 0.5   | < 0.5   | < 0.5        | < 0.5     | < 5.0  |      |                 |                    |
|                     | 03/15/08        |      | 143.35                   | 12.02             | <50    | <50    | 0.85    | <0.5    | <0.5         | <0.5      | <5.0   |      |                 |                    |
| MW-9C               | 09/29/07        |      | 142.67                   | 12.27             | 390    | 68     | 2.2     | 0.88    | <0.5         | <0.5      | <5.0   |      |                 |                    |
| (154.94)            | 12/27/07        |      | 143.40                   | 11.54             | < 50   | < 50   | 0.84    | < 0.5   | < 0.5        | < 0.5     | < 5.0  |      |                 |                    |
|                     | 03/15/08        |      | 143.98                   | 10.96             | <50    | <50    | 0.55    | <0.5    | <0.5         | <0.5      | <5.0   |      |                 |                    |
| MW-10A              | 09/29/07        |      | 144.35                   | 10.53             | <50    | <50    | <0.5    | < 0.5   | <0.5         | <0.5      | <5.0   |      |                 |                    |
| (154.88)            | 12/27/07        |      | 145.50                   | 9.38              | < 50   | < 50   | < 0.5   | < 0.5   | < 0.5        | < 0.5     | < 5.0  |      |                 |                    |
|                     | 03/15/08        |      | 145.96                   | 8.92              | < 50   | < 50   | < 0.5   | < 0.5   | < 0.5        | < 0.5     | <5.0   |      |                 |                    |

#### Abbreviations

 $\mu g/L \ = \ Micrograms \ per \ liter \ \text{- approximately equal to parts per billion} = ppb.$ 

mg/L = Milligrams per liter - approximately equal to parts per million = ppm.

SPH = Separate-phase hydrocarbons encountered in well (value in parentheses is thickness in feet).

 $Groundwater\ elevation\ is\ calculated\ according\ to\ the\ relationship:\ groundwater\ elevation\ =\ TOC\ (elevation)\ -\ (depth\ to\ water)\ +\ (0.8)(SPH\ thickness).$ 

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015Cm.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C.

BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA Method 8021B.

 $MTBE = Methyl\ tertiary-butyl\ ether\ by\ EPA\ Method\ 8021B.\ (Concentrations\ in\ parentheses\ are\ by\ EPA\ Method\ 8260B).$ 

DIPE = Diisopropyl ether by EPA Method 8260B.

1,2-DCA = 1,2-Dichloroethane by EPA Method 8260B.

# **APPENDIX A**

Groundwater Monitoring Field Data Sheets





Page 1 of 2

| Well | Gauging | Data | Sheet |
|------|---------|------|-------|
|------|---------|------|-------|

| Project.Ta | ask #: 114         | 5.001 213 |                                       | Project Name                              |                        |                     |                    |  |  |  |  |
|------------|--------------------|-----------|---------------------------------------|-------------------------------------------|------------------------|---------------------|--------------------|--|--|--|--|
| Address:   | 5175 Broa          | dway, Oak | dand, CA                              |                                           | -                      | Date: 03/15         | 5/08               |  |  |  |  |
| Name: Sa   | anjiv Gill         |           |                                       | Signature:                                |                        |                     |                    |  |  |  |  |
| Well ID    | Well Size<br>(in.) | Time      | Depth to<br>Immiscible<br>Liquid (ft) | Thickness of<br>Immiscible<br>Liquid (ft) | Depth to<br>Water (ft) | Total<br>Depth (ft) | Measuring<br>Point |  |  |  |  |
| MW-1       | 4"                 | 19:23     |                                       |                                           | 8.38                   | 2297                | TOC                |  |  |  |  |
| MH-2C      | 2"                 | 10:20     |                                       |                                           | 8.82                   | 23.03               |                    |  |  |  |  |
| MH-3A      | 2"                 | 10:38     |                                       |                                           | 9.30                   | 13.83               |                    |  |  |  |  |
| MN-3C      | 2"                 | 10:42     |                                       |                                           | 11.09                  | 26.75               |                    |  |  |  |  |
| MW-4A      | 2"                 | 10:35     |                                       |                                           | 9.93                   | 14.73               |                    |  |  |  |  |
| MH-SA      | 2"                 | 10:12     |                                       |                                           | 10.86                  | 13.52               |                    |  |  |  |  |
| MH-SB      | 2"                 | 10:10     |                                       |                                           | 12.55                  | 19.23               |                    |  |  |  |  |
| Mu-sc      | 2"                 | 10:08     |                                       |                                           | 12.55                  | 26.70               |                    |  |  |  |  |
| MH6A       | 2"                 | 10:26     |                                       |                                           | 7.16                   | 1492                |                    |  |  |  |  |
| WN-JB      | ٧"                 | 10:30     |                                       |                                           | 11.36                  | 18.55               |                    |  |  |  |  |
| MUTC       | 2"                 | 10:32     |                                       |                                           | 11.08                  | 24.42               | S.                 |  |  |  |  |

Comments:





Well Gauging Data Sheet Project Name: Feiner Project. Task #: 1145.001 213 Date: 03/15/08 Address: 5175 Broadway, Oakland, CA Signature: Name: Saniiv Gill Thickness of Depth to Depth to Total Measuring **Immiscible** Immiscible Well Size Depth (ft) Point Time Liquid (ft) Liquid (ft) Water (ft) (in.) Well ID TOC 2" 10:17 9.80 14.90 MUSA 24 11.39 24.89 10:15 MUSC 211 15.19 12.02 10:03 2/1 20.45 1096 10:00 17.96 2" 8.92 10:05 MW-10A Comments:



| MONITORING FIELD DATA                    | SHEET Well ID: MU-1                                                                                                |          |      |         |  |  |  |  |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|------|---------|--|--|--|--|
| Project.Task #: 1145.001 213             | Project Name:Feir                                                                                                  |          |      |         |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA      |                                                                                                                    |          |      |         |  |  |  |  |
| Date: 03/15/08                           | Weather: Su                                                                                                        | MX.      |      |         |  |  |  |  |
| Well Diameter: 4 1/                      | Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$ |          |      |         |  |  |  |  |
| Total Depth (TD): 22.47                  | Depth to Product:                                                                                                  |          |      |         |  |  |  |  |
| Depth to Water (DTW): 8.38               | Product Thickness                                                                                                  | s:       |      |         |  |  |  |  |
| Water Column Height: 14.59               | 1 Casing Volume:                                                                                                   | 9.48     |      | gallons |  |  |  |  |
| Reference Point: TOC                     | 3 Casing Volu                                                                                                      | mes: 25  | 3.45 | gallons |  |  |  |  |
| Purging Device: Disposable Bailer, Check |                                                                                                                    |          |      |         |  |  |  |  |
| Sampling Device: Disposable Bailer, Oneo | k Valve Tubing                                                                                                     |          |      |         |  |  |  |  |
| Time Temp © pH Cond (µs)                 | NTU DO(mg/L)                                                                                                       | ORP (mV) |      | DTW     |  |  |  |  |
| 3:15 18.2 7.52 809                       |                                                                                                                    |          | 9.5  |         |  |  |  |  |
| 3:20 18.6 7.53 799                       |                                                                                                                    |          | 19   |         |  |  |  |  |
| 3:30 18.4 7.57 786                       |                                                                                                                    |          | 28   |         |  |  |  |  |
|                                          |                                                                                                                    |          |      |         |  |  |  |  |
|                                          |                                                                                                                    |          |      |         |  |  |  |  |
|                                          |                                                                                                                    |          |      |         |  |  |  |  |
|                                          |                                                                                                                    |          |      |         |  |  |  |  |
| Comments: YSI 550A DO meter              | pre purge DO =                                                                                                     | mg/l     |      |         |  |  |  |  |
|                                          | post purge DO =                                                                                                    | mg/l     |      |         |  |  |  |  |
| very turbid, silty, heavy she            | en odoc                                                                                                            |          |      |         |  |  |  |  |
| Sample ID: MN-1                          | Sample Time: 3                                                                                                     | 35       |      |         |  |  |  |  |
| Laboratory: McCampbell Analytical, INC.  | Sample Date: 03/                                                                                                   | 15/08    |      |         |  |  |  |  |
| Containers/Preservative: Voa/HCI, Amade  | Liter/HCL                                                                                                          |          |      |         |  |  |  |  |
| Analyzed for: 8015, 8021                 | 40                                                                                                                 | 1.60     |      |         |  |  |  |  |
| Sampler Name: Sanjiv Gill                | Signature:                                                                                                         |          |      |         |  |  |  |  |



| MONITORING FIELD DATA                    | SHEET Well ID: MU-2C                                                                        |  |  |  |  |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Project.Task #: 1145.001 213             | Project Name:Feiner                                                                         |  |  |  |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA      |                                                                                             |  |  |  |  |  |  |  |
| Date: 03/15/08                           | Weather: Sunn Y                                                                             |  |  |  |  |  |  |  |
| Well Diameter: 2 11                      | Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47<br>2" = 0.16 4" = 0.65 radius <sup>2</sup> * 0.163 |  |  |  |  |  |  |  |
| Total Depth (TD): 23.03                  | Depth to Product:                                                                           |  |  |  |  |  |  |  |
| Depth to Water (DTW): 8.82               | Product Thickness:                                                                          |  |  |  |  |  |  |  |
| Water Column Height: 14.21               | 1 Casing Volume: 2.2 7 gallons                                                              |  |  |  |  |  |  |  |
| Reference Point: TOC                     | 3 Casing Volumes: 6.82 gallons                                                              |  |  |  |  |  |  |  |
| Purging Device: Disposable Bailer, Check | Valve Tubing, 3" PVC Bailer, Whal Pump                                                      |  |  |  |  |  |  |  |
| Sampling Device: Disposable Bailer, Chec |                                                                                             |  |  |  |  |  |  |  |
| Time Temp © pH Cond (μs)                 | NTU DO(mg/L) ORP (mV) Vol(gal) DTW                                                          |  |  |  |  |  |  |  |
| 2:45 18.6 7.46 849                       | 2.5                                                                                         |  |  |  |  |  |  |  |
| 2:50 18.0 7.45 846                       | 5                                                                                           |  |  |  |  |  |  |  |
| 2:55 184 7.39 874                        | 7                                                                                           |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
| Comments: YSI 550A DO meter              | pre purge DO mg/l                                                                           |  |  |  |  |  |  |  |
|                                          | post purge DO = mg/l                                                                        |  |  |  |  |  |  |  |
| very turbid, silty                       | **************************************                                                      |  |  |  |  |  |  |  |
| Sample ID: Sample ID:                    | Sample Time: 3:00                                                                           |  |  |  |  |  |  |  |
| Laboratory: McCampbell Analytical, INC.  | DO NO 184 O DESCRIPTION                                                                     |  |  |  |  |  |  |  |
| Containers/Preservative: Voa/HCI, Ambe   | Decid SC Control (Control                                                                   |  |  |  |  |  |  |  |
| Analyzed for: 8015, 8021                 | LILOTT TOL                                                                                  |  |  |  |  |  |  |  |
| - Al - Emily                             | 00                                                                                          |  |  |  |  |  |  |  |
| Sampler Name: Sanjiv Gill                | Signature:                                                                                  |  |  |  |  |  |  |  |



| MONITORING FIELD DATA                    | A SHEET Well ID: MW-3A                                                                      |  |  |  |  |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Project.Task #: 1145.001 213             | Project Name:Feiner                                                                         |  |  |  |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA      |                                                                                             |  |  |  |  |  |  |  |
| Date: 03/15/08                           | Weather: 1"= 0.04   3" = 0.37   6" = 1.47                                                   |  |  |  |  |  |  |  |
| Well Diameter: 2"                        | Volume/ft. 2" = 0.04 3" = 0.37 6" = 1.47<br>2" = 0.16 4" = 0.65 radius <sup>2</sup> * 0.163 |  |  |  |  |  |  |  |
| Total Depth (TD): 13.83                  | Depth to Product:                                                                           |  |  |  |  |  |  |  |
|                                          | Product Thickness:                                                                          |  |  |  |  |  |  |  |
| Water Column Height: 4.53                | 1 Casing Volume: 0.72 gallon:                                                               |  |  |  |  |  |  |  |
| Reference Point: TOC                     | 3 Casing Volumes: 2.17 gallons                                                              |  |  |  |  |  |  |  |
| Purging Device Disposable Bailer, Check  | Valve Tubing, 3" PVC Bailer, Whal Pump                                                      |  |  |  |  |  |  |  |
| Sampling Device Disposable Bailer, Check | k Valve Tubing                                                                              |  |  |  |  |  |  |  |
| Time Temp © pH Cond (µs)                 | NTU DO(mg/L) ORP (mV) Vol(gal) DTW                                                          |  |  |  |  |  |  |  |
| 8:30 16.0 7.72 703                       |                                                                                             |  |  |  |  |  |  |  |
| 8:35 16.7 7.69 713                       | 1.5                                                                                         |  |  |  |  |  |  |  |
| 8:40 16.9 7.68 680                       | 2                                                                                           |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          | <del>                                     </del>                                            |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
| Comments: YSI 550A DO meter              | pre purge DO = mg/l                                                                         |  |  |  |  |  |  |  |
|                                          | post purge DO = mg/l                                                                        |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
|                                          |                                                                                             |  |  |  |  |  |  |  |
| Sample ID: MU-3A                         | Sample Time: 8:45                                                                           |  |  |  |  |  |  |  |
| Laboratory: McCampbell Analytical, INC.  | Sample Date: 03/16/08                                                                       |  |  |  |  |  |  |  |
| Containers/Preservative: Voa/HCI, Amber  | Liter/HCL                                                                                   |  |  |  |  |  |  |  |
| Analyzed for: 8015, 8021                 | A-                                                                                          |  |  |  |  |  |  |  |
| Sampler Name: Sanjiv Gill                | Signature:                                                                                  |  |  |  |  |  |  |  |



| MONITORING FIELD DATA                   | SHEET Well ID: MU-3C                                                                               |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Project.Task #: 1145.001 213            | Project Name:Feiner                                                                                |  |  |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA     |                                                                                                    |  |  |  |  |  |  |
| Date: 03/15/08                          | Weather: Sunny                                                                                     |  |  |  |  |  |  |
| Well Diameter: 2"                       | Volume/ft. 1" = 0.04   3" = 0.37   6" = 1.47   2" = 0.16   4" = 0.65   radius <sup>2</sup> * 0.163 |  |  |  |  |  |  |
| Total Depth (TD): 26.75                 | Depth to Product:                                                                                  |  |  |  |  |  |  |
| Depth to Water (DTW): 11.09             | Product Thickness:                                                                                 |  |  |  |  |  |  |
| Water Column Height: 15.66              | 1 Casing Volume: 1.50 gallons                                                                      |  |  |  |  |  |  |
| Reference Point: TOC                    | 3 Casing Volumes: 7.50 gallons                                                                     |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
|                                         | Valve Tubing, 3" PVC Bailer, Whal Pump                                                             |  |  |  |  |  |  |
| Sampling Device: Disposable Baile Chec  | NTU DO(mg/L) ORP (mV) Vol(gal) DTW                                                                 |  |  |  |  |  |  |
| 9:00 17.7 6.97 1800                     | 7.5                                                                                                |  |  |  |  |  |  |
| 9:05 184 7.01 1737                      | 5                                                                                                  |  |  |  |  |  |  |
| 9:10 Danaferca                          | <b>35</b> 55                                                                                       |  |  |  |  |  |  |
| 200                                     |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
| Comments: YSI 550A DO meter             | pre purge DO = mg/l                                                                                |  |  |  |  |  |  |
| 1 1:1 011 1 01 1                        | post purge DO = mg/l                                                                               |  |  |  |  |  |  |
| very turbid, silty, ador, sheen         | Δ                                                                                                  |  |  |  |  |  |  |
| Sample ID: MW-3C                        | Sample Time: 1645                                                                                  |  |  |  |  |  |  |
| Laboratory: McCampbell Analytical, INC. |                                                                                                    |  |  |  |  |  |  |
|                                         |                                                                                                    |  |  |  |  |  |  |
| Containers/Preservative: Voa/HCI, Ambe  | er Liter/HCL                                                                                       |  |  |  |  |  |  |
| Analyzed for: 8015, 8021                | P                                                                                                  |  |  |  |  |  |  |
| Sampler Name: Sanjiv Gill               | Signature:                                                                                         |  |  |  |  |  |  |



| MONITORING FIELD DATA                    | SHEET Well ID: MU-4A            |                                                                  |  |  |  |  |
|------------------------------------------|---------------------------------|------------------------------------------------------------------|--|--|--|--|
| Project.Task #: 1145.001 213             | Project Name:Feiner             |                                                                  |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA      |                                 |                                                                  |  |  |  |  |
| Date: 03/15/08                           | Weather: 5w                     | nn.Y                                                             |  |  |  |  |
| Well Diameter: 2 11                      | Volume/ft. 1" = 0.0<br>2" = 0.1 | 4 3" = 0.37 6" = 1.47<br>6 4" = 0.65 radius <sup>2</sup> * 0.163 |  |  |  |  |
| Total Depth (TD): 14.73                  | Depth to Produ                  | ot:                                                              |  |  |  |  |
| Depth to Water (DTW): 9.93               | Product Thickne                 | ess:                                                             |  |  |  |  |
| Water Column Height: 4.80                | 1 Casing Volum                  | e: 0.76 gallons                                                  |  |  |  |  |
| Reference Point: TOC                     |                                 | olumes: 2:28 gallons                                             |  |  |  |  |
| Purging Device: Disposable Bailer, Check |                                 |                                                                  |  |  |  |  |
| Sampling Device: Disposable Bailer Che   | ck Valve Tubing                 |                                                                  |  |  |  |  |
| Time Temp © pH Cond (µs)                 |                                 | /L) ORP (mV) Vol(gal) DTW                                        |  |  |  |  |
| 8:00 17.1 7.12 1115                      |                                 | 3                                                                |  |  |  |  |
| 8:05 17.5 7.12 (120                      |                                 | 1.5                                                              |  |  |  |  |
| 8:10 17.9 7.06 1126                      |                                 | 2                                                                |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
|                                          | +                               | 1 - 1 - 1                                                        |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
|                                          |                                 |                                                                  |  |  |  |  |
| Qomments: YSI 550A DO meter              | pre purge DO =                  | mg/l                                                             |  |  |  |  |
| 42                                       | post purge DO =                 | mg/l                                                             |  |  |  |  |
| sheen, odor,                             |                                 |                                                                  |  |  |  |  |
| MILLIA                                   |                                 |                                                                  |  |  |  |  |
| Sample ID: MW-4A                         | Sample Time: 8:15               |                                                                  |  |  |  |  |
| Laboratory: McCampbell Analytical, INC.  | Sample Date: 0                  | 3//6/08                                                          |  |  |  |  |
| Containers/Preservative: Voa/HCI, Ambe   | er Liter/HCL                    |                                                                  |  |  |  |  |
| Analyzed for: 8015, 8021                 |                                 | 1.                                                               |  |  |  |  |
| Sampler Name: Sanjiv Gill                | Signature:                      | 1                                                                |  |  |  |  |
|                                          | 1.0                             |                                                                  |  |  |  |  |



|       |                                                                                 | MONITO     | ORING F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IELD DATA      | A SHEET Well ID: MU-5A |                        |          |                                      |           |  |
|-------|---------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|------------------------|----------|--------------------------------------|-----------|--|
|       | Project.T                                                                       | ask #: 11  | 45.001 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3              | Project Name:Feiner    |                        |          |                                      |           |  |
|       | Address:                                                                        | 5175 Bro   | adway, O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | akland, CA     |                        |                        |          |                                      |           |  |
|       | Date: 03/                                                                       | 15/08      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Weather                |                        | ny       |                                      |           |  |
|       | Well Diar                                                                       | neter:     | 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | Volume/ft.             | 1" = 0.04<br>2" = 0.16 |          | 6" = 1.47<br>radius <sup>2</sup> * 0 | .163      |  |
|       | Total Dep                                                                       | oth (TD):  | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52             | Depth to               | Product:               |          |                                      |           |  |
| - 1   |                                                                                 | Water (D   | TW): 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Product        | Thickness              | S:                     |          |                                      |           |  |
| - [   | 100                                                                             | olumn Hei  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.66           | 1 Casing               | Volume:                | 0.42     |                                      | gallons   |  |
| 1     |                                                                                 | e Point: 7 | CONTRACTOR OF THE PROPERTY OF |                | 3 Ca                   | sing Volu              | mes:     | 1.26                                 | gallons   |  |
|       | Purging Device: Disposable Bailer, Check Valve Tubing, 3" PVC Bailer, Whal Pump |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      | ump       |  |
|       |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Baller, Chec |                        |                        |          |                                      |           |  |
| 1     | Time                                                                            | Temp ©     | PH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cond (µs)      | NTU                    |                        | ORP (mV) |                                      | WTG       |  |
| 31508 | 1:25                                                                            | 14.4       | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1947           |                        |                        |          | 1.0                                  | Dewatered |  |
|       | 1.50                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          | <b>*</b>                             |           |  |
|       |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      |           |  |
|       |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      |           |  |
|       |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      |           |  |
|       |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        | 0                      |          |                                      |           |  |
|       |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      |           |  |
| }     |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      |           |  |
|       | Comments                                                                        | YSI 550A   | DO meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | pre purge              | DO =                   | mg/l     |                                      |           |  |
|       |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | post purge             | DO =                   | mg/l     |                                      |           |  |
| 2.0   |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      |           |  |
|       | Sample I                                                                        | D: ML      | -5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | Sample Time: 9:50      |                        |          |                                      |           |  |
| - 1   | Laboratory: McCampbell Analytical, INC.                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        |          |                                      |           |  |
| 1     |                                                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pa/HCI, Ambe   | 14770 - 500            |                        |          |                                      |           |  |
| 1     |                                                                                 | for: 801   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                        |                        | ,        |                                      |           |  |
| Ī     |                                                                                 | Name: Sa   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | Signatur               | e: 8                   | 7        |                                      |           |  |

IU: 15188563 R.1

HPR-2-2008 08:11H FRUM:



|         |                                                           | MONITO     | RING F     | IELD DATA      | A SHEET Well ID: MU-5B                   |                                     |                        |                                       |         |  |
|---------|-----------------------------------------------------------|------------|------------|----------------|------------------------------------------|-------------------------------------|------------------------|---------------------------------------|---------|--|
|         | Project.T                                                 | ask #: 11  | 45.001 21  | 13             | Project Name:Feiner                      |                                     |                        |                                       |         |  |
|         | Address:                                                  | 5175 Bro   | adway, C   | akland, CA     |                                          |                                     |                        |                                       |         |  |
|         | Date: 03/                                                 | 15/08      |            |                | Weather                                  |                                     | אמע א                  | 100 4 47                              |         |  |
|         | Well Diar                                                 | meter:     | 2"_        |                | Volume/ft.                               | 1" = 0.04<br>2" = 0.16              | 3" = 0.37<br>4" = 0.65 | 6" = 1.47<br>radius <sup>2</sup> * 0. | 163     |  |
|         | Total Dep                                                 | oth (TD):  | 19.2       | 3              | Depth to                                 | Product:                            |                        |                                       |         |  |
|         |                                                           | Water (D   |            |                | Product                                  | Thicknes                            | s:                     |                                       |         |  |
|         | Water Co                                                  | olumn Hei  | ght:       | 6.68           | 1 Casing                                 | Volume:                             | 1.06                   |                                       | gallons |  |
|         | Reference                                                 | e Point: T | ОС         |                | 3 Ca                                     | sing Volu                           | mes:                   | 3.18                                  | gallons |  |
|         | Purging [                                                 | Device:    | sposable   | Bailen Check   | Valve Tu                                 | ve Tubing, 3" PVC Bailer, Whal Pump |                        |                                       |         |  |
|         | Sampling                                                  |            |            | le Bailer Chec | k Valve T                                | ubing                               |                        |                                       |         |  |
|         | Time<br>1.05                                              | Temp ©     | 6.91       | Cond (µs)      | NTU                                      | DO(mg/L)                            | ORP (mV)               | Vol(gal)                              | DTW     |  |
| 3-15-08 |                                                           |            | ates       | 1              |                                          |                                     |                        | -                                     | ž .     |  |
|         |                                                           |            |            | ,              |                                          |                                     |                        | 3                                     |         |  |
|         |                                                           |            |            |                |                                          |                                     | <u> </u>               |                                       |         |  |
|         |                                                           |            |            |                |                                          |                                     |                        |                                       |         |  |
|         |                                                           |            |            |                |                                          |                                     |                        |                                       |         |  |
|         |                                                           |            |            |                |                                          |                                     | ļ                      |                                       |         |  |
|         |                                                           |            |            |                |                                          |                                     |                        |                                       |         |  |
|         |                                                           |            |            |                |                                          |                                     |                        |                                       |         |  |
|         | Comments                                                  | : YSI 550A | DO meter   |                | pre purge DO = mg/l post purge DO = mg/l |                                     |                        |                                       |         |  |
|         | very.                                                     | tuckid,    | silty      |                | post purge                               | 00-                                 | mg/l                   |                                       |         |  |
|         |                                                           |            | 21 - 17    |                | 1                                        |                                     |                        |                                       |         |  |
|         | Sample I                                                  | D: MH      | -5B        |                | Sample Time: 9:40                        |                                     |                        |                                       |         |  |
|         | Laboratory: McCampbell Analytical, INC. Sample Date: 03/1 |            |            |                |                                          | 16/08                               |                        |                                       |         |  |
|         | Containe                                                  | rs/Preser  | vative: V  | oa/HCI, Ambe   | r Liter/HC                               | L                                   |                        |                                       |         |  |
|         | Analyzed                                                  | for: 801   | 5, 8021    |                | 1                                        |                                     |                        |                                       |         |  |
|         | Sampler                                                   | Name: Sa   | anjiv Gill |                | Signature:                               |                                     |                        |                                       |         |  |

HPR-2-2008 08:13H FRUM:



| Project Name: Feiner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MONITORING FIELD DAT                   | A SHEET Well ID: MU-5C                                                                              |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Date: 03/15/08  Weather: Suncy Volume/ft:   1 = 0.04   3 = 0.37   6 = 1.47 Volume/ft:   2 = 0.16   4 = 0.65   radius* 0.163  Total Depth (TD): 26.70 Depth to Product: Depth to Water (DTW): 12.55  Water Column Height:   14.15   1 Casing Volume: 2.26   gallor Reference Point: TOC   3 Casing Volumes: 6.78   gallor  Purging Device: Disposable Bailer, Check Valve Tubing, 3" PVC Bailer, Whal Pump  Sampling Device: Disposable Bailer, Check Valve Tubing  Time   Temp © pH   Cond (µs)   NTU   DO(mg/L)   ORP (mV)   Vol(gal)   DTW  12:35   17.6   6.9 8   17.3.7   2.5   12:45   17.4   6.99   17.3.7   7   7    Comments: YSI 550A DO meter   pre purge DO = mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project.Task #: 1145.001 213           |                                                                                                     |  |  |  |  |
| Total Depth (TD): 26.70  Depth to Water (DTW): 12.55  Water Column Height: 14.15  Reference Point: TOC  Purging Device: Disposable Bailer, Check Valve Tubing, 3" PVC Bailer, Whal Pump  Sampling Device: Disposable Bailer, Check Valve Tubing  Time Temp PH Cond (µs)  NTU DO(mg/L) ORP (mV) Vol(gal)  DTW  12:35  17.6  6.9  8.17.37  12:45  17.41  8.99  17.37  17.41  8.99  Pre purge DO = mg/l  post purge DO = mg/l  Sample ID: MN-5C  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCl, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Address: 5175 Broadway, Oakland, CA    |                                                                                                     |  |  |  |  |
| Total Depth (TD): 26.70  Depth to Water (DTW): 12.55  Water Column Height: 14.15  Reference Point: TOC  Purging Device: Disposable Bailer, Check Valve Tubing, 3" PVC Bailer, Whal Pump  Sampling Device: Disposable Bailer, Check Valve Tubing  Time Temp PH Cond (µs)  NTU DO(mg/L) ORP (mV) Vol(gal)  DTW  12:35  17.6  6.9  8.17.37  12:45  17.41  8.99  17.37  17.41  8.99  Pre purge DO = mg/l  post purge DO = mg/l  Sample ID: MN-5C  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCl, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date: 03/15/08                         | Weather: Sunny                                                                                      |  |  |  |  |
| Depth to Water (DTW): 12.55  Water Column Height: 14.15  Reference Point: TOC  Reference | Well Diameter: 2"                      | Volume/ft. 1" = 0.04   3" = 0.37   6" = 1.47<br>2" = 0.16   4" = 0.65   radius <sup>2</sup> * 0.163 |  |  |  |  |
| Water Column Height: 14.15  Reference Point: TOC  3 Casing Volumes: 4.78 gallor Purging Device: Disposable Bailer, Check Valve Tubing, 3" PVC Bailer, Whal Pump  Sampling Device: Disposable Bailer, Check Valve Tubing  Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW  12:35 17.6 6.9 \$ 17.37  12:40 17.5 7.01 1 7.74  12:45 17.41 6.99 17.37  Post purge DO = mg/l  post purge DO = mg/l  VC-y two bid, 5: 1ty  Sample ID: MW-5C  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Depth (TD): 26.70                | Depth to Product:                                                                                   |  |  |  |  |
| Water Column Height: 14.15  Reference Point: TOC  3 Casing Volumes: 4.78 gallor Purging Device: Disposable Bailer, Check Valve Tubing, 3" PVC Bailer, Whal Pump  Sampling Device: Disposable Bailer, Check Valve Tubing  Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW  12:35 17.6 6.9 \$ 17.37  12:40 17.5 7.01 1 7.74  12:45 17.41 6.99 17.37  Post purge DO = mg/l  post purge DO = mg/l  VC-y two bid, 5: 1ty  Sample ID: MW-5C  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth to Water (DTW): 12.55            | Product Thickness:                                                                                  |  |  |  |  |
| Purging Device: Disposable Bailet, Check Valve Tubing, 3" PVC Bailer, Whal Pump  Sampling Device: Disposable Bailet, Check Valve Tubing  Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW  12:35 17:6 6.9 & 1737  12:40 17:5 7:01 1 7 7 4 5  12:45 17:1 6.99 1737  Post purge DO = mg/l  post purge DO = mg/l  VCry Mucbicl, 5: 14y  Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | 1 Casing Volume: 2.26 gallons                                                                       |  |  |  |  |
| Sampling Device: Disposable Bailer, Oneck Valve Tubing  Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW  12:35 17.6 6.9 8 1737 2.5  13:40 17.5 7.01 1774 5  12:45 17.4 6.99 1737 7  Comments: YSI 550A DO meter pre purge DO = mg/l  post purge DO = mg/l  VCr y two bid, 5: 1ty  Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCl, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reference Point: TOC                   | 3 Casing Volumes: 6.78 gallons                                                                      |  |  |  |  |
| Sampling Device: Disposable Bailer, Oneck Valve Tubing  Time Temp® pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW  12:35 17.6 6.9 8 1737 2.5  13:40 17.5 7.01 1774 5  12:45 17.4 6.99 1737 7  Comments: YSI 550A DO meter pre purge DO = mg/l  post purge DO = mg/l  VCr y two bid, 5: 1ty  Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCl, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Purging Device Disposable Bailer Chec  |                                                                                                     |  |  |  |  |
| 12:35   17.6   6.9 8   1737   2.5   12:40   17.5   7.01   1774   5   7.01   1737   7   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                                                     |  |  |  |  |
| 12:40   17.5   7.01   1774     5   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1 100 - 0-                           |                                                                                                     |  |  |  |  |
| Comments: YSI 550A DO meter pre purge DO = mg/l post purge DO = mg/l vcry two bicl, si ty  Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.0                                   |                                                                                                     |  |  |  |  |
| Comments: YSI 550A DO meter  pre purge DO = mg/l  post purge DO = mg/l  VCry two bid, si try  Sample ID: Mw-5C  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCl, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 1 3                                                                                                 |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1245 (1.1 8.11 1.13 /                  |                                                                                                     |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                     |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                     |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                     |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                     |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                     |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments: YSI 550A DO meter            | pre purge DO = mg/l                                                                                 |  |  |  |  |
| Sample ID: MW-5C Sample Time: 12:50  Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | post purge DO = mg/l                                                                                |  |  |  |  |
| Laboratory: McCampbell Analytical, INC. Sample Date: 03/15/08  Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | very turbid, silty                     |                                                                                                     |  |  |  |  |
| Containers/Preservative: Voa/HCI, Amber Liter/HCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample ID: MW-5C                       | Sample Time: 12:50                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory: McCampbell Analytical, INC | Sample Date: 03/15/08                                                                               |  |  |  |  |
| Analyzed for: 8015, 8021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Containers/Preservative: Voa/HCI, Amb  | er Liter/HCL                                                                                        |  |  |  |  |
| A CONTRACTOR OF THE PARTY OF TH | Analyzed for: 8015, 8021               |                                                                                                     |  |  |  |  |
| Sampler Name: Sanjiv Gill Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampler Name: Sanjiv Gill              | Signature:                                                                                          |  |  |  |  |



| MONITORING FIELD DATA                    | A SHEET Well ID: MU-6A                                                                  |  |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| Project.Task #: 1145.001 213             | Project Name:Feiner                                                                     |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA      |                                                                                         |  |  |  |  |
| Date: 03/15/08                           | Weather: Swm /                                                                          |  |  |  |  |
| Well Diameter: 2"                        | Volume/ft. 1"= 0.04 3"= 0.37 6" = 1.47<br>2" = 0.16 4" = 0.65 radius <sup>2</sup> 0.163 |  |  |  |  |
| Total Depth (TD): 14-92                  | Depth to Product:                                                                       |  |  |  |  |
| Depth to Water (DTW): 7.16               | Product Thickness:                                                                      |  |  |  |  |
| Water Column Height: 7.76                | 1 Casing Volume: 1.24 gallons                                                           |  |  |  |  |
| Reference Point: TOC                     | 3 Casing Volumes: 3.72 gallons                                                          |  |  |  |  |
| Purging Device: Disposable Bailer Check  |                                                                                         |  |  |  |  |
| Sampling Device: Sisposable Bailer, Chec | k Valve Tubing                                                                          |  |  |  |  |
| Time Temp © pH Cond (µs)                 | NTU DO(mg/L) ORP (mV) Vol(gai) DTW                                                      |  |  |  |  |
| 3:50 16.6 7.18 1125                      | 1.5                                                                                     |  |  |  |  |
| 3:55 16.6 7.22 1129                      | 3                                                                                       |  |  |  |  |
| 7.00 169 7.18 1148                       | 4                                                                                       |  |  |  |  |
|                                          |                                                                                         |  |  |  |  |
|                                          |                                                                                         |  |  |  |  |
|                                          |                                                                                         |  |  |  |  |
|                                          |                                                                                         |  |  |  |  |
|                                          |                                                                                         |  |  |  |  |
| Comments: YSI 550A DO meter              | pro purae DO =mall                                                                      |  |  |  |  |
| Comments: 131 330A DO Meter              | pre purge DO = mg/l  post purge DO = mg/l                                               |  |  |  |  |
| very turbick wery silty                  | post parge 50 mg/                                                                       |  |  |  |  |
| Sample ID: MW-6A                         | Sample Time: 4:05                                                                       |  |  |  |  |
| Laboratory: McCampbell Analytical, INC.  | Sample Date: 03/ 15/08                                                                  |  |  |  |  |
| Containers/Preservative: Voa/HCI, Amber  | Liter/HCL                                                                               |  |  |  |  |
| Analyzed for: 8015, 8021                 | 4                                                                                       |  |  |  |  |
| Sampler Name: Sanjiv Gill                | Signature:                                                                              |  |  |  |  |



|         |           | MONITO       | ORING F    | IELD DATA                               | A SHEET Well ID: MU-7 |                        |                        | -7B                                   |         |
|---------|-----------|--------------|------------|-----------------------------------------|-----------------------|------------------------|------------------------|---------------------------------------|---------|
|         | Project.T | ask #: 11    | 45.001 21  | 13                                      | Project Name:Feiner   |                        |                        |                                       |         |
|         | Address:  | 5175 Bro     | adway, C   | akland, CA                              |                       |                        |                        |                                       |         |
|         | Date: 03/ | 15/08        |            |                                         | Weather               | Sugar                  | ¥                      |                                       |         |
|         | Well Diar | neter:       | 2"         |                                         | Volume/ft.            | 1" = 0.04<br>2" = 0.16 | 3" = 0.37<br>4" = 0.65 | 6" = 1.47<br>radius <sup>2</sup> * 0. | 163     |
|         | ₹otal Dep | oth (TD):    | 18.5       | 55                                      | Depth to              | Product:               |                        |                                       |         |
|         | Depth to  | Water (D     | TW):       | .36                                     | Product '             | Thickness              | S:                     | **                                    |         |
|         | Water Co  | olumn Hei    | ght:       | 7.19                                    |                       | Volume:                | 1.15                   |                                       | gallons |
|         | Reference | e Point: T   | ОС         |                                         | 3 Ca                  | sing Volur             | mes: 3                 | .45                                   | gallons |
|         | Purging ( | Device: 6    | sposable   | Bailer, Check                           | Valve Tu              | bing, 3" P             | VC Bailer,             | Whal P                                | ump     |
|         |           |              |            | e Bailer Chec                           | k Valve T             | ubing                  | RP (mV)                | Vol(gal)                              | DTW     |
|         | Time 4:20 | Temp ©       | 7.08       | Cond (µs)                               | NIO                   | DO(mg/L)               | JORF (mv)              | 1:5                                   | DIVV    |
| 3-15-08 | 4:30      |              | Herec      |                                         |                       |                        |                        |                                       | .0      |
|         |           |              | •          |                                         |                       |                        |                        | 385                                   |         |
|         |           |              |            |                                         |                       |                        |                        |                                       |         |
|         |           |              |            |                                         |                       |                        |                        |                                       |         |
|         |           |              |            |                                         |                       |                        |                        |                                       |         |
|         |           |              |            |                                         |                       |                        |                        |                                       |         |
|         |           |              |            |                                         |                       |                        |                        |                                       |         |
|         | Comments  | : YSI 550A I | OO meter   | III AII AII AII AII AII AII AII AII AII | pre purge (           | 00 =                   | mg/l                   |                                       |         |
|         |           |              |            |                                         | post purge            |                        | mg/l                   |                                       |         |
|         | verytu    | chid, .      | cry silt   | y, oder, st                             | een                   |                        |                        |                                       |         |
|         | Sample I  | D: ML        | J-713      |                                         | Sample                | Time: 10               | 2:00                   |                                       |         |
|         |           |              |            | nalytical, INC.                         | Sample Date: 03//6/08 |                        |                        |                                       |         |
|         | Containe  | rs/Presen    | vative: V  | oa/HCI, Amber                           | r Liter/HC            | L                      |                        |                                       |         |
|         | Analyzed  | for: 801     | 5, 8021    | ***                                     | T                     | 12                     | 1-11001                |                                       |         |
|         | Sampler   | Name: Sa     | anjiv Gill |                                         | Signature:            |                        |                        |                                       |         |

HPR-2-2008 08:16A FRUM:



|         | MONITORING FIELD DATA SHEET                               |                                    |            |                 |                        |                        | Well ID: MN-7C |                                       |         |
|---------|-----------------------------------------------------------|------------------------------------|------------|-----------------|------------------------|------------------------|----------------|---------------------------------------|---------|
|         | Project.T                                                 | ask #: 11                          | 45.001 21  | 13              | Project Name:Feiner    |                        |                |                                       |         |
|         | Address:                                                  | ddress: 5175 Broadway, Oakland, CA |            |                 |                        |                        |                |                                       |         |
|         | Date: 03/                                                 | /15/08                             |            |                 | Weather                |                        | y              |                                       |         |
|         | Well Diar                                                 | neter:                             | 211        |                 | Volume/ft.             | 1" = 0.04<br>2" = 0.16 |                | 6" = 1.47<br>radius <sup>2</sup> * 0. | 163     |
|         | Total De                                                  | oth (TD):                          | 24.1       | 12              | Depth to               | Product:               |                |                                       |         |
|         | Depth to                                                  | Water (D                           | TW): ]]    | .08             | Product                | Thickness              | S:             |                                       |         |
|         |                                                           | olumn Hei                          |            | 3.34            | 1 Casing               | Volume:                | 2.13           |                                       | gallons |
|         | Reference                                                 | e Point: 1                         | гос        |                 | _3_Ca                  | sing Volu              | mes: 6         | .36                                   | gallons |
|         | Purging (                                                 | Device: D                          | isposable  | Bailer, Check   | Valve Tu               | bing, 3" P             | VC Bailer      | , Whal Pu                             | ump     |
|         |                                                           |                                    |            | le Bailer, Chec | k Valve T              | ubing                  |                |                                       |         |
|         | Time 4:45                                                 | Temp ©                             | 7.39       | 129 b           | NTU                    | DO(mg/L)               | ORP (mV)       | Vol(gal)                              | DTW     |
| 3-15-08 | 4:55                                                      |                                    | tere       |                 |                        |                        |                | £ 3.                                  | 5       |
|         |                                                           |                                    |            |                 |                        |                        |                | 8                                     |         |
|         |                                                           |                                    |            |                 |                        |                        |                |                                       |         |
|         |                                                           |                                    |            |                 |                        |                        |                |                                       |         |
|         |                                                           |                                    |            |                 |                        |                        |                |                                       |         |
|         |                                                           |                                    |            |                 |                        |                        |                |                                       |         |
|         |                                                           |                                    |            |                 |                        |                        |                |                                       |         |
|         |                                                           |                                    |            |                 |                        |                        |                |                                       |         |
|         | Comments                                                  | : YSI 550A                         | DO meter   |                 | pre purge              |                        | mg/l           |                                       |         |
|         | verva                                                     | whid.                              | Jery Si    | 1+y             | post purge             | DO =                   | mg/l           |                                       |         |
|         | very turbid, very silty                                   |                                    |            |                 |                        |                        |                |                                       |         |
|         | Sample ID: Mu-7C  Laboratory: McCampbell Analytical, INC. |                                    |            |                 | Sample Time: 10:10     |                        |                |                                       |         |
|         |                                                           |                                    |            |                 | Sample Date: 03/16 /08 |                        |                |                                       |         |
|         | Containe                                                  | rs/Preser                          | vative: V  | oa/HCI, Ambe    | r Liter/HC             | L                      |                |                                       |         |
|         | Analyzed                                                  | for: 801                           | 5, 8021    |                 | 1                      | to                     |                |                                       |         |
|         | Sampler                                                   | Name: S                            | anjiv Gill | as awann e      | Signatur               | e: //s                 |                | 100-100                               |         |



| MONITORING FIELD DATA                   | SHEET Well ID: MU-8A                                                                                |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Project. Task #: 1145.001 213           | Project Name:Feiner                                                                                 |  |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA     |                                                                                                     |  |  |  |  |  |
| Date: 03/15/08                          | Weather: Sunny                                                                                      |  |  |  |  |  |
| Well Diameter: 2"                       | Volume/ft. 1" = 0.04   3" = 0.37   6" = 1.47<br>2" = 0.16   4" = 0.65   radius <sup>2</sup> * 0.163 |  |  |  |  |  |
| Total Depth (TD): 14.90                 | Depth to Product:                                                                                   |  |  |  |  |  |
|                                         | Product Thickness:                                                                                  |  |  |  |  |  |
| Depth to Water (DTW): 9.80              |                                                                                                     |  |  |  |  |  |
| Water Column Height: 5./0               |                                                                                                     |  |  |  |  |  |
| Reference Point: TOC                    | Casing Volumes: 243 gallons                                                                         |  |  |  |  |  |
| Purging Device Disposable Bailer, Oheck | Valve Tubing, 3" PVC Bailer, Whal Pump                                                              |  |  |  |  |  |
| Sampling Device Disposable Bailer Chec  | ck Valve Tubing                                                                                     |  |  |  |  |  |
| Time Temp © pH Cond (µs)                | NTU DO(mg/L) ORP (mV) Vol(gal) DTW                                                                  |  |  |  |  |  |
| 2:20 15.5 6.96 1634                     | 1.5                                                                                                 |  |  |  |  |  |
|                                         | 2.5                                                                                                 |  |  |  |  |  |
| 2:25 15.7 1.01 1631                     |                                                                                                     |  |  |  |  |  |
|                                         |                                                                                                     |  |  |  |  |  |
|                                         |                                                                                                     |  |  |  |  |  |
|                                         |                                                                                                     |  |  |  |  |  |
|                                         |                                                                                                     |  |  |  |  |  |
|                                         |                                                                                                     |  |  |  |  |  |
|                                         |                                                                                                     |  |  |  |  |  |
|                                         |                                                                                                     |  |  |  |  |  |
| Comments: YSI 550A DO meter             | pre purge DO = mg/l                                                                                 |  |  |  |  |  |
|                                         | post purge DO = mg/l                                                                                |  |  |  |  |  |
| very toubid, very silty,                | odor                                                                                                |  |  |  |  |  |
| Sample ID: MN-8A                        | Sample Time: 2:30                                                                                   |  |  |  |  |  |
| Laboratory: McCampbell Analytical, INC. | Sample Date: 03// 5/08                                                                              |  |  |  |  |  |
| Containers/Preservative: Voa/HCI, Ambe  | r Liter/HCL                                                                                         |  |  |  |  |  |
| Analyzed for: 8015, 8021                |                                                                                                     |  |  |  |  |  |
| Sampler Name: Sanjiv Gill               | Signature:                                                                                          |  |  |  |  |  |
| Campion Hamo, Campin Cin                | To State of the                                                                                     |  |  |  |  |  |



| MONITORING FIELD DA                    | TA SHEET          | Well ID: MU              | -8C     |  |  |  |  |
|----------------------------------------|-------------------|--------------------------|---------|--|--|--|--|
| Project.Task #: 1145.001 213           | Project Name:     | Project Name:Feiner      |         |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA    | \                 |                          |         |  |  |  |  |
| Date: 03/15/08                         | Weather:          | unv                      |         |  |  |  |  |
| Well Diameter: 2 1/                    | Volume/ft. 1" = 0 | 0.04 3" = 0.37 6" = 1.47 |         |  |  |  |  |
| Total Depth (TD): 24.89                | Depth to Prod     | uct:                     |         |  |  |  |  |
| Depth to Water (DTW): 11.39            | Product Thick     | ness:                    |         |  |  |  |  |
| Water Column Height: 13.50             | 1 Casing Volu     | me: 2·16                 | gallons |  |  |  |  |
| Reference Point: TOC                   | 3 Casing \        | Volumes: 6-48            | gallons |  |  |  |  |
| Purging Device: Disposable Bailer, Che | eck Valve Tubing, | 3" PVC Bailer, Whal      | Pump    |  |  |  |  |
| Sampling Device: Disposable Bailer, Cl | heck Valve Tubing | )                        |         |  |  |  |  |
| Time Temp © pH Cond (µs                | ) NTU DO(n        | ng/L) ORP (mV) Vol(gal)  | DTW     |  |  |  |  |
| 1:45 17.0 7.34 1633                    |                   | 2.5                      |         |  |  |  |  |
| 1:50 17.4 7.32 1592                    |                   | 5                        |         |  |  |  |  |
| 1:55 17.7 7.31 158 3                   | 3                 | 6.5                      |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
|                                        |                   |                          |         |  |  |  |  |
| Comments: YSI 550A DO meter            | pre purge DO =    | mg/l                     |         |  |  |  |  |
|                                        | post purge DO =   | mg/l                     |         |  |  |  |  |
| very turbid, very silty                |                   |                          |         |  |  |  |  |
| Sample ID: MU-8C                       | Sample Time:      | 2:00                     |         |  |  |  |  |
| Labortory: McCampbell Analytical, IN   | C. Sample Date:   | 03/15/08                 |         |  |  |  |  |
| Containers/Preservative: Voa/HCI, Am   | ber Liter/HCL     |                          |         |  |  |  |  |
| Analyzed for: 8015, 8021               |                   |                          |         |  |  |  |  |
| Sampler Name: Sanjiv Gill              | Signature:        | 4                        |         |  |  |  |  |
|                                        | -                 |                          |         |  |  |  |  |



| MONITORING FIELD DATA                    | A SHEET Well ID: MW-9A                                                                             |  |  |  |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Project.Task #: 1145.001 213             | Project Name:Feiner                                                                                |  |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA      |                                                                                                    |  |  |  |  |  |
| Date: 03/15/08                           | Weather: Sunt                                                                                      |  |  |  |  |  |
| Well Diameter: 2'1                       | Volume/ft. 1" = 0.04   3" = 0.37   6" = 1.47   2" = 0.16   4" = 0.65   radius <sup>2</sup> * 0.163 |  |  |  |  |  |
| Total Depth (TD): 15.19                  | Depth to Product:                                                                                  |  |  |  |  |  |
| Depth to Water (DTW): 12-02              | Product Thickness:                                                                                 |  |  |  |  |  |
| Water Column Height: 3.17                | 1 Casing Volume: 0.50 gallons                                                                      |  |  |  |  |  |
| Reference Point: TOC                     | 3 Casing Volumes: /- SD gallons                                                                    |  |  |  |  |  |
| Purging Device: Disposable Bailer, Check | Valve Tubing, 3" PVC Bailer, Whal Pump                                                             |  |  |  |  |  |
| Sampling Device: Disposable Bailer, Chec | k Valve Tubing                                                                                     |  |  |  |  |  |
| Time Temp © pH Cond (µs)                 | NTU DO(mg/L) ORP (mV) Vol(gal) DTW                                                                 |  |  |  |  |  |
| 11:40 18.0 7.61 1314                     | .5                                                                                                 |  |  |  |  |  |
| 11.45                                    | 1.0                                                                                                |  |  |  |  |  |
| 11:45 17.9 7.63 1310                     |                                                                                                    |  |  |  |  |  |
|                                          |                                                                                                    |  |  |  |  |  |
|                                          |                                                                                                    |  |  |  |  |  |
|                                          |                                                                                                    |  |  |  |  |  |
|                                          |                                                                                                    |  |  |  |  |  |
|                                          |                                                                                                    |  |  |  |  |  |
| Comments: YSI 550A DO meter              | pre purge DO = mg/l                                                                                |  |  |  |  |  |
|                                          | post purge DO = mg/l                                                                               |  |  |  |  |  |
| very tubid, very silty                   |                                                                                                    |  |  |  |  |  |
| Sample ID: MU-9A                         | Sample Time: 1:50                                                                                  |  |  |  |  |  |
| Laboratory: McCampbell Analytical, INC.  | Sample Date: 03/15/08                                                                              |  |  |  |  |  |
| Containers/Preservative: Voa/HCl, Amber  | r Liter/HCL                                                                                        |  |  |  |  |  |
| Analyzed for: 8015, 8021                 |                                                                                                    |  |  |  |  |  |
| Sampler Name: Sanjiv Gill                | Signature:                                                                                         |  |  |  |  |  |



| MONITORING FIELD DA                    | SHEET Well ID: MU-9C                                                                                 |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Project.Task #: 1145.001 213           | Project Name:Feiner                                                                                  |  |  |  |  |
| Address: 5175 Broadway, Oakland, CA    |                                                                                                      |  |  |  |  |
| Date: 03/15/08                         | Weather: Sunn!                                                                                       |  |  |  |  |
| Well Diameter: 21/                     | Volume/ft. 1" = 0.04   3" = 0.37   6" = 1.47<br>2" = 0.16   4" = 0.65   radius <sup>2</sup> * 0.16\$ |  |  |  |  |
| Total Depth (TD): 20.45                | Depth to Product:                                                                                    |  |  |  |  |
| Depth to Water (DTW): 10-96            | Product Thickness:                                                                                   |  |  |  |  |
| Water Column Height: 9.49              | 1 Casing Volume: 1.51 gallons                                                                        |  |  |  |  |
| Reference Point: TOC                   | 3 Casing Volumes: 4.53 gallons                                                                       |  |  |  |  |
|                                        | eck Valve Tubing, 3" PVC Bailer, Whal Pump                                                           |  |  |  |  |
| Sampling Device. Disposable Bailer, Ch |                                                                                                      |  |  |  |  |
| Time Temp pH Cond (µs)                 | ) NTU DÖ(mg/L) ORP (mV) Vol(gal) DTW                                                                 |  |  |  |  |
| 11:15 19.6 7.09 627                    | 1.5                                                                                                  |  |  |  |  |
| 11:20 18.6 7.20 604                    | 3                                                                                                    |  |  |  |  |
| 11:25 18.5 7.17 615                    | 4.5                                                                                                  |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |
| Comments: YSI 550A DO meter            | pre purge DO = mg/l                                                                                  |  |  |  |  |
| 1-1 1-1 v 11-1                         | post purge DO = mg/l                                                                                 |  |  |  |  |
| vay turbid, very silty                 |                                                                                                      |  |  |  |  |
| Sample ID: MUAC                        | Sample Time: 11:30                                                                                   |  |  |  |  |
| Laboratory: McCampbell Analytical, IN  | C. Sample Date: 03//5/08                                                                             |  |  |  |  |
| Containers/Preservative: Voa/HCI, Am   | iber Liter/HCL                                                                                       |  |  |  |  |
| Analyzed for: 8015, 8021               | , b                                                                                                  |  |  |  |  |
| Sampler Name: Sanjiv Gill              | Signature:                                                                                           |  |  |  |  |
|                                        |                                                                                                      |  |  |  |  |



| MONITORING FIELD DAT                    | A SHEET Well ID: MU-10A           |                      |         |  |  |  |
|-----------------------------------------|-----------------------------------|----------------------|---------|--|--|--|
| Project.Task #: 1145.001 213            | Project Name:Feiner               |                      |         |  |  |  |
| Address: 5175 Broadway, Oakland, CA     |                                   |                      |         |  |  |  |
| Date: 03/15/08                          | Weather. Sor                      | \n\x                 |         |  |  |  |
| Well Diameter: 2 1/                     | Volume/ft. 1" = 0.04<br>2" = 0.16 |                      | 163     |  |  |  |
| Total Depth (TD): 17.96                 | Depth to Product                  | :                    | -       |  |  |  |
| Depth to Water (DTW): 3.92              | Product Thicknes                  | SS:                  |         |  |  |  |
| Water Column Height: 9.04               | 1 Casing Volume                   | 1.44                 | gallons |  |  |  |
| Reference Point: TOC                    | 3 Casing Vol                      | umes: 4.32           | gallons |  |  |  |
| Purging Device. Disposable Bailer, Chec |                                   |                      | ımp     |  |  |  |
| Sampling Device Disposable Baile) Che   | eck Valve Tubing                  |                      |         |  |  |  |
| Time Temp © pH Cond (µs)                | NTU DO(mg/l                       | L) ORP (mV) Vol(gal) | DTW     |  |  |  |
| 12:05 18.7 7.93 977                     |                                   | 1.5                  |         |  |  |  |
| 12:10 18.3 7.86 951                     |                                   | 3                    |         |  |  |  |
| 12:15 18.3 7.89 950                     |                                   | 4                    |         |  |  |  |
|                                         |                                   |                      |         |  |  |  |
|                                         |                                   |                      |         |  |  |  |
|                                         |                                   |                      |         |  |  |  |
|                                         |                                   |                      |         |  |  |  |
|                                         |                                   |                      |         |  |  |  |
| Comments: YSI 550A DO meter             | pre purge DO =                    | mg/l                 |         |  |  |  |
|                                         | post purge DO =                   | mg/l                 |         |  |  |  |
| neryturbid, very silty                  | 20000                             |                      | -       |  |  |  |
| Sample ID: MD-10A                       | Sample Time: /2                   | 2:20                 |         |  |  |  |
| Laboratory: McCampbell Analytical, INC  |                                   |                      |         |  |  |  |
| Containers/Preservative: Voa/HCI, Amb   | er Liter/HCL                      |                      |         |  |  |  |
| Analyzed for: 8015, 8021                |                                   |                      |         |  |  |  |
| Sampler Name: Sanjiv Gill               | Signature:                        |                      |         |  |  |  |
|                                         |                                   |                      |         |  |  |  |

# **APPENDIX B**

Laboratory Analytical Report

# McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| Pangea Environmental Svcs., Inc. | Client Project ID: #1145.001; Feiner-5175 | Date Sampled:   | 03/15/08-03/16/08 |
|----------------------------------|-------------------------------------------|-----------------|-------------------|
| 1710 Franklin Street, Ste. 200   | Broadway Oakland, CA                      | Date Received:  | 03/17/08          |
| Oakland, CA 94612                | Client Contact: Bob Clark-Riddell         | Date Reported:  | 03/24/08          |
| Sundana, 277 7 1012              | Client P.O.:                              | Date Completed: | 03/24/08          |

WorkOrder: 0803403

March 24, 2008

| De | ar | R | പ | h | ٠ |
|----|----|---|---|---|---|
|    |    |   |   |   |   |

## Enclosed within are:

- 1) The results of the 16 analyzed samples from your project: #1145.001; Feiner-5175 Broadway O
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

| McCAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PBELL<br>110 2ad A |                              |                 |                 |      | L,       | IN           | C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |        |     |       |       | Γ.     |                                    |           |                       |            |                                       |                                     |                        |                                | C                                     | U                            | ST                    | O          | DY   | R    | EC       | -     | RD    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------|-----------------|-----------------|------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|-----|-------|-------|--------|------------------------------------|-----------|-----------------------|------------|---------------------------------------|-------------------------------------|------------------------|--------------------------------|---------------------------------------|------------------------------|-----------------------|------------|------|------|----------|-------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PACHE              | CO, CA 94                    | 553-5           | 5560            |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       |        | TUR                                |           |                       |            |                                       |                                     |                        | L                              |                                       | RI                           | USH                   |            | 24 F | IR.  | -        | 18 HI | R     | 72     | HR 5 DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Website:<br>Telephone: (925) 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 08.1620            | Em                           | ail: ı          | main            | @ me | ccan     | npbe<br>(925 | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m<br>9-1     | 623    | ,   |       |       | E      | DF I                               | Req       | uire                  | de         | Yes                                   | 30                                  |                        |                                |                                       | 14                           | 0044                  |            | 471  | 110  |          | 0 111 |       | -      | III UDAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report To: Bob Clark-Ride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | 1                            | Bill 1          | To: P           | _    | -        | _            | Constant or the Constant or th | and the same | _      |     | -     | _     | -      | -                                  |           |                       | _          |                                       |                                     |                        | Re                             | ques                                  | it                           | _                     | _          |      |      |          | C     | ther  | П      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Company: Pangea Environ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                              |                 |                 |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       |        | T                                  |           | -                     |            |                                       |                                     | 2                      |                                |                                       |                              | 1.                    |            | T    | T    | П        |       |       | $\neg$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1710 Franklin S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                              |                 |                 |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       | 8015)  |                                    |           | E/B&F)                |            |                                       |                                     | Bene                   |                                |                                       |                              | TBA                   |            |      |      |          |       |       |        | Filter<br>Samples for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oakland, CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 94612              | and the second second second | and the same of | ail:            | _    | -        | -            | eaer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıv.c         | om     |     |       |       | +      | 1                                  | 361       | 20 E/                 |            |                                       |                                     | Com                    |                                |                                       |                              | thanol by \$260B      | 8260B      |      |      |          |       |       |        | Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Tele: 510-836-3702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | I                            | Fax:            | 510             | -836 | 5-37     | 09           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            | 1=1    | - 0 |       |       | 8021   |                                    | 20        | 1/55                  | 3          | 3                                     |                                     | lors/                  |                                | 8                                     |                              | (E, D)                | by 8.      |      |      |          |       |       |        | analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Project #: 1145.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | I                            | roje            | ect N           | ame  | e: T     | Ser          | تكم                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~>           | C      | 10  | CDs/8 | noy   | (602/  | 3 / 88                             | = 7       | n Oil & Grease (1664/ | ns (418.1) | 1V0                                   | des)                                | Arec                   | _                              | blcid                                 |                              | TAM<br>by 8           | confirm by |      |      |          |       |       |        | Yes / No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Project Location: 5175 Sampler Signature: Muskan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Broadu             | 04,01                        | rak.            | سما             | S    | ,(       | A            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            | _      | -   |       | _     | ) Sil  | A 680                              | 30        | asse (                | bens       | 21 (3                                 | stici                               | LY;                    | ides                           | Her                                   | 8                            | BE,                   | l con      |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler Signature: Muskar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                              | amp.            |                 |      | -        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _            | 13     | /IE | ГНО   | D     | I as   | (8)                                | 30        | E Gri                 | rocar      | 08/0                                  | CIP                                 | NO S                   | Pesti                          | lk C                                  | 0 (V                         | E, El                 | 8021       |      |      |          |       |       | - 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAME               | PLING                        | 90              | l se            | L    | M        | IAT          | RIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (            |        |     | ERV   |       | E      | NEV                                | (8015)    | OII 6                 | Hyd        | 108                                   | 081 (                               | CB                     | (NP)                           | (Ack                                  | 928                          | - KDB, ethanol)       | ed by      |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                              | Containers      | Fype Containers |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       | X      | MITBE / BIEX ONLY (EPA 602 / 8021) | sel (8    | - 1                   | enm        | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | EPA 505/ 608 / 8081 (CI Pesticides) | 608 / 8082 PCB's ONLY; | EPA 507 / 8141 (NP Pesticides) | EPA 515 / 8151 (Acidic Cl Herbicides) | EPA 5242 / 624 / 8269 (VOCs) | 12 4                  | etected    |      |      |          |       |       | - 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Field Point Name) LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date               | Time                         | ntai            | 0               |      | 1        |              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1            |        |     | 2     | 10    | /BI    | / 181                              | s Die     | Fotal Petrole         | etro       | 92.2                                  | 9750                                | 8/8                    | 1 / 1.0                        | 15/                                   | 242                          | Additives<br>DCA, 1.2 | e is d     |      |      |          |       |       | - 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dille              | 1                            | ೦               | N De            |      | Water    | Air          | had                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hhe          | ICE    | HCL | HNO,  | Other | MTBE / | TEBE                               | TPH as Di | otst 3                | Fotal Pets | PA S                                  | PA S                                | PA 6                   | PA S                           | PA 5                                  | PAS                          | Finel A               | - 5        |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                              | *               | 1.              |      | > 0      | 2 4          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9            | -      | -   | -     | 0     | N      | Z                                  | 1-        | F                     | F          | lid .                                 | M                                   | M                      | M                              | ×                                     | 140                          | 2 -                   | =          | _    |      | Н        |       | _     | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-1508             |                              |                 | Am.             | > 1  | <u>}</u> | _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 7      | X   | _     | Ш     | *      |                                    | 1         |                       |            |                                       |                                     |                        |                                |                                       |                              | _                     | _          | -    | _    | $\sqcup$ |       | _     | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MN-2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-15-08            |                              | 1               | 1               | 4    | 1        | _            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 4      | 4   | _     |       | 1      |                                    | 1         |                       |            |                                       |                                     | _                      |                                |                                       |                              | _                     | _          | -    | -    | $\Box$   |       | -     | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-16-08            | 8:45                         | 1               | Ц               | 4    | $\perp$  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1      | 1   |       | Ш     | 1      |                                    | Ц         |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            | _    |      | Н        |       | _     | 4      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-3C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-16-08            |                              |                 | Ц               | Ш    |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | L      | П   |       |       |        |                                    | Ц         |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      | Ц        |       | _     | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 316.08             | 8:15                         |                 | П               |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | L      | 1   |       |       |        |                                    |           |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       | 1      | Constitution of the Consti |
| MU-SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-16-08            | 9:50                         |                 |                 |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | 1   |       |       | L      |                                    | 1         |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MN-5B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-16-08            | 9:40                         |                 |                 | 1    |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       |        |                                    |           |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-5C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-15-0             | 12:50                        | 11              |                 |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       |        |                                    |           |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 345.08             | 4:05                         |                 |                 |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       | 1      |                                    |           |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-16-08            | 10:00                        |                 |                 |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Ш      |     |       |       |        |                                    |           |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MU-7C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 346-08             | 10:10                        |                 | П               |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       |        |                                    |           | 1                     |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MD-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-15-08            | 2:30                         | П               | П               |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | П      | T   |       |       |        |                                    |           |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      | 1    |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| WN-8C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-15-08            | 2:00                         | П               | П               | T    |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        | T   |       |       |        |                                    |           |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31508              | 11:50                        | П               | П               |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | П      | 1   |       |       | T      |                                    | I         |                       |            |                                       |                                     |                        |                                |                                       |                              |                       |            |      |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-9C/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3-15-08            | 11:30                        | 1               | X               | 9    |          | T            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1      | 1   |       |       | 1/2    | П                                  | H         |                       |            | П                                     | IC                                  | 2/10                   | 1                              | \$                                    | X                            |                       |            |      |      |          |       |       |        | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Relinquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date:              | Time ).                      | Ree             | efred           | D)   | <u></u>  |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |        | ラ   |       |       |        |                                    |           |                       |            |                                       | GC                                  | OOD                    | CON                            | DITTO                                 | ON_                          | T                     | _          | 1    | APPR | OPR      | IATE  | _     | /      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                | 100                          | $\leq$          | _               | _    |          |              | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            | $\leq$ | _   | _     |       |        | /                                  |           |                       |            |                                       | DE                                  | CHL                    | ORII                           | NATE                                  | DIN                          | LAI                   | 3          | (    | PRES | ERVI     | ERS_  | TTATE |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished By:    Compared By:   Compared By:   Received By:   Compared By:   C |                    |                              |                 |                 |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |        |     |       |       |        |                                    |           |                       |            |                                       | PR                                  | ESE                    | RVA                            | TION                                  | 4                            | AS                    | 0.8        | ₽G   | META | ALS      | OTH   | ER    |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| McCAMP                                                                   | BELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ANA             | LY         | TIC             | AI    | . IN  | C.     |          |      |     |       | T                  |                                   |                                     |                                           | C                                    | H                                     | AI                                 | V                                              | OF                             | C                                     | IIS                          | T                                     | OI          | OV   | R  | EC | OF | 2D  | 201                 | -        |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-----------------|-------|-------|--------|----------|------|-----|-------|--------------------|-----------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|------------------------------------|------------------------------------------------|--------------------------------|---------------------------------------|------------------------------|---------------------------------------|-------------|------|----|----|----|-----|---------------------|----------|
|                                                                          | 110 2ªd A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VENUE SO        | OUTH       | L, #D7          |       | ,     |        |          |      |     |       | 1                  | UF                                | NS                                  | AR                                        |                                      |                                       |                                    |                                                |                                |                                       |                              | *                                     |             | ]    | 1. |    | 01 |     |                     |          |
| Website:                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO, CA 94<br>Em |            | naina           | meca  | mpbe  | II.co  | m        |      |     |       | 1                  |                                   |                                     |                                           |                                      | _                                     |                                    |                                                |                                |                                       | RU                           | SH                                    |             | 24 H | R  | 48 | HR | 7   | HR 5 DA             | Y        |
| Telephone: (925) 798-                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 |       | (925  |        |          |      |     |       | E                  | DF I                              | Req                                 | uire                                      |                                      | -                                     | -                                  |                                                |                                |                                       |                              |                                       |             |      |    | _  |    |     |                     |          |
| Report To: Bob Clark-Riddel<br>Company: Pangea Environme                 | THE RESERVE AND ADDRESS OF THE PARTY OF THE |                 |            | o: Pa           | ngea  | Env   | iron   | mei      | ntal |     |       | +                  | _                                 |                                     |                                           |                                      | A                                     | nal                                | sis                                            | Rec                            | ues                                   | t                            | _                                     | _           |      |    | -  | Ot | her | Comments            | 1        |
| 1710 Franklin Str                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | c,         |                 |       |       |        | -        | _    |     |       | 8                  |                                   |                                     | (T.S                                      |                                      |                                       |                                    | ners                                           |                                |                                       |                              | , g                                   |             |      |    |    |    |     | Filter              |          |
| Oakland, CA 94                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | E-Ma       | ail: bo         | er@i  | nange | eaen   | v.co     | m    |     |       | + 8015)            |                                   | 2                                   | E/B&F)                                    |                                      |                                       |                                    | Jong C                                         |                                |                                       | 100                          | 4                                     | 98          |      |    |    |    |     | Samples fo          | r        |
| Tele; 510-836-3702                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E               | iov.       | 510.9           | 26.3  | 700   |        |          |      | _   | 1     | 1700               | ਜ਼                                | 9                                   | 552(                                      | 0                                    | 32                                    |                                    | )/su                                           |                                | 0                                     |                              | 80B                                   | y 8260B     |      |    |    |    |     | Metals<br>analysis: |          |
| Project #: [145.00]                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F               | roje       | et Nai          | me:   | ECIN  | er-    | 5.1      | Z    | 500 | COOL  | 187                | / 882                             | 50                                  | 1664                                      | (418.                                | 300                                   | 3                                  | rock                                           |                                | icide                                 |                              | y 820                                 | confirm by  |      |    |    |    |     | Yes / No            |          |
| Project #: [145.00] Project Location: 5175 & Sampler Signature: Muskan E | eorgina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14, Oa          | Kla        | md,             | U     | 7     |        | -,-      |      |     |       | as Gas (602 / 8021 | 1 602                             | 65                                  | ase ()                                    | Sued                                 | 21 (H                                 | sticid                             | Y; A                                           | ides)                          | Herb                                  | 8                            | nod) t                                | confi       |      |    |    |    |     |                     |          |
| Sampler Signature: Muskan E                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | mpl        |                 | 4     |       |        | _        | 3.0  | ЕТН | OD    |                    | (EP)                              | 3                                   | Gre                                       | ocar!                                | 08/6                                  | CIPe                               | NO                                             | estic                          | ie Cl                                 | 000                          | ethn                                  | 8021        |      |    |    |    |     |                     |          |
|                                                                          | SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LING            | 90         | ners            |       | MAT   | RIX    |          |      |     | VED   | & TPH              | NLY                               | (510                                | S EO                                      | Hydr                                 | 8010                                  | 981 (                              | CB's                                           | NP.                            | (Acid                                 | 826                          | EDB                                   | d by        |      |    |    |    |     |                     |          |
| SAMPLE ID                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | iner       | ıtaiı           |       |       |        |          |      |     |       |                    | EXO                               | (8) per                             | lenm                                      | eum                                  | 109                                   | 8/8                                | 082 I                                          | 3141                           | 1518                                  | 624                          | 12-                                   | detected by |      |    |    |    |     |                     |          |
| (Field Point Name) LOCATION                                              | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time            | Containers | S               | La la |       | 36     | 10       |      | 1   | 5 4   | /BI                | /BI                               | s Die                               | Petro                                     | Petro                                | 02.2                                  | 92/6                               | 8/89                                           | 11.0                           | 15/                                   | 24.2                         | CA,                                   | e is d      |      |    |    |    |     |                     |          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | ပိ         | Type Containers | Water | Soil  | Sludge | Other    | 3    | HCL | Other | MTBE/BTEX          | MTBE / BTEX ONLY (EPA 602 / 8021) | TPH as Diesel (8015) 114 4 5 11 Ch. | Total Petroleum Oil & Grense (1664 / 5520 | Total Petroleum Hydrocarbons (418.1) | EPA 502.2 / 601 / 8010 / 8021 (HVOCs) | EPA 505/608 / 8081 (CI Pesticides) | EPA 668 / 8082 PCB's ONLY; Arodors / Congeners | EPA 507 / 8141 (NP Pesticides) | EPA 515 / 8151 (Acidic Cl Herbicides) | EPA 5242 / 624 / 8260 (VOCs) | 12 - DCA, 12 - EDB, ethanol) by 8260B | IfMitbe     |      |    |    |    |     |                     |          |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               | 7          |                 |       | 02    | 02     | -        | -    | -   |       | -                  | ~                                 | 7                                   | -                                         | -                                    | 200                                   | 2                                  | 161                                            | 100                            | -                                     | pa   pa                      | -                                     | -           | -    | -  | +  | -  | +   |                     | _        |
| MD-10A 3                                                                 | 345-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12:20           | ٤          | Dmp.            | X     |       | -      | -        | X    | ٨   | +     | X                  |                                   | $\wedge$                            | -                                         | -                                    | _                                     | -                                  | -                                              | -                              | -                                     | -                            | +                                     | -           | -    | -  | +  | +  | -   |                     | 4        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     | -     | -      | -        | -    | -   | -     | -                  | $\vdash$                          | -                                   |                                           | -                                    | -                                     | -                                  | -                                              |                                | -                                     | -                            | -                                     | -           | -    | -  | +  |    | -   | 93%                 | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | -          |                 |       | -     |        | +        | -    | -   | -     | -                  | -                                 | -                                   |                                           | -                                    | -                                     | -                                  | -                                              | -                              | +                                     |                              | +                                     |             | -    | -  | +  | -  | -   |                     | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     | -     | -      | +        | +    | +   | _     | -                  |                                   | -                                   |                                           | -                                    | -                                     | -                                  | -                                              | -                              | +                                     | -                            | +                                     | -           | -    | -  | +  |    | +   |                     | $\dashv$ |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | -          |                 | -     | -     |        | +        | +    | +   | -     | _                  | -                                 | -                                   |                                           | -                                    | -                                     | -                                  | -                                              | -                              | -                                     | -                            | +                                     | -           | -    | -  | +  | -  | +-  |                     | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     | -     | -      | $\dashv$ | +    | +   | -     | -                  | -                                 | -                                   |                                           | -                                    | -                                     | -                                  | -                                              | -                              |                                       | -                            | +                                     | -           |      | -  | +  |    | +   |                     | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     | -     |        | +        | +    | +   | +     | -                  |                                   |                                     | -                                         | -                                    | -                                     | -                                  | -                                              | -                              |                                       | -                            | +                                     | -           |      | +  | +  |    | +-  |                     | $\dashv$ |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | -          |                 | -     | -     | -      | +        | +    | +   | +     | -                  |                                   | -                                   |                                           | -                                    | -                                     | -                                  | -                                              | -                              | -                                     | -                            | +                                     | -           | -    | -  | +  |    | +-  |                     | $\dashv$ |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | $\vdash$   |                 | -     | -     |        | 4        | +    | +   | -     | -                  |                                   |                                     | -                                         | -                                    | -                                     | -                                  |                                                | -                              | -                                     | -                            | +                                     | -           | -    | -  | +  | -  | +   |                     | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     |       | -      | 4        | -    | +   | -     | <u> </u>           |                                   | -                                   | -                                         | +                                    | -                                     | -                                  | _                                              | -                              | +                                     | +                            | +                                     | -           | -    | -  | +  | -  | +-  |                     | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     | -     | -      | -        | +    | +   | +     | -                  |                                   | -                                   | _                                         | -                                    | -                                     | -                                  | -                                              | -                              | -                                     | -                            | +                                     |             |      | -  | +  | -  | +   |                     | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     |       | -      | -        | +    | _   | _     | -                  |                                   | -                                   | _                                         | -                                    | -                                     | -                                  |                                                | -                              | -                                     | -                            | -                                     |             | -    |    | +  | -  | -   |                     | -        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 | -     | -     |        | 4        | _    | -   | _     | -                  |                                   | _                                   |                                           | -                                    | -                                     | -                                  | _                                              | -                              | -                                     | -                            | -                                     |             | -    | -  | +  | -  | -   |                     | 4        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                 |       |       |        | _        | _    | _   | _     | _                  |                                   | _                                   | _                                         | _                                    | _                                     | _                                  | _                                              | _                              | 4                                     | 4                            | +                                     |             | _    | _  | 4  | _  | -   |                     | _        |
|                                                                          | , /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |            |                 |       | -     |        |          | _    | 1   |       |                    |                                   |                                     |                                           |                                      |                                       |                                    |                                                |                                |                                       |                              |                                       |             |      |    |    |    |     |                     |          |
| Relinquisher By                                                          | Day:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:           | Rece       | cheet B         | (1    | /     |        |          |      |     |       |                    |                                   |                                     |                                           |                                      |                                       |                                    |                                                |                                |                                       |                              |                                       |             |      |    |    |    |     |                     |          |
| 1/2 3/14                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150             |            | _               | 7     |       |        |          |      |     |       |                    |                                   |                                     |                                           |                                      |                                       |                                    |                                                |                                |                                       |                              |                                       |             |      |    |    |    |     |                     |          |
| Relinquished By:                                                         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time;           | D/         | eiyed By        |       |       | - 12   |          |      |     |       | 1                  |                                   |                                     |                                           |                                      |                                       |                                    |                                                |                                |                                       |                              |                                       |             |      |    |    |    |     |                     | - 1      |

## McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

# CHAIN-OF-CUSTODY RECORD

ClientID: PEO

WorkOrder: 0803403

Page 1 of 1

| (723) 232    | 2 7202                                   |                                                                           | <b>☑</b> EDF      |       | Excel |          | Fax                                     |                      | <b>✓</b> Email       |       | Hard    | Сору   | Thir                       | dParty |                         |          |
|--------------|------------------------------------------|---------------------------------------------------------------------------|-------------------|-------|-------|----------|-----------------------------------------|----------------------|----------------------|-------|---------|--------|----------------------------|--------|-------------------------|----------|
| -            | onmental Svcs., Inc.<br>Street, Ste. 200 | Email: bcr@pangea<br>TEL: (510) 836-370<br>ProjectNo: #1145.00; Fe<br>PO: | 0 FAX: (510) 8    |       |       | Pa<br>17 | b Clark<br>ngea E<br>10 Frar<br>akland, | nvironr<br>nklin Stı | nental S<br>eet, Ste |       | nc.     | Date   | uested<br>e Rece<br>e Prin | ived:  | 5 o<br>03/17/<br>03/17/ |          |
|              |                                          |                                                                           |                   |       |       |          |                                         | Rea                  | uested               | Tests | (See le | gend b | elow)                      |        |                         |          |
| Sample ID    | ClientSampID                             | Matrix                                                                    | Collection Date   | Hold  | 1     | 2        | 3                                       | 4                    | 5                    | 6     | 7       | 8      | 9                          | 10     | 11                      | 12       |
| 0803403-001  | MW-1                                     | Water                                                                     | 3/15/2008 3:35:00 |       | Α     | Α        | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-002  | MW-2C                                    | Water                                                                     | 3/15/2008 3:00:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-003  | MW-3A                                    | Water                                                                     | 3/16/2008 8:45:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-004  | MW-3C                                    | Water                                                                     | 3/16/2008         |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-005  | MW-4A                                    | Water                                                                     | 3/16/2008 8:15:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-006  | MW-5A                                    | Water                                                                     | 3/16/2008 9:50:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-007  | MW-5B                                    | Water                                                                     | 3/16/2008 9:40:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-008  | MW-5C                                    | Water                                                                     | 3/15/2008         |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-009  | MW-6A                                    | Water                                                                     | 3/15/2008 4:05:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-010  | MW-7B                                    | Water                                                                     | 3/16/2008         |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-011  | MW-7C                                    | Water                                                                     | 3/16/2008         |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-012  | MW-8A                                    | Water                                                                     | 3/15/2008 2:30:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-013  | MW-8C                                    | Water                                                                     | 3/15/2008 2:00:00 |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-014  | MW-9A                                    | Water                                                                     | 3/15/2008         |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| 0803403-015  | MW-9C                                    | Water                                                                     | 3/15/2008         |       | Α     |          | В                                       |                      |                      |       |         |        |                            |        |                         |          |
| Test Legend: |                                          |                                                                           |                   |       |       |          |                                         |                      |                      |       |         |        |                            |        |                         |          |
| 1 G-MBTE     | EX_W 2                                   | PREDF REPORT                                                              | 3 TP              | H(D)W | SG_W  |          | 4                                       | ı                    |                      |       |         |        | 5                          |        |                         |          |
| 6            | 7                                        |                                                                           | 8                 |       |       |          | g                                       |                      |                      |       |         |        | 10                         |        |                         |          |
| 11           | 12                                       |                                                                           |                   |       |       |          |                                         |                      |                      |       |         |        |                            |        |                         |          |
|              |                                          |                                                                           |                   |       |       |          |                                         |                      |                      |       |         | Prep   | ared by                    | : Ana  | Venegas                 | <u>s</u> |

## **Comments:**

## McCampbell Analytical, Inc.



1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

# CHAIN-OF-CUSTODY RECORD

Page 1 of 1

5 days

03/17/2008

Requested TAT:

Date Printed:

Date Received: 03/17/2008

WorkOrder: 0803403 ClientID: PEO

✓ EDF Excel Fax ✓ Email HardCopy ThirdParty

Bill to: Report to: Bob Clark-Riddell Email: Bob Clark-Riddell

bcr@pangeaenv.com

Pangea Environmental Svcs., Inc. TEL: (510) 836-3700 FAX: (510) 836-3709 Pangea Environmental Svcs., Inc. ProjectNo: #1145.00; Feiner-5175 Broadway Oakl 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200

PO: Oakland, CA 94612 Oakland, CA 94612

|             |              |        |                      | Requested Tests (See legend below) |   |   |   |   |   |   |   |   |    |    |    |
|-------------|--------------|--------|----------------------|------------------------------------|---|---|---|---|---|---|---|---|----|----|----|
| Sample ID   | ClientSampID | Matrix | Collection Date Hold | 1                                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|             |              |        |                      |                                    |   |   |   |   |   |   |   |   |    |    |    |
| 0803403-016 | MW-10A       | Water  | 3/15/2008            | Α                                  |   | В |   |   |   |   |   |   |    |    |    |

### Test Legend:

| 1 ( | G-MBTEX_W | 2  | PREDF REPORT | 3 | TPH(D)WSG_W | [ | 4 | [ | 5  |
|-----|-----------|----|--------------|---|-------------|---|---|---|----|
| 6   |           | 7  |              | 8 |             |   | 9 |   | 10 |
| 11  |           | 12 |              |   |             |   |   |   |    |

## **Comments:**

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

## **Sample Receipt Checklist**

| Client Name:      | Pangea Environn         | nental Svcs., Inc. |         |          | Date a       | and Time Received:  | 3/17/2008        | 4:31:07 PM  |
|-------------------|-------------------------|--------------------|---------|----------|--------------|---------------------|------------------|-------------|
| Project Name:     | #1145.00; Feiner        | -5175 Broadway (   | Daklaı  | nd, CA   | Check        | klist completed and | reviewed by:     | Ana Venegas |
| WorkOrder N°:     | 0803403                 | Matrix Water       |         |          | Carrie       | er: Rob Pringle (N  | (1Al Courier)    |             |
|                   |                         | Chain              | of Cu   | stody (C | COC) Informa | ation               |                  |             |
| Chain of custody  | present?                |                    | Yes     | <b>V</b> | No 🗆         |                     |                  |             |
| Chain of custody  | signed when relinqui    | shed and received? | Yes     | V        | No 🗆         |                     |                  |             |
| Chain of custody  | agrees with sample I    | abels?             | Yes     | <b>✓</b> | No 🗌         |                     |                  |             |
| Sample IDs noted  | by Client on COC?       |                    | Yes     | V        | No 🗆         |                     |                  |             |
| Date and Time of  | collection noted by Cl  | ent on COC?        | Yes     | <b>✓</b> | No $\square$ |                     |                  |             |
| Sampler's name i  | noted on COC?           |                    | Yes     | <b>~</b> | No 🗆         |                     |                  |             |
|                   |                         | <u>S</u> :         | ample   | Receipt  | Information  | <u>1</u>            |                  |             |
| Custody seals in  | tact on shipping conta  | iner/cooler?       | Yes     |          | No 🗆         |                     | NA 🗹             |             |
| Shipping contain  | er/cooler in good cond  | lition?            | Yes     | V        | No 🗆         |                     |                  |             |
| Samples in prope  | er containers/bottles?  |                    | Yes     | <b>✓</b> | No 🗆         |                     |                  |             |
| Sample containe   | ers intact?             |                    | Yes     | <b>✓</b> | No 🗆         |                     |                  |             |
| Sufficient sample | e volume for indicated  | test?              | Yes     | <b>✓</b> | No 🗌         |                     |                  |             |
|                   |                         | Sample Prese       | rvation | n and Ho | old Time (HT | ) Information       |                  |             |
| All samples recei | ived within holding tim | e?                 | Yes     | <b>✓</b> | No 🗌         |                     |                  |             |
| Container/Temp l  | Blank temperature       |                    | Coole   | er Temp: | 2.8°C        |                     | NA 🗆             |             |
| Water - VOA via   | ls have zero headspa    | ce / no bubbles?   | Yes     | <b>✓</b> | No $\square$ | No VOA vials subm   | nitted $\square$ |             |
| Sample labels ch  | necked for correct pre  | servation?         | Yes     | <b>✓</b> | No 🗌         |                     |                  |             |
| TTLC Metal - pH   | acceptable upon rece    | pt (pH<2)?         | Yes     |          | No 🗆         |                     | NA 🔽             |             |
|                   |                         |                    |         |          |              |                     |                  |             |
|                   |                         |                    |         |          |              |                     |                  |             |
|                   |                         |                    |         |          |              |                     |                  |             |
| =====             | ======                  | ======             |         |          | ====         | =====               | ====             |             |
|                   |                         |                    |         |          |              |                     |                  |             |
| Client contacted: |                         | Date contact       | ed:     |          |              | Contacted           | l by:            |             |
| Comments:         |                         |                    |         |          |              |                     |                  |             |

"When Ouality Counts'

Client Project ID: #1145.001; Feiner-5175 Pangea Environmental Svcs., Inc. Date Sampled: 03/15/08-03/16/08 Broadway Oakland, CA Date Received: 03/17/08 1710 Franklin Street, Ste. 200 Client Contact: Bob Clark-Riddell Date Extracted: 03/19/08-03/21/08 Oakland, CA 94612 Client P.O.: Date Analyzed 03/19/08-03/21/08

|            | Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*  Extraction method SW5030B Analytical methods SW8021B/8015Cm Work Order: 0803403 |        |            |                   |               |         |              |            |        |       |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-------------------|---------------|---------|--------------|------------|--------|-------|--|--|--|--|--|
| Extraction | on method SW5030B                                                                                                                                              |        | Analy      | ytical methods SV | V8021B/8015Cm |         |              | Work Order | : 0803 | 403   |  |  |  |  |  |
| Lab ID     | Client ID                                                                                                                                                      | Matrix | TPH(g)     | MTBE              | Benzene       | Toluene | Ethylbenzene | Xylenes    | DF     | % SS  |  |  |  |  |  |
| 001A       | MW-1                                                                                                                                                           | W      | 680,a,i    | ND<10             | 24            | 1.1     | 1.9          | 2.9        | 2      | 97    |  |  |  |  |  |
| 002A       | MW-2C                                                                                                                                                          | W      | 250,a,i    | ND                | 24            | 2.2     | 5.2          | 4.5        | 1      | 96    |  |  |  |  |  |
| 003A       | MW-3A                                                                                                                                                          | W      | 26,000,a,i | ND<250            | 2400          | 110     | 700          | 1200       | 50     | 101   |  |  |  |  |  |
| 004A       | MW-3C                                                                                                                                                          | W      | 36,000,a,i | ND<500            | 1500          | 2400    | 570          | 3700       | 100    | 96    |  |  |  |  |  |
| 005A       | MW-4A                                                                                                                                                          | W      | 17,000,a,i | ND<500            | 1300          | ND<50   | 120          | 380        | 100    | 95    |  |  |  |  |  |
| 006A       | MW-5A                                                                                                                                                          | W      | 180,m,i    | ND                | 0.91          | ND      | ND           | ND         | 1      | 101   |  |  |  |  |  |
| 007A       | MW-5B                                                                                                                                                          | W      | 61,a,i     | ND                | 2.6           | 1.1     | 1.1          | 3.0        | 1      | 93    |  |  |  |  |  |
| 008A       | MW-5C                                                                                                                                                          | W      | ND,i       | ND                | ND            | ND      | ND           | ND         | 1      | 90    |  |  |  |  |  |
| 009A       | MW-6A                                                                                                                                                          | W      | ND,i       | ND                | ND            | ND      | ND           | ND         | 1      | 90    |  |  |  |  |  |
| 010A       | MW-7B                                                                                                                                                          | W      | 14,000,a,i | ND<250            | 730           | 820     | 110          | 1200       | 50     | 94    |  |  |  |  |  |
| 011A       | MW-7C                                                                                                                                                          | W      | 13,000,a,i | ND<100            | 170           | 58      | 170          | 1300       | 20     | 96    |  |  |  |  |  |
| 012A       | MW-8A                                                                                                                                                          | W      | 7200,a,i   | ND<100            | 170           | 28      | 270          | 110        | 20     | 100   |  |  |  |  |  |
| 013A       | MW-8C                                                                                                                                                          | W      | 110,a,i    | ND                | 6.0           | 1.7     | 2.4          | 2.4        | 1      | 118   |  |  |  |  |  |
| 014A       | MW-9A                                                                                                                                                          | W      | ND,i       | ND                | 0.85          | ND      | ND           | ND         | 1      | 90    |  |  |  |  |  |
| 015A       | MW-9C                                                                                                                                                          | W      | ND,i       | ND                | 0.55          | ND      | ND           | ND         | 1      | 105   |  |  |  |  |  |
| 016A       | MW-10A                                                                                                                                                         | W      | ND,i       | ND                | ND            | ND      | ND           | ND         | 1      | 92    |  |  |  |  |  |
| Rep        | oorting Limit for DF =1;                                                                                                                                       | W      | 50         | 5.0               | 0.5           | 0.5     | 0.5          | 0.5        | 1      | μg/L  |  |  |  |  |  |
| ND 1       | means not detected at or ove the reporting limit                                                                                                               | S      | NA         | NA                | NA            | NA      | NA           | NA         | 1      | mg/Kg |  |  |  |  |  |

<sup>\*</sup> water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.



<sup>#</sup> cluttered chromatogram; sample peak coelutes with surrogate peak.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

| Pangea Environmental Svcs., Inc. | Client Project ID: #1145.001; Feiner-<br>5175 Broadway Oakland, CA | Date Sampled: 03/15/08-03/16/08 |
|----------------------------------|--------------------------------------------------------------------|---------------------------------|
| 1710 Franklin Street, Ste. 200   | 5175 Bloadway Oaklaild, CA                                         | Date Received: 03/17/08         |
| Oakland, CA 94612                | Client Contact: Bob Clark-Riddell                                  | Date Extracted: 03/17/08        |
|                                  | Client P.O.:                                                       | Date Analyzed 03/18/08-03/21/08 |

## Diesel Range (C10-C23) Extractable Hydrocarbons with Silica Gel Clean-Up\*

| Extraction method SW35 | 10C/3630C | Analytical | methods SW8015C | Work Order: 0 | 803403 |
|------------------------|-----------|------------|-----------------|---------------|--------|
| Lab ID                 | Client ID | Matrix     | TPH(d)          | DF            | % SS   |
| 0803403-001B           | MW-1      | W          | 340,d,i         | 1             | 100    |
| 0803403-002B           | MW-2C     | W          | 120,d,b,i       | 1             | 109    |
| 0803403-003B           | MW-3A     | W          | 10,000,d,i      | 1             | 111    |
| 0803403-004B           | MW-3C     | W          | 21,000,d,i      | 1             | 119    |
| 0803403-005B           | MW-4A     | W          | 38,000,d,i      | 1             | 84     |
| 0803403-006B           | MW-5A     | W          | ND,i            | 1             | 105    |
| 0803403-007B           | MW-5B     | W          | ND,i            | 1             | 106    |
| 0803403-008B           | MW-5C     | W          | ND,i            | 1             | 119    |
| 0803403-009B           | MW-6A     | W          | 150,n,b,i       | 1             | 97     |
| 0803403-010B           | MW-7B     | W          | 7900,d,i        | 1             | 115    |
| 0803403-011B           | MW-7C     | W          | 7000,d,i        | 1             | 111    |
| 0803403-012B           | MW-8A     | W          | 7500,d,i        | 1             | 95     |
| 0803403-013B           | MW-8C     | W          | ND,i            | 1             | 103    |
| 0803403-014B           | MW-9A     | W          | ND,i            | 1             | 97     |
| 0803403-015B           | MW-9C     | W          | ND,i            | 1             | 118    |
| 0803403-016B           | MW-10A    | w          | ND,i            | 1             | 103    |

| Reporting Limit for DF =1;                            | W | 50 | μg/L |
|-------------------------------------------------------|---|----|------|
| ND means not detected at or above the reporting limit | S | NA | NA   |

<sup>\*</sup> water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

<sup>+</sup>The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit; p) see attached narrative.



<sup>#</sup> cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0803403

| EPA Method SW8021B/8015Cm Extraction SW5030B BatchID: 34411 Spiked Sa |        |               |        |        |        |        | iked Sam | ole ID:  | 0803401-00 | 7A                      |          |     |
|-----------------------------------------------------------------------|--------|---------------|--------|--------|--------|--------|----------|----------|------------|-------------------------|----------|-----|
| Analyte                                                               | Sample | ole Spiked MS |        |        | MS-MSD | LCS    | LCSD     | LCS-LCSD | Acce       | Acceptance Criteria (%) |          |     |
| Analyto                                                               | μg/L   | μg/L          | % Rec. | % Rec. | % RPD  | % Rec. | % Rec.   | % RPD    | MS / MSD   | RPD                     | LCS/LCSD | RPD |
| TPH(btex <sup>f</sup> )                                               | ND     | 60            | 101    | 103    | 2.41   | 99.1   | 96.9     | 2.23     | 70 - 130   | 20                      | 70 - 130 | 20  |
| MTBE                                                                  | ND     | 10            | 100    | 99.3   | 0.813  | 95.3   | 93.2     | 2.24     | 70 - 130   | 20                      | 70 - 130 | 20  |
| Benzene                                                               | ND     | 10            | 101    | 95.8   | 4.91   | 91     | 90.1     | 0.978    | 70 - 130   | 20                      | 70 - 130 | 20  |
| Toluene                                                               | ND     | 10            | 112    | 106    | 5.69   | 102    | 100      | 2.18     | 70 - 130   | 20                      | 70 - 130 | 20  |
| Ethylbenzene                                                          | ND     | 10            | 99.1   | 87.9   | 12.0   | 99.1   | 97.4     | 1.69     | 70 - 130   | 20                      | 70 - 130 | 20  |
| Xylenes                                                               | ND     | 30            | 121    | 112    | 7.63   | 109    | 106      | 3.59     | 70 - 130   | 20                      | 70 - 130 | 20  |
| %SS:                                                                  | 92     | 10            | 96     | 93     | 2.25   | 95     | 96       | 1.85     | 70 - 130   | 20                      | 70 - 130 | 20  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

## **BATCH 34411 SUMMARY**

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|------------------|----------------|------------------|--------------|-------------------|----------------|------------------|
| 0803403-001A | 03/15/08 3:35 PM | 03/21/08       | 03/21/08 5:48 AM | 0803403-002A | 03/15/08 3:00 PM  | 03/21/08       | 03/21/08 5:15 AM |
| 0803403-003A | 03/16/08 8:45 AM | 03/21/08       | 03/21/08 3:27 AM | 0803403-004A | 03/16/08 10:45 AM | 03/21/08       | 03/21/08 3:57 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = <math>100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.



## QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0803403

| EPA Method SW8021B/8015Cm Extraction SW5030B BatchID: 34418 Spiked Sam |        |        |        |        |        |        | iked Samp | ole ID:  | 0803403-01 | 6A      |              |     |
|------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|-----------|----------|------------|---------|--------------|-----|
| Analyte                                                                | Sample | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD      | LCS-LCSD | Acce       | eptance | Criteria (%) |     |
| Analyto                                                                | μg/L   | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec.    | % RPD    | MS / MSD   | RPD     | LCS/LCSD     | RPD |
| TPH(btex)                                                              | ND     | 60     | 112    | 99.3   | 11.9   | 111    | 105       | 5.10     | 70 - 130   | 20      | 70 - 130     | 20  |
| MTBE                                                                   | ND     | 10     | 104    | 99.8   | 4.36   | 95.9   | 103       | 6.75     | 70 - 130   | 20      | 70 - 130     | 20  |
| Benzene                                                                | ND     | 10     | 91.8   | 95.8   | 4.23   | 98.6   | 106       | 7.01     | 70 - 130   | 20      | 70 - 130     | 20  |
| Toluene                                                                | ND     | 10     | 103    | 105    | 1.91   | 109    | 116       | 5.81     | 70 - 130   | 20      | 70 - 130     | 20  |
| Ethylbenzene                                                           | ND     | 10     | 97.4   | 103    | 5.81   | 107    | 110       | 2.94     | 70 - 130   | 20      | 70 - 130     | 20  |
| Xylenes                                                                | ND     | 30     | 104    | 110    | 6.03   | 116    | 118       | 1.74     | 70 - 130   | 20      | 70 - 130     | 20  |
| %SS:                                                                   | 92     | 10     | 98     | 94     | 3.83   | 96     | 101       | 5.45     | 70 - 130   | 20      | 70 - 130     | 20  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

## **BATCH 34418 SUMMARY**

| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|-------------------|----------------|------------------|--------------|-------------------|----------------|------------------|
| 0803403-005A | 03/16/08 8:15 AM  | 03/21/08       | 03/21/08 8:27 AM | 0803403-006A | 03/16/08 9:50 AM  | 03/20/08       | 03/20/08 9:16 AM |
| 0803403-007A | 03/16/08 9:40 AM  | 03/21/08       | 03/21/08 8:00 AM | 0803403-008A | 03/15/08 12:50 PM | 03/21/08       | 03/21/08 7:27 AM |
| 0803403-009A | 03/15/08 4:05 PM  | 03/21/08       | 03/21/08 6:54 AM | 0803403-010A | 03/16/08 10:00 AM | 03/21/08       | 03/21/08 9:57 AM |
| 0803403-011A | 03/16/08 10:10 AM | 03/20/08       | 03/20/08 4:31 PM | 0803403-012A | 03/15/08 2:30 PM  | 03/20/08       | 03/20/08 8:35 AM |
| 0803403-013A | 03/15/08 2:00 PM  | 03/20/08       | 03/20/08 4:26 PM | 0803403-014A | 03/15/08 11:50 AM | 03/21/08       | 03/21/08 6:21 AM |
| 0803403-015A | 03/15/08 11:30 AM | 03/20/08       | 03/20/08 4:56 PM | 0803403-016A | 03/15/08 12:20 PM | 03/19/08       | 03/19/08 2:28 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = <math>100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

# cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.



## QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0803403

| EPA Method SW8015C | od SW8015C Extraction SW3510C/3630C BatchID: 34367 Spiked Sample ID: N |        |        |        |        |        | N/A    |          |                         |     |          |     |
|--------------------|------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|----------|-------------------------|-----|----------|-----|
| Analyte            | Sample                                                                 | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acceptance Criteria (%) |     |          |     |
| raidiyto           | μg/L                                                                   | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD                | RPD | LCS/LCSD | RPD |
| TPH(d)             | N/A                                                                    | 1000   | N/A    | N/A    | N/A    | 127    | 123    | 3.37     | N/A                     | N/A | 70 - 130 | 30  |
| %SS:               | N/A                                                                    | 2500   | N/A    | N/A    | N/A    | 108    | 105    | 2.11     | N/A                     | N/A | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

## BATCH 34367 SUMMARY

| Lab ID       | Date Sampled     | Date Extracted | Date Analyzed    | Lab ID       | Date Sampled     | Date Extracted | Date Analyzed     |
|--------------|------------------|----------------|------------------|--------------|------------------|----------------|-------------------|
| 0803403-001B | 03/15/08 3:35 PM | f 03/17/08     | 03/20/08 7:47 PM | 0803403-002B | 03/15/08 3:00 PM | I 03/17/08     | 03/18/08 11:42 PM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = <math>100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.



## QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder 0803403

| EPA Method SW8015C | Extraction SW3510C/3630C BatchID: 34419 Spiked Sample ID: N/A |        |        |        |        |        | N/A    |          |                         |     |          |     |
|--------------------|---------------------------------------------------------------|--------|--------|--------|--------|--------|--------|----------|-------------------------|-----|----------|-----|
| Analyte            | Sample                                                        | Spiked | MS     | MSD    | MS-MSD | LCS    | LCSD   | LCS-LCSD | Acceptance Criteria (%) |     | ١        |     |
| , undiffe          | μg/L                                                          | μg/L   | % Rec. | % Rec. | % RPD  | % Rec. | % Rec. | % RPD    | MS / MSD                | RPD | LCS/LCSD | RPD |
| TPH(d)             | N/A                                                           | 1000   | N/A    | N/A    | N/A    | 99.7   | 103    | 3.14     | N/A                     | N/A | 70 - 130 | 30  |
| %SS:               | N/A                                                           | 2500   | N/A    | N/A    | N/A    | 115    | 118    | 2.91     | N/A                     | N/A | 70 - 130 | 30  |

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

## BATCH 34419 SUMMARY

| Lab ID       | Date Sampled      | Date Extracted | Date Analyzed     | Lab ID       | Date Sampled      | Date Extracted | Date Analyzed    |
|--------------|-------------------|----------------|-------------------|--------------|-------------------|----------------|------------------|
| 0803403-003B | 03/16/08 8:45 AM  | 03/17/08       | 03/19/08 12:48 AM | 0803403-004B | 03/16/08 10:45 AM | 03/17/08       | 03/19/08 1:54 AM |
| 0803403-005B | 03/16/08 8:15 AM  | 03/17/08       | 03/19/08 5:13 AM  | 0803403-006B | 03/16/08 9:50 AM  | 03/17/08       | 03/19/08 6:19 AM |
| 0803403-007B | 03/16/08 9:40 AM  | 03/17/08       | 03/19/08 7:25 AM  | 0803403-008B | 03/15/08 12:50 PM | 03/17/08       | 03/18/08 6:10 PM |
| 0803403-009B | 03/15/08 4:05 PM  | 03/17/08       | 03/21/08 2:43 AM  | 0803403-010B | 03/16/08 10:00 AM | 03/17/08       | 03/18/08 8:23 PM |
| 0803403-011B | 03/16/08 10:10 AM | 03/17/08       | 03/19/08 4:38 PM  | 0803403-012B | 03/15/08 2:30 PM  | 03/17/08       | 03/19/08 5:45 PM |
| 0803403-013B | 03/15/08 2:00 PM  | 03/17/08       | 03/21/08 7:21 AM  | 0803403-014B | 03/15/08 11:50 AM | 03/17/08       | 03/19/08 7:57 PM |
| 0803403-015B | 03/15/08 11:30 AM | 03/17/08       | 03/19/08 5:13 AM  | 0803403-016B | 03/15/08 12:20 PM | 03/17/08       | 03/19/08 8:31 AM |

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 \* (MS-Sample) / (Amount Spiked); RPD = 100 \* (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

