RECEIVED

2:14 pm, Jul 25, 2007

Alameda County
Environmental Health

July 16, 2007

VIA ALAMEDA COUNTY FTP SITE

Ms. Donna Drogos Alameda County Environmental Health 1331 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Groundwater Monitoring Report - First Quarter 2007

Former Exxon Station 5175 Broadway Street Oakland, California ACEH Fuel Leak Case No. RO#0000139

Dear Ms. Drogos:

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc., has prepared this *Groundwater Monitoring Report – First Quarter 2007*. The report describes groundwater monitoring, sampling, and other site activities.

The report will be uploaded to the Alameda County ftp site. As requested, Pangea will not submit a hard copy of this report to the ACEH.

If you have any questions or comments, please call me at (510) 435-8664.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Groundwater Monitoring Report - First Quarter 2007

ce: Rockridge Heights, LLC, C/O Gary Feiner, 34 Schooner Hill, Oakland, California, 94618 RWQCB – SF Bay Region, Cherie McCaulou, 1515 Clay Street, Oakland, California 94612 Vera Stanovich, 1956 Stratton Circle, Walnut Creek, California 94598 SWRCB Geotracker (Electronic copy)

GROUNDWATER MONITORING REPORT - FIRST QUARTER 2007

Former Exxon Station 5175 Broadway Oakland, California

July 16, 2007

Prepared for:

Rockridge Heights, LLC C/O Gary Feiner 34 Schooner Hill Oakland, California 94618.

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies Project Manager No. C 049629

Exp. DEVT DUTE

CIVIL PRINT

C

Bob Clark-Riddell, P.E. Principal Engineer

INTRODUCTION

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. (Pangea) conducted groundwater monitoring and sampling at the subject site (Figure 1). The purpose of the monitoring and sampling is to evaluate dissolved contaminant concentrations, determine the groundwater flow direction, and inspect site wells for separate-phase hydrocarbons (SPH). Current groundwater analytical results and elevation data are shown on Figure 2 and 3. Current and historical data are summarized on Table 1.

SITE BACKGROUND

The site is located at 5175 Broadway, at the southwest corner of Broadway and Coronado Avenue in Oakland, California (Figure 1). The site is situated on top of a ridge extending from the base of the East Bay Berkeley Hills into the East Bay Plain. Highway 24 is approximately 0.6 miles to the north-northwest, and San Francisco Bay and Interstate 80 lie approximately 2.3 miles to the west. The site is relatively flat lying, with a slight slope to the south-southwest, and lies at an elevation of approximately 160 feet above mean sea level. The topography slopes gently away from the site in all directions except northeast. The site has not been operated as a gas station since at least 1979, and is currently vacant and surrounded by a locked fence. The western site boundary is the top of an approximately 10 foot high retaining wall that separates the site from an adjacent apartment complex. Surrounding land use is mixed residential and light commercial.

The property has been vacant since 1979 and was formerly occupied by an Exxon Service Station used for fuel sales and automobile repair. The site is approximately 13,200 square feet in area with about 10% of the area occupied by a vacant station/garage structure. The majority of the ground surface is paved with concrete and/or asphalt. Land use to the west and northwest is residential, including apartment buildings and single family homes. Properties to the northeast, east and south of the site are commercial. The site and adjacent properties are shown on Figure 2.

Environmental compliance work commenced when the site USTs were removed in January 1990. Three 8,000-gallon steel single-walled USTs, associated piping, and a 500-gallon steel single-walled waste oil tank were removed. Tank Project Engineering, Inc. (TPE) conducted the tank removal and observed holes in all four tanks. Approximately 700 tons of contaminated soil was excavated during tank removal and was subsequently remediated and reused for onsite backfill by TPE. In April 1990, TPE installed and sampled monitoring wells MW-1, MW-2 and MW-3. In June 1991, Soil Tech Engineering (STE), subsequently renamed Environmental Soil Tech Consultants (ESTC), installed monitoring wells STMW-4 and STMW-5. Groundwater monitoring was conducted on the site intermittently until October 2002. Golden Gate Tank Removal (GGTR) performed additional assessment in January and February 2006. In June 2006, the property

was purchased by Rockridge Heights, LLC. Pangea commenced quarterly groundwater monitoring at the site in July 2006.

In January and March 2007, Pangea installed twelve onsite monitoring wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C) and installed three offsite soil borings to help define the vertical and lateral extent of groundwater contamination. New wells installed at the site were categorized according to the depths of their screen intervals. Shallow (A-zone) wells have screen intervals of approximately 10 to 15 feet which generally straddle the top of the water table. Intermediate-depth (B-zone) wells are screened at approximately 15 to 20 feet bgs, while deep (C-zone) wells are generally screened at approximately 20 to 25 feet bgs and into fractured bedrock/mudstone. Well MW-1 is screened across both the A-zone and B-zone.

Also, in January and March 2007, Pangea abandoned four monitoring wells (MW-2, MW-3, STMW-4 and STMW-5) to reduce the risk of vertical contaminant migration and improve the quality of monitoring data. In April 2007, Pangea performed a dual-phase extraction (DPE) pilot test to evaluate whether DPE is an appropriate remedial technology to remove residual hydrocarbons from beneath the site

GROUNDWATER MONITORING AND SAMPLING

Groundwater monitoring this quarter involved sampling of all five site wells prior to select well abandonment followed by sampling of the twelve onsite wells installed this quarter. Monitoring and sampling was conducted on several different dates to accommodate the well installation schedule, to locate missing well MW-3, and to re-gauging all wells for more representative water level information.

On January 9, 2007, Pangea conducted initial monitoring of the five groundwater monitoring wells. Groundwater samples were collected from wells MW-1, MW-2 and STMW-5; well STMW-4 was not sampled due to the presence of SPH and well MW-3 could not be located. While the prior consultant (GGTR) could not locate well MW-3, Pangea was able to locate the well which was buried and had not been sampled since 2002. Pangea sampled well MW-3 on January 22, 2007 during well installation activities to control cost.

On March 9, 2007, Pangea conducted monitoring of eleven new monitoring wells (MW-2C, MW-3A, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C). During the March 9 monitoring event Pangea removed well caps prior to measuring water levels, but the depth to water in several wells continued to slowly rise. To obtain water level data more representative of the piezometric surface, Pangea re-gauged the wells on March 26, 2007 after removing all the well caps at least 24 hours prior to gauging to allow water levels to equilibrate (the re-gauging was conducted in conjunction with development

of well MW-3C to control cost). The twelfth and final new onsite monitoring well (MW-3C) was sampled on April 16.

Prior to sample collection, approximately three casing volumes of water were purged using disposable bailers, an electric submersible pump, or a clean PVC bailer, although most deeper wells (MW-5B, MW-7B, MW-7C and MW-8C) dewatered during purging. During well purging, field technicians measured the pH, temperature and conductivity. A groundwater sample was collected from each well with a disposable bailer and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4° C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was stored onsite in DOT-approved 55-gallon drums. Field data sheets are presented as Appendix A.

MONITORING RESULTS

Groundwater elevation and analytical data are described below and summarized on Table 1 and Figure 2. Groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015C with silica gel cleanup; total petroleum hydrocarbons as gasoline (TPHg) by modified EPA Method 8015C; and benzene, toluene, ethylene, xylenes (BTEX) by EPA Method 8021B. Samples were analyzed by McCampbell Analytical, Inc. of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is included in Appendix B.

Groundwater Flow Direction

Shallow Groundwater: Based on depth-to-water data collected March 26, 2007, elevation data and the inferred flow directions for shallow A-zone groundwater are shown on Figure 2. As shown on Figure 2, groundwater in A-zone groundwater appears to have mounded in the former UST excavation, and the apparent gradient radiates outwards towards the east, south and west, although regional groundwater flow is generally towards the south and southwest. This observation suggests that the unpaved former UST excavation has acted as a collector for rainwater during the rainy season and that the asphalt pavement covering the remainder of the site serves to reduce infiltration elsewhere and likely directs rainwater to the unpaved UST excavation area. The current inferred flow direction in A-zone groundwater southwest of the former UST excavation area is generally consistent with previous quarterly monitoring events, while the new A-zone wells provide additional data to infer the radial groundwater flow from the former UST area.

Deep Groundwater: Elevation data for both B-zone and C-zone groundwater and the inferred flow direction for C-zone groundwater are shown on Figure 3. The horizontal component of flow for the C-zone groundwater is westwards to southwestwards, as shown on Figure 3. The elevation of the piezometric surface

for deep C-zone wells is lower than elevations for A-zone wells, indicating that a downward gradient is present. No previous data have been collected regarding the direction of flow of C-zone groundwater.

Hydrocarbon and Fuel Oxygenate Distribution in Groundwater

Free Product (SPH): During purging of well STMW-4, SPH were observed on the bailer after removing approximately 5 gallons of groundwater from the well. Purging was stopped and SPH were measured at a thickness of 0.03 ft. A thin layer of SPH has been observed in well STMW-4 during the last three quarters of monitoring. No SPH were detected in any other site wells this quarter, including well MW-4A, which was subsequently installed (though with a shallower screened interval) in the drilled out borehole of STMW-4.

Maximum Concentrations: The maximum TPHg concentrations this quarter were detected in wells MW-3A and MW-3C, located near the downgradient (southern) edge of the former UST excavation, at concentrations of 39,000 μg/L and 32,000 μg/L respectively. The highest detected benzene concentrations were detected in wells MW-3A (3,800 μg/L) and MW-4A (1,800 μg/L); both of these wells are located near the former UST excavation area, with well MW-3A to the south and MW-4A to the north. The highest TPHd concentration was observed in deep, source area well MW-3C (36,000 μg/L). The laboratory noted in their analytical report that gasoline range compounds were significant, which suggests that this elevated TPHd concentration may be the result of the heavier range of TPHg contamination.

Contaminant Distribution in Shallow Groundwater: As shown on Figure 2, shallow (A-zone) groundwater contains petroleum hydrocarbons at elevated concentrations in two primary areas near the former UST excavation, a northern area in the vicinity of well MW-4A and a southwestern area in the vicinity of wells MW-3A and MW-8A. Prior shallow grab groundwater sampling data also indicates that the southern area of contamination extends to the southern site boundary in the vicinity of wells MW-7B and MW-7C, which will be described in Pangea's separate site investigation report. This distribution of hydrocarbons in shallow A-zone groundwater is tentatively interpreted to be due to the mounding of groundwater within the uncapped former UST excavation during the rainy season, likely encouraging plume migration radially away from the excavation area. The lack of elevated hydrocarbon concentrations in well MW-5A (located downgradient from the former UST excavation) may be due to the presence of a thick, relatively impermeable clay section observed in boring logs of shallow soil in that area that impedes migration of contaminated groundwater into that area.

Contaminant Distribution in Deeper Groundwater: As shown on Figure 3, the distribution of *deep* groundwater containing elevated concentrations of petroleum hydrocarbons differs significantly from the distribution of hydrocarbons in shallow groundwater. High levels of contamination within deeper (B- and C-zone) groundwater only appear to be present in the central and southern, downgradient portion of the site,

Groundwater Monitoring Report – First Quarter 2007 5175 Broadway

> Oakland, California July 16, 2007

based on elevated hydrocarbon concentrations detected in wells MW-3C, MW-7B and MW-7C. The hydrocarbon impact in the deeper wells may be explained by the apparent downward vertical gradient

indicated by elevation data from the clustered shallow and deep wells.

Vertical Distribution of Contaminants Based on New Well Data: Our evaluation of concentration data from abandoned wells and from the new well clusters suggest that the shallow groundwater is more impacted than the deeper groundwater. For example, in the western downgradient area between the source area and the adjacent offsite residence (MW-8A/8B well pair), an elevated impact was detected in shallow well MW-8A (10,000 μg/L TPHg and 430 μg/L benzene), while an insignificant impact was detected in deeper well MW-8C (150 μg/L TPHg and 9.8 μg/L benzene) which is screened in bedrock. Also, within the impacted area north of the UST source area, benzene concentrations are higher in shallow A-zone well MW-4A (1,600 μg/L) than in well MW-1 (maximum of 160 μg/L benzene within past 15 years) which is screened in the

deeper B- and C-zones.

The deeper groundwater zone within the fractured bedrock apparently has limited contaminant mass due to limited permeability and low water yield during well purging (wells MW-5B, MW-7B, MW-7C, and MW-8C all dewatered after purging 1 or 2 well volumes). These wells also produced little water during well development and DPE testing (reported separately).

OTHER SITE ACTIVITIES

Groundwater Monitoring

Groundwater monitoring and sampling will be conducted at the subject site on a quarterly basis. During the next quarter, Pangea will conduct gauging and sampling of all site groundwater monitoring wells. Groundwater samples will be analyzed for TPHg/BTEX/MTBE by EPA Method 8015Cm/8021B, and TPHd by EPA Method 8015C with silica gel cleanup. Pangea will summarize groundwater monitoring activities and results in a groundwater monitoring report.

Site Investigation

In January and March 2007, Pangea installed twelve onsite wells and completed offsite soil borings to help define the vertical and lateral extent of groundwater contamination. Pangea also abandoned four monitoring wells to reduce the risk of vertical contaminant migration and improve the quality of monitoring data. While select results are described in this report, Pangea will provide a separate technical report documenting the site investigation activities and results.

The installation of offsite groundwater monitoring wells and temporary soil gas probes proposed in the

5

July 16, 2007

workplan was not conducted due to delayed site access. Pangea hopes to conduct this additional sampling in the near future, upon obtaining access south of the site. The offsite well installation will help delineate the downgradient extent of contamination in shallow and deeper groundwater. The soil gas sampling will help evaluate the potential risk to human health due to potential vapor intrusion into indoor air.

Interim Remedial Action

In April 2007, Pangea performed feasibility testing of dual-phase extraction (DPE) and air sparging (AS) to evaluate the effectiveness of DPE, AS, and associated techniques for remediating residual hydrocarbons beneath the site. Pangea will prepare a technical report documenting feasibility test results, evaluating remediation alternatives, and proposing interim remedial action.

Electronic Reporting

This report will be uploaded to the Alameda County ftp site. The report, laboratory data, and other applicable information will also be uploaded to the State Water Resource Control Board's Geotracker database. As requested, report hard copies will no longer be provided to the ACEH.

ATTACHMENTS

- Figure 1 Site Vicinity Map
- Figure 2 Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)
- Figure 3 Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep)
- Table 1 Groundwater Elevation and Analytical Data
- Appendix A Groundwater Monitoring Field Data Sheets
- Appendix B Laboratory Analytical Report

1

Former Exxon Station 5175 Broadway Oakland, California

Site Location Map

Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation and Hydrocarbon Concentration Map (Shallow)

Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation and Hydrocarbon Concentration Map (Deep)

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —				→	mg/L
MW-1	04/30/89					200	18	5	2	12				
(97.71)	05/17/90		88.45	9.26										
	09/26/90		87.79	9.92		1,300	55	31	120	100				
	01/14/91		88.17	9.54		3,100	350	83	86	130				
(102.04)	07/03/91		92.62	9.42		580	32	41	40	55				
	11/11/91		92.59	9.45		330	20	2	2	11				
(101.83)	03/04/92		93.90	7.93		810	11	5	10	23				
	06/02/92		92.85	8.98		2,200	93	32	40	120				
	09/28/92		92.54	9.29		2,900	24	78	19	37				
	01/11/93		94.27	7.56		1,700	5.7	6	11	28				
	08/15/94		92.64	9.19		2,000	120	3	6	16				
(97.50)	11/07/96	-	88.77	8.73	270	1,200	3	1.1	1.5	3.8	< 0.5			
	02/12/97		89.58	7.92	<50	1,800	13	5.7	4.8	17	< 0.5			
	06/16/97		88.46	9.04	<50	330	27	< 0.5	< 0.5	1.2	< 0.5			
	09/30/97		89.94	7.56	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(97.50)	01/27/98		89.54	7.96	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		89.52	7.98	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.52	8.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	11/16/98		88.60	8.90	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	02/16/99		88.86	8.64	< 50	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	05/17/99		89.00	8.50		280	1.1	0.6	< 0.5	< 0.5	< 0.5			
	08/17/99		88.26	9.24	86	790	5.6	4.3	4.5	11	<5.0			
	11/17/99		87.06	10.44		1,300	3.6	1.9	2.7	6.6	<1.0			
	02/17/00		89.02	8.48		580	1.1	2.3	3.6	4.9	<5.0			
	05/17/00		89.26	8.24		1,500	130	6.8	6.1	< 5.0	<5.0			
	08/17/00		88.73	8.77		550	160	<25	<25	<25	<25			
	11/15/00		88.46	9.04		130	< 5.0	< 5.0	< 5.0	< 5.0	<5.0			
	02/16/01		89.90	7.60		400	26	< 5.0	< 5.0	< 5.0	<5.0			
	01/11/02		89.42	8.08	160	600	74	53	14	52	110			
(161.03)	07/01/02		152.01	9.02	280	670	25	< 5.0	< 5.0	<5.0	< 5.0			
	10/04/02		151.29	9.74	520	1,800	130	7.8	8.1	14	< 5.0			
	07/28/06		151.93	9.10	86	250	42	1.7	1.4	3.1	<1.0	51	1.5	0.21
	10/16/06		151.98	9.05	110	390	16	< 0.5	1.5	2.2	< 0.5	41	1.6	0.17
(161.10)	01/09/07		152.90	8.20	160	530	21	1.7	2.8	5.1				0.22
	03/26/07	-	152.84	8.26										
MW-2	04/30/89					230	39	18	5	23				
(97.78)	05/17/90		87.78	10.00										
	09/29/90		86.95	10.83		850	970	5	25	47				
	01/14/91		87.15	10.63		3,100	30	52	24	34				
(102.02)	07/03/91		91.94	10.08		1,590	30	52	24	34				
	11/11/91		91.81	10.21		960	320	15	4	29				
	03/04/92		93.32	8.70		1,500	9.5	8.4	9.8	22				
	06/02/92		92.50	9.52		2,800	84	41	59	95				

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L				→	mg/L
MW-2	09/28/92		91.93	10.09		1,600	47	20	47	97				
(continued)	01/11/93		93.50	8.52		2,500	8.6	10	17	32				
(97.49)	08/15/94		87.58	9.91		6,000	450	60	100	95				
	11/07/96		87.47	10.02	780	4,200	25	4.9	8.1	14	< 0.5			
	02/12/97		88.58	8.91	5,700	1,800	16	3.1	3.4	8.8	< 0.5			
	06/16/97		87.74	9.75	<50	2,500	22	5.1	7.8	11	< 0.5			
	09/30/97		89.60	7.89	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	01/27/98		89.11	8.38	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		88.81	8.68	1,400	2,100	18	6.5	4.8	21	< 0.5			
	08/17/98		87.75	9.74	<50	2,900	5.1	4.5	5.8	17	< 0.5			
	11/16/98		87.35	10.14	<50	1,400	2.1	1.9	2.3	4.8	< 0.5			
	02/16/99		88.57	8.92	<50	1,600	82	16	<2.5	40	59			
	05/17/99		88.23	9.26		8,200	43	73	140	100	<250			
	08/17/99		87.45	10.04	260	2,900	20	81	17	38	<5.0			
	11/17/99		85.97	11.52	<50	2,600	7	3.7	5.3	12.9	<1.0			
	02/17/00		87.99	9.50		1,700	3.2	6.8	11	12.3	<5.0			
	05/17/00		88.65	8.84		3,800	450	65	110	80	<25			
	08/17/00		88.99	8.50		4,300	440	<50	78	<50	< 50			
	11/15/00		87.55	9.94		5,800	320	41	78	64	<25			
	02/16/01		88.97	8.52		2,200	110	20	38	33	<5.0			
	01/11/02		88.67	8.82	620	3,100	280	86	84	110	<50			
(160.98)	07/01/02		151.34	9.64	940	2,600	300	29	45	27	<10			
	10/04/02		150.46	10.52	390	4,000	440	66	140	120	<25			
	07/28/06		150.96	10.02	340	1,300	150	9.9	6	18	< 0.5	3.6	< 0.5	0.17
	10/16/06		150.45	10.53	76	150	16	1.0	3.5	2.2	< 0.5	1.2	< 0.5	0.19
	01/09/07		151.65	9.33	84	210	27	2.6	8.1	6.8				0.14
	01/25/07	-				Well A	Abandoned							
MW-3	04/30/90					56,000	2 (00	0.600	1 200	7.200				
						56,000	3,600	8,600	1,300	7,200				
(98.14)	05/17/90		85.72	12.42			 5 100	 420						
	09/26/90 01/14/91		84.64 85.56	13.50 12.58		54,000 35,000	5,100 2,600	6,600	1,600 1,500	8,000 5,700				
(102.46)			90.38	12.38					1,400	4,800				
(102.46)	07/03/91					33,000	4,120	4,300						
(102.10)	11/11/91		90.17	12.29		57,000	3,900 720	8,400	2,100	14,000				
(102.18) (97.94)	03/04/92 06/02/92		91.92 86.54	10.26 11.40		57,000 50,000	240	870 240	81 220	3,100 740				
(97.94)	09/28/92		85.30	12.64	-	64,000	110	93	97	250				
										990				
	01/11/93 08/15/94		87.84 85.74	10.10 12.20		68,000 50,000	210 870	280 1,200	360	3,000				
	08/15/94 11/07/96		85.74 85.54	12.20	470	68,000	33	1,200 27	1,300 63	3,000 120	<0.5			
	02/12/97		85.54 87.71	10.23	3,500	25,000	33 39	43	15	91	<0.5			
	06/16/97		86.15	11.79	3,300 <50	9,700	26	43 29	45	81	<0.5			
	09/30/97		88.54	9.40	1,600	6,000	43	36	45 12	81 11	<0.5			
	01/27/98		88.14	9.40	560	380	5.7	4.1	1.7	9.1	<0.5			
	01/27/96		00.14	9.00	300	200	3.1	4.1	1./	9.1	<.0.5			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L					mg/L
MW-3	04/24/98		88.04	9.90	680	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(continued)	08/17/98		86.48	11.46	<50	16,000	200	18	31	82	< 0.5			
	11/16/98		85.54	12.40	<50	68,000	86	54	69	130	< 0.5			
	02/16/99		87.22	10.72	<50	33,000	270	110	<5.0	770	170			
	05/17/99		87.40	10.54		72,000	280	230	320	890	<250			
	08/17/99		85.99	11.95	1,800	20,000	51	41	61	130	<5.0			
	11/17/99		84.34	13.60		1,700	39	22	31	84	<1.0			
	02/17/00		87.26	10.68		8,800	16	39	74	90	<5.0			
	05/17/00		87.69	10.25		22,000	300	260	410	940	<5.0			
	08/17/00		86.10	11.84		15,000	230	140	470	750	<50			
	11/15/00		86.12	11.82		12,000	250	210	390	700	<25			
	02/16/01		88.26	9.68		7,400	40	72	700	250	<25			
	01/11/02		88.36	9.58	1,900	9,300	230	200	290	580	<25			
(161.43)	07/01/02		150.29	11.14	5,200	13,000	230	220	450	890	<13			
	10/04/02		148.61	12.82	4,900	11,000	280	170	450	730	<25			
	07/28/06			Not Sampl	led - Unable to	ocate well								
	10/16/06			Not Sampl	led - Unable to	ocate well								
	01/09/07			Not Sampl	led - Unable to									
	01/22/07		149.81	11.62	93,000	34,000	770	250	760	2,000	<1,000			-
	03/16/07	-					Well Abandor	ed						
STMW-4	07/02/01		02.50	11.00		2 100	610	62	20	150				
(103.58)	07/03/91 11/11/91		92.58 92.50	11.00 11.08		3,100 3,600	610 990	62 15	39 2.6	150 180				
(103.38)	03/04/92			9.44		5,000	35	20	2.6	71				
			91.64											-
(98.80)	06/02/92		88.48	10.32		13,000	140	45	63	210				-
	09/28/92 01/11/93		88.04 89.52	10.76 9.28		40,000	35 26	20 88	48 92	110 280				
						24,000								
	08/15/94		88.26	10.54		9,000	500	34	46	130				
	11/07/96		88.43	10.37	180	13,000	40	2.9	7.8	19	<0.5			
	02/12/97		89.44	9.36	5,700	5,300	95	5.3	5.9	18	<0.5			
	06/16/97		88.40	10.40	<50	5,300	37	6.2	1.7	11	<0.5			
	09/30/97		90.30	8.50	<50	2,700	42	7.7	5.7	26	<0.5			
	01/27/98		89.90	8.90	300	3,000	60	17	12	49	<0.5			
	04/24/98		89.30	9.50	<50	<50	< 0.5	<0.5	<0.5	<0.5	<0.5			
	08/17/98		88.44	10.36	<50	29,000	36	24	59	160	< 0.5			
	11/16/98		88.24	10.56	<50	13,000	26	21	20	41				
	02/16/99		89.16	9.64	<50	32,000	660	16	16	150	<100			
	05/17/99		88.84	9.96		13,000	1600	30	45	78	<250			
	08/17/99	-	88.16	10.64	990	12,000	260	22	33	72	<5.0			
	11/17/99		86.78	12.02		7,900	21	12	17	40	<1.0			
	02/17/00	-	89.48	9.32		4,900	8.9	21	38	50	<5.0			
	05/17/00	-	89.15	9.65		9,600	840	<50	61	<50	<50			
	08/17/00		88.46	10.34		5,100	680	< 50	62	<50	<50			
	11/15/00		88.28	10.52		3,900	640	<25	26	27	<25			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —				→	mg/L
STMW-4	02/16/01		89.60	9.20		5,700	560	<25	<25	<25	<25			
(continued)	01/11/02		89.22	9.58	930	4,900	560	59	25	<25	<250			
(162.13)	07/01/02		151.85	10.28	6,700	6,700	470	18	32	45	<13			
	10/04/02		151.05	11.08	2,900	13,000	590	26	65	110	<25			
	07/28/06	0.04	151.53	10.60	39,000	25,000	960	21	73	130	< 5.0	65	< 5.0	0.22
	10/16/06	0.06	151.30	10.83	14,000	14,000	790	28	81	130	< 5.0	30	< 5.0	0.26
	01/09/07	0.03	152.20	9.93			Not Sampled - S	PH						0.24
	01/26/07						Well Abandone	ed						0.24
STMW-5	07/03/91		88.70	13.29		690	99	81	19	98				
(101.99)	11/11/91		87.99	14.00		410	61	2.4	1.4	20				
(101.36)	03/04/92		89.56	11.80		460	13	6.5	11	18				
, ,	06/02/92		88.30	13.06		1,800	27	20	21	43				
	09/28/92		87.32	14.04		1,500	14	6.1	18	22				
	01/11/93		89.75	11.61		800	1.8	3	3.1	9.4				
	08/15/94		87.51	13.85		3,000	320	62	34	220				
(97.14)	11/07/96		83.47	13.67	330	1,200	11	1.7	4.4	13	< 0.5			
,	02/17/97		85.07	12.07	3,700	1,000	11	17	1.7	9.7	< 0.5			
	06/19/97		83.81	13.33	2,300	950	7.4	1	1	7.2	<0.5			
	09/30/97		85.90	11.24	1,100	710	5.8	4	1	1	<0.5			
	01/27/98		85.50	11.64	1,100	340	2	1.8	1.6	8.2	<0.5			
	04/24/98		85.30	11.84	<50	3,300	12	9.4	8.5	37	< 0.5			
	08/17/98		83.94	13.20	<50	5,300	26	17	14	39	<0.5			
	11/16/98		83.40	13.74	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5			
	02/16/99		84.92	12.22	<50	950	150	3.8	1.4	14	11			
	05/17/99		84.56	12.58		2,800	67	9.4	<2.5	16	30			
	08/17/99		83.66	13.48	230	2,800	18	17	18	36	<5.0			
	11/17/99		82.26	14.88		1,600	3.9	2.3	3.2	7.5	<1.0			
	02/17/00		84.58	12.56		770	1.5	3.2	5.8	7	<5.0			
	05/17/00		85.06	12.08		4,500	<25	<25	<25	<25	<25			
	08/17/00		83.58	13.56		2,900	170	64	100	250	<10			
	11/15/00		83.86	13.28		2,100	120	24	40	54	<5.0			
	02/16/01		85.54	11.60		850	58	9.8	9.4	18	<5.0			
	01/11/02		85.42	11.72	<50	920	76	16	16	28	13			
(160.65)	07/01/02		147.51	13.14	1,500	4,300	71	14	14	36	<5.0			
	10/04/02		146.13	14.52	60	1,400	71	17	26	35	<5.0			
	07/28/06		147.30	13.35	370	700	22	4.3	1.2	6.6	< 0.5	< 0.5	< 0.5	0.24
	10/16/06		146.91	13.74	240	590	14	1.6	1.3	3.2	<0.5	< 0.5	< 0.5	0.21
	01/09/07		148.19	12.46	180	390	30	3.2	1.8	3.2				0.17
	01/18/07						Well A	Abandoned						
MW-2C	03/09/07		152.24	8.41	140	450	40	9.3	2.9	16	<10			
(160.65)	03/26/07	_	151.93	8.72				-						
(/				****										
MW-3A	03/09/07	-	152.20	9.35	4,500	39,000	3,800	220	830	2,800	<500			
(161.55)	03/26/07	-	152.33	9.22										

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolve
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygei
(ft)		(ft)	(ft)	(ft)	$\overline{}$				μg/L				<u> </u>	mg/L
MW-3C	03/26/07	-	151.15	10.64										
(161.79)	04/16/07		150.87	10.92	36,000	32,000	1,200	710	600	1,900	< 500			
MW-4A	03/09/07		152.88	9.56	3,600	16,000	1,600	36	37	150	<250			
(162.44)	03/26/07	-	152.56	9.88										
MW-5A	03/09/07	-	150.40	10.42	56	<50	< 0.5	<0.5	<0.5	<0.5	<5.0			
(160.82)	03/26/07		150.00	10.82	-			-		-				
MW-5B	03/09/07		146.42	15.08	59	140	1.3	0.77	<0.5	1.6	<5.0			
(161.50)	03/26/07		148.88	12.62										
(101.50)	03/20/07		140.00	12.02										
MW-5C	03/09/07		148.12	12.91	<50	<50	<0.5	< 0.5	< 0.5	<0.5	<5.0			
(161.03)	03/26/07		148.41	12.62										
MW-6A	03/09/07		154.91	6.67	380	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
(161.58)	03/26/07	-	154.41	7.17	-			-						
MW-7B	03/09/07		147.97	11.18	930	18,000	1,500	1,600	140	1,800	<600			
(159.15)	03/26/07	-	148.10	11.05	-			-		-				
MW-7C	03/09/07		145.44	13.09	190	3,600	970	100	12	90	<120			
(158.53)	03/26/07		147.53	11.00										
, ,														
MW-8A	03/09/07		152.05	9.52	4,200	10,000	430	18	<10	88	<100			
(161.57)	03/26/07		151.74	9.83										
MW-8C	03/09/07		149.18	12.15	<50	150	9.8	1.3	2.0	3.9	<5.0			
161.33)	03/26/07		149.56	11.77										

Abbreviations:

 $\mu g/L \ = \ micrograms \ per \ liter \ \text{- approximately equal to parts per billion} = ppb$

mg/L = milligrams per liter - approximately equal to parts per million = ppm

SPH = Separate-phase hydrocarbons encountered in well (value in parentheses is thickness in feet)

 $Groundwater\ elevation\ is\ calculated\ according\ to\ the\ relationship:\ groundwater\ elevation\ =\ TOC\ (elevation)\ -\ (depth\ to\ water)\ +\ (0.8)(SPH\ thickness)$

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015Cm.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C.

BTEX by EPA Method 8021B.

 $MTBE = Methyl \ tertiary-butyl \ ether \ by \ EPA \ Method \ 8021B. \ (Concentrations \ in \ parentheses \ are \ by \ EPA \ Method \ 8260B).$

DIPE = Diisopropyl ether by EPA Method 8260B.

1,2-DCA = 1,2-Dichloroethane by EPA Method 8260B.

APPENDIX A

Groundwater Monitoring Field Data Sheets

Well Gauging Data Sheet

Project.Ta	ask #: 114	5.001 210		Project Name	: Feiner		
Address:	5171 Broa	dway, Oal	kland CA		A	Date: 1/9/0	7
Name: Sa	njiv Gill			Signature:	12		
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point
Mu-1	Ч	9:50			8.20	23.00	Toc
MH.Z	Ц	9:45			9.33	22.91	
Mr.3		naable	e to loc	ate -			
STMN-4	4	10:00			9.93	19.09	Toc
5TMN-S	2	9:55			12.46	23.96	
Comments:							

Project.T	ask #: 11	45.001 21	0	Project	Name: Fei	Well ID					
Address	5171 Bro	padway, O	akland CA	-3. million							
Date: 1/9				Weather: Sunny							
Well Dia		LI"		Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163							
	pth (TD):	23.0	0	Depth to Product:							
		TW): 8			Thickness	ş.					
		ight: 14	5.1C-8.0		g Volume:			gallons			
	e Point: 1			100	asing Volu		.86	gallons			
			Bailer, 3" PV			300004		generio			
		Disposable									
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW			
10:11	70.8	7.21	780				9.5				
11:16	19.9	7.26	759				19				
11:43	19.9	7.30	771	+			29				
				-							
				-							
					-						
Comments	: Oakton DC	meter		pre purge	DO = 0.27	mg/l					
very +	urbid,	silty		post purge	The second	mg/l					
Slouce	charge	ofter	24 gallans								
Sample I	D: ML)-1		Sample	Time:	1:47					
	555 0	TO MOCK	alytical, INC.	93,00							
			a/HCL, Amb			141					
Analyzed	for: 801	5, 8021			R	7					
	Name: Sa			Signatur		_					

Project.Task #: 1145.001 210	Project Name: Feiner						
Address: 5171 Broadway, Oakland C							
Date: 1/9/07	Weather: Sunny						
Well Diameter: 'I'	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² " 0.163						
2- 0:	COLUMN TO THE RESERVE TO THE PARTY OF THE PA						
	Depth to Product:						
Depth to Water (DTW): 9.33	Product Thickness:						
Water Column Height: 13.58	1 Casing Volume: 8.82 gallons						
Reference Point: TOC	3 Casing Volumes: 26.48 gallons						
Purging Device: Disposable Bailer, 3"	PVC Bailer, What Pump						
Sampling Device: Disposable Bailer							
Time Temp © pH Cond (µ	s) NTU DO(mg/L) ORP (mV) Vol(gal) DTW						
10:45 19.4 6.63 975	9						
10:49 20.2 6.66 909	18						
11:21 19.5 6.72 955	26.5						
Comments: Oakton DO meter	pre purge DO = 0.14 mg/l						
very turbid, silty	post purge DO = mg/l						
Slow recharge after and	casing volume completed						
Sample ID: MU-Z	Sample Time: //: 24						
aboratory: McCampbell Analytical, II							
Containers/Preservative: Voa/HCL, A	VID DUC TOURS						
analyzed for: 8015, 8021	00						
Sampler Name: Sanjiv Gill	Signature:						

	MONIT	ORING	FIELD D	ATA	SHEE	Т	Well ID	: Mu-	3			
Project.	ask #: 11	145.001 2	10		Project	Name: Fei						
Address	5171 Br	oadway, (Dakland C	Α			150000					
Date: 1/5	9/07				Weathe							
Well Dia	meter:				Volume/ft	1" = 0.04	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0.	163			
	pth (TD):				Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163 Depth to Product:							
	Water (D				200	Thickness						
- N. 192	olumn He	-3150				g Volume:			gallons			
403 007	Reference Point: TOC					asing Volum	mes:		gallons			
			Bailer, 3"	PVC		Whal Pum			gallorio			
		Disposab										
Time	Temp ©		Cond (µ	s)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW			
	ur	able	+0 1	000	te							
									_			
			1									
				-								
Comments	Oakton DO) meter	L		pre purge	DO =	ma/l					
					post purge	DO =	mg/l					
_												
Sample I	D:				Sample	Time:						
Laborato	y: McCa	mpbell Ar	nalytical, IN	VC.	Sample	Date: 1/9/0)7					
Containe	rs/Presen	vative: V	oa/HCL, A	mbe	r Liter/H(CI						
Analyzed	for. 801	5, 8021					5					
Sampler	Sampler Name: Sanjiv Gill					e: /	5					

MONITORING FIELD DATA	A SHEET Well ID: STMW-4					
Project.Task #: 1145.001 210	Project Name: Feiner					
Address: 5171 Broadway, Oakland CA						
Date: 1/9/07	Weather:					
Well Diameter: L ₁ ' '	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163					
Total Depth (TD): 19.09	Depth to Product:					
Depth to Water (DTW): 9.93	Product Thickness:					
Water Column Height: 9.16	1 Casing Volume: 5.95 gallons					
Reference Point: TOC	3 Casing Volumes: 17-86 gallons					
Purging Device: Disposable Bailer, 3" PV						
Sampling Device: Disposable Bailer						
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW					
SPHINOS	Imple taken &					
pursed sgal	lons Is					
	+ + + + + + + + + + + + + + + + + + + +					
Comments: Oakton DO meter	pre purge DO = 0.24 mg/l					
very tuckid, silty	post purge DO = mg/l					
sheen, SPHappensed after pu						
Sheen, Serrisppeared at the pa	DTWat 12.73					
Sample ID:	Sample Time:					
Laboratory: McCampbell Analytical, INC.						
Containers/Preservative: Voa/HCL, Ambe						
Analyzed for: 8015, 8021	10					
Sampler Name: Sanjiv Gill	Signature:					

MONITORING FIELD DAT	Well ID: STMN-5						
Project.Task #: 1145.001 210	Project Name: Feiner						
Address: 5171 Broadway, Oakland CA							
Date: 1/9/07	Weather: Sunny						
Well Diameter: 2"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total Depth (TD): 23.96	Depth to Product:						
Depth to Water (DTW): 12.46	Product Thickness:						
Water Column Height: 11.50	1 Casing Volume: / 84 gallons						
Reference Point: TOC	3 Casing Volumes: 5.52 gallons						
Purging Device: Disposable Bailer, 3" PV	11030,000 1100,000 1100						
Sampling Device: Disposable Bailer							
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW						
10:20 17.8 6.38 1796	2						
10:25 17.9 6.38 1803	4						
10:30 17.8 6.47 1794	5.5						
	 						
	+						
Comments: Oakton DO meter	pre purge DO = O-17 mg/l						
	post purge DO ≈ mg/l						
very tuckid, silty							
Sample ID: STMN-5	Sample Time: 10.35						
Laboratory: McCampbell Analytical, INC.	Sample Date: 1/9/07						
Containers/Preservative: Voa/HCL, Amb							
Analyzed for: 8015, 8021	10						
Sampler Name: Sanjiv Gill	Signature:						

MONITORING FIELD DATA	SHEET Well ID: MW-3						
Project.Task #:	Project Name: Rockridge Heights						
Address: 5175 Broadway	Oakland, CA						
Date: 1/22/2007	Weather: Sung Cool						
Well Diameter: 4"	Volume/ft. 1" = 0.04 \ 3" = 0.37 \ 6" = 1.47 \ 2" = 0.16 \ 4" = 0.65 \ radius^2 * 0.163						
Total Depth (TD): 27 ft	Depth to Product: NA						
Depth to Water (DTW): 11.62 ft	Product Thickness: NA						
Water Column Height: 15,38ft	1 Casing Volume: 10 gallons						
Reference Point: N TOC	Z Casing Volumes: 20 gallons						
Purging Device: Disposable Baile							
Sampling Device: Disposable Baile	er						
Time Temp® pH Cond (µs) 1250 Purged ~ 20 gallon	NTU DO(mg/L) ORP (mV) Vol(gal) DTW						
1300 Took Sample							
Comments: Turbid, Strong hydro	earbon oder						
Salaria and							
Sample ID: MW-3	Sample Time: 1300						
Laboratory: McCampbell Halutical	Sample Date: 1/22/2007						
0.1 0.1 0 -	as, I thoper fiter						
Analyzed for: TPHA, TPHA, BTEX,	5 Dxy by EPA Method 82608						
Sampler Name: Bruce Taylor	Signature: BA/						

Well Gauging Data Sheet

Address:	517	5 BC	aduay	, Oal	tand,	CA		Date: 3-	9-07
Name: S	San	Jiv G	LL	Signatu		_ &	_		
Well ID	Well Size (in.)	Time	Depth to Water (ft)	Time	Depth to Water (ft)	Time	Depth to Water (ft)	Total Depth (ft)	Measuring Point
Mr-3C	7'	10:12	3.41	10:37	8,41			23.03	TOC
MUBA	1	10:24	9.37	10:47	9.35			1383	
MUZIA		10:22	9.54	10:45	9.56			14.73	
Mu-sa		10:18	10.41	1041	10.42	_		13.52	
MH5B	_	10:16	15,49	10:40	15.26	10.23	1508	19.23	_
MN-5C	\perp	10:14	14.02	10:39	13.21	10:51	12.91	26.70	
MW-6A		10:20	6.66	10:43	6.67	_		14.92	
МИЛВ	_	10:05	11.20	10:31	1118			18.55	
MUTC	1	10:01	14.88	10:29	13.93	10:48	13.09	24.56	
MN-8A	1	10:10	9.50	10:35	9,52	_		14.89	
MMBC	1	10:08	14116	10:33	12.85	10:49	1215	25.04	

	MONITO	ORING F	ELD DAT	SHEET Well ID: MN-2C						
Project.T	ask #: 11	45.001 320)	Project I	Name: Fei					
Address:	5175 Bro	oadway, Oa	akland, CA							
Date: 3/9	9/07		-	Weather. Claudy						
Well Dia	meter:	2"		Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total De	pth (TD):	23.03	3	Depth to	Product:					
	Depth to Water (DTW): 8.4 \			Product	Thickness	S:				
Water Column Height: 1467				1 Casing	Volume:	2.33		gallons		
	Reference Point: TOC				ising Volu			gallons		
		_	Bailer 3" PV	EVALUATE VALUE OF						
		Disposable	Var talling and							
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
12:19	20.2	9.04	517				2.5			
12.23	19.8	8.97	479				5			
17:25	19.8	8.90	516				7			
		-			-					
V										
Comments	: Oakton DO	D meter		pre purge	DO =	mg/l				
				post purge		mg/l				
Very	tuckid,	heavy si	114							
Sample I	D: MH-	76		Sample	Time:					
			abdical INC			1: 29				
	-527	81 50	alytical, INC.			0/				
00 M 0	osa Aresto	Date Same(c)	a/HCL, Amb	er IL/HCI	1					
	for: 801	75. A. A. A. B. F. B. F. B. F. B. F. B.		la: .	W.					
Sampler	Name: Sa	anjiv Gill		Signatur	e: /					

MONITOR	ING F	IELD DATA	A SHEET Well ID: MN-3A						
Project.Task #: 1145.	001 32	0	Project N	lame: Fei					
Address: 5175 Broad	way, O	akland, CA							
Date: 3/9/07			Weather: Sunny						
Well Diameter: 2"			Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0.1	163		
Total Depth (TD):	38	3	Depth to	Product:					
Depth to Water (DTW				Thickness	3:				
Water Column Height	1 Casing	Volume:	0.7	1	gallons				
Reference Point: TO			mes: 2		gallons				
Purging Device: Disp	5	Bailer, 3" PV							
Sampling Device: Dis									
Time Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
	56	754				1			
2:10 19.9 9	71	758				1.5			
2:11 19-9 9	71	765				2.0			
			-						
	-		_						
	-		-	_					
Comments: Oakton DO mo	eter		pre purge	00 =	mg/l				
			post purge	DO =	mg/l				
very tuckid	_								
Sample ID: MH-3A			Sample	Time: 2	13				
Laboratory: McCamp		alytical, INC.							
Containers/Preservat	ve: Vo	a/HCL, Ambe	er 1L/HCI						
Analyzed for: 8015, 8				1					
Sampler Name: Sanji	V = 200		Signatur	e: //	7				
Campion Hamo, Odin	- 5111		To a later	1					

MONITORING FIELD DATA	A SHEET	Well ID: MA)-4A				
Project.Task #: 1145.001 320	Project Name: F						
Address: 5175 Broadway, Oakland, CA							
Date: 3/9/07	Weather. Cunny						
Well Diameter: 2"	Volume/ft. 1" = 0.0 2" = 0.1	4 3" = 0.37 6" = 1.4 6 4" = 0.65 radius ²	* 0.163				
Total Depth (TD): 14 7 3	Depth to Produc						
Depth to Water (DTW): 9 56	Product Thickne	ess:					
Water Column Height: 5.17	1 Casing Volum	e: 0.82	gallons				
Reference Point: TOC	Name and Address to the Control	lumes: 2.46	gallons				
Purging Device: Disposable Bailer 3" PV							
Sampling Device: Disposable Bailer							
Time Temp Φ pH Cond (μs)	NTU DO(mg	L) ORP (mV) Vol(ga	I) DTW				
1:49 19.9 8.81 958		1					
1.51 18.6 8.87 968		20					
1:53 18.9 8.87 961		2.5					
			-				
			+				
Comments: Oakton DO meter	pre purge DO =	mg/l					
	post purge DO =	mg/l					
very tuckid, silty							
Sample ID: MH-4A	Sample Time: 1:55						
Laboratory: McCampbell Analytical, INC.	Sample Date: 3/9/07						
Containers/Preservative: Voa/HCL, Amb	er 1L/HCI						
Analyzed for: 8015, 8021		1					
Sampler Name: Sanjiv Gill	Signature:						

MONITORING FIELD DA	A SHEET Well ID: MH-5A					
Project.Task #: 1145.001 320	Project Name: Feiner					
Address: 5175 Broadway, Oakland, CA						
Date: 3/9/07	Weather: Cloudy					
Well Diameter: 2 "	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47					
Total Depth (TD): 3.52	Depth to Product:					
Depth to Water (DTW): 10.47	Product Thickness:					
Water Column Height: 3.10	1 Casing Volume: 0.49 gallons					
Reference Point: TOC	3 Casing Volumes: 1.48 gallons					
Purging Device, Disposable Bailer, 3" P	VC Bailer, Whal Pump					
Sampling Device: Disposable Bailer						
Time Temp Φ pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW					
1:15 15.1 7.50 1231	.5					
1:16 14.8 7.69 1218	1.0					
1.18 14.5 753 1223	1.5					
Comments: Oakton DO meter	pre purge DO = mg/l					
	post purge DO = mg/l					
very tuckid, Silty						
Sample ID: Mu-5A	Sample Time: 1 20					
Laboratory: McCampbell Analytical, INC	C. Sample Date: 3/9/07					
Containers/Preservative: Voa/HCL, Am	nber 1L/HCI					
Analyzed for: 8015, 8021	00					
Sampler Name: Sanjiv Gill	Signature:					

MONITORING FIEL	D DATA	A SHEET Well ID: MN-5B						
Project.Task #: 1145.001 320		Project I	Name: Fei					
Address: 5175 Broadway, Oaklar	nd, CA				- 151 - 55 - 200 -			
Date: 3/9/07		Weather. Cloudy						
Well Diameter: 2"		Volume/ft.	1" = 0.04	3" = 0.37	6" = 1.47 radius ² * 0.1	163		
Total Depth (TD): 19.23		Depth to	Product:		10000			
		Thickness						
Depth to Water (DTW): 15.08		Land Van	1000000	79131				
Water Column Height: 4,15		Volume:			gallons			
Reference Point: TOC	_		sing Volum		19	gallons		
Purging Device: Disposable Baile	er,)3" PV(Bailer, \	Whal Pum	р				
Sampling Device: Disposable Ba		I MITTER	IDO(8)	ODD () A	17-17 B. [DTM		
	ond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
	241			-	10			
111	205	on	-		-			
"" peratered after	Ban	01						
						_		
		4(0) (3) (200-000)						
Comments: Oakton DO meter		pre purge		mg/l				
very durkid, siltx		post purge	DO =	mg/l				
Sample ID: MW-5B		Sample Time: 2:46						
Laboratory: McCampbell Analytic	cal, INC.							
Containers/Preservative: Voa/H0	- 10							
Analyzed for: 8015, 8021	22,741100			0				
Sampler Name: Sanjiv Gill		Signatur	a. //	5		-		
Campier Harrie, Garijiv Gili		olynatur	19					

	MONIT	ORING F	IELD DAT	A SHEET Well ID: MN-5C						
Project.	Task #: 11	45.001 32	20	Project I	Name: Fei					
Address	: 5175 Br	oadway, O	akland, CA							
Date: 3/9	9/07			Weather	r. Sun	~ >				
Well Dia	meter.			Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
-		26.7	10	Depth to	Product:					
	Depth to Water (DTW): 12.91				Thickness	¥:				
	Water Column Height: 13.79			1	y Volume:		,	gallons		
Reference Point: TOC					sing Volu		01-2-00110	gallons		
			Baller, 3" PV	CONTRACTOR OF	and the state of t			galloris		
No.		Disposable		O Daller,	riiai Fulli	Р				
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
12:46	17.5	6.98	1340				2			
17:51		700	1375				4			
17:54	16.3	6.97	1369				6.5			
			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
Comments	: Oakton Di	O meter		pre purge	DO =	mg/l				
				post purge	DO =	mg/l				
very to	chid, si	ty								
Sample I	ID: ML	1-5C		Sample	Time: /2	57				
III CONTRACTOR IN THE SECOND S			alvtical INC	Sample Date: 3/9/07						
					Date. Sign	01				
	for: 801		a/HCL, Ambi	BITUMCI	,	_				
		175 176			K)				
Sampler	Name: Sa	anjiv Gill		Signatur	e: //					

Project.Task #: 11	45.001 32	0	Project	Name: Fei	ner				
Address: 5175 Bro		Win the target							
Date: 3/9/07			Weather. Cloud y						
Well Diameter:	2"		Volume/ft	1" = 0.04	3" = 0.37 4" = 0.65	6" = 1.47	163		
Total Depth (TD):			Depth to	Product:	14 0.00	140103 0.			
	Depth to Water (DTW): 6.67			Thickness					
Water Column Height: 8.25				g Volume:	124 142 8)	aallana		
Reference Point: TOC				asing Volume.			gallons		
	-	011 011				ъ	gallons		
Purging Device: D			C Bailer,	vvnal Pum	P				
Sampling Device:	Disposable	Cond (µs)	NTU	DO(ma/L)	ORP (mV)	Vol(gal)	DTW		
135 16.6	7.38	878	1410	DO(IIIg/E)	Ord (mv)		DIVV		
1:39 17.1	7.45	870		-		1.5			
1:41 16.5	7.45	873				4			
11000	- 12								
			-	-					
			-	-	-	-			
		-	 	1					
			1						
Comments: Oakton DC) meter		pre purge	DO =	mg/l				
			post purge	DO =	mg/l				
very luckid, be	oux silt								
Sample ID: M	Sample Time: /:43								
Laboratory: McCa	mpbell Ana	alytical, INC.	Sample Date: 3/9/07						
Containers/Preser									
Analyzed for: 801:					1				
java ivi. voit	, 0021			- 1	/				

MONITORING FIELD DA	Well ID: MU-7B					
Project.Task #: 1145.001 320	Project Name: Feiner					
Address: 5175 Broadway, Oakland, CA						
Date: 3/9/07	Weather. Cloudy					
Well Diameter: 2//	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163					
Total Depth (TD): 18.55	Depth to Product:					
Depth to Water (DTW): 11.18	Product Thickness:					
Water Column Height: 7.37	1 Casing Volume: J.17 gallons					
Reference Point: TOC	3 Casing Volumes: 3.53 gallons					
Purging Device Disposable Bailer 3" P	VC Bailer, Whal Pump					
Sampling Device: Disposable Bailer						
Time Temp (P) pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW					
6.91 /209	1.5					
11:31 20.9 6.95 1175	2.5					
14:35 Deratered after	3 ga//ors ====================================					
Comments: Oakton DO meter	pre purge DO ≖ mg/l					
very turbid, thick silt	post purge DO ≃ mg/l					
, , , , , , , , , , , , , , , , , , , ,						
Sample ID: Mu-13	Sample Time: 2:20					
Laboratory: McCampbell Analytical, INC	Sample Date: 3/9/07					
Containers/Preservative: Voa/HCL, Am	ber 1L/HCI					
Analyzed for: 8015, 8021	10					
Sampler Name: Sanjiv Gill	Signature:					

	MONITO	ORING F	IELD DAT	A SHEET	Г	Well ID: MH-7C			
Project.T	ask #: 11	45.001 32	0	Project N	Name: Fei				
Address:	5175 Bro	oadway, O	akland, CA						
Date: 3/9	/07			Weather	· Clou	dx			
Well Diar		2"		Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0.1	163	
		24.	56		Product:				
					Thickness				
Depth to Water (DTW): 13.09 Water Column Height: 11.47								college	
			1. 1		Volume:			gallons	
	e Point: 1	_				mes: 5.	50	gallons	
Purging [Device: D	isposable	Bailer, 3" PV	C Bailer, V	Whal Pum	р			
		Disposabl			1001 01				
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW	
	70.3	6.88	1129	-			1.5	-	
	19 8	7.01	1122				3		
11:21 D	ante.	rd af	ter 4.	5 50//	ons				
				+		-			
Comments	Oakton DO) meter		pre purge (mg/l			
VCC+ 1	withird, S	lltr		post purge	DO =	mg/l			
	School Service	habay and a second							
Sample ID: MH-7C				Sample Time: 2:22					
Laborator	ry: McCa	mpbell An	alytical, INC.	Sample I	Date: 3/9/	07			
Containe	rs/Preser	vative: Vo	a/HCL, Amb	er 1L/HCI					
Analyzed	for: 801	5, 8021			/	0			
Sampler	Name: Sa	anjiv Gill		Signature	e: /	>			

Project.Task #: 1	145.001 32	20	Project	Name: Fei	Well ID				
Address: 5175 B		SANO ACTORESCU							
Date: 3/9/07	roddina), o	distant, or	Weathe	- 5	. v				
Well Diameter:	2"		Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163						
Total Depth (TD)		2	Depth to	Product:		radios v.	100		
	Depth to Water (DTW): 9.52			Thickness					
Water Column H		g Volume:		85	gallons				
Reference Point			mes: 2	- constant	gallons				
Purging Device:	Disposable	Bailer 3" PV	C Bailer,	Whal Pum	р				
Sampling Device	: Disposabl	e Bailer							
Time Temp ©		Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
11.56 19.6	7.03	1012	1			1			
11.58 19.3		1017				1.5			
12:00 19:7	7:00 19.7 6.95 103	1032				2.5			
	-								
Comments: Oakton	DO meter		pre purge post purge		mg/l				
very tushid,	silty, ad	of	post purge		mg/l				
Sample ID:	MN-8A		Sample Time: 12'0'3						
			Sample Date: 3/9/07						
Containers/Prese	Jacob Medic	100000000000000000000000000000000000000							
Analyzed for: 80	15, 8021				10				
Sampler Name:		Signature:							

	MONT	OKING I	FIELD DATA	JOHEE		Well ID	· Wh.	60		
Project.T	ask #: 11	45.001 32	20	Project	Name: Fei	ner				
Address	5175 Br	oadway, C	akland, CA							
Date: 3/9	9/07			Weather: Sunn y						
Well Dia	meter:	2"		Volume/ft	1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0.1	163		
Total De	pth (TD):	25.	04	Depth to	Product:					
Depth to Water (DTW): 12-15			Product	Thickness	ı:					
Water Column Height: 12.89				1 Casin	g Volume:	2.06		gallons		
Reference Point: TOC				3 Ca	asing Volum	nes: 6	8	gallons		
Purging I	Device: 0	isposable	Bailer, 3" PV							
Sampling	Device:	Disposab	le Bailer							
Time	Temp ©	pH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
11:42	19.8	7.02	1418	-			2			
11246 Dera	accel	befor	Mgallons				姜			
							重			
			-11							
				1						
				+	+					
					-					
Comments	: Oakton Do) meter		pre purge	DO =	mg/l				
				post purge		mg/l				
very	webid,	heavy sil	-							
Sample I	D: MA	1-8C		Sample Time: 2:37						
Laborato	ry: McCa	mpbell Ar	nalytical, INC.	Sample	Date: 3/9/0	07				
Containe	rs/Preser	vative: V	oa/HCL, Amb	er 1L/HCI						
Analyzed	for: 801	5, 8021		,	/					
Sampler	Name: Sa	aniiv Gill		Signatur	· /k	_				

WELL GAUGING DATA

Project # 070326-WC-2 Date_	3/26/07	Client Forgea
Site Former Exxon @ 51	75 Broadwa	y. Oaklard

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water (ft.)	Depth to well bottom (ft.)	Survey Point: TOB	Ghal DTB
mw-(4					8.26			
mw-2C	2					8.72			
MW-3A	2					9,22			
MW-3C	2					10.64	2535		26.59
mw-4A	2					9.88			
MW-5A						10.82			
nw-5B	2					12-62			
MW-5C	2					12.62			
mw-6A	2					7.17			
MW-5C MW-6A MW-718	2					11.05			
MW-785	2					11-00			
mw-84	2					9.83			
mw-84 mw-8C	2					11.77		U	

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

MONITORING FIELD DAT	TA SHEET Well ID: MW-3C					
Project.Task #:	Project Name: Rockridge Heights					
Address: 5175 BROADWAY,	OAKLAND					
Date: 4-16-07	Weather:					
Well Diameter: 2 "	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163					
Total Depth (TD): 26.42	Depth to Product:					
Depth to Water (DTW): 10-92	Product Thickness:					
Water Column Height: /5.50	1 Casing Volume: (, Ø gallons					
Reference Point: MW-3C	3 Casing Volumes: 3.3 gallons					
Purging Device: Baller						
Sampling Device: Builer						
Time Temp © pH Cond (µs)						
1300 18.2 7.07 1107	- 252 3.5					
Comments:						
Name of the second seco						
20						
Sample ID: MM/- SC	Sample Time: 1300					
Laboratory: Mc Campell	Sample Date: 4-16-07					
	+ 2 AMBERS W/ HC/ reservative					
Analyzed for: TPHg/BTEX/MTBE(4	4 voAs) & TPHLd (2 ambers) W/ SILICA					
Sampler Name: /-B	Signature:					

APPENDIX B

Laboratory Analytical Report

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; Feiner	Date Sampled: 01/09/07
1710 Franklin Street, Ste. 200		Date Received: 01/09/07
Oakland, CA 94612	Client Contact: Bob Clark-Riddell	Date Reported: 01/12/07
Outland, Cri 51012	Client P.O.:	Date Completed: 01/12/07

WorkOrder: 0701160

January 12, 2007

Dear Bob:

Enclosed are:

- 1). the results of 3 analyzed samples from your #1145.001; Feiner project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Best regards,

Angela Rydelius, Lab Manager

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. TURN AROUND TIME PACHECO, CA 94553-5560 RUSH 24 HR 48 HR 72 HR 5 DAY Email: main@mccampbell.com EDF Required? Yes No Fax: (925) 798-1622 Telephone: (925) 798-1620 Analysis Request Other Comments Bill To: Pangea Environmental Report To: Bob Clark-Riddel Company: Pangea Environmental Services Inc. EPA 608 / 8082 PCIP's ONLY; Aroclors / Congenera Pael Additives (MTBE, ETBE, TAME, DIPE, TBA, 1,2 - DCA, 1,2 - EDB, ethanel) by 8260B Filter Total Petroleum Oil & Grense (1664 / 5520 E/B&P) 8015) 1710 Franklin Street Sutie 200 Samples for If Mtbe is detected by 8021 confirm by 8260B E-Mail: bcr@pangeaenv.com MTBE / BTEX ONLY (RPA 602 / 8021) TPH ns Diesel (8015) With Silica GE Oakland, CA 94612 Metals MPF BTEX & TPH as Gas (602 / 8021 + Fax: 510-836-3709 Tele: 510-836-3702 analysis: EPA 502.2 / 601 / 8010 / 8021 (HVOCs) Total Petroleum Hydrocarbons (418.1) EPA 515 / 8151 (Acidic Cl Herbicides) Project Name: Feiner Yes / No Project #: 1145,001 KPA 505/ 608 / 8081 (Cl Posticides) Project Location: 5175 Broadway, Oakland EPA 507 / 8141 (NP Penticides) Sampler Signature: Muskan Environmental Sampling METHOD MATRIX SAMPLING Type Containers PRESERVED Containers SAMPLE ID LOCATION (Field Point Name) Sludge HNO, Other Date Time HCL Soil ICE MW-1 1-9-07 1-9-07 MW-2 11:24 STMW-5 1-9-07 10:35 Received By: Relinguished By: Date: Time: 1/4/07 1:10pm Received By: Rednouished By: Date: Time:

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0701160 ClientID: PEO

(923) 232-9	9202			✓ EDF			-ax		✓ Email	[HardCopy	/	Third	Party		
Report to: Bob Clark-Rido		Email:							-Riddell			Req	juested	TAT:	5	days
	onmental Svcs., Inc. Street, Ste. 200 94612	TEL: ProjectNo PO:	(510) 836-370 : #1145.001	00 FAX: (510)	FAX: (510) 836-3709 Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612		Date Received: Date Printed:			01/09/2007 01/09/2007						
									Red	quested Tes	sts (See leg	end be	low)			
Sample ID	ClientSamplD		Matrix	Collection Date	Hold	1	2	3	4	5 (5 7	8	9	10	11	12
				T	. —		T .					ı				
0701160-001	MW-1		Water	1/9/07 11:47:00 AN		Α	Α	В								
0701160-002 0701160-003	MW-2 STMW-5		Water Water	1/9/07 11:24:00 AN		A		В								
Test Legend: 1 G-MBTE 6	7 12	PREDF I	REPORT	3 TP	H(D)W	SG_W		<u> </u>					5			
												Prepa	red by	: Lisa	Cavali	er

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; Feiner	Date Sampled: 01/09/07
1710 Franklin Street, Ste. 200		Date Received: 01/09/07
Oakland, CA 94612	Client Contact: Bob Clark-Riddell	Date Extracted: 01/10/07-01/11/07
Salamo, 5117 1012	Client P.O.:	Date Analyzed: 01/10/07-01/11/07

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Analytical methods: SW8021B/8015Cm Extraction method: SW5030B Work Order: 0701160 Lab ID Client ID TPH(g) MTBE Toluene Ethylbenzene Xylenes % SS Matrix Benzene 001A MW-1 W 530,a,i 21 1.7 2.8 5.1 1 101 002A MW-2 W 210,a,i 27 2.6 8.1 6.8 1 93 003A STMW-5 W 390.a.i 30 3.2 1.8 3.2 1 110 Reporting Limit for DF =1:

, , , , , , , , , , , , , , , , , , ,	VV	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg
* water and vapor camples and all TC	ID & CDI	Daytracte ara ra	ported in ug/L	oil/eludge/colid	camples in ma/	ka wine cample	ac in u a/wina		

water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Pangea Environmental Svcs., Inc.	Client Project ID: #1145.001; Feiner	Date Sampled: 01/09/07
1710 Franklin Street, Ste. 200		Date Received: 01/09/07
Oakland, CA 94612	Client Contact: Bob Clark-Riddell	Date Extracted: 01/09/07
0.113 1012	Client P.O.:	Date Analyzed 01/11/07

Diesel Range (C10-C23) Extractable Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW3510C/3630C		Analytical metho	Work Order: 0701160		
Lab ID	Client ID	Matrix	TPH(d)	DF	% SS
0701160-001B	MW-1	W	160,d,i	1	99
0701160-002B	MW-2	W	84,d,i	1	101
0701160-003B	STMW-5	w	180,d,i	1	105

Reporting Limit for DF =1;	W	50	μg/L
ND means not detected at or above the reporting limit	S	NA	NA

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

WorkOrder: 0701160 W.O. Sample Matrix: Water QC Matrix: Water

EPA Method SW8021B/8015	0B	BatchID: 25612				02A						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Ad	cceptan	ce Criteria (º	%)
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	103	106	3.51	114	105	7.56	70 - 130	30	70 - 130	30
MTBE	ND	10	94.5	93.5	1.03	96.7	97.7	1.08	70 - 130	30	70 - 130	30
Benzene	ND	10	101	103	2.34	104	97.1	6.54	70 - 130	30	70 - 130	30
Toluene	ND	10	94.1	96.5	2.47	97	84.3	14.0	70 - 130	30	70 - 130	30
Ethylbenzene	ND	10	99.2	101	1.41	103	96	7.06	70 - 130	30	70 - 130	30
Xylenes	ND	30	91	91.3	0.366	89	90.7	1.86	70 - 130	30	70 - 130	30
%SS:	92	10	102	103	0.937	104	101	3.02	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 25612 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701160-001	1/09/07 11:47 AM	1/10/07	1/10/07 11:47 PM	0701160-002	1/09/07 11:24 AM	1/11/07	1/11/07 12:19 AM
0701160-003	1/09/07 10:35 AM	1/11/07	1/11/07 12:51 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water QC Matrix: Water WorkOrder: 0701160

EPA Method SW8015C Extraction SW3510C/3630C						BatchID: 25625			Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)			
, and yes	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(d)	N/A	1000	N/A	N/A	N/A	113	109	3.90	N/A	N/A	70 - 130	30
%SS:	N/A	2500	N/A	N/A	N/A	94	100	6.52	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 25625 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0701160-001	1/09/07 11:47 AM	1/09/07	1/11/07 7:30 AM	0701160-002	1/09/07 11:24 AM	1/09/07	1/11/07 8:36 AM
0701160-003	1/09/07 10:35 AM	1/09/07	1/11/07 9:43 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

