RECEIVED

9:15 am, Nov 23, 2011

Alameda County Environmental Health

Mr. Paresh Khatri Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Exxon Station

5175 Broadway Oakland, California ACHCSA Fuel Leak Case No. RO0000139 SFRWQCB Site No. 01-0958 UST Fund Claim No. 003406

Dear Mr. Khatri:

I, Mr. Ernie Nadel of Rockridge Heights, LLC, have retained Pangea Environmental Services, Inc. (Pangea) as the environmental consultant for the project referenced above. Pangea is submitting the attached report on my behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report is true and correct to the best of my knowledge.

Sincerely,

Ernie Nadel

Rockridge Heights, LLC

November 15, 2011

VIA ALAMEDA COUNTY FTP SITE

Ms. Donna Drogos Alameda County Environmental Health 1331 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Groundwater Monitoring and Remediation Report - Third Quarter 2011

5175 Broadway Street Oakland, California ACEH Fuel Leak Case No. RO#0000139

Dear Ms. Drogos:

On behalf of Rockridge Heights LLC, Pangea Environmental Services, Inc., has prepared this *Groundwater Monitoring and Remediation Report* — *Third Quarter 2011*. The report describes groundwater monitoring, sampling, site remediation, and other site activities. The dramatic contaminant reduction in site wells achieved by site remediation is illustrated on Figures 5 and 6.

If you have any questions or comments, please call me at (510) 435-8664.

Sincerely,

Pangea Environmental Services, Inc.

feliddell

Bob Clark-Riddell, P.E.

Principal Engineer

Attachment: Groundwater Monitoring and Remediation Report - Third Quarter 2011

cc: Rockridge Heights, LLC, C/O Ernie Nadel, 6100 Pinewood Road, Oakland, California 94611

SWRCB Geotracker (Electronic copy)

GROUNDWATER MONITORING AND REMEDIATION REPORT - THIRD QUARTER 2011

5175 Broadway Oakland, California

November 15, 2011

Prepared for:

Rockridge Heights, LLC C/O Ernie Nadel 6100 Pinewood Road Oakland, California 94611

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies For

Morgan Gillies Project Manager Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

INTRODUCTION

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. (Pangea) conducted groundwater monitoring and sampling, and remediation system operation and sampling during this quarter at the subject site (Figure 1). The purpose of the monitoring and sampling is to evaluate dissolved contaminant concentrations, determine the groundwater flow direction, and inspect site wells for separate-phase hydrocarbons (SPH). The purpose of the remediation is to clean up petroleum hydrocarbons from a historic fuel release. Current groundwater analytical results and elevation data are shown on Figures 2 and 3. Current and historical groundwater data are summarized on Table 1. Site remediation data are summarized on Tables 3 and 4.

SITE BACKGROUND

The subject property is located at 5175 Broadway Street, at the southwest corner of the intersection of Broadway and Coronado Avenue in Oakland, California in Alameda County (Figure 1). The site is approximately 0.6 miles south-southeast of Highway 24 and approximately 2.3 miles east of Interstate 80 and the San Francisco Bay. The property is relatively flat lying, with a slight slope to the south-southwest, and lies at an elevation of approximately 160 feet above mean sea level. Topographic relief in the area surrounding the site also slopes generally towards the south-southwest. The western site boundary is the top of an approximately 10 foot high retaining wall that separates the site from an adjacent apartment complex.

The property has been vacant since 1979 and was formerly occupied by an Exxon Service Station used for fuel sales and automobile repair. The site is approximately 13,200 square feet in area and the majority of the ground surface is paved with concrete and/or asphalt, although the former tank location is not paved. Land use to the west and northwest is residential, including apartment buildings and single family homes. Properties to the northeast, east and south of the site are commercial. The site and adjacent properties are shown on Figure 2.

Environmental compliance work commenced when the site USTs were removed in January 1990. Three 8,000-gallon steel single-walled USTs, associated piping, and a 500-gallon steel single-walled waste oil tank were removed. Tank Project Engineering, Inc. (TPE) conducted the tank removal and observed holes in all four tanks. Approximately 700 tons of contaminated soil was excavated during tank removal and was subsequently remediated and reused for onsite backfill by TPE. In April 1990, TPE installed and sampled monitoring wells MW-1, MW-2 and MW-3. In June 1991, Soil Tech Engineering (STE), subsequently renamed Environmental Soil Tech Consultants (ESTC), installed monitoring wells STMW-4 and STMW-5. Groundwater monitoring was conducted on the site intermittently until October 2002. Golden Gate Tank Removal (GGTR) performed additional assessment in January and February 2006. In June 2006, the property was purchased by Rockridge Heights, LLC. Pangea commenced quarterly groundwater monitoring at the site in July 2006. MTBE is not

considered to be a contaminant of concern because use of the site for fuel sales predates widespread use of MTBE in gasoline and because analytical results have not shown significant detections of MTBE.

In January and March 2007, Pangea installed twelve wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C) and three offsite soil borings to help define the vertical and lateral extent of groundwater contamination. Pangea also abandoned four monitoring wells (MW-2, MW-3, STMW-4 and STMW-5) to reduce the risk of vertical contaminant migration and improve the quality of monitoring data. New wells installed at the site were categorized according to the depths of their screen intervals. Shallow (A-zone) wells have screen intervals of approximately 10 to 15 feet bgs, which generally straddle the top of the water table and are generally screened in surficial fill and alluvium. Intermediate-depth (B-zone) wells are screened at approximately 15 to 20 feet bgs, either in surficial strata or underlying fractured bedrock, while deep (C-zone) wells are generally screened at approximately 20 to 25 feet bgs and into fractured bedrock. Well MW-1 is screened across both the A-zone and B-zone.

In April 2007, Pangea performed a dual-phase extraction (DPE) pilot test to evaluate whether DPE is an appropriate remedial technology to remove residual hydrocarbons from beneath the site. In July 2007, Pangea submitted an Interim Remedial Action Plan for site corrective action.

In August 2007, Pangea installed three offsite monitoring wells (MW-9A, MW-9C and MW-10A) and conducted subslab vapor sampling in the commercial building located immediately south of the site. The purpose of the offsite well installation was to determine the downgradient extent of contaminant migration, and to help evaluate downgradient effects of any future remediation conducted onsite. The purpose of the subslab vapor sampling was to determine whether vapor migrating from underlying groundwater had impacted soil vapor. Soil gas sampling was also conducted near the southern and western edge of the property. Soil gas sampling and offsite monitoring well installation is described in Pangea's *Soil Gas Sampling and Well Installation Report* dated October 23, 2007. Further subslab/soil gas sampling was conducted at the two adjacent properties in June 2008 and reported in Pangea's *Additional Soil Gas Sampling Report* dated July 14, 2008.

In response to a letter from ACEH dated June 10, 2008, Pangea submitted a *Revised Site Conceptual Model and Corrective Action Plan* (Revised CAP) dated July 23, 2008. ACEH commented on the Revised CAP in a letter dated July 31, 2008 and Pangea prepared a *Corrective Action Plan Addendum* dated August 11, 2008 to address ACEH comments. In a letter dated August 22, 2008, ACEH approved the CAP and Addendum as a 'Draft CAP' and initiated the public-participation process. The *Final Corrective Action Plan* dated March 25, 2009 recommended remediation via DPE and air sparging. In response to an ACEH letter dated April 16, 2009, Pangea submitted a *Final Corrective Action Plan – Addendum* dated May 18, 2009, which provided justification for the recommended remedial action. ACEH approved the *Final CAP Addendum* in a letter dated

June 18, 2009. On August 19, 2009, Pangea oversaw installation of six dual-phase extraction (DPE) wells and one air sparging (AS) well to facilitate implementation of the approved corrective action plan. Operation of the DPE system began on December 8, 2010 and operation of the AS system began on March 16, 2011.

GROUNDWATER MONITORING AND SAMPLING

On September 13 and 14, 2011, Pangea conducted groundwater monitoring and sampling at the site in accordance with the groundwater monitoring program in Appendix A. The monitoring was performed approximately 2.5 hours after the DPE/AS system was temporarily shutdown for groundwater sampling. Site monitoring wells were gauged for depth-to-water and inspected for separate-phase hydrocarbons (SPH). To obtain water levels representative of the piezometric surface, technicians removed all well caps approximately one hour prior to measuring water levels.

Before well purging, the dissolved oxygen (DO) concentration was measured in each well scheduled for sampling. DO was measured by lowering a downwell sensor to the approximate middle of the water column, and allowing the reading to stabilize during gentle height adjustment. Prior to sample collection, approximately three casing volumes of water were purged using disposable bailers, an electric submersible pump, or a clean PVC bailer (although fewer casing volumes were purged if the well dewatered). During well purging, field technicians measured the pH, temperature and conductivity of the water. A groundwater sample was collected from each well with a disposable bailer and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4° C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was stored onsite in DOT-approved 55-gallon drums. Groundwater monitoring field data sheets, including purge volumes and field parameter measurements, are presented in Appendix B.

MONITORING RESULTS

Current and historical groundwater elevation and analytical data are described below and summarized on Table 1, Figure 2 and Figure 3. To facilitate data evaluation, well construction details are summarized on Table 2. Groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015C with silica gel cleanup; total petroleum hydrocarbons as gasoline (TPHg) by modified EPA Method 8015C; and benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8021B. Samples were analyzed by McCampbell Analytical, Inc., of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is included in Appendix C.

Groundwater Flow Direction

Based on depth-to-water data collected on September 13, 2011, shallow groundwater (A-zone) flows generally *southwestwards* beneath the northeastern portion of the site and turns *southwestwards* beneath the southern portion of the site, as shown on Figure 2. Shallow groundwater beneath the property south of the site flows towards the south. The relatively high groundwater elevation measured in well MW-6A suggests that shallow groundwater is mounded in the former UST excavation and that the local flow direction radiates outwards away from the former excavation area towards the northeast corner of the site in the direction of MW-4A. These observations are interpreted as indicating that the unpaved former UST excavation has acted as a collector for rainwater and that the asphalt pavement covering the remainder of the site serves to reduce infiltration elsewhere while directing rainwater to the unpaved UST excavation area. The current inferred flow direction in shallow groundwater is generally consistent with previous monitoring results. In addition, groundwater flow direction may be affected by dual-phase extraction (DPE) from site wells.

Groundwater flow in deep groundwater (C-zone) is generally *southwards* to *eastwards* beneath the site, as shown on Figure 3. Groundwater flow appears to converge around well MW-3C, which is likely due to operation of the DPE system at the site. Generally, the elevation of the piezometric surface for C-zone wells is lower than elevations for A-zone wells, indicating that a downward gradient is present.

Hydrocarbon Distribution in Groundwater

Current Distribution: The dramatic contaminant reduction in site wells achieved by site remediation is illustrated on Figures 5 and 6. This monitoring was performed 2.5 hours following temporary remediation system shutdown to allow subsurface equilibration. This quarter the maximum TPHg concentration detected was 4,800 μg/L (remediation well DPE-3) and the maximum benzene concentration detected was 37 μg/L (source area well MW-3A). The maximum TPHd concentration detected this quarter was 25,000 μg/L, in remediation well DPE-3. The detected TPHd concentration in remediation well DPE-3 is a slight increase from second quarter 2011, but is significantly lower than the 51,000 μg/L concentration detected during first quarter 2011. Hydrocarbon concentrations were generally within historic ranges and trends in most site wells, except for *historic low* concentrations described below. No measurable thickness of separate-phase hydrocarbons (SPH) was observed in any monitoring wells this quarter.

Most importantly, *historic low* concentrations of TPHg and benzene were detected in shallow wells MW-3A and MW-4A, deep well MW-3C, and remediation well DPE-2. These historic low concentrations are attributed to DPE and AS remediation at the site. Benzene concentrations in well MW-3A were reduced from 350 μ g/L in June 2011 to 37 μ g/L in September 2011, while TPHg concentrations in well MW-3A were similarly reduced from 5,100 μ g/L to 1,700 μ g/L in the same time frame. No data is available this quarter for key well

MW-7B because this well was dry at sampling time. TPHg and benzene concentration trends for key shallow and deep wells are illustrated on Figures 5 and 6, respectively.

<u>Historic Distribution:</u> Shallow (A-zone) groundwater contains petroleum hydrocarbons at elevated concentrations in two primary areas near the former UST excavation: a northern area in the vicinity of well MW-4A, and a southwestern area in the vicinity of wells MW-3A and MW-8A. Prior shallow grab groundwater sampling data also indicates that the southern area of contamination extends to the southern site boundary in the vicinity of wells MW-7B and MW-7C (where *benzene* concentrations are apparently biodegrading in these deeper wells). The non-detect concentrations of hydrocarbons in wells MW-9A and MW-10A indicate that offsite migration of petroleum hydrocarbons in shallow groundwater is minimal. The observed distribution of hydrocarbons in A-zone groundwater is presumably due to plume migration radially away from the excavation area, likely caused by mounding of groundwater within the uncapped former UST excavation during the rainy season.

Contaminant distribution in deeper groundwater differs from the distribution of hydrocarbons in shallow groundwater. Elevated contaminant concentrations within deeper groundwater (B-zone and C-zone) are apparently present in the vicinity of wells MW-3C, MW-7B and MW-7C in the central and southern portions of the site. Again, the apparent biodegradation of benzene and select other compounds in wells MW-7B and MW-7C suggests that deeper hydrocarbons are attenuating. Site remediation is also likely improving site conditions. Well screen intervals for shallow and deep wells are summarized on Table 2.

Fuel Oxygenate Distribution in Groundwater

No MTBE was detected above reporting limits in any samples obtained from site monitoring wells this monitoring event. MTBE is not a contaminant of concern at this site both due to the lack of detections, and because the USTs were removed in 1990 prior to widespread use of MTBE as a fuel oxygenate.

REMEDIATION SYSTEM SUMMARY

Dual Phase Extraction/Air Sparging System

The dual phase extraction (DPE) remediation system simultaneously extracts groundwater and soil vapor from site remediation wells. The remediation system layout is shown on Figure 4. Extraction and treatment is performed using a 25 hp liquid ring vacuum pump with a 400 cubic foot per minute (cfm) electric catalytic oxidizer. To maximize groundwater depression, a "stinger" (vacuum tube inserted below the water table) is used to both depress the water table and extract soil vapor in each of the 10 remediation wells (DPE-1 through DPE-6 and MW-3A, MW-4A, MW-7B and MW-8A). Extracted vapors are routed through an air/water separator and then treated by the electric catalytic oxidizer. The treated vapor is discharged to the atmosphere

in accordance with Bay Area Air Quality Management District (BAAQMD) requirements. Groundwater captured within the air/water separator is pumped through two 200-lb canisters of granular activated carbon plumbed in series. The treated groundwater is discharged into the sewer in accordance with East Bay Municipal Utility District's (EBMUD) requirements.

The air sparging (AS) system consists of a 5 hp Ingersoll-Rand rotary-screw air compressor capable of injecting 16 cfm of air and reaching pressures of 125 psig. Injection into the seven air sparge wells (AS-1, MW-1, MW-2C, MW-3C, MW-5B, MW-7C and MW-8C) is controlled by timer-activated solenoid valves and individual well needle valves on the well flow meters. The remediation system layout is shown on Figure 4.

Operation and Performance

DPE and AS system operation commenced on December 8, 2010 and March 16, 2011, respectively. The DPE system was initially operated to target elevated impact within the northern portion of the site (wells DPE-1, MW-3A, MW-4A and MW-8A). After initial contaminant mass removal rates decreased, DPE remediation was focused on the southern portion of the site, and AS was commenced soon thereafter. AS was initiated on wells MW-2C and MW-3C near the center of the site, and later expanded to include well MW-7C and well MW-8C. System operation and performance data is summarized on Tables 3 and 4. Subsequent DPE/AS targets wells across the site to optimize hydrocarbon removal. Pangea periodically optimizes hydrocarbon removal by checking influent vapor concentrations within individual wells.

As of September 26, 2011, the DPE system operated for a total of about 4,823 hours (approximately 201 days). Laboratory analytical and performance data indicates that soil vapor removal rates observed during this reporting period ranged from 0.8 to 14.5 lbs/day TPHg and 0.01 to 0.06 lbs/day benzene. As of September 26, 2011, the vapor-phase portion of the DPE system removed a total of approximately 1,177 lbs TPHg and 8.2 lbs benzene. The groundwater portion of the DPE system has removed a total of approximately 0.26 lbs TPHg and 0.006 lbs benzene. Additional hydrocarbon removal is provided by biodegradation stimulated by oxygenation from DPE/AS processes.

The DPE/AS system is monitored in accordance with air permit requirements of the *Authority to Construct Permit* issued by the Bay Area Air Quality Management District (BAAQMD) and groundwater discharge requirements of the *Wastewater Discharge Permit* issued by East Bay Municipal Utility District.

Evaluation of Remediation Effectiveness

The calculated hydrocarbon mass removal and reported concentration reduction in groundwater suggest that the DPE/AS system is effectively remediating the site subsurface. Hydrocarbon mass removal and concentration reduction are illustrated on Figures 5 and 6 and described above.

FUTURE SITE ACTIVITY

Site Remediation

Pangea plans to continue operation and optimization of the DPE/AS system to target residual elevated impact. The DPE/AS system will focus on residual impact near the southern and central portion of the site (near DPE-3 and DPE-4) and along the western property boundary adjacent the offsite residences (near MW-8A and DPE-5). This will involve primary AS in wells MW-3C, MW-7C and MW-8C. Limited AS will also be performed on wells MW-1 and MW-5B to improve conditions near theses wells.

Groundwater Monitoring

Future groundwater monitoring will help evaluate the effectiveness of dual-phase extraction and air sparging. The next quarterly monitoring event is scheduled for late December 2011 after the holiday tenant removes the Christmas trees and after additional optimization of DPE/AS on residual impact. To further evaluate remedial effectiveness, Pangea plans to sample select wells not part of the regular monitoring program (e.g., AS-1, DPE-1, DPE-5 and DPE-6). For monitoring cost control, Pangea does not plan to sample program wells MW-8C and MW-9C due to limited impact in these wells.

Electronic Reporting

This report will be uploaded to the Alameda County FTP site. The report, laboratory data, and other applicable information will also be uploaded to the State Water Resource Control Board's Geotracker database. As requested, report hard copies will no longer be provided to the local agencies.

ATTACHMENTS

Figure 1 – Site Location Map

Figure 2 – Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)

Figure 3 – Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep)

Figure 4 – Remediation System Layout

Figure 5 – TPHg and Benzene Concentration Trends in Shallow Groundwater

Figure 6 – TPHg and Benzene Concentration Trends in Deep Groundwater

Table 1 – Groundwater Analytical Data

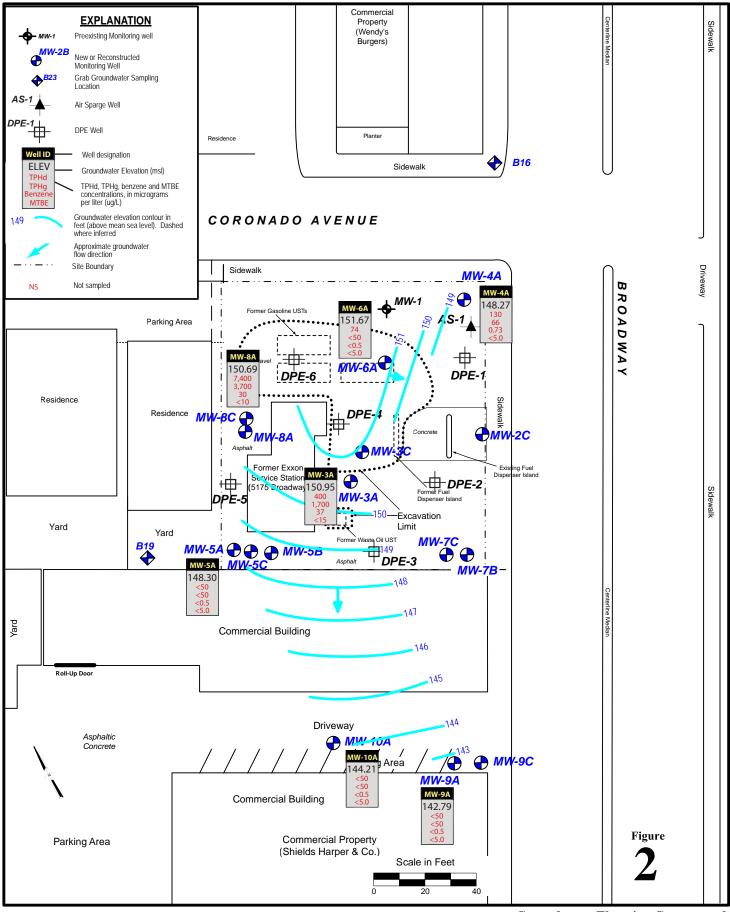
Table 2 – Well Construction Details

Table 3 – SVE System Performance Data

Table 4 – GWE System Performance Data

Appendix A – Groundwater Monitoring Program

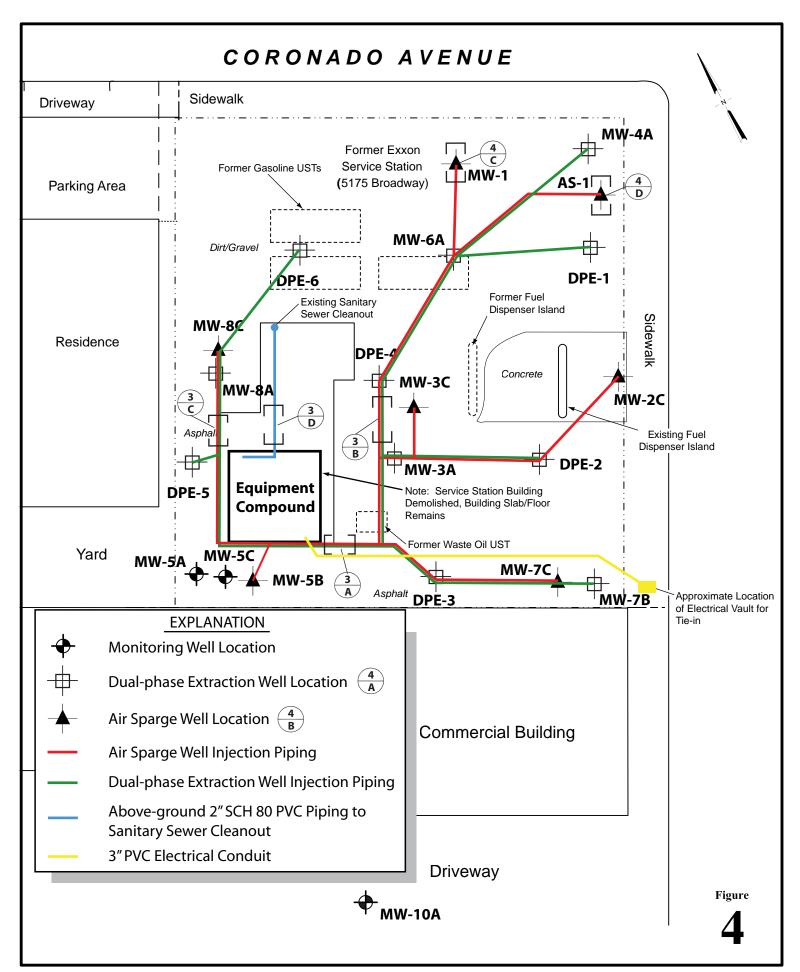
Appendix B – Groundwater Monitoring Field Data Sheets

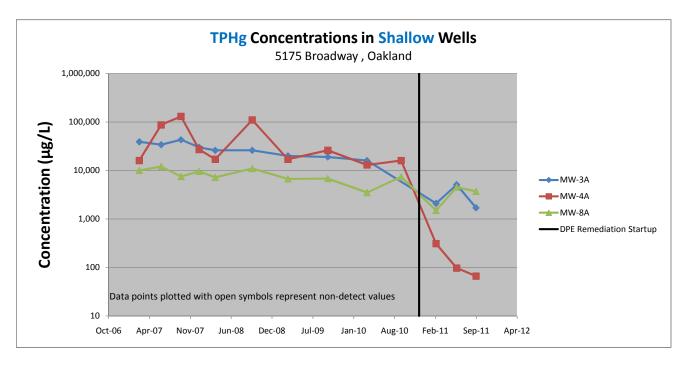

Appendix C – Laboratory Analytical Reports

Former Exxon Station 5175 Broadway Oakland, California


Site Location Map

Feiner Broadway site loc.ai 8/30/06


Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)



Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep) September 13-14, 2011

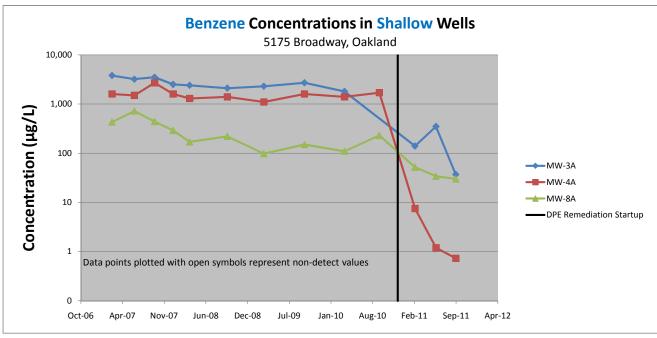
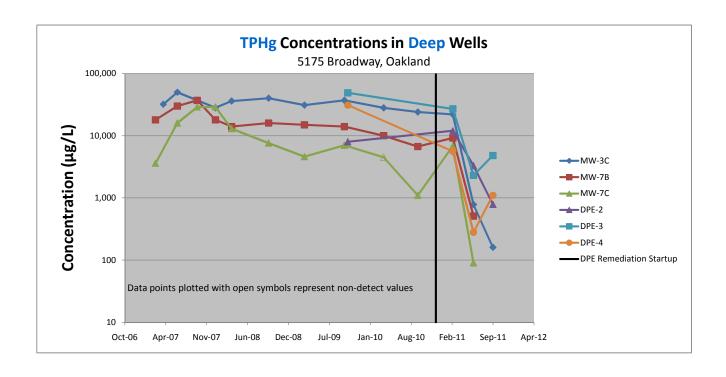



Figure 5. TPHg and Benzene Concentration Trends in Shallow Groundwater

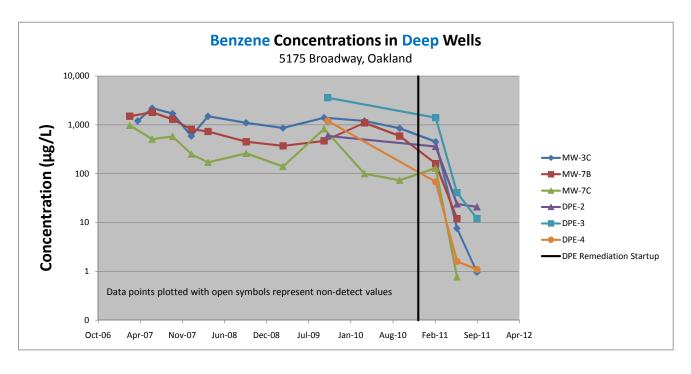


Figure 6. TPHg and Benzene Concentration Trends in Deep Groundwater

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)	•	(ft)	(ft)	(ft)	←				μg/L —					mg/L
SHALLOW WE	LLS													
MW-3A	03/09/07		152.20	9.35	4,500	39,000	3,800	220	830	2,800	<500			
(161.55)	03/26/07		152.33	9.22										
(161.57)	06/24/07		151.61	9.94	11,000	34,000	3,200	330	990	3,200	<250			
(,	09/29/07		150.21	11.36	11,000	43,000	3,500	150	730	2,200	<1,000			
	12/27/07		150.20	11.37	8,700	30,000	2,500	24	520	930	<100			
	03/15/08		152.27	9.30	10,000	26,000	2,400	110	700	1,200	<250			
	09/12/08		149.57	12.00	9,000	26,000	2,100	29	560	280	<100			
	03/06/09		152.66	8.91	6,500	20,000	2,300	59	740	410	<180			
	09/17/09		149.47	12.10	6,900	19,000	2,700	33	660	110	<250			
	03/28/10		152.50	9.07	4,300	16,000	1,800	38	220	340	<100			
	09/11/10		149.44	12.13					Insufficent v	water to sample				
	03/01/11		150.01	11.56	2,200	2,100	140	10	37	97	<10			
	06/10/11		151.89	9.68	1,400	5,100	350	140	110	490	<80			
	09/13/11		150.95	10.62	400	1,700	37	38	17	110	<15			0.36
MW-4A	03/09/07		152.88	9.56	3,600	16,000	1,600	36	37	150	<250			
(162.44)	03/26/07		152.56	9.88										
	06/24/07		152.02	10.42	110,000	87,000	1,500	59	290	800	< 500			
	09/29/07		151.33	11.11	170,000	130,000	2,700	69	400	1,400	<240			
	12/27/07		152.33	10.11	19,000	27,000	1,600	31	100	320	<90			
	03/15/08		152.51	9.93	38,000	17,000	1,300	< 50	120	380	< 500			
	09/12/08		151.72	10.72	120,000	110,000	1,400	< 50	210	660	< 500			
	03/06/09		153.84	8.60	32,000	17,000	1,100	15	<10	190	<100			
	09/17/09		151.44	11.00	25,000	26,000	1,600	63	140	320	<350			
	03/28/10		152.69	9.75	9,200	13,000	1,400	29	16	160	<100			
	09/11/10		151.34	11.10	23,000	16,000	1,700	43	140	330	<250			
	03/01/11		148.94	13.50	270	310	7.5	1.0	< 0.5	7.7	< 5.0			
	06/10/11		152.32	10.12	110	97	1.2	< 0.5	< 0.5	1.7	< 5.0			
	09/13/11		148.27	14.17	130	66	0.73	<0.5	<0.5	<0.5	<5.0			0.48
MW-5A	03/09/07		150.40	10.42	56	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
(160.82)	03/26/07		150.00	10.82										
	06/24/07		148.94	11.88	< 50	180	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		147.86	12.96										
	12/27/07		148.40	12.42										
	03/15/08		149.96	10.86	< 50	180	0.91	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		147.50	13.32						water to sample				
	03/06/09		151.33	9.49	230	460	2.0	3.0	0.68	1.9	< 5.0			
	09/17/09		148.02	12.80						water to sample				
	03/28/10		150.30	10.52	< 50	69	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/11/10		147.72	13.10						water to sample				
	03/01/11		150.98	9.84	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	06/10/11		149.95	10.87										
	09/13/11		148.30	12.52	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			0.36
MW-6A	03/09/07		154.91	6.67	380	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0			
(161.58)	03/26/07		154.41	7.17										
	06/24/07		153.79	7.79	590	140	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		152.84	8.74	540	52	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	12/27/07		154.27	7.31	170	94	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		154.42	7.16	150	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ	DIPE	1,2-DCA	Dissolved Oxygen
(ft)		(ft)	(ft)	(ft)					μg/L					mg/L
MW-6A	09/12/08		152.92	8.66	510	< 50	< 0.5	< 0.5	<0.5	<0.5	< 5.0			
(cont.)	03/06/09		155.76	5.82	110	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
, ,	09/17/09		152.89	8.69	280	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/28/10		154.55	7.03	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/11/10		152.99	8.59	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/01/11		154.57	7.01	67	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	06/10/11		154.11	7.47										
	09/13/11		151.67	9.91	74	<50	<0.5	<0.5	<0.5	<0.5	<5.0			0.23
MW-8A	03/09/07		152.05	9.52	4,200	10,000	430	18	<10	88	<100			
(161.57)	03/26/07		151.74	9.83										
	06/24/07		151.40	10.17	17,000	12,000	720	500	230	880	<300			
	09/29/07		150.64	10.95	5,300	7,500	440	67	26	240	<90			
(161.59)	12/27/07		152.00	9.59	13,000	9,600	290	100	90	360	<100			
	03/15/08		152.00	9.59	7,500	7,200	170	28	270	110	<100			
	09/12/08		150.27	11.32	9,900	11,000	220	31	110	180	< 50			
	03/06/09		153.01	8.58	5,500	6,700	98	17	57	63	< 50			
	09/17/09		150.83	10.76	5,200	6,800	150	19	10	35	<25			
	03/28/10		151.86	9.73	2,600	3,500	110	7.2	<1.7	19	<17			
	09/11/10		150.43	11.16	4,800	7,400	230	25	15	40	<90			
	03/01/11		152.80	8.79	1,000	1,500	52	3.5	24	11	<10			
	06/10/11		151.80	9.79	5,100	4,500	34	11	42	240	< 50			
	09/13/11		150.69	10.90	7,400	3,700	30	4.3	12	99	<10			0.23
MW-9A	09/29/07		142.76	12.61	86	< 50	2.6	< 0.5	< 0.5	< 0.5	< 5.0			
(155.37)	12/27/07		143.51	11.86	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		143.35	12.02	< 50	< 50	0.85	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		142.60	12.77	< 50	< 50	1.2	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		144.18	11.19	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/17/09		142.91	12.46	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/28/10		143.49	11.88	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/11/10		142.71	12.66	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/01/11		143.86	11.51	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	06/10/11		143.63	11.74										
	09/13/11		142.79	12.58	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			0.42
MW-10A	09/29/07		144.35	10.53	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
(154.88)	12/27/07		145.50	9.38	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		145.96	8.92	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		143.82	11.06	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		147.45	7.43	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/17/09		144.11	10.77	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/28/10		146.25	8.63	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/11/10		144.19	10.69	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/01/11		147.12	7.76	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	06/10/11		146.11	8.77										
	09/13/11		144.21	10.67	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			0.42

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved
(ft)	Sampled	(ft)	(ft)	to water (ft)	TPHa ←	irng	Delizene	1 Oluene	Ethylbenzene μg/L —	Ayienes	WIIDE	DIFE	1,2-DCA	Oxygen mg/L
<i>V</i> /									. 5					
DEEP WELLS														
MW-1	04/30/89					200	18	5	2	12				
(97.71)	05/17/90		88.45	9.26										
, ,	09/26/90		87.79	9.92		1,300	55	31	120	100				
	01/14/91		88.17	9.54		3,100	350	83	86	130				
(102.04)	07/03/91		92.62	9.42		580	32	41	40	55				
	11/11/91		92.59	9.45		330	20	2	2	11				
(101.83)	03/04/92		93.90	7.93		810	11	5	10	23				
	06/02/92		92.85	8.98		2,200	93	32	40	120				
	09/28/92		92.54	9.29		2,900	24	78	19	37				
	01/11/93		94.27	7.56		1,700	5.7	6	11	28				
	08/15/94		92.64	9.19		2,000	120	3	6	16				
(97.50)	11/07/96		88.77	8.73	270	1,200	3	1.1	1.5	3.8	< 0.5			
	02/12/97		89.58	7.92	< 50	1,800	13	5.7	4.8	17	< 0.5			
	06/16/97		88.46	9.04	< 50	330	27	< 0.5	< 0.5	1.2	< 0.5			
	09/30/97		89.94	7.56	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(97.50)	01/27/98		89.54	7.96	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
,	04/24/98		89.52	7.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.52	8.98	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	11/16/98		88.60	8.90	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<0.5			
	02/16/99		88.86	8.64	<50	110	< 0.5	< 0.5	<0.5	< 0.5	<0.5			
	05/17/99		89.00	8.50		280	1.1	0.6	<0.5	<0.5	<0.5			
	08/17/99		88.26	9.24	86	790	5.6	4.3	4.5	11	<5.0			
	11/17/99		87.06	10.44		1,300	3.6	1.9	2.7	6.6	<1.0			
	02/17/00		89.02	8.48		580	1.1	2.3	3.6	4.9	<5.0			
	05/17/00		89.26	8.24		1,500	130	6.8	6.1	<5.0	<5.0	 		
	08/17/00		88.73	8.77		550	160	<25	<25	<25	<25			
				9.04				<5.0		<5.0				
	11/15/00 02/16/01		88.46 89.90	7.60		130 400	<5.0 26	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0			
					160									
(161.02)	01/11/02		89.42	8.08	160	600	74 25	53 -5.0	14	52 5 0	110			
(161.03)	07/01/02		152.01	9.02	280	670	25	<5.0	<5.0	< 5.0	<5.0			
	10/04/02		151.29	9.74	520	1,800	130	7.8	8.1	14	<5.0			0.21
	07/28/06		151.93	9.10	86	250	42	1.7	1.4	3.1	<1.0	51	1.5	0.21
(161.10)	10/16/06		151.98	9.05	110	390	16	< 0.5	1.5	2.2	< 0.5	41	1.6	0.17
(161.10)	01/09/07		152.90	8.20	160	530	21	1.7	2.8	5.1				0.22
	03/26/07		152.84	8.26										
	06/24/07		152.12	8.98	220	500	24	1.1	2.2	4.2	<5.0			
	09/29/07		151.44	9.66	180	540	19	1.2	2.3	5.3	<5.0			
	12/27/07		152.60	8.50	200	290	10	0.65	1.2	3.0	<5.0			
	03/15/08		152.72	8.38	340	680	24	1.1	1.9	2.9	<10			
	09/12/08		151.86	9.24	320	1,000	13	< 0.5	0.61	1.4	< 5.0			
	03/06/09		154.40	6.70	2,700	2,500	28	3.2	4.8	10	<17			
	09/17/09		151.67	9.43	170	300	4.4	< 0.5	< 0.5	2.3	< 5.0			
	03/28/10		153.05	8.05	290	1,000	16	1.2	1.1	4.2	<5.0			
	09/11/10		151.50	9.60	190	270	6.9	< 0.5	0.75	2.1	< 5.0			
	03/01/11		152.61	8.49	1,600	940	< 0.5	< 0.5	0.55	2.0	< 5.0			
	06/10/11		152.89	8.21	1,900	1,500	2.4	< 0.5	0.84	7.9	< 5.0			
	09/13/11		150.96	10.14	320	1,400	<0.5	<0.5	<0.5	6.3	<5.0			0.66
MW-2C	03/09/07		152.24	8.41	140	450	40	9.3	2.9	16	<10			
(160.65)	03/26/07		151.93	8.72										
. ,	06/24/07		151.21	9.44	160	440	30	1.8	5.9	7.4	<5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L				\longrightarrow	mg/L
NAME OF	00/00/07		150.45	10.20	120	200	12	0.5	0.5	2.0	5.0			
MW-2C	09/29/07		150.45	10.20	120	200	13	<0.5	<0.5	2.0	<5.0			
(cont.)	12/27/07		151.42	9.23	83	190	13	0.83	< 0.5	1.9	<5.0			
	03/15/08		151.83	8.82	120	250	24	2.2	5.2	4.5	<5.0			
	09/12/08		150.73	9.92	<50	130	7.1	< 0.5	1.2	0.83	<5.0			
	03/06/09		153.21	7.44	95 •50	180	8.0	1.1	1.5	2.8	<5.0			
	09/17/09		150.57	10.08	<50	64	4.3	<0.5	0.62	0.88	<5.0			
	03/28/10 09/11/10		152.02	8.63 10.34	<50	94 <50	4.6	<0.5	0.77	1.2	<5.0			
	03/01/11		150.31 146.88	13.77	<50	670	<0.5 9.9	<0.5 <0.5	<0.5	<0.5	<5.0 <5.0			
	06/10/11		150.19	10.46	66		9.9 		0.92	0.58				
	09/13/11	 	130.19 140.39	20.26	 < 50	 < 5 0	<0.5	<0.5	<0.5	<0.5	<5.0	 	 	3.24
MW-3C	03/26/07		151.15	10.64										
(161.79)	04/16/07		150.87	10.92	36,000	32,000	1,200	710	600	1,900	< 500			
	06/24/07		149.43	12.36	200,000	50,000	2,200	4,100	860	6,100	< 500			
	09/29/07		148.33	13.46	48,000	37,000	1,700	3,300	830	4,800	<1,000			
	12/27/07		149.79	12.00	29,000	28,000	590	900	630	2,000	< 500			
	03/15/08		150.70	11.09	21,000	36,000	1,500	2,400	570	3,700	< 500			
	09/12/08		148.37	13.42	11,000	40,000	1,100	1,200	600	3,000	< 500			
	03/06/09		152.04	9.75	13,000	31,000	860	420	540	2,200	< 500			
	09/17/09		148.59	13.20	14,000	37,000	1,400	690	400	4,300	<1,200			
	03/28/10		151.15	10.64	10,000	28,000	1,200	540	750	3,200	<150			
	09/11/10		148.48	13.31	13,000	24,000	850	390	550	3,100	<1,000			
	03/01/11		148.27	13.52	19,000	22,000	450	110	600	1,500	<300			
	06/10/11		147.89	13.90	530	780	7.6	3.4	2.7	16	< 5.0			
	09/13/11		139.35	22.44	130	160	0.96	0.51	<0.5	0.99	<5.0			3.32
MW-5B	03/09/07		146.42	15.08	59	140	1.3	0.77	< 0.5	1.6	<5.0			
(161.50)	03/26/07		148.88	12.62										
	06/24/07		147.98	13.52	53	52	1.1	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		146.60	14.90	< 50	< 50	0.95	< 0.5	< 0.5	< 0.5	< 5.0			
	12/27/07		148.41	13.09	< 50	58	1.4	< 0.5	0.60	< 0.5	< 5.0			
	03/15/08		148.95	12.55	< 50	61	2.6	1.1	1.1	3.0	< 5.0			
	09/12/08		146.35	15.15	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		150.36	11.14	< 50	67	2.0	1.4	1.3	3.3	< 5.0			
	09/17/09		146.94	14.56	< 50	58	0.66	< 0.5	< 0.5	< 0.5	< 5.0			
	03/28/10		149.38	12.12	< 50	110	2.7	0.78	< 0.5	1.6	< 5.0			
	09/11/10		145.55	15.95	< 50	110	0.56	< 0.5	< 0.5	< 0.5	< 5.0			
	03/01/11		149.53	11.97	97	120	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	06/10/11		148.26	13.24										
	09/13/11		147.08	14.42	< 50	550	<0.5	<0.5	<0.5	<0.5	<5.0			0.33
MW-5C	03/09/07		148.12	12.91	<50	<50	<0.5	< 0.5	<0.5	< 0.5	<5.0			
(161.03)	03/26/07		148.41	12.62										
, /	06/24/07		147.58	13.45	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/29/07		146.41	14.62	66	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	12/27/07		148.10	12.93	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/15/08		148.48	12.55	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	09/12/08		146.04	14.99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/06/09		149.73	11.30	<50	<50	0.52	<0.5	<0.5	<0.5	<5.0			
	09/17/09		146.60	14.43	<50	<50	< 0.5	<0.5	< 0.5	<0.5	<5.0			
	03/28/10		148.68	12.35	<50	<50	1.3	<0.5	<0.5	<0.5	<5.0			
	09/11/10		146.22	14.81	<50	<50	<0.5	< 0.5	<0.5	<0.5	<5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

(ft) MW-5C (cont.) MW-7B (159.15) (159.02)	03/01/11 06/10/11 09/13/11 03/09/07 03/26/07 06/24/07 09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	(ft)	(ft) 148.95 147.51 146.31 147.97 148.10 147.54 146.91 147.37 147.66 146.87 147.90	(ft) 12.08 13.52 14.72 11.18 11.05 11.61 12.11 11.65 11.36 12.15	66 < 50 930 40,000 16,000 7,700 7,900 27,000	<50 < 50 18,000 30,000 37,000 18,000 14,000	<0.5 < 0.5 1,500 1,800 1,300	<0.5 < 0.5 1,600 2,400		<0.5 < 0.5 1,800	<5.0 < 5.0 <600	 	 	mg/L 0.27
(cont.) MW-7B (159.15)	06/10/11 09/13/11 03/09/07 03/26/07 06/24/07 09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10		147.51 146.31 147.97 148.10 147.54 146.91 147.37 147.66 146.87 147.90	13.52 14.72 11.18 11.05 11.61 12.11 11.65 11.36	 < 50 930 40,000 16,000 7,700 7,900	 < 50 18,000 30,000 37,000 18,000	 < 0.5 1,500 1,800	 < 0.5 1,600	<0.5 140	 < 0.5 1,800	< 5.0 < 600	 	 	 0.27
(cont.) MW-7B (159.15)	06/10/11 09/13/11 03/09/07 03/26/07 06/24/07 09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	147.51 146.31 147.97 148.10 147.54 146.91 147.37 147.66 146.87 147.90	13.52 14.72 11.18 11.05 11.61 12.11 11.65 11.36	 < 50 930 40,000 16,000 7,700 7,900	 < 50 18,000 30,000 37,000 18,000	 < 0.5 1,500 1,800	 < 0.5 1,600	<0.5 140	 < 0.5 1,800	< 5.0 < 600	 	 	0.27
MW-7B (159.15)	09/13/11 03/09/07 03/26/07 06/24/07 09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	146.31 147.97 148.10 147.54 146.91 147.37 147.66 146.87 147.90	14.72 11.18 11.05 11.61 12.11 11.65 11.36	<50 930 40,000 16,000 7,700 7,900	< 50 18,000 30,000 37,000 18,000	< 0.5 1,500 1,800	< 0.5 1,600	< 0.5 140	< 0.5 1,800	< 5.0 <600			
(159.15)	03/26/07 06/24/07 09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	148.10 147.54 146.91 147.37 147.66 146.87 147.90	11.05 11.61 12.11 11.65 11.36	40,000 16,000 7,700 7,900	30,000 37,000 18,000	1,800							
(159.15)	03/26/07 06/24/07 09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	148.10 147.54 146.91 147.37 147.66 146.87 147.90	11.05 11.61 12.11 11.65 11.36	40,000 16,000 7,700 7,900	30,000 37,000 18,000	1,800							
	06/24/07 09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	147.54 146.91 147.37 147.66 146.87 147.90	11.61 12.11 11.65 11.36	40,000 16,000 7,700 7,900	30,000 37,000 18,000	1,800							
(159.02)	09/29/07 12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	146.91 147.37 147.66 146.87 147.90	12.11 11.65 11.36	16,000 7,700 7,900	37,000 18,000		2,400						
(159.02)	12/27/07 03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	147.37 147.66 146.87 147.90	11.65 11.36	7,700 7,900	18,000	1,300	1.500	240	2,800	<700			
	03/15/08 09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	147.66 146.87 147.90	11.36	7,900		010	1,500	180	2,700	<500			
	09/12/08 03/06/09 09/17/09 03/28/10 09/11/10	 	146.87 147.90				810	880	38	1,600	<50			
	03/06/09 09/17/09 03/28/10 09/11/10		147.90	12.15			730	820	110	1,200	<250			
	09/17/09 03/28/10 09/11/10			44.40		16,000	450	340	19	1,300	<120			
	03/28/10 09/11/10			11.12	15,000	15,000	370	270	13	1,000	<150			
	09/11/10		146.94	12.08	10,000	14,000	470	330	44	1,100	<170			
			148.17	10.85	2,300	10,000	1,100	750	46	1,100	<300			
			146.81	12.21	2,900	6,700	590	260	84	550	<210			
	03/01/11		147.28	11.74	31,000	9,200	160	96	53	510	<50			
	06/10/11		145.90	13.12	780	510	12	5.5	1.4	28	< 5.0			
	09/13/11							Well Dr	у					
MW-7C	03/09/07		145.44	13.09	190	3,600	970	100	12	90	<120			
(158.53)	03/26/07		147.53	11.00										
	06/24/07		146.65	11.88	7,100	16,000	510	520	190	1,300	<100			
	09/29/07		146.21	12.32	11,000	29,000	580	1,400	600	4,800	<1,000			
	12/27/07		146.74	11.79	56,000	29,000	250	410	430	3,300	< 50			
	03/15/08		147.45	11.08	7,000	13,000	170	58	170	1,300	<100			
	09/12/08		146.02	12.51	2,600	7,600	260	38	76	330	< 50			
	03/06/09		147.65	10.88	1,900	4,600	140	21	15	93	<15			
	09/17/09		146.23	12.30	2,200	7,000	830	38	23	90	<100			
	03/28/10		147.32	11.21	940	4,500	<100	79	2.0	59	66			
	09/11/10		145.77	12.76	350	1,100	73	3.6	2.0	5.2	<15			
	03/01/11		146.11	12.42	1,400	6,800	130	9.6	3.1	8.0	<10			
	06/10/11		143.45	15.08	190	90	0.77	1.1	< 0.5	1.1	< 5.0			
	09/13/11							Well Dr	y					
MW-8C	03/09/07		149.18	12.15	<50	150	9.8	1.3	2.0	3.9	<5.0			
(161.33)	03/26/07		149.56	11.77										
(101.55)	06/24/07		148.96	12.37	<50	< 50	0.57	< 0.5	< 0.5	< 0.5	<5.0			
	09/29/07		148.35	12.98	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	12/27/07		149.84	11.49	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/15/08		149.94	11.49	<50	110	6.0	1.7	2.4	2.4	<5.0			
	09/12/08		148.18	13.15		<50	<0.5							
	03/06/09		151.25	10.08	<50 <50	<50 <50	2.1	<0.5 <0.5	<0.5 0.87	<0.5 0.76	<5.0 <5.0			
	09/17/09		148.63	12.70		<50	<0.5							
					<50		<0.5 6.6	<0.5	<0.5	<0.5	<5.0			
	03/28/10		149.94	11.39	<50	84 <50		0.89	2.9	2.7	<5.0			
	09/11/10		148.33	13.00	<50	<50 280	< 0.5	< 0.5	< 0.5	<0.5	<5.0			
	03/01/11		150.45	10.88	65	280	16	3.7	7.9	6.2	<10			
	06/10/11 09/13/11	 	149.56 146.53	11.77 14.80	<50 < 50	110 < 50	<0.5 < 0.5	<0.5 < 0.5	<0.5 < 0.5	<0.5 < 0.5	<5.0 < 5.0	 	 	3.07

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L					mg/L
	00.72.45									~ -				
MW-9C	09/29/07		142.67	12.27	390	68	2.2	0.88	<0.5	<0.5	<5.0			
(154.94)	12/27/07		143.40	11.54	< 50	< 50	0.84	< 0.5	< 0.5	< 0.5	< 5.0			
	03/15/08		143.98	10.96	< 50	<50	0.55	< 0.5	< 0.5	< 0.5	< 5.0			
	09/12/08		142.53	12.41	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/06/09		144.09	10.85	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/17/09		142.84	12.10	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/28/10		143.34	11.60	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/11/10		139.13	15.81	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/01/11		143.74	11.20	480	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	06/10/11		142.48	12.46	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	09/13/11		142.11	12.83	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
REMEDIATION	WELLS													
AS-1	10/04/09			11.38		<50	3.6	< 0.5	<0.5	<0.5	<5.0			
DPE-1	10/04/09			10.38		1,600	210	4.4	5.1	34	<35			
DPE-2	10/04/09			11.33		8,000	590	220	92	760	<250			
	03/01/11			16.10	14,000	12,000	360	130	96	1,700	< 50			
	06/10/11			12.41	3,100	3,300	24	40	16	340	<10			
	09/13/11			9.68	290	790	21	7.0	2.3	44	<30			0.34
DDE 4	10/01/00			44.05		40.000	2 500	4.400	4.000	- 500	2.700			
DPE-3	10/04/09			11.85		49,000	3,600	4,400	1,300	6,500	<2,500			
	03/01/11			11.37	51,000	27,000	1,400	810	870	3,300	< 700			
	06/10/11			15.34	1,100	2,300	41	19	16	130	<15			
	09/13/11			17.91	25,000	4,800	12	13	9.1	180	<15			0.33
DPE-4	10/04/09			11.50		31,000	1,200	2,900	530	4,700	<1,200			
	03/01/11			13.88	5,100	5,600	68	100	42	350	< 50			
	06/10/11			11.07	280	280	1.6	4.2	2.5	25	< 5.0			
	09/13/11			15.71	930	1,100	1.1	3.4	2.4	58	<5.0			0.29
DPE-5	10/04/09			14.46		2,900	78	71	29	260	<50			
DPE-6	10/04/09			11.05		1,800	6.7	5.2	2.6	34	<5.0			
DESTROYED W	VELLS													
MW-2	04/30/89					230	39	18	5	23				
(97.78)	05/17/90		87.78	10.00										
()	09/29/90		86.95	10.83		850	970	5	25	47				
	01/14/91		87.15	10.63		3,100	30	52	24	34				
(102.02)	07/03/91		91.94	10.08		1,590	30	52	24	34				
(102.02)	11/11/91		91.81	10.03		960	320	15	4	29				
	03/04/92		93.32	8.70		1,500	9.5	8.4	9.8	22				
	05/04/92		92.50	9.52		2,800	9.3 84	41	59	95				
	09/28/92		91.93	10.09		1,600	64 47	20	39 47	93 97				
	09/28/92		93.50	8.52		2,500	8.6	10	17	32				
(97.49)	01/11/93		93.30 87.58	9.91		6,000	450	60	100	95				
(フノ・サフ)			87.38 87.47	10.02	780	4,200	25	4.9	8.1	93 14	<0.5			
			07.47	10.02	/ 00	4.∠∪∪	4.1	4.7	0.1	14	SU)			
	11/07/96 02/12/97		88.58	8.91	5,700	1,800	16	3.1	3.4	8.8	<0.5			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)	. r	(ft)	(ft)	(ft)	←				μg/L					mg/L
MW-2	09/30/97		89.60	7.89	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(cont.)	01/27/98		89.11	8.38	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		88.81	8.68	1,400	2,100	18	6.5	4.8	21	< 0.5			
	08/17/98		87.75	9.74	< 50	2,900	5.1	4.5	5.8	17	< 0.5			
	11/16/98		87.35	10.14	< 50	1,400	2.1	1.9	2.3	4.8	< 0.5			
	02/16/99		88.57	8.92	< 50	1,600	82	16	<2.5	40	59			
	05/17/99		88.23	9.26		8,200	43	73	140	100	<250			
	08/17/99		87.45	10.04	260	2,900	20	81	17	38	< 5.0			
	11/17/99		85.97	11.52	< 50	2,600	7	3.7	5.3	12.9	<1.0			
	02/17/00		87.99	9.50		1,700	3.2	6.8	11	12.3	< 5.0			
	05/17/00		88.65	8.84		3,800	450	65	110	80	<25			
	08/17/00		88.99	8.50		4,300	440	< 50	78	< 50	< 50			
	11/15/00		87.55	9.94		5,800	320	41	78	64	<25			
	02/16/01		88.97	8.52		2,200	110	20	38	33	< 5.0			
	01/11/02		88.67	8.82	620	3,100	280	86	84	110	< 50			
(160.98)	07/01/02		151.34	9.64	940	2,600	300	29	45	27	<10			
	10/04/02		150.46	10.52	390	4,000	440	66	140	120	<25			
	07/28/06		150.96	10.02	340	1,300	150	9.9	6	18	< 0.5	3.6	< 0.5	0.17
	10/16/06		150.45	10.53	76	150	16	1.0	3.5	2.2	< 0.5	1.2	< 0.5	0.19
	01/09/07		151.65	9.33	84	210	27	2.6	8.1	6.8				0.14
	01/25/07					Well	Destroyed							
MW-3	04/30/90					56,000	3,600	8,600	1,300	7,200				
(98.14)	05/17/90		85.72	12.42										
	09/26/90		84.64	13.50		54,000	5,100	420	1,600	8,000				
	01/14/91		85.56	12.58		35,000	2,600	6,600	1,500	5,700				
(102.46)	07/03/91		90.38	12.08		33,000	4,120	4,300	1,400	4,800				
	11/11/91		90.17	12.29		57,000	3,900	8,400	2,100	14,000				
(102.18)	03/04/92		91.92	10.26		57,000	720	870	81	3,100				
(97.94)	06/02/92		86.54	11.40		50,000	240	240	220	740				
	09/28/92		85.30	12.64		64,000	110	93	97	250				
	01/11/93		87.84	10.10		68,000	210	280	360	990				
	08/15/94		85.74	12.20		50,000	870	1,200	1,300	3,000				
	11/07/96		85.54	12.40	470	68,000	33	27	63	120	<0.5			
	02/12/97		87.71	10.23	3,500	25,000	39	43	15	91	<0.5			
	06/16/97		86.15	11.79	<50	9,700	26	29	45	81	<0.5			
	09/30/97		88.54	9.40	1,600	6,000	43	36	12	11	<0.5			
	01/27/98		88.14	9.80	560	380	5.7	4.1	1.7	9.1	<0.5			
	04/24/98		88.04	9.90	680	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
	08/17/98		86.48	11.46	<50	16,000	200	18	31	82	<0.5			
	11/16/98		85.54	12.40	<50	68,000	86	54	69	130	< 0.5			
	02/16/99		87.22	10.72	<50	33,000	270	110	<5.0	770	170			
	05/17/99		87.40	10.54		72,000	280	230	320	890	<250			
	08/17/99		85.99	11.95	1,800	20,000	51	41	61	130	<5.0			
	11/17/99		84.34	13.60		1,700	39	22	31	84	<1.0			
MANA C	02/17/00		87.26	10.68		8,800	16	39	74	90	<5.0			
MW-3	05/17/00		87.69	10.25		22,000	300	260	410	940	<5.0			
(cont.)	08/17/00		86.10	11.84		15,000	230	140	470	750	<50			
	11/15/00		86.12	11.82		12,000	250	210	390	700	<25			
	02/16/01		88.26	9.68	1.000	7,400	40	72	700	250	<25			
	01/11/02 07/01/02		88.36	9.58	1,900	9,300	230	200	290	580 890	<25 <13			
(161.43)	$\Omega I/\Omega I/\Omega I$		150.29	11.14	5,200	13,000	230	220	450	xun	Z13			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date	·	Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)	_	(ft)	(ft)	(ft)	←				μg/L					mg/L
MW-3	07/28/06			Not Sampl	ed - Unable to l	ocate well								
(cont.)	10/16/06			Not Sampl	ed - Unable to l	ocate well								
	01/09/07			Not Sampl	ed - Unable to l	ocate well								
	01/22/07		149.81	11.62	93,000	34,000	770	250	760	2,000	<1,000			
	03/16/07						Well Destroye	ed						
STMW-4	07/03/91		92.58	11.00		3,100	610	62	39	150				
(103.58)	11/11/91		92.50	11.08		3,600	990	15	2.6	180				
(101.08)	03/04/92		91.64	9.44		5,000	35	20	22	71				
(98.80)	06/02/92		88.48	10.32		13,000	140	45	63	210				
(> ====)	09/28/92		88.04	10.76		40,000	35	20	48	110				
	01/11/93		89.52	9.28		24,000	26	88	92	280				
	08/15/94		88.26	10.54		9,000	500	34	46	130				
	11/07/96		88.43	10.37	180	13,000	40	2.9	7.8	19	< 0.5			
	02/12/97		89.44	9.36	5,700	5,300	95	5.3	5.9	18	<0.5			
	06/16/97		88.40	10.40	<50	5,300	37	6.2	1.7	11	<0.5			
	09/30/97		90.30	8.50	<50	2,700	42	7.7	5.7	26	<0.5			
	01/27/98		89.90	8.90	300	3,000	60	17	12	49	<0.5			
	04/24/98		89.30	9.50	<50	<50	<0.5	<0.5	< 0.5	<0.5	<0.5			
	04/24/98		88.44	10.36	<50	29,000	36	24	59	160	<0.5			
	11/16/98		88.24	10.56	<50	13,000	26	21	20	41	~0.5 			
	02/16/99		89.16	9.64	<50	32,000	660	16	16	150	<100			
	05/17/99		88.84	9.96		13,000	1600	30	45	78	<250			
	03/17/99		88.16	10.64	990	12,000	260	22	33	78 72	<5.0			
	11/17/99		86.78	12.02		7,900	21	12	17	40	<1.0			
	02/17/00		89.48	9.32		4,900	8.9	21	38	50	<5.0			
	05/17/00		89.15	9.52		9,600	840	<50		<50	<50			
	03/17/00		88.46	10.34			680	<50	61 62	<50 <50	<50 <50			
						5,100								
	11/15/00		88.28	10.52		3,900	640	<25	26	27	<25			
	02/16/01		89.60	9.20	020	5,700	560	<25	<25	<25	<25			
(162-12)	01/11/02		89.22	9.58	930	4,900	560	59	25	<25	<250			
(162.13)	07/01/02		151.85	10.28	6,700	6,700	470	18	32	45	<13			
	10/04/02		151.05	11.08	2,900	13,000	590	26	65	110	<25			
	07/28/06	0.04	151.53	10.60	39,000	25,000	960	21	73	130	<5.0	65	<5.0	0.22
	10/16/06	0.06	151.30	10.83	14,000	14,000	790	28	81	130	< 5.0	30	< 5.0	0.26
	01/09/07	0.03	152.20	9.93			Not Sampled - SI							0.24
	01/26/07						Well Destroyed	l						0.24
STMW-5	07/03/91		88.70	13.29		690	99	81	19	98				
(101.99)	11/11/91		87.99	14.00		410	61	2.4	1.4	20				
(101.36)	03/04/92		89.56	11.80		460	13	6.5	11	18				
	06/02/92		88.30	13.06		1,800	27	20	21	43				
	09/28/92		87.32	14.04		1,500	14	6.1	18	22				
	01/11/93		89.75	11.61		800	1.8	3	3.1	9.4				
	08/15/94		87.51	13.85		3,000	320	62	34	220				
(97.14)	11/07/96		83.47	13.67	330	1,200	11	1.7	4.4	13	< 0.5			
	02/17/97		85.07	12.07	3,700	1,000	11	17	1.7	9.7	< 0.5			
	06/19/97		83.81	13.33	2,300	950	7.4	1	1	7.2	< 0.5			
	09/30/97		85.90	11.24	1,100	710	5.8	4	1	1	< 0.5			
	01/27/98		85.50	11.64	1,100	340	2	1.8	1.6	8.2	<0.5			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolv
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxyge
(ft)		(ft)	(ft)	(ft)	\leftarrow				μg/L					mg/L
STMW-5	04/24/98		85.30	11.84	~5 0	2 200	12	0.4	0.5	27	<0.5			
	04/24/98		83.94	13.20	<50 <50	3,300		9.4	8.5	37 39	<0.5			
(cont.)						5,300	26	17	14		<0.5			
	11/16/98		83.40	13.74	<50	<50	< 0.5	<0.5	<0.5	< 0.5	< 0.5			
	02/16/99		84.92	12.22	< 50	950	150	3.8	1.4	14	11			
	05/17/99		84.56	12.58		2,800	67	9.4	<2.5	16	30			
	08/17/99		83.66	13.48	230	2,800	18	17	18	36	<5.0			
	11/17/99		82.26	14.88		1,600	3.9	2.3	3.2	7.5	<1.0			
	02/17/00		84.58	12.56		770	1.5	3.2	5.8	7	< 5.0			
	05/17/00		85.06	12.08		4,500	<25	<25	<25	<25	<25			
	08/17/00		83.58	13.56		2,900	170	64	100	250	<10			
	11/15/00		83.86	13.28		2,100	120	24	40	54	< 5.0			
	02/16/01		85.54	11.60		850	58	9.8	9.4	18	< 5.0			
	01/11/02		85.42	11.72	< 50	920	76	16	16	28	13			
(160.65)	07/01/02		147.51	13.14	1,500	4,300	71	14	14	36	< 5.0			
	10/04/02		146.13	14.52	60	1,400	71	17	26	35	< 5.0			
	07/28/06		147.30	13.35	370	700	22	4.3	1.2	6.6	< 0.5	< 0.5	< 0.5	0.24
	10/16/06		146.91	13.74	240	590	14	1.6	1.3	3.2	< 0.5	< 0.5	< 0.5	0.21
	01/09/07		148.19	12.46	180	390	30	3.2	1.8	3.2				0.17
	01/18/07						Well	Destroyed						
RAB GROUN	DWATER SAMPI	LING - 2007												
B-18	01/23/07			7.1	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<0.5			
B-19	03/19/07			4	<50	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
RAB GROUN	DWATER SAMPI	LING - 2006												
B1-W	02/01/06			0.5	e0 4	710	(0.52)	(0.50)	(<0.50)	(0.66)	4.0	-E O	-0.50	
B1-W B3-W	02/01/06			9.5	<84	710	(0.52)	(0.59)	(<0.50)	(0.66)	<1.0	<5.0	<0.50	
B3-W B4-W	02/08/06			9.63	<280	23,000	(3,300)	(660)	(170)	(910)	<50	380	<25	
	02/08/06			8.24		9,700	(320)	(13)	(200)	(180)	<20	1,300	12	
B5-W	02/08/06			6.96		10,000	(150)	(11)	(210)	(190)	<10	<50	<5.0	
B6-W	02/06/06			12.1		5,600	(3.9)	(3.1)	(54)	(61)	<5.0	<25	<2.5	
B7-W	02/08/06			11.72		8,000	(2,200)	(300)	(240)	(830)	<20	<100	53	
B8-W	02/08/06			9.97		18,000	(330)	(53)	(440)	(1,200)	<20	<100	11	
B10-W	02/06/06			13.3		6,800	(<5.0)	(5.7)	(170)	(69)	<10	< 50	< 5.0	
B11-W	02/10/06			14.3		230,000	(13,000)	(19,000)	(960)	(20,000)	<200	<1,000	150	
B12-W	02/03/06			7.92		460	(1.6)	(2.1)	(1.6)	(3.5)	<1.0	< 5.0	0.62	
B13-W	02/03/06			11.67	<60	1,700	(12)	(9.4)	(18)	(22)	< 5.0	<25	<2.5	
B14-W	02/06/06			13.1		38,000	(410)	(25)	(290)	(95)	< 50	<250	<25	
B15-W	02/01/06			8.75	<620	2,700	(3.2)	(2.7)	(22)	(4.3)	< 5.0	<25	<2.5	

Abbreviations:

 $[\]mu g/L \ = \ Micrograms \ per \ liter \ \text{- approximately equal to parts per billion} = ppb.$

mg/L = Milligrams per liter - approximately equal to parts per million = ppm.

 $SPH = Separate-phase \ hydrocarbons \ encountered \ in \ well \ (value \ in \ parentheses \ is \ thickness \ in \ feet).$

 $Groundwater\ elevation\ =\ TOC\ (elevation)\ -\ (depth\ to\ water)\ +\ (0.8)(SPH\ thickness).$

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015Cm.

 $TPHd = Total\ petroleum\ hydrocarbons\ as\ diesel\ by\ EPA\ Method\ 8015C.$

 $BTEX = Benzene, \ toluene, \ ethylbenzene, \ xylenes \ by \ EPA \ Method \ 8021B.$

MTBE = Methyl tertiary-butyl ether by EPA Method 8021B. (Concentrations in parentheses are by EPA Method 8260B).

 $DIPE = Diisopropyl\ ether\ by\ EPA\ Method\ 8260B.$

^{1,2-}DCA = 1,2-Dichloroethane by EPA Method 8260B.

Table 2 – Well Use and Construction Details-5175 Broadway, Oakland, CA

Well ID	Total Depth of Well (feet bgs)	Screened Interval (ft bgs)	Well Casing Nominal Diameter (inches)	Sand & Slot Size
DPE – Existing Wells				
MW-3A (DPE)	14	9-14	2	#2/12 – 0.01 Slot
MW-4A (DPE)	15	8-15	2	#2/12 – 0.01 Slot
MW-6A (DPE)	17	8-17	2	#2/12 – 0.01 Slot
MW-7B (DPE)	18.5	15.5-18.5	2	#2/12 – 0.01 Slot
MW-8A (DPE)	15	8-15	2	#2/12 – 0.01 Slot
DPE – New Wells	· ·			
DPE 1 – DPE 6	19 – 20	10-13/19-20	2	#2/12 – 0.01 Slot
AIR SPARGING – Exist	ting Wells			
MW-1 (AS)	23	13-23	4	8x20 - 0.02 Slot
MW-2C (AS)	23	18-23	2	#2/12 – 0.01 Slot
MW-3C (AS)	27	22-27	2	#2/12 – 0.01 Slot
MW-5B (AS)	20	17-20	2	#2/12 – 0.01 Slot
MW-7C (AS)	25	20-25	2	#2/12 – 0.01 Slot
MW-8C (AS)	25	20-25	2	#2/12 – 0.01 Slot
AIR SPARGING -New	Well			
AS-1	20	16-20	1	#2/12 – 0.01 Slot
GROUNDWATER MON	ITORING ONLY			
MW-5A	14	10-14	2	#2/12 – 0.01 Slot
MW-5C	27	22-27	2	#2/12 – 0.01 Slot
MW-9A	15.5	7.5-15.5	2	#2/12 – 0.01 Slot
MW-9C	21	17-21	2	#2/12 – 0.01 Slot
MW-10A	18	8-18	2	#2/12 – 0.01 Slot

bgs = below ground surface

10 12 13 14 15 15 15 15 15 15 15	Table 3.	SVE (DPE) Perform	ance Da	ata - 5′	175 Bro	adway,	Oaklaı	nd, CA					Removal				E	mission Repo	orting		
	Date	Wells	Hr Meter Reading	Time	Vapor Flow Rate	Vacuum	Sample	TPHg Data	Benzene Data	OVA Reading	Removal Rate	Removal Rate	SVE TPHg Removal	SVE Benzene Removal	TPHg Lab	Benzene Lab	Abatement Efficiency	Abatement Efficiency	Emission Rate	Vapor Flow	Notes
	12/08/10	DPF-1 MW-3A 4A 8A	5040.8	0.0	65	22	INF ₋ V	1 300	6.4	1 270	27.1	0.12	0.0	0						0	Startun Test
12.2316 PE-1, NW-3A, A4, R8 S1208 2.9 93 2.9 93 2.0 RN- 40 5.2 7.8 2.8 0.19 2.18 0.1								· ·						*							•
DPE-1,4 MW-3A, A4, A8, A8, A8, A8, A8, A8, A8, A8, A8, A8																					
100711 DPE-1, 4 588.5 0.3 3 28 NF-V 400 4.1 1.00 6.4 0.66 2.77.5 2.46 0.70 0.77.5 2.46 0.5 0.70																					
DPEL_1_2_A_MW-A4_6060_1_10_6_0_30_18_ NEV 1,000																				, ,	
		•																		, ,	
		,																		, ,	,
13.03.0711 DPE-1, 2, 4, MW-4A 694, 7 6, 8 86		, , ,																		, ,	
13/15/11 DFE-1, 2, 4, MW-4A 6940, 60 31 21 77 0.12 63 0.8 0.00 603.8 3.88 5.536,128 On.							INF-V													, ,	
13/16/11 Debuil																					
3321/11 DPE-2, 3, 4, MW-7B 781.1 4.8 53 23 NF-V 420 4.8 760 7.1 0.07 639.6 4.23	03/16/11																				
33/31/1 DPE-2, 3, 4, MW-7B 713.3 2.1 98 26 350 3.5 603 11.0 0.10 662.6 4.57	03/21/11		7081.1	4.8	53	23	INF-V	420	4.8	760	7.1	0.07		4.23							
A406/11 DPE-2, 3, 4, MW-7B 727.9 5.9 77 24 350 3.5 8.6 0.08 713.6 4.86 6,897.912 On. Optimize. A406/11 DPE-2, 3, 4, MW-7B 7293.0 0.8 73 17 350 3.5 8.2 0.07 720.5 5.07 6,897.912 On. Optimize. A406/11 DPE-2, 3, 4, MW-7B 8.8 766.9 13.9 13.9 13.9 20 INF-V 24 2.5 259 10.0 0.09 859.7 6.26 9,590.370 On. On.	03/31/11			2.1	98	26		350	3.5	603	11.0	0.10	662.6	4.57							
	04/06/11		7272.9	5.9	77	24		350	3.5		8.6			4.86							
0.4/26/11 DPE-2, 3, 4, MW-7B, 8A 7626,9 13,9 130 20 NF-V 240 2.5 259 10.0 0.09 859.7 6.26	04/12/11			0.8	73	17		350			8.2			5.07							
	04/26/11	DPE-2, 3, 4, MW-7B, 8A				20	INF-V	240	2.5	259	10.0			6.26							· ·
5.524/11 DPE-1, 2, 3, 4, MW-4B, 8A 8.78	05/04/11		7818.0		110	18		200	2.0	213	7.1			6.77						10,851,630	Off on arrival, restart.
06/06/11 DPE-1,2,3,4, MW-4A,7B,8A 8529.1 1.7 90 18 100 0.50 130 2.9 0.01 1048.5 7.47 15,077,970 Off on arrival. AS shutdown. Off on depa 06/27/11 DPE-1,2,3,4, MW-4A,7B,8A 861.0 5.5 90 18 100 0.50 130 2.9 0.01 1064.3 7.54	05/24/11		8278.0	19.2	104	18	INF-V	160	0.97	235	5.3	0.03	1018.3	7.33	< 7.0	< 0.077	> 95.6	> 92.1	0.002	13,722,030	On. Add oil.
06/06/11 DPE-1,2,3,4, MW-4A,7B,8A 8529.1 1.7 90 18 100 0.50 130 2.9 0.01 1048.5 7.47 15,077,970 Off on arrival. AS shutdown. Off on depa 06/27/11 DPE-1,2,3,4, MW-4A,7B,8A 861.0 5.5 90 18 100 0.50 130 2.9 0.01 1064.3 7.54	06/02/11		8488.2	8.8	90	18		100	0.50	130	2.9		1043.5	7.44							
06/27/11 DPE-1,2,3,4, MW-4A,7B,8A 8661.0 5.5 90 18 100 0.50 130 2.9 0.01 1064.3 7.54 15,790,230 Off on arrival, blown fuse. Off on depa 07/11/11 DPE-1,2,3,4, MW-4A,7B,8A 873.7 2.9 90 18 90 0.40 116 2.6 0.01 1071.9 7.57	06/06/11	DPE-1,2,3,4, MW-4A,7B,8A	8529.1	1.7	90	18		100	0.50	130	2.9	0.01	1048.5	7.47						15,077,970	Off on arrival. AS shutdown. Off on departure
07/11/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8730.7 2.9 90 18 90 0.40 116 2.6 0.01 1071.9 7.57 16,166,610 Off on arrival, overheating, restart. 07/18/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8874.8 6.0 90 18 90 0.40 116 2.6 0.01 1087.5 7.63 16,944,750 Off on arrival, overheating, restart. 07/19/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8970.8 1.1 82 22 100 0.50 132 2.6 0.01 1090.7 7.65 17,087,060 Off on arrival, overheating, restart. 07/28/11 DPE-1, 3, 4, MW-4A, 7B 906.9 3 2.0 76 18 100 0.50 131 2.4 0.01 1107.4 7.72 17,087,060 Off on arrival, overheating, restart. 08/18/11 DPE-1, 3, 4, MW-4A, 7B 9457.8 10.1 79 19 100 0.50 131 2.5 0.01 1122.9 7.79 17,087,060 Off on arrival, overheating, restart 17,087,060 Off on arrival, overheating, restart 17,087,060 Off on arrival, overheating, restart				5.5	90	18		100	0.50	130	2.9	0.01	1064.3	7.54							_
27/18/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8874.8 6.0 90 18 90 0.40 116 2.6 0.01 1087.5 7.63 16,944,750 Off on arrival, overheating, restart. 07/19/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8876.3 0.1 87 19 100 0.50 127 2.8 0.01 1087.7 7.63 16,952,580 Off on arrival, overheating, restart. 07/21/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8903.6 1.1 82 22 100 0.50 132 2.6 0.01 1090.7 7.65 17,087,060 Off on arrival, overheating, restart. 07/28/11 DPE-1, 3, 4, MW-4A, 7B 9020.9 4.9 75 19 100 0.50 117 2.4 0.01 1102.5 7.70 17,617,725 On. 17,839,010 On.	07/11/11	DPE-1,2,3,4, MW-4A,7B,8A	8730.7	2.9	90	18		90	0.40	116	2.6	0.01	1071.9	7.57							_
07/21/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8903.6 1.1 82 22 100 0.50 132 2.6 0.01 1090.7 7.65 17,087,060 Off on arrival, restart. 07/26/11 DPE-1, 3, 4, MW-4A, 7B 9020.9 4.9 75 19 100 0.50 117 2.4 0.01 1102.5 7.70	07/18/11 1	OPE-1, 2, 3, MW-4A, 7B, 8A	8874.8	6.0	90	18		90	0.40	116	2.6	0.01	1087.5	7.63							
07/21/11 DPE-1, 2, 3, MW-4A, 7B, 8A 8903.6 1.1 82 22 100 0.50 132 2.6 0.01 1090.7 7.65 17,087,060 Off on arrival, restart. 07/26/11 DPE-1, 3, 4, MW-4A, 7B 9020.9 4.9 75 19 100 0.50 117 2.4 0.01 1102.5 7.70	07/19/11 1	OPE-1, 2, 3, MW-4A, 7B, 8A	8876.3	0.1	87	19		100	0.50	127	2.8	0.01	1087.7	7.63						16,952,580	Off on arrival, overheating, restart.
07/28/11 DPE-1, 3, 4, MW-4A, 7B 9069.3 2.0 76 18 100 0.50 123 2.4 0.01 1107.4 7.72 17,839,010 On. 08/08/11 DPE-1, 3, 4, MW-4A, 7B 9216.3 6.1 79 19 100 0.50 131 2.5 0.01 1122.9 7.79 18,533,849 Off on arrival, restart. 08/18/11 DPE-1, 3, 4, MW-4A, 7B 9457.8 10.1 79 21 100 0.50 119 2.5 0.01 1148.4 7.91 19,678,559 On. 08/31/11 DPE-1, 3, 4, MW-4A, 7B 9579.9 5.1 97 15 50 0.50 53 1.6 0.01 1156.3 7.98 20,392,478 Off on arrival, overheating, restart. 09/22/11 DPE-1, 3, 4, MW-4A, 7B 9843.7 11.0 97 14 25 0.50 25 0.8 0.01 1164.9 8.13 21,927,794 Off on arrival, restart.				1.1	82	22		100	0.50	132	2.6	0.01	1090.7	7.65							-
07/28/11 DPE-1, 3, 4, MW-4A, 7B 9069.3 2.0 76 18 100 0.50 123 2.4 0.01 1107.4 7.72 17,839,010 On. 08/08/11 DPE-1, 3, 4, MW-4A, 7B 9216.3 6.1 79 19 100 0.50 131 2.5 0.01 1122.9 7.79 18,533,849 Off on arrival, restart. 08/18/11 DPE-1, 3, 4, MW-4A, 7B 9457.8 10.1 79 21 100 0.50 119 2.5 0.01 1148.4 7.91 19,678,559 On. 08/31/11 DPE-1, 3, 4, MW-4A, 7B 9579.9 5.1 97 15 50 0.50 53 1.6 0.01 1156.3 7.98 20,392,478 Off on arrival, overheating, restart. 09/22/11 DPE-1, 3, 4, MW-4A, 7B 9843.7 11.0 97 14 25 0.50 25 0.8 0.01 1164.9 8.13 21,927,794 Off on arrival, restart.				4.9	75	19		100	0.50	117	2.4		1102.5	7.70							i i i i i i i i i i i i i i i i i i i
08/08/11 DPE-1, 3, 4, MW-4A, 7B 9216.3 6.1 79 19 100 0.50 131 2.5 0.01 1122.9 7.79 18,533,849 Off on arrival, restart. 08/18/11 DPE-1, 3, 4, MW-4A, 7B 9457.8 10.1 79 21 100 0.50 119 2.5 0.01 1148.4 7.91 19,678,559 On. 08/31/11 DPE-1, 3, 4, MW-4A, 7B 9579.9 5.1 97 15 50 0.50 53 1.6 0.01 1156.3 7.98 20,392,478 Off on arrival, restart. 09/22/11 DPE-1, 3, 4, MW-4A, 7B 9843.7 11.0 97 14 25 0.50 25 0.8 0.01 1164.9 8.13 21,927,794 Off on arrival, restart.				2.0	76	18		100	0.50	123	2.4	0.01		7.72							
08/18/11 DPE-1, 3, 4, MW-4A, 7B 9457.8 10.1 79 21 100 0.50 119 2.5 0.01 1148.4 7.91 19,678,559 On. 08/31/11 DPE-1, 3, 4, MW-4A, 7B 9579.9 5.1 97 15 50 0.50 53 1.6 0.01 1156.3 7.98 20,392,478 Off on arrival, overheating, restart. 09/22/11 DPE-1, 3, 4, MW-4A, 7B 9843.7 11.0 97 14 25 0.50 25 0.8 0.01 1164.9 8.13 21,927,794 Off on arrival, restart.				6.1	79	19		100	0.50					7.79							
08/31/11 DPE-1, 3, 4, MW-4A, 7B 9579.9 5.1 97 15 50 0.50 53 1.6 0.01 1156.3 7.98 20,392,478 Off on arrival, overheating, restart. 09/22/11 DPE-1, 3, 4, MW-4A, 7B 9843.7 11.0 97 14 25 0.50 25 0.8 0.01 1164.9 8.13 21,927,794 Off on arrival, restart.				10.1	79					119											'
09/22/11 DPE-1, 3, 4, MW-4A, 7B 9843.7 11.0 97 14 25 0.50 25 0.8 0.01 1164.9 8.13 21,927,794 Off on arrival, restart.	08/31/11				97	15		50	0.50	53	1.6									20,392,478	Off on arrival, overheating, restart.
	09/22/11				97																
	09/26/11				101	20	INF-V														

Notes:
ALL = Wells DPE-1 through DPE-6, MW-3A, MW-4A, MW-7B and MW-8A
NA = not analyzed; NM = not measured; --- = not available

System data estimated when specific data not available. cfm = actual cubic feet (cf) per minute based on anemometer readings (from vacuum pump during SVE). Flow rate is estimated on select days when anemometer measurements are anomalous (anemometer repair was required 2nd Qtr 2011). ppmv = parts per million on volume to volume basis. Actual lab data shown in **bold.** Lab data estimated for dates without lab data to allow mass removal calculation.

lbs = Pounds

"Hg = Inches of mercury vacuum

SVE = Soil Vapor Extraction

OVA = Organic Vapor Analyzer (Horiba Model MEXA 324JU)

TPHg and Benzene Removal Rates = For dates where no laboratory analytical data was collected, the lab data is estimated based on prior lab data and OVA readings to calculate period and cumulative mass removal. Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

Rate = lab concentration (ppmv) x system flowrate (scfm) x (1lb-mole/386 ft³) x molecular weight (86 lb/lb-mole for TPH-Gas hexane) x 1440 min/day x 1/1,000,000.

Table 4. GWE (DPE) System Performance Summary - 5175 Broadway, Oakland, California

		Totalizer	Interval	Interval	Average	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	
Well ID	Date	Reading ¹	Flow Volume	Duration	Flow Rate	Concentration	Concentration	Concentration	Removed	Removed	Removed	Comments
		(gallons)	(gallons)	(days)	(gpm)	(ug/L)	(ug/L)	(ug/L)	(Lbs)	(Lbs)	(Lbs)	
ystem	12/08/10	0	0	0					0.000	0.000	0.000	System startup testing, water not discharged to sewer yet.
nfluent	12/10/10	248	248	2	0.09				0.000	0.000	0.000	Off; restart.
	12/14/10	1,120	872	4	0.15	300	4.6	ND (<5.0)	0.002	0.000	0.000	Startup water sampling of influent (12/14)
	12/22/10	3,585	2,465	8	0.21				0.006	0.000	0.000	On. Shutdown due to noise, restarted 12/29.
	01/07/11	7,622	4,037	16	0.18				0.010	0.000	0.000	On. System off 1/14 due to noise, restart 1/19.
	02/02/11	16,840	9,218	26	0.25	1,300	52	ND (<10)	0.100	0.004	0.000	Off on arrival; add oil and restart.
	02/22/11	25,427	8,587	20	0.30	680	8.4	ND (<5.0)	0.049	0.001	0.000	On. Add more oil.
	02/28/11	28,855	3,428	6	0.40				0.019	0.000	0.000	On. Shutdown for GWM and restarted.
	03/09/11	31,981	3,126	9	0.24				0.018	0.000	0.000	On.
	03/15/11	34,398	2,417	6	0.28				0.014	0.000	0.000	On.
	03/16/11	34,961	563	1	0.39				0.003	0.000	0.000	On.
	03/31/11	36,763	1,802	15	0.08				0.010	0.000	0.000	Off. Add more soundproffing and restart.
	04/06/11	39,571	2,808	6	0.33				0.016	0.000	0.000	On.
	04/12/11	39,671	100	6	0.01	240	4.8	ND (<5.0)	0.000	0.000	0.000	See NOTE below.
	04/26/11	41,195	1,524	14	0.08				0.003	0.000	0.000	On.
	05/04/11	41,703	508	8	0.04				0.001	0.000	0.000	Off. Pump overheating. Restart
	05/24/11	42,965	1,262	20	0.04	66	0.92	ND (<5.0)	0.001	0.000	0.000	Off. Restart
	06/02/11	43,908	943	9	0.07				0.001	0.000	0.000	On.
	06/06/11	47,392	3,484	4	0.60				0.002	0.000	0.000	Off on arrival; restart. Off on departure
	07/13/11	48,851	1,459	37	0.03				0.001	0.000	0.000	Off on arrival; restart.
	07/21/11	51,271	2,420	8	0.21				0.001	0.000	0.000	Off. Restart.
	07/26/11	53,411	2,140	5	0.30	68	0.51	ND (<5.0)	0.001	0.000	0.000	On.
	07/28/11	54,069	658	2	0.23				0.000	0.000	0.000	On.
	08/08/11	55,829	1,760	11	0.11				0.001	0.000	0.000	Off. Restart.
	08/18/11	60,036	4,207	10	0.29				0.002	0.000	0.000	On.
	08/31/11	61,771	1,735	13	0.09				0.001	0.000	0.000	Off. Restart.
	09/22/11	65,179	3,408	22	0.11				0.002	0.000	0.000	Off. Restart.
	09/26/11	65,389	210	4	0.04				0.002	0.000	0.000	Off. Restart.
	07/20/11	03,307	210		0.01				0.264	0.006	0.000	Total Cumulative Removal (Lbs)
ystem	04/12/11					ND (<50)	ND (<0.5)	ND (<5.0)				See NOTE below.
Iidpoint	05/24/11					ND (<50)	ND (<0.5)	ND (<5.0)				
•	07/26/11					ND (<50)	ND (<0.5)	ND (<5.0)				
ystem	12/08/10											
ffluent	12/14/10					ND (<50)	ND (<0.5)	ND (<5.0)				Startup water sampling of effluent (12/14)
	02/22/11					ND (<50)	ND (<0.5)	ND (<5.0)				
	05/24/11					ND (<50)	ND (<0.5)	ND (<5.0)				
	07/26/11					ND (<50)	ND (<0.5)	ND (<5.0)				
					Discharge	Limits (ug/L):	5	5	5	5		
					Discharge	Linus (ug/L).	Benzene	Toluene	Ethylbenzene			

ABBREVIATIONS AND NOTES:

NOTE = Based on previous and subsequent analytical results Pangea switched the 4/12/11 analytical results for System Influent and Midpoint. Pangea suspects that the samples were accidently switched by the lab or mislabeled by the technician.

TPHd = Total Petroleum Hydrocarbon as Diesel analyzed by EPA Method 8015B with silica gel cleanup

TPHg = Total Petroleum Hydrocarbon as Gasoline analyzed by EPA Method 8015B

Benzene analyzed by EPA Method 8021B

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021 Cm

Toulene, Ethylbenzene and Total Xylenes analyzed by EPA Method 8015B

^{1 =} Initial totalizer reading was 23,559. Therefore, shown reading above 0 is actual reading minus 23,559. The 12/10/10 reading of 23,807 less 23,559 equals 248 gallons discharged.

gpm = Gallons per minute

^{-- =} not measured/not available

^{*} Estimated contaminant mass calculated by multiplying average concentration detected during period (Table 1) by volume of extracted groundwater. Uses most recent lab data.

^{**}Unless noted Toulene, Ethylbenzene and Total Xylenes non-detect (<0.5)

APPENDIX A

Groundwater Monitoring Program

Table A. Quarterly Groundwater Monitoring Program During Active Remediation

Rockridge Heights, 5175 Broadway, Oakland, CA

Well ID	Well Type	Screened Interval (ft bgs)	Well Location for Monitoring	Casing Diam. (in)	Gauge Frequency	Sample Frequency ¹
Shallow Wells						
MW-3A	Mon + DPE	9-14	Downgradient (Onsite)	2	Q	Q
MW-4A	Mon + DPE	8-15	NE Corner, Upgradient (Onsite)	2	Q	Q
MW-5A	Mon	10-14	SW Corner, Downgradient (Onsite)	2	Q	A
MW-6A	Mon + DPE	8-17	Source Area, Upgradient (Onsite)	2	Q	A
MW-8A	Mon + DPE	8-15	W Boundary, Downgradient (Onsite)	2	Q	Q
MW-9A	Mon	7.5-15.5	Downgradient (Offsite)	2	Q	A
MW-10A	Mon	7.5-15.5	Downgradient (Offsite)	2	Q	A
Deep Wells						
MW-1	Mon + AS	13-23	N Boundary, Upgradient (Onsite)	2	Q	Q
MW-2C	Mon + AS	18-23	E Boundary, Downgradient (Onsite)	2	Q	A
MW-3C	Mon + AS	22-27	Source Area, Downgradient (Onsite)	2	Q	Q
MW-5B	Mon + AS	17-20	SW Corner, Downgradient (Onsite)	2	Q	A
MW-5C	Mon	22-27	SW Corner, Downgradient (Onsite)	2	Q	A
MW-7B	Mon + DPE	15.5-18.5	SE Corner, Downgradient (Onsite)	2	Q	Q
MW-7C	Mon + AS	20-25	SE Corner, Downgradient (Onsite)	2	Q	Q
MW-8C	Mon + AS	20-25	W Boundary, Crossgradient (Onsite)	2	Q	Q
MW-9C	Mon	17-21	Downgradient (Offsite)	2	Q	Q
AS-1	AS	16-20	NE Corner, Upgradient (Onsite)	1		
DPE-1	DPE	9-19	NE Corner, Upgradient (Onsite)	4		
DPE-2	DPE	9-19	E Boundary, Downgradient (Onsite)	4	Q	Q
DPE-3	DPE	10-20	S Boundary, Downgradient (Onsite)	4	Q	Q
DPE-4	DPE	13-18	Source Area, Downgradient (Onsite)	4	Q	Q
DPE-5	DPE	9-19	W Boundary, Crossgradient (Onsite)	4		
DPE-6	DPE	14-19	Source Area (Onsite)	4		

Notes and Abbreviations:

1= Sample Analytes: Total Petroleum Hydrocarbons as Gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8015Cm/8021B and Total Petroleum Hydrocarbons as Diesel (TPHd) by EPA Method 8015C with silica gel clean-up.

Q = Quarterly (Typically March, June, September and December)

A = Annually (Typically September)

 $Mon = Groundwater\ Monitoring\ Well$

N, S, W, E = Cardinal directions North, South, West, East and other directions (e.g., Northeast = NE)

DPE = Dual Phase Extraction Well

AS = Air Sparge Well

APPENDIX B

Groundwater Monitoring Field Data Sheets

<u>Pangea</u>

- ENVIRONMENT	AL SERVICES, I	NC	Well (Sauging Da	ta Sheet		rage <u> Ol a</u>	
Project.Ta	ask #: 1045	5.001.228		Project Name	: Rockridge	Heights		
Address:	5175 Broa	dway, Oak	land, CA			Date:9-13-11		
Name: 5	teve H	unter	r- <u>-</u>	Signature:	Starte			
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point	
MW-1	2"	1104			1014	22.82	TOC	
лW-2C	2"	1034			2026	23.5-1		
MW-3A	2"	1115		-	1062	13.23		
MW3C	2"	1117			22.44	26.84		
1111-4.4	2"	1027		_	14.17	14.76		
AlW-5A	2"	1013	_	_	12.52	13-64		
11W-5B	2"	1018	\ <u>-</u>		14.42	19-32		
MW5C	2"	1016	j	_	14.72	26.83		
114-64	2"	1030	-		9,91	14.95		
nlw-7B	2"	1041			Dry	1830		
,114-7C	2"	1046	<u> </u>		Dry	24.16		

Comments: System Shut Jown at 0730, wells opened hour before Worntoring.

Page 2of 2

Well Gauging Data Sheet

Project.Task #: 1045.001.228				Project Name: Rockridge Heights					
Address: 5175 Broadway, Oakland, CA				Date:9-13-11					
Name: Steve Hunter				Signature: 5 ta Rich					
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point		
MW-8A	2"	1057			1040	14.60	TOC		
MW-3C	2"	1037			14.30	24-21			
DPE-2	4"	1/1/			9.68	19,26			
DPE-3	4"	1049		-	17.91	19.45			
DPE-4	4"	1120			15.71	16.73			
1.W-94	2"	1007		_	12.58	15.31			
11W-9C	2"	1011			12.83	2056			
MW-10A	2"	p03			10.67	18.06	\mathcal{V}		
					,				

Comments:	 	 	

MONITORING FIELD DAT	TA SHEET Well ID: MW-					
Project.Task #:1145.001.228	Project Name: Rockridge Heights					
Address: 5175 Broadway, Oakland, CA						
Date: 9-14-1(Weather: Clear					
Well Diameter: $\mathcal{Q}^{\prime\prime}$	Volume/ft. $1" = 0.04$ $3" = 0.37$ $6" = 1.47$ $2" = 0.16$ $4" = 0.65$ radius ² * 0.163					
Total Depth (TD): 22-32	Depth to Product:					
Depth to Water (DTW): 10.14	Product Thickness:					
Water Column Height: しんんと	1 Casing Volume: 2 gallons					
Reference Point: N.T.O.C.	3_ Casing Volumes: 💪 gallons					
Purging Device: Disposable Bailer						
Sampling Device: Disposable Bailer						
Time Temp © pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW					
1453	066 9					
1458 20.9 7-36 940	-202 2					
1503 206 F21 953 1507 20.5 7.28 962	763 4					
1507 20.5 7.23 962	-151 C					
Comments:						
						
Sample ID: MW~[Sample Time: 152					
Laboratory: McCampbell	Sample Date: 9-14-11					
Containers/Preservative: 3 Voas (HCL),	1-One Liter Ambers (HCL)					
Analyzed for:TPHg/BTEX/MTBE(8015C	m/8021),TPHd (8015C) with silica gel clean-up					
Sampler Name: Steve Hunter	Signature: Im Guito					

MONITORING FIELD DATA	A SHEET Well ID: MW-2C					
Project.Task #:1145.001.228	Project Name: Rockridge Heights					
Address: 5175 Broadway, Oakland, CA						
Date: 9-13-11	Weather: Clean					
Well Diameter: $\mathcal{Q}^{\prime\prime}$	Weather : Clean Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163					
Total Depth (TD): 23-5	Depth to Product:					
Depth to Water (DTW): 20.26	Product Thickness:					
Water Column Height: 3.25	1 Casing Volume: 6.52 gallons					
Reference Point: N.T.O.C.	1 Casing Volume: G.52 gallons 3_ Casing Volumes: G.52 gallons					
Purging Device: Disposable Bailer						
Sampling Device: Disposable Bailer						
Time Temp © pH Cond (μs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW					
155 (3.24					
1556 196 697 1097	-47 05					
100 143 631 1103	-61 1.0					
1606 191 6-23 1111	-66 1.5					
 	 					
 	 					
Comments:						
Comments:						
						
Sample ID: MW-2C	O-marks Times 1872					
Sample ID: MW-L	Sample Time: 1625					
Laboratory: McCampbell	Sample Date: q-13-1(
Containers/Preservative: 3 Voas (HCL), 1	-One Liter Ambers (HCL)					
Analyzed for:TPHg/BTEX/MTBE(8015Cm	/8021),TPHd (8015C) with silica gel clean-up					
Sampler Name: Steve Hunter	Signature: HA					

MONITOR	ING F	IELD DATA	SHEET Well ID: MW -			34		
Project.Task #:1145.0	001.228	3	Project Name: Rockridge Heights					
Address: 5175 Broad	way, O	akland, CA						
Date: 9-14-1(Weather	: cle	cr			
	2	1/	Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37	6" = 1.47	100	
Well Diameter:	-				[4" ≅ 0.65	radius 0.1	163	
Total Depth (TD):		13.83	Depth to	Product:				
Depth to Water (DTW	<u>/):</u>	10.62		Thickness				
Water Column Heigh	t:	3,21	1 Casing	Volume:	Į.	0.5	gallons	
Reference Point: N.T	.O.C.		3_ Ca	g Volume: sing Volur	nes: 👸	1.5	gallons	
Purging Device: Disp	osable	Bailer					 	
 Sampling Device: Dis	posabl	e Bailer					1	
Time Temp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)		DTW	
13/C				0-36		0		
 	7.13	1228	_	 	-50	0.5		
	2.06	1239		ļ	-47	/		
1315 191 7	209	1246			-43	1.5	·	
			<u></u>					
			<u></u>		! 			
Comments:								
Sample ID: MiV-	Sample Time: 1330							
Laboratory: McCamp	Sample Date: 9-/4-1/							
Containers/Preservat	ive: 3 V	oas (HCL), 1-						
Analyzed for:TPHg/B	TEX/M	TBE(8015Cm/	/8021),TF	Hd (8015	C) with sili	ca gel cle	an-up	
 Sampler Name: Steve	Signature:							

Sampler Name: Steve Hunter

Well ID: MW3C MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA Weather: $2/22\sqrt{}$ Volume/ft. $1" = 0.04 \quad 3" = 0.37 \quad 6" = 1.47$ $2" = 0.16 \quad 4" = 0.65 \quad \text{radius}^2 * 0$ Date: 9-14-11 211 Well Diameter: 4'' = 0.65 radius² * 0.163 Total Depth (TD): 26-84 Depth to Product: Depth to Water (DTW): 22-44 Product Thickness: 0.70 Water Column Height: 1 Casing Volume: gallons 2.5 Reference Point: N.T.O.C. 3 Casing Volumes: gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer DO(yng/L) ORP (mV) Vol(gal) Time Temp © рН Cond (µs) NTU DTW 1343 Ø 1347 20-1 757 42 948 19-6 7.411 \$4.95/ 2 135/ 19-3 1.355 956 2.5 Comments: Sample Time: Sample ID: MW-3C Laboratory: McCampbell Sample Date: Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up

Signature:

MONITORING FIELD D	ATA SHEE	ET	Well ID:	MW-L	14					
Project.Task #:1145.001.228	Project	Name: Ro	ckridge He	eights						
Address: 5175 Broadway, Oakland, (CA									
Date: 9-14-11	Weath	O1 .	nercous							
Well Diameter: 2 '	Volume/	ft. $ \frac{1" = 0.04}{2" = 0.16} $	3" = 0.37 4" = 0.65	6'' = 1.47 radius ² * 0.	163					
Total Depth (TD): 4.76	Depth	to Product:								
Depth to Water (DTW): 14パヲ	Produc	t Thickness); ;							
Water Column Height:	[ng Volume:			gallons					
Reference Point: N.T.O.C.	3_ C	asing Volui	mes:		gallons					
Purging Device: Disposable Bailer										
Sampling Device: Disposable Bailer										
Time Temp © pH Cond ($-\tau$	ORP (mV)		DTW					
1038 194 693 936	<u>, </u>	048	-72	Ø						
			ļ							
										
										
			ļ							
										
			<u> </u>							
		_L	<u> </u>							
Comments: Insufactivit white t	c A	purae.	1/0 /0	198 5	secult !					
										
Sample ID: MW-4A	Sample	Time:	1040							
		e Time:	<u>1040</u> 3 ii 1 ii							
Laboratory: McCampbell			9-14-1							
Containers/Preservative: 3 Voas (HC										
Analyzed for:TPHg/BTEX/MTBE(801	5Cm/8021),7	PHd (8015	C) with sil	ica gel cle	∍an-up					
Sampler Name: Steve Hunter Signature:										

Well ID: MW-5A MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA Date: Weather: 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius² * 0 Volume/ft. Well Diameter: Total Depth (TD): 1364 Depth to Product: Depth to Water (DTW): **Product Thickness:** 0.18 Water Column Height: 1.12 1 Casing Volume: gallons Reference Point: N.T.O.C. 3 Casing Volumes: 0,3 gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer Temp © pH Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 1235 036 -42 20.5 630 1211 Comments: Insufficient librates to juge. MW-5 A Sample ID: Sample Time: Laboratory: McCampbell Sample Date: Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Sampler Name: Steve Hunter Signature:

Well ID: MW55 MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA Weather: 2/2 Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$ Date: 7-13-1/ 27 Well Diameter: Total Depth (TD): 19-3-2 Depth to Product: Depth to Water (DTW): ___/4.4.2 **Product Thickness:** 4,90 1 Casing Volume: の, 7さ Water Column Height: gallons 3_Casing Volumes: 2.5 Reference Point: N.T.O.C. gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer Time Temp © pН Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) DTW 0-33 1342 189 690 -55 12:18 993 991 19-1 687 60 1253 985 19.0 2.5 1359 -61 Comments: Sample ID: MW-5B Sample Time: 1410 Sample Date: 9-13-// Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Sampler Name: Steve Hunter Signature:

Sampler Name: Steve Hunter

Well ID: MW-5C MONITORING FIELD DATA SHEET Project Name: Rockridge Heights Project.Task #:1145.001.228 Address: 5175 Broadway, Oakland, CA Weather: Clear 9-13-11 Date: 2 7 Well Diameter: 26-83 Total Depth (TD): Depth to Product: Depth to Water (DTW): 14-7之 **Product Thickness:** Water Column Height: 1 Casing Volume: gallons 3 Casing Volumes: Reference Point: N.T.O.C. gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer DO(mg/L) ORP (mV) Temp © Cond (µs) NTU Vol(gal) DTW Time Ηд 1257 027 1792 13-5 668 1302 1214 130 Z 18.1 6.66 1309 6.65 1312 13.0 Comments: Sample ID: MW-5C Sample Time: 325 Sample Date: 9-13-1/ Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up

Signature: The Andrew

MONITORING FIELD DAT	A SHEET	Well ID	: MW-C	6.4								
Project.Task #:1145.001.228	Project Name: Ro	ockridge He	eights									
Address: 5175 Broadway, Oakland, CA		-										
Date: 9-14-11		OVE/CC										
Well Diameter:	Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$	3" = 0.37 4" = 0.65	6'' = 1.47	163								
	}		radius o.	100								
Total Depth (TD): /ゲイラ	Depth to Product	· - · - · -										
Depth to Water (DTW): 9,9	Product Thicknes	ss:										
Water Column Height: らっつり	1 Casing Volume	: 1		gallons								
Reference Point: N.T.O.C.	3_ Casing Vol	umes:	3	gallons								
Purging Device: Disposable Bailer												
 Sampling Device: Disposable Bailer												
Time Temp © pH Cond (µs)) ORP (mV)	Vol(gal)	DTW								
1053	0.23											
1053 149 7.36 936		5										
1102 97 740 941		5	2									
1105 198 7.42 978		2	3									
	.											
Comments:		· · · · · · · · · · · · · · · · · · ·										
	· · · · · · · · · · · · · · · ·											
Sample ID: MW-6A Sample Time: [11]												
Laboratory: McCampbell	Sample Date:	9-14-1	/									
Containers/Preservative: 3 Voas (HCL),	1-One Liter Ambers	(HCL)										
Analyzed for:TPHg/BTEX/MTBE(8015Cr	m/8021),TPHd (801	5C) with sil	ica gel cle	an-up								
Sampler Name: Steve Hunter Signature:												

Sampler Name: Steve Hunter

Well ID: AW-8A MONITORING FIELD DATA SHEET Project Name: Rockridge Heights Project.Task #:1145.001.228 Address: 5175 Broadway, Oakland, CA Weather: Clec \checkmark Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$ Date: 0-13-11 Well Diameter: 2 1 (Total Depth (TD): 14.60 Depth to Product: Depth to Water (DTW): 10 90 Product Thickness: Water Column Height: 370 1 Casing Volume: gallons 3 Casing Volumes: Reference Point: N.T.O.C. gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer NTU DO(mg/L) ORP (mV) Vol(gal) DTW Time Temp © рН Cond (µs) \$ 1421 12 0.23 07 1428 703 1436 6 4 g 1492 1435 18.9 58 1-5 6.93 1442 12.6 1503 2 Comments: Sample ID: AIW- 84 Sample Time: 9-13-11 Sample Date: Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up

Signature: 17 1/2

Well ID: MW-8 C MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA Date: 9-13-10 Weather : 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius²* (Volume/ft. Well Diameter: 4'' = 0.65 radius² * 0.163 Total Depth (TD): 448モースリス(Depth to Product: Depth to Water (DTW): Product Thickness: Water Column Height: 1 Casing Volume: gallons Reference Point: N.T.O.C. 3_ Casing Volumes: gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer DO(mg/L) ORP (mV) Vol(gal) Time Temp © рН Cond (µs) NTU DTW 1507 307 90 1035 19-1 687 1513 1.5 83 6.93 190 1579 19.C 6.98 Comments: Sample Time: 1535 Sample ID: MV-8() Sample Date: 9-13-1/ Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Signature: 14 Sampler Name: Steve Hunter

Well ID: DPE- ≥ MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA Weather: overcus T Date: 9-14-11 Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius² * 0.163 Well Diameter: 4/1/ Total Depth (TD): 19-2 & Depth to Product: Depth to Water (DTW): 968 **Product Thickness:** Water Column Height: 9.58 1,53 1 Casing Volume: gallons 3 Casing Volumes: 4-5 Reference Point: N.T.O.C. gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer NTU DO(mg/L) ORP (mV) Vol(gal) Time Temp © рΗ Cond (µs) DTW 1233 034 Ø 193 7.00 1.5 1149 -131 1237 .3 1245 6.97 104 19.3 1153 15-7 4.5 1250 693 -96 Comments: Sample Time: 1305 Sample ID: DPE-2 Sample Date: 9 14 11 Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Signature: Sampler Name: Steve Hunter

Well ID: DHE-3 MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA Weather: 0.04 = 0.37 = 0.37 | 0.37 = 0.37 | 0.37 = 0.47 | 0.47 = 0.47Date: 9-14-11 Well Diameter: Total Depth (TD): Depth to Product: Depth to Water (DTW): 17-91 Product Thickness: Water Column Height: 1,54 1 Casing Volume: gallons 3 gallons Reference Point: N.T.O.C. 3 Casing Volumes: Purging Device: Disposable Bailer Sampling Device: Disposable Bailer Temp © Cond (µs) NTU DO(mg/L) ORP (mV) Vol(gal) рΗ DTW 0.33 113 T 1 453 698 15 a to 19-1 1140 7.03 496 1147 189 10 7.11 1192 18-7 512 Comments: Sample ID: DPE-3 Sample Time: 1210 Sample Date: 7-14-1/ Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Signature: Sampler Name: Steve Hunter

	MONITO	DRING F	IELD DATA	A SHEET	Γ	Well ID	:DPE-	4							
Project.T	ask #:114	5.001.228	3	Project N	Name: Ro	ckridge He	eights								
Address:	5175 Bro	adway, O	akland, CA	-	.										
	7-14-11			Weather	·: C	lecr									
Well Diar				Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37	6'' = 1.47	162							
			<u></u>			4 - 0.65	radius 0.	103							
	oth (TD):		16.78	Depth to	Product:	 									
Depth to	Water (D	ΓW): /	5.7	Product	Thickness										
Water Co	olumn Hei	ght:	1.07	1 Casing	y Volume:	mes: 4	<u> </u>	gallons							
Reference	e Point: N	I.T.O.C.		3_ Ca	ısing Voluı	mes: -	2	gallons							
Purging (Device: Di	sposable	Bailer												
Sampling	g Device: [Disposable	e Bailer												
Time	Temp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW							
1414				0,29 Ø											
1419	21.1	7.43	1116		ļ	65	/								
1424	20.5		1/20	ļ	<u> </u>	G7	2								
1431	20-3	7-29	1/24	-	<u> </u>	<i>Z</i> /_	2.5								
	i			 	<u> </u>										
				 	 		-	i							
				 	 										
				 	-										
		-			 										
Comments	: :					L									
															
	-	= //				111112		· · · · · · · · · · · · · · · · · · ·							
Sample ID: DPE-4 Sample Time: 1440															
Laborato	ry: McCa	mpbell		Sample	Date: 9	-14-11									
Containe	rs/Preser	vative: 3 V	<u>/oas (HCL), 1</u>	-One Lite	r Ambers (HCL)									
Analyzed	l for:TPHg	/BTEX/M	TBE(8015Cm	n/8021),TF	PHd (8015	C) with sil	ica gel cle	an-up							
Sampler	Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Sampler Name: Steve Hunter Signature:														

MONITORING FIELD DA	TA SHEET	Well ID	MW.9,	4								
Project.Task #:1145.001.228	Project Name: R	ockridge He	eights									
Address: 5175 Broadway, Oakland, CA												
Date: 9-14-11	IVVCation.	Vercust										
Well Diameter: -2 ¹	Volume/ft. 1" = 0.04 2" = 0.16	3" = 0.37	6'' = 1.47	162								
			radius 0.	103								
Total Depth (TD): 75.3 /	Depth to Produc	<u>t:</u>										
Depth to Water (DTW): /2,5で	Product Thickne		43									
Water Column Height: 2,73	1 Casing Volume	e: 0,48	4	gallons								
Reference Point: N.T.O.C.	1 Casing Volume	umes:	1.2	gallons								
Purging Device: Disposable Bailer												
Sampling Device: Disposable Bailer												
Time Temp © pH Cond (µs	'	L) ORP (mV)	Vol(gal)	DTW								
0253	0.42 & \$											
0859 19-1 7-31 803		109	0.44									
0908 12.0 7.36 821			0.88									
0913 190 7.45 861		125	1.2									
		_	 									
	_		 									
 			-									
		+										
			 									
			 	-								
Comments: Shw Peacery			11									
Sommonia.												
Sample ID: MW 9Å	Sample Time:	0930		<u>-</u>								
Laboratory: McCampbell	Sample Date:	9-14-11	/									
Containers/Preservative: 3 Voas (HCL)	, 1-One Liter Amber	s (HCL)										
Analyzed for:TPHg/BTEX/MTBE(80150	Cm/8021),TPHd (801	5C) with sil	lica gel cle	an-up								
Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Sampler Name: Steve Hunter Signature:												

Well ID: MW-90 MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA OVERCENT Date: 9-14-11 Weather: Volume/ft. $\begin{vmatrix} 1" = 0.04 & 3" = 0.37 & 6" = 1.47 \\ 2" = 0.16 & 4" = 0.65 & radius^2 * 0.163 \end{vmatrix}$ Well Diameter: 2 / Total Depth (TD): 20.56 Depth to Product: Depth to Water (DTW): 1283 **Product Thickness:** 1 Casing Volume: 1.24 Water Column Height: アフ3 gallons 3_ Casing Volumes: 4 Reference Point: N.T.O.C. gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer NTU DO(mg/L) ORP (mV) Vol(gal) DTW Time Temp © рΗ Cond (µs) 0947 \mathscr{A} 803 443 6.5 14.6 095 (-142 453 0954 195 0.021 -168 -170 461 1003 19.7 201 began to deuntes at 3 gallons, seconsel givety Comments: Sample Time: 1015 Sample ID: MW-9C Sample Date: 9-14-1/ Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up

Signature:

Sampler Name: Steve Hunter

Well ID: MW 104 MONITORING FIELD DATA SHEET Project.Task #:1145.001.228 Project Name: Rockridge Heights Address: 5175 Broadway, Oakland, CA Weather: CVCCC 5 Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$ 9-14-11 Date: Well Diameter: 2 ∜ Total Depth (TD): 18.0分 Depth to Product: Depth to Water (DTW): 10.67 **Product Thickness:** 1 Casing Volume: ABWater Column Height: 7.39 gallons 3 Casing Volumes: 3.5 Reference Point: N.T.O.C. gallons Purging Device: Disposable Bailer Sampling Device: Disposable Bailer Temp © pH NTU DO(mg/L) ORP (mV) Vol(gal) Time Cond (µs) DTW Ø 042 08/4 14-1 6-53 1036 -103 669 19-3 1042 672 1037 3-5 -95 0326 Comments: Sample Time: ひ840 Sample ID: NW-OA Sample Date: 9-14-11 Laboratory: McCampbell Containers/Preservative: 3 Voas (HCL), 1-One Liter Ambers (HCL) Analyzed for:TPHg/BTEX/MTBE(8015Cm/8021),TPHd (8015C) with silica gel clean-up Signature: 15 1 au Sampler Name: Steve Hunter

APPENDIX C

Laboratory Analytical Report

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway; Rockridge Heights	Date Sampled:	09/13/11-09/14/11
1710 Franklin Street, Ste. 200	Tiergins	Date Received:	09/15/11
2,10,11,11,11,11,11,11,11,11,11,11,11,11,	Client Contact: Tina De La Fuente	Date Reported:	09/23/11
Oakland, CA 94612	Client P.O.:	Date Completed:	09/23/11

WorkOrder: 1109389

September 27, 2011

Dear Tina:

Enclosed within are:

- 1) The results of the 17 analyzed samples from your project: #5175 Broadway; Rockridge Heights,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

													1 '																		
M	[cCAMP]	BELL	ANA	LY	ГIC	AL,	IN	C.									(CH	AI	N (OF	C	US	TO	D	Y RI	EC	OF	(D	1	
			Willow Pas										7	ΓU	RN	AF														A	
	site: www.mcc	campbell.			ain@ı	mccan	npbe	II.cor	n				_		_				_		3		RUSI		24 HI		48 H		72 H	R 5DA	¥
Telephor	ne: (925) 252	-9262			I	ax: (925)			9			E	DF	Re	quir	ed?	_	_	_		_	lo	Wi	rite C	On (DV	W)				
Report To: Tina					o: Pa	ngea								_		_		A	nal	ysis	Req	ues	t	_	_		-	Ot	her	Comme	nts
Company: Pange					_								-																	Filter	
1710 Franklin Str	eet, Suite 20	0, Oakla				1 . 6	-1-6						-																	Sample	
Tolo: (510) 936 3	70.2				il: tde (510)				igea	env	.co	m	+		d															for Met	
Tele: (510) 836-3 Project #: 5175 B					et Na				о Не	igh	te		1 =		an-u															analysis Yes / No	
Project Location:		wav. Oal				me. z	LUCK	rug	CAR	ig.	Lo		m/8021)	1	CIC															163714	,
Sampler Signatur	. 37 4									SC		30																			
		SAMI	PLING		50	I N	IAT	RIX	П		ETH		88		w/silica gei clean-up																
				ers	Containers	H			+	PKE	SER	VEL	4 8																		
SAMPLE ID	LOCATION		3.	Containers	onts								EX	310	I PHd (8015C)																
(Field Point Name)		Date	Time	ont	oe C	ter		dge	ler	100	7	5 9	TPHg/BTEX	0/11	0 0																
			1.1	# C	Type	Water	Soil	Sludge	Other	2	HCL	Other	TPH	To a	=																
NW-1		2-14-11	1520	4	Anibe	X			\forall	X	X		X	y	1										\top		\top				
MW-2C		9-13-11	1625	1	T	X	-			X	X		X	y																	
MW-3A		9-14-11	1330			X				X	X		X	1	2																
MW-3C		9-14-11	1405			X				X	X		V	y	1																
MW-414		9-14-11	-			V.				V.	X		X	y																	
MW-5A			1241			V				V	V		V	X																	
MW-5B			1410			X		П		V	7	\top	X	5	1									T	\top			- 5			
MW-5C		9-13-11	1325			1/				1	7		V	>	0	\top							\top	\top	\top						
MW-GA		9-14-11	1111		\vdash	2							1	1	à l																
MW-8A		9-13-11			+	7			1	0	,	+	1	1	1										+	+					
MW-8C			1535	-	+	0				1	>	+	Tŷ.	1	1							\dashv		+	+	+					
MW-9A			1020	\vdash	+	1	+		1	7		+	1	1	1			- 2			1				+			+	_		
		9-14-11	100	+	+	X	+			7	/	+	V	1	7		1		1		Egr-		+	+	+	+	+	+			
NW-9C NW-10A		9-14-11		1	1	X	-	1	-	1	1		1	1	-	192	1.5	B		4	-	-	-		+	+++	+	\rightarrow	-		
Relinquished By:		9-/4-// Date:	Time	Beck	eived E	X		1)	/	XI)	X		100	TE/	-	1.8	1			3						COM	IMEN	VTS.			
SH 1		9-15-11	1550	12	-	1	/	-					G	00	D CC	ONDI	TION									COM	Ilvan.	110.			
Rolinquished By:	- 1	Date:	Time:	Reg	riyed E	Bv:	-			_						RINA			AB	_											
1 Bul	-	9/15	1650	1	Can		/(1-				Al	PPF	ROPE	RIATI	E CO	NTA		S		27									
Relinquished By:		Date:	Time:	Rece	eived E	By:		-	/	PRESERVED IN LAB																					
\													PF	RES	ERV	ATIO		DAS	0&		MET pH<2		s o	THE	R						

										_	_	_	_		_	_									_					_			
M	IcCAMP				TIC.	AL	, II	NC										(CH	ΑI	N	Ol	F	CU	ST			RE		OF	RD		11
			Willow Pa											Т	[U]	R	N AF	ROI	JNI	T	IM	E			li .	Į,						ì	A
	site: www.mc	campbell.													D.F.			10				-		RUS			HR		8 HI		72 F	IR	5 DAY
The same of the sa	ne: (925) 252							5) 2	52-9	269				E	DF	Re	equir	ed?		1	_		_	No		vrite	e On	(DV	v)	No		_)
Report To: Tina				Bill To	o: Pa	nge	a			_					_	_		_	- 1	Anal	lysis	Re	que	st	_	_	_	_	4	Ot	her	(Comments
Company: Pange		**											_																1			F	ilter
1710 Franklin Str	eet, Suite 20	0, Oakla						_			- 7		_																-				amples
TD 1 (710) 02 (2)				C-Mai					ang	eae	nv.c	om			0														-				or Metals
Tele: (510) 836-3				Fax: (510) 836-3709 Project Name: Rockridge Heights								_	-	_	n-u																		nalysis:
Project #: 5175 Bi		0-1			t Nai	ne:	Koc	kric	ige i	ten	ghts		\dashv	m/8021)	gel clean-up														-			١,	es / No
Project Location: 5175 Broadway, Qakland, CA Sampler Signature:								-	-		gel	0																1					
METH							OH	D	8015	w/silica																	1						
		SAMI	PLING	S	ers		MA	TRI	X		RESI			MTBE (8015C															-			1	
SAMPLE ID				ner	tair									SMT	50)																		
(Field Point Name)	LOCATION	Date	Time	Containers	Type Containers				٠,			m	L	TPHg/BTEX/	TPHd (8015C)																	1	
		Date	Time	Ö	be	Water	=	4	Other	ICE	HCL	HNO3	Other	Hg/B	PH																	1	
				#	E	3	Soil	Air	2 0	=	H	H	ō	TP	T																		
DPE-2		9-14-11	1305	4	Vous	V				X	·X			X	X														T	*		T	
DPE-3		9-14-11	1210			X				X	X			X	V																		
DPE-4		9-14-11	1440	1	V	V				V	X			X	X																		
		1111	,,,			1			\top	T	1.																		†			†	
								+	+	t	\vdash					t	+											\forall	†		+	+	
										t						t												\forall	$^{+}$			+	
							\top	+	+	t	+					t		+										+	+		+	+	
								+	+	t	\vdash					$^{+}$		+										+	+		+	+	
							+	+	+	t						+	+											+	+		+	+	
						\vdash	-	+	+	╁	\vdash		-	_	-	+	+	+	-	-		-	-	-				+	+	-	+	+	
			_	-			*	+	+	╀	\vdash		\vdash	_		+	+	-	-				-					-	+	-	-	╀	
				_	_			_	+	╀						+	-											-	+	_	_	╄	
										L						1					-												
					١,		-	-																									
Relinquished By:	1	Date:	Time:		ived B	y:(/	1							E/t°		0115										(OMN	MEN	TS:			
95111		9-15-11	155 U	12	2	2	-	/									ONDI			_													
Relinquished By:		Date:	Time:	Reck	ived B	y: 0	1	/ .	1					DE	CH	LO	RINA	TED	INL		-												
Sange		9/15	1450		1	1	- 1	1	U								RIATE VED II			INE	cs_		-										
Relinquished By:		Date:	Time:	Rece	ived B	y:							\neg																				
1														PR	ESE	ERV	ATIO		JAS	08		pH<		.5	ОТН	ER							

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

9

ClientCode: PEO

WorkOrder: 1109389

Page 1 of 2

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

□WaterTrax ✓ Email ☐ ThirdParty WriteOn **▼** EDF Excel ∏Fax HardCopy ☐ J-flag Report to: Bill to: Requested TAT: 5 days tdelafuente@pangeaenv.com Tina De La Fuente Email: Bob Clark-Riddell Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. CC: Date Received: 09/15/2011 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 Oakland, CA 94612 ProjectNo: #5175 Broadway; Rockridge Heights Date Printed: 09/15/2011 (510) 836-3700 FAX: (510) 836-3709

				Requested Tests (See legend below)												
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1109389-001	MW-1	Water	9/14/2011 15:20		Α	Α	В									
1109389-002	MW-2C	Water	9/13/2011 15:20		Α		В									
1109389-003	MW-3A	Water	9/14/2011 13:30		Α		В									
1109389-004	MW-3C	Water	9/14/2011 14:05		Α		В									
1109389-005	MW-4A	Water	9/14/2011 10:40		Α		В									
1109389-006	MW-5A	Water	9/13/2011 12:41		Α		В									
1109389-007	MW-5B	Water	9/13/2011 14:10		Α		В									
1109389-008	MW-5C	Water	9/13/2011 13:25		Α		В									
1109389-009	MW-6A	Water	9/14/2011 11:11		Α		В									
1109389-010	MW-8A	Water	9/13/2011 14:55		Α		В									
1109389-011	MW-8C	Water	9/13/2011 15:35		Α		В									
1109389-012	MW-9A	Water	9/14/2011 9:30		Α		В									
1109389-013	MW-9C	Water	9/14/2011 10:15		Α		В									
1109389-014	MW-10A	Water	9/14/2011 8:40		Α		В									
Test Legend:																
1 G-MBTEX_W	2 PREI	OF REPORT	3 TPI	H(D)WS	G_W		4						5			

7

12

6

11

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

8

10

Prepared by: Ana Venegas

McCampbell Analytical, Inc.

FAX: (510) 836-3709

CHAIN-OF-CUSTODY RECORD

ClientCode: PEO

Page 2 of 2

09/15/2011

Date Received:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(510) 836-3700

WorkOrder: 1109389 □WaterTrax WriteOn **✓** EDF Excel ☐ Fax ✓ Email HardCopy ☐ ThirdParty ☐ J-flag

Report to: Bill to: Requested TAT: 5 days

tdelafuente@pangeaenv.com Tina De La Fuente Email: Bob Clark-Riddell

Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200

Oakland, CA 94612 ProjectNo: #5175 Broadway; Rockridge Heights Oakland, CA 94612 Date Printed: 09/15/2011

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1109389-015	DPE-2	Water	9/14/2011 13:05		Α		В									
1109389-016	DPE-3	Water	9/14/2011 12:10		Α		В									
1109389-017	DPE-4	Water	9/14/2011 14:40		Α		В									

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3 TPH(D)WSG_W	4	5
6	7	8	9	10
11	12			

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Pangea Environ	mental Svcs., Inc.			Date an	nd Time Received:	9/15/2011 6	:27:13 PM
Project Name:	#5175 Broadway	; Rockridge Heights			Checkli	st completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	1109389	Matrix: Water			Carrier:	Benjamin Yslas	s (MAI Courie	<u>.)</u>
		<u>Cha</u>	in of Cı	ustody (C	OC) Information	<u>on</u>		
Chain of custody	y present?		Yes	✓	No 🗌			
Chain of custody	y signed when relin	quished and received?	Yes	✓	No 🗌			
Chain of custody	y agrees with samp	le labels?	Yes	✓	No 🗌			
Sample IDs note	ed by Client on CO	C?	Yes	✓	No 🗌			
Date and Time of	of collection noted b	by Client on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			Sample	e Receipt	Information			
Custody seals in	ntact on shipping co	ontainer/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	ner/cooler in good o	condition?	Yes	✓	No 🗌			
Samples in prop	er containers/bottle	es?	Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indica	ted test?	Yes	•	No 🗌			
		Sample Pres	servatio	n and Ho	old Time (HT) lı	nformation		
All samples rece	eived within holding	time?	Yes	✓	No 🗆			
Container/Temp	Blank temperature	;	Coole	er Temp:	4.8°C		NA \square	
Water - VOA via	als have zero heads	space / no bubbles?	Yes	✓	No 🗌 1	No VOA vials submi	itted	
Sample labels cl	hecked for correct	preservation?	Yes	✓	No 🗌			
Metal - pH accep	ptable upon receipt	(pH<2)?	Yes		No 🗌		NA 🗹	
Samples Receiv	ed on Ice?		Yes	✓	No 🗆			
		(Ісе Тур	oe: WE	TICE)			
* NOTE: If the "I	No" box is checked	, see comments below.						
	=====					======		
Client contacted		Date contac	eted:			Contacted	bv:	
		Date Collido	nou.			Contacted	Uy.	
Comments:								

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway;	Date Sampled:	09/13/11-09/14/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received:	09/15/11
	Client Contact: Tina De La Fuente	Date Extracted:	09/17/11-09/21/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	09/17/11-09/21/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*												
Extractio	Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 1109389										1109389		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	MW-1	W	1400	ND	ND	ND	ND	6.3	1	89	d9		
002A	MW-2C	W	ND	ND	ND	ND	ND	ND	1	105	b1		
003A	MW-3A	W	1700	ND<15	37	38	17	110	2	94	d1		
004A	MW-3C	W	160	ND	0.96	0.51	ND	0.99	1	110	d1		
005A	MW-4A	W	66	ND	0.73	ND	ND	ND	1	101	d1		
006A	MW-5A	W	ND	ND	ND	ND	ND	ND	1	106	b1		
007A	MW-5B	W	550	ND	ND	ND	ND	ND	1	102	d6,b1		
008A	MW-5C	W	ND	ND	ND	ND	ND	ND	1	106	b1		
009A	MW-6A	W	ND	ND	ND	ND	ND	ND	1	100	b1		
010A	MW-8A	W	3700	ND<10	30	4.3	12	99	2	113	d1,b1		
011A	MW-8C	W	ND	ND	ND	ND	ND	ND	1	96	b1		
012A	MW-9A	W	ND	ND	ND	ND	ND	ND	1	97	b1		
013A	MW-9C	W	ND	ND	ND	ND	ND	ND	1	95	b1		
014A	MW-10A	W	ND	ND	ND	ND	ND	ND	1	97	b1		
015A	DPE-2	W	790	ND<30	21	7.0	2.3	44	1	92	d1		
016A	DPE-3	W	4800	ND<15	12	13	9.1	180	2	107	d2,d9,b1		
	rting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I			
	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g		

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid sam	ples and all TCLP &
SPLP extracts in mg/L.	

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than \sim 1 vol. % sediment
- d1) weakly modified or unmodified gasoline is significant
- d2) heavier gasoline range compounds are significant (aged gasoline?)
- d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram
- d9) no recognizable pattern

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway;	Date Sampled:	09/13/11-09/14/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received:	09/15/11
	Client Contact: Tina De La Fuente	Date Extracted:	09/17/11-09/21/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	09/17/11-09/21/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	on method: SW5030B Analytical methods: SW8021B/8015Bm					Work Order: 1109389					
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
017A	DPE-4	W	1100	ND	1.1	3.4	2.4	58	1	104	d2,d9
	,										
	rting Limit for DE -1:	***	50	5.0	0.5	0.5	0.5	0.7		1	

1 0								
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg
ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d1) weakly modified or unmodified gasoline is significant
- d2) heavier gasoline range compounds are significant (aged gasoline?)
- d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram
- d9) no recognizable pattern

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway;	Date Sampled: 09/13/11-09/14/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received: 09/15/11
	Client Contact: Tina De La Fuente	Date Extracted 09/15/11
Oakland, CA 94612	Client P.O.:	Date Analyzed 09/17/11-09/23/11

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method:	SW3510C/3630C	An	alytical methods: SW8015B	Work Order: 1109389				
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments		
1109389-001B	MW-1	W	320	1	85	e11,e2		
1109389-002B	MW-2C	W	ND	1	85	b1		
1109389-003B	MW-3A	W	400	1	99	e4		
1109389-004B	MW-3C	W	130	1	84	e2		
1109389-005B	MW-4A	W	130	1	116	e2		
1109389-006B	MW-5A	W	ND	1	97	b1		
1109389-007B	MW-5B	W	ND	1	85	b1		
1109389-008B	MW-5C	W	ND	1	92	b1		
1109389-009B	MW-6A	W	74	1	88	e2,b1		
1109389-010B	MW-8A	W	7400	1	109	e11/e4,b1		
1109389-011B	MW-8C	W	ND	1	102	b1		
1109389-012B	MW-9A	W	ND	1	95	b1		
1109389-013B	MW-9C	W	ND	1	84	b1		
1109389-014B	MW-10A	W	ND	1	96	b1		
1109389-015B	DPE-2	W	290	1	99	e4		

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- e2) diesel range compounds are significant; no recognizable pattern
- e11) stoddard solvent/mineral spirit (?); and/or e4) gasoline range compounds are significant.

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway;	Date Sampled:	09/13/11-09/14/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received:	09/15/11
	Client Contact: Tina De La Fuente	Date Extracted	09/15/11
Oakland, CA 94612	Client P.O.:	Date Analyzed	09/17/11-09/23/11

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW3510C/3630C Analytical methods: SW8015B Work Order: 1109389

Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	DF	% SS	Comments
1109389-016B	DPE-3	W	25,000	40	96	e11,e2,b1
1109389-017B	DPE-4	W	930	1	98	e4,e2

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- e2) diesel range compounds are significant; no recognizable pattern
- e11) stoddard solvent/mineral spirit (?); and/or e4) gasoline range compounds are significant.

Angela Rydelius, Lab Manager

DHS ELAP Certification 1644

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 61050 WorkOrder: 1109389

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1109341-0	02A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, unaryte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	110	112	1.76	111	114	2.81	70 - 130	20	70 - 130	20
MTBE	ND	10	106	112	5.22	109	108	1.05	70 - 130	20	70 - 130	20
Benzene	ND	10	93.9	97.4	3.66	97.1	97.6	0.488	70 - 130	20	70 - 130	20
Toluene	ND	10	97.7	98.1	0.416	98.3	98.8	0.458	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	101	105	4.19	104	104	0	70 - 130	20	70 - 130	20
Xylenes	ND	30	102	105	3.29	105	104	0.548	70 - 130	20	70 - 130	20
% SS:	103	10	92	93	1.04	91	91	0	70 - 130	20	70 - 130	20

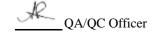
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 61050 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1109389-001A	09/14/11 3:20 PM	09/17/11	09/17/11 5:04 AM	1109389-002A	09/13/11 3:20 PM	09/17/11	09/17/11 6:33 AM
1109389-003A	09/14/11 1:30 PM	09/17/11	09/17/11 9:37 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 61104 WorkOrder: 1109389

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1109384-0	A80
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, many to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	112	110	1.82	114	115	1.33	70 - 130	20	70 - 130	20
MTBE	ND	10	106	111	4.48	116	112	3.21	70 - 130	20	70 - 130	20
Benzene	ND	10	99.4	102	2.23	101	102	0.528	70 - 130	20	70 - 130	20
Toluene	ND	10	99.8	102	2.23	106	102	3.18	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	101	106	3.95	104	107	2.13	70 - 130	20	70 - 130	20
Xylenes	ND	30	100	105	4.49	105	107	1.82	70 - 130	20	70 - 130	20
%SS:	100	10	92	92	0	93	91	2.98	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 61104 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1109389-004A	09/14/11 2:05 PM	09/17/11	09/17/11 7:02 AM	1109389-005A	09/14/11 10:40 AM	09/17/11	09/17/11 7:32 AM
1109389-006A	09/13/11 12:41 PM	09/17/11	09/17/11 8:02 AM	1109389-007A	09/13/11 2:10 PM	09/17/11	09/17/11 8:32 AM
1109389-008A	09/13/11 1:25 PM	09/17/11	09/17/11 9:02 AM	1109389-009A	09/14/11 11:11 AM	09/17/11	09/17/11 9:32 AM
1109389-010A	09/13/11 2:55 PM	09/21/11	09/21/11 1:25 AM	1109389-011A	09/13/11 3:35 PM	09/17/11	09/17/11 3:33 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 61107 WorkOrder: 1109389

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1109389-0	12A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, and yet	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	113	112	0.908	114	116	1.76	70 - 130	20	70 - 130	20
MTBE	ND	10	108	119	9.76	110	107	2.75	70 - 130	20	70 - 130	20
Benzene	ND	10	101	99.8	1.18	103	99.8	3.29	70 - 130	20	70 - 130	20
Toluene	ND	10	101	100	0.976	104	100	3.62	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	105	104	1.12	109	104	4.49	70 - 130	20	70 - 130	20
Xylenes	ND	30	106	104	1.63	109	104	4.32	70 - 130	20	70 - 130	20
%SS:	97	10	92	93	0.655	91	93	1.73	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 61107 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1109389-012A	09/14/11 9:30 AM	09/17/11	09/17/11 4:05 PM	1109389-013A	09/14/11 10:15 AM	09/17/11	09/17/11 4:35 PM
1109389-014A	09/14/11 8:40 AM	09/17/11	09/17/11 5:05 PM	1109389-015A	09/14/11 1:05 PM	09/17/11	09/17/11 6:36 PM
1109389-016A	09/14/11 12:10 PM	09/17/11	09/17/11 5:36 PM	1109389-017A	09/14/11 2:40 PM	09/17/11	09/17/11 7:07 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

 $\% \ Recovery = 100 * (MS-Sample) / (Amount Spiked); \ RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).$

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 61108 WorkOrder: 1109389

EPA Method: SW8015B	Extrac	Extraction: SW3510C/3630C					Spiked Sample ID: N/A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, analyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	101	110	8.22	N/A	N/A	70 - 130	30
%SS:	N/A	625	N/A	N/A	N/A	84	97	14.5	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 61108 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1109389-001B	09/14/11 3:20 PM	09/15/11	09/18/11 6:03 PM	1109389-002B	09/13/11 3:20 PM	09/15/11	09/18/11 7:21 PM
1109389-003B	09/14/11 1:30 PM	09/15/11	09/23/11 3:09 PM	1109389-004B	09/14/11 2:05 PM	09/15/11	09/20/11 6:11 AM
1109389-005B	09/14/11 10:40 AM	09/15/11	09/20/11 5:02 AM	1109389-006B	09/13/11 12:41 PM	09/15/11	09/22/11 3:04 AM
1109389-007B	09/13/11 2:10 PM	09/15/11	09/20/11 7:20 AM	1109389-008B	09/13/11 1:25 PM	09/15/11	09/23/11 12:26 AM
1109389-009B	09/14/11 11:11 AM	09/15/11	09/20/11 1:35 AM	1109389-010B	09/13/11 2:55 PM	09/15/11	09/17/11 2:38 AM
1109389-011B	09/13/11 3:35 PM	09/15/11	09/23/11 12:05 PM	1109389-012B	09/14/11 9:30 AM	09/15/11	09/21/11 10:12 PM
1109389-013B	09/14/11 10:15 AM	09/15/11	09/21/11 8:56 PM	1109389-014B	09/14/11 8:40 AM	09/15/11	09/23/11 9:06 AM
1109389-015B	09/14/11 1:05 PM	09/15/11	09/23/11 1:21 PM	1109389-016B	09/14/11 12:10 PM	09/15/11	09/23/11 10:50 AM
1109389-017B	09/14/11 2:40 PM	09/15/11	09/21/11 11:27 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

DHS ELAP Certification 1644

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: Rockridge Heights	Date Sampled: 07/26/11
1710 Franklin Street, Ste. 200		Date Received: 07/28/11
1770 Hankim Street, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 08/02/11
Oakland, CA 94612	Client P.O.:	Date Completed: 08/01/11

WorkOrder: 1107832

August 02, 2011

Dear Morgan:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: Rockridge Heights,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 Willow Pass Rd. TURN AROUND TIME Pittsburg, CA 94565 Website: www.mccampbell.com Email: main@mccampbell.com RUSH 24 HR 48 HR 72 HR EDF Required? Coelt (Normal) No Telephone: (925) 252-9262 Write On (DW) Fax: (925) 252-9269 Report To: Morgan Gillies Bill To: Pangea **Analysis Request** Other Comments Company: Pangea Environmental Services, Inc. TPH as Diesel (8015) with Silica Gel Cleanup Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 Total Petroleum Oil & Grease (5520 E&F/B&F) 5 Oxygenates(TAME, TBA, DIPE, ETBE, MTBE) by 8260. Samples 8270/8310 E-Mail: mgillies@pangeaenv.com Total Petroleum Hydrocarbons (418.1) for Metals Tele: (510) 836-3702 Fax: (510) 836-3709 analysis: Project #: 5175 Broadway Project Name: Rockridge Heights BTEX ONLY (EPA 602 / 8020) Yes / No EPA 608 / 8082 PCB's ONLY Project Location: 5175 Broadway, Oakland, CA 625 / CAM-17 Metals (6010 / 6020) LUFT 5 Metals (6010 / 6020) Lead (200.8 / 200.9 / 6010) Sampler Signature: PAH's / PNA's by EPA EPA 601 / 8010 / 8021 EPA 524,2 / 624 / 8260 METHOD EPA 525 / 625 / 8270 SAMPLING MATRIX Type Containers PRESERVED # Containers EPA 8140 / 8141 EPA 8150 / 8151 EPA 608 / 8081 SAMPLE ID BTEX & TPH LOCATION (Field Point Name) Sludge Water Date Time HNO3 Other HCL ICE EFF 7-26-11 1240 MID 1300 INF 1310 Relinquished By: Date: Time: Received By: ICE/t° 7.8 COMMENTS: Envirotech T. L GOOD CONDITION HEAD SPACE ABSENT Religquished By: Date: Time: Received By: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Received By: Time: VOAS O&G METALS OTHER

PRESERVATION

pH<2

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1107832 ClientCode: PEO □WaterTrax WriteOn □ EDF ☐ Excel ☐ Fax ✓ Email HardCopy ☐ ThirdParty ☐ J-flag Report to: Bill to: Requested TAT: 5 days Morgan Gillies Email: mgillies@pangeaenv.com Bob Clark-Riddell Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. cc: Date Received: 07/28/2011 PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200 Oakland, CA 94612 ProjectNo: Rockridge Heights Oakland, CA 94612 Date Printed: 07/28/2011 (510) 836-3700 FAX: (510) 836-3709 Requested Tests (See legend below) 2 3 4 5 7 8 10 Lab ID Client ID Matrix Collection Date Hold 1 11 12 EFF-W 1107832-001 Water 7/26/2011 12:40 Α 1107832-002 MID-W Water 7/26/2011 13:00 Α INF-W 1107832-003 Water 7/26/2011 13:10 Α

Test Legend:

1 G-MBTEX	<u>2</u>	3	4	5	
6	7	8	9	10	
11	12				

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Pangea Environmental Svcs.	, Inc.		Date a	and Time Received:	7/28/2011 8:)2:17 PM
Project Name:	Rockridge Heights			Check	dist completed and re	viewed by:	Ana Venegas
WorkOrder N°:	1107832 Matrix:	Water		Carrie	r: <u>Benjamin Yslas</u>	(MAI Courier)	Į.
		Chain of C	Sustody (C	COC) Informa	tion		
Chain of custody	present?	Yes	✓	No 🗌			
Chain of custody	signed when relinquished and	received? Yes	✓	No 🗆			
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆			
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗌			
Date and Time of	collection noted by Client on C	OC? Yes	✓	No 🗌			
Sampler's name	noted on COC?	Yes	✓	No 🗌			
		<u>Sampl</u>	le Receipt	: Information			
Custody seals int	act on shipping container/coole	er? Yes		No 🗌		NA 🗸	
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?	Yes	✓	No 🗌			
Sample container	rs intact?	Yes	✓	No 🗌			
Sufficient sample	volume for indicated test?	Yes	✓	No 🗆			
	<u> </u>	Sample Preservation	on and Ho	old Time (HT)	Information		
All samples recei	ved within holding time?	Yes	✓	No 🗌			
Container/Temp B	Blank temperature	Cool	er Temp:	7.8°C		NA 🗌	
Water - VOA vials	s have zero headspace / no bu	bbles? Yes	✓	No 🗆	No VOA vials submi	tted	
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌			
Metal - pH accept	table upon receipt (pH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?	Yes	✓	No 🗌			
		(Ice Type: W	ET ICE)			
* NOTE: If the "N	o" box is checked, see comme	nts below.					
=====	=======		===				======
Client contacted:		Date contacted:			Contacted I	by:	
Comments:							

Pangea Environmental Svcs., Inc.	Client Project ID: Rockridge Heights	Date Sampled:	07/26/11
1710 Franklin Street, Ste. 200		Date Received:	07/28/11
	Client Contact: Morgan Gillies	Date Extracted:	07/29/11-07/30/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	07/29/11-07/30/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extractio	n method: SW5030B			Analyt	ical methods:	SW8021B/8015	Bm		Wo	rk Order:	1107832
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	EFF-W	W	ND	ND	ND	ND	ND	ND	1	98	
002A	MID-W	W	ND	ND	ND	ND	ND	ND	1	98	
003A	INF-W	W	68	ND	0.51	ND	ND	1.2	1	104	d1
					1					1	•
										1	•
Repo	rting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/I	<u> </u>
ND m	eans not detected at or			1					1		

	ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
	above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg
1									

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 60046 WorkOrder: 1107832

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1107771-0	98A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)	
, way to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	105	102	2.69	104	102	2.32	70 - 130	20	70 - 130	20
MTBE	ND	10	114	110	3.06	107	111	2.83	70 - 130	20	70 - 130	20
Benzene	ND	10	102	99.1	2.76	99.5	99.3	0.170	70 - 130	20	70 - 130	20
Toluene	ND	10	102	99.2	3.27	98.2	99.4	1.17	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	101	98.5	2.84	98.4	98.1	0.278	70 - 130	20	70 - 130	20
Xylenes	ND	30	104	102	2.67	101	101	0	70 - 130	20	70 - 130	20
%SS:	104	10	99	99	0	98	98	0	70 - 130	20	70 - 130	20

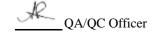
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 60046 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1107832-001A	07/26/11 12:40 PM	07/29/11	07/29/11 9:49 PM	1107832-002A	07/26/11 1:00 PM	07/29/11	07/29/11 10:20 PM
1107832-003A	07/26/11 1:10 PM	07/30/11	07/30/11 12:20 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway; Rockridge Heights	Date Sampled: 09/26/11
1710 Franklin Street, Ste. 200		Date Received: 09/27/11
1710 Hanain Street, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 09/30/11
Oakland, CA 94612	Client P.O.:	Date Completed: 09/28/11

WorkOrder: 1109768

September 30, 2011

Dear Morgan:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: 5175 Broadway; Rockridge Heights,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1109768

Web	cCAMPl	1534 V Pittsl ampbell.	Willow Pas burg, CA 9	ss Rd. 4565	in@n	ncca	mpb	ell.c	om									ou	HA ND	T	IMI	E	, F	RUS	Н	24			48 H	IR	72 H	R 5 DAY
Report To: Morg	ne: (925) 252-	-9262	T	Bill To) 25	2-92	69	_		+	LI) F E	cqu	ince	1. (_	ysis				**	THE	Oil	(D	"')	_	her	Comments
Company: Pange		ntal Ser			; ra	ngea	1						+						A	nai	VSIS	Rec	ues	ı					Н	Ot	ner	Comments
1710 Franklin Str							_						\dashv		dnu																	Filter
1/10 Frankin Sti	cet, Suite 201	, Oakie		-Mai		illie	(a)n	ang	eaen	v.cc	m		┨	8015)/MTBE	Clea	B&F							p= 1			310				ETBE		Samples
Tele: (510) 836-3	702			ax: (cuci		,,,,,		╛	S)/M	Sel (&F/	118									8/				E.		for Metals analysis:
Project #: 5175 Bi				rojec					ge H	eig	hts		╛	801	ica (20 E	ns (4		6							827(IPE		Yes / No
Project Location:		vay, Oal		The same of the sa									╗	+ 07	Sili	e (55	rb0		802		ALY					122	020)	20)	_	A, D		2007110
Sampler Signatur														602/8020	with	reas	roca	_	02/		0 8			0		9 V	9/0	09/	9010	TB,		
		SAMI	PLING		sus	1	MA	ΓRI	X			HOI		Gas (6	TPH as Diesel (8015) with Silica Gel Cleanup	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)		EPA 608 / 8082 PCB's ONLY	_		EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA 625 / 8270 / 8310	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	5 Oxygenates(TAME, TBA, DIPE, MTBE) by 8260.		
CAMPIE ID				iers	ij.	П	T	Т	Т				┑	98	les (E	enn	010	N G	081	082	814	815	624	25/	A's	etals	tals	/ 20	es(T		
SAMPLE ID (Field Point Name)	LOCATION	Dete	Tri	Containers	Type Containers	L.		9				-		BTEX & TPH	5 Die	trole	etro	91/8	ONI	EPA 608 / 8081	8 / 80	EPA 8140 / 8141	EPA 8150 / 8151	24.2	25/6	/ PN	17 M	5 Me	8.002	enat		
		Date	Time	Co	be (Water	=	All	Other	ICE	HCL	HNO3	Other	EX 9	На	In P	tal F	9 V	EX	9 V	19 V	A 8	A 8	A 5.	A 5	H's	W-	E	ad C)xyg		
				#	E	3	Soil	All	0	$ \simeq $	Ħ	Ξ	Ō	BT	T	To	To	Œ	BT	EP	B	EP	EP	EP	EP	PA	C	7	12	S C		
INF-V	INF	9-26-11	1500	1	Tedlo)	X					X	X																		
	-70-6						7						7																			
							\top	$^{+}$	+			\forall	\forall																			
							+	+	+		_	\forall	+																Н		+	
					\vdash		+	+	+			-	+				\dashv														+	
					\vdash	Н	-	+	+		-	+	+				\rightarrow	-						-				-	\vdash		-	
			_		\vdash	Н	-	+	+		-	+	+	-		-	\rightarrow	-						_				-	\vdash	11.2	-	
						Н	-	+	+		-	-	4			-	-	_	-			_						_	-		-	
						Ш			-		4	_	4				_	_													.4	40
													4																			
									Т		-		7	,			-		4			- 1										
													7					-														
								$^{+}$			\forall		1	1					\neg													
Relinquished By:		Datq:	Time:	Rece	ived B	X	-	-			7	-	1	ICI	E/t°			_									-	COM	IME	NTS:		
- lother 1	September 1	9-27-11	1130		1	+	_		/						OD O				NT	-												
Relinquished By:	7	Daté:	Time:	Rece	wed B	y:			1	1	,		┪						N L	AB_												
1		1/27/	1/730	(1	/	-6	1	1		1	/			PRO ESEI				IAT	NER	ts		700									
Relinquished By:		Date:	Time:	Rece	ved B	y:			1								214		0000	5500		1211000										
,														PR	ESEI	RVA'	TION		AS	08		ME pH<		S	OTH	ER						

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

(925) 252-9262					Work(Order	: 110976	8	Cli	entC	ode: P	EO				
	WaterTrax	WriteOr	n Z EDF		Excel		Fax	✓	Email		Hard	dCopy	Thi	rdParty	J-	flag
Report to:					E	Bill to:						Req	uested T	AT:	5	days
Morgan Gillies Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-370	cc: PO: ProjectNo:	mgillies@pan	geaenv.com ay; Rockridge Hei	ghts		Pa 17	ob Clark-R ingea Env 10 Frankl akland, C <i>l</i>	rironme in Stree	et, Ste. 2		nc.		e Recei e Printe		09/27 09/27	
								Requ	uested T	ests ((See leg	end be	low)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1109768-001 INF-V		Air	9/26/2011 15:00		Α	Α										

Test Legend:

1 G-MBTEX_AIR	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			

The following SampID: 001A contains testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Ana Venegas

Sample Receipt Checklist

Client Name:	Pangea Environme	ntal Svcs., Inc.			Date a	and Time Received:	9/27/2011 6	:11:52 PM
Project Name:	5175 Broadway; Ro	ckridge Heights			Check	klist completed and re	viewed by:	Ana Venegas
WorkOrder N°:	1109768	Matrix: <u>Air</u>			Carrie	er: Rob Pringle (M.	Al Courier)	
		<u>Cha</u>	in of Cu	ustody (COC	C) Informa	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample I	abels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	f collection noted by C	Client on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			Sample	Receipt In	<u>formation</u>			
Custody seals int	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗸	
Shipping containe	er/cooler in good cond	dition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample container	rs intact?		Yes	✓	No 🗌			
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	servatio	n and Hold	Time (HT)	<u>Information</u>		
All samples recei	ived within holding tim	ne?	Yes	✓	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp:			NA 🗸	
Water - VOA vials	s have zero headspa	ce / no bubbles?	Yes		No 🗌	No VOA vials submi	tted 🗸	
Sample labels ch	necked for correct pre	servation?	Yes	✓	No 🗌			
Metal - pH accep	table upon receipt (pl	H<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗸			
* NOTE: If the "N	lo" box is checked, se	ee comments below.	==:	====	===	======	====	======
Client contacted:		Date contac	cted:			Contacted	by:	
Comments:								

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway;	Date Sampled:	09/26/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received:	09/27/11
	Client Contact: Morgan Gillies	Date Extracted:	09/28/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	09/28/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction me	ethod: SW5030B				ical methods:		Bm			rk Order:	1109768
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-V	A	1600	ND<20	6.3	4.1	0.50	3.1	1	99	d1
Reportin	g Limit for DF =1;	A	25	2.5	0.25	0.25	0.25	0.25		ug/I	

Reporting Limit for DF =1; ND means not detected at or	A	25	2.5	0.25	0.25	0.25	0.25	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

 $^{\#\} cluttered\ chromatogram;\ sample\ peak\ coelutes\ with\ surrogate\ peak;\ \%SS = Percent\ Recovery\ of\ Surrogate\ Standard;\ DF = Dilution\ Factor$

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway;	Date Sampled: 09/26/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received: 09/27/11
	Client Contact: Morgan Gillies	Date Extracted: 09/28/11
Oakland, CA 94612	Client P.O.:	Date Analyzed: 09/28/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extraction	on method: SW5030	В		Analytical methods: SW8021B/8015Bm						k Order:	1109768	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	INF-V	A	450	ND<5.0	1.9	1.1	0.11	0.71	1	99	d1	

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.									
Reporting Limit for DF =1; ND means not detected at or	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L
above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} vapor samples are reported in μ L/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in μ g/L.

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

OC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 61451 WorkOrder: 1109768

EPA Method: SW8021B/8015Bm	Extrac	tion: SW					S	piked Sam	ple ID:	1109737-0	07A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	.CSD Acceptance Crite			
Allalyte	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex) [£]	ND	60	104	104	0	102	101	1.74	70 - 130	20	70 - 130	20
MTBE	ND	10	97.2	92.2	5.23	90.1	91.3	1.26	70 - 130	20	70 - 130	20
Benzene	ND	10	98	96.5	1.54	119	97.2	19.9	70 - 130	20	70 - 130	20
Toluene	ND	10	92.2	94.3	2.29	98.6	94.4	4.29	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	92.9	94.8	1.97	98	93.7	4.44	70 - 130	20	70 - 130	20
Xylenes	ND	30	97	97.9	0.932	101	96.5	4.81	70 - 130	20	70 - 130	20
%SS:	104	10	98	98	0	102	100	1.77	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 61451 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1109768-001A	09/26/11 3:00 PM	I 09/28/11	09/28/11 2:55 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A/QC Officer