RECEIVED

Mr. Paresh Khatri Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 4:09 pm, Sep 02, 2011

Alameda County

Environmental Health

Re: Former Exxon Station

5175 Broadway Oakland, California ACHCSA Fuel Leak Case No. RO0000139 SFRWQCB Site No. 01-0958 UST Fund Claim No. 003406

Dear Mr. Khatri:

I, Mr. Ernie Nadel of Rockridge Heights, LLC, have retained Pangea Environmental Services, Inc. (Pangea) as the environmental consultant for the project referenced above. Pangea is submitting the attached report on my behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report is true and correct to the best of my knowledge.

Sincerely,

Ernie Nadel

Rockridge Heights, LLC

August 26, 2011

VIA ALAMEDA COUNTY FTP SITE

Ms. Donna Drogos Alameda County Environmental Health 1331 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Groundwater Monitoring and Remediation Report – Second Quarter 2011

5175 Broadway Street Oakland, California ACEH Fuel Leak Case No. RO#0000139

Dear Ms. Drogos:

On behalf of Rockridge Heights LLC, Pangea Environmental Services, Inc., has prepared this *Groundwater Monitoring and Remediation Report* — *Second Quarter 2011*. The report describes groundwater monitoring, sampling, site remediation, and other site activities. The dramatic contaminant reduction in site wells achieved by site remediation is illustrated on Figures 5 and 6. This monitoring was performed six days following temporary remediation system shutdown to allow subsurface equilibration.

If you have any questions or comments, please call me at (510) 435-8664.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E.

Principal Engineer

Attachment: Groundwater Monitoring and Remediation Report – Second Quarter 2011

cc: Rockridge Heights, LLC, C/O Ernie Nadel, 6100 Pinewood Road, Oakland, California 94611 SWRCB Geotracker (Electronic copy)

GROUNDWATER MONITORING AND REMEDIATION REPORT - SECOND QUARTER 2011

5175 Broadway Oakland, California

August 26, 2011

Prepared for:

Rockridge Heights, LLC C/O Ernie Nadel 6100 Pinewood Road Oakland, California 94611

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies Project Manager

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

INTRODUCTION

On behalf of Rockridge Heights, LLC, Pangea Environmental Services, Inc. (Pangea) conducted groundwater monitoring and sampling, and remediation system operation and sampling during this quarter at the subject site (Figure 1). The purpose of the monitoring and sampling is to evaluate dissolved contaminant concentrations, determine the groundwater flow direction, and inspect site wells for separate-phase hydrocarbons (SPH). The purpose of the remediation is to clean up petroleum hydrocarbons from a historic fuel release. Current groundwater analytical results and elevation data are shown on Figures 2 and 3. Current and historical groundwater data are summarized on Table 1. Site remediation data are summarized on Tables 3 and 4.

SITE BACKGROUND

The subject property is located at 5175 Broadway Street, at the southwest corner of the intersection of Broadway and Coronado Avenue in Oakland, California in Alameda County (Figure 1). The site is approximately 0.6 miles south-southeast of Highway 24 and approximately 2.3 miles east of Interstate 80 and the San Francisco Bay. The property is relatively flat lying, with a slight slope to the south-southwest, and lies at an elevation of approximately 160 feet above mean sea level. Topographic relief in the area surrounding the site also slopes generally towards the south-southwest. The western site boundary is the top of an approximately 10 foot high retaining wall that separates the site from an adjacent apartment complex.

The property has been vacant since 1979 and was formerly occupied by an Exxon Service Station used for fuel sales and automobile repair. The site is approximately 13,200 square feet in area and the majority of the ground surface is paved with concrete and/or asphalt, although the former tank location is not paved. Land use to the west and northwest is residential, including apartment buildings and single family homes. Properties to the northeast, east and south of the site are commercial. The site and adjacent properties are shown on Figure 2.

Environmental compliance work commenced when the site USTs were removed in January 1990. Three 8,000-gallon steel single-walled USTs, associated piping, and a 500-gallon steel single-walled waste oil tank were removed. Tank Project Engineering, Inc. (TPE) conducted the tank removal and observed holes in all four tanks. Approximately 700 tons of contaminated soil was excavated during tank removal and was subsequently remediated and reused for onsite backfill by TPE. In April 1990, TPE installed and sampled monitoring wells MW-1, MW-2 and MW-3. In June 1991, Soil Tech Engineering (STE), subsequently renamed Environmental Soil Tech Consultants (ESTC), installed monitoring wells STMW-4 and STMW-5. Groundwater monitoring was conducted on the site intermittently until October 2002. Golden Gate Tank Removal (GGTR) performed additional assessment in January and February 2006. In June 2006, the property was purchased by Rockridge Heights, LLC. Pangea commenced quarterly groundwater monitoring at the site in July 2006. MTBE is not

considered to be a contaminant of concern because use of the site for fuel sales predates widespread use of MTBE in gasoline and because analytical results have not shown significant detections of MTBE.

In January and March 2007, Pangea installed twelve wells (MW-2C, MW-3A, MW-3C, MW-4A, MW-5A, MW-5B, MW-5C, MW-6A, MW-7B, MW-7C, MW-8A and MW-8C) and three offsite soil borings to help define the vertical and lateral extent of groundwater contamination. Pangea also abandoned four monitoring wells (MW-2, MW-3, STMW-4 and STMW-5) to reduce the risk of vertical contaminant migration and improve the quality of monitoring data. New wells installed at the site were categorized according to the depths of their screen intervals. Shallow (A-zone) wells have screen intervals of approximately 10 to 15 feet bgs, which generally straddle the top of the water table and are generally screened in surficial fill and alluvium. Intermediate-depth (B-zone) wells are screened at approximately 15 to 20 feet bgs, either in surficial strata or underlying fractured bedrock, while deep (C-zone) wells are generally screened at approximately 20 to 25 feet bgs and into fractured bedrock. Well MW-1 is screened across both the A-zone and B-zone.

In April 2007, Pangea performed a dual-phase extraction (DPE) pilot test to evaluate whether DPE is an appropriate remedial technology to remove residual hydrocarbons from beneath the site. In July 2007, Pangea submitted an Interim Remedial Action Plan for site corrective action.

In August 2007, Pangea installed three offsite monitoring wells (MW-9A, MW-9C and MW-10A) and conducted subslab vapor sampling in the commercial building located immediately south of the site. The purpose of the offsite well installation was to determine the downgradient extent of contaminant migration, and to help evaluate downgradient effects of any future remediation conducted onsite. The purpose of the subslab vapor sampling was to determine whether vapor migrating from underlying groundwater had impacted soil vapor. Soil gas sampling was also conducted near the southern and western edge of the property. Soil gas sampling and offsite monitoring well installation is described in Pangea's *Soil Gas Sampling and Well Installation Report* dated October 23, 2007. Further subslab/soil gas sampling was conducted at the two adjacent properties in June 2008 and reported in Pangea's *Additional Soil Gas Sampling Report* dated July 14, 2008.

In response to a letter from ACEH dated June 10, 2008, Pangea submitted a *Revised Site Conceptual Model and Corrective Action Plan* (Revised CAP) dated July 23, 2008. ACEH commented on the Revised CAP in a letter dated July 31, 2008 and Pangea prepared a *Corrective Action Plan Addendum* dated August 11, 2008 to address ACEH comments. In a letter dated August 22, 2008, ACEH approved the CAP and Addendum as a 'Draft CAP' and initiated the public-participation process. The *Final Corrective Action Plan* dated March 25, 2009 recommended remediation via DPE and air sparging. In response to an ACEH letter dated April 16, 2009, Pangea submitted a *Final Corrective Action Plan – Addendum* dated May 18, 2009, which provided justification for the recommended remedial action. ACEH approved the *Final CAP Addendum* in a letter dated

June 18, 2009. On August 19, 2009, Pangea oversaw installation of six dual-phase extraction (DPE) wells and one air sparging (AS) well to facilitate implementation of the approved corrective action plan. Operation of the DPE system began on December 8, 2010 and operation of the AS system began on March 16, 2011.

GROUNDWATER MONITORING AND SAMPLING

On June 10, 2011, Pangea conducted groundwater monitoring and sampling at the site in accordance with the groundwater monitoring program in Appendix A. The monitoring was performed after approximately 6 days of surface equilibration following DPE/AS shutdown on June 4, 2011. Site monitoring wells were gauged for depth-to-water and inspected for separate-phase hydrocarbons (SPH). To obtain water levels representative of the piezometric surface, technicians removed all well caps (allowing water levels to equilibrate) and turned off the remediation system four days prior to sampling.

Prior to sample collection, approximately three casing volumes of water were purged using disposable bailers, an electric submersible pump, or a clean PVC bailer (although fewer casing volumes were purged if the well dewatered). During well purging, field technicians measured the pH, temperature and conductivity of the water. A groundwater sample was collected from each well with a disposable bailer and decanted into the appropriate containers supplied by the analytical laboratory. Groundwater samples were labeled, placed in protective plastic bags, and stored on crushed ice at or below 4° C. All samples were transported under chain-of-custody to the State-certified analytical laboratory. Purge water was stored onsite in DOT-approved 55-gallon drums. Groundwater monitoring field data sheets, including purge volumes and field parameter measurements, are presented in Appendix B.

MONITORING RESULTS

Current and historical groundwater elevation and analytical data are described below and summarized on Table 1, Figure 2 and Figure 3. To facilitate data evaluation, well construction details are summarized on Table 2. Groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd) by EPA Method 8015C with silica gel cleanup; total petroleum hydrocarbons as gasoline (TPHg) by modified EPA Method 8015C; and benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8021B. Samples were analyzed by McCampbell Analytical, Inc., of Pittsburg, California, a State-certified laboratory. The laboratory analytical report is included in Appendix C.

Groundwater Flow Direction

Based on depth-to-water data collected on June 10, 2011, shallow groundwater (A-zone) flows generally *southwestwards* throughout most of the site and turns *southwards* downgradient from the site, as shown on Figure 2. The relatively high groundwater elevation measured in well MW-6A suggests that shallow

groundwater is mounded in the former UST excavation and that the local flow direction radiates outwards away from the former excavation area towards the northeast corner of the site in the direction of MW-4A. These observations are interpreted as indicating that the unpaved former UST excavation has acted as a collector for rainwater and that the asphalt pavement covering the remainder of the site serves to reduce infiltration elsewhere while directing rainwater to the unpaved UST excavation area. The current inferred flow direction in shallow groundwater is generally consistent with previous monitoring results. In addition, groundwater flow direction may be affected by dual-phase extraction (DPE) from site wells.

Groundwater flow in deep groundwater (C-zone) is generally *southeastwards* to *southwards* across the site and turns southeast beneath the adjacent commercial property, as shown on Figure 3. Generally, the elevation of the piezometric surface for C-zone wells is lower than elevations for A-zone wells, indicating that a downward gradient is present. The inferred flow direction is generally consistent with previous monitoring results, and may be affected by DPE at the site.

Hydrocarbon Distribution in Groundwater

<u>Current Distribution:</u> The dramatic contaminant reduction in site wells achieved by site remediation is illustrated on Figures 5 and 6. This monitoring was performed six days following temporary remediation system shutdown to allow subsurface equilibration. The maximum TPHg and benzene concentrations detected this quarter were 5,100 μg/L and 350 μg/L, respectively, in source area well MW-3A. The maximum TPHd concentration detected this quarter was 5,100 μg/L in source area well MW-8A. Hydrocarbon concentrations were generally within historic ranges and trends in most site wells, except for *historic low* concentrations described below. No measurable thickness of separate-phase hydrocarbons (SPH) was observed in any monitoring wells this quarter, although an immeasurable sheen was observed by the laboratory in the sample from monitoring well MW-8A.

Most importantly, *historic low* concentrations of TPHg and benzene were detected in shallow well MW-4A, deep wells MW-3C, MW-7B and MW-7C, and remediation wells DPE-2, DPE-3 and DPE-4. These historic low concentrations are attributed to DPE and AS remediation at the site. For example, benzene concentrations in well MW-3C were reduced from 450 μ g/L in March 2011 to 7.6 μ g/L in June 2011, while TPHg concentrations were similarly reduced from 22,000 μ g/L to 780 μ g/L in the same time frame. TPHg and benzene concentration trends for key shallow and deep wells are illustrated on Figures 5 and 6, respectively.

<u>Historic Distribution:</u> Shallow (A-zone) groundwater contains petroleum hydrocarbons at elevated concentrations in two primary areas near the former UST excavation: a northern area in the vicinity of well MW-4A, and a southwestern area in the vicinity of wells MW-3A and MW-8A. Prior shallow grab groundwater sampling data also indicates that the southern area of contamination extends to the southern site boundary in the vicinity of wells MW-7B and MW-7C (where *benzene* concentrations are apparently

biodegrading in these deeper wells). The non-detect concentrations of hydrocarbons in wells MW-9A and MW-10A indicate that offsite migration of petroleum hydrocarbons in shallow groundwater is minimal. The observed distribution of hydrocarbons in A-zone groundwater is presumably due to plume migration radially away from the excavation area, likely caused by mounding of groundwater within the uncapped former UST excavation during the rainy season.

Contaminant distribution in deeper groundwater differs from the distribution of hydrocarbons in shallow groundwater. Elevated contaminant concentrations within deeper groundwater (B-zone and C-zone) are apparently present in the vicinity of wells MW-3C, MW-7B and MW-7C in the central and southern portions of the site. Again, the apparent biodegradation of benzene and select other compounds in wells MW-7B and MW-7C suggests that deeper hydrocarbons are attenuating. Site remediation is also likely improving site conditions. Well screen intervals for shallow and deep wells are summarized on Table 2.

Fuel Oxygenate Distribution in Groundwater

No MTBE was detected above reporting limits in any samples obtained from site monitoring wells this monitoring event. MTBE is not a contaminant of concern at this site both due to the lack of detections, and because the USTs were removed in 1990 prior to widespread use of MTBE as a fuel oxygenate.

REMEDIATION SYSTEM SUMMARY

Dual Phase Extraction/Air Sparging System

The dual phase extraction (DPE) remediation system simultaneously extracts groundwater and soil vapor from site remediation wells. The remediation system layout is shown on Figure 4. Extraction and treatment is performed using a 25 hp liquid ring vacuum pump with a 400 cubic foot per minute (cfm) electric catalytic oxidizer. To maximize groundwater depression, a "stinger" (vacuum tube inserted below the water table) is used to both depress the water table and extract soil vapor in each of the 10 remediation wells (DPE-1 through DPE-6 and MW-3A, MW-4A, MW-7B and MW-8A). Extracted vapors are routed through an air/water separator and then treated by the electric catalytic oxidizer. The treated vapor is discharged to the atmosphere in accordance with Bay Area Air Quality Management District (BAAQMD) requirements. Groundwater captured within the air/water separator is pumped through two 200-lb canisters of granular activated carbon plumbed in series. The treated groundwater is discharged into the sewer in accordance with East Bay Municipal Utility District's (EBMUD) requirements.

The air sparging (AS) system consists of a 5 hp Ingersoll-Rand rotary-screw air compressor capable of injecting 16 cfm of air and reaching pressures of 125 psig. Injection into the seven air sparge wells (AS-1,

Groundwater Monitoring and Remediation Report – Second Quarter 2011

5175 Broadway

Oakland, California

August 26, 2011

MW-1, MW-2C, MW-3C, MW-5B, MW-7C and MW-8C) is controlled by timer-activated solenoid valves and individual well needle valves on the well flow meters. The remediation system layout is shown on Figure 4.

Operation and Performance

DPE and AS system operation commenced on December 8, 2010 and March 16, 2011, respectively. The DPE system was initially operated to target elevated impact within the northern portion of the site (wells DPE-1, MW-3A, MW-4A and MW-8A). After initial contaminant mass removal rates decreased, DPE remediation was focused on the southern portion of the site, and AS was commenced soon thereafter. AS was initiated on wells MW-2C and MW-3C near the center of the site, and later expanded to include well MW-7C and well MW-8C. System operation and performance data is summarized on Tables 3 and 4. Subsequent DPE/AS targets wells across the site to optimize hydrocarbon removal.

As of July 19, 2011, the DPE system operated for a total of about 3,836 hours (approximately 160 days). Laboratory analytical and performance data indicates that soil vapor removal rates observed during this reporting period ranged from 2.6 to 10 lbs/day TPHg and 0.01 to 0.09 lbs/day benzene. As of July 19, 2011, the vapor-phase portion of the DPE system removed a total of approximately 1,088 lbs TPHg and 7.6 lbs benzene. The groundwater portion of the DPE system has removed a total of approximately 0.25 lbs TPHg and 0.006 lbs benzene. Additional hydrocarbon removal is provided by biodegradation stimulated by oxygenation from DPE/AS processes.

The DPE/AS system is monitored in accordance with air permit requirements of the *Authority to Construct Permit* issued by the Bay Area Air Quality Management District (BAAQMD) and groundwater discharge requirements of the *Wastewater Discharge Permit* issued by East Bay Municipal Utility District.

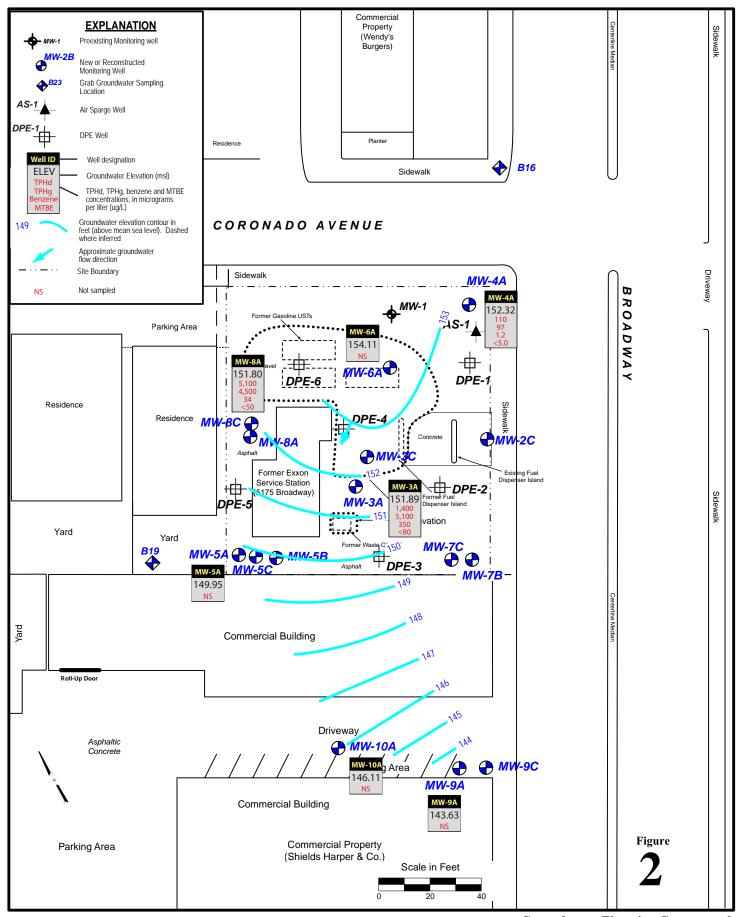
Evaluation of Remediation Effectiveness

The calculated hydrocarbon mass removal and reported concentration reduction in groundwater suggest that the DPE/AS system is effectively remediating the site subsurface. Hydrocarbon mass removal and concentration reduction are described above. Pangea plans to continue operation and optimization of the DPE/AS system during the dry season to target residual elevated impact. Future groundwater monitoring will help evaluate the effectiveness of dual-phase extraction and air sparging. The TPHg and benzene concentration trends for key shallow and deep groundwater wells are illustrated on Figures 5 and 6.

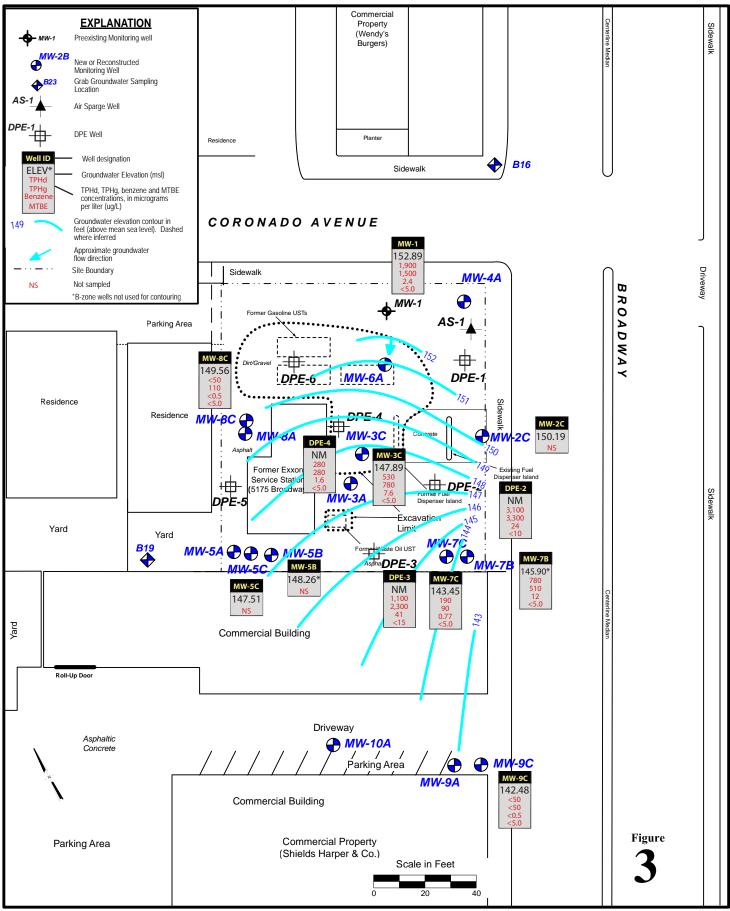
Electronic Reporting

This report will be uploaded to the Alameda County FTP site. The report, laboratory data, and other applicable information will also be uploaded to the State Water Resource Control Board's Geotracker database. As requested, report hard copies will no longer be provided to the local agencies.

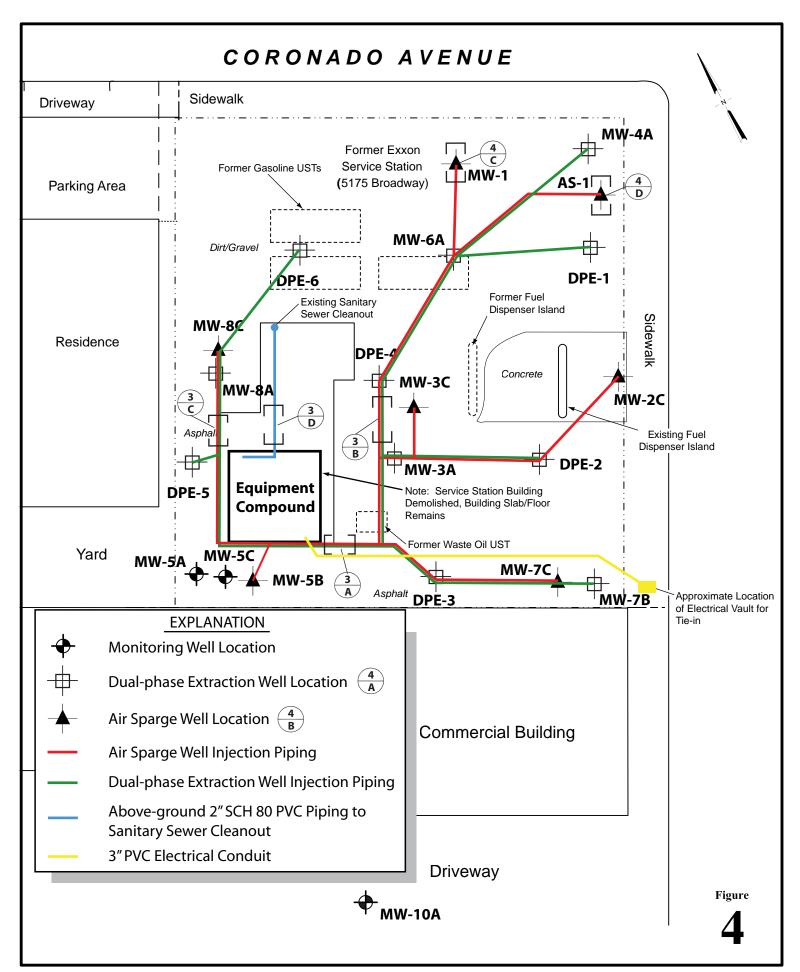
ATTACHMENTS

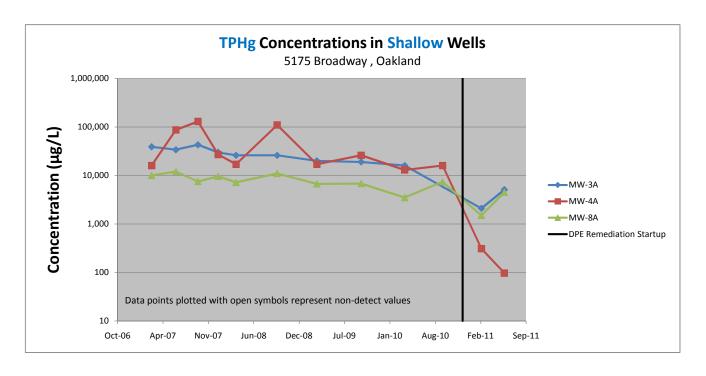

- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)
- Figure 3 Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep)
- Figure 4 Remediation System Layout
- Figure 5 TPHg and Benzene Concentration Trends in Shallow Groundwater
- Figure 6 TPHg and Benzene Concentration Trends in Deep Groundwater
- Table 1 Groundwater Analytical Data
- Table 2 Well Construction Details
- Table 3 SVE System Performance Data
- Table 4 GWE System Performance Data
- Appendix A Groundwater Monitoring Program
- Appendix B Groundwater Monitoring Field Data Sheets
- Appendix C Laboratory Analytical Reports

Former Exxon Station 5175 Broadway Oakland, California


Site Location Map

Feiner Broadway site loc.ai 8/30/06


Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation Contour and Hydrocarbon Concentration Map (Shallow)



Former Exxon Station 5175 Broadway Oakland, California Groundwater Elevation Contour and Hydrocarbon Concentration Map (Deep) June 10, 2011

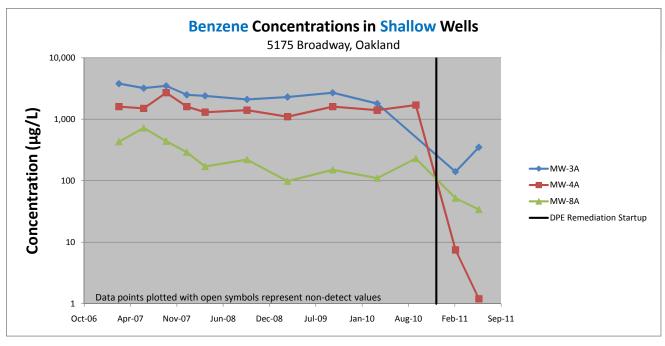
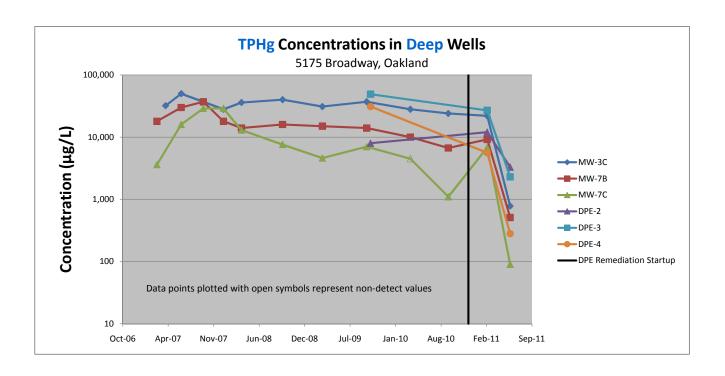



Figure 5. TPHg and Benzene Concentration Trends in Shallow Groundwater

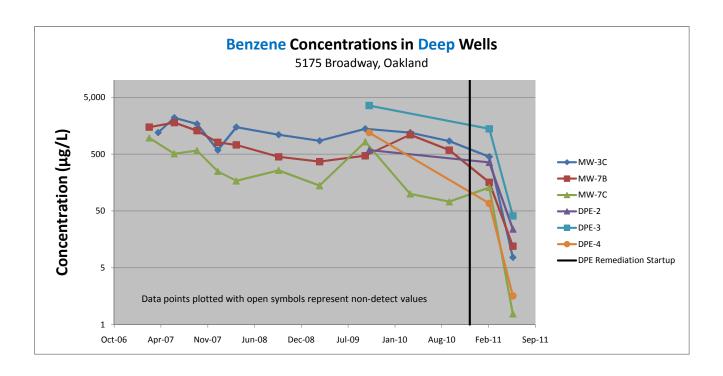


Figure 6. TPHg and Benzene Concentration Trends in Deep Groundwater

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)	•	(ft)	(ft)	(ft)	←				μg/L —	-			→	mg/L
SHALLOW WE	LLS													
MW-3A	03/09/07		152.20	9.35	4,500	39,000	3,800	220	830	2,800	<500			
(161.55)	03/26/07		152.33	9.22										
(161.57)	06/24/07		151.61	9.94	11,000	34,000	3,200	330	990	3,200	<250			
	09/29/07		150.21	11.36	11,000	43,000	3,500	150	730	2,200	<1,000			
	12/27/07		150.20	11.37	8,700	30,000	2,500	24	520	930	<100			
	03/15/08		152.27	9.30	10,000	26,000	2,400	110	700	1,200	<250			
	09/12/08		149.57	12.00	9,000	26,000	2,100	29	560	280	<100			
	03/06/09		152.66	8.91	6,500	20,000	2,300	59	740	410	<180			
	09/17/09		149.47	12.10	6,900	19,000	2,700	33	660	110	<250			
	03/28/10		152.50	9.07	4,300	16,000	1,800	38	220	340	<100			
	09/11/10		149.44	12.13					Insufficent	water to sample				
	03/01/11		150.01	11.56	2,200	2,100	140	10	37	97	<10			
	06/10/11	-	151.89	9.68	1,400	5,100	350	140	110	490	<80			
MW-4A	03/09/07		152.88	9.56	3,600	16,000	1,600	36	37	150	<250			
(162.44)	03/26/07		152.56	9.88										
	06/24/07		152.02	10.42	110,000	87,000	1,500	59	290	800	<500			
	09/29/07		151.33	11.11	170,000	130,000	2,700	69	400	1,400	<240			
	12/27/07		152.33	10.11	19,000	27,000	1,600	31	100	320	<90			
	03/15/08		152.51	9.93	38,000	17,000	1,300	<50	120	380	<500			
	09/12/08		151.72	10.72	120,000	110,000	1,400	<50	210	660	<500			
	03/06/09		153.84	8.60	32,000	17,000	1.100	15	<10	190	<100			
	09/17/09		151.44	11.00	25,000	26,000	1,600	63	140	320	<350			
	03/28/10		152.69	9.75	9,200	13,000	1,400	29	16	160	<100			
	09/11/10		151.34	11.10	23,000	16,000	1,700	43	140	330	<250			
	03/01/11		148.94	13.50	270	310	7.5	1.0	<0.5	7.7	<5.0			
	06/10/11		152.32	10.12	110	97	1.2	<0.5	<0.5	1.7	<5.0			
MW-5A	03/09/07		150.40	10.42	56	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
(160.82)	03/26/07		150.00	10.82										
(100.02)	06/24/07		148.94	11.88	<50	180	< 0.5	< 0.5	<0.5	< 0.5	<5.0			
	09/29/07		147.86	12.96										
	12/27/07		148.40	12.42			-							
	03/15/08		149.96	10.86	<50	180	0.91	<0.5	<0.5	<0.5	<5.0			
	09/12/08		147.50	13.32	00	180	0.91	<0.5		water to sample	0.0			
	03/06/09		151.33	9.49	230	460	2.0	3.0	0.68	1.9	<5.0			
	03/06/09		151.55	12.80	230	400	2.0	5.0		1.9 water to sample	<3.0			
					-50	60	.0.5	.0.5		-	.5.0			
	03/28/10		150.30	10.52	<50	69	< 0.5	< 0.5	<0.5	<0.5	<5.0			
	09/11/10		147.72	13.10	-50	.50	0.5	.0.5		water to sample	.50			
	03/01/11		150.98	9.84	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0			
	06/10/11		149.95	10.87										

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —					mg/L
MW-6A	03/09/07	_	154.91	6.67	380	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
(161.58)	03/09/07		154.41	7.17			<0.5	<0.5	<0.5	<0.5				
(101.58)	06/24/07		153.79	7.17	590	140	<0.5	<0.5		<0.5	<5.0			
	09/29/07		153.79	7.79 8.74	540	52	<0.5	<0.5	<0.5 <0.5	<0.5	<5.0 <5.0			
	12/27/07		154.27	7.31	170	94	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/15/08		154.42	7.16	150	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-		
	09/12/08		152.92	8.66	510	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/06/09		155.76	5.82	110	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	09/17/09		152.89	8.69	280	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/28/10		154.55	7.03	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	09/11/10		152.99	8.59	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	-		
	03/01/11		154.57	7.01	67	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
				7.01								-		
	06/10/11		154.11	7.47								-	-	-
MW-8A	03/09/07		152.05	9.52	4,200	10,000	430	18	<10	88	<100			
(161.57)	03/26/07		151.74	9.83										
	06/24/07		151.40	10.17	17,000	12,000	720	500	230	880	<300			
	09/29/07		150.64	10.95	5,300	7,500	440	67	26	240	<90			
(161.59)	12/27/07		152.00	9.59	13,000	9,600	290	100	90	360	<100			
	03/15/08		152.00	9.59	7,500	7,200	170	28	270	110	<100			
	09/12/08		150.27	11.32	9,900	11,000	220	31	110	180	<50			
	03/06/09		153.01	8.58	5,500	6,700	98	17	57	63	<50			
	09/17/09		150.83	10.76	5,200	6,800	150	19	10	35	<25			
	03/28/10		151.86	9.73	2,600	3,500	110	7.2	<1.7	19	<17			
	09/11/10		150.43	11.16	4,800	7,400	230	25	15	40	<90			
	03/01/11		152.80	8.79	1,000	1,500	52	3.5	24	11	<10			
	06/10/11	-	151.80	9.79	5,100	4,500	34	11	42	240	< 50		-	
MW-9A	09/29/07		142.76	12.61	86	<50	2.6	< 0.5	<0.5	<0.5	<5.0			
(155.37)	12/27/07		143.51	11.86	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	03/15/08		143.35	12.02	<50	<50	0.85	< 0.5	<0.5	< 0.5	<5.0			
	09/12/08		142.60	12.77	<50	<50	1.2	< 0.5	< 0.5	< 0.5	<5.0			
	03/06/09		144.18	11.19	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0			
	09/17/09		142.91	12.46	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			-
	03/28/10		143.49	11.88	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	09/11/10		142.71	12.66	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	03/01/11		143.86	11.51	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	06/10/11		143.63	11.74								-		
MW-10A	09/29/07		144.35	10.53	-50	·F0	<0.5	<0.5	-0.5	<0.5	<5.0			
	12/27/07		145.50	9.38	<50 <50	<50 <50	<0.5	<0.5	<0.5 <0.5	<0.5	<5.0			
(154.88)														
	03/15/08		145.96	8.92	<50	<50	<0.5 <0.5	<0.5	<0.5	<0.5	<5.0			
	09/12/08		143.82	11.06	<50	<50	<0.5 <0.5	<0.5	<0.5	<0.5	<5.0		-	
	03/06/09		147.45	7.43	<50	<50		<0.5	<0.5	<0.5	<5.0			
	09/17/09		144.11	10.77	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			-
	03/28/10		146.25	8.63	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	09/11/10		144.19	10.69	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/01/11		147.12	7.76	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0			
	06/10/11		146.11	8.77										

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth									·	Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —					mg/L
EEP WELLS														
MW-1	04/30/89					200	18	5	2	12				
(97.71)	05/17/90		88.45	9.26				-						
	09/26/90		87.79	9.92		1,300	55	31	120	100				
	01/14/91		88.17	9.54		3,100	350	83	86	130				
(102.04)	07/03/91		92.62	9.42		580	32	41	40	55				
	11/11/91		92.59	9.45		330	20	2	2	11				
(101.83)	03/04/92		93.90	7.93		810	11	5	10	23				
	06/02/92		92.85	8.98		2,200	93	32	40	120				
	09/28/92		92.54	9.29		2,900	24	78	19	37				
	01/11/93		94.27	7.56		1,700	5.7	6	11	28				
	08/15/94		92.64	9.19		2,000	120	3	6	16				
(97.50)	11/07/96		88.77	8.73	270	1,200	3	1.1	1.5	3.8	< 0.5			
	02/12/97		89.58	7.92	<50	1,800	13	5.7	4.8	17	< 0.5			
	06/16/97		88.46	9.04	<50	330	27	< 0.5	< 0.5	1.2	< 0.5			
	09/30/97		89.94	7.56	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
(97.50)	01/27/98		89.54	7.96	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	04/24/98		89.52	7.98	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.52	8.98	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	11/16/98		88.60	8.90	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	02/16/99		88.86	8.64	<50	110	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	05/17/99		89.00	8.50		280	1.1	0.6	< 0.5	< 0.5	<0.5			
	08/17/99		88.26	9.24	86	790	5.6	4.3	4.5	11	<5.0			
	11/17/99		87.06	10.44		1,300	3.6	1.9	2.7	6.6	<1.0			
	02/17/00		89.02	8.48		580	1.1	2.3	3.6	4.9	<5.0			
	05/17/00		89.26	8.24		1,500	130	6.8	6.1	<5.0	<5.0			
	08/17/00		88.73	8.77		550	160	<25	<25	<25	<25			
	11/15/00		88.46	9.04		130	<5.0	<5.0	<5.0	<5.0	<5.0			
	02/16/01		89.90	7.60		400	26	<5.0	<5.0	<5.0	<5.0			
	01/11/02		89.42	8.08	160	600	74	53	14	52	110			
(161.03)	07/01/02		152.01	9.02	280	670	25	<5.0	<5.0	<5.0	<5.0			
(101.05)	10/04/02		151.29	9.74	520	1,800	130	7.8	8.1	14	<5.0			
	07/28/06		151.93	9.10	86	250	42	1.7	1.4	3.1	<1.0	51	1.5	0.21
	10/16/06	-	151.98	9.05	110	390	16	<0.5	1.5	2.2	<0.5	41	1.6	0.17
(161.10)	01/09/07		152.90	8.20	160	530	21	1.7	2.8	5.1				0.22
(101.10)	03/26/07		152.84	8.26										0.22
	06/24/07		152.12	8.98	220	500	24	1.1	2.2	4.2	<5.0			
	09/29/07		151.44	9.66	180	540	19	1.2	2.3	5.3	<5.0			
	12/27/07		152.60	8.50	200	290	10	0.65	1.2	3.0	<5.0			
	03/15/08		152.72	8.38	340	680	24	1.1	1.9	2.9	<10			
	09/12/08		151.86	9.24	320	1,000	13	<0.5	0.61	1.4	<5.0			
	03/06/09	-	154.40	6.70	2,700	2,500	28	3.2	4.8	10	<17		-	
	09/17/09		151.67	9.43	170	300	4.4	<0.5	<0.5	2.3	<5.0			
	03/28/10		153.05	8.05	290	1,000	16	1.2	1.1	4.2	<5.0			
	09/11/10		151.50	9.60	190	270	6.9	<0.5	0.75	2.1	<5.0			
	03/01/11		152.61	8.49	1,600	940	<0.5	<0.5	0.75	2.0	<5.0			
	06/10/11		152.89	8.21	1,900	1,500	2.4	<0.5	0.84	7.9	<5.0			
MW-2C	02/00/07		152.24	9.41	140	450	40	0.2	2.0	16	<10			
	03/09/07		152.24	8.41	140	450	40	9.3	2.9	16	<10			
(160.65)	03/26/07		151.93	8.72	160		20							
	06/24/07		151.21	9.44	160	440	30	1.8	5.9	7.4	<5.0			
	09/29/07		150.45	10.20	120	200	13	<0.5	<0.5	2.0	<5.0			
	12/27/07		151.42	9.23	83	190	13	0.83	<0.5	1.9	<5.0			
	03/15/08		151.83	8.82	120	250	24	2.2	5.2	4.5	< 5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	←				μg/L —				→	mg/L
MW-2C	09/12/08		150.73	9.92	< 50	130	7.1	< 0.5	1.2	0.83	<5.0			
(cont.)	03/06/09		153.21	7.44	95	180	8.0	1.1	1.5	2.8	<5.0			
	09/17/09		150.57	10.08	<50	64	4.3	< 0.5	0.62	0.88	<5.0			
	03/28/10		152.02	8.63	<50	94	4.6	< 0.5	0.77	1.2	<5.0			
	09/11/10		150.31	10.34	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/01/11		146.88	13.77	66	670	9.9	< 0.5	0.92	0.58	<5.0			
	06/10/11		150.19	10.46										
MW-3C	03/26/07		151.15	10.64										
(161.79)	04/16/07		150.87	10.92	36,000	32,000	1,200	710	600	1,900	<500			
	06/24/07		149.43	12.36	200,000	50,000	2,200	4,100	860	6,100	<500			
	09/29/07		148.33	13.46	48,000	37,000	1,700	3,300	830	4,800	<1,000			
	12/27/07		149.79	12.00	29,000	28,000	590	900	630	2,000	<500			
	03/15/08		150.70	11.09	21,000	36,000	1,500	2,400	570	3,700	<500			
	09/12/08		148.37	13.42	11,000	40,000	1,100	1,200	600	3,000	<500			
	03/06/09		152.04	9.75	13,000	31,000	860	420	540	2,200	<500			
	09/17/09		148.59	13.20	14,000	37,000	1,400	690	400	4,300	<1,200			
	03/28/10		151.15	10.64	10,000	28,000	1,200	540	750	3,200	<150			
	09/11/10		148.48	13.31	13,000	24,000	850	390	550	3,100	<1,000			
	03/01/11		148.27	13.52	19,000	22,000	450	110	600	1,500	<300			
	06/10/11		147.89	13.90	530	780	7.6	3.4	2.7	16	<5.0			
MW-5B	03/09/07		146.42	15.08	59	140	1.3	0.77	<0.5	1.6	<5.0			
(161.50)	03/26/07		148.88	12.62										
(101.50)	06/24/07		147.98	13.52	53	52	1.1	< 0.5	< 0.5	< 0.5	<5.0			
	09/29/07		146.60	14.90	<50	<50	0.95	<0.5	<0.5	<0.5	<5.0			
	12/27/07		148.41	13.09	<50	58	1.4	<0.5	0.60	<0.5	<5.0			
	03/15/08		148.95	12.55	<50	61	2.6	1.1	1.1	3.0	<5.0			
	09/12/08		146.35	15.15	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0			
	03/06/09		150.36	11.14	<50	67	2.0	1.4	1.3	3.3	<5.0			
	09/17/09		146.94	14.56	<50	58	0.66	<0.5	<0.5	<0.5	<5.0			
	03/28/10		149.38	12.12	<50	110	2.7	0.78	<0.5	1.6	<5.0			
	09/11/10		145.55	15.95	<50	110	0.56	<0.5	<0.5	<0.5	<5.0			
	03/01/11		149.53	11.97	97	120	< 0.5	< 0.5	<0.5	< 0.5	<5.0			
	06/10/11		148.26	13.24									-	
MW-5C	03/09/07		148.12	12.91	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
(161.03)	03/26/07		148.41	12.62										-
(101.03)	06/24/07		147.58	13.45	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	09/29/07		146.41	14.62	66	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	12/27/07		148.10	12.93	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/15/08		148.48	12.55	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	09/12/08		146.04	14.99	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/06/09		149.73	11.30	<50	<50	0.52	<0.5	<0.5	<0.5	<5.0			
	09/17/09		146.60	14.43	<50	<50	< 0.5	<0.5	<0.5	<0.5	<5.0			
	03/28/10		148.68	12.35	<50	<50	1.3	<0.5	<0.5	<0.5	<5.0			
	09/11/10		146.22	14.81	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/01/11		148.95	12.08	66	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	05/01/11		170.73	13.52	00	~50	~U.J	\U.J	\J.J	~v.J	~J.U			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)		(ft)	(ft)	(ft)	\leftarrow				μg/L				→	mg/L
MW-7B	03/09/07		147.97	11.18	930	18,000	1,500	1,600	140	1,800	<600			
(159.15)	03/26/07		148.10	11.05										
	06/24/07		147.54	11.61	40,000	30,000	1,800	2,400	240	2,800	<700			
(159.02)	09/29/07		146.91	12.11	16,000	37,000	1,300	1,500	180	2,700	< 500			
	12/27/07		147.37	11.65	7,700	18,000	810	880	38	1,600	<50			
	03/15/08		147.66	11.36	7,900	14,000	730	820	110	1,200	<250			
	09/12/08		146.87	12.15	27,000	16,000	450	340	19	1,300	<120			
	03/06/09		147.90	11.12	15,000	15,000	370	270	13	1,000	<150			
	09/17/09		146.94	12.08	10,000	14,000	470	330	44	1,100	<170			
	03/28/10		148.17	10.85	2,300	10,000	1,100	750	46	1,100	<300			
	09/11/10		146.81	12.21	2,900	6,700	590	260	84	550	<210			
	03/01/11		147.28	11.74	31,000	9,200	160	96	53	510	<50			
	06/10/11		145.90	13.12	780	510	12	5.5	1.4	28	<5.0			
MW-7C	03/09/07		145.44	13.09	190	3,600	970	100	12	90	<120			
(158.53)	03/26/07		147.53	11.00										
	06/24/07		146.65	11.88	7,100	16,000	510	520	190	1,300	<100			
	09/29/07		146.21	12.32	11,000	29,000	580	1,400	600	4,800	<1,000			
	12/27/07		146.74	11.79	56,000	29,000	250	410	430	3,300	<50			
	03/15/08		147.45	11.08	7,000	13,000	170	58	170	1,300	<100			
	09/12/08		146.02	12.51	2,600	7,600	260	38	76	330	<50			
	03/06/09		147.65	10.88	1,900	4,600	140	21	15	93	<15			
	09/17/09		146.23	12.30	2,200	7,000	830	38	23	90	<100			
	03/28/10		147.32	11.21	940	4,500	<100	79	2.0	59	66			
	09/11/10		145.77	12.76	350	1,100	73	3.6	2.0	5.2	<15			
	03/01/11		146.11	12.42	1,400	6,800	130	9.6	3.1	8.0	<10			
	06/10/11		143.45	15.08	190	90	0.77	1.1	<0.5	1.1	<5.0			
MW-8C	03/09/07		149.18	12.15	<50	150	9.8	1.3	2.0	3.9	<5.0			
(161.33)	03/26/07		149.56	11.77										
	06/24/07		148.96	12.37	<50	<50	0.57	< 0.5	<0.5	<0.5	<5.0			
	09/29/07		148.35	12.98	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0			
	12/27/07		149.84	11.49	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0			
	03/15/08		149.94	11.39	<50	110	6.0	1.7	2.4	2.4	<5.0			
	09/12/08		148.18	13.15	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	03/06/09		151.25	10.08	<50	<50	2.1	< 0.5	0.87	0.76	<5.0			
	09/17/09		148.63	12.70	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	03/28/10		149.94	11.39	<50	84	6.6	0.89	2.9	2.7	<5.0			
	09/11/10		148.33	13.00	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			
	03/01/11		150.45	10.88	65	280	16	3.7	7.9	6.2	<10			
	06/10/11		149.56	11.77	<50	110	<0.5	<0.5	<0.5	<0.5	<5.0			
MW-9C	09/29/07		142.67	12.27	390	68	2.2	0.88	<0.5	<0.5	<5.0			
(154.94)	12/27/07		143.40	11.54	<50	<50	0.84	<0.5	<0.5	<0.5	<5.0			
	03/15/08		143.98	10.96	<50	<50	0.55	<0.5	<0.5	<0.5	<5.0			
	09/12/08		142.53	12.41	<50	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
	03/06/09		144.09	10.85	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	09/17/09		142.84	12.10	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			-
	03/28/10		143.34	11.60	<50	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0			
	09/11/10		139.13	15.81	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0			
	03/01/11		143.74	11.20	480	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0			
	06/10/11		142.48	12.46	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID	Date		Groundwater	Depth										Dissolved
TOC Elev	Sampled	SPH	Elevation	to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Oxygen
(ft)	•	(ft)	(ft)	(ft)	←				μg/L —				→	mg/L
REMEDIATION	WELLS													
AS-1	10/04/09			11.38		<50	3.6	< 0.5	<0.5	<0.5	<5.0			
DPE-1	10/04/09			10.38		1,600	210	4.4	5.1	34	<35			
						-,000								
DPE-2	10/04/09			11.33		8,000	590	220	92	760	<250			
	03/01/11			16.10	14,000	12,000	360	130	96	1,700	<50			
	06/10/11		-	12.41	3,100	3,300	24	40	16	340	<10			
DPE-3	10/04/09			11.85		49,000	3,600	4,400	1,300	6,500	<2,500			
	03/01/11			11.37	51,000	27,000	1,400	810	870	3,300	< 700			
	06/10/11			15.34	1,100	2,300	41	19	16	130	<15			
DPE-4	10/04/09			11.50		31,000	1,200	2,900	530	4,700	<1,200			
	03/01/11			13.88	5,100	5,600	68	100	42	350	<50			
	06/10/11		-	11.07	280	280	1.6	4.2	2.5	25	<5.0			
DPE-5	10/04/09			14.46		2,900	78	71	29	260	<50			
DPE-6	10/04/09			11.05		1,800	6.7	5.2	2.6	34	<5.0			
DESTROYED V	VELLS													
MW-2	04/30/89					230	39	18	5	23				
(97.78)	05/17/90		87.78	10.00										
	09/29/90		86.95	10.83		850	970	5	25	47				
	01/14/91		87.15	10.63		3,100	30	52	24	34				
(102.02)	07/03/91		91.94	10.08		1,590	30	52	24	34				
	11/11/91		91.81	10.21		960	320	15	4	29				
	03/04/92		93.32	8.70		1,500	9.5	8.4	9.8	22				
	06/02/92		92.50	9.52		2,800	84	41	59	95				
	09/28/92		91.93	10.09		1,600	47	20	47	97				
	01/11/93		93.50	8.52		2,500	8.6	10	17	32				
(97.49)	08/15/94		87.58	9.91		6,000	450	60	100	95				
(97.49)														
	11/07/96		87.47	10.02	780	4,200	25	4.9	8.1	14	<0.5			
	02/12/97		88.58	8.91	5,700	1,800	16	3.1	3.4	8.8	<0.5			
	06/16/97		87.74	9.75	<50	2,500	22	5.1	7.8	11	<0.5			
	09/30/97		89.60	7.89	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5			
	01/27/98		89.11	8.38	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<0.5			
	04/24/98		88.81	8.68	1,400	2,100	18	6.5	4.8	21	< 0.5			
	08/17/98		87.75	9.74	<50	2,900	5.1	4.5	5.8	17	< 0.5			
	11/16/98		87.35	10.14	<50	1,400	2.1	1.9	2.3	4.8	< 0.5			
	02/16/99		88.57	8.92	< 50	1,600	82	16	<2.5	40	59			
	05/17/99		88.23	9.26		8,200	43	73	140	100	<250			
	08/17/99		87.45	10.04	260	2,900	20	81	17	38	< 5.0			
	11/17/99		85.97	11.52	<50	2,600	7	3.7	5.3	12.9	<1.0			
	02/17/00		87.99	9.50		1,700	3.2	6.8	11	12.3	<5.0			
	05/17/00		88.65	8.84		3,800	450	65	110	80	<25			
	08/17/00		88.99	8.50		4,300	440	<50	78	<50	<50			
	11/15/00		87.55	9.94		5,800	320	41	78	64	<25			
	02/16/01		88.97	8.52		2,200	110	20	38	33	<5.0			
	01/11/02		88.67	8.82	620	3,100	280	86	84	110	<50			
(160.98)	07/01/02		151.34	9.64	940	2,600	300	29	45	27	<10			
(100.90)	10/04/02		151.34	10.52	390	4,000	300 440	66	45 140	120	<25			
	10/04/02		130.40	10.52	390	4,000	440	00	140	120	<.25			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)	Sampled	(ft)	(ft)	(ft)	- Trnu	iriig	Denzene	ronuene	μg/L —	Ayienes	WIIDE	DIFE	1,2-DCA	mg/L
(1)		(11)	(It)	(11)					μg/L					mg/L
MW-2	07/28/06		150.96	10.02	340	1,300	150	9.9	6	18	< 0.5	3.6	< 0.5	0.17
(cont.)	10/16/06		150.45	10.53	76	150	16	1.0	3.5	2.2	<0.5	1.2	< 0.5	0.19
,,	01/09/07		151.65	9.33	84	210	27	2.6	8.1	6.8				0.14
	01/25/07						Destroyed							
							•							
MW-3	04/30/90					56,000	3,600	8,600	1,300	7,200				
(98.14)	05/17/90		85.72	12.42										
	09/26/90		84.64	13.50		54,000	5,100	420	1,600	8,000				
	01/14/91		85.56	12.58		35,000	2,600	6,600	1,500	5,700				
(102.46)	07/03/91		90.38	12.08		33,000	4,120	4,300	1,400	4,800				
	11/11/91		90.17	12.29		57,000	3,900	8,400	2,100	14,000				
(102.18)	03/04/92		91.92	10.26		57,000	720	870	81	3,100				
(97.94)	06/02/92		86.54	11.40		50,000	240	240	220	740				
	09/28/92		85.30	12.64		64,000	110	93	97	250				
	01/11/93		87.84	10.10		68,000	210	280	360	990				
	08/15/94		85.74	12.20		50,000	870	1,200	1,300	3,000				
	11/07/96		85.54	12.40	470	68,000	33	27	63	120	< 0.5			
	02/12/97		87.71	10.23	3,500	25,000	39	43	15	91	< 0.5			
	06/16/97		86.15	11.79	< 50	9,700	26	29	45	81	< 0.5			
	09/30/97		88.54	9.40	1,600	6,000	43	36	12	11	< 0.5			
	01/27/98		88.14	9.80	560	380	5.7	4.1	1.7	9.1	< 0.5			
	04/24/98		88.04	9.90	680	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		86.48	11.46	< 50	16,000	200	18	31	82	< 0.5			
	11/16/98		85.54	12.40	< 50	68,000	86	54	69	130	< 0.5			
	02/16/99		87.22	10.72	< 50	33,000	270	110	< 5.0	770	170			
	05/17/99		87.40	10.54		72,000	280	230	320	890	<250			
	08/17/99		85.99	11.95	1,800	20,000	51	41	61	130	< 5.0			
	11/17/99		84.34	13.60		1,700	39	22	31	84	<1.0			
	02/17/00		87.26	10.68		8,800	16	39	74	90	< 5.0			
MW-3	05/17/00		87.69	10.25		22,000	300	260	410	940	< 5.0			
(cont.)	08/17/00		86.10	11.84		15,000	230	140	470	750	<50			
	11/15/00		86.12	11.82		12,000	250	210	390	700	<25			
	02/16/01		88.26	9.68		7,400	40	72	700	250	<25			
	01/11/02		88.36	9.58	1,900	9,300	230	200	290	580	<25			
(161.43)	07/01/02		150.29	11.14	5,200	13,000	230	220	450	890	<13			
	10/04/02		148.61	12.82	4,900	11,000	280	170	450	730	<25			
	07/28/06			Not Sampl	ed - Unable to l	ocate well								
	10/16/06			Not Sampl	ed - Unable to l	ocate well								
	01/09/07			Not Sampl	ed - Unable to l	ocate well								
	01/22/07		149.81	11.62	93,000	34,000	770	250	760	2,000	<1,000			
	03/16/07						Well Destroye	ed						
STMW-4	07/03/91		92.58	11.00		3,100	610	62	39	150				
(103.58)	11/11/91		92.50	11.08		3,600	990	15	2.6	180				
(101.08)	03/04/92		91.64	9.44		5,000	35	20	22	71				
(98.80)	06/02/92		88.48	10.32		13,000	140	45	63	210				
	09/28/92		88.04	10.76		40,000	35	20	48	110				
	01/11/93		89.52	9.28		24,000	26	88	92	280				
	08/15/94		88.26	10.54		9,000	500	34	46	130				
	11/07/96		88.43	10.37	180	13,000	40	2.9	7.8	19	< 0.5			
	02/12/97		89.44	9.36	5,700	5,300	95	5.3	5.9	18	< 0.5			

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev	Date Sampled	SPH	Groundwater Elevation	Depth to Water	TPHd	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	DIPE	1,2-DCA	Dissolved Oxygen
(ft)	bumpieu	(ft)	(ft)	(ft)	←	6	Demone	Totalene	μg/L —	Trylenes		5112		mg/L
,			, ,						, 0					
STMW-4	06/16/97		88.40	10.40	<50	5,300	37	6.2	1.7	11	< 0.5			
(cont.)	09/30/97		90.30	8.50	<50	2,700	42	7.7	5.7	26	< 0.5			
	01/27/98		89.90	8.90	300	3,000	60	17	12	49	< 0.5			
	04/24/98		89.30	9.50	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	08/17/98		88.44	10.36	< 50	29,000	36	24	59	160	< 0.5			
	11/16/98		88.24	10.56	<50	13,000	26	21	20	41				
	02/16/99		89.16	9.64	<50	32,000	660	16	16	150	<100			
	05/17/99		88.84	9.96		13,000	1600	30	45	78	<250			
	08/17/99		88.16	10.64	990	12,000	260	22	33	72	<5.0			
	11/17/99		86.78	12.02		7,900	21	12	17	40	<1.0			
	02/17/00		89.48	9.32		4,900	8.9	21	38	50	<5.0			
	05/17/00		89.15	9.65		9,600	840	<50	61	<50	<50			
	08/17/00		88.46	10.34		5,100	680	<50	62	<50	<50			
	11/15/00 02/16/01		88.28	10.52		3,900	640 560	<25 <25	26	27	<25 <25			
	02/16/01 01/11/02		89.60 89.22	9.20 9.58	930	5,700 4,900	560	<25 59	<25 25	<25 <25	<250	-		
(162.13)	07/01/02		89.22 151.85	10.28	6,700	6,700	470	18	32	<25 45	<13			
(102.13)	10/04/02		151.05	11.08	2,900	13,000	590	26	65	110	<25			
	07/28/06	0.04	151.53	10.60	39,000	25,000	960	21	73	130	<5.0	65	<5.0	0.22
	10/16/06	0.06	151.30	10.83	14,000	14,000	790	28	81	130	<5.0	30	<5.0	0.26
	01/09/07	0.03	152.20	9.93	11,000		Not Sampled - SI		01	130	0.0	50	0.0	0.24
	01/26/07	0.03	132.20	7.75			Well Destroyed							0.24
STMW-5	07/03/91		88.70	13.29		690	99	81	19	98				
(101.99)	11/11/91		87.99	14.00		410	61	2.4	1.4	20				
(101.36)	03/04/92		89.56	11.80		460	13	6.5	11	18				
	06/02/92		88.30	13.06		1,800	27	20	21	43				
	09/28/92		87.32	14.04		1,500	14	6.1	18	22				
	01/11/93		89.75	11.61		800	1.8	3	3.1	9.4				
	08/15/94		87.51	13.85		3,000	320	62	34	220				
(97.14)	11/07/96		83.47	13.67	330	1,200	11	1.7	4.4	13	< 0.5			
	02/17/97		85.07	12.07	3,700	1,000	11	17	1.7	9.7	< 0.5			
	06/19/97		83.81	13.33	2,300	950	7.4	1	1	7.2	< 0.5			
	09/30/97		85.90	11.24	1,100	710	5.8	4	1	1	< 0.5			
	01/27/98		85.50	11.64	1,100	340	2	1.8	1.6	8.2	< 0.5			
	04/24/98		85.30	11.84	<50	3,300	12	9.4	8.5	37	< 0.5			
	08/17/98		83.94	13.20	<50	5,300	26	17	14	39	< 0.5			
	11/16/98		83.40	13.74	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
	02/16/99		84.92	12.22	<50	950	150	3.8	1.4	14	11			
	05/17/99		84.56	12.58		2,800	67	9.4	<2.5	16	30			
	08/17/99		83.66	13.48	230	2,800	18	17	18	36	<5.0			
	11/17/99		82.26	14.88		1,600	3.9	2.3	3.2	7.5	<1.0			
	02/17/00		84.58	12.56		770	1.5	3.2	5.8	7	<5.0			
	05/17/00 08/17/00		85.06 83.58	12.08 13.56		4,500 2,900	<25 170	<25 64	<25 100	<25 250	<25 <10			
	11/15/00		83.58 83.86	13.56		2,900	170	64 24	40	250 54	<10 <5.0			
	02/16/01		83.86 85.54	13.28		2,100 850	120 58	24 9.8	40 9.4	54 18	<5.0 <5.0			
	02/16/01 01/11/02		85.54 85.42	11.72	<50	920	58 76	9.8 16	16	28	13			
(160.65)	07/01/02		85.42 147.51	13.14	1,500	4,300	76 71	14	16	28 36	<5.0			
(100.03)	10/04/02		147.51	13.14	60	1,400	71	17	26	35	<5.0 <5.0	-		
	07/28/06		147.30	13.35	370	700	22	4.3	1.2	6.6	<0.5	<0.5	<0.5	0.24
	10/16/06		146.91	13.74	240	590	14	1.6	1.3	3.2	<0.5	<0.5	<0.5	0.24
	01/09/07		148.19	12.46	180	390	30	3.2	1.8	3.2	<0.5	<0.5	<0.5	0.21

Table 1. Groundwater Analytical Data - Former Exxon Station, 5175 Broadway, Oakland, CA

Well ID TOC Elev (ft)	Date Sampled	SPH (ft)	Groundwater Elevation (ft)	Depth to Water (ft)	TPHd ←	TPHg	Benzene	Toluene	Ethylbenzene μg/L —	Xylenes	МТВЕ	DIPE	1,2-DCA	Dissolved Oxygen mg/L
GRAB GROUN	DWATER SAMPL	ING - 2007												
0.0.0	2 2 0 2	200.												
B-18	01/23/07			7.1	<50	<50	<0.5	< 0.5	< 0.5	< 0.5	<0.5			
B-19	03/19/07			4	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<0.5			
GRAB GROUN	DWATER SAMPL	ING - 2006												
B1-W	02/01/06			9.5	<84	710	(0.52)	(0.59)	(<0.50)	(0.66)	<1.0	<5.0	< 0.50	
B3-W	02/08/06			9.63	<280	23,000	(3,300)	(660)	(170)	(910)	<50	380	<25	
B4-W	02/08/06			8.24		9,700	(320)	(13)	(200)	(180)	<20	1,300	12	
B5-W	02/08/06			6.96		10,000	(150)	(11)	(210)	(190)	<10	< 50	<5.0	
B6-W	02/06/06			12.1		5,600	(3.9)	(3.1)	(54)	(61)	< 5.0	<25	<2.5	
B7-W	02/08/06			11.72		8,000	(2,200)	(300)	(240)	(830)	<20	<100	53	
B8-W	02/08/06			9.97		18,000	(330)	(53)	(440)	(1,200)	<20	<100	11	
B10-W	02/06/06			13.3		6,800	(<5.0)	(5.7)	(170)	(69)	<10	<50	< 5.0	
B11-W	02/10/06			14.3		230,000	(13,000)	(19,000)	(960)	(20,000)	<200	<1,000	150	
B12-W	02/03/06			7.92		460	(1.6)	(2.1)	(1.6)	(3.5)	<1.0	< 5.0	0.62	
B13-W	02/03/06			11.67	<60	1,700	(12)	(9.4)	(18)	(22)	< 5.0	<25	<2.5	
B14-W	02/06/06			13.1		38,000	(410)	(25)	(290)	(95)	<50	<250	<25	
B15-W	02/01/06			8.75	<620	2,700	(3.2)	(2.7)	(22)	(4.3)	<5.0	<25	<2.5	

Abbreviations:

 $\mu g/L \ = \ Micrograms \ per \ liter \ \text{- approximately equal to parts per billion} = ppb.$

 $mg/L \ = \ Milligrams \ per \ liter \ - \ approximately \ equal \ to \ parts \ per \ million = ppm.$

SPH = Separate-phase hydrocarbons encountered in well (value in parentheses is thickness in feet).

Groundwater elevation is calculated according to the relationship: groundwater elevation = TOC (elevation) - (depth to water) + (0.8)(SPH thickness).

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015Cm.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C.

 $BTEX = Benzene, toluene, ethylbenzene, xylenes by EPA \ Method \ 8021B.$

 $MTBE = Methyl \ tertiary-butyl \ ether \ by \ EPA \ Method \ 8021B. \ (Concentrations \ in parentheses \ are \ by \ EPA \ Method \ 8260B).$

DIPE = Diisopropyl ether by EPA Method 8260B.

1,2-DCA = 1,2-Dichloroethane by EPA Method 8260B.

Table 2 – Well Use and Construction Details-5175 Broadway, Oakland, CA

Well ID	Total Depth of Well (feet bgs)	Screened Interval (ft bgs)	Well Casing Nominal Diameter (inches)	Sand & Slot Size
DPE – Existing Wells				
MW-3A (DPE)	14	9-14	2	#2/12 – 0.01 Slot
MW-4A (DPE)	15	8-15	2	#2/12 – 0.01 Slot
MW-6A (DPE)	17	8-17	2	#2/12 – 0.01 Slot
MW-7B (DPE)	18.5	15.5-18.5	2	#2/12 – 0.01 Slot
MW-8A (DPE)	15	8-15	2	#2/12 – 0.01 Slot
DPE – New Wells	· ·			
DPE 1 – DPE 6	19 – 20	10-13/19-20	2	#2/12 – 0.01 Slot
AIR SPARGING – Exist	ting Wells			
MW-1 (AS)	23	13-23	4	8x20 - 0.02 Slot
MW-2C (AS)	23	18-23	2	#2/12 – 0.01 Slot
MW-3C (AS)	27	22-27	2	#2/12 – 0.01 Slot
MW-5B (AS)	20	17-20	2	#2/12 – 0.01 Slot
MW-7C (AS)	25	20-25	2	#2/12 – 0.01 Slot
MW-8C (AS)	25	20-25	2	#2/12 – 0.01 Slot
AIR SPARGING -New	Well			
AS-1	20	16-20	1	#2/12 – 0.01 Slot
GROUNDWATER MON	ITORING ONLY			
MW-5A	14	10-14	2	#2/12 – 0.01 Slot
MW-5C	27	22-27	2	#2/12 – 0.01 Slot
MW-9A	15.5	7.5-15.5	2	#2/12 – 0.01 Slot
MW-9C	21	17-21	2	#2/12 – 0.01 Slot
MW-10A	18	8-18	2	#2/12 – 0.01 Slot

bgs = below ground surface

Table 3	. SVE (DPE) Perform	ance Da	ata - 51	175 Bro	adway,	Oakla	nd, CA				I	Removal				Е	mission Repo	rting		
Date	Wells	Reading			Applied Vacuum ("Hg)	Sample	Influent TPHg Data (ppmv)	Influent Benzene Data (ppmv)	OVA Reading	-			Cumulative SVE Benzene Removal (lbs)	Effluent TPHg Lab (ppmv)	Effluent Benzene Lab (ppmv)	TPHg Abatement Efficiency (lbs/day)	Benzene Abatement Efficiency (lbs/day)	Benzene Emission Rate (lbs/day)	Cumulative Vapor Flow (cf)	Notes
12/08/10 12/10/10	DPE-1, MW-3A, 4A, 8A DPE-1, MW-3A, 4A, 8A	5040.8 5051.8	0.0	65 65	22 22	INF-V	1,300 900	6.4 5.7	1,270 916	27.1 18.8	0.12 0.11	0.0 8.6	0 0.05						0 42,900	Startup Test Off. Start.
12/13/10	DPE-1, MW-3A, 4A, 8A	5120.8	2.9	93	20	INF-V	430	1.7		12.8	0.05	45.5	0.18	< 7.0	< 0.077	> 98.4		0.002	427,920	On.
12/22/10	DPE-1, MW-3A, 4A, 8A	5337.2	9.0	125	17	INF-V	460	5.2	758	18.4	0.03	211.8	1.89						2,050,920	On. Shutdown due to noise. Restart 12/29.
01/07/11	DPE-1, 4	5585.0	10.3	31	25	INF-V	640	6.1	1,000	6.4	0.06	277.5	2.46						, , .	Shutdown 1/14 due to noise. Restart 1/19.
02/02/11	DPE-1, 4	6019.4	18.1	31	18	INF-V	1,200	6.1	1,168	11.9	0.06	493.6	3.45						,- ,	Off on arrival, restart. Add oil.
02/22/11	DPE-1, 2, 4, MW-4A	6490.1	19.6	30	18	INF-V	370	1.8	632	3.6	0.02	563.4	3.76						- , ,-	On. Add oil.
02/28/11	DPE-1, 2, 4, MW-4A	6633.6	6.0	30	26		370	1.8		3.6	0.02	584.7	3.85							On. Shutdown for GWM and restarted.
03/09/11	DPE-1, 2, 4, MW-4A	6797.1	6.8	86	18	INF-V	77	0.12	54	2.1	0.00	599.2	3.87						5,269,032	On.
03/15/11	DPE-1, 2, 4, MW-4A	6940.7	6.0	31	21		77	0.12	63	0.8	0.00	603.8	3.88						5,536,128	On.
03/16/11	DPE-2, 3, 4, MW-7B	6966.5	1.1	31	22		160	0.12	200	1.6	0.00	605.5	3.88						5,584,116	On.
03/21/11	DPE-2, 3, 4, MW-7B	7081.1	4.8	53	23	INF-V	420	4.8	760	7.1	0.07	639.6	4.23						5,948,544	Start Air Sparging (AS)
03/31/11	DPE-2, 3, 4, MW-7B	7131.3	2.1	98	26		350	3.5	603	11.0	0.10	662.6	4.57						6,243,720	Off. Install additional soundproofing. Restart.
04/06/11	DPE-2, 3, 4, MW-7B	7272.9	5.9	77	24		350	3.5		8.6	0.08	713.6	4.86							On. Optimize.
04/12/11	DPE-2, 3, 4, MW-7B	7293.0	0.8	73	17		350	3.5		8.2	0.07	720.5	5.07						6,985,950	Off on arrival, restart.
04/26/11	DPE-2, 3, 4, MW-7B, 8A	7626.9	13.9	130	20	INF-V	240	2.5	259	10.0	0.09	859.7	6.26						9,590,370	On.
05/04/11	DPE-2, 3, 4, MW-7B, 8A	7818.0	8.0	110	18		200	2.0	213	7.1	0.06	915.9	6.77						10,851,630	Off on arrival, restart.
05/24/11	DPE-2, 3, 4, MW-7B, 8A	8278.0	19.2	104	18	INF-V	160	0.97	235	5.3	0.03	1018.3	7.33	< 7.0	< 0.077	> 95.6	> 92.1	0.002	13,722,030	On. Add oil.
06/02/11	DPE-1,2,3,4, MW-4A,7B,8A	8488.2	8.8	90	18		100	0.50	130	2.9	0.01	1043.5	7.44						14,857,110	On.
06/06/11	DPE-1,2,3,4, MW-4A,7B,8A	8529.1	1.7	90	18		100	0.50	130	2.9	0.01	1048.5	7.47						15,077,970	Off on arrival. AS shutdown. Off on departure.
06/27/11	DPE-1,2,3,4, MW-4A,7B,8A	8661.0	5.5	90	18		100	0.50	130	2.9	0.01	1064.3	7.54						15,790,230	Off on arrival, blown fuse. Off on departure.
07/11/11	DPE-1,2,3,4, MW-4A,7B,8A	8730.7	2.9	90	18		90	0.40	116	2.6	0.01	1071.9	7.57						16,166,610	Off on arrival, overheating, restart.
07/18/11	DPE-1, 2, 3, MW-4A, 7B, 8A	8874.8	6.0	90	18		90	0.40	116	2.6	0.01	1087.5	7.63						16,944,750	Off on arrival, overheating, restart.
07/19/11	DPE-1, 2, 3, MW-4A, 7B, 8A	8876.3	0.1	87	19		100	0.50	127	2.8	0.01	1087.7	7.63						16,952,580	Off on arrival, overheating, restart.

Notes: ALL = Wells DPE-1 through DPE-6, MW-3A, MW-4A, MW-7B and MW-8A

NA = not analyzed; NM = not measured; --- = not available

System data estimated when specific data not available.

cfm = actual cubic feet (cf) per minute based on anemometer readings (from vacuum side of vacuum pump during SVE). Flow rate is estimated on select days when anemometer measurements are anomalous (anemometer repair was required 2nd Qtr 2011). ppmv = parts per million on volume to volume basis. Actual lab data shown in **bold**. Lab data estimated for dates without lab data to allow mass removal calculation.

lbs = Pounds

"Hg = Inches of mercury vacuum

SVE = Soil Vapor Extraction

OVA = Organic Vapor Analyzer (Horiba Model MEXA 324JU)

TPHg and Benzene Removal Rates = For dates where no laboratory analytical data was collected, the lab data is estimated based on prior lab data and OVA readings to calculate period and cumulative mass removal.

Hydrocarbon Removal/Emission Rate = Rate based on Bay Area Air Quality Management District's Manual of Procedures for Soil Vapor Extraction dated July 17, 1991.

Rate = lab concentration (ppmv) x system flowrate (scfm) x (1lb-mole/386 ft³) x molecular weight (86 lb/lb-mole for TPH-Gas hexane) x 1440 min/day x 1/1,000,000.

Table 4. GWE (DPE) System Performance Summary - 5175 Broadway, Oakland, California

	•	Totalizer	Interval	Interval	Average	TPHg	Benzene	MTBE	TPHg	Benzene	MTBE	_
Vell ID	Date	Reading ¹	Flow Volume	Duration	Flow Rate	Concentration	Concentration	Concentration	Removed	Removed	Removed	Comments
		(gallons)	(gallons)	(days)	(gpm)	(ug/L)	(ug/L)	(ug/L)	(Lbs)	(Lbs)	(Lbs)	
System	12/08/10	0	0	0					0.000	0.000	0.000	System startup testing, water not discharged to sewer yet.
Influent	12/10/10	248	248	2	0.09				0.000	0.000	0.000	Off; restart.
	12/14/10	1,120	872	4	0.15	300	4.6	ND (<5.0)	0.002	0.000	0.000	Startup water sampling of influent (12/14)
	12/22/10	3,585	2,465	8	0.21				0.006	0.000	0.000	On. Shutdown due to noise, restarted 12/29.
	01/07/11	7,622	4.037	16	0.18				0.010	0.000	0.000	On. System off 1/14 due to noise, restart 1/19.
	02/02/11	16.840	9.218	26	0.25	1,300	52	ND (<10)	0.100	0.004	0.000	Off on arrival; add oil and restart.
	02/22/11	25,427	8.587	20	0.30	680	8.4	ND (<5.0)	0.049	0.001	0.000	On. Add more oil.
	02/28/11	28,855	3,428	6	0.40				0.019	0.000	0.000	On. Shutdown for GWM and restarted.
	03/09/11	31,981	3,126	9	0.24				0.018	0.000	0.000	On.
	03/15/11	34,398	2,417	6	0.28				0.014	0.000	0.000	On.
	03/16/11	34,961	563	1	0.39				0.003	0.000	0.000	On.
	03/31/11	36,763	1,802	15	0.08				0.010	0.000	0.000	Off. Add more soundproffing and restart.
	04/06/11	39,571	2,808	6	0.33				0.016	0.000	0.000	On.
	04/12/11	39,671	100	6	0.01	240	4.8	ND (<5.0)	0.000	0.000	0.000	See NOTE below.
	04/26/11	41,195	1,524	14	0.08				0.003	0.000	0.000	On.
	05/04/11	41,703	508	8	0.04				0.001	0.000	0.000	Off. Pump overheating. Restart
	05/24/11	42,965	1,262	20	0.04	66	0.92	ND (<5.0)	0.001	0.000	0.000	Off. Restart
	06/02/11	43,908	943	9	0.07				0.001	0.000	0.000	On.
	06/06/11	47,392	3,484	4	0.60				0.002	0.000	0.000	Off on arrival; restart. Off on departure
	07/13/11	48,851	1,459	37	0.03				0.001	0.000	0.000	Off on arrival; restart.
	07/21/11	51,271	2,420	8	0.21				0.001	0.000	0.000	Off. Restart.
		, ,	,						0.255	0.006	0.000	Total Cumulative Removal (Lbs)
System	04/12/11					ND (<50)	ND (<0.5)	ND (<5.0)				See NOTE below.
Midpoint	05/24/11					ND (<50)	ND (<0.5)	ND (<5.0)				
System	12/08/10											
Effluent	12/14/10					ND (<50)	ND (<0.5)	ND (<5.0)				Startup water sampling of effluent (12/14)
Linuciit	02/22/11					ND (<50)	ND (<0.5)	ND (<5.0)				Startup water sampling of criticin (12/14)
	05/24/11					ND (<50)	ND (<0.5)	ND (<5.0)				
	03/24/11					112 (<30)	112 (<0.5)	112 (3.0)				
					Discharge	Limits (ug/L):	5	5	5	5		
					3		Benzene	Toluene	Ethylbenzene	Total Xvlenes		

Discharge Limits (ug/L):	5	5	5	5
	Benzene	Toluene	Ethylbenzene	Total Xylenes

ABBREVIATIONS AND NOTES:

NOTE = Based on previous and subsequent analytical results Pangea switched the 4/12/11 analytical results for System Influent and Midpoint. Pangea suspects that the samples were accidently switched by the lab or mislabeled by the technician.

1 = Initial totalizer reading was 23,559. Therefore, shown reading above 0 is actual reading minus 23,559. The 12/10/10 reading of 23,807 less 23,559 equals 248 gallons discharged.

gpm = Gallons per minute

TPHd = Total Petroleum Hydrocarbon as Diesel analyzed by EPA Method 8015B with silica gel cleanup

TPHg = Total Petroleum Hydrocarbon as Gasoline analyzed by EPA Method 8015B

Benzene analyzed by EPA Method 8021B

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021 Cm

Toulene, Ethylbenzene and Total Xylenes analyzed by EPA Method 8015B

-- = not measured/not available

^{*} Estimated contaminant mass calculated by multiplying average concentration detected during period (Table 1) by volume of extracted groundwater. Uses most recent lab data.

^{**}Unless noted Toulene, Ethylbenzene and Total Xylenes non-detect (<0.5)

APPENDIX A

Groundwater Monitoring Program

Table A. Quarterly Groundwater Monitoring Program During Active Remediation

Rockridge Heights, 5175 Broadway, Oakland, CA

Well ID	Well Type	Screened Interval (ft bgs)	Well Location for Monitoring	Casing Diam. (in)	Gauge Frequency	Sample Frequency ¹
Shallow Wells						
MW-3A	Mon + DPE	9-14	Downgradient (Onsite)	2	Q	Q
MW-4A	Mon + DPE	8-15	NE Corner, Upgradient (Onsite)	2	Q	Q
MW-5A	Mon	10-14	SW Corner, Downgradient (Onsite)	2	Q	A
MW-6A	Mon + DPE	8-17	Source Area, Upgradient (Onsite)	2	Q	A
MW-8A	Mon + DPE	8-15	W Boundary, Downgradient (Onsite)	2	Q	Q
MW-9A	Mon	7.5-15.5	Downgradient (Offsite)	2	Q	A
MW-10A	Mon	7.5-15.5	Downgradient (Offsite)	2	Q	A
Deep Wells						
MW-1	Mon + AS	13-23	N Boundary, Upgradient (Onsite)	2	Q	Q
MW-2C	Mon + AS	18-23	E Boundary, Downgradient (Onsite)	2	Q	A
MW-3C	Mon + AS	22-27	Source Area, Downgradient (Onsite)	2	Q	Q
MW-5B	Mon + AS	17-20	SW Corner, Downgradient (Onsite)	2	Q	A
MW-5C	Mon	22-27	SW Corner, Downgradient (Onsite)	2	Q	A
MW-7B	Mon + DPE	15.5-18.5	SE Corner, Downgradient (Onsite)	2	Q	Q
MW-7C	Mon + AS	20-25	SE Corner, Downgradient (Onsite)	2	Q	Q
MW-8C	Mon + AS	20-25	W Boundary, Crossgradient (Onsite)	2	Q	Q
MW-9C	Mon	17-21	Downgradient (Offsite)	2	Q	Q
AS-1	AS	16-20	NE Corner, Upgradient (Onsite)	1		
DPE-1	DPE	9-19	NE Corner, Upgradient (Onsite)	4		
DPE-2	DPE	9-19	E Boundary, Downgradient (Onsite)	4	Q	Q
DPE-3	DPE	10-20	S Boundary, Downgradient (Onsite)	4	Q	Q
DPE-4	DPE	13-18	Source Area, Downgradient (Onsite)	4	Q	Q
DPE-5	DPE	9-19	W Boundary, Crossgradient (Onsite)	4		
DPE-6	DPE	14-19	Source Area (Onsite) 4			

Notes and Abbreviations:

1= Sample Analytes: Total Petroleum Hydrocarbons as Gasoline (TPHg), benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA Method 8015Cm/8021B and Total Petroleum Hydrocarbons as Diesel (TPHd) by EPA Method 8015C with silica gel clean-up.

Q = Quarterly (Typically March, June, September and December)

A = Annually (Typically September)

 $Mon = Groundwater\ Monitoring\ Well$

N, S, W, E = Cardinal directions North, South, West, East and other directions (e.g., Northeast = NE)

DPE = Dual Phase Extraction Well

AS = Air Sparge Well

APPENDIX B

Groundwater Monitoring Field Data Sheets

Page of 2

Well Gauging Data Sheet

Project.Ta	ask #: 1145	5.001.227		Project Name	ROBER ROCK RIDGE	nc HEIGHTS		
Address:	5175 Broad	dway, Oak	land, CA			Date:6-10		
Name:	Steve He	inter			to And		· · · · · · · · · · · · · · · · · · ·	
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)	Measuring Point	
MW-1	2"				8-21	22.86	TCC	
MU-2C	2"				1046	2335 1390		
MW-3A	21				200	13.90		
MW-3C	211		<u> </u>		13-90	26-DJ		
MW 44	2"				10-12	14,77		
11W-5A		 			10.87	13.64		
MW-5B	J 11				13-24	1932		
MW-5C	2				1352	26.32		
MWGA	21	!			7.4.7	15-00		
MW-7B	2"	ļ 			13.12	18,40		
MW-7C	2"				15-04	24,42		
Comments	s:							

Well Gauging Data Sheet

				Jauging Da					
Project.Ta	ask #: 1145	5.001.227		Project Name: Saberi-1590 McKee Road					DGE HEI
Address:	5175 Broa	dway, Oak	land, CA		Date: 6-10-1(•	
Name:	Steve 1	funter	,	Signature:	<i>(</i> 				
Well ID	Well Size (in.)	Time	Depth to Immiscible Liquid (ft)	Thickness of Immiscible Liquid (ft)	Depth to Water (ft)	Total Depth (ft)		asuring Point	
MW-3A	211				9,79	14.65	10	C	
mu-ex	2"				11.77	2502			
DPE-2	4"				12.41	19.50			
DPE3	4"								
DPE-4	4"				1107	16.38			
MW-9A	24				11-74	15.30			
MW-9A MW-9C	211				1246	42.56			
MW-10A	1		_		2.27	1202		/	
Comments	s:						·——		

MONITORI	NG F	IELD DATA	A SHEET Well ID: MW-/				/	
Project.Task #: 1145.0	00.227		Project Name: Rockridge Heights					
Address: 5175 Broad	way, O	akland, CA				·		
Date: <i>७-//- / /</i>		Weather:						
Well Diameter: $\mathcal Q$	11		Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6'' = 1.47 radius ² * 0.1	63	
Total Depth (TD):]	Product:				
Depth to Water (DTW)				Thickness	:			
Water Column Height:			1 Casing	Volume:	2,3	ij	gallons	
Reference Point: TOC				asing Volu			gallons	
Purging Device: Dispo	sable l	Bailer						
Sampling Device: Disp								
	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW	
0946 185 6.	93	1031			-151	2.5		
0951 18.3 6	98	1045			-146	5		
١ ١	94	1051			-142	7		
				ļ				
			 	ļ				
 	}							
				<u> </u>				
			 	 				
<u></u>			<u> </u>	L				
Comments:								
			 	1 7 to 1 to 1	· · · · · · · · · · · · · · · · · · ·			
Sample ID: MW-/		Sample Time: 1010						
Laboratory: McCampl		Sample Time: 1010 Sample Date: 211-11						
Containers/Preservativ	ve: 3	HCL VOAs (H	ICL), 1 Lite	er Amber (H	ICL)			
Analyzed for: JPHy	BIE	XIMTBE.	TPHA					
Sampler Name: Stave	1/41	Signatur	e:	50/1	<u> </u>			

МС	OTINO	RING F	IELD DATA	SHEET Well ID: 1/1W-3/			BA			
Project.Task	#: ·114	45.00.227	,	Project Name: Rockridge Heights						
Address: 51	75 Bro	adway, C	akland, CA							
Date: 6-	11-11			Weather: ford Volume/ft. 1" = 0.04 3" ≤ 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius²* 0.163						
Well Diamete	211	,	Volume/ft.	1" = 0.04 2" = 0.16	$3" \leq 0.37$ 4" = 0.65	6" = 1.47 radius ² * 0.1	163			
Total Depth (Product:						
Depth to Wa			1	Thickness	 ;;					
Water Colum				1 Casing	y Volume:	1.6	5	gallons		
Reference P			10.28	3 C	g Volume: Casing Volu	umes:	5	gallons		
Purging Devi								 , , ,		
Sampling De										
	mp ©	рН	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW		
0637 19	.3	0.33	1056		Be:	-38	1.5			
0642 19	,4	6-72	1051	<u> </u>		-411	3.5			
	.4	663	1047	<u> </u>		-48	5			
			-							
Comments:		-								
<u></u>										
Sample ID:	-3A		Sample Time: 0655							
Laboratory:	mpbell		Sample Date: 6-11-11							
Containers/F	Preserv	ative: 3	HCL VOAs (H	ICL), 1 Lite	er Amber (I	HCL)				
Analyzed for: TOU BTEX MITBE 19HD										
Sampler Nar			Signature:							

MONITORING FIELD DATA	A SHEET Well ID: MW-3 C					
Project.Task #: 1145.00.227	Project Name: Rockridge Heights					
Address: 5175 Broadway, Oakland, CA						
Date: 6-11-11	Weather: Charley					
Well Diameter: 2 "	Weather: $ (x + 1)^2 (x + 1)^2 $ Volume/ft. $ (x + 1)^2 (x + 1)^2 $ $ (x + 1)^2 (x + 1)^2 $ Volume/ft. $ (x + 1)^2 (x + 1)^2 $					
Total Depth (TD): 26,88	Depth to Product:					
Depth to Water (DTW): 13.90	Product Thickness:					
Water Column Height: ノスタを	1 Casing Volume: 2,08 gallons					
Reference Point: TOC	_3_ Casing Volumes: 6.5 gallons					
Purging Device: Disposable Bailer						
Sampling Device: Disposable Bailer						
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW					
0711 198 701 1176	Per -44 2					
0716 199 707 1131	-41 4					
0721 199 703 1183	-38 6.5					
Comments:						
Sample ID: MW-\$3C	Sample Time: 0735					
Laboratory: McCampbell	Sample Date: 6-1/-1					
Containers/Preservative: 3 HCL VOAs (HCL), 1 Liter Amber (HCL)						
Analyzed for: THE BIEX MTBE, THE						
Sampler Name: Stare 1 wife	Signature: / Hong					

MONITORING FIELD DATA	A SHEET Well ID: MW-4A											
Project.Task #: 1145.00.227	Project Name: Rockridge Heights											
Address: 5175 Broadway, Oakland, CA												
Date: 6-11-11	Weather: Clear											
Well Diameter: 2"	Weather: Clear Volume/ft. $\frac{1" = 0.04}{2" = 0.16}$ $\frac{3" = 0.37}{4" = 0.65}$ $\frac{6" = 1.47}{\text{radius}^2 * 0.163}$											
Total Depth (TD): 14.ファ	Depth to Product:											
	Product Thickr	Product Thickness:										
Depth to Water (DTW): ルン・ノス Water Column Height: 4,65	1 Casing Volu	me: 017	4	gallons								
Reference Point: TOC	_3_ Casing	Volumes:	2-5	gallons								
Purging Device: Disposable Bailer												
Time Temp © pH Cond (µs)	NTU DO(m	g/L) ORP (mV)	Vol(gal)	DTW								
1023 184 6.99 920	Elsy	-99	1									
1027 187 6.93 935		-93	2									
N35 19 6-95 941		-91	2.5									
Comments:												
												
Sample ID: MW-4.4	Sample Time: 1053											
Laboratory: McCampbell	Sample Date: 6-11-1											
Containers/Preservative: 3 HCL VOAs (
Analyzed for: TPHS /BTEX/MTBE	TPHE	·····										
Sampler Name: Stele Hunter	Signature:	the Mary										

MONITORING FIELD DATA	A SHEET Well ID: MW-7B											
Project.Task #: 1145.00.227	Project Name: Rockridge Heights											
Address: 5175 Broadway, Oakland, CA												
Date: 6-11-11	Weather: Claus											
Well Diameter: 2 11	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163											
Total Depth (TD): 18・42	Depth to Product:											
Depth to Water (DTW): 13.12	Product Thickness	s:										
Water Column Height: 5-30	1 Casing Volume:	0.8	<u></u> 5	gallons								
Reference Point: TOC	3_ Casing Vol			gallons								
Purging Device: Disposable Bailer												
Sampling Device: Disposable Bailer												
Time Temp © pH Cond (µs)	NTU DO(mg/L)	ORP (mV)	Vol(gal)	DTW								
158 174 7.15 1065	6460	 - 1	2									
1200 Dewatered & 2	gullon 5)	 	2									
Dearwood 2	7	 										
	 	<u> </u>										
	 											
	 	 										
	 											
Comments: Well dewritered at	2 julons											
Sample ID: MW-7B	Sample Time:	1225										
Laboratory: McCampbell	Sample Date: 6-11-1/											
Containers/Preservative: 3 HCL VOAs (H												
Analyzed for: BTEX, MTBE, TPH2,	TPH											
Sampler Name: Steve Huntur	Signature:	- App										

		MONITO	ORING F	IELD DATA	SHEET	F	Well ID	: MW -	70						
	Project.T	ask #: 11	45.00.227	7	Project N	Name: Roo	kridge He	eights							
	Address:	5175 Bro	oadway, C	akland, CA											
	Date: (6-11-11			Weather	: (18c	ζ.f								
					Volume/ft.	1" = 0.04 2" = 0.16	3" = 0.37 4" = 0.65	6" = 1.47 radius ² * 0.	163						
	Total De	pth (TD):	24,6	12	Depth to Product:										
					Product Thickness:										
				_	1 Casing Volume: / 2 gallons										
			-		3_ Casing Volumes: 4,5 gallons										
	Purging [Device: Di	sposable	Bailer	ganon										
	Time	Temp ©	рH	Cond (µs)	NTU	DO(mg/L)	ORP (mV)	Vol(gal)	DTW						
	1237	17.4	7.27			25	<u> </u>	1.5							
	1240	17-8	731	1352	ļ	<u> </u>	11	9							
1245				ļ	ļ	10	4-5								
V-			!		ļ	ļ									
	1237 17.4 7.27 1340 1240 17.8 7.31 1352 1354 1352 1354														
	<u> </u>	<u> </u>			 	 	<u> </u>	<u> </u>							
		<u></u>			 	 -									
	ļ				 	 	<u> </u>	 							
					<u> </u>			 							
	Comments	i			·····		<u> </u>	<u></u>							
		· · · · · · · · · · · · · · · · · · ·													
	Sample I	D: 11	W-7C		Sample	Time:	1255								
		 			Sample		-11-1/								
				HCL VOAs (H											
			Stille 14.		Signatur	 e:	The G	1							

MONITORING FIELD DAT	A SHEET Well ID: AW-8A										
Project.Task #: 1145.00.227	Project Name: Rockridge Heights										
Address: 5175 Broadway, Oakland, CA	_										
Date: 6-11-11	Weather: Cloud										
Well Diameter: Q "	Weather: $ volume/ft. volume/ft. volume/ft. volume/ft. volume/ft. volume/ft. volume/f$										
Total Depth (TD): 14-65	Depth to Product:										
Depth to Water (DTW): 9-79	Product Thickness:										
Water Column Height: ゲルとん	1 Casing Volume: O: 77 gallons										
Reference Point: TOC	_3_ Casing Volumes: 2-3 gallons										
Purging Device: Disposable Bailer											
Sampling Device: Disposable Bailer											
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW										
0838 17.2 6.46 14.73											
0843 17-3 6,59 1563	62 2										
0849 175 667 1592	- 43 2-5										
											
											
											
											
											
<u> </u>											
											
Comments:											
Comments.											
Sample ID: MW-8A	Sample Time: 0905										
Laboratory: McCampbell	Sample Date: 6-/1-//										
Containers/Preservative: 3 HCL VOAs	(HCL), 1 Liter Amber (HCL)										
Analyzed for: TPHy /BTEX/MTBE											
Sampler Name: Steve Hunter	Signature: 4+										

MONITORING FIELD DAT	A SHEET Well ID: MW-TC											
Project.Task #: 1145.00.227	Project Name: Rockridge Heights											
Address: 5175 Broadway, Oakland, CA												
Date: 6-11-11	Weather: Cloudy											
Well Diameter:	Weather: $2 = 0.04$ $3'' = 0.37$ $6'' = 1.47$ $2'' = 0.16$ $4'' = 0.65$ $4'' = 0.16$											
Total Depth (TD): 25.02	Depth to Product:											
Depth to Water (DTW): //, 77	Product Thickness:											
Water Column Height: /3 25		allons 										
Reference Point: TOC	_3_ Casing Volumes: んろ	gallons										
Purging Device: Disposable Bailer												
Sampling Device: Disposable Bailer												
Time Temp © pH Cond (µs)		OTW										
017 172 6.86 1299	5/2,5											
0922 17-7 703 1342	47 4.5											
0926 17.9 7.11 1358	56 65											
Comments:												
												
		-										
Sample ID: MW-3C	Sample Time: 6935											
Laboratory: McCampbell	Sample Date: 6-11-11											
Containers/Preservative: 3 HCL VOAs												
Analyzed for: TP Hg /BTEX /MTB.												
Sampler Name: Stille Huntil	Signature: 549											

MONITORING FIELD DATA	A SHEET Well ID: PHE-Z											
Project.Task #: 1145.00.227	Project Name: Rockridge Heights											
Address: 5175 Broadway, Oakland, CA												
Date: 6-11-11	Weather: (12)											
Well Diameter: 4"	Volume/ft. $\frac{1" = 0.04}{2" = 0.16} = \frac{3" = 0.37}{4" = 0.65} = \frac{6" = 1.47}{\text{radius}^2 * 0.163}$											
Total Depth (TD): 1958	Depth to Product:											
Depth to Water (DTW): しつん /	Product Thicknes	s:										
Water Column Height: 7-/7	1 Casing Volume	3-5		gallons								
Reference Point: TOC 5-24	3Casing Vo	lumes: /	0.5	gallons								
Purging Device: Disposable Bailer												
Sampling Device: Disposable Bailer												
Time Temp © pH Cond (µs)		ORP (mV)		DTW								
111 17.8 6.77 522	₽¥e:	-75	3-5									
1118 17.9 6.93 539	 	-67	7,0									
1126 18.0 697 552	 	1-61	10.0									
	 	 										
	 	 										
	 	 										
	 	 										
	 	 	ļ ļ									
	 		 									
	 	 										
Comments:	-L	<u> </u>	<u></u>									
												
Sample ID: DF-2	Sample Time:	1140)									
Laboratory: McCampbell	Sample Date: 6-11-1											
Containers/Preservative: 3 HCL VOAs (H												
Analyzed for: THE BTEX MIBE, 7	PHE											
Sampler Name: Steve Hints	Signature:	Ay										

MONITORING FIELD DATA	SHEET Well ID: DPE-3											
Project.Task #: 1145.00.227	Project Name: Rockridge Heights											
Address: 5175 Broadway, Oakland, CA												
Date: 6-11-11	Weather: (lecf											
Well Diameter: 4"	Weather:											
Total Depth (TD): /9, 56	Depth to Product:											
Depth to Water (DTW): /3ごろ4/	Product Thickness:											
Water Column Height: 4,22	1 Casing Volume: 2.74 gallons											
Reference Point: TOC	3_ Casing Volumes: 3,5 gallons											
Purging Device: Disposable Bailer												
Sampling Device: Disposable Bailer												
Time Temp © pH Cond (µs)	NTU DO(mg/L) ORP (mV) Vol(gal) DTW											
1313 17.4 6.52 1539 1319 16.9 6.73 1541	Pro: -92 3											
	-78 6											
1324 167 681 1546	-8/85											
Comments:												
0	Comple Times (2.3.7)											
Sample ID: DPE-3	Sample Time: 1337											
Laboratory: McCampbell	Sample Date: 6-11-1											
Containers/Preservative: 3 HCL VOAs (H	HCL), 1 Liter Amber (HCL)											
Analyzed for: TPHg /BIEX /ATBE,	TPHS											
Sampler Name: Steve Hunter	Signature:											

MONITORING FIELD DAT	A SHEET Well ID: DPE-4											
Project.Task #: 1145.00.227	Project Name: F	Rockridge He	ights									
Address: 5175 Broadway, Oakland, CA												
Date: 6-11-/1	Weather: Clerk											
Well Diameter: 4"	Volume/ft. 1" = 0.04 3" = 0.37 6" = 1.47 2" = 0.16 4" = 0.65 radius ² * 0.163											
Total Depth (TD): /6.88	Depth to Produc	Depth to Product:										
Depth to Water (DTW): 11.07	Product Thickne	ess:										
Water Column Height: ろみ/	1 Casing Volum	e: 4		gallons								
Reference Point: TOC	3 Casing V	olumes:	12	gallons								
Purging Device: Disposable Bailer												
Sampling Device: Disposable Bailer												
Time Temp © pH Cond (µs)		/L) ORP (mV)	Vol(gal)	DTW								
0748 183 687 1236	AND	62	4									
C756 13.5 6-94 1242		-54	8									
0303 13.5 6.98 1251	+	-50	12									
		_	-									
				-								
		_										
	 											
Comments:												
Sample ID: DPE-4	Sample Time:	0820										
Laboratory: McCampbell	Sample Date:	6-11-4	·									
Containers/Preservative: 3 HCL VOAs (HCL), 1 Liter Ambe	r (HCL)										
Analyzed for: TPH / BTEX/MTBE,	TPHS_											
Analyzed for: TPH / BTEX/MTBE, Sampler Name: Steve Hunter	Signature:	14.00										

MONITORING FIELD DA	TA SHEET	A SHEET Well ID: MW-9C										
Project.Task #: 1145.00.227	Project Name	Project Name: Rockridge Heights										
Address: 5175 Broadway, Oakland, CA	1											
Date: 6-11-11	Weather:	Weather: Cloudy										
Well Diameter:	Volume/ft. 1" = (Weather:										
		Depth to Product:										
Total Depth (TD): 20,5% Depth to Water (DTW): 12-46	Product Thick	ness:										
Water Column Height:	1 Casing Volu	ıme:	gallons									
Reference Point: TOC	3 Casing	Volumes:	gallons									
Purging Device: Disposable Bailer												
Sampling Device: Disposable Bailer												
Time Temp © pH Cond (μs)	NTU DO(i	ng/L) ORP (mV) V	ol(gal) DTW									
1351 17-9 6.93 1393	septi.	-/1										
1357 183 672 1372		-7										
1403 18.7 10-71 1378	·	3										
			····-									
												
Comments:												
			W4									
Sample ID: W-90	Constants T	111										
Sample ID: ///w 1	Sample Time	19/5										
Laboratory: McCampbell	Sample Date:	6-11-11										
Containers/Preservative: 3 HCL VOAs	(HCL), 1 Liter Am	ber (HCL)										
Analyzed for: TOHG / BTEX / MTB	BE TPH ~	TPH										
Sampler Name: Sky Hute	Signature: 🥠	to All										

APPENDIX C

Laboratory Analytical Report

Analytical Report

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway; Rockridge Heights	Date Sampled: 06/11/11
1710 Franklin Street, Ste. 200		Date Received: 06/13/11
1710 Hallarin Street, Sec. 200	Client Contact: Tina De La Fuente	Date Reported: 06/20/11
Oakland, CA 94612	Client P.O.:	Date Completed: 06/17/11

WorkOrder: 1106429

June 20, 2011

Dear Tina:

Enclosed within are:

- 1) The results of the 12 analyzed samples from your project: 5175 Broadway; Rockridge Heights,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

	Web Telepho	McCAMPBELL ANALYTICAL, INC. 1534 Willow Pass Rd. Pittsburg, CA 94565 Website: www.mccampbell.com Telephone: (925) 252-9262 Email: main@mccampbell.com Fax: (925) 252-9269											RN Req		OI	UNI Coe	D T	Nor	E mal)		RUS No	h H	24	⊒ HR		48 I	HR	₹D □ 72 H				
	Report To: Tina				Bill T	o: Pa	nge	a						L						Ana	lysis	Re	que	st						Ot	her	Comments
	Company: Pange														0																	TOTAL .
	1710 Franklin Str	reet, Suite 20	0, Oak	land, CA	9461	2								E E	ann	0														nd		Filter
			1		E-Ma	il: tde	elafu	ente	@pa	nge	aen	.co	m	JĘ	Ce	/B&	=									8310				ETBE,		Samples for Metals
	Tele: (510) 836-3	702			Fax:	(510)	836	-3709	9					8015)/MTBE	3	E&F	418									-				E E		analysis:
	Project #: 5175 B				Proje	ct Na	me:	Rock	cridg	e H	eigh	ts		- 80	ica	520	ns (6							8270				E		Yes / No
	Project Location:	5175 Broad	way, Oa	akland, C	A				-					1 02	S	e (5	8		8020)		Ę					625/	020	20)		Y.		
	Sampler Signatur	e: 5%	HITT											602/8020	with	reas	roes		/ 209		0			_		A 6.	19/	09/	010	TB		
			SAM	PLING		ers		MAT	rix			ETH	OD VED	95	8015)	OH & G	n Hyd	/ 8021	EPA 6		PCB's	_	_	/ 826(8270	by EP	(6010	(6010	9/60	AME,		
	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	ICE	HCL	Other	BTEX & TPH as	TPH as Diesel (8015) with Silica Gel Cleanup	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 601/8010/8021	BTEX ONLY (EPA	EPA 608 / 8081	EPA 608 / 8082 PCB's ONLY	EPA 8140 / 8141	EPA 8150 / 8151	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	5 Oxygênates(TAME, TBA, DIPE, MTBE) by 8260.		
	MW-1		6-11-11	1010	4	(bu)	V				X ·	X		X	X																	
0	MW-3A			0655	1	1	X				X	/		X	X																- 2	
	MW-3C			0735			V				7	X		X	V																	
	MW 4A			1053	\vdash		1				1	1	+	1	X																+	
	NW-7B			10000000	1		X	+		\vdash	X	1	-	X	1			*							-						-	
			\vdash	1225	\vdash	+	X	-	+		X	X	-	X	X	-															-	
	MW-7C		\vdash	1255	1	1	X	_	-		X	4	-	X	X																	V
	MW-8A		\vdash	0905	\perp		X				X			X	X																	
6	MW-8C			0935			X				1	K		X	X																	
0	MW-9C			1415			X				X	1		X	V																	74-17
	DPE-2			1140		1	V				V	1	T	V	1														\exists			
1	DPE-3			1337							1	7		v	X														\dashv		+	
1			1	-	1	1	1	+		\dashv	X	1	-	1	X							-				-		\rightarrow	\dashv		+	
ı	DPE-4		Ψ.	0820			X	+	+	+	X)	+		X	X							-				-	+	-	\dashv		+	
	illus a la la company																			,						1			\forall		+	
	Relinquished By:		Date:	Time:	ENV	ived B	TECH	SE	RVIC	CES		At	Ŧ	GC HE	OOD AD	CON SPAC	DIT E A	ION	NT	_/ AB							(ЮМ	ME	NTS:		
-	Env. vo -180	4 Sie	6/13/ Date:/	73C		ived B	\geq	<u> </u>	4/	10	7	_	-	AP	PRO	PRI	ATE	LAE	NTAI	NER		7	-			p.p.						
*	1 Vot received by	nken ul	1/6	1500		M	e li	-er	acti	all	119	bel	100	PR	ESE	RVA 9 A	TIO		AS	0&		ME' pH<		8 (ЛН	ER	_					

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsbur	g, CA 94565-1701 52-9262					Work	Orde	r: 11064	129	(ClientC	Code: Pl	EO				
		WaterTrax	WriteOn	✓ EDF		Excel		Fax		✓ Email		Hard	Сору	Thir	dParty	□J-1	flag
	ironmental Svcs., Inc. n Street, Ste. 200 v 94612	cc: PO: ProjectNo: 5		pangeaenv.com ay; Rockridge Hei	ghts		P 17	: ob Clark- angea Er 710 Franl akland, (nvironn klin Str	nental S eet, Ste		nc.	Date	uested e Rece e Print	ived:		
									Req	uested	Tests	(See leg	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1106429-001	MW-1		Water	6/11/2011 10:10		Α	Α	В									
1106429-002	MW-3A		Water	6/11/2011 6:55		Α		В									
1106429-003	MW-3C		Water	6/11/2011 7:35		Α		В									
1106429-004	MW-4A		Water	6/11/2011 10:53		Α		В									
1106429-005	MW-7B		Water	6/11/2011 12:25		Α		В									
1106429-006	MW-7C		Water	6/11/2011 12:55		Α		В									
1106429-007	MW-8A		Water	6/11/2011 9:05		Α		В									
1106429-008	MW-8C		Water	6/11/2011 9:35		Α		В									
1106429-009	MW-9C		Water	6/11/2011 14:15		Α		В									
1106429-010	DPE-2		Water	6/11/2011 11:40		Α		В									
1106429-011	DPE-3		Water	6/11/2011 13:37		Α		В									
1106429-012	DPE-4		Water	6/11/2011 8:20		Α		В									
Test Legend: 1 G-MB 6	TEX_W 2 7 12	PREDF REP	PORT	3 TPF	H(D)WS	SG_W		9						5 10			
													Prepa	red by:	Meliss	sa Valle	<u>.s</u>

Comments:

Sample Receipt Checklist

Client Name:	Pangea Environmental	l Svcs., Inc.			Date ar	nd Time Received: 6/13	/2011	4:10:44 PM	
Project Name:	5175 Broadway; Rocki	ridge Heights			Checkl	ist completed and reviewe	ed by:	Melissa Valles	
WorkOrder N°:	1106429 Matrix	<u>Water</u>			Carrier	: Client Drop-In			
		Chain of	Cus	stody (C	OC) Informat	tion			
Chain of custody	present?	Υ	es	V	No 🗆				
Chain of custody	signed when relinquished a	nd received? Y	es	V	No 🗆				
Chain of custody	agrees with sample labels?	Υ	es		No 🗹				
Sample IDs noted	by Client on COC?	Υ	es	V	No 🗆				
Date and Time of	collection noted by Client on	COC? Y	es	V	No 🗆				
Sampler's name r	noted on COC?	Υ	es	✓	No 🗆				
		Sam	ple l	Receipt	<u>Information</u>				
Custody seals in	tact on shipping container/co		es		No 🗆	NA D	<u> </u>		
	er/cooler in good condition?		es		No 🗹				
Samples in prope	er containers/bottles?	Υ	es	V	No 🗆				
Sample containe	rs intact?	Υ	es	✓	No 🗆				
Sufficient sample	e volume for indicated test?	Υ	es	✓	No 🗌				
	<u>s</u>	Sample Preserva	tion	and Ho	ld Time (HT)	<u>Information</u>			
All samples recei	ived within holding time?	Y	es	✓	No 🗌				
Container/Temp I	Blank temperature	C	ooler	Temp:	3°C	NA []		
Water - VOA vial	Is have zero headspace / no	bubbles? Y	es	~	No 🗆	No VOA vials submitted]		
Sample labels ch	necked for correct preservation	on? Y	es	~	No 🗌				
Metal - pH accep	table upon receipt (pH<2)?	Υ	es		No 🗆	NA 🖸	_		
Samples Receive	ed on Ice?	Υ	es	✓	No 🗆				
		(Ice Type:	WET	ΓICE)	1				
* NOTE: If the "N	No" box is checked, see com	ments below.							
	=======			===		======			- =
Client contacted:		Date contacted:				Contacted by:			

Comments: 1 VOA for MW-3A received broken. The Liter for MW-8C was actually labelled MW-8A and the Liter for MW-9C was labelled MW-9A but had the correct times.

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway;	Date Sampled:	06/11/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received:	06/13/11
	Client Contact: Tina De La Fuente	Date Extracted:	06/15/11-06/16/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	06/15/11-06/16/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extractio	on method: SW5030B	ине ка	nge (C6-C12)	•	ical methods:			x and M111		rk Order:	1106429
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	MW-1	w	1500	ND	2.4	ND	0.84	7.9	1	113	d7,d9
002A	MW-3A	w	5100	ND<80	350	140	110	490	10	115	d1
003A	MW-3C	W	780	ND	7.6	3.4	2.7	16	1	107	d1
004A	MW-4A	W	97	ND	1.2	ND	ND	1.7	1	100	d1
005A	MW-7B	w	510	ND	12	5.5	1.4	28	1	105	d1,b1
006A	MW-7C	W	90	ND	0.77	1.1	ND	1.1	1	101	d6,b1
007A	MW-8A	W	4500	ND<50	34	11	42	240	10	103	d1
008A	MW-8C	W	110	ND	ND	ND	ND	ND	1	98	d6,b1
009A	MW-9C	W	ND	ND	ND	ND	ND	ND	1	99	
010A	DPE-2	W	3300	ND<10	24	40	16	340	2	103	d1
011A	DPE-3	W	2300	ND<15	41	19	16	130	1	90	d1
012A	DPE-4	W	280	ND	1.6	4.2	2.5	25	1	106	d1
	orting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	μg/L		
	ND means not detected at or above the reporting limit		1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g

above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg
* water and vapor samples are repo	orted in u	g/L, soil/sludge/solid	d samples in m	g/kg, wipe sar	mples in µg/wi	pe, product/oil/i	non-aqueous li	quid samples and all TCLP &

SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- d1) weakly modified or unmodified gasoline is significant
- d6) one to a few isolated non-target peaks present in the TPH(g) chromatogram
- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway;	Date Sampled: 06/11/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received: 06/13/11
	Client Contact: Tina De La Fuente	Date Extracted 06/13/11
Oakland, CA 94612	Client P.O.:	Date Analyzed 06/14/11-06/18/11

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW3510C/3630C Analytical methods: SW8015B Work Order: 1106429 TPH-Diesel Lab ID Client ID Matrix DF % SS Comments (C10-C23) 1106429-001B MW-1 W 1900 100 1 e11,e2 1106429-002B MW-3A W 1400 10 75 e4,e2 1106429-003B MW-3C W 530 96 e4,e2 1 1106429-004B MW-4A W 110 1 96 e4,e2 1106429-005B MW-7B W 780 2 82 e7,e4,e2,b1 1106429-006B MW-7C W 2. 190 89 e2,b1 1106429-007B MW-8A W 5100 20 81 e11,e2,b6 1106429-008B MW-8C W ND 1 99 b1 1106429-009B MW-9C W ND 1 95 1106429-010B DPE-2 W 3100 2 100 e7,e4,e2 1106429-011B DPE-3 W 1100 2 79 e4,e2 1106429-012B DPE-4 W 280 95 e4,e2

Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

%SS = Percent Recovery of Surrogate Standard. DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

- b1) aqueous sample that contains greater than ~1 vol. % sediment
- b6) lighter than water immiscible sheen/product is present
- e2) diesel range compounds are significant; no recognizable pattern
- e4) gasoline range compounds are significant.
- e7) oil range compounds are significant
- e11) stoddard solvent/mineral spirit (?)

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract/matrix interference.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com

E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Bm

QC Matrix: Water BatchID: 59007 WorkOrder: 1106429 W.O. Sample Matrix: Water

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1106409-0	02B	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD Acceptance C			Criteria (%)	Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex) [£]	ND	60	97.5	100	2.73	96.5	95.2	1.42	70 - 130	20	70 - 130	20	
MTBE	ND	10	110	115	4.15	115	117	2.27	70 - 130	20	70 - 130	20	
Benzene	ND	10	99.2	98.4	0.838	98.1	99.4	1.31	70 - 130	20	70 - 130	20	
Toluene	ND	10	98.9	97.8	1.18	95.7	98.6	2.97	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	97.1	96.2	0.956	95.7	96.5	0.871	70 - 130	20	70 - 130	20	
Xylenes	ND	30	100	98.8	1.36	98.3	99.2	0.947	70 - 130	20	70 - 130	20	
%SS:	96	10	94	94	0	94	95	0.988	70 - 130	20	70 - 130	20	

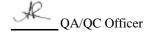
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 59007 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1106429-001A	06/11/11 10:10 AM	06/15/11	06/15/11 10:25 PM	1106429-002A	06/11/11 6:55 AM	06/16/11	06/16/11 7:34 PM
1106429-003A	06/11/11 7:35 AM	06/16/11	06/16/11 8:05 PM	1106429-004A	06/11/11 10:53 AM	06/15/11	06/15/11 3:40 AM
1106429-005A	06/11/11 12:25 PM	06/15/11	06/15/11 5:11 AM	1106429-006A	06/11/11 12:55 PM	06/15/11	06/15/11 7:53 PM
1106429-007A	06/11/11 9:05 AM	06/16/11	06/16/11 4:28 AM	1106429-008A	06/11/11 9:35 AM	06/15/11	06/15/11 8:54 PM
1106429-009A	06/11/11 2:15 PM	06/15/11	06/15/11 6:41 AM	1106429-010A	06/11/11 11:40 AM	06/16/11	06/16/11 9:05 PM
1106429-011A	06/11/11 1:37 PM	06/16/11	06/16/11 10:06 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 59024 WorkOrder: 1106429

EPA Method: SW8021B/8015Bm	Extrac	tion: SW	5030B					S	piked Sam	ple ID:	1106477-0	01A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	.CS-LCSD Acceptance Crite			iteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex) [£]	ND	60	97.4	93.1	4.54	94.5	92.6	2.01	70 - 130	20	70 - 130	20	
MTBE	ND	10	118	110	6.86	112	114	1.58	70 - 130	20	70 - 130	20	
Benzene	0.61	10	96.6	92.9	3.68	103	103	0	70 - 130	20	70 - 130	20	
Toluene	ND	10	92.8	89.9	3.10	92.8	92.6	0.218	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	93.1	91	2.30	94.7	91.5	3.41	70 - 130	20	70 - 130	20	
Xylenes	ND	30	106	104	2.19	109	104	3.86	70 - 130	20	70 - 130	20	
%SS:	96	10	97	96	1.51	99	98	0.723	70 - 130	20	70 - 130	20	

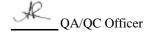
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 59024 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1106429-012A	06/11/11 8:20 AM	I 06/16/11	06/16/11 6:29 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QC SUMMARY REPORT FOR SW8015B

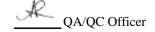
W.O. Sample Matrix: Water QC Matrix: Water BatchID: 59025 WorkOrder: 1106429

EPA Method: SW8015B Extraction: SW3510C/3630C								S	piked Sam	ple ID:	e Criteria (%) LCS/LCSD RPD				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)				
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	102	104	1.65	N/A	N/A	70 - 130	30			
%SS:	N/A	625	N/A	N/A	N/A	99	101	1.08	N/A	N/A	70 - 130	30			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 59025 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1106429-001B	06/11/11 10:10 AM	06/13/11	06/14/11 7:24 PM	1106429-002B	06/11/11 6:55 AM	06/13/11	06/14/11 8:40 PM
1106429-003B	06/11/11 7:35 AM	06/13/11	06/14/11 9:55 PM	1106429-004B	06/11/11 10:53 AM	06/13/11	06/15/11 12:21 AM
1106429-005B	06/11/11 12:25 PM	06/13/11	06/14/11 11:08 PM	1106429-006B	06/11/11 12:55 PM	06/13/11	06/15/11 6:17 AM
1106429-007B	06/11/11 9:05 AM	06/13/11	06/15/11 7:28 AM	1106429-008B	06/11/11 9:35 AM	06/13/11	06/18/11 8:22 PM
1106429-009B	06/11/11 2:15 PM	06/13/11	06/15/11 8:38 AM	1106429-010B	06/11/11 11:40 AM	06/13/11	06/15/11 12:35 AM
1106429-011B	06/11/11 1:37 PM	06/13/11	06/15/11 5:07 AM	1106429-012B	06/11/11 8:20 AM	06/13/11	06/15/11 3:56 AM


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical,	Inc.
"When Quality Counts"	

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway; Rockridge Heights	Date Sampled: 04/12/11
1710 Franklin Street, Ste. 200		Date Received: 04/13/11
1770 Trainkini Succe, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 04/18/11
Oakland, CA 94612	Client P.O.:	Date Completed: 04/15/11

WorkOrder: 1104366

April 19, 2011

Dear	Mor	gan
------	-----	-----

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: 5175 Broadway; Rockridge Heights,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

1104366

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL, INC. 1534 Willow Pass Rd. TURN AROUND TIME Pittsburg, CA 94565 RUSH 24 HR 48 HR 72 HR 5 DAY Website: www.mccampbell.com Email: main@mccampbell.com EDF Required? Coelt (Normal) No Write On (DW) Telephone: (925) 252-9262 Fax: (925) 252-9269 Report To: Mórgan Gillies Bill To: Pangea **Analysis Request** Other Comments Company: Pangea Environmental Services, Inc. TPH as Diesel (8015) with Silica Gel Cleanup Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 Total Petroleum Oil & Grease (5520 E&F/B&F) ETBE, Samples PAH's / PNA's by EPA 625 / 8270 / 8310 E-Mail: mgillies@pangeaenv.com Total Petroleum Hydrocarbons (418.1) for Metals Fax: (510) 836-3709 Tele: (510) 836-3702 5 Oxygenates(TAME, TBA, DIPE, MTBE) by 8260. analysis: Project Name: Rockridge Heights Project #: 5175 Broadway Yes / No BTEX ONLY (EPA 602 / 8020) EPA 608 / 8082 PCB's ONLY CAM-17 Metals (6010 / 6020) LUFT 5 Metals (6010 / 6020) Project Location: 5175 Broadway, Oakland, CA Lead (200.8 / 200.9 / 6010) Sampler Signature: * 5 to Hos EPA 524.2 / 624 / 8260 EPA 601 / 8010 / 8021 METHOD EPA 525 / 625 / 8270 SAMPLING MATRIX Type Containers PRESERVED EPA 8140 / 8141 EPA 8150 / 8151 # Containers EPA 608 / 8081 BTEX & TPH SAMPLE ID LOCATION (Field Point Name) Sludge HNO3 Time Date Other Other HCL ICE Soil 1420 INF -W INF 4-12-11 MID-W MID 1410 EFF EFF-W 140C ICE/t° Relinquished By: Received By: COMMENTS: GOOD CONDITION HEAD SPACE ABSENT Relinquished By: Received By: Date: Time: DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB Relinquished By: Date: Time: Received By: VOAS O&G METALS OTHER PRESERVATION pH<2

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkC	Order: 1104366	Clie	entCode: PEC)	
	WaterTrax	WriteOn	✓ EDF	Excel	Fax	✓ Email	HardCo	opy ThirdPart	y ∐J-flag
Report to:				В	Bill to:			Requested TAT	5 days
Morgan Gillies	Email:	mgillies@pangea	aenv.com		Bob Clark-Ric	ddell			
Pangea Environmental Svcs., Inc.	cc:				Pangea Envir	onmental Svc			
1710 Franklin Street, Ste. 200	PO:				1710 Franklin	Street, Ste. 2	.00	Date Received	: 04/13/2011
Oakland, CA 94612	ProjectNo:	5175 Broadway;	Rockridge Heigh	ts	Oakland, CA	94612		Date Printed:	04/19/2011
(510) 836-3700 FAX (510) 836-3709									
					ı	Requested Te	sts (See lege	nd below)	

					Requested Tests (See legella below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1104366-001	INF-W	Water	4/12/2011 14:20		Α	Α										
1104366-002	MID-W	Water	4/12/2011 14:10		Α											
1104366-003	EFF-W	Water	4/12/2011 14:00		Α											

Test Legend:

1 G-MBTEX_W	2 PREDF REPORT	3	4	5
6	7	8	9	10
11	12			
				Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Pangea Enviror	imental Svcs., Inc.			Date	and Time Received:	4/13/2011	3:18:03 PM			
Project Name:	#5175 Broadwa	y; Rockridge Heig	ht		Checklist completed and reviewed by: Maria Venegas						
WorkOrder N°:	1104366	Matrix <u>Water</u>			Carrie	er: Rob Pringle (M	IAI Courier)				
		<u>Chair</u>	of Cu	ıstody (C	COC) Inform	ation					
Chain of custody	y present?		Yes	V	No 🗆						
Chain of custody	y signed when relinq	uished and received?	Yes	V	No 🗆						
Chain of custody	y agrees with sample	e labels?	Yes	✓	No 🗌						
Sample IDs noted	d by Client on COC?		Yes	V	No 🗆						
Date and Time o	f collection noted by (Client on COC?	Yes	~	No 🗆						
Sampler's name	noted on COC?		Yes	✓	No 🗆						
		<u>s</u>	ample	Receipt	t Informatio	<u>n</u>					
Custody seals in	ntact on shipping con	tainer/cooler?	Yes		No 🗆		NA 🗹				
Shipping contain	ner/cooler in good cor	ndition?	Yes	V	No 🗆						
Samples in prop	er containers/bottles	?	Yes	✓	No 🗆						
Sample containe	ers intact?		Yes	✓	No 🗆						
Sufficient sample	e volume for indicate	d test?	Yes	✓	No 🗌						
		Sample Prese	rvatio	n and Ho	old Time (HT	Γ <u>) Information</u>					
All samples rece	eived within holding ti	me?	Yes	✓	No 🗆						
Container/Temp	Blank temperature		Coole	er Temp:	6°C		NA \square				
Water - VOA via	als have zero headsp	ace / no bubbles?	Yes	✓	No 🗆	No VOA vials subm	itted \square				
Sample labels cl	hecked for correct pr	eservation?	Yes	✓	No 🗌						
Metal - pH accep	otable upon receipt (p	H<2)?	Yes		No 🗆		NA 🔽				
Samples Receiv	ed on Ice?		Yes	✓	No 🗆						
		(Ice Typ	e: WE	ET ICE)						
* NOTE: If the "I	No" box is checked,	see comments below.									
					====	======					
Client contacted:	:	Date contac	ted:			Contacted	by:				
Comments:											

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway; Rockridge Heights	Date Sampled:	04/12/11
1710 Franklin Street, Ste. 200	Rockridge Heights	Date Received:	04/13/11
	Client Contact: Morgan Gillies	Date Extracted:	04/14/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	04/14/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gasoniie Range (Co-C12) Volatile Hydrocarbons as Gasoniie with DTEA and WITDE											
Extraction	method: SW5030B			Analy	tical methods:	SW8021B/8015	Bm		Wor	k Order:	1104366	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
001A	INF-W	W	ND	ND	ND	ND	ND	ND	1	99		
002A	MID-W	W	240	ND	4.8	2.7	0.87	11	1	96	d1	
003A	EFF-W	w	ND	ND	ND	ND	ND	ND	1	98		
	ing Limit for DF =1;	w	50	5.0	0.5	0.5	0.5	0.5		μg/L		
	ans not detected at or the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	Σg	

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 57638 WorkOrder 1104366

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1104333-002A										02A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 tildiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	113	110	2.70	109	114	4.61	70 - 130	20	70 - 130	20
MTBE	ND	10	98.7	94.8	3.96	90.5	90.9	0.464	70 - 130	20	70 - 130	20
Benzene	ND	10	91.4	83.6	8.94	92.7	91.2	1.61	70 - 130	20	70 - 130	20
Toluene	ND	10	89.4	81.6	9.18	89.8	90	0.213	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	90.4	81.9	9.83	90	90.6	0.628	70 - 130	20	70 - 130	20
Xylenes	ND	30	90.7	81.8	10.3	89.4	91.4	2.16	70 - 130	20	70 - 130	20
%SS:	104	10	94	94	0	102	96	6.27	70 - 130	20	70 - 130	20

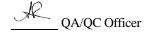
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 57638 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1104366-001A	04/12/11 2:20 PM	I 04/14/11	04/14/11 7:05 PM	1104366-002A	04/12/11 2:10 PM	04/14/11	04/14/11 7:37 PM
1104366-003A	04/12/11 2:00 PM	I 04/14/11	04/14/11 8:09 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell Analytical,	Inc.
"When Quality Counts"	

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broadway, Rockridge	Date Sampled: 04/26/11
1710 Franklin Street, Ste. 200		Date Received: 04/27/11
7770 774414111 544001, 540. 200	Client Contact: Morgan Gillies	Date Reported: 05/02/11
Oakland, CA 94612	Client P.O.:	Date Completed: 04/29/11

WorkOrder: 1104783

May 02, 2011

Dear	Mor	gan
------	-----	-----

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: 5175 Broadway, Rockridge,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

										1	1		_																		
M	cCAMP				TIC.	AL	, IN	C.		C												C			OI	Y	R		COF	_	7
			Willow Pas burg, CA 9											TU	RN	AI	sot	UNI	T (IM	E				ι,	7					AV
	site: www.mc		com Em	ail: m									١,	EDE	Rec	mir	edy	Coe	ir a	Vori	nal)		RUS No		24 rite			48 F W)		72 HI	R 5 DAY
	ne: (925) 252	-9262		Bill To		ax:	_	252	2-92	69			+		100	1	ed.		_		Rec	_				-	(2)	,		her	Comments
Report To: Morg Company: Pange		ontal Sar		Control Comments): Pa	ngea	1						+	\top		_		1	Mai	y 515	Rec	ues							Ot	ner	Comments
1710 Franklin Str					,								١.		dnu														.		Filter
1/10 Flankini Sti	eet, Suite 20	o, Oaki		E-Mai		illies	(m)	nge	aen	v co	m		- in	185	B&F										8310				ETBE,		Samples
Tele: (510) 836-37	702			ax:						1100	***		TOTAL	WAG T	Grease (5520 E&F/B&F)	96													E (S		for Metals analysis:
Project #: 5175 Br						_			ge H	eigh	its		8	80	1CB C	ns (6		_					8270	_			DIPE,		Yes / No
Project Location:		way, Oal	kland, C.	A	ject Name: Rockridge Heights					000	070	le (S	arbo		802		SE					625/	070	020)	_	34,					
Sampler Signature	e: =				-								9,00	0708/709)	WIL	Iroca	_	502		0 %			99		PA 6	9/0	9/0	9010	, TE		1
		SAMI	PLING		sus	1	MAT	RI			ETH		- I - V	cass (6			EPA 601 / 8010 / 8021	BTEX ONLY (EPA 602 / 8020)		EPA 608 / 8082 PCB's ONLY		_	EPA 524.2 / 624 / 8260	EPA 525 / 625 / 8270	PAH's / PNA's by EPA	CAM-17 Metals (6010 / 6020)	LUFT 5 Metals (6010 / 6020)	Lead (200.8 / 200.9 / 6010)	5 Oxygenates(TAME, TBA, MTBE) by 8260.		
				ers	ain	П	Т		П				7	1 28	Sel (3	eum	010	Y.	180	082	814	815	624	25 /	A's	etals	tals	/ 20	es(T		
SAMPLE ID (Field Point Name)	LOCATION			Containers	Containers	١.		4					Other over a reu	2	I rri as Diesei (8015) Total Petroleum Oil &	etro	1/8	NO.	EPA 608 / 8081	8/8	EPA 8140 / 8141	EPA 8150 / 8151	4.2	9/9	PN	7 M	5 Me	8.00	enat by		
(Tield Folile (tallie)		Date	Time	On	Type C	Water	= ,	Sludge	Other	E	HCL	HNO3	Other PTEV &	7	H as	a P	A 60	EX	A 60	A 60	A 81	Λ81	A 52	A 52	H's	M-1	E	1d (2	Xyg 'BE)		
				#	Ę.	3	Soil	S	ŏ	ICE	Ħ		5 5	9 1	Tot	Tol	EP	BT	EP	EP	EP	EP	EP	EP	PA	S	LU	Le	S C		
INF-V	INF	4/26/11	1250	1	Teilla)				T		\rightarrow													es.					
7		7-7-	1270	1	Juny		-					\top																			
							_	+			+	+	+	+	+	+															
				\vdash			+	+			+	+		+	+	+	+														
		-		+-	-	\vdash	+	+	Н	+	+	+	+	+	+	+	+	+													
		-		-	-	\vdash	+	+	Н	-	+	+	+	+	+	+	+	-										-		-	
			_	-	-	\vdash	+	+	\vdash	-	+	+	+	+	+	+	+	-										-			
						Н	+	-	\vdash		-	-	+	+	+	+	+	-												-	-
				-	_		_	+			_	-	+	1	_	-												_		-	
				_	_			_			_	_	1		-		-														
									7																						
Relinquished By:		Datq:/	Time:	Reco	ived B	y:	Z						1	CE/t	0												COM	IME	NTS:		
		727/	1590		_	7	_	~	1	_					D CO D SP/																
Retinquished By:	,	Date:	Time:	Rece	ived B	y:	1	/			7	/	E	DECI	HLOI	UNA	TED	IN L	_												
	79	27/1	1630		K	_	2	V		1)				ROPR SERV				INE	RS		-									
Relinquished By:		Date:	Time:	Rece	ived B	y:							1			7000							6	ozr	. mm						
													P	RES	SERV	ATIO		OAS	O		ME pH<		5 (OTH	ER					_	
																														Pa	ge 2 of 7

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

	52-9262					Work	Order:	11047	783	Clie	entCode: PI	EO				
		WaterTrax	WriteOn	✓ EDF		Excel		Fax	✓	Email	Hard0	Сору	Third	Party	☐J-f	lag
Report to: Morgan Gilli	05	Email: r	ngillies@pano	negeny com			Bill to:	h Clark	-Riddell			Req	uested 1	ГАТ:	5 0	days
Pangea Env	vironmental Svcs., Inc. in Street, Ste. 200 A 94612	cc: PO: ProjectNo: §	5175 Broadwa				Pai 17	ngea Er 10 Fran	nvironme klin Stree CA 94612	et, Ste. 2			e Recei e Printe		04/27/2 04/28/2	
									Reque	ested Te	sts (See leg	end b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6 7	8	9	10	11	12
1104783-001	INF-V		Air	4/26/2011 12:50		Α	Α									

Tast	ם ו	n	on	n

rest Legenu.					
1 G-MBTEX_AIR	2 PREDF REPORT	3	4	5	•
6	7	8	9	10	
11	12				
The following SampID: 001A conf	ains testgroup.			Prepared by: Ana Venes	gas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Pangea Envii	onmental Svcs., Inc	:-		Date a	and Time Received:	4/27/2011	6:42:58 PM
Project Name:	5175 Broadw	ay, Rockridge			Check	klist completed and re	eviewed by:	Ana Venegas
WorkOrder N°:	1104783	Matrix <u>Air</u>			Carrie	er: Rob Pringle (M	Al Courier)	
		<u>Cha</u>	in of Cu	ıstody (C	COC) Informa	ation_		
Chain of custody	y present?		Yes	V	No 🗆			
Chain of custody	y signed when rel	nquished and received?	Yes	V	No \square			
Chain of custody	y agrees with sam	ple labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC	??	Yes	V	No 🗆			
Date and Time of	f collection noted b	y Client on COC?	Yes	~	No \square			
Sampler's name	noted on COC?		Yes	✓	No \square			
			Sample	Receip	t Information	<u>1</u>		
Custody seals in	ntact on shipping o	ontainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	ner/cooler in good	condition?	Yes	V	No 🗆			
Samples in prop	er containers/bott	les?	Yes	~	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indic	ated test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Ho	old Time (HT	') Information		
All samples rece	eived within holding	g time?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	als have zero head	dspace / no bubbles?	Yes		No \square	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correc	preservation?	Yes	✓	No 🗌			
Metal - pH accep	otable upon receip	t (pH<2)?	Yes		No \square		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗸			
* NOTE: If the "I	No" box is checke	d, see comments below			====	======		======
Client contacted:	:	Date conta	cted:			Contacted	by:	
Comments:								

Pangea Environmental Svcs., Inc.	Client Project ID: 5175 Broad	dway,	Date Sampled:	04/26/11
1710 Franklin Street, Ste. 200	Rockridge		Date Received:	04/27/11
	Client Contact: Morgan Gilli	ies	Date Extracted:	04/28/11
Oakland, CA 94612	Client P.O.:		Date Analyzed:	04/28/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction	on method: SW5030B	asomic 1	Cange (Co-C12)	_	tical methods:			iid WIIDE		k Order:	104783
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-V	A	870	ND<10	8.1	7.1	1.4	9.8	2	117	d1
	ting Limit for DF =1; eans not detected at or	A	25	2.5	0.25	0.25	0.25	0.25		μg/L	
	ve the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	g

* water and	l vapor sample	es are reported	l in iig/l.	soil/sliidge/solid	l samples in mg/kg	. wipe samp	oles in iig/wine	nroduct/oil/no			
					i sambies in mg/kg		oles in ug/wine		m-aqueous Hauia	sambles in mg/1	

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

When Guanty Counts		r cicpiione. o	11-232-7202 1 ax. 723	-232-3203
Pangea Environmental Svcs., Inc.	Client Project ID: 5 Rockridge	175 Broadway,	Date Sampled:	04/26/11
1710 Franklin Street, Ste. 200	Rockridge		Date Received:	04/27/11
	Client Contact: Mo	organ Gillies	Date Extracted:	04/28/11
Oakland, CA 94612	Client P.O.:		Date Analyzed:	04/28/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extracti	on method: SW5030E	3		I	Analytical methods	: SW8021B/80	15Bm		Wor	k Order:	1104783
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
001A	INF-V	A	240	ND<2.0	2.5	1.8	0.32	2.2	2	117	d1

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.										
Reporting Limit for DF =1;	A	7.0	0.68	0.077	0.065	0.057	0.057	1	uL/L	
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg	

^{*} vapor samples are reported in $\mu L/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 57976 WorkOrder 1104783

EPA Method SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 1104791-001A												01A
Analyte	Sample	Sample Spiked MS		MSD	MS-MSD	LCS	LCSD	LCS-LCSD	D Acceptance Criteria (%			
7 tildiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	96.1	90.1	6.44	96.3	94.4	2.02	70 - 130	20	70 - 130	20
MTBE	ND	10	116	108	7.58	114	128	11.4	70 - 130	20	70 - 130	20
Benzene	ND	10	108	102	5.52	106	108	2.18	70 - 130	20	70 - 130	20
Toluene	ND	10	92.4	87.1	5.74	93	96.1	3.30	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	94.3	90.9	3.67	94.5	97.2	2.86	70 - 130	20	70 - 130	20
Xylenes	ND	30	107	103	3.86	108	111	2.96	70 - 130	20	70 - 130	20
%SS:	118	10	97	96	0.504	97	97	0	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 57976 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1104783-001A	04/26/11 12:50 PM	I 04/28/11	04/28/11 12:11 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

McCampbell Analytical,	Inc.
"When Ovelity Counts"	

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway; Rockridge Height	Date Sampled: 05/24/11
1710 Franklin Street, Ste. 200		Date Received: 05/26/11
1770 Trainkini Succe, Sec. 200	Client Contact: Morgan Gillies	Date Reported: 06/02/11
Oakland, CA 94612	Client P.O.:	Date Completed: 05/31/11

WorkOrder: 1105806

June 02, 2011

Dear	Mor	gan
------	-----	-----

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: #5175 Broadway; Rockridge Height,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

1105806

McCAMPBELL ANALYTICAL, INC. CHAIN OF CUSTODY RECORD 1534 Willow Pass Rd. TURN AROUND TIME Pittsburg, CA 94565 RUSH 24 HR 48 HR 72 HR Website: www.mccampbell.com Email: main@mccampbell.com EDF Required? Coelt (Normal)/ Telephone: (925) 252-9262 Write On (DW) No Fax: (925) 252-9269 Report To: Mórgan Gillies Bill To: Pangea Analysis Request Other Comments Company: Pangea Environmental Services, Inc. TPH as Diesel (8015) with Silica Gel Cleanup Filter 1710 Franklin Street, Suite 200, Oakland, CA 94612 Total Petroleum Oll & Grease (5520 E&F/B&F) ETBE, Samples E-Mail: mgillies@pangeaenv.com Total Petroleum Hydrocarbons (418.1) for Metals Tele: (510) 836-3702 Fax: (510) 836-3709 5 Oxygenates(TAME, TBA, DIPE, MTBE) by 8260. analysis: PAH's / PNA's by EPA 625 / 8270 Project #: 5175 Broadway Project Name: Rockridge Heights BTEX ONLY (EPA 602 / 8020) Yes / No EPA 608 / 8082 PCB's ONLY CAM-17 Metals (6010 / 6020) Project Location: 5175 Broadway, Oakland, CA LUFT 5 Metals (6010 / 6020) Lead (200.8 / 200.9 / 6010) Sampler Signature: . 54 EPA 524.2 / 624 / 8260 EPA 601 / 8010 / 8021 METHOD EPA 525 / 625 / 8270 SAMPLING MATRIX Type Containers PRESERVED EPA 8150 / 8151 Containers EPA 8140 / 8141 EPA 608 / 8081 SAMPLE ID BTEX & TPH LOCATION (Field Point Name) Sludge Date Time HNO3 Other E FFF-W EFF 5-24-1 1450 1500 MID TNE 1510 1530 Tedler 1545 Relinquished By: Date: Time: Received By: COMMENTS: GOOD CONDITION HEAD SPACE ABSENT Relinguished By: Date:/ Time: Received By: DECHLORINATED IN LAB 1261 65 APPROPRIATE CONTAINERS PRESERVED IN LAB Relinguished By: Received Byz Date: Time: 5/26/11 1620 VOAS O&G METALS OTHER PRESERVATION pH<2

McCampbell Analytical, Inc.

MID-W

INF-W

EFF-V

INF-V

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2	52-9262					work)raer:	11058	806	Chent	Code: P	EO				
		WaterTrax	WriteOn	☐ EDF		Excel	[Fax	✓ E	mail	Hard	Сору	Third	Party	☐ J-f	lag
Report to:						E	Bill to:					Req	uested 1	ΓΑΤ:	5 d	lays
Morgan Gilli	es	Email: n	ngillies@pan	geaenv.com			Во	b Clark	-Riddell							
Pangea Env	rironmental Svcs., Inc.	cc:					Pa	ngea Ei	nvironment	al Svcs.,	, Inc.	_			0=10-11	
1710 Frankl	in Street, Ste. 200	PO:					17	10 Fran	ıklin Street,	Ste. 200)	Date	e Recei	ved:	05/26/2	2011
Oakland, CA			5175 Broadw	vay; Rockridge He	eight		Oa	kland, (CA 94612			Date	e Printe	ed:	05/26/2	2011
(510) 836-370	00 FAX (510) 836-3709															
									Reques	ted Test	s (See leç	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 6	7	8	9	10	11	12
1105806-001	EFF-W		Water	5/24/2011 14:50			Α									

Α

Α

Α

5/24/2011 15:00

5/24/2011 15:10

5/24/2011 15:30

5/24/2011 15:45

Water

Water

Air

Air

Test	9 0	en	'nd.

1105806-002

1105806-003

1105806-004

1105806-005

1 G-MBTEX_AIR 6	2 G-MBTEX_W 7	8	9	10
The following SampIDs: 004A, 005A co	ntain testgroup.		_	Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Pangea Enviror	mental Svcs., Inc.			Date a	and Time Received:	5/26/2011	4:25:47 PM
Project Name:	#5175 Broadwa	y; Rockridge Heigl	nt		Check	klist completed and r	eviewed by:	Maria Venegas
WorkOrder N°:	1105806	Matrix <u>Air/Water</u>			Carrie	er: <u>Derik Cartan (I</u>	MAI Courier)	
		Chain	of Cu	stody (C	COC) Informa	ation_		
Chain of custody	y present?		Yes	V	No 🗆			
Chain of custody	y signed when relinq	uished and received?	Yes	V	No \square			
Chain of custody	y agrees with sample	e labels?	Yes	V	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	V	No \square			
Date and Time of	f collection noted by	Client on COC?	Yes	V	No \square			
Sampler's name	noted on COC?		Yes	V	No 🗆			
		<u>S</u> :	ample	Receipt	Information	<u>1</u>		
Custody seals in	tact on shipping con	tainer/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	ner/cooler in good cor	ndition?	Yes	V	No 🗆			
Samples in prop	er containers/bottles	?	Yes	~	No 🗆			
Sample containe	ers intact?		Yes	✓	No 🗆			
Sufficient sample	e volume for indicate	d test?	Yes	✓	No 🗌			
		Sample Prese	rvatio	n and Ho	old Time (HT) Information		
All samples rece	ived within holding ti	me?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	7.6°C		NA 🗆	
Water - VOA via	ıls have zero headsp	ace / no bubbles?	Yes	V	No \square	No VOA vials subm	itted \square	
Sample labels cl	hecked for correct p	eservation?	Yes	V	No 🗌			
Metal - pH accep	otable upon receipt (p	hH<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes	V	No 🗆			
		(Ice Typ	e: WE	T ICE)			
* NOTE: If the "I	No" box is checked,	see comments below.						
=====	=====	======		===:	=	=====	====	======
Client contacted:	:	Date contact	ed:			Contacted	by:	
Comments:								

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway; Rockridge Height	Date Sampled:	05/24/11		
1710 Franklin Street, Ste. 200	Rockridge Height	Date Received:	05/26/11		
	Client Contact: Morgan Gillies	Date Extracted:	05/26/11-05/27/11		
Oakland, CA 94612	Client P.O.:	Date Analyzed:	05/26/11-05/27/11		

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*											
Extraction	method: SW5030B			Analy	tical methods:	SW8021B/8015	Bm		Wor	k Order:	1105806	
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments	
004A	EFF-V	A	ND	ND	ND	ND	ND	ND	1	97		
005A	INF-V	A	570	ND<10	3.2	1.7	ND	3.0	1	111	d1	
	ng Limit for DF =1;	A	25	2.5	0.25	0.25	0.25	0.25		μg/L		
	ns not detected at or the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	Σg	

* water and	i vapor samples	are reported in u	y/L. soil/sliidge/solid	d samples in mg/kg.	wipe sampl	es in lig/wine.	product/oil	/non-aqueous I	10111d	samples in r	mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway; Rockridge Height	Date Sampled:	05/24/11
1710 Franklin Street, Ste. 200	Rockridge Height	Date Received:	05/26/11
	Client Contact: Morgan Gillies	Date Extracted:	05/26/11-05/27/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	05/26/11-05/27/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with MTBE and BTEX in ppmv*

Extraction	on method: SW5030	В		I	Analytical methods		Wor	k Order:	1105806		
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
004A	EFF-V	A	ND	ND	ND	ND	ND	ND	1	97	
005A	INF-V	A	160	ND<3.0	0.97	0.44	ND	0.69	1	111	d1

ppm (mg/L) to ppmv (ul/L) conversion for TPH(g) assumes the molecular weight of gasoline to be equal to that of hexane.												
Reporting Limit for DF =1;	A	7.0	1	uL/L								
ND means not detected at or above the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg			

^{*} vapor samples are reported in $\mu L/L$, soil/sludge/solid samples in mg/kg, wipe samples in $\mu g/wipe$, product/oil/non-aqueous liquid samples in mg/L, water samples and all TCLP & SPLP extracts are reported in $\mu g/L$.

cluttered chromatogram; sample peak coelutes with surrogate peak; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

d1) weakly modified or unmodified gasoline is significant

Angela Rydelius, Lab Manager

Pangea Environmental Svcs., Inc.	Client Project ID: #5175 Broadway; Rockridge Height	Date Sampled:	05/24/11
1710 Franklin Street, Ste. 200	Rockridge Height	Date Received:	05/26/11
	Client Contact: Morgan Gillies	Date Extracted:	05/27/11-05/31/11
Oakland, CA 94612	Client P.O.:	Date Analyzed:	05/27/11-05/31/11

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

	Gasonie Range (Co-C12) Volatile Hydrocarbons as Gasonie with D1EX and W11DE												
Extraction	Extraction method: SW5030B Analytical methods: SW8021B/8015Bm									Work Order: 1105806			
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments		
001A	EFF-W	W	ND	ND	ND	ND	ND	ND	1	102			
002A	MID-W	W	ND	ND	ND	ND	ND	ND	1	99			
003A	INF-W	w	66	ND	0.92	0.72	ND	2.6	1	98	d1		
				<u> </u>									
	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5		μg/L			
	ans not detected at or e the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005		mg/K	Lg		

^{*} water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

- +The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:
- d1) weakly modified or unmodified gasoline is significant

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Air QC Matrix: Water BatchID: 58585 WorkOrder 1105806

EPA Method SW8021B/8015Bm	Extra	tion SW	5030B					S	Spiked San	nple ID	: 1105714-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	LCSD Acceptance Criteria			
7 thaty to	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	60	82.9	85.1	2.69	88.9	87.5	1.63	70 - 130	20	70 - 130	20
MTBE	ND	10	112	91.8	19.7	106	111	4.15	70 - 130	20	70 - 130	20
Benzene	ND	10	103	101	1.81	101	98.2	3.28	70 - 130	20	70 - 130	20
Toluene	ND	10	102	99.6	2.34	98.2	97.6	0.581	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	99.8	97.7	2.11	98.9	96.3	2.62	70 - 130	20	70 - 130	20
Xylenes	ND	30	102	99.4	2.59	101	98.9	1.96	70 - 130	20	70 - 130	20
%SS:	102	10	101	104	2.95	100	98	2.46	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 58585 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1105806-004A	05/24/11 3:30 PM	1 05/26/11	05/26/11 8:40 PM	1105806-005A	05/24/11 3:45 PM	05/27/11	05/27/11 5:57 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water QC Matrix: Water BatchID: 58585 WorkOrder 1105806

EPA Method SW8021B/8015Bm	Extra	ction SW	5030B					S	Spiked San	nple ID	: 1105714-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
7 tildiyto	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btexf)	ND	60	82.9	85.1	2.69	88.9	87.5	1.63	70 - 130	20	70 - 130	20
MTBE	ND	10	112	91.8	19.7	106	111	4.15	70 - 130	20	70 - 130	20
Benzene	ND	10	103	101	1.81	101	98.2	3.28	70 - 130	20	70 - 130	20
Toluene	ND	10	102	99.6	2.34	98.2	97.6	0.581	70 - 130	20	70 - 130	20
Ethylbenzene	ND	10	99.8	97.7	2.11	98.9	96.3	2.62	70 - 130	20	70 - 130	20
Xylenes	ND	30	102	99.4	2.59	101	98.9	1.96	70 - 130	20	70 - 130	20
%SS:	102	10	101	104	2.95	100	98	2.46	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 58585 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1105806-001A	05/24/11 2:50 PM	f 05/31/11	05/31/11 5:53 PM	1105806-002A	05/24/11 3:00 PM	05/31/11	05/31/11 6:25 PM
1105806-003A	05/24/11 3:10 PM	1 05/27/11	05/27/11 6:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

