

May o 7 2002

3164 Gold Camp Drive Suite 200 Rancho Cordova, California 95670-6021 916/638-2085 FAX: 916/638-8385

May 3, 2002

Mr. Don Hwang Alameda County Health Care Services Agency Environmental Health Department 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject:

Well Search/Utility Survey/Risk-Based Corrective Action Evaluation

Former Chevron Service Station No. 9-0517 3900 Piedmont Avenue Oakland, California

DG90-517-G

Mr. Hwang:

At the request of Chevron Products Company (Chevron), Delta Environmental Consultants, Inc. network associate Gettler-Ryan Inc. (GR) has prepared this report to document the results of a well search, utility survey and a Risk Based Corrective Action analysis (RBCA) performed at the above referenced site. The Alameda County Health Care Services Agency-Environmental Health Department (ACHCSA-EHD), in a letter dated September 27, 2001, requested that a well and utility survey along with a RBCA analysis for residential usage be conducted at the subject site. The purpose of this work was to evaluate whether the residual hydrocarbons in the site soils and groundwater pose a risk to human health and the environmental.

Site Description

The subject site is located on the eastern corner of Piedmont Avenue and Montell Street in Oakland, California (Figure 1). All site facilities including station building, four underground storage tanks (USTs) and associated product lines and two dispenser islands have been removed from the site. Presently, a commercial building and parking lot occupies the subject site. Pertinent site features are shown on Figure 3.

The subject site is located on the East Bay Plain approximately 2 miles east of San Francisco Bay. The local topography gently slopes to the south-southwest. As mapped by Helley and others (1979), deposits in the vicinity of the site consists of Holocene-age fine-grained alluvium of unconsolidated plastic, moderately to poorly sorted carbonaceous silt and clay overlying medium-grained alluvium of unconsolidated moderately sorted permeable fine sand, silt, and clayey silt with a few beds of coarse sand.

The nearest surface water is Glen Echo Creek located approximately 400 feet east of the subject site. Based on monitoring data, the groundwater flow direction in the vicinity of the site is toward the northwest to southwest.

Previous Environmental Investigations

1978: October - All aboveground and underground station facilities were removed from the site

1993: May - Augeas Corporation (AC) conducted a Phase I environmental investigation (AC Phase 1 Assessment Report dated May 1993).

October - Environmental and Science Engineering, Inc. (ESE) drilled eight soil borings. (FNBO-1 through FNBO-9; ESE Soil and Groundwater Investigation Report dated November 15, 1993)

1998: July - GR installed four groundwater monitoring wells (MW-1 through MW-4; GR Report# 346420.02-2,

Monitoring Well Installation Report dated September 17, 1998)

August - Quartertly monitoring and sampling of site wells began

2000: December - GR prepared and submitted a Site Conceptual Model report. This report summarized current

Mr. Don Hwang May 3, 2002 Page 2

site conditions, conclusions, and recommendations (GR Report# 346420.04, Site Conceptual Model and RBCA Evaluation Report dated December 21, 2000).

Discussion

Methyl tert-butyl ether (MtBE) has never been detected in the soil beneath the site. Historical soil chemical analytical data are presented in Table 1.

Groundwater beneath the site has been monitored and sampled since August 1998. Depth to groundwater beneath the site has fluctuated between 5.5 and 12 feet below ground surface (bgs). Groundwater flow has historically ranged from northwest to southwest at an approximately gradient of 0.02. Petroleum hydrocarbons have not been detected in on-site well MW-1 and only on one occasion in well MW-2. Petroleum hydrocarbons have consistently been detected in offsite wells MW-3 and MW-4. Quartertly monitoring analytical data shows that hydrocarbon concentrations in these wells have been stable since quarterly monitoring began in August 1998.

Based on the data collected to date, we have made the following observations regarding petroleum hydrocarbons in soil and groundwater:

- Low levels of residual hydrocarbons in soil are present near the western corner of the site
- The dissolved hydrocarbon plume appears stable
- Based upon the presence of MtBE in groundwater and the USTs being removed in 1978, an off-site secondary source of hydrocarbons appears to contribute to groundwater contamination in the western portion of the site.

Well Search

A review of Alameda County Public Work Agency (ACPWA) well logs was conducted to identify water supply wells in the vicinity of the plume. Results of the ACPWA well log review are tabulated in Table 2 and depicted on Figure 2. No water supply wells are located within or in the vicinity of the plume area. The nearest water supply well is an irrigation well located approximately 750 feet northeast (upgradient) of the site (map ID #1).

Utility Survey

An underground utility survey has been conducted. The results of the utility survey are depicted on Figure 3. Based upon elevations shown on Figure 3 and well top of casing elevation of approximately 87 feet above mean seal level, the sewer lines adjacent to the site are approximately 12 to 13 bgs. The specific burial depths of water, gas, and electrical lines were not available, however these lines are usually buried shallower than 5 feet bgs. According to the East Bay Municipal Utility District, water lines are usually buried between 3 and 5 feet bgs. Based upon the above pipe burial depths and historic groundwater levels (5.5 to 12 feet bgs), the utility trenches in the site vicinity appear not to be acting as preferential pathways

Risk-Based Corrective Action (RBCA)

Tier 1 of the RBCA process involves comparison of the site constituent concentrations to generic Risk-Based Screening Levels (RBSL) to evaluate whether further investigation and/or remediation is warranted. The RBSL values are derived from standard exposure equations and reasonable maximum exposure (RME) estimates per U.S. EPA guidelines. The RBSL concentrations are designed to be protective of human health even if exposure occurs directly within the onsite

Mr. Don Hwang May 3, 2002 Page 3

area of impacted soil or groundwater, and inherently provides conservative estimates of potential threats to human health and the environment. According to the RBCA process, if Tier 1 limits are not exceeded, the user may proceed directly to compliance monitoring and/or no further action. However, if these conservative screening levels are exceeded, the affected media may be addressed by: 1) remediating to the generic Tier 1 limits, if practicable; 2) conducting Tier 2 evaluation to develop site-specific remediation goals; or 3) implement an interim remedial action to abate petroleum hydrocarbons in areas of concern. Tier 2 analysis evaluates baseline risks both on and offsite, utilizing site specific soil, groundwater and air parameters. Additionally, Tier 2 analyses utilize transport models in calculating Site Specific Target Levels (SSTL). The SSTL is a chemical of concern (COC) concentration limit (clean-up level) in the source medium derived by multiplying the risk-based exposure limit at the point of exposure by the natural attenuation factor for the exposure pathway.

Site Parameters

Complete exposure pathways are those that could pose a reasonable potential for contaminant contact with human or environmental receptors. Under Tier 2 RBCA, both onsite and offsite receptors apply. For the purpose of this Tier 2 evaluation, a conservative residential exposure pathway with a risk factor of 1.0E-6 was evaluated for the site. Groundwater beneath and in the site vicinity is not used for drinking water purposes, therefore, groundwater ingestion or subsurface soil leaching to groundwater (ingestion) exposure pathways are not complete. As requested by the ACHCSA-EHD in their September 27, 2001 letter, the following risk pathways were evaluated: subsurface soil and groundwater volatilization to indoor and outdoor air; and ingestion, dermal contact and inhalation from surficial and subsurface soils. Additionally, the most recent four quarters of groundwater sampling results were utilized in this RBCA, as requested by the ACHCSA-EHD.

Where available, site specific physical data were used in this RBCA evaluation. Site specific parameters included contaminated soil area (2,275 ft²), depth to top of affected soil (5.5 ft), soil parameters for porosity, bulk density, and organic carbon fraction, length of affected soil parallel to wind (100 ft) and thickness of affected subsurface soils (1.5 ft). The depth of groundwater is estimated to be approximately 8 feet below ground surface (GR Third Quarter Event of August 23, 2001, Groundwater Monitoring and Sampling Report). Where appropriate and consistent with site conditions, default values were used. The Chemicals of Concern (COC) were evaluated with a conservative 95% Upper Control Limit (UCL) factor as well as the California adjusted oral slope factor for benzene (0.1) for this RBCA analysis. TPHg was evaluated by inputting the reported TPHg values from soil and groundwater into the aromatic fraction C8-C10 (Total Petroleum Hydrocarbon Criteria Working Group Series, Volume 5, June 1999).

Results of RBCA Analysis

Based on information from previous site investigations and groundwater monitoring and sampling data, the Tier 2 RBCA program evaluated the complete exposure pathways identified at the site. The RBCA program findings for the identified pathways are surface soil exposure with a cumulative risk factor of 1.9E-8, and subsurface soil and groundwater volatilization to outdoor and indoor air exposures with cumulative risk factors of 6.1E-10 and 4.6E-8, respectively (Appendix A, Tier 2 Baseline Risk Summary Table). Using the conservative residential risk factor of 1.0E-6 and site conditions, the SSTLs for BTEX, MtBE and TPHg were determined to be below established Tier 2 SSTLs (Appendix A, SSTL Values). According to the RBCA decision making process, no further work is warranted to protect against exposure via these pathways. Pertinent input and output data including site specific parameters used in the analysis are presented in Appendix A.

Mr. Don Hwang May 3, 2002 Page 4

Recommendations

Given the findings presented in this report, it is GR's opinion that no further work is warranted and the site should be considered for case closure.

If you have any questions or comments on the enclosed materials please feel free to contact us at (916) 631-1300.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC. Network Associate GETTLER-RYAN INC.

Geoffrey D. Kisse Project Geologist

David W. Herzog Senior Geologist

R.G. 7211

Attachments

Table 1: Historical Soil Chemical Analytical Results

Table 2: Well Search Results

Figure 1: Vicinity Map

Figure 2: Well Search Map

Figure 3: Extended Site Plan/Utility Map

Appendix A: Tier 2 RBCA Input/Output Data

CC: Mr. Tom Bauhs, Chevron Products Company, P.O. Box 6004, San Ramon, California 94583

Ms. Karen Streich, Chevron Products Company, P.O. Box 6004, San Ramon, California 94583

Mr. Jim Brownell, Delta Environmental Consultants Inc., 3164 Gold Camp Dr., Suite 200, Rancho Cordova,

California 95670-6021

Mr. Neil B. Goodhue and Mrs. Diane C. Goodhue (Property Owners), 300 Hillside Avenue, Piedmont,

California 94611

ATTACHMENTS

Table 1
Historical Soil Chemical Analytical Results
Former Chevron Service Station No. 9-0517
3900 Piedmont Avenue
Oakland, California

a 1 m	Sample Depth	Sample	TPHg	TPHd	TRPH	B	T	E (ppm)	X (ppm)	MtBE (ppm)	VOCs (ppm)
Sample ID	(feet)	Date	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(рриг)	(ррш)	(ррин)	(РРІП)
FNBO-1	10.5	10/20/93	1.9 ¹	<5.0	350	< 0.005	<0.005	<0.005	< 0.005	NA	ND
FNBO-1 FNBO-2	10.5	10/20/93	<1.0	<5.0	86	< 0.005	< 0.005	< 0.005	< 0.005	NA	ND
FNBO-2 FNBO-3	10.5	10/20/93	<1.0	<5.0	NA	< 0.005	<0.005	< 0.005	< 0.005	NA	NA
FNBO-4	6.0	10/20/93	1.4	<5.0	320	< 0.005	< 0.005	< 0.005	< 0.005	NA	ND
FNBO-5	6.0	10/21/93	3400	<500	NA	<0.5	<0.5	19	7.5	NA	NA
FNBO-5	10	10/21/93	15	<5.0	160	0.03	< 0.005	0.31	0.12	NA	ND
FNBO-6	5.5	10/21/93	5.0 ^t	<10	NA	< 0.02	< 0.02	< 0.02	< 0.02	NA	NA
FNBO-6	10	10/21/93	3.6^2	<5.0	10.0	< 0.005	< 0.005	0.034	0.041	NA	ND
FNBO-7	6.0	10/21/93	350^{2}	<400	NA	< 0.40	<0.40	< 0.40	<0.40	NA	NA
FNBO-7	11	10/21/93	400^{2}	< 500	NA	1.0	1.5	5.0	13	NA	NA
FNBO-8	11	10/21/93	<1.0	<5.0	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA
MW1-6	6.0	7/21/98	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW1-11	11	7/21/98	<1.0	, NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW1-16	16	7/21/98	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW2-6	6.0	7/21/98	<1.0	NA	NA	0.0070	< 0.0050	0.010	0.0090	< 0.025	NA
MW2-11	11	7/21/93	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW2-16	16	7/21/93	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW3-6	6.0	7/21/93	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW3-10.5	10.5	7/21/93	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW3-16	16	7/21/93	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW4-6	6.0	7/21/93	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	NA
MW4-11	11	7/21/93	80	NA	NA	2.0	1.7	4.7	5.8	< 0.25	NA
MW4-16	16	7/21/93	<1.0	NA	NA	< 0.0050	< 0.0050	< 0.0050	< 0.0050	NA	NA

Table 1

Historical Chemical Analytical Results Former Chevron Service Station No. 9-0517 3900 Piedmont Avenue Oakland, California

Explanation:

ND = None Detected

NA = Not Analyzed

ppm = parts per million

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

TRPH = Total Recoverable Petroleum Hydrocarbons

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

MtBE = Methyl tert-butyl ether

VOCs = Volatile Organic Compounds

¹Quantified as light petroleum distillates

²Quantified as gasoline and light petroleum distillates

Table 2 Well Search Results

Former Chevron Service Station No. 9-0517 3900 Piedmont Avenue, Oakland, California 2000 Foot Radius Around Site

Map ID	Well Owner	Well Location	Well Use	Number of Wells On Site	State Well #	Year Installed	AVG Well Depth (feet)	AVG Well Diameter (inches)	AVG DTW (feet)
1	John Bond	4082 Piedmont Avenue	IRR	1	01S04W24L1	19 7 8	198	8	NA
2	Chevron USA	3701 Broadway	ABD	1	01S04W24N2	1991	0	6	NA
3	Kaiser Health Foundation	3505 Broadway	ABD	2	01S04W24N15-16	1992	0	9	NA

Explanation

Well location data supplied by the County of Alameda Public Works Agency

ABD = Abandoned Well

IRR = Irrigation Well

NA = Information Not Available

GETTLER - RYAN INC.
6747 Sierra Ct., Suite J
Dublin, CA 94568 (925) 551-7555

Former Chevron Service Station No. 9-0517 3900 Piedmont Avenue Oakland, California

DATE REVISED DATE 10/01

PROJECT NUMBER REVIEWED BY DG90517G.3C99

FILE NAME: P:\ENVIRO\CHEVRON\9-0517\VIC-9-0517.DWG | Layout Tab: Vic Map

REVIEWED BY

Former Chevron Service Station No. 9-0517 3900 Piedmont Avenue Oakland, California

DATE 2/02 REVISED DATE

PROJECT NUMBER DG90517G.3C99

FILE NAME: P:\ENVIRO\CHEVRON\9-0517\VIC-9-0517.DWG | Layout Tab: Well Search 2-02

Site Name: Former Chevron SS No. 9-0517

Exposure Factors and Target Risk Limits

Site Name: Former Chevron SS No. 9-0	517	Job ID: DG90517G.3C99	Comman	ds and Options	
Location: 3900 Piedmont Ave. Oakland, Compl. By: J. Douglas	CA	Date: 20-Nov-01	Main Sc	reen Print Sheet) Help
Source Media	Constit	tuents of Conce	ern (CO	_	Apply Raoult's
Selected COCs	-	Representative Co	OC Concen	tration (?)	Law 7
COC Select: Sort List: ?	Groun	dwater Source Zone	S	oil Source Zone	A section of the state of the
Add/Insert Top MoveUp	Enter Direct	ly Enter Site Data	Enter Direc	tly Enter Site Data	And the state of t
Delete Bottom MoveDown	(mg/L)	note	(mg/kg)	note	
Benzene*	2.0E-2	oral slope changed to 0.1	3.4E-2	oral slope changed to 0.1	
Toluene	4.5E-3		3.1E-2		
Ethylbenzene	6.1E-3		1.8E-1		<u> </u>
Xylene (mixed isomers)	6.5E-3		1.4E-1		!
Methyl t-Butyl ether	2.4E-2		1.3E-2		
TPH - Arom >C08-C10	7.3E-1		5.2E+1] []
* = Chernical with user-specified data		<u> </u>			

Commands and Option				er Chevron SS			17G.3C99
Return Print Sheet	Help		: 3900 Pi 3y: J. Doi	iedmont Ave. (uglas	Dakland, (CA Date:	20-Nov-01
Groundwater Sou Calculator		ne Co	ncer	ntration		· •	UCL Percentile
Calculator	Paste Defaults)		Estimated	(Mean Optio	
Constituent	Detection Limit	No. of Samples	No. of Detects	Distribution of Data	Max. Conc.	Mean Conc.	UCL on Mean
	(mg/L)				(mg/L)	(mg/L)	(mg/L)
Benzene*	5.0E-4	16	16	Lognormal	3.0E-1	5.1E-3	2.0E-2
Toluene	5.0E-4	16	16	Lognormal	4.4E-2	1.9E-3	4.5E-3
Ethylbenzene	5.0E-4	16	16	Lognormal	5.3E-2	2.2E-3	6.1E-3
Xylene (mixed isomers)	5.0E-4	16	16	Lognormal	7.2E-2	2.4E-3	6.5E-3
Methyl t-Butyl ether	2.5E-3	16	16	Lognormal	2.4E-1	9.4E-3	2.4E-2
TPH - Arom >C08-C10	5.0E-2	16	16	Lognormal	5.6E+0	2.5E-1	7.3E-1
* = Chemical with user-spec	ified data			_			

Ente	er Analytic	al Data fro	m		-								
Gro	undwater	Source Zo	ne										
(up	to 50 Data	Points)		-							Aı	nalytical Da	ita
` '	1	2	3	4	5	6	7	8	9	10	11	12	13
ID	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-3	MW-4
Date	15-May-01	27-Feb-01	30-Oct-00	31-Jul-00	23-Aug-01	15-May-01	27-Feb-01	30-Oct-00	23-Aug-01	15-May-01	27-Feb-01	30-Oct-00	23-Aug-01
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)_	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
ſ	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	4.80E-2	9.64E-2	1.55E-2	1.19E-1	2.50E-1
Ī	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.92E-3	5.00E-3	1.26E-2	1.53E-3	2.50E-3	4.40E-2
Ī	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	5.00E-3	1.15E-2	1.49E-2	4.00E-2	2.10E-2
ľ	2.50E-4	2.50E-4	7.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	1.88E-3	5.00E-3	1.16E-2	1.06E-3	7.50E-3	7.20E-2
ľ	1.25E-3	1.25E-3	1.25E-3	1.25E-3	1.25E-3	1.25E-3	1.25E-3	4.89E-3	1.00E-1	1.28E-1	1.57E-2	1.25E-2	1.30E-1
ľ	2.50E-2	2.50E-2	2.50E-2	2.50E-2	2.50E-2	2.50E-2	2.50E-2	2.50E-2	2.30E+0	3.22E+0	4.32E-1	3.30E+0	2.70E+0
	1.25E-3	1.25E-3	1.25E-3	1.25E-3	1.25E-3	1.25E-3	1.25E-3	4.89E-3	1.00E-1	1.28E-1	1.57E-2	1.25E-2	1.

										Α	nalytical Da	ata
14	15	16	17	18	19	20	21	22	23	24	25	26
MW-4	MW-4	MW-4								ļ		ļ
15-May-01	27-Feb-01	30-Oct-00				<u></u>						
(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
2.00E-1	9.51E-2											ļ
4.41E-2	1.28E-2	1.78E-2										ļ
4.63E-2	5.34E-2	1.18E-2										
5.17E-2	4.30E-2	5.15E-2										
1.72E-1	2.35E-1	1.25E-2					<u> </u>					ļ
4.58E+0	2.14E+0	5.63E+0								<u></u>		

Commands and Option	S			er Chevron S			
Return Print Sheet	(Help	Location Compl. E		liedmont Ave. Juglas	Oakland, C	JA Date: 1	2U-INOV-U 1
Soil Source Zone	Conce	ntrati	on C	alculat	or		UCL
Jon Jource Lone	Paste Defaults			Estimated	_	Mean Optio	Percentile 95% n
Constituent	Detection Limit	No. of Samples	No. of Detects	Distribution of Data	Max. Conc.	Mean Conc.	UCL on Mean
	(mg/kg)				(mg/kg)	(mg/kg)	(mg/kg)
Benzene*	5.0E-3	8	8	Lognormal	2.5E-1	8.7E-3	3.4E-2
Toluene	5.0E-3	8	8	Lognormal	2.5E-1	7.7E-3	3.1E-2
Ethylbenzene	5.0E-3	8	8	Lognormal	1.9E+1	2.2E-2	1.8E-1
Xylene (mixed isomers)	5.0E-3	8	8	Lognormal	7.5E+0	2.0E-2	1.4E-1
Methyl t-Butyl ether	2.5E-2	4	4	Normal	1.3E-2	1.3E-2	1.3E-2
TPH - Arom >C08-C10	1.0E+0	8	8	Lognormal	3.4E+3	5.2E+0	5.2E+1
* = Chemical with user-spec	ified data				<u> , </u>		

/uc	to 50 Dat	a Points)									A	nalytical Da	ta
\ -	1	2	3	4	5	6	. 7	8	9	10	11	12	13
Ю[FNBO-4	FNBO-5	FNBO-6	FNBO-7	MW1-6	MW2-6	MW3-6	MW4-6					
ate	20-Oct-93	21-Oct-93	21-Oct-93	21-Oct-93	21-Jul-98	21-Jul-98	21-Jul-98	21-Jul-98					
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg							
	2.50E-3	2.50E-1	2.50E-3	2.00E-1	2.50E-3	7.00E-3	2.50E-3	2.50E-3					
ľ	2.50E-3	2.50E-1	2.50E-3	2.00E-1	2.50E-3	2.50E-3	2.50E-3	2.50E-3					
	2.50E-3	1.90E+1	3.40E-2	2.00E-1	2.50E-3	1.00E-2	2.50E-3	2.50E-3					
ı	2.50E-3	7.50E+0	4.10E-2	2.00E-1	2.50E-3	9.00E-3	2.50E-3	2.50E-3					
					4 055 0	4.055.0	1.055.0	1.25E-2					
ŀ					1.25E-2	1.25E-2	1.25E-2	_1.23⊏*2_					

Transport Modeling Options

	Site Name: Former Chevron SS No. 9-0517 Job ID: DG90517G.3C Location: 3900 Piedmont Ave. Oakland, CA Date: 20-Nov-	
	Compl. By: J. Douglas	
	3. Groundweier Gebeur Arterteiter befort -	
	And Constitution Contains and Market to the Administration of	<u> </u>
	Calculate Calif Laurey Damayana Masari O Deposits specimental for the outy recommendate of	9
	O Declaration of the Enter Decay Rates	
	Enter Site Data	
	(Enter Directly) Description to the proof of the following of the control of the proof of the control of the co	
	+ + + 4 & - ++	
	dren-spendled GAF yours	
	O DAR enter A controlled proceed and the controlled procedures (Some Enter DAF Values D)	
	4. Commands and Options	
	Main Screen Print Sheet Help)
1		

Site-Specific Soil Parameters

Site-Specific Air Parameters

CHEMICAL DATA FOR SELECTED COCs

Physical Property Data

						Diffs	ulon		2.00	og (Koc) er			•		Vapor	7					
			Molecui	ar		Coeffi	ciente			log(Kd)		Henry's	Law Constant		Pressu	ro	Solubilit	y			
			Weigh	t	in air		In water	,	(0	@ 20 - 25 C)		(@	20 - 25 C)		(@ 20 - 2	5 C)	(@ 20 - 25	C)			
	CAS		(g/moli)	(cm2/e)		(cm2/s)			log(L/kg)		(atm-m3)			(mm H	g)	(mg/L)		acld	base	
Constituent	Number	type	MW	ref	Dair	ref	Dwat	ref		partition	ref	mol	(unitiess)	ref		ref		ref	рКа	pKb	ref
Benzene*	71-43-2	Α	78.1	PS	8.80E-02	PS	9.80E-06	PS	1.77	Koc	PS	5.55E-03	2.29E-01	PS	9.52E+01	PS	1.75E+03	P\$		-	
Toluene	108-88-3	A	92.4	5	8.50E-02	Α_	9.40E-06	Α	2.13	Koc	Α	6.30E-03	2.60E-01	Α	3.00E+01	4	5.15E+02	29		-	
Ethylbenzene	100-41-4	Α	106.2	PS	7.50E-02	PS	7.80E-06	P\$	2.56	Koc	PS	7.88E-03	3.25E-01	PS	1.00E+01	PS	1.69E+02	PS	•		
Xylene (mixed Isomers)	1330-20-7	Α	106.2	5	7.20E-02	Α	8.50E-06	Α	2.38	Koc	Α	7.03E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5	<u>.</u>	-	
Methyl t-Butyl ether	1634-04-4	0	88.146	5	7.92E-02	6_	9.41E-05	7	1.08	Koc	Α	5.77E-04	2.38E-02	•	2.49E+02	-	4.80E+04	_ A		-	
TPH - Arom >C08-C10	0-00-0	Т	120	T	1.00E-01	T	1.00E-05	Ŧ	3.20	Koc	T	1.16E-02	4.80E-01	Т:	4.79E+00	-	6.50E+01	<u>T</u>		-	
* = Chemical with user-specif	fled data												-								

Site Name: Former Chevron SS No. 9-0517

Site Location: 3900 Pledmont Ave. Oakland, CA

Completed By: J. Douglas
Date Completed: 20-Nov-01

Job ID: DG90517G.3C99

CHEMICAL DATA FOR SELECTED COCs

Toxicity Data

	I	Referen	ce Dose		Reference C	one.		Slope F	actors		Unit Risk Fa	clor		
		(mg/k	g/day)		(mg/m3))		1/(mg/l	g/day)		1/(µg/m3)			
			(mg/kg/dey)						1/(mg/kg/day)				EPA Weight	la
- 4	Oral	ref	Dermel RfD dermal	ref	Inhelation RfC_Inhel	ref	Oral SF oral	tef	Dermal SF dermal	ref	Inhelation URF inhei	ref	of Evidence	Constituent Carcinogenic ?
Constituent	RfD_oral	101	MD GALBER	140	5.95E-03	Ř	1.00E-01	PS	2.99E-02	ΤX	8.29E-06	PS	A	TRUE
Benzene*	3.00E-03	н						- ' -	E-ODE OF	''			D	FALSE
Toluene	2.00E-01	A,R	1.60E-01	TX	4.00E-01	A,R								
Ethylbenzene	1.00E-01	PS	9.70E-02	TX	1.00E+00	PS	•	-		-		-	D	FALSE
Xylene (mixed isomers)	2.00E+00	A.R	1.84E+00	TX	7.00E+00	A		-	-				D	FALSE
Methyl t-Butyl ether	1.00E-02	31	8.00E-03	TX	3.00E+00	R	-	•		-	-	-		FALSE
TPH - Arom >C08-C10	4.00E-02	T	-	-	2.00E-01	Т	-	-	-	-	-	•	D	FALSE

^{* =} Chemical with user-specifiec Site Name: Former Chevron SS Site Location: 3900 Piedmont

			Mi	ecellaneo	us Chemic	al D	ata
		Meximum	Time-Wei Average We	-	Aquatic L Prot. Crite		Bloom- centration
	c	onteminent Level	Criter	•			Factor
Constituent	MCL (mg/L)	ref	TWA (mg/m3)	ref	AQL (mg/L)	ref	(L-wal/kg-flsh)
Benzene*	5.00E-04	•	3.25E+00	•		•	12.6
Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	<u> </u>		70
Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.35E+02	PS	-	•	1
Xylene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH		•	1
Methyl t-Butyl ether	-		6.00E+01	NIOSH	-	•	1
TPH - Arom >C08-C10	 	-		•		•	1
* = Chemical with user-spec	iflec						
Site Name: Former Chevron							

Site Location: 3900 Piedmont

CHEMICAL DATA FOR SELECTED COCS

Miscellaneous Chemical Data

Dermal		We	ter Dermal Per	meability Data									
Relative	Dermal	Leg time for	Critical	Relative	Water/Skin			Detection	Limits .		Hel	f Life	
Absorn.	Permeability	Dermal	Exposure	Contr of Derm	Derm Adsorp		Groundw	ater	Soil		(First-Or	der Decay)	
•	•	Exposure	Time	Perm Coeff	Factor		(mg/L)	(mg/kg)	ł	(d	ays)	
(unitiess)	(em/hr)	(hii)	(her)	(unitiess)	(cm/event)	ref		ref		ref	Saturated	Unsaturated	ref
0.5	0.021	0.26	0.63	0.013	7.3E-2	D	0.002	8	0.005	S	720	720	<u> </u>
0.5	0,045	0.32	0.77	0.054	1.6E-1	D	0.002	8	0.005	s	28	28	H
0.5	0.074	0.39	1.3	0.14	2.7E-1	D	0.002	s	0.005	S	228	228	Н
0.5	0.08	0.39	1.4	0.16	2.9E-1	D	0.005	S	0.005	S	360	360	<u> </u>
0.5		-	-	-	•	-	<u>. </u>	-	-	-	360	180	Н
0.5			_	-	•		-	-		-			-
	Relative Absorp. Factor (unitiess) 0.5 0.5 0.5 0.5 0.5	Relative Dermal	Relative Dermal Leg time for	Pelative Dermal Lag time for Critical	Relative Dermal Lag time for Critical Relative	Perms Leg time for Critical Relative Water/Skin	Perms Leg time for Critical Relative Water/Sidn	Relative Dermel Leg time for Critical Relative Water/Skin Derme Derm Derm	Pelative Dermal Lag time for Critical Relative Water/Skim Detection	Relative Dermel Leg time for Critical Relative Water/Skin Detection Limits	Relative Dermal Leg time for Critical Relative Water/Skin Detection Limits	Permeability	Permeability

Site Name: Former Chevron SS Site Location: 3900 Piedmont

Input Parameter Summary

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Pledmont Ave. Oakland, CA Completed By: J. Douglas Date Completed: 20-Nov-01 Job ID: DG90517G.3C99

1 OF 1

Ехрови	re Parameters		Residential		Commerci	ai/industrial
		B.dadi.	(1-6yra)	(1-16 yrs)	Chronic	Construe.
AT _c	Averaging time for carcinogens (yr)	70			1	
AT _n	Averaging time for non-carcinogens (yr)	30			25	1
BW	Body weight (kg)	70	15	35	70	
ED	Exposure duration (vr)	30	6	16	25	Ť
T	Averaging time for vapor flux (VI)	30			25	1
EF	Exposure frequency (days/yr)	350			250	180
EF _D	Exposure frequency for dermal exposure	350			250	
IR.	Increstion rate of water (L/day)	2			1	
IR.	Ingestion rate of soil (mg/day)	100	200		50	100
SA	Skin suriace area (dermal) (cm^2)	5800		2023	5800	5800
M	Soil to skin adherence factor	1				
ET.	Swimming exposure time (hr/event)	3				
EV	Swimming event frequency (events/yr)	12	12	12)	
IR.	Water Ingestion while swimming (L/M)	0.06	0.5			
SAmen	Skin surface area for swimming (cm*2)	23000		8100		
IR _{tot}	Ingestion rate of fish (kg/yr)	0.026				
High	Contaminated fish fraction (unitless)	1				

Complete Exposure Pathways and Receptors	On-eite	Off-eite 1	Off-site 2
Groundwater:			
Groundwater Ingestion	None	None	None
Soil Leaching to Groundwater Ingestion	None	None	None
Applicable Surface Water Exposure Routes:			
Swimming	- 1		NA
Fish Consumption	1		NA.
Aquetic Life Protection			NA
Soil:			
Direct Ingestion and Dermal Contact	Res./Constr.		
Outdoor Air:			
Particulates from Surface Solla	Res./Constr.	#VALUE!	#VALUE!
Volatilization from Solis	Res./Constr.	#VALUE!	#VALUE!
Volatilization from Groundwater	Residential	#VALUE!	#VALUE!
Indoor Air:			
Volatilization from Subsurface Soils	Residential	NA	NA
Volatilization from Groundwater	Flesidential	NA	NA

Receptor Distance from Source Media	On-site	Off-site 1	Off-site 2	(Unite)
Groundwater receptor	NA.	NA	NA.	(40)
Soil leaching to groundwater receptor	NA.	ŅA	NA :	(11)
Outdoor air inhelation receptor	0	NA.	NA NA	(ff)

Target	Health Risk Values	Individual	Cumulative
TR	Target Risk (class A&B carcinogens)	1.0E-6	1.0E-5
TR,	Target Risk (class C carcinogens)	1.0E-5	1
THO	Target Hazard Cuctient (non-carcinogenic risk)	1.0E+6	1.0E+0

lodeling Options	
RBCA tier	Tier 2
Outdoor air volatilization model	Surface & subsurface models
Indoor air volatilization model	Johnson & Ettinger model
Soli leaching model	NA NA
Use soil attenuation model (SAM) for leachate?	NA.
Air dilution factor	NA .
Countrale dilution attenuation factor	i na

NOTE: NA = Not applicable

Burfee	e Parameters	General	Construction	(Unita)
A	Source zone area	2.3E+3	1.1E+3	(ft*2)
w	Length of source-zone area parallel to wind	1.0E+2	3.3E+1	(m)
W _{arr}	Length of source-zone area parallel to GW flow	NA		(ft)
U.	Ambient air velocity in mixing zone	7.4E+0		(ft/s)
ð.	Air mixing zone height	6.6E+0		(ft)
Ρ.	Areal particulate emission rate	6.9E-14		(g/cm^2/s
ليد	Thickness of affected surface soils	4.9E+0		(ft)

Surfac	e Soil Column Parameters	Value			(Unite)
home	Capillary zone thickness	1.6E-1			(m)
h.	Vadose zone thickness	7.8E+0			j (#1)
Pa .	Soil bulk density	1.6E+0			(p/cm^3)
f _{ec}	Fraction organic carbon	1.5E-1			} ⊖
e _T	Soil total perceity	3.3E-1			(-)
K.	Vertical hydraulic conductivity	8.6E+2			(cm/d)
k,	Vapor permeability	1.1E-11			(ft^2)
سيا	Depth to groundwater	8.0E+0			(ft)
<u>. </u>	Depth to top of affected soils	5.5E+0			(ft)
Lean	Depth to base of affected soils	7.0E+0			(m)
L_	Thickness of affected soils	1.5E+0			(ft)
pН	Spil/groundwater pH	6.8E+0			()
	and a second second	esollary	vardoss	foundation	
θ	Volumetric water content	0.342	0.19	0,12	(-)
0.	Volumetric air content	-0.011	0.141	0.26	(-)

Aulidi	ng Parameters	Residential	Commercial	(Unita)
Z,	Building volume/area ratio	6.56E+0	NA.	(ft)
Α.	Foundation area	7.53E+2	NA .	(ft^2)
Xes	Foundation perimeter	1.12E+2	NA	(ft)
ER	Building sir exchange rate	1.40E-4	NA	(1/s)
L	Foundation thickness	4.92E-1	NA	(ft)
Zen	Depth to bottom of foundation slab	4.92E-1	NA	(11)
η.	Foundation crack fraction	1,00E-3	NA	(-)
ďΡ	Indoor/outdoor differential pressure	0.00E+0	NA	(g/cm/s^2)
ö,	Convective air flow through stab	0.00E+0	NA.	(R*3/s)

3roun	dwater Parameters	Value	(Unita)
٥	Groundwater mixing zone depth	NA	(fi)
L.	Net groundwater infiltration rate	NA.	(cm/yr)
Ù _{ar}	Groundwater Darcy velocity	NA .	(cm/d)
٧,,,	Groundwater seepage valocity	NA	(cm/d)
K.	Saturated hydraulic conductivity	NA	(cm/d)
i	Groundwater gradient	NA	(-)
S.	Width of groundwater source Zone	NA	(ft)
8	Depth of groundwater source 2019	NA	į (m)
Đ _{al}	Effective porosity in water-bearing unit	NA.	j (·)
foo-sax	Fraction organic carbon in water-bearing unit	NA.	(-)
oH.	Groundwater pH	NA	(-)
-	Biodegradation considered?	NA	!

Trens	port Paremetere	Off-site 1	Off-elte 2	Off-ette 1	Off-site 2	(Units)
Leter	i Groundwater Transport	Greynden	ter Ingestion	Soll Lead	ning to GW	
Q _x	Longitudinal dispersivity	NA.	NA	NA	NA ((R)
o,	Transverse dispersivity	NA.	NA	NA	NA.	(ft)
O ₂	Vertical dispersivity	NA.	NA	NA -	NA.	(ft)
_	al Outdoor Air Transport	Soil to Outs	toor Air Inhail.	OW to Out d	por Air Inhal.	
a,	Transverse dispersion coefficient	NA NA	NA.	NA.	NA]	(ff)
o,	Vertical dispersion coefficient	NA.	NA	NA.	NA.	(TT)
ADF	Air dispersion factor	NA	NA	NA.	NA.	(-)

Surface Water Parameters	Off-site 2	(Unita)
Q _{ter} Surface water flowrate	NA NA	(R^3/8)
W., Width of GW plume at SW discharge	MA	(#)
à discharge of GW plume at SW discharge	NA.	(ft)
Ut w Groundwater-to-surface water dilution factor	NA NA	(-)

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION ☐ (CHECKED IF PATHWAY IS ACTIVE) 2) NAF Value (m^3/kg) 3) Exposure Medium Outdoor Air: POE Conc. (mg/m*3) (1) / (2) Receptor Off-site 1 Off-site 2 Off-site 2 Off-site 1 On-site (0 ft) On-site (0 ft) (0 ft) (O ft) (0 ft) (0 ft) Construction Construction #VALUE! #VALUE! #VALUE! #VALUE Residential Worker Worker

1 OF 7

NOTE:	NAF = Natural attenuation factor	POE = Point of exposure	

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA

OUTDOOR AIR EXPOSURE PATHWAYS

1) Source Medium

Soil Conc.

(mg/kg)

3.4E-2

3.1E-2

1.8E-1

1.4E-1 1.3E-2

5.2E+1

Residential

SURFACE SOILS:

Benzene* Toluene

Ethylbenzene

VAPOR AND DUST INHALATION

Constituents of Concern

Xylene (mixed isomers)

Methyl t-Butyl ether TPH - Arom >C08-C10

Completed By: J. Douglas

Date Completed: 20-Nov-01 Job ID: DG90517G.3C99

2 OF 7

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION									
OUTDOOR AIR EXPOSURE PATHY	VAYS								
SURFACE SOILS:	r	4) Exposur	e Multinlier		1	5) Average Inha	lation Exposure		
VAPOR AND DUST INHALATION (cont'd)	(EFXED)/(ATX365) (unitless)				Concentration (mg/m^3) (3) X (4)				
	On-site (0 ft)		Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)		Off-site 1 (0 ft)	Off-site 2 (0 ft)	
Constituents of Concern	Residential	Construction Worker	#VALUE!	#VALUE!	Residential	Construction Worker	#VALUE!	#VALUE!	
Benzene*									
Toluene									
Ethylbenzene									
Xylene (mixed isomers)									
Methyl t-Butyl ether									
TPH - Arom >C08-C10					<u> </u>				
* = Chemical with user-specified data									

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

Date Completed: 20-Nov-01

Job ID: DG90517G.3C99

3 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS	(CHECKED IF PATHWAY IS ACTIVE)								
SUBSURFACE SOILS (5.5 - 7 ft): VAPOR INHALATION	1) Source Medium	2) NAF Value (m^3/kg) Receptor			3) Exposure Medium Outdoor Air: POE Conc. (mg/m*3) (1) / (2)				
	Soil Conc.	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)		
Constituents of Concern	(mg/kg)	Residential	#VALUE!	#VALUE!	Residential	#VALUEI	#VALUE!		
Benzene*	3.4E-2	1.9E+5			1.8E-7				
Toluene	3.1E-2	1.9E+5			1.6E-7				
Ethylbenzene	1.8E-1	4.1E+5			4.4E-7				
Xylene (mixed isomers)	1.4E-1	3.2E+5			4.3E-7				
Methyl t-Butyl ether	1.3E-2	1.9E+5			6.5E-8	***			
TPH - Arom >C08-C10	5.2E+1	9.2E+5			5.7E-5				

NOTE: NAF = Natural attenuation factor POE = Point of exposure

Site Name: Former Chevron SS No. 9-0517

Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

Date Completed: 20-Nov-01

Job ID: DG90517G.3C99

4 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS					•		
SUBSURFACE SOILS (5.5 - 7 ft):							
VAPOR INHALATION (cont'd)	•	Exposure Multipli xED)/(ATx365) (unition		 5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4) 			
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	
Constituents of Concern	Residential	#VALUE!	#VALUEI	Residential	#VALUE!	#VALUE!	
Benzene*	4.1E-1			7.3E-8			
Toluene	9.6E-1			1.6E-7			
Ethylbenzene	9.6E-1		-	4.2E-7			
Xylene (mixed isomers)	9.6E-1			4.1E-7			
Methyl t-Butyl ether	9.6E-1			6.3E-8			
TPH - Arom >C08-C10	9.6E-1			5.5E-5			

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)
Site Name: Former Chevron SS No. 9-0517
Date C

Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

Date Completed: 20-Nov-01 Job ID: DG90517G.3C99

5 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS		(CHECKED IF PATHWAY IS ACTIVE)								
GROUNDWATER: VAPOR	Exposure Concentration									
INHALATION	1) Source Medium	2) (VAF Value (m^3 Receptor	/ (4)	3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1) / (2)					
	Groundwater	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)			
Constituents of Concern	Conc. (mg/L)	Residential	#VALUE!	#VALUE!	Residential	#VALUEI	#VALUE			
Benzene*	2.0E-2	NA					<u> </u>			
Toluene	4.5E-3	NA								
Ethylbenzene	6.1E-3	NA			}					
Xylene (mixed isomers)	6.5E-3	NA				-				
Methyl t-Butyl ether	2.4E-2	NA					<u> </u>			
TPH - Arom >C08-C10	7.3E-1	NA I			1					

NOTE: NAF = Natural attenuation factor POE = Point of exposure

Site Name: Former Chevron SS No. 9-0517

Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

Date Completed: 20-Nov-01

Job ID: DG90517G.3C99

6 OF 7

OUTDOOR AIR EXPOSURE PATHY	NAYS			<u></u>		
GROUNDWATER: VAPOR						
NHALATION (cont'd)	•	Exposure Multipli (ED)/(ATx365) (unition	5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)			
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	#VALUE!	#VALUE!	Residential	#VALUEI	#VALUEI
Benzene*	4.1E-1					
Toluene	9.6E-1					
Ethylbenzene	9.6E-1					
Xylene (mixed isomers)	9.6E-1					
Methyl t-Butyl ether	9.6E-1					
TPH - Arom >C08-C10	9.6E-1					

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

Date Completed: 20-Nov-01 Job ID: DG90517G.3C99

7 OF 7

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION							
OUTDOOR AIR EXPOSURE PATHY	IAYS						
	TOTAL PATHWAY EXPOSURE (mg/m^3) (Sum average expensure concentrations from soil and groundwater routes.)						
	On-si	On-site (0 ft)		Off-site 2 (0 ft)			
Constituents of Concern	Residential	Construction Worker	#VALUE!	#VALUEI			
Benzene*	7.3E-8						
Toluene	1.6E-7						
Ethylbenzene	4.2E-7						
Xylene (mixed isomers)	4.1E-7						
Methyl t-Butyl ether	6.3E-8						
TPH - Arom >C08-C10	5.5E-5						

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

Date Completed: 20-Nov-01

Job ID: DG90517G.3C99

			TIER 2 PA	THWAY RIS	K CALCUL	AHON			<u>-</u>	
OUTDOOR AIR EXPOSURE PA	THWAYS				(CHECKED IF	PATHWAYS AR	E ACTIVE)			
					CA	RCINOGENIC RI	SK			
	(1) EPA Carcinogenic		(2) Total Carcinogenic (3) Inhalation Exposure (mg/m²3) Unit Risk		• •	ndividual COC Risk (2) x (3) x 1000				
	Classification	On-sit	te (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	Factor (µg/m^3)^-1	On-si	e (0 ft)	Off-site 1 (0 ft)	Off-site (0 ft)
Constituents of Concern		Residential	Construction Worker	#VALUEI	#VALUE!		Residential	Construction Worker	#VALUE!	#VALUE
Benzene*	A	7.3E-8				8.3E-6	6.1E-10			.,
Toluene	D									
Ethylbenzene	D						*****			
Xylene (mixed isomers)	D									·
Methyl t-Butyl ether	-									
TPH - Arom >C08-C10	D					<u> </u>				

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA Completed By: J. Douglas Date Completed: 20-Nov-01

Job ID: DG90517G.3C99

2 OF 10

OUTDOOR AIR EXPOSURE PAT	HWAYS				(CHECKED IF PATI	HWAYS ARE A	CTIVE)		
					TOXIC EFFECTS				
		(5) Total Toxicant Exposure (mg/m^3)			(6) Inhalation Reference	(7) Individual COC Hazard Quotient (5) / (6)			
	On-sit	te (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	Conc. (mg/m*3)	On-sit	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	Construction Worker	#VALUE!	#VALUE!		Residential	Construction Worker	#VALUE1	#VALUE!
Benzene*	1.7E-7				6.0E-3	2.9E-5			
Toluene	1.6E-7				4.0E-1	3.9E-7			
Ethylbenzene	4.2E-7				1.0E+0	4.2E-7			
Xylene (mixed isomers)	4.1E-7				7.0E+0	5.9E-8			<u> </u>
Methyl t-Butyl ether	6.3E-8				3.0E+0	2.1E-8			<u> </u>
TPH - Arom >C08-C10	5.5E-5		·		2.0E-1	2.7E-4			l

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA Completed By: J. Douglas Date Completed: 20-Nov-01 Job ID: DG90517G.3C99

OF 3

INDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACTIVE)		
SOILS (8.5 - 7 ft): VAPOR INTRUSION INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m*3) (1) / (2)	4) Exposure Multiplier (EFxED)/(ATx365) (unitless)	5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4)
Constituents of Concern	Soil Conc. (mg/kg)	Residential	Residential	Residential	Residential
Benzene*	3.4E-2	2.6E+3	1.3E-5	4.1E-1	5.5E-6
Toluene	3.1E-2	5.3E+3	5.9E-6	9.6E-1	5.6E-6
Ethylbenzene	1.8E-1	1.3E+4	1.4E-5	9.6E-1	1.4E-5
Xylene (mixed isomers)	1.4E-1	9.9E+3	1.4E-5	9.6E-1	1.3E-5
Methyl t-Butyl ether	1.3E-2	5.8E+3	2.2E-6	9.6E-1	2.1E-6
TPH - Arom >C08-C10	5.2E+1	2.8E+4	1,8E-3	9.6E-1	1.8E-3

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr)	ED = Exposure duration (vr)	NAF = Natural attenuation factor	POE = Point of exposure	
MOTE: 711 - Trotaging and (early) L: - Expected medicately (early);				

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

INDOOR AIR EXPOSURE PATHWAYS	(CHECKED IF PATHWAY IS ACTIVE)							
GROUNDWATER: VAPOR INTRUSION	Exposure Concentration							
INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m*3/L) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m^3) (1) / (2)	 Exposure Multiplier (EFxED)/(ATx365) (unities) 	5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4)			
Constituents of Concern	Groundwater Conc. (mg/L)	Residential	Residential	Residential	Residential			
Benzene*	2.0E-2	NA		4.1E-1				
Toluene	4.5E-3	NA		9.6E-1	<u> </u>			
Ethylbenzene	6.1E-3	NA		9.6E-1				
Xylene (mixed isomers)	6.5E-3	NA NA		9.6E-1				
Methyl t-Butyl ether	2.4E-2	NA		9.6E-1				
TPH - Arom >C08-C10	7.3E-1	NA		9.6E-1				

ALOTE: AT Assessment as Alone Alone	CC Companies francismos (doughe)	ED = Exposure duration (yr)	NAF = Natural attenuation factor	POE = Point of exposure	
NOTE: AT = Averaging time (da	ys) EF = Exposure frequency (days/yr)	ED = Exposure derador (Al)	IAVI = IABICIBIL STOLIOSOCIOLI ISCIOL	1 OC = 1 Olike OI Oxpoodi O	

Site Name: Former Chevron SS No. 9-0517

Site Location: 3900 Piedmont Ave. Oakland, CA Completed By: J. Douglas

INDOOR AIR EXPOSURE PATHWAYS	<u></u>
	TOTAL PATHWAY EXPOSURE (mg/m^3)
	(Sum average expaneurs concentrations from soil and groundwater routes.)
Constituents of Concern	Residential
Benzene*	5.5E-6
Toluene	5.6E-6
Ethvibenzene	1.4E-5
Xylene (mixed isomers)	1.3E-5
Methyl t-Butyl ether	2.1E-6
TPH - Arom >C08-C10	1.8E-3

Site Name: Former Chevron SS No. 9-0517 Date Completed: 20-Nov-01 Site Location: 3900 Piedmont Ave. Oakland, CA Job ID: DG90517G.3C99

Completed By: J. Douglas

3 OF 10

INDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAYS	ARE ACTIVE)		
	CARCINOGENIC RISK					
	(1) EPA Carcinogenic	(2) Total Carcinogenic Exposure (mg/m*3)	(3) inhalation Unit Risk Factor	(4) Individual COC Risk (2) x (3) x 1000		
Constituents of Concern	Classification	Residential	(µg/m^3)^-1	Residential		
Benzene*	Α	5.5E-6	8,3E-6	4.6E-8		
Toluene	D					
Ethylbenzene	D					
Xylene (mixed isomers)	D					
Methyl t-Butyl ether						
TPH - Arom >C08-C10	D					

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Pledmont Ave. Oakland, CA

Completed By: J. Douglas

4 OF 10

INDOOR AIR EXPOSURE PATHWAYS	TOXIC EFFECTS				
	(5) Total Toxicant Exposure (mg/m*3)	(6) Inhalation Reference Concentration	(7) Individual COC Hazard Quotient (5) / (6)		
Constituents of Concern	Residential	(mg/m^3)	Residential		
Benzene*	1.3E-5	6.0E-3	2.2E-3		
Toluene	5.6E-6	4.0E-1	1.4E-5		
Ethvibenzene	1.4E-5	1.0E+0	1.4E-5		
Xylene (mixed isomers)	1.3E-5	7.0E+0	1.9E-6		
Methyl t-Butyl ether	2.1E-6	3.0E+0	6.9E-7		
TPH - Arom >C08-C10	1.8E-3	2.0E-1	8.8E-3		

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA

Completed By: J. Douglas

RBCA SITE ASSESSMENT

	TIER 2 EXPOSURE CONCENTR	ATION AND INT	AKE CALCULATION		
SOIL EXPOSURE PATHWAY		(CHECKED IF PAT	HWAY IS ACTIVE)		
SURFACE SOILS OR SEDIMENTS: ON-SITE INGESTION AND DERMAL CONTACT	Source/Exposure Medium Source/Exposure Medium Source/Exposure Medium (IR+SAxMxRAF)xEFxED/(BWxAT) (kg)		,	3) Average Daily intake Rate (mg/kg/day) (1) x (2)	
Constituents of Concern	Surface Soil Conc. (mg/kg)	Residential	Construction Worker	Residential	Construction Works
Benzene*	3.4E-2	1.8E-5	4.2E-7	6.0E-7	1.4E-8
Toluene	3.1E-2	4.1E-5	2.9E-5	1.3E-6	9.0E-7
Ethylbenzene	1,8E-1	4.1E-5	2.9E-5	7.5E-6	5.3E-6
Xylene (mixed isomers)	1.4E-1	4.1E-5	2.9E-5	5.6E-6	4.0E-6
Methyl t-Butyl ether	1,3E-2	4.1E-5	2.9E-5	5.1E-7	3.6E-7
TPH - Arom >C08-C10	5.2E+1	4.1E-5	2.9E-5	2.2E-3	1.53

NOTE: RAF = Relative absorption factor (-)	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Soil ingestion rate (mg/day)
MOIE: 10-1 - Monday appropriate ()		· · · · · · · · · · · · · · · · · · ·	OA OUT demanded
M = Adherence factor (mg/cm*2)	BW = Body weight (kg)	EF = Exposure frequencey (days/yr)	SA = Skin exposure area (cm^2/day)
w = runeserce racios (riggini ≥)	DVV = DOGY Wording (wg)	2: - 2::002:0 ::003:0::007 (007:17-7	

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA Completed By: J. Douglas

5 OF 10

		T	ER 2 PATHWAY	RISK CALCU	LATION								
SOIL EXPOSURE PATHWAY					(CHECKED IF PATH	WAY IS ACT	TVE)						
	CARCINOGENIC RISK												
	(1) EPA		(2) Total Carcinogenic	Intake Rate (mg/kg/	iny)	(3) Slo	e Factor	(4) Individu	al COC Risk				
	Carcinogenic	(a) via Ingestion	(b) vta Dermal Contact	(c) via Ingestion	(d) via Dermal Contact			(2a)x(3a) + (2b)x(3b)					
Constituents of Concern	Classification	Residential		Construc	tion Worker	(a) Orali (b) Dermal		Residential	Construction Worker				
Benzene*	Α	2.0E-8	5.8E-7	3.4E-10	1.4E-8	1.0E-1	3.0E-2	1.9E-8	4.5E-10				
Toluene	D												
Ethylbenzene	D												
Xylene (mixed isomers)	D												
Methyl t-Butyl ether													
TPH - Arom >C08-C10	D						<u> </u>	<u> </u>					

* No dermal slope factor available-oral slope factor used.

Total Pathway Carcinogenic Risk =

1.9E-8 4.5E-10

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Pledmont Ave. Oakland, CA

Completed By: J. Douglas

6 OF 10

	TIER 2 PATHWAY RISK CALCULATION											
SOIL EXPOSURE PATHWAY	■ (CHECKED IF PATHWAY IS ACTIVE) TOXIC EFFECTS											
Constituents of Concern	(a) vis Ingestion	(5) Total Toxicant Inta	ike Rate (mg/kg/d (c) via Ingestion	ay) (d) via Dermal Contact	ν-,	Oral ose (mg/kg-day)	(7) Individual CO((5a)/(6a) + (5b)/(6b)	Hazard Quotient (5c)/(6a) + (5d)/(6b				
		idential		ction Worker	(a) Oral (b) Dermal		Residential	Construction Worker				
Benzene*	4.7E-8	1.4E-6	2.4E-8	9.7E-7	3.0E-3	3.0E-3*	4.7E-4	3.3E-4				
Toluene	4.2E-8	1.2E-6	2.2E-8	8.8E-7	2.0E-1	1.6E-1	7.9E-6	5.6E-6				
Ethylbenzene	2.5E-7	7.2E-6	1.3E-7	5.2E-6	1.0E-1	9.7E-2	7.7E- <u>5</u>	5.4E-5				
Xylene (mixed isomers)	1.9E-7	5.4E-6	9.6E-8	3.9E-6	2.0E+0	1.8E+0	3.0E-6	2.2E-6				
Methyl t-Butyl ether	1.7E-8	5.0E-7	8.8E-9	3.5E-7	1.0E-2	8.0E-3	6.4E-5	4.5E-5				
				1	1050	4.00	545.0	0.05.0				

3.7E-5

* No dermai reference dose avaliable-oral reference dose used.

2.1E-3

7.2E-5

Total Pathway Hazard Index =

4.0E-2

4.0E-2*

1.5E-3

5.4E-2 3.8E-2

3.8E-2

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA Completed By: J. Douglas

TPH - Arom >C08-C10

Date Completed: 20-Nov-01 Job ID: DG90517G.3C99

5.4E-2

Baseline Risk Summary-All Pathways

Site Name: Former Chevron SS No. 9-0517 Site Location: 3900 Piedmont Ave. Oakland, CA Completed By: J. Douglas Date Completed: 20-Nov-01

1 of 1

			TIER 2	BASELIN	NE RISK SU	MMARY T	ABLE			
		BASELINI	CARCINOG	ENIC RISK		***	BASELI	NE TOXIC	EFFECTS	
	Individual	COC Risk	Cumulative	COC Risk	Risk	Hazard	Quotient	Haza	rd Index	Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded?
OUTDOOR AIR	EXPOSURE F	PATHWAYS				<u></u>				
Complete:	6.1E-10	1.0E-6	6.1E-10	1.0E-5		2.7E-4	1.0E+0	3.0E-4	1.0E+0	
INDOOR AIR E	XPOSURE PA	THWAYS		7						· · · · · · · · · · · · · · · · · · ·
Complete:	4.6E-8	1.0E-6	4.6E-8	1.0E-5		8.8E-3	1.0E+0	1.1E-2	1.0E+0	
SOIL EXPOSUI	RE PATHWAY	s	The same of the sa							·
Complete:	1.9E-8	1.0E-6(1.9E-8	1.0E-5		5.4E-2	1.0E+0	5.4E-2	1.0E+0	
GROUNDWATE	ER EXPOSURE	PATHWAYS								
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
SURFACE WAT	TER EXPOSUR	E PATHWAY	s							
Complete:	NA	NA	NA	NA		NA	NA	NA	NA	
CRITICAL EXP	OSURE PATH	WAY (Maxim	um Values Fro	om Complete	Pathways)					<u></u>
<u> </u>	4.6E-8	1.0E-6	4.6E-8	1.0E-5		5.4E-2	1.0E+0	5.4E-2	1.0E+0	
ı	Indoo	or Air	Indo	or Air		S	oii			

RBCA SITE ASSESSMENT

TPH Criteria SSTL Worksheet

Site Name: Former Chevron SS No. 9-0517

Completed By: J. Douglas

Job ID: DG90517G,3C99

Site Location: 3900 Piedmont Ave. Oakland, CA

Date Completed: 20-Nov-01

1 OF 1

CALCULATION OF SSTL VALUES FOR TPH

		Mass	ractions	Representative	e Concentrations	Calculated Conc	entration Limits	Applicable	SSTL Values
						Residual Soil		Soils	
CONSTITUI	ENTS OF CONCERN	Sell	Groundwater	Soil	Groundwater	Concentration	Solubility	(5.5 - 7 ft)	Groundwater
CAS No.	Name	(-)	(•)	(mg/kg)	(mg/l_)	(mg/kg)	(mg/L)	(mg/kg)	(mg/L)
0-00-0	TPH - Arom >C08-C10	1.0E+0	1.0E+0	5.2E+1	7.3E-1	1.5E+4	6.5E+1	9.7E+2	#NUM!
	al with user-specified data					_			
)	•	Total 1.0E+0	1.0E+0	5.2E+1	7.3E-1	Total 7	TPH SSTL value	9.7E+2	>Sol

[&]quot;>" indicates risk-based target concentration greater than constituent residual saturation value.

NC = Not calculated.

						RBCA SITE	ASSESSME	NT							
Site Name: F	ormer Chevron SS No. 9-0517		Completed By:	J. Douglas	<u> </u>		Job ID: D	390517G.3C99		· · · · · · · · · · · · · · · · · · ·					
Site Location	3900 Piedmont Ave. Oakland, CA		Date Complete	d: 20-Nov-01											1 OF
			Targe	n Risk (Class A & B)	1.0E-8										
SOIL (5	.5 - 7 ft) SSTL VALUES		- τ	arpel Risk (Class C)	1.0E-5						Ground	Avater DAF Option:			
•	•		Ter	Target Hazard Quotient 1.0E+0											
	***************************************					SSTL Results Fo	r Complete Expo	eure Pathways ("	X" If Complete)						
			Soil Leaching to Groundwater Ingestion / Discharge to Surface Water		X Soil Vol. to Indoor Air	х		zation and Surface ates to Outdoor A		X Surface Soil Inhalation Ingestion, Dermal Conta			SSTL	Required CRF	
CONSTITUENTS OF CONCERN		Representative Concentration	On-site (0 ft)	Off-site 1 (K	Off-site 2 (0 ft)	On-site (0 tt)	On-site (0 ft)		Off-site 1 (0 Off-si		On-sil	e (0 ft)	SSTL	Exceeded 7	Only if "yes"
CAS No.	Name	(mg/kg)	None	None	None	Flesidential	Residential	Construction Worker	#VALUE!	#VALUE!	Residential	Construction Worker	(mg/kg)	*#* If yes	left
1-43-2	Benzene*	3.4E-2	NA.	NA.	NA	7.5E-1	5.6E+1	>1.6E+4	NA	NA	1.8E+0	7.6E+1	7.5E-1		<1
08-88-3	Toluene	3.1E-2	NA	NA.	NA	2.2E+3	>1.0E+4	>1.0E+4	NA	NA	3.9E+3	5.5E+3	2.2E+3		<1
00-41-4	Ethylbenzene	1.8E-1	NA.	NA.	NA	>9.2E+3	>9.2E+3	>9.2E+3	NA	NA	2.4E+3	3.3E+3	2.4E+3		<1
330-20-7	Xylene (mixed isomers)	1.4E-1	NA	NA.	NA NA	>7.2E+3	>7.2E+3	>7.2E+3	NA	NA	4.5E+4	6.3E+4	4.5E+4		<1
	Methyl t-Butyl ether	1.3E-2	NA	NA.	NA.	1.8E+4	>9.2E+4	>9.2E+4	NA	NA	2.0E+2	2.8E+2	2.0E+2		<1
-00-0	TPH - Arom >C08-C10	5.2E+1	NA	NA.	NA.	5.9E+3	>1,5E+4	>1.5E+4	NA .	NA	9.7E+2	1.4E+3	9.7E+2		<1
	with user-specified data		****	 	<u> </u>	•									

				-	RBCA SITE A	ASSESSMENT		·	•					
Site Name: Fo	rmer Chevron SS No. 9-0517	. "	Completed By:	J. Douglas			Job ID: DG	90517G.3C99						
Site Location:	3900 Piedmont Ave. Oakland, CA		Date Complete	d: 20-Nov-01								1 OF 1		
GROUNI	DWATER SSTL VALUES		_	Risk (Class A & B) get Flisk (Class C)			Groundwater DAF Option:							
			Targe	t Hazard Quotlent	1.0E+0									
SSTL Results For Complete Exposure Pathways ("X" if Complete)												,		
				Groundwater Ingestion / Discharge to Surface Water			X G	roundwater Volati to Outdoor A		Applicable	SSTL	Required CRF		
CONSTITUENTS OF CONCERN		Representative Concentration	On-aite Off-site 1 Off-site 2 (0 ft) (0 ft) (0 ft)		Off-site 2	On-aite (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 SSTL (0 ft)		Exceeded?	Only if "yes"		
CAS No.	Name	(mg/L)	None	None	None	Residential	Residential	#VALUE!	#VALUE!	(mg/L)	"#" if yes_	left		
71-43-2	Benzene*	2.0E-2	NA	NA	NA	#NUM!	#NUM1	NA	NA NA	#NUMI		NA		
108-88-3	Toluene	4.5E-3	NA	NA	NA	#NUMI	#NUM!	NA	NA	#NUMI		NA		
100-41-4	Ethylbenzene	6.1E-3	NA	NA	NA	#NUM!	#NUM!	NA	NA	#NUM!		NA		
1330-20-7	Xylene (mixed isomers)	6.5E-3	NA	NA	NA	#NUMI	#NUM!	NA	NA	#NUM!		NA		
1634-04-4	Methyl t-Butyl ether	2.4E-2	NA	NA	NA	#NUMI	#NUM!	NA	NA .	#NUM!		NA		
0-00-0	TPH - Arom >C08-C10	7.3E-1	NA	NA	NA	#NUM!	#NUM!	NA	NA	#NUM!		NA		
* = Chemical v	vith user-specified data	•	_											

[&]quot;>" indicates risk-based target concentration greater than constituent solubility value.

NA = Not applicable

NC = Not calculated.