Chevron Environmental Management Company 6001 Bollinger Canyon Rd, K2236 P.O. Box 6012 San Ramon, CA 94583-2324 Tel 925-842-9559

Dana Thurman Project Manager

ChevronTexaco

October 4, 2005

Fax 925-842-8370

da County Health Care Services
farbor Bay Parkway, Suite 250
da, CA 94502-6577

Chevron Service Station # 9-0517

Address: 3900 Piedmont Avenue, Oakland, Carifornia Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

I have reviewed the attached routine groundwater monitoring report dated September 16, 2005.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

luna

Sincerely,

Dana Thurman Project Manager

Enclosure: Report

TRANSMITTAL

September 16, 2005 G-R #386420

TO:

Mr. Bruce H. Eppler

Cambria Environmental Technology, Inc.

4111 Citrus Avenue, Suite 12 Rocklin, California 95677

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

Alameda Counisservice Station
Chevrosservice Station

RE:

#9-0517

3900 Piedmont Avenue Oakland, California MTI: 61H-1995 RO 0000138

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
2	September 16, 2005	Groundwater Monitoring and Sampling Report Second Semi-Annual - Event of August 15, 2005

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced report for your use and distribution to the following:

Mr. Dana Thurman, ChevronTexaco Company, P.O. Box 6012, Room K2236, San Ramon, CA 94583

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to October 3, 2005, at which time the final report will be distributed to the following:

Mr. Barney Chan, Alameda County Health Care Services, Dept. of Environmental Health, 1153 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

Mr. Neil B. Goodhue and Mrs. Diane C. Goodhue, 300 Hillside Avenue, Piedmont, CA 94611

Enclosures

trans/9-0517-DT

September 16, 2005 G-R Job #386420

Mr. Dana Thurman ChevronTexaco Company P.O. Box 6012, Room K2236 San Ramon, CA 94583

RE: Second Semi-Annual Event of August 15, 2005

Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

Dear Mr. Thurman:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

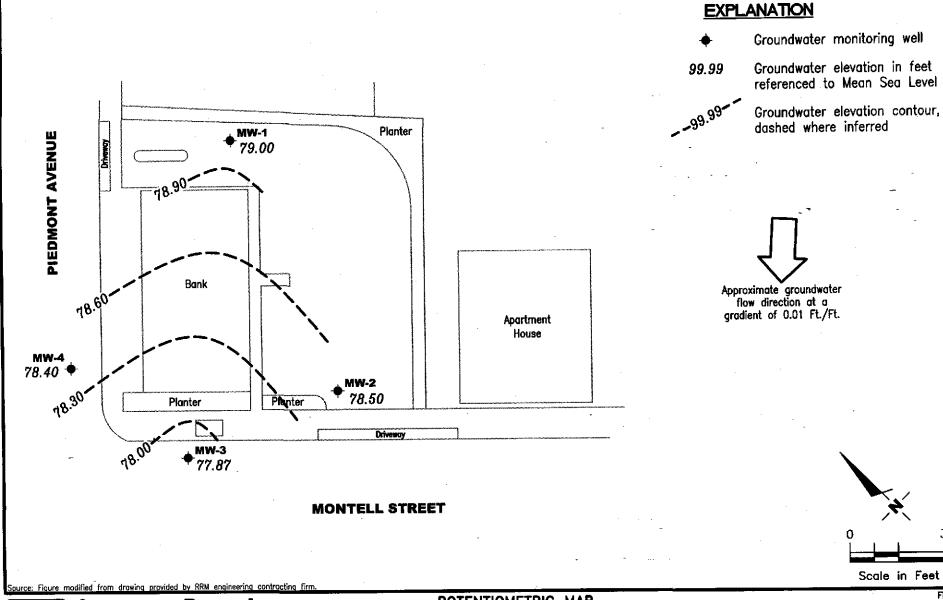

Hagop Kevork P.E. No. C55734

Figure 1: Potentiometric Map

Table 1: Groundwater Monitoring Data and Analytical Results
Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

GETTLER - RYAN INC.

6747 Sierra Court, Suite J
Dublin, CA 94568 (925) 551-7555

POTENTIOMETRIC MAP

Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

DATE COIN

REVISED DATE

PROJECT NUMBER 386420

REVIEWED BY

August 15, 2005

FILE NAME: P:\Enviro\Chevron\9-0517\Q05-9-0517.dwg | Layout Tab: Pot3

FIGURE

30

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0517

ormer Chevron Service Station #9 3900 Piedmont Avenue Oakland, California

			· · · · · · · · · · · · · · · · · · ·				Barrier Barrier	X	MTBE
WELL 1D/	TOC*	GWE	DTW	TPH-G	B	T (ppb)	(ppb)	(ppb)	(ppb)
DATE	(fi.)	(msl)	(ft.)	(ppb)	(ppb)	(Prof.	PP		
4W-1								.0.5	· 1 =
08/03/98	87.89	75.46	12.43	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
1/23/98	87.89	78.84	9.05	<50	<0.5	<0.5	<0.5	<0.5	<2.0
)2/08/99	87.89	81.39	6.50	<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
)5/07/99	87.89	80.76	7.13	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	87.89	78.74	9.15	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	87.89	78.35	9.54	<50	<0.5	<0.5	<0.5	<0.5	_ <\bar{2}.5
02/15/00	87.89	81.99	5.90	<50	<0.5	< 0.5	< 0.5	ੁ ੍ਵ0.5	<5.0
)5/12/00 ³	87.89	80.84	7.05	<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
)7/31/00	87.89	79.49	8.40	<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
10/30/00	87.89	79.24	8.65	<50.0	< 0.500	< 0.500	< 0.500	<1.50	<2.50
)2/27/01	87.89	82.06	5.83	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/15/01	87.89	80.18	7.71	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
08/23/01	87.89	DRY							·
02/25/02	87.89	81.18	6.71	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02	87.89	79.00	8.89	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/11/03	87.89	80.53	7.36	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/09/03 ⁵	87.89	78.42	9.47	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
02/25/04 ⁵	87.89	81.59	6.30	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/23/04 ⁵	87.89	77.77	10.12	< 5 0 ·	<0.5	<0.5	< 0.5	<0.5	< 0.5
02/11/05 ⁵	87.89	81.10	6.79	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/15/05 ⁵	87.89	79.00	8.89	<50	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2			_		,o #	.n. e	/n c	<0.5	3.4
08/03/98	86.09	74.75	11.34	<50	<0.5	<0.5	<0.5	<0.5	<2.0
11/23/98	86.09	79.19	6.90	<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/08/99	86.09	80.86	5.23	<50	<0.5	<0.5	< 0.5		<5.0
05/07/99	86.09	79.97	6.12	<50	<0.5	<0.5	<0.5	<0.5	
08/23/99	86.09	79.68	6.41	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
11/03/99	86.09	78.80	7.29	<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	86.09	81.60	4.49	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
05/12/00	86.09	80.19	5.90	$4,000^3$	240	26 .	100	76	<100
07/31/00	86.09	79.51	6.58	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

WELL ID/	TOC*	GWE	DTW	TPH-G	В	$oldsymbol{q}$	E	X	MTBE
DATE	(ft.)	(msl)	(fL)	(ρpb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-2 (cont)	97.00	70.96	6.23	<50.0	< 0.500	2.92	< 0.500	1.88	4.89
10/30/00	86.09	79.86		<50.0	<0.500	< 0.500	< 0.500	< 0.500	<2.50
02/27/01	86.09	81.49	4.60	<50.0	<0.500	< 0.500	<0.500	< 0.500	< 2.50
05/15/01	86.09	79.79	6.30		<0.50	< 0.50	< 0.50	<0.50	<2.5
08/23/01	86.09	78.81	7.28	<50	<0.50	< 0.50	< 0.50	<1.5	<2.5
02/25/02	86.09	80.48	5.61	<50		<0.50	< 0.50	<1.5	<2.5
08/05/02	86.09	78.99	7.10	<50	<0.50			<1.5	<2.5
02/11/03	86.09	78.64	7.45	<50	<0.50	<0.50	< 0.50	<0.5	<0.5
08/09/03 ⁵	86.09	78.44	7.65	<50	<0.5	<0.5	<0.5		<0.5
02/25/04 ⁵	86.09	81.24	4.85	<50	<0.5	<0.5	<0.5	<0.5	
08/23/045	86.09	77.86	8.23	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
02/11/055	86.09	80.16	5.93	<50	< 0.5	< 0.5	< 0.5	<0.5	<0.5
08/15/05 ⁵	86.09	78.50	7.59	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
								-	
MW-3									
08/03/98	86.28	74.20	12.08	4000	160	<5.0	<5.0	73	180
11/23/98	86.28	78.59	7.69	4000	67.7	7.56	17.1	24.5	41.2
02/08/99	86.28	10.08	6.27	<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
05/07/99	86.28	79.32	6.96	1800	53.6	8.96	33	18.6	21.4
08/23/99	86.28	78.36	7.92	3970	155	24	88.8	39.8	185
11/03/99	86.28	78.36	7.92	3320	108	19.9	98.4	44.8	<25
02/15/00	86.28	80.54	5.74	779	26.7	3.82	15.4	4.24	<12.5
05/12/00	86.28	79.52	6.76	$12,000^3$	3,100	120	980	1,400	820
07/31/00	86.28	78.98	7.30	$1,200^3$	32	<5.0	11	7.3	39
10/30/00	86.28	79.26	7.02	3,300 ⁴	119	<5.00	40.0	<15.0	<25.0
02/27/01	86.28	80.39	5.89	432 ³	15.5	1.53	14.9	1.06	15.7
05/15/01	86.28	79.21	7.07	$3,220^3$	96.4	12.6	11.5	11.6	128
08/23/01	86.28	78.23	8.05	2,300	48	<10	<10	<10	100
02/25/02	86.28	79.55	6.73	3,100	27	2.1	4.8	6.6	<2.5
08/05/02	86.28	78.33	7.95	4,100	87	21	90	47	21
02/11/03	86.28	79.23	7.05	3,700	21	2.3	4.4	9.0	<20
08/09/03 ⁵	86.28	78.05	8.23	1,600	12	1	2	4	0.7
02/25/045	86.28	80.43	5.85	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0517

Former Chevron Service Station #9 3900 Piedmont Avenue Oakland, California

				Oukland, C			reconstitutes and services		No of the late of
WELL ID/	TOC*	GWE	DTW	TPH-G	В	T	E	X (ppb)	MTBE (ppb)
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ррб)	ppoj	(PPO)
MW-3 (cont)								_	-0.5
08/23/04 ⁵	86.28	77.23	9.05	3,000	21	3	3	9	<0.5
02/11/055	86.28	79.26	7.02	540	15	. 1	<0.5	0.8	<0.5
08/15/05 ⁵	86.28	77.87	8.41	2,600	11	1	_ 1	2	<0.5
MW-4		4							
08/03/98	87.22	74.30	12.92	1900	110	12	<0.5	5 5-	130
08/03/98 11/23/98	87.22 87.22	77.82	9.40	4080	136	17.8	37.2	30.1	51.8
02/08/99 ¹	87.22 87.22	79.40	7.82	2900	150	16	<5.0	15	230/30.7 ²
05/07/99	87.22	79.80	7.42	6050	161	<25	39.8	36.9	<250/30.2 ²
08/23/99	87.22	77.83	9.39	3930	203	37.6	58.6	42.2	255
11/03/99	87.22	77.41	9.81	5350	324	44.7	91.5	56.1	< 50
02/15/00	87.22	79.50	7.72	4080	161	27.7	31.1	39.1	73.9
05/12/00	87.22	79.31	7.91	3,600 ³	170	27	49	· 64	170
03/12/00	87.22	78.57	8.65	$2,900^3$	160	20	15	56	170
10/30/00	87.22	78 .14	9.08	5,630 ⁴	301	17.8	11.8	51.5	<25.0
02/27/01	87.22	79.92	7.30	2,140 ³	95.1	12.8	53.4	43.0	235
05/15/01	87.22	79.07	8.15	4,580 ³	200	44.1	46.3	51.7	172
08/23/01	87.22	77.89	9.33	2,700	250	44	21	72	130
02/25/02	87.22	79.42	7.80	4,100	100	18	27	39	<10.
08/05/02	87.22	80.12	7.10	4,100	130	18	50	20	<10
02/11/03	87.22	79.10	8.12	4,100	100	23	20	51	< 50
08/09/03 ⁵	87.22	77.67	9.55	3,700	110	24	10	45	8
02/25/04 ⁵	87.22	79.16	8.06	5,400	94	28	34	49	5
08/23/04 ⁵	87.22	77.03	10.19	5,100	100	26	. 7	43	5
02/11/05 ⁵	87.22	79.25	7.97	3,900	58	16	25	16	2
08/15/05 ⁵	87.22	78.40	8.82	2,400	76	16-	. 11	26	3 .
00/15/05	,	10.00	5.02						
TRIP BLANK					-0 F	-0.5	~D. E	-0.5	/2 F
08/03/98		Mar See		<50	<0.5	<0.5	<0.5	<0.5	<2.5
11/23/98				<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99				<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0517

Former Chevron Service Station 3900 Piedmont Avenue Oakland, California

WELL ID/	тос*	GWE	DTW	TPH-G	В	T	E (ppb)	X (ppb)	MTBE (ppb)
DATE	(ft.)	(msl)	(fi.)	(ppb)	(pph)	(ppb)	APP*)	MPP 9	-
TRIP BLANK (con	t)								-6.0
05/07/99				<50	<0.5	< 0.5	<0.5	<0.5	<5.0
08/23/99	==			< 50	< 0.5	<0.5	<0.5	<0.5	<2.5
11/03/99				<50	< 0.5	<0.5	<0.5	<0.5	<2.5
02/15/00	-			< 50	< 0.5	<0.5	<0.5	<0.5	< 5.0
05/12/00				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5 _.
07/31/00				< 50	< 0.50	< 0.50	< 0.50	< 0.50	≤2.5
10/30/00				<50.0	< 0.500	< 0.500	< 0.500	<1.50	<2.50
02/27/01	 -			<50.0	< 0.500	< 0.500	< 0.500	<0.500	<2.50
05/15/01		* =		<50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50
08/23/01				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
QA									
02/25/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02				< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/11/03				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/09/03 ⁵		#=		<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
02/25/04 ⁵		 ·		<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/23/04 ⁵			·	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
02/11/05 ⁵				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
08/15/05 ⁵				<50	<0.5	< 0.5	< 0.5	<0.5	<0.5

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0517
3900 Piedmont Avenue
Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 12, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary butyl ether

(ft.) = Fect

B = Benzene

(ppb) = Parts per billion

GWE = Groundwater Elevation

T = Toluene

-- = Not Measured/Not Analyzed

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

X = Xylenes

- * TOC elevations are referenced to msl.
- Chromatogram pattern indicates gas and an unidentified hydrocarbon.
- ² Confirmation run.
- ³ Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- 5 BTEX and MTBE by EPA Method 8260.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by ChevronTexaco Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick, California.

Client/Facility #: Site Address:	ChevronTexaco		E	ob Number: _3 vent Date: ampler:	886420 8/15/05 Travis	(inclusive)
City:	Oakland, CA					
Well ID Well Diameter Total Depth Depth to Water	MW- 1 2 in. 16.32 ft. 8.85 ft. 7.43 xV	17	Volume Factor (VF)	3/4"= 0.02 4"= 0.66	Well Condition: 1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50 stimated Purge Volume:	
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Other:	X	Dispo Press Discre	oling Equipment: sable Bailer ure Bailer ete Bailer	<u> </u>	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thicknes Visual Confirmation/De Skimmer / Absorbant S Amt Removed from Sk Arnt Removed from W Water Removed: Product Transferred to	s:ft s:ft escription: Sock (circle one) cimmer: gal ell: gal
Start Time (pur Sample Time/I Purging Flow I Did well de-wa Time (2400 hr.	Date: 933 / 8 Rate: gpm. uter? Volume	<u> 5</u> -05 Sedimer	er Conditions: Water Color: Int Description: Conductivity (u mhos/cm) 371 366 353			ORP (mV)
		1.45	ORATORY INFO	DRMATION		_
SAMPLE ID	(#) CONTAINER		PRESERV. TYPE HCL	LANCASTER		YSES MTBE(8260)
COMMENTS	:					70-
Add/Rer	olaced Lock:		Д	.dd/Replaced F	Plug:Si	<u> </u>

Client/Facility #:	ChevronTexaco	#9-0517	Jo	b Number: 3	86420	
Site Address:	3900 Piedmont		 Ev	vent Date:	8-15-05	(inclusive)
	Oakland, CA		 Sa	ampler:	Fravis V.	
City:	Carlana, C.					<u> </u>
Well ID	MW- 2	Date M	lonitored: 🗳	-15-05	Well Condition:	
Well Diameter	2 in.	1		3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0.	38
Total Depth	15.53tt.	1	Volume Factor (VF)		5"= 1.02 6"= 1.50 12"= 5	5.80
Depth to Water	7,59 ft.	٠, ٠,	. 7		4	1
	7,96/_xv1	f <u>17 </u>	= (,) x3	case volume= Es	stimated Purge Volume:	Ĵ_gal.
		F	Environanti		Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Purge Equipment:	\ /	-	ing Equipment: able Bailer	\times	Depth to Product:	ft
Disposable Baller		-	re Bailer		Depth to Water:	ft
Stainless Steel Baild Stack Pump	er <u></u>		e Bailer		Hydrocarbon Thickness: (Visual Confirmation/Description	ft
Suction Pump		Other:				
Grundfos				,	Skimmer / Absorbant Sock (ci Amt Removed from Skimmer:	rde one) gal
Other:					Amt Removed from Well:	
					Water Removed:	<u> </u>
					Product Transferred to:	
	·					
Start Time (pur	ge): 9 30	Weathe	r Conditions:	Cloud		·
Sample Time/D	·	5-15-05	Water Color: _	Clear	Odor: _ <i>_/U/_</i>	4
Purging Flow F		Sedimen	t Description: _	light		
Did well de-wa		If yes, Time:		Volume:	gal.	
				Tamponturo	D.O. 0	RP
Time	Volume		Conductivity (umhos/cm)	Temperature (C/F)		nV)
(2400 hr. 9 32) (gal.) 2.5	6.58	385	22.7		
4 3 5	2 50	6.54	388	23.1		
7 22	3 75	<u> </u>	375	22.4		
	<u> </u>	<u> </u>		(· .	
	·		PRESERV. TYPE	LABORATOR)	ANALYSES	
SAMPLE ID		REFRIG. F	HCL	LANCASTER		8260)
MW-	x voa vial	153	1100			
		<u> </u>				
COMMENTS	:					
<u> </u>						
				LUD - In and D	Plug: Size:	17
Add/Rep	olaced Lock:X		Α	.dd/Replaced F	riug(

	ChevronTexaco	. #9-0517	Jol	o Number:	386420	
Client/Facility #:	3900 Piedmont			ent Date:	8-15-05	(inclusive)
Site Address: City:	Oakland, CA	Avendo	Sa	mpler:	Travis V.	
Well ID Well Diameter Total Depth Depth to Water	MW-3 2 in. 7.65 ft. 8.41 ft. 9.24 xVF	Date	Volume Factor (VF) = 1.57 x3	3/4"= 0.02 4"= 0.66	1"= 0.04 2"= 0.17 3"=	0.38 = 5.80 - 7 gal.
Purge Equipment: Disposable Bailer Stainless Steel Baile Stack Pump Suction Pump Grundfos Other:		Samp Dispo Press Discr	oling Equipment: sable Bailer sure Bailer ete Bailer	<u> </u>	Time Started: Time Completed: Depth to Product: Depth to Water: Hydrocarbon Thickness: Visual Confirmation/Descrip Skimmer / Absorbant Sock Amt Removed from Skimme Amt Removed from Well: Water Removed: Product Transferred to:	(circle one) er: gal
Start Time (pur Sample Time/I Purging Flow F Did well de-wa Time (2400 hr.	Date: 10 15 / 8: Rate: — gpm. Ater? Volume (gal.) 1.5	<u>-15-05</u> Sedime	Conductivity (u mhos/cm) 5 6 9 6 2	clear	Odor:	ORP (mV)
			BORATORY INFO	RMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATOR	THE WOOD A SUBTEV DATE	
	3 (x voa vial	YES	HCL	LANCASTE	R TPH-G(8015)/BTEX+MTE	DE (DZ00)
COMMENTS	3:					
Add/Re	placed Lock:		Α	dd/Replaced	Plug: Size:	· · · · · · · · · · · · · · · · · · ·

Client/Facility #:	ChevronTexaco	#9-0517	Job Number:	386420	
Site Address:	3900 Piedmont		Event Date:	3-15-05	(inclusive)
	Oakland, CA		— Sampler:	Travis V	
City:	Oakland, CA		_		
Well ID Well Diameter Total Depth Depth to Water Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other:	MW-4 2 in. 16.25 ft. 3.82 ft. 7,43 xvi	Volu Fac	pment:	1"= 0.04 2"= 0.17 3	(2400 hrs) (2400 hrs) ft ft ft ft cription: ck (circle one) mer: gal
Start Time (pur	ge): 838	Weather Cond	itions: Claud		
Sample Time/D Purging Flow F Did well de-wa	Pate: <u>455 18</u> Rate: <u>gpm.</u>	Sediment Descr If yes, Time:	iption: المرافظة	Odor: <u>S</u>	<u> </u>
Time (2400 hr.) 3 4 1 3 5 5 7	Volume (gal.) 1 2 3.5	pH Conducti (umhos/o 5.91 591 6.93 585 6.88 567		D.O. (mg/L)	ORP (mV)
		I ABORATO	RY INFORMATION		
SAMPLEID	(#) CONTAINER	REFRIG. PRESER	V. TYPE LABORATO	THE REPORT OF THE PARTY OF THE	
MW- C		YES HO	L LANCAST	ER TPH-G(8015)/BTEX+M	IDE(020V)
COMMENTS	:				
Add/Rep	placed Lock:		Add/Replace	d Plug:Size):

Chevron California Region Analysis Request/Chain of Custody

Lancaster Laboratorie	<u>s</u>	Ωf	31705	/	56	Acc	zt.#:	10	90	4	Sa	mple	#:_	4	28	6	3 <i>3</i>	<u> </u>	35	<u></u>	SCR#:			
Where quality is a science.		U'I	oject#: \$1H-4	BOK.	, -			1				A	naly	868	Req	ju es	ted		_	\neg				
				700				_				P	rese	rvat	ion	Cod	es			コ	Prese	rvativ	ve Code	5
Facility#: SS#9-0517 G-R#3864	20 Glo	bal ID#1060	0102248		N	Aatrix	۱ ۱		H	H		\Box		\Box			\Box		[\dashv	H = HCl	+ -	= Thiosu = NaOH	-
Facility #:	IUE, O	AKLAND, C	<u> </u>	_							da			- -		Ì	١			i	$N = HNO_3$ $S = H_2SO_4$) = Other	
au MTI	Load C	onsultant: CA	MBKIABE		·			و و	٠,	1	폴		•	Į	Ì	1				. t	☐ J value re	porting	needed	
Consultant/Office: G-R, Inc., 6747 Sie	та Соц	int, Suite J, I	Dublin, Ca. 94	568		Potable NPDES		aine	1208		3	Ť						.			Must mee possible fo	i lowe:	st detectio	on limits
Consultant Prj. Mgr.: Deanna L. Hardin	ng (de	anna@grind	.com)			윤힐		Į.	06 X		Silica Gel Cleanup	ŀ			-					. [•	-		,,,,,,
Consultant Phone #: 925-551-7555		Fax #: 925	551-7899			<u>'''</u>		of (092			ł		7421							8021 MTBE			60
	nde			T		, 			Ή 9		8	ا ء	rates	7				j			☐ Confirm a			
Service Order #:		n SAR:		Tig		ٔ ۔	*	Ž	Ę	115 M)15 M	28	Oxygenates	82							Run			st hit
Salvida Oldei 4.		Date	Time 2	Composite	Soil	Water	口 (5	Total Number of Container	BTEX + MTBE	TPH 8015 MOD	TPH 8015 MOD DRO	8260 full scan	-	Lead 7420 🖂						1	Run	oxy s	on all hits	\$
Sample Identification		Collected	Collected C	_	S	Ż	٣١	2	₩	Ā				H						\Box	Comment	s / Re	marks	
<u>Q</u>		8-15-05	0923 2	} -		$\hat{\mathbf{x}}$	 	G	夂	父	<u> </u>		-				·						-	
m _i	M-9-	8-15-05				X	1	6	X	X									_	Ш	l			
	w-3	18-15-05	1015 12	2		X		6	X					Ш				<u> </u>		\square				
	W-Y	8-15-5	0855 >			X		<u>C</u>	X	X	<u> </u> -	<u> </u>	_	-		ļ		-		\vdash				
				<u> </u>	!	<u> </u>	-	┞	 	╁	Ŀ	}	-		_	╁	├	}—	-	┝─┦	İ			÷
				+	╀┈	├—	-	-	╁		╂-	╀┈	-	-	┝	┼-	┢		┼	H	ļ ·		٠	
	. 			+	╁╌	┼─	1	+	╁	1	╁╌	┢	╁╴	┢		 	-		1	\Box			,	2
				╁	1	\vdash	+	╁╌	1-	 .	 	 	1		_	 	ı							
		 		1	1	T		†	T											\prod]			
								-			<u> </u>	<u> </u>	_			٠	╙	1_	-	\perp				
		·		1.		<u>بــــــــــــــــــــــــــــــــــــ</u>	3			⊥_	 		<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	d by:		┸ <u>╼</u>			Date	Time
Turnaround Time Requested (TAT) (: dease cin	:le)	Relinquish		办				-		1	Dete	64	Tim	16	Nec	GIVO	o oy.			DVan	も !	817/00	
STD. TAT 72 hour	48 hou		Relinquisi				<u>~</u>				Т	Date	9	Tim	ie -	Reg	álv)	d by:	7				Date	Time
24 hour 4 day	5 day	54		·			<u> </u>) <i>\</i> (سد	~	_{	117		<u> 13</u>	_	_{{L}}	سكر	_	عنا	al.	Kanny	_	8/17/0	_
Data Package Options (please circle if r	equired)	* ;	Relinquist	ed by	1.	1		•		-		Dat C <i>li</i> lo		™ 15				d by:					0/17/0	
QC Summary Type I — Full			Relinquisi	aed by	Con	nmerci	<u>الله ک</u> ial Ci	arrier:	2		!_	<u> </u>	<u> </u>		<i>)</i> •			d, by:		2	111		Date,	Time
Type Vt (Raw Data) Coelt Deliverable	e not need	ded EDF/EC	D UPS	/	dEx			Other											h	14	ev-	•	8/18/03	090
WIP (RWQCB) Disk			Temperat	ure Up	on F	(eceip	<u>: S</u>	col	n	c°/	1.5	سب	41,	•	_	Cus	stody	800	ls in	act?	6	No	1	
					-									-		l :		•					3460 Re	av. 7/30/

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2426 •717-656-2300 Fex:717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco c/o Cambria Suite 12 4111 Citrus Avenue Rocklin CA 95677 916-630-1855 DETTO CHEKT AN INC. GENERAL CANTRACTORE

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 955882. Samples arrived at the laboratory on Thursday, August 18, 2005. The PO# for this group is 99011184 and the release number is MTI.

Client Description		Lançaster Labs Number
OA-T-050815	NA Water	4586321
MW-1-W-050815	Grab Water	4586322
MW-2-W-050815	Grab Water	4586323
MW-3-W-050815	Grab Water	4586324
MW-4-W-050815	Grab Water	4586325

1 COPY TO ELECTRONIC COPY TO Cambria C/O Gettler- Ryan

Gettler-Ryan

Attn: Deanna L. Harding

Attn: Cheryl Hansen

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • Www.lancasterlabs.com

Questions? Contact your Client Services Representative Megan A Moeller at (717) 656-2300

Respectfully Submitted,

.....

middele M. Turner

Michele M. Turner Director

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 +717-656-2300 Fax: 717-656-2681+ www.lancasterlabs.com

Page 1 of 1

4586321 Lancaster Laboratories Sample No.

NA MTI# 61H-1995

Facility# 90517 Job# 386420 3900 Piedmont-Oakland T0600102248 QA

Collected: 08/15/2005

Submitted: 08/18/2005 09:00 Reported: 08/26/2005 at 17:50

Discard: 09/26/2005

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 12

4111 Citrus Avenue Rocklin CA 95677

TR	n	Δ	k

			As Received	As Received Method		Dilution
CAT No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters The reported concentration of T gasoline constituents eluting p start time.	n.a. PH-GRO does not rior to the C6	N.D. include MTBE or (n-hexane) TPH-GE	50. other RO range	ug/l	1
06054	BTEX+MTBE by 8260B	•				•
02010 05401 05407 05415 06310	Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	N.D. N.D. N.D. N.D. N.D.	0.5 0.5 0.5 0.5	ug/l ug/l ug/l ug/l ug/l	1 1 1 1

	•	Laboratory	Chro:	nicle Analysis		Dilution
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 08/22/2005 14:24	Analyst Steven A Skiles	Factor 1
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B SW-846 5030B	1	08/20/2005 05:25 08/22/2005 14:24 08/20/2005 05:25	Steven A Skiles	1 1 n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 1760\$-2425 •717-656-2300 Fax: 717-656-2681 • www.tancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4586322

MW-1-W-050815 Grab Water

Facility# 90517 Job# 386420 MTI# 61H-1995 GR

3900 Piedmont-Oakland T0600102248 MW-1 Collected:08/15/2005 09:23 by TV

Submitted: 08/18/2005 09:00 Reported: 08/26/2005 at 17:50

Discard: 09/26/2005

·

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 12

4111 Citrus Avenue Rocklin CA 95677

10AKL

CAT	Analysis Name	CAS: Number	As Received Result	As Received Method Detection Limit 50.	Units ug/l	Dilution Factor
01728	TPH-GRO - Waters The reported concentration of gasoline constituents eluting start time.	n.a. TPH-GRO does not prior to the C6	N.D. include MTBE or (n-hexane) TPH-G	other		1
06054	BTEX+MTBE by 8260B					•
02010 05401 05407 05415 06310	Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	N.D. N.D. N.D. N.D. N.D.	0.5 0.5 0.5 0.5	ug/l ug/l ug/l ug/l ug/l	1 1 1 1

		Laboratory	Dilution			
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Analysis Date and Time 08/20/2005 16:10	Analyst Kathie J Bowman	Factor 1
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B SW-846 5030B	1	08/20/2005 05:49 08/20/2005 16:10 08/20/2005 05:49	Dawn M Harle Kathie J Bowman Dawn M Harle	1 1 n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. 4586323

MW-2-W-050815 Facility# 90517 Job# 386420 MTI# 61H-1995 GRD

T0600102248 MW-2 3900 Piedmont-Oakland

Collected: 08/15/2005 09:48 by TV

Submitted: 08/18/2005 09:00 Reported: 08/26/2005 at 17:50

Discard: 09/26/2005

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 12 4111 Citrus Avenue Rocklin CA 95677

20AKL

CAT		. 1	As Received	As Received Method	Units	Dilution Factor	
No.	Analysis Name	CAS Number	Result	Detection Limit			
01728	TPH-GRO - Waters The reported concentration of 1 gasoline constituents eluting patent time.	n.a. PPH-GRO does not prior to the C6	N.D. include MTBE or (n-hexane) TPH-G	50. other RO range	ug/l	1	
06054	BTEX+MTBE by 8260B						
00010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1	
02010	•	71-43-2	N.D.	0.5	ug/l	1	
	05401 Benzene	108-88-3	N.D.	0.5	ug/1	1	
05407	Toluene	100-41-4	N.D.	0.5	ug/l	1	
05415 06310	Ethylbenzene Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	. 1	

		Laboratory	Dilution			
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial#	Analysis Date and Time 08/20/2005 16:40	Analyst Kathie J Bowman	Factor 1
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B SW-846 5030B		08/20/2005 06:13 08/20/2005 16:40 08/20/2005 06:13	Dawn M Harle Kathie J Bowman Dawn M Harle	1 1 n.a

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4586324

MW-3-W-050815 Grab Water Facility# 90517 Job# 386420 MTI# 61H-1995 GRD 3900 Piedmont-Oakland T0600102248 MW-3

Collected: 08/15/2005 10:15

by TV

Submitted: 08/18/2005 09:00 Reported: 08/26/2005 at 17:50

Discard: 09/26/2005

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 12

4111 Citrus Avenue Rocklin CA 95677

3QAKL

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01728	TPH-GRO - Waters The reported concentration of T gasoline constituents eluting p start time.	n.a. PH-GRO does not rior to the C6	2,600. include MTBE or {n-hexane} TPH-GI	50. other RO range		
06054	BTEX+MTBE by 8260B					
	and I Mantiage Duty Pthor	1634-04-4	N.D.	0.5	ug/l	1
02010	Methyl Tertiary Butyl Ether	71-43-2	11.	0.5	ug/l	1
05401	Benzene	108-88-3	1.	0.5	ug/1	1
05407	Toluene	100-41-4	1.	0.5	ug/l	1
05415	Ethylbenzene Yulene (Total)	1330-20-7	2.	0.5	ug/l	· 1
06310	Xylene (Total)	1330 20 /				

		Laboratory	Chro	nicle Analysis		Dilution
CAT No. 01728	Analysis Name TPH~GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 08/22/2005 23:03	Analyst K. Robert Caulfeild- James	Factor 1
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B		08/20/2005 06:37 08/22/2005 23:03	Dawn M Harle K. Robert Caulfeild- James	1
01160	cc/Mc WAX Water Dren	SW-846 5030B	1	08/20/2005 06:37	Dawn M Harle	n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No.

MW-4-W-050815

Water

GRD

Facility# 90517 Job# 386420 MTI# 61H-1995 3900 Piedmont-Oakland

T0600102248 MW-4

Collected:08/15/2005 08:55

Account Number: 10904

Submitted: 08/18/2005 09:00

ChevronTexaco c/o Cambria Suite 12

Reported: 08/26/2005 at 17:50

4111 Citrus Avenue

Discard: 09/26/2005

Rocklin CA 95677

40AKL

CAT	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01728	TPH-GRO - Waters The reported concentration of gasoline constituents eluting start time.	n.a. TPH-GRO does not prior to the C6	2,400. include MTBE on (n-hexane) TPH-0	100. r other	ug/l	
06054	BTEX+MTBE by 8260B					
02010 05401 05407 05415 06310	Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	3. 76. 16. 11. 26.	0.5 0.5 0.5 0.5	ug/1 ug/1 ug/1 ug/1 ug/1	1 1 1 1

		Laboratory	Laboratory Chronicle Analysis					
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 08/22/2005 23:31	Analyst K. Robert Caulfeild- James	Factor 2		
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B		08/20/2005 07:25 08/22/2005 23:31	Dawn M Harle K. Robert Caulfeild- James	1 2		
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/20/2005 07:25	Dawn M Harle	n.a.		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Reported: 08/26/05 at 05:50 PM

Group Number: 955882

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Qua	ality Control
---------------------------	---------------

Analysis Name	Blank <u>Result</u>	Blank MDL	Report <u>Units</u>	LCS %REC	LCSD <u>%REC</u>	LCS/LCSD Limits	RPD	RPD Max	
Batch number: 05231A08C TPH-GRO - Waters	Sample n	umber(s): 50.	4586322-45 ug/l	86323 88	91	70-130	2	30	
Batch number: 05234A07A TPH-GRO - Waters	Sample n	number(s):	4586321 ug/l	101	97	70-130	4	30	
Batch number: 05234A16A TPH-GRO - Waters	Sample r N.D.	number(s):	4586324-45 ug/l	109	106	70-130	4	30	
Batch number: 2052314AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample I N.D. N.D. N.D. N.D. N.D.	number(s): 0.5 0.5 0.5 0.5 0.5	4586321-49 ug/1 ug/1 ug/1 ug/1	586325 91 93 95 94 97		77-127 85-117 85-115 82-119 83-113			

Sample Matrix Quality Control

		_								
Analysis Name	MS %REC	msd %REC	MS/MSD Limits	RPD	RPD MAX	BKG Conc	DUP Conc	DUP RPD	Dup I	
Batch number: 05231A08C TPH-GRO - Waters	Sample 92	number(s): 4586322 63-154	-458632	3					
Batch number: 05234A07A TPH-GRO - Waters	Sample 110	number	(s): 4586321 63-154							
Batch number: 05234A16A TPH-GRO - Waters	Sample 123	number	(s): 4586324 63-154	-458632	!5					
	Sample	number	(s): 4586321	-458632	25					
Batch number: Z052314AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene	92 99 102 100	94 100 101 100	69-134 83-128 83-127 82-129	1 1 0	30 30 30 30 30					-
	103	102	82-130	<u>.</u>						

Surrogate Quality Control

*- Outside of specification

Xylene (Total)

(1) The result for one or both determinations was less than five times the LOQ.

102

(2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Group Number: 955882

Reported: 08/26/05 at 05:50 PM

Surrogate Quality Control

Analysis Name: TPH-GRO - Waters Batch number: 05231A08C Trifluorotoluene-F

4586322	91			
4586323	91			
Blank	88			
LCS	94			
LCSD	94			
MS	96			
Timito	63-135			

Analysis Name: TPH-GRO - Waters Batch number: 05234A07A

Trifluorotoluene-F

		 	 		 		
4586321	90						
4586321 Blank	91						
LCS	119						
LCSD	113 122						
LCS LCSD MS	122						

63-135 Limits:

Analysis Name: TPH-GRO - Waters Batch number: 05234A16A Trifluorotoluene-F

4586324	133	
4586325	101	\cdot
Blank	96	
Blank LCS	100	
LCSD	99	
MS	101	

Limits: 63-135

	r: Z052314AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen
4586321	108	95	100	92

	•	· · · · · · · · · · · · · · · · · · ·		92
4586321	108	95	100	92
4586322	110	97	99	92
4586323	110	97	99	97
4586324	104	92	98	109
4586325	104	92	98	94
Blank	106	97	96	97
LCS	103	96	100 101	96
MS	104	94	100	95
MSD	105	95	100	
	·		85-112	83-113
Limits:	81-120	82-112	05 112	

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C meq g ug ml m3	none detected Tod Numerous To Count International Units micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	, , , , , , , , , , , , , , , , , , ,	BMQL MPN CP Units NTU F Ib. kg mg	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s)
---	---	---------------------------------------	--	--

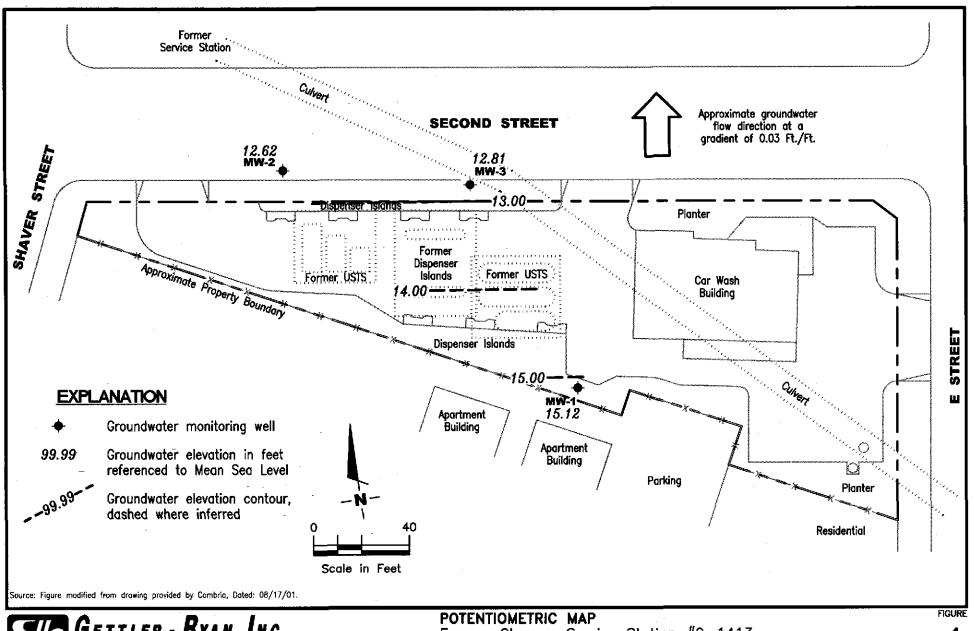
- less than The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- greater than
- estimated value The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ). J
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a ppm weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- parts per billion ppb

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers


CLF	Data Qualifiers.		!- Overlifiers
	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" td="" to="" used="" within="" ≥idl=""></crdl,>
N P U Y.Z	Presumptive evidence of a compound (TICs only) Concentration difference between primary and confirmation columns >25% Compound was not detected Defined in case narrative	υ * +	Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

POTENTIOMETRIC MAPFormer Chevron Service Station #9-1413
1515 Second Street
San Rafael, California

REVISED DATE

PROJECT NUMBER RE 385243

REVIEWED BY

August 12, 2005

FILE NAME: P:\Emiro\Chevron\9-1413\Q05-9-1413.dwg | Layout Tab: Pat3