RO 138

Environmental Management Company 6001 Bollinger Canyon Rd, L4050 P.O. Box 6012 San Ramon, CA 94583-2324 Tel 925-842-1589 Fax 925-842-8370 Karen Streich Project Manager

April 1	
-	, 2004

ChevronTexaco

Alameda County

APR 0 9 2004

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Environmental Health

	9-0517
Re:	Chevron Service Station #
	3900 Piedmont Avenue, Oakland, California
	Address:
	March 25, 2004
I have	reviewed the attached routine groundwater monitoring report dated

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Karen Streich Project Manager

Laren Sheet

Enclosure: Report

March 25, 2004 G-R #386420

TO:

Mr. Bruce H. Eppler

Cambria Environmental Technology, Inc.

4111 Citrus Avenue, Unit #9 Rocklin, California 95677

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 RE: Former Chevron Service Station

#9-0517

3900 Piedmont Avenue Oakland, California MTI: 61D-1995

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	March 23, 2004	Groundwater Monitoring and Sampling Report First Semi-Annual - Event of February 25, 2004

COMMENTS:

This report is being sent for your review. Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *April 13*, 2004, at which time the final report will be distributed to the following:

Mr. Don Hwang, Alameda County Health Care Services, Dept. of Environmental Health, 1153 Harbor Bay Parkway,
 Suite 250, Alameda, CA 94502-6577
 Neil B. Goodhue and Mrs. Diane C. Goodhue, 300 Hillside Avenue, Piedmont, CA 94611

Enclosures

March 23, 2004 G-R Job #386420

Ms. Karen Streich ChevronTexaco Company P.O. Box 6004 San Ramon, CA 94583

RE: First Semi-Annual Event of February 25, 2004

Groundwater Monitoring & Sampling Řeport Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

Dear Ms. Streich:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

1 1000 11

Sincerely,

Deanna L. Harding Project Coordinator

Hagop Kevork
P.E. No. C55734

Figure 1:

Potentiometric Map

Table 1: Attachments:

Groundwater Monitoring Data and Analytical Results Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

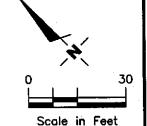
Chain of Custody Document and Laboratory Analytical Reports

Planter MW-1 PIEDMONT AVENUE **Apartment** House 79.16 MW-2 Planter Planter **MONTELL STREET**

EXPLANATION

Groundwater monitoring well

99.99


Groundwater elevation in feet referenced to Mean Sea Level

REVISED DATE

Groundwater elevation contour, dashed where inferred.

Approximate groundwater flow direction at a gradient of 0.02 to 0.03 Ft./Ft.

Source: Figure modified from drawing provided by RRM engineering contracting firm.

6747 Sierra Ct., Suite J Dublin, CA 94568 (925) 551-7555 POTENTIOMETRIC MAP

Former Chevron Service Station #9-0517 3900 Piedmont Avenue

Oakland, California

DATE

February 25, 2004

PROJECT NUMBER 386420

REVIEWED BY

FILE NAME: P:\ENVIRO\CHEVRON\9-0517\Q04-9-0517.DWG | Layout Tab: Pot1

FIGURE

Table 1
Groundwater Monitoring Data and Analytical Results

	Oakiand, Camonia											
WELL ID/	TOC	GWE	DTW	TPH-G	В	Т	E	X	MTBE			
DATE	(ft.)	(msl)	(fi.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)			
MW-1	•					•	•					
08/03/98	87.89	75.46	12.43	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
11/23/98	87.89	78.84	9.05	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0			
02/08/99	87.89	81.39	6.50	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5			
05/07/99	87.89	80.76	7.13	<50	< 0.5	< 0.5	<0.5	<0.5	< 5.0			
08/23/99	87.89	78.74	9.15	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5			
11/03/99	87.89	78.35	9.54	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5			
02/15/00	87.89	81.99	5.90	<50	< 0.5	< 0.5	<0.5	<0.5	<5.0			
05/12/00 ³	87.89	80.84	7.05	<50	< 0.50	< 0.50	<0.50	< 0.50	<2.5			
07/31/00	87.89	79.49	8.40	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5			
10/30/00	87.89	79.24	8.65	<50.0	< 0.500	< 0.500	< 0.500	<1.50	< 2.50			
02/27/01	87.89	82.06	5.83	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50			
05/15/01	87.89	80.18	7.71	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	< 2.50			
08/23/01	87.89	DRY										
02/25/02	87.89	81.18	6.71	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5			
08/05/02	87.89	79.00	8.89	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5			
02/11/03	87.89	80.53	7.36	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5			
08/09/035	87.89	78.42	9.47	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5			
02/25/04 ⁵	87.89	81.59	6.30	<50	<0.5	<0.5	<0.5	<0.5	<0.5			
								•				
MW-2 08/03/98	86.09	74.75	11.34	<50	<0.5	<0.5	<0.5	<0.5	3.4			
11/23/98	86.09	79.19	6.90	<50	<0.5	<0.5	<0.5	<0.5	<2.0			
02/08/99	86.09	80.86	5.23	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
05/07/99	86.09	79.97	6.12	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
08/23/99	86.09	79.68	6.41	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
11/03/99	86.09	78.80	7.29	<50	<0.5	<0.5	<0.5	<0.5	<2.5			
02/15/00	86.09	81.60	4.49	<50	<0.5	<0.5	<0.5	<0.5	<5.0			
05/12/00	86.09	80.19	5.90	4,000 ³	240	26	100	76	<100			
07/31/00	86.09	79.51	6.58	<50	<0.50	<0.50	<0.50	<0.50	<2.5			
10/30/00	86.09	79.86	6.23	<50.0	<0.500	2.92	<0.500	1.88	4.89			
02/27/01	86.09	81.49	4.60	<50.0	<0.500	< 0.500	<0.500	< 0.500	<2.50			
05/15/01	86.09	79:79	6.30	<50.0	<0.500	<0.500	< 0.500	< 0.500	<2.50			

Table 1
Groundwater Monitoring Data and Analytical Results

							managari ar ar wasan asan asan a	an an in 1888 a de p art de la social	The second secon
WELL ID/	TOC	GWE	DTW	TPH-G	В	T	E	X (ppb)	MTBE (ppb)
DATE	(ft.)	(msl)	(ft.)	(ррь)	(ppb)	(ppb)	(ppb)	(PPD)	(рро)
MW-2 (cont)									
08/23/01	86.09	78.81	7.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
02/25/02	86.09	80.48	5.61	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02	86.09	78.99	7.10	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5
02/11/03	86.09	78.64	7.45	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/09/03 ⁵	86.09	78.44	7.65	<50	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
02/25/04 ⁵	86.09	81.24	4.85	<50	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3									
08/03/98	86.28	74.20	12.08	4000	160	<5.0	<5.0	73	180
11/23/98	86.28	78.59	7.69	4000	67.7	7.56	17.1	24.5	41.2
02/08/99	86.28	80.01	6.27	<50	<0.5	<0.5	< 0.5	<0.5	<2.5
05/07/99	86.28	79.32	6.96	1800	53.6	8.96	33	18.6	21.4
08/23/99	86.28	78.36	7.92	3970	155	24	88.8	39.8	185
	86.28	78.36	7.92	3320	108	19.9	98.4	44.8	<25
11/03/99 02/15/00	86.28	80.54	5.74	779	26.7	3.82	15.4	4.24	<12.5
05/12/00	86.28	79.52	6.76	12,000 ³	3,100	120	980	1,400	820
07/31/00	86.28	78.98	7.30	1,200 ³	32	<5.0	11	7.3	39
10/30/00	86.28	79.26	7.02	3,300 ⁴	119	<5.00	40.0	<15.0	<25.0
02/27/01	86.28	80.39	5.89	432 ³	15.5	1.53	14.9	1.06	15.7
05/15/01	86.28	79.21	7.07	3,220 ³	96.4	12.6	11.5	11.6	128
08/23/01	86.28	78.23	8.05	2,300	48	<10	<10	<10	100
02/25/02	86.28	79.55	6.73	3,100	27	2.1	4.8	6.6	<2.5
08/05/02	86.28	78.33	7.95	4,100	87	21	90	47	21
02/11/03	86.28	79.23	7.05	3,700	21	2.3	4.4	9.0	<20
08/09/035	86.28	78.05	8.23	1,600	. 12	1	2	4	0.7
02/25/045	86.28	80.43	5.85	<50	<0.5	<0.5	<0.5	<0.5	<0.5
B#187 4							•		
MW-4	07.00		10.00	1000	110	••	,n =	5.5	120
08/03/98	87.22	74.30	12.92	1900	110	12	< 0.5	55	130
11/23/98 02/08/99 ¹	87.22 87.22	77.82 79.40	9.40 7.82	4080 2900	136 150	17.8 16	37.2 <5.0	30.1 15	51.8 230/30.7 ²

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	тос	GWE	DTW	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ррв)
MW-4 (cont)						•			
05/07/99	87.22	79.80	7.42	6050	161	<25	39.8	36.9	<250/30.2 ²
08/23/99	87.22	77.83	9.39	3930	203	37.6	58.6	42.2	255
11/03/99	87.22	77.41	9.81	5350	324	44.7	91.5	56.1	<50
02/15/00	87.22	79.50	7.72	4080	161	27.7	31.1	39.1	73.9
05/12/00	87.22	79.31	7.91	$3,600^3$	170	27	49	64	170
07/31/00	87.22	78.57	8.65	$2,900^{3}$	160	20	15	56	170
10/30/00	87.22	78.14	9.08	5,630 ⁴	301	17.8	11.8	51.5	<25.0
02/27/01	87.22	79.92	7.30	$2,140^3$	95.1	12.8	53.4	43.0	235
05/15/01	87.22	79.07	8.15	4,580 ³	200	44.1	46.3	51.7	172
08/23/01	87.22	77.89	9.33	2,700	250	44	21	72	130
02/25/02	87.22	79.42	7,80	4,100	100	18	27	39	<10
08/05/02	87.22	80.12	7.10	4,100	130	18	50	20	<10
02/11/03	87.22	79.10	8.12	4,100	100	23	20	51	<50
08/09/03 ⁵	87.22	77.67	9.55	3,700	110	24	10	45	8
02/25/04 ⁵	87.22	79.16	8.06	5,400	94	28	- 34	49	5
TRIP BLANK							•		
08/03/98				<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
11/23/98	·	, 		<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.0
02/08/99		 .		< 50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
05/07/99				<50	< 0.5	< 0.5	< 0.5	< 0.5	< 5.0
08/23/99				<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
11/03/99				<50	<0.5	<0.5	< 0.5	<0.5	<2.5
02/15/00				<50	<0.5	<0.5	< 0.5	< 0.5	<5.0
05/12/00				<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5
07/31/00				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
10/30/00				<50.0	< 0.500	< 0.500	< 0.500	<1.50	<2.50
02/27/01				<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/15/01				<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
08/23/01	- -		·	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5

Table 1 Groundwater Monitoring Data and Analytical Results

WELL ID/ DATE	TOC (ft.)	GWE (msl)	DTW (ft.)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
DATE	<i>(jii)</i>	(msv)	V-9	(PF=)				VF 4.	
QA									•
02/25/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/11/03				<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/11/03 08/09/03 ⁵				<50	<0.5	<0.5	< 0.5	< 0.5	< 0.5
02/25/04 ⁵	 			<50	<0.5	<0.5	<0.5	<0.5	< 0.5

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 12, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary butyl ether

(ft.) = Feet

B = Benzene

(ppb) = Parts per billion

GWE = Groundwater Elevation

T = Toluene

-- = Not Measured/Not Analyzed

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

X = Xylenes

- Confirmation run.
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- 5 BTEX and MTBE by EPA Method 8260.

¹ Chromatogram pattern indicates gas and an unidentified hydrocarbon.

STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by ChevronTexaco Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Site Address: City:	3900 Piedmon Oakland, CA	t Avenue	Event Date:	2/25/04	/inclueiv
	Oakland CA			M 22/07	(inclusiv
	Oakialla, OA		Sampler:	HAIGK	
Well ID	MW-	Date Monitore	d: 2/25/0	Well Condition: 0	K
Well Diameter	2 in.	Volu	me 3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0	1
Total Depth	16 17 ft.		tor (VF) 4"= 0.66	5"= 1,02 6"= 1.50 12"=	5.80
Depth to Water	6.30 ft.	~ iH 1	CH	Estimated Purge Volume:	— gal.
r gright grotte trust is	9.87_×	VF _ 0: 17 = 1	(case volume) =		(2400 hrs)
Purge Equipment:	(- (Sampling Equip	oment:	Time Started:	(2400 hrs)
Disposable Bailer	1/	Disposable Baile	, /	Depth to Product:	ft
Stainless Steel Baile		Pressure Bailer		Depth to Water:	
Stack Pump		Discrete Bailer		Hydrocarbon Thickness: Visual Confirmation/Descripti	ión:
Suction Pump		Other:		 _	·
Grundfos				Skimmer / Absorbant Sock (c	circle one) r: gai
Other:				Amt Removed from Skimmer Amt Removed from Well:	, gal
				Product Transferred to:	
	_				
Start Time (purg Sample Time/D	TI O	Weather Condi	tions: RAIN Color: CUEA	THEN SUMN	10
Purging Flow R		Sediment Descrip			
Did well de-wat		If yes, Time:	Volume:	gal.	
Time (2400 hr.)	Volume	pH Conductiv	ity Temperature		ORPO mV)
141	7 7	7.12 42	2 16.1		
143	5	710 40	9 16.6		
		LAROPATOR	Y INFORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG. PRESERV.			
MW- 1	C x voa via			R TPH-G(8015)/BTEX+MTBE((8260)
		 			
	1	-			
COMMENTS:					

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility #:	ChevronTexaco #9-0	517	lob Number:	386420
Site Address:	3900 Piedmont Avenu	ue	Event Date:	(inclusion
City:	Oakland, CA		Sampler:	HAIG K.
Well ID Well Diameter Total Depth Depth to Water	MW- 2 Di 2 in. 16:53 ft. 1.8 C ft.	volume Factor (VF)	3/4"= 0.02 4"= 0.66	1"= 0.04 2"= 0.17 3"= 0.38 5"= 1.02 6"= 1.50 12"= 5.80
Purge Equipment: Disposable Bailer Stainless Steel Bailer Stack Pump Suction Pump Grundfos Other:		sampling Equipment: Disposable Bailer Pressure Bailer Discrete Bailer Other:	3 (case volume) =	Estimated Purge Volume:
Start Time (purg		eather Conditions:	RAIN	THEN SUMMY
Sample Time/Di Purging Flow Ra Did well de-wate	ate: gpm. Sedi	ment Description: ime: Conductivity	Volume:	
(2400 hr.)	(gal.) 3	(umhos/cm) 357 336 340	(9) 16.3 16.6	
···				
	· · · · · · · · · · · · · · · · · · ·	LABORATORY INFO		
SAMPLE ID	(#) CONTAINER REFRIG	. PRESERV. TYPE HCL	LABORATOF	
COMMENTS:				
A 44/D 1	eced l ock	Δ	dd/Replaced	Plug: Size:

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility #: C	hevronTexaco	#9-0517	Job Number:	386420	
	900 Piedmont		Event Date:	2/25/04	(inclusiv
	akland, CA		Sampler:	HAIG K	
	Zakidila, G.				7
Veli ID	MW- 3	Date Monitored:	2/25/0	Well Condition: 01	Σ
Vell Diameter	2 in.		3/4"= 0.02	1"= 0.04 2"= 0.17 3"= 0.3	8
otal Depth	7,58 ft.	Volume Factor		5"= 1.02 6"= 1.50 12"= 5.	80
Depth to Water	\$5 ft.				
<u> </u>	1 1 3 XVI	= 0 17 = 2	x3 (case volume) =	Estimated Purge Volume:	gal.
+	1 7	- \		Time Started:	(2400 hrs) (2400 hrs)
Purge Equipment:	and the second	Sampling Equipm	A	Time Bailed: Depth to Product:	(2400 1113)
Disposable Bailer		Disposable Bailer Pressure Bailer		Depth to Water:	fl fl
Stainless Steel Bailer		Discrete Bailer		Hydrocarbon Thickness:	ft
Stack Pump		Other:		Visual Confirmation/Description	1:
Suction Pump Grundfos		<u> </u>		Skimmer / Absorbant Sock (circ	cle one)
Other:				Amt Removed from Skimmer:_	gal
O 1110.1				Amt Removed from Well: Product Transferred to:	gal
				Product Transience to.	
Sample Time/Date Purging Flow Rate Did well de-water Time (2400 hr.)	e: gpm.	Sediment Description Sediment Description If yes, Time: Conductivity (u mhos/cm)	on:		*
		LABORATORY	INFORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG. PRESERV. T		RY ANALYSES	
MW- Z	x voa vial	YES HCL	LANCASTE	R TPH-G(8015)/BTEX+MTBE(82	260)
	\ \frac{1}{2}				
	 				
	+				
COMMENTS:					
			,		
Add/Replac	ced Lock:		Add/Replaced	Plug: Size:	_

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING **FIELD DATA SHEET**

Client/Facility #:	ChevronTexaco #	9-0517	Job Number:	386420	
Site Address:	3900 Piedmont A	venue	Event Date:	2/25/04	_(inclusi
City:	Oakland, CA		Sampler:	HAIG'K,	_
Well ID Well Diameter	MW- 4	Date Monitored:	2/25/01	← Well Condition: OK	
Total Depth Depth to Water	16,27 A.	Volume Factor (\	3/4*= 0.02 /F) 4*= 0.66	1"= 0.04 2"= 0.17 3"= 0.38 5"= 1.02 6"= 1.50 12"= 5.80	
Septific Water	X 0 6 ft.	0.17 = 1.39	x3 (case volume) = I	Estimated Purge Volume: gal	
ourge Equipment:	,	Sampling Equipmen	nt:	11110 010110-	2400 hrs) 2400 hrs)
Disposable Bailer	/	Disposable Bailer	1/	Depth to Product:	ft
Stainless Steel Bailer		Pressure Bailer		Depth to Water:	f
				Hydrocarbon Thickness:	ft
Stack Pump		Discrete Bailer		Visual Confirmation/Description:	
Suction Pump		Other:		-	-,
Grundfos		1		Skimmer / Absorbant Sock (circle on Amt Removed from Skimmer:	e) gal
Other:				Amt Removed from Skinner	gat
				Product Transferred to:	
		1 •			
Time (2400 hr.)	Volume (gal.) pl	Conductivity (u mhos/cm)	Volume:	gal. D.g. ORD (mV)	- · · · · · · · · · · · · · · · · · · ·
		LABORATORY IN		Y ANALYSES	
SAMPLE ID	+ ```	FRIG. PRESERV. TYP		TPH-G(8015)/BTEX+MTBE(8260)	
MW- Y	x voa vial	(ES HCL	LANCASTER	TEN-G(00/15)/BTEX+MITBE(0200)	
		 			
	 				
	 				
COMMENTS:			<u> </u>		

Chevron California Region Analysis Request/Chain of Custody

Lancaster Laboratories Where quality is a science. Cambria MTI Project #: 61D-1		Q	<u>}0+</u>			caster Lai	pratories un 1 (p 4 5			#886346
Facility #: SS#9-0517 G-R#386420 Global ID#T0600102248	Matrix	П			Preser	vation Co	odes			vative Codes
Site Address: 3900 PIEDMONT AVENUE, OAKLAND, CA			H H	ᅙ		+		H = HC N = HN S = H2	lO ₃ .	T = Thiosulfate B = NaOH O = Other
Chevron PM: Mgmt. Transfer Initiative Lead Consultant: CAMBRIA Consultant/Office: G-R, Inc., 6747 Sierra Court, Suite J, Dublin, Ca. 945	Potable Potabl	alners		28 Gel Clea				☐ J valu	e repo	orting needed
Consultant Prj. Mgr.: Deanna L. Harding (deanna@grinc.com) Consultant Phone #: 925-551-7555 Fax #: 925-551-7899		3		O Silica				possi	ble for	8260 compounds
Sampler: HAIG KEVORK		ĀΙ	TBE 8260 MOD GR(MOD DRO	genates	,			_	nest hit by 8260 hits by 8260

Service Order #:		DN	on SAR	:		_ [8	1	· \		Ž	₹	8	915	5	8	25	- 1	ì	- 1]	Ì	Ì	Run	oxy	s on highe	st hit
Sample Identification		.,	Da Colle		Time Collected	Grap [통	S S	Wate	© □	Total	BIEX	TPH 8015	TPH 8015	8260 full sa		Lead	·	_					Run	ox)	s on all hii	's
	QA		2/25			X			X	17	2	X	X											Comm	ents / F	Remarks	,
	MW-				1430	X	1		X		6	X	X														
	MW-	2			1505	X	1	1	X	\prod	6	X	X														
	MW-	3			1540		floor		\times	11	6	X	X		32:												
	Mw-	4	N		1615	X			X		6	X	X		7												
																		·									
							L.																				
			<u></u>				L	L			L_		<u> </u>	<u> </u>		Ŀ											
	<u> </u>				· 	1	L			上		L_		L	<u>.</u>			· .		. 5:							
l		<u>_</u>				1_	<u> </u>			<u> </u>			L			<u> </u>				\Box				•			
				<u>, </u>	-,-	1_	<u> </u>			1:	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1_											
	· .						1	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$				<u> </u>			L	<u> </u>]							
	<u>:</u>		بـــا		<u></u>		_ـــــــــــــــــــــــــــــــــــــ	مل	-	Λį		n	صِل	Ц.	ـــبا	ᄂ		لب						Α		· · · · · ·	
Turnaround Time Red	quested (TAT) (please cin	cle)		Relipo		Ľ,	<u>(</u>)	νŊ	4		1	X	2,	Date 24		Time	•	Rece	ived	by:	•	٨	N/a	neo	Date	Time
STD. TAT	72 hour 4 day	48 hou 5 day	г		Relino	uishe	d by:				1) L	24.		Date		Time		19		- 11		7	7		Date	Time
					7) Fijho	uleba	d bac	. ,	7			<u> </u>	<u>yw</u>	- 4	Date		124		<u>u</u>			20	12	1110	Ma	2/24/14	
Data Package Options OC Summary	s (please circle Type I — Full	if required)		•		40l			<u></u>	<u>~</u>	ىد	<u>1-5</u>		Z			Time 537)	Rece	tî,	r bo	<u>س</u> ر	1	DHL		Date	Time
	Type i — Fuii ∐Coelt Deliver	ble not nee	ded		Refino	uishe	d by	Com	merci	al Ca	rrier.							-{ }	Rece	iveQ	78			10.		Date	Time

FedEx

Temperature Upon Receipt a - 0 - 5 Cf

WIP (RWQCB)

Custody Seals Intact?

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco c/o Cambria Suite 9 4111 Citrus Avenue Rocklin CA 95677 916-630-1855

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 886346. Samples arrived at the laboratory on Friday, February 27, 2004. The PO# for this group is 99011184 and the release number is MTl.

Client Description		<u>Lancaster Labs Number</u>
QA-T-040225	NA Water	4224645
MW-1-W-040225	Grab Water	4224646
MW-2-W-040225	Grab Water	4224647
MW-3-W-040225	Grab Water	4224648
MW-4-W-040225	Grab Water	4224649

1 COPY TO ELECTRONIC COPY TO Cambria C/O Gettler- Ryan

Gettler-Ryan

Attn: Deanna L. Harding

Attn: Cheryl Hansen

2425 New Holland Pike, PC Box 12425, Lencaster, PA 17605-2425 • 717-656-2300 Fax: 717-666-2661 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Teresa L Cunningham at (717) 656-2300.

Respectfully Submitted,

Tina L. Thoman

Senior Chemist, Coordinator

Minia I Monian

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4224645

QA-T-040225

Facility# 90517 Job# 386420 MTI# 61D-1995

3900 Piedmont, Oakland T0600102248 QA

Collected: 02/25/2004

Submitted: 02/27/2004 09:00

Reported: 03/08/2004 at 15:16

Discard: 04/08/2004

and the engineering of the control of the con-

Account Number: 10904

ChevronTexaco c/o Cambria

Suite 9

4111 Citrus Avenue

Rocklin CA 95677

PIEDQ

11 11 11 11 11 11		•	1 (As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of gasoline constituents eluting start time. A site-specific MSD sample was was performed to demonstrate p	prior to the C6 not submitted	(n-hexane) TPH- for the project.	GRO range A LCS/LCSD		
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	ı	03/02/2004 04:42	Michael F Barrow	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	03/04/2004 17:06	Carrie J McCullough	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/02/2004 04:42	Michael F Barrow	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/04/2004 17:06	Carrie J McCullough	n.a.

2425 New Holland Pike, PO Box 12425, Lancaster. PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No.

MW-1-W-040225

Grab

Water

Facility# 90517 Job# 386420 MTI# 61D-1995

GRD

3900 Piedmont, Oakland

T0600102248 MW-1

Account Number: 10904

Collected: 02/25/2004 14:30

ChevronTexaco c/o Cambria

Reported: 03/08/2004 at 15:16

Submitted: 02/27/2004 09:00

Suite 9

4111 Citrus Avenue

Discard: 04/08/2004

Rocklin CA 95677

PIED1

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01728	TPH-GRO - Waters The reported concentration of T gasoline constituents eluting T start time. A site-specific MSD sample was was performed to demonstrate po	not submitted :	for the project.	50. or other GRO range A LCS/LCSD	ug/1	1
06054	BTEX+MTBE by 8260B					
02010 05401 05407 05415 06310	Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	N.D. N.D. N.D. N.D.	0.5 0.5 0.5 0.5	ug/l ug/l ug/l ug/l ug/l	1 1 1 1

		Laboratory	Chro	nicle Analysis		Dilution
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial#	Date and Time 03/02/2004 03:27	Analyst Todd T Smythe	Factor 1
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B SW-846 5030B	1	03/04/2004 17:33 03/02/2004 03:27 03/04/2004 17:33	Carrie J McCullough Todd T Smythe Carrie J McCullough	n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW

MW-2-W-040225

Grab

Facility# 90517 Job# 386420 MTI# 61D-1995

GRD

3900 Piedmont, Oakland T0600102248 MW-2

Collected: 02/25/2004 15:05 by HK

Account Number: 10904

Submitted: 02/27/2004 09:00

ChevronTexaco c/o Cambria Suite 9

Reported: 03/08/2004 at 15:16

4111 Citrus Avenue

Discard: 04/08/2004

Rocklin CA 95677

PIED2

	graph for the property with the property of th	,	11	As Received	•	
CAT			As Received	Method		Dilutio
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	<pre>gasoline constituents eluting ; start time.</pre>	-				
	A site-specific MSD sample was was performed to demonstrate p					
06054						
	was performed to demonstrate p				ug/l	1
02010	was performed to demonstrate p BTEX+MTBE by 8260B	recision and a	ccuracy at a batc	ch level.	ug/l ug/l	1
02010 05401	was performed to demonstrate p BTEX+MTBE by 8260B Methyl Tertiary Butyl Ether	recision and ac	ccuracy at a batc	ch level.	<u> </u>	1 1 1
06054 02010 05401 05407 05415	was performed to demonstrate p BTEX+MTBE by 8260B Methyl Tertiary Butyl Ether Benzene	recision and ac 1634-04-4 71-43-2	curacy at a bato N.D. N.D.	0.5 0.5	ug/l	1 1 1

		Laboratory	Chro			m. 1 9 1
CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	03/02/2004 06:56	Todd T Smythe	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	03/04/2004 18:00	Carrie J McCullough	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/02/2004 06:56	Todd T Smythe	n.a.
01163	GC/MS VOA Water Dren	SW-846 5030B	1	03/04/2004 18:00	Carrie J McCullough	n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

4224648 Lancaster Laboratories Sample No.

MW-3-W-040225

Grab

Water

GRD

Facility# 90517 Job# 386420 MTI# 61D-1995 3900 Piedmont, Oakland

T0600102248 MW-3

Collected: 02/25/2004 15:40

Account Number: 10904

ChevronTexaco c/o Cambria Suite 9

Submitted: 02/27/2004 09:00 Reported: 03/08/2004 at 15:16 Discard: 04/08/2004

4111 Citrus Avenue

Rocklin CA 95677

PIED3

. were whose	greater made and the con-		•	As Received	•	Dilution
CAT			As Received	Method		
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of gasoline constituents eluting start time. A site-specific MSD sample was was performed to demonstrate p	prior to the C6 not submitted	for the project.	A LCS/LCSD		
06054	BTEX+MTBE by 8260B				•	
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

		Laboratory	Chro	nicle Analysis		Dilution
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 03/02/2004 07:25	Analyst Todd T Smythe	Factor 1
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B	1	03/04/2004 18:26 03/02/2004 07:25	Carrie J McCullough Todd T Smythe Carrie J McCullough	n.a.
01163	GC/MS VOA Water Pren	SW-846 5030B	1	03/04/2004 18:26	Carrie o McCdilodgii	11.0.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. 4224649

MW-4-W-040225

Water Grab

Facility# 90517 Job# 386420 MTI# 61D-1995 GRD

3900 Piedmont, Oakland T0600102248 MW-4

Account Number: 10904

Collected:02/25/2004 16:15 Submitted: 02/27/2004 09:00

Reported: 03/08/2004 at 15:16

Discard: 04/08/2004

ChevronTexaco c/o Cambria

Suite 9

4111 Citrus Avenue Rocklin CA 95677

PIED4

			1	As Received		. * •
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	5,400.	250.	ug/l	5
	The reported concentration of gasoline constituents eluting start time. A site-specific MSD sample was was performed to demonstrate p	prior to the C6 not submitted	<pre>for the project.</pre>	GRO range A LCS/LCSD		
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	5.	0.5	ug/l	1
05401	Benzene	71-43-2	94.	0.5	ug/l	1
05407	Toluene	108-88-3	28.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	34.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	49.	0.5	ug/l	. 1

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	03/02/2004 07:54	Todd T Smythe	5
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	03/04/2004 18:53	Carrie J McCullough	1
01146	GC VOA Water Prep	SW-846 5030B	1	03/02/2004 07:54	Todd T Smythe	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	1	03/04/2004 18:53	Carrie J McCullough	n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Dup RPD

Max

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Reported: 03/08/04 at 03:16 PM

Group Number: 886346

85-115

DUP

Conc

DUP

RPD

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the

	Laboratory Compliance Quality Control							
Analysis Name	Blank <u>Result</u>	Blank <u>MDL</u>	Report <u>Units</u>	LCS %REC	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 04061A07C TPH-GRO - Waters	Sample n	number(s): 50.	4224645 ug/l	89	88	70-130	1	30
Batch number: 04061A08A TPH-GRO - Waters	Sample n N.D.	number(s):	4224646 ug/l	106	109	70-130	2	30
Batch number: 04061A08B TPH-GRO - Waters	Sample n	number(s): 50.	4224647-42 ug/l	24649 106	109	70-130	2	30
Batch number: P040642AA Methyl Tertiary Butyl Ether Benzene	Sample r N.D. N.D.	number(s): 0.5 0.5	4224645-42 ug/l ug/l	24649 99 101		77-127 85-117		

ug/l

ug/1

0.5

Sample Matrix Quality Control

99

	MS	MSD	ms/msd		RPD	BKG
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc
Batch number: 04061A07C TPH-GRO - Waters	Sample 102	number	(s): 4224645 63-154			
Batch number: 04061A08A TPH-GRO - Waters	Sample 144	number	(s): 4224646 63-154			
Batch number: 04061A08B TPH-GRO - Waters	Sampl∈ 144	number	(s): 4224647 63-154	-42246	49	
Batch number: P040642AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample 103 109 105 105 106	103 109 106	83-128 83-127	5-42246 0 0 2 0	49 30 30 30 30 30	

N.D.

Surrogate Quality Control

*- Outside of specification

Toluene

Ethylbenzene

Xylene (Total)

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

Client Name: ChevronTexaco c/o Cambria

Group Number: 886346

Reported: 03/08/04 at 03:16 PM

Surrogate Quality Control

Analysis Name: TPH-GRO - Waters Batch number: 04061A07C Trifluorotoluene-F

4224645 70 Blank 71 89 LCS LCSD 89 MS 92

57-146 Limits:

Analysis Name: TPH-GRO - Waters Batch number: 04061A08A

Trifluorotoluene-F

4224646 113 Blank 105 LCS 114 LCSD 116 MS 131

Limits: 57-146

Analysis Name: TPH-GRO - Waters

Batch number: 04061A08B

Trifluorotoluene-F

4224647 112 4224648 115 4224649 125 Blank 104 LCS 114 LCSD 116 MŞ

Limits: 57-146

Analysis Name: BTEX+MTBE by 8260B

Batch number: P040642AA

Dibromofluoromethane		1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzen		
4224645	101	98	96	96		
4224646	102	100	96	96		
4224647	101	99	97	96		
4224648	101	99	96	94		
4224649	101	103	96	99		
Blank	99	98	97	97		
LCS	99	97	97	96		
MS	101	99	97	96		
MSD	100	97	98	96		
Limits:	81-120	82-112	85-112	83-113		

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

Explanation of Symbols and Abbreviations

Inorganic Qualifiers

The following defines common symbols and abbreviations used in reporting technical data:

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result falls within the Method Detection Limit (MDL) and Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight
 basis
 Results printed under this heading have been adjusted for moisture content. This increases the analyte weight
 concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

U.S. EPA CLP Data Qualifiers:

Organic Qualifiers

A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
N P	Presumptive evidence of a compound (TICs only) Concentration difference between primary and	U ₩	Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits
U X,Y,Z	confirmation columns >25% Compound was not detected Defined in case narrative	+	Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.