Environmental Management Company 6001 Bollinger Canyon Rd, L4050 P.O. Box 6012 San Ramon, CA 94583-2324 Tel 925-842-1589

Fax 925-842-8370

Karen Streich Project Manager RO 138

September 26, 2003

Address:

ChevronTexaco

Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Alameda County

007 9 2 2003

Environmental Health

Re:

Chevron Service Station # 9-0517

3900 Piedmont Ave., Oakland, CA

I have reviewed the attached routine groundwater monitoring report dated <u>September 10, 2003</u>

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Gettler-Ryan, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Karen Streich Project Manager

Laven Stere

Enclosure: Report

September 11, 2003 G-R #386420

TO:

Mr. Robert Foss

Cambria Environmental Technology, Inc.

5900 Hollis Street, Suite A Emeryville, CA 94608

CC: Ms. Karen Streich

Chevron Products Company

P.O. Box 6004

San Ramon, California 94583

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

RE:

Former Chevron Service Station

#9-0517

3900 Piedmont Avenue Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	September 10, 2003	Groundwater Monitoring and Sampling Report Second Semi-Annual - Event of August 9, 2003

COMMENTS:

This report is being sent for your review. Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to September 25, 2003, at which time the final report will be distributed to the following:

Mr. Don Hwang, Alameda County Health Care Services, Dept. of Environmental Health, 1153 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

Neil B. Goodhue and Mrs. Diane C. Goodhue, 300 Hillside Avenue, Piedmont, CA 94611

Enclosures

trans/9-0517-ks

GETTLER-RYAN INC.

September 10, 2003 G-R Job #386420

Ms. Karen Streich Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

Second Semi-Annual Event of August 9, 2003 RE:

Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

Dear Ms. Streich:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Robert C. Mallory

Registered Geologist, No. 7285

Figure 1: Table 1:

Attachments:

Groundwater Monitoring Data and Analytical Results Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

Planter MW-1 PIEDMONT AVENUE 78.42 Bonk **Apartment** House 77.67 MW-2 78.44 Planter Planter Driveway *]*мw-з 78.05

EXPLANATION

Groundwater monitoring well

Groundwater elevation in feet 99.99 referenced to Mean Sea Level

> Groundwater elevation contour, dashed where inferred

Approximate groundwater flow direction at a gradient of 0.009 Ft./Ft.

MONTELL STREET

Source: Figure modified from drawing provided by RRM engineering contracting firm. 6747 Sierra Ct., Suite J Dublin, CA 94568

(925) 551-7555

POTENTIOMETRIC MAP

Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

REVISED DATE

DATE

FIGURE

PROJECT NUMBER REVIEWED BY 386420

August 9, 2003

FILE NAME: P:\ENVIRO\CHEVRON\9-0517\Q03-9-0517.DWG | Layout Tab: Pot3

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0517

ner Chevron Service Station #9-0 3900 Piedmont Avenue Oakland, California

WELL ID/	TOC	GWE	DTW	TPH-G	В	T	E	X	MTBE
DATE	(ft.)	(msl)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-1	o- op	75 AC	10.42	<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
08/03/98	87.89	75.46	12,43		<0.5	<0.5	<0.5	<0.5	<2.0
11/23/98	87.89	78.84	9.05	<50	<0.5	<0.5	<0.5	<0.5	<2.5
02/08/99	87.89	81.39	6.50	<50	A Committee of the Comm	<0.5	<0.5	<0.5	<5.0
05/07/99	87.89	80.76	7.13	<50	<0.5		<0.5	<0.5	<2.5
08/23/99	87.89	78.74	9.15	<50	<0,5	<0.5	<0.5	<0.5	<2.5
11/03/99	87.89	78.35	9.54	<50	<0.5	<0.5	<0.5	<0.5	<5.0
02/15/00	87.89	81.99	5.90	<50	<0.5	<0.5		<0.50	<2.5
05/12/00 ³	87.89	80.84	7.05	<50	<0.50	<0.50	<0.50		<2.5
07/31/00	87.89	79.49	8.40	<50	<0.50	<0.50	<0.50	< 0.50	
10/30/00	87.89	79.24	8.65	<50.0	< 0.500	<0.500	<0.500	<1.50	<2.50
02/27/01	87.89	82.06	5.83	<50.0	< 0.500	<0.500	<0.500	<0.500	<2.50
05/15/01	87.89	80.18	7.71	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
08/23/01	87.89	DRY							
02/25/02	87.89	81.18	6.71	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/05/02	87.89	79.00	8.89	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
02/11/03	87.89	80.53	7.36	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
08/09/03 ⁵	87.89	78.42	9.47	<50	<0.5	<0.5	<0.5	<0.5	<0.5
MW-2								a =	2.4
08/03/98	86.09	74.75	11.34	<50	<0.5	<0.5	<0.5	<0.5	3.4
11/23/98	86.09	79.19	6.90	<50	<0.5	<0.5	<0.5	<0.5	<2.0
02/08/99	86.09	80.86	5.23	<50	<0.5	<0.5	<0.5	<0.5	<2.5
05/07/99	86.09	79.97	6.12	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
08/23/99	86.09	79.68	6.41	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
11/03/99	86.09	78.80	7.29	<50	<0.5	< 0.5	<0.5	<0.5	<2.5
02/15/00	86.09	81.60	4.49	<50	<0.5	<0.5	<0.5	<0.5	<5.0
05/12/00	86.09	80.19	5.90	$4,000^3$	240	26	100	76	<100
07/31/00	86.09	79.51	6.58	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
10/30/00	86.09	79.86	6.23	<50.0	< 0.500	2.92	< 0.500	1.88	4.89
02/27/01	86.09	81.49	4.60	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
05/15/01	86.09	79.79	6.30	<50.0	< 0.500	<0.500	< 0.500	< 0.500	< 2.50
08/23/01	86.09	78.81	7.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

				Oakiand,					
WELL ID/	TOC	GWE	DTW	TPH-G	В	Τ	Ē	X	MTBE
DATE	(ft.)	(msl)	(fi.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
MW-2 (cont)						-0.50	40.50	<1.5	<2.5
02/25/02	86.09	80.48	5.61	<50	< 0.50	<0.50	<0.50		<2.5
08/05/02	86.09	78.99	7.10	<50	<0.50	<0.50	<0.50	<1.5	
02/11/03	86.09	78.64	7.45	<50	< 0.50	< 0.50	<0.50	<1.5	<2.5
08/09/03 ⁵	86.09	78.44	7.65	<50	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3									
08/03/98	86.28	74.20	12.08	4000	160	<5.0	<5.0	73	180
11/23/98	86.28	78.59	7.69	4000	67.7	7.56	17.1	24.5	41.2
02/08/99	86.28	80.01	6.27	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
05/07/99	86.28	79.32	6.96	1800	53.6	8.96	33	18.6	21.4
08/23/99	86.28	78.36	7.92	3970	155	24	88.8	39.8	185
11/03/99	86.28	78.36	7.92	3320	108	19.9	98.4	44.8	<25
02/15/00	86.28	80.54	5.74	779	26.7	3.82	15,4	4.24	<12.5
05/12/00	86.28	79.52	6.76	$12,000^3$	3,100	120	980	1,400	820
07/31/00	86.28	78.98	7.30	1,200 ³	32	<5.0	11	7.3	39
10/30/00	86.28	79.26	7.02	3,300 ⁴	119	<5.00	40.0	<15.0	<25.0
02/27/01	86.28	80.39	5.89	432 ³	15.5	1.53	14.9	1.06	15.7
05/15/01	86.28	79.21	7.07	$3,220^3$	96,4	12.6	11.5	11.6	128
08/23/01	86.28	78.23	8.05	2,300	48	<10	<10	<10	100
02/25/02	86.28	79.55	6.73	3,100	27	2.1	4.8	6.6	<2.5
08/05/02	86.28	78.33	7.95	4,100	87	21	90	47	21
02/11/03	8 <i>6</i> .28	79.23	7.05	3,700	21	2.3	4.4	9.0	<20
08/09/03 ⁵	86.28	78.05	8.23	1,600	12	1	2	4	0.7
MW-4									
08/03/98	87.22	74.30	12.92	1900	110	12	<0.5	55	130
11/23/98	87.22	77.82	9.40	4080	136	17.8	37.2	30.1	51.8
02/08/99 ¹	87.22	79.40	7.82	2900	150	16	<5.0	15	230/30.7 ²
05/07/99	87.22	79.80	7.42	6050	161	<25	39.8	36.9	<250/30.2 ²
08/23/99	87.22	77.83	9.39	3930	203	37.6	58.6	42.2	255
11/03/99	87.22	77.41	9.81	5350	324	44.7	91.5	56.1	<50

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

				· · · · · · · · · · · · · · · · · · ·				and an area and an area and a second a second and a second a second and a second and a second and a second and a second an	ar and the grant of the colors
WELL ID/	TOC	GWE	DTW	TPH-G	В	T	E	X (1)	MTBE (ppb)
DATE	(fi.)	(msl)	(ft.)	(քրե)	(ррв)	(ppb)	(ррв)	(ppb)	(рро)
									•
MW-4 (cont)	0= 00	50.50	7.72	4080	161	27.7	31.1	39.1	73.9
02/15/00	87.22	79.50		3,600 ³	170	27	49	64	170
05/12/00	87.22	79.31	7.91	$2,900^3$	160	20	15	56	170
07/31/00	87.22	78.57	8.65		301	17.8	11.8	51.5	<25.0
10/30/00	87.22	78.14	9.08	5,630 ⁴	95.1	12.8	53.4	43.0	235
02/27/01	87.22	79.92	7.30	2,140 ³		44.1	46.3	51.7	172
05/15/01	87.22	79.07	8.15	4,580 ³	200		21	72	130
08/23/01	87.22	77.89	9.33	2,700	250	44	27	39	<10
02/25/02	87.22	79.42	7.80	4,100	100	18		20	<10
08/05/02	87.22	80.12	7.10	4,100	130	18	50		<50
02/11/03	87.22	79.10	8.12	4,100	100	23	20	51	
08/09/03 ⁵	87.22	77.67	9.55	3,700	110	24	10	45	8
TRIP BLANK									
08/03/98				<50	< 0.5	<0.5	<0.5	< 0.5	<2.5
11/23/98		H-	· 	<50	< 0.5	<0.5	< 0.5	< 0.5	<2.0
02/08/99		<u></u>		<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
05/07/99				<50	<0.5	< 0.5	<0.5	<0.5	<5.0
08/23/99				<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
11/03/99	·			<50	<0.5	< 0.5	<0.5	<0.5	<2.5
02/15/00			·	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
05/12/00	4-			<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
07/31/00				<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
10/30/00				<50.0	<0.500	<0.500	< 0.500	<1.50	<2.50
02/27/01				<50.0	<0.500	< 0.500	< 0.500	< 0.500	<2.50
05/15/01				<50.0	<0.500	< 0.500	< 0.500	< 0.500	<2.50
				<50	<0,50	<0.50	< 0.50	< 0.50	<2.5
08/23/01				530	-0,00	3.50	2,00	¥.•	
QA				<50	<0.50	<0.50	<0.50	<1.5	<2.5
02/25/02	- M - A-			<50	<0.50	<0.50	<0.50	<1.5	<2.5
08/05/02					<0.50 <0.50	<0.50	<0.50	<1.5	<2.5
02/11/03				<50				<0.5	<0.5
08/09/03 ⁵				<50	<0.5	<0.5	<0.5	<v.5< td=""><td>~0.⊃</td></v.5<>	~0. ⊃

Table 1

Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0517 3900 Piedmont Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to May 12, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary butyl ether

(ft.) = Feet

B = Benzene

(ppb) = Parts per billion

GWE = Groundwater Elevation

T = Toluene

-- = Not Measured/Not Analyzed

(msl) = Mean sea level

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

DTW = Depth to Water

X = Xylenes

- Confirmation run.
- Laboratory report indicates gasoline C6-C12.
- 4 Laboratory report indicates hydrocarbon pattern present in the requested fuel quantitation range but does not resemble the pattern of the requested fuel.
- 5 BTEX and MTBE by EPA Method 8260.

Chromatogram pattern indicates gas and an unidentified hydrocarbon.

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Products Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick, California.

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING FIELD DATA SHEET

te Address:	hevronTexaco		Event Date:		(inclus
_	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			89.03	(tricius
		Aiciido	Sampler:	FT	<u> </u>
ity: <u>(</u>	Dakland, CA		Sampler.		
	have 1	Deta Manitored	8.9.13	Well Condition: (ok'
/ell ID	MW- \	Date Monitored: _	0.1.4)		
/ell Diameter _	2 in.	Volume	3/4"= 0.02	1 = 0.01	"= 0.38
otal Depth	16.17 ft.	Factor (V	'F) 4"= 0.66	5"= 1.02 6"= 1.50 12	2"= 5.80
epth to Water	9.47 ft.				
,	6.70 xVF	<u>17 = 1.13 </u>	_ x3 (case volume) =	Estimated Purge Volume: 3.	<u>५।</u> gal.
_				Time Started:	
urge Equipment:	1	Sampling Equipmer	it:	Time Bailed:	_
isposable Bailer		Disposable Bailer		Depth to Product:	
Itainless Steel Bailer		Pressure Bailer		Depth to Water: Hydrocarbon Thickness:	nt 1
tack Pump		Discrete Bailer		Visual Confirmation/Descri	ription:
Suction Pump		Other:		<u> </u>	
Grundfos		\$		Skimmer / Absorbant Soci Amt Removed from Skimr	k (circle one) mer: gal
				Amt Removed from Skimi	mer: yar
				Amt Removed from Well:	cali
				Amt Removed from Well: Product Transferred to:	
Start Time (purge) Sample Time/Dat Purging Flow Rat Did well de-water	e: 11:27 / 8.4 e:	Weather Condition: 1-//5 Water Colo Sediment Description If yes, Time:	r: <u>CLDUD</u> n:	Amt Removed from Well: Product Transferred to: SHUY GRU. Odor: 5 S. SIUTY	
ether: Start Time (purge) Sample Time/Dat	e: 11:27 / 8.4 e: / gpm. ? NO Volume (gal.)	Water Colo Sediment Description	r: <u>CLDUD</u> n:	Amt Removed from Well: Product Transferred to: SHUY GRU. Odor: 5 S. SIUTY	
Start Time (purge) Sample Time/Dat Purging Flow Rat Did well de-water Time (2400 hr.)	e: 11:27 / 8.4 e: / gpm. ? Volume (gal.)	Sediment Description If yes, Time: PH Conductivity (umhos/cm) 1.31	Temperature OF) 18.8 18.4	Amt Removed from Well: Product Transferred to: SUNY GRU. Odor: 5 S. SINY gal. D.O. (mg/L)	ORP (mV)
Start Time (purge) Sample Time/Dai Purging Flow Rai Did well de-water Time (2400 hr.) [1:15] [1:19] [1:21]	e: 11:27 / 8.4 e: / gpm. ?	Sediment Description If yes, Time: PH Conductivity (umhos/cm) 1.31 117.2 LABORATORY IN REFRIG. PRESERV. TYPE	Temperature OF) 18.8 18.4 IFORMATION E LABORATOR	Amt Removed from Well: Product Transferred to: SUNY GRU. Odor: 5 S. SINY gal. D.O. (mg/L)	ORP (mV)
Start Time (purge) Sample Time/Dai Purging Flow Rai Did well de-water Time (2400 hr.) [1:15] [1:19] [1:21]	e: 11:27 / 8.4 e: / gpm. ?	Sediment Description Sediment Description If yes, Time: PH Conductivity (umhos/cm) 137-5 1-81 117.2 114.3 LABORATORY IN REFRIG. PRESERV. TYP YES HCL	Temperature OF) 19.3 18.8 18.4 IFORMATION DE LABORATOR LANCASTER	Amt Removed from Well: Product Transferred to: SUNY GRU. Odor: 5 S. SINY gal. D.O. (mg/L) RY ANALYS R TPH-G(8015)/BTEX+MTE	ORP (mV) ES BE(8260)

WELL MONITORING/SAMPLING FIELD DATA SHEET

Site Address:	3900 Piedmon	t Avenue	Event Date:	8.9.03	(inclusi
City:	Oakland, CA		Sampler:	FT	
Vell ID Vell Diameter Total Depth	MW- 2 2 in. 16.53 ft.	Date Monitored:	3/4"= 0.02	Well Condition:	3"= 0.38 12"= 5.80
Depth to Water	7.65 ft.	Sampling Equipme	_ x3 (case volume) = Es	stimated Purge Volume: Time Started: Time Bailed:	(2400 hrs) (2400 hrs)
Disposable Bailer Stainless Steel Bail Stack Pump Suction Pump Grundfos		Disposable Bailer Pressure Bailer Discrete Bailer Other:		Depth to Product: Depth to Water: Hydrocarbon Thickness Visual Confirmation/Des Skimmer / Absorbant Sc	:ft :ft cription:
Other:				Amt Removed from Skir Amt Removed from Wel Product Transferred to:	mmer: gal II: gal
					
Sample Time/D Purging Flow R	ate: / / 8 ate: / gpm.	Sediment Description	n: MIKYV	<u>に、 </u>	
Sample Time/D Purging Flow R	ate: 11:51 / 8 ate: gpm. er? No	.1.03 Water Cold	n: MIKYV	<u>டா. நடி</u> Odor: டாட <i>Sics</i>	
Purging Flow R Did well de-wat Time (2400 hr.)	vate: 11:51 / 8 ate: / gpm. er? // Volume (gal.) 1.5	Sediment Description If yes, Time: PH Conductivity (u mhos/cm) 7.48 Qq.q 7.45 Qq.q	Volume: Temperature OF) 21.1 21.2 FORMATION E LABORATORY	Odor:	ORP (mV)
Sample Time/E Purging Flow R Did well de-wat Time (2400 hr.) 11:41 11:45	vate: 11:51 / 8 ate:	Sediment Description If yes, Time: pH Conductivity (umhos/cm) 7.48 49.9 7.45 94.4 7.72 93.5	Volume: Temperature OF) 22.1 21.2	Gal. D.O. (mg/L)	ORP (mV)

GETTLER-RYAN INC.

WELL MONITORING/SAMPLING **FIELD DATA SHEET**

lient/Facility #:	ChevronTexaco #9-0517			Job Number:	386420	·
ite Address:	3900 Piedmon	t Avenue		Event Date:	8.9.03	(inclus
ity:	Oakland, CA			Sampler:	Fſ	
Vell ID	MW-3	Dat	e Monitored:	8.9.07	Well Condition:	الد'
Vell Diameter	2 in.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0.38
otal Depth	17.58 ft.		Factor (V		5"= 1.02 6"= 1.50	12"= 5.80
epth to Water	9.23 ft. 9.35 ×	VF .17	= 1.58	x3 (case volume) =	Estimated Purge Volume:	4.7 6 gal.
	<u> </u>				Time Started:	(2400 hrs)
urge Equipment:			mpling Equipmen	it:	Time Bailed:	
isposable Bailer			posable Bailer		Depth to Product: Depth to Water:	n
tainless Steel Baile	er		essure Bailer	-	Hydrocarbon Thickne	ss:ft
tack Pump Suction Pump	<u>v</u>		crete Bailer ner:		Visual Confirmation/D	
Grundfos	-				Skimmer / Absorbant	,
Other:					Amt Removed from S Amt Removed from W	
				•	Product Transferred to	
			·			
Time (2400 hr.) 12:15 12:25	Volume	7.36 7.36 7.34	Conductivity (umhos/cm) 105.0 106.5	Volume:	gal. D.O. (mg/L)	ORP (mV)
SAMPLEID	(#) CONTAINER	LA REFRIG.	BORATORY INI		Y ANAL	YSES
MW- 3	6 x voa vial		HCL	LANCASTER		MTBE(8260)
	- • • • • • • • • • • • • • • • • • • •					
			<u> </u>			
			1			
COMMENTS:		<u> </u>	<u></u>		· · · · · · · · · · · · · · · · · · ·	

WELL MONITORING/SAMPLING FIELD DATA SHEET

lient/Facility #:	ChevronTexaco	#9-0517	Job Number:	386420	
ite Address:	3900 Piedmont	Avenue	Event Date:	8.9.03	(inclu
lity:	Oakland, CA	<u> </u>	- Sampler:	FT	
/eil ID	MM- rt	Date Monitored	8.9.03	Well Condition:	o'k'
Vell Diameter otal Depth	2 in. 16.27 ft.	Volum		1"= 0.04 2"= 0.17 5"= 1.02 6"= 1.50	3"= 0.38 12"= 5.80
epth to Water	9.55 ft.	<u></u> <u>1.14 = -</u>	x3 (case volume) =	Estimated Purge Volume:	3.42_ gal.
urge Equipment: isposable Bailer		Sampling Equipn Disposable Bailer	nent:	Time Started: Time Bailed: Depth to Product:	(2400 hrs
tainless Steel Baili tack Pump uction Pump		Pressure Bailer Discrete Bailer Other:		Depth to Water: Hydrocarbon Thicknet Visual Confirmation/D	escription:
Grundfos Other:				Skimmer / Absorbant Amt Removed from S Amt Removed from W Product Transferred to	kimmer: ga /ell: gal
Start Time (pur	ge): 12:47	Weather Condition	ns:	รับบนวิ	
Sample Time/[Purging Flow F	Date: 12:58/8.4 Late: 2/5gpm.		olor: CLOUDY	S. SILTT	405 STROPH
Sample Time/[Purging Flow F	Volume (gal.)	9.03 Water Co Sediment Descript	olor: CLOUDY ion: Volume: Temperature	S. SILTT	ORP (mV)
Sample Time/E Purging Flow F Did well de-wa Time (2400 hr.)	Volume (gal.)	Water Consider Sediment Description of yes, Time: pH Conductivity (u mhos/cm) 7.52 116.3 7.48 112.1 7.45 110.4	olor: <u>CLOUDY</u> ion: Volume: Temperature (OF) 21.1 20.1	S. SIGT gal.	ORP
(2400 hr.) 12:45 12:5	Volume (gal.) 1.0 2.5 8 / 8.4 Volume (gal.) 2.0 3.5	Water Consequence Sediment Descript If yes, Time: pH	Volume: Temperature (OF) 21.1 20.1 19.8	gal. D.O. (mg/L)	ORP
Sample Time/E Purging Flow F Did well de-wa Time (2400 hr.)	Volume (gal.)	Water Consider Sediment Description of yes, Time: pH Conductivity (u mhos/cm) 7.52 116.3 7.48 112.1 7.45 110.4	Volume: Temperature (OF) 21.1 20.1 19.8	gal. D.O. (mg/L) ANAL	ORP (mV)
Sample Time/E Purging Flow F Did well de-wa Time (2400 hr.) 12:41 12:5	Volume (gal.) 2.0 2.5 8 / 8.4 (#) CONTAINER	Sediment Descript If yes, Time: PH Conductivity (umhos/cm) 1.52 116.3 1.48 112.1 1.45 110.4 LABORATORY REFRIG. PRESERV. T	Volume: Temperature (OF) 21.1 20.1 19.8	gal. D.O. (mg/L) ANAL	ORP (mV)

Chevron California Region Analysis Request/Chain of Custody

41 Lancaster Laboratories					Acc	:t.#:_	10	qol	1_	Sarr	For aple #	Lan	409	Labor 47	torje	- 58	nly ———	sgr#:	86	2846	
Lancaster Laboratories Where quality is a science.)81163	. - ለዕ	7										es Rec					<u>-</u>		ive Codes	
Facility #: SS#9-0517 G-R#386420 Global Site Address: 3900 PIEDMONT AVE., OAKLAN	I ID#T060010)2248		'	Matrix			Ħ	•	a	Pre	se	rvation	Code	*	\prod		H = HCI N = HNO: S = H ₂ SC	3	T = Thiosui B = NaOH O = Other	
Chevron PM: KS Lead Con Consultant/Office: G-R, Inc., 6747 Sierra Court, Consultant Prj. Mgr.: Deanna L. Harding (dean Consultant Phone #: 925-551-7555 F Sampler: FRANK ISS Service Order #:	Suitent: CAME Suite J, Dub nna@grinc.co ax #: 925-55 MANDE I	olin, Ca. (om) 1-7899		Soil	/ater	Oil □ Air □	ж і	BTEX + MTBE 8260 > 3021 □		TPH 8015 MOD DRO Silica Gel Cleanup	8260 ruli scan Oxygenates		Lead 7420 7421					Must me possible 8021 MTB Confirm Confirm	et low for 82 E Cont highe all hib	st hit by 826	o i
Samme membricauvii	9.93	ollected 27	X) <u>(0</u>	W I	+	2 66	メスト	XX									Commer	its / R	lemarks "	
MW-3 MW-4		130 258	Ŝ Ž	 - -	*		6	X	メメ												·
																		·	,		
Turnaround Time Requested (TAT) (please circle) STD. TAT 72 hour 48 hour 4 day 5 day		Relinqu	-火	۱_	ļ O),		<u> </u>	Date G.0 Pate	1	Time	Rece	eived t	by:		Dans	U	Date	Time /245 Time /3/5
Data Package Options (please circle if required) QC Summary Type I — Full Type VI (Raw Data) Coelt Deliverable not needed WIP (RWQCB) Disk		Relinqu UPS	uished l	by Cor FedE	mmerc K	é	rrier Ther	$\overline{\ \ }$	<u>+-</u>	8	Date ///b	3	Time /530	Rec A:	eived eived	by:	· mî	Yes	Ma No	Date 3/1/03 Pate 8/kb	Time

12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

ANALYTICAL RESULTS

Prepared for:

ChevronTexaco 6001 Bollinger Canyon Rd L4310

> San Ramon CA 94583 925-842-8582

> > Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 862846. Samples arrived at the laboratory on Tuesday, August 12, 2003. The PO# for this group is 99011184 and the release number is STREICH.

Client Description		Lancaster Labs Number
OA-T-030809	NA Water	4099754
MW-1-W-030809	Grab Water	4099755
MW-2-W-030809	Grab Water	4099756
MW-3-W-030809	Grab Water	4099757
MW-4-W-030809	Grab Water	4099758

ELECTRONIC

COPY TO

1 COPY TO

Gettler-Ryan

Cambria C/O Gettler- Ryan

Attn: Cheryl Hansen

Attn: Deanna L. Harding

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2881 • www.lancasterlabs.com

Questions? Contact your Client Services Representative Teresa L Cunningham at (717) 656-2300.

Respectfully Submitted,

Victoria M. Martel

Chemist

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4099754

Collected:08/09/2003 00:00

Account Number: 10904

Submitted: 08/12/2003 09:10

ChevronTexaco

Reported: 08/20/2003 at 17:27

6001 Bollinger Canyon Rd L4310

Discard: 09/20/2003

QA-T-030809

NA Water San Ramon CA 94583

Facility# 90517 Job# 386420

GRD

3900 Piedmont Oakland T0600102248 QA

248QA

CAT			As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of TR gasoline constituents eluting pr start time. A site-specific MSD sample was r was performed to demonstrate pre-	rior to the C6 not submitted f	(n-hexane) TPH-G or the project.	RO range A LCS/LCSD		
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

Laboratory	Chroniala
Laboratory	Thromicie.

CAT		1			Dilution	
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	08/13/2003 18:14	K. Robert Caulfeild- James	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	08/19/2003 00:37	Elizabeth M Taylor	1
01146	GC VOA Water Prep	SW-846 5030B	1	08/13/2003 18:14	K. Robert Caulfeild- James	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/19/2003 00:37	Elizabeth M Taylor	n.a.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

4099755 Lancaster Laboratories Sample No. WW

Collected: 08/09/2003 11:27

Account Number: 10904

Submitted: 08/12/2003 09:10

Reported: 08/20/2003 at 17:27

ChevronTexaco

6001 Bollinger Canyon Rd L4310

Discard: 09/20/2003

MW-1-W-030809

Grab

Water

San Ramon CA 94583

Facility# 90517 Job# 386420

3900 Piedmont Oakland T0600102248 MW-1

248M1

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01728	TPH-GRO - Waters The reported concentration of Tigasoline constituents eluting pastert time. A site-specific MSD sample was was performed to demonstrate pr	rior to the Co not submitted f	or the project.	A LCS/LCSD	ug/1	
06054	BTEX+MTBE by 8260B			•	•	
02010 05401 05407 05415	Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene	1634-04-4 71-43-2 100-88-3 100-41-4	N.D. N.D. N.D. N.D.	0.5 0.5 0.5	ug/l ug/l ug/l ug/l ug/l	1 1 1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	79, T	_

GRD

	Laboratory Chronicle							
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 08/13/2003 23:19	Analyst K. Robert Caulfeild- James	Factor 1		
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B	1 1	08/19/2003 01:08 08/13/2003 23:19	Elizabeth M Taylor K. Robert Caulfeild- James	1 п.а.		
01163	GC/MS VOA Water Prep	SW-846 5030B	ı	08/19/2003 01:08	Elizabeth M Taylor	n.a.		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page I of I

4099756 Lancaster Laboratories Sample No. WW

Collected: 08/09/2003 11:56

Account Number: 10904

Submitted: 08/12/2003 09:10

Reported: 08/20/2003 at 17:27

ChevronTexaco

6001 Bollinger Canyon Rd L4310

Discard: 09/20/2003

3900 Piedmont Oakland

MW-2-W-030809

Grab

Water

San Ramon CA 94583

Facility# 90517 Job# 386420

GRD T0600102248 MW-2

248M2

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of Tigasoline constituents eluting postart time. A site-specific MSD sample was a was performed to demonstrate pre-	RO range A LCS/LCSD				
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

		Laboratory Chronicle						
CAT No.	Analysis Name	Method	Trial#	Analysis Date and Time	Analyst	Dilution Factor		
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	08/13/2003 23:50	K. Robert Caulfeild- James	1		
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	08/19/2003 01:39	Elizabeth M Taylor K. Robert Caulfeild-	1 n.a		
01146	GC VOA Water Prep	SW-846 5030B	1	08/13/2003 23:50 08/19/2003 01:39	James Elizabeth M Taylor	n.a.		

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

4099757 Lancaster Laboratories Sample No.

Collected: 08/09/2003 12:30

by FT

Grab

Account Number: 10904

ChevronTexaco

Submitted: 08/12/2003 09:10

Reported: 08/20/2003 at 17:27

Discard: 09/20/2003

MW-3-W-030809

Water

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Facility# 90517 Job# 386420

3900 Piedmont Oakland

MW-3 T0600102248

248M3

CAT No. 01728	Analysis Name CAS Number Result Detection Limit TPH-GRO - Waters n.a. 1,600. The reported concentration of TPH-GRO does not include MTBE or other gasoline constituents eluting prior to the C6 (n-hexane) TPH-GRO range start time. As Received Method I Detection Limit 100/100/1000 100											
06054	start time. A site-specific MSD sample was was performed to demonstrate pr BTEX+MTBE by 8260B	not submitted : ecision and ac	for the project. curacy at a batch	A LCS/LCSD n level.								
02010 05401 05407 05415 06310	Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	1634-04-4 71-43-2 108-88-3 100-41-4 1330-20-7	0.7 12. 1. 2. 4.	0.5 0.5 0.5 0.5	ug/1 ug/1 ug/1 ug/1 ug/1	1 1 1 1						

GRD

CAT	Laboratory Chronicle Analysis								
No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 08/14/2003 00:20	Analyst K. Robert Caulfeild- James	Factor 1			
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B	1 1	08/19/2003 02:11 08/14/2003 00:20	Elizabeth M Taylor K. Robert Caulfeild- James	1 n.a.			
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/19/2003 02:11	Elizabeth M Taylor	n.a.			

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.fancasteriabs.com

Page 1 of 1

4099758 Lancaster Laboratories Sample No. WW

Collected:08/09/2003 12:58

by FT

Account Number: 10904

ChevronTexaco

Submitted: 08/12/2003 09:10

Reported: 08/20/2003 at 17:27

Discard: 09/20/2003

MW-4-W-030809

Grab

Water

San Ramon CA 94583

6001 Bollinger Canyon Rd L4310

Facility# 90517 Job# 386420

3900 Piedmont Oakland T0600102248 MW-4

GRD

248M4

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Units	Dilution Factor
01728	TPH-GRO - Waters The reported concentration of T gasoline constituents eluting p	n.a. PH-GRO does not rior to the C6	3,700. include MTBE or (n-hexane) TPH-G	250. other RO range	ug/1	٠
06054	start time. A site-specific MSD sample was was performed to demonstrate pr	A LCS/LCSD	The second secon			
ψ 6 00⊃ 4	BIEXTHIBE DY 6200B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	8.	1.	ug/l	2.5
05401	Benzene	71-43-2	110.	1.	ug/l	2.5
05407	Toluene	108-88-3	24.	1.	ug/l	2.5
05415	Ethylbenzene	100-41-4	10.	1.	ug/l	2.5
06310	Xylene (Total)	1330-20-7	45.	1.	ug/l	2.5

		Laboratory	aboratory Chronicle					
CAT No. 01728	Analysis Name TPH-GRO - Waters	Method N. CA LUFT Gasoline	Trial# 1	Date and Time 08/14/2003 00:51	Analyst K. Robert Caulfeild- James	Factor S		
06054 01146	BTEX+MTBE by 8260B GC VOA Water Prep	Method SW-846 8260B SW-846 5030B	1 1	08/19/2003 02:42 08/14/2003 00:51	Elizabeth M Taylor K. Robert Caulfeild- James	2.5 n.a.		
01167	CC/MS VOD Water Pren	SW-846 5030B	1	08/19/2003 02:42	Elizabeth M Taylor	n.a.		

91

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Quality Control Summary

Client Name: ChevronTexaco

Group Number: 862846

Reported: 08/20/03 at 05:27 PM

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL	Report <u>Units</u>	LCS <u>%REC</u>	lcsd <u>%rec</u>	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 03225A16A TPH-GRO - Waters	Sample num	ber(s): 50.	4099754-409 ug/l	9758 102	105	70-130	3	30
Batch number: P032302AB Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene Xylene (Total)	Sample num N.D. N.D. N.D. N.D. N.D. N.D.	nber(s): 0.5 0.5 0.5 0.5 0.5	4099754-409 ug/l ug/l ug/l ug/l ug/l	9758 100 108 101 100 102		77-127 85-117 85-115 82-119 84-120		

Sample Matrix Quality Control

	MS	MSD	ms/msd		RPD	BKG	DUP	:	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	:	RPD	<u>Max</u>
Batch number: 03225A16A TPH-GRO - Waters	Sample 113	number	(s): 409975 70-130	4-40997	58					
Batch number: P032302AB	Sample	number	(s): 409975	4-40997	758					
Methyl Tertiary Butyl Ether	105	104	69-134	1	30					
Benzene	116	117	83-128	1	30					
Toluene	110	109	83-127	1	30					
Ethylbenzene	108	111	82-134	2	30					
Xylene (Total)	109	109	82-130	1	30					

Surrogate Quality Control

94

93

Analysis Name: TPH-GRO - Waters Batch number: 03225A16A Trifluorotoluene-F

4099754	109	
4099755	112	
4099756	110	
4099757	140	
4099758	119	
Blank	105	·
LCS	113	
LCSD	114	
MS	112	

Limits: 57-146

4099754

4099755

Analysis Name: BTEX+MTBE by 8260B

Batch number: P032302AB
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 4-Bromofluorobenzene

*- Outside of specification

91

93

(1) The result for one or both determinations was less than five times the LOQ.

95

(2) The background result was more than four times the spike added.

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Quality Control Summary

	ame: ChevronT ϵ		Group Number: 8	62846	
Reported	: 08/20/03 at				
		Surr	ogate Quality Contro	ol	
4099756	92	93	96	92	
4099757	91	89	93	99	
4099758	92	92	94	97	
Blank	95	91	95	93	
LCS	91	90	95	96	
MS	92	90	96	96	
MSD	91	89	95	96	
Limits:	81-120	82-112	85-112	83-113	

*- Outside of specification

(2) The background result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU umhos/cm C meq g ug ml m3	none detected Too Numerous To Count International Units micromhos/cm degrees Celsius milliequivalents gram(s) microgram(s) milliliter(s) cubic meter(s)	BMQL MPN CP Units NTU F Ib. kg mg I	Below Minimum Quantitation Level Most Probable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit pound(s) kilogram(s) milligram(s) liter(s) microliter(s)
---	---	---	--

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- J estimated value The result falls within the Method Detection Limit (MDL) and Limit of Quantitation (LOQ).
- ppm parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Inorganic Qualifiers

U.S. EPA CLP Data Qualifiers:

X,Y,Z

Organic Qualifiers

	Organic &damicio		_
A B C D E N P U	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument Presumptive evidence of a compound (TICs only) Concentration difference between primary and confirmation columns >25% Compound was not detected	BEMNS UW*+	Value is <crdl, (msa)="" <0.995<="" additions="" analysis="" but="" calculation="" coefficient="" compound="" control="" correlation="" detected="" digestion="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" msa="" not="" of="" out="" post="" precision="" sample="" spike="" standard="" th="" to="" used="" was="" within="" ≥idl=""></crdl,>

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Defined in case narrative

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.