

Subsurface Consultants, Inc.

PROPERTY AL
SUDECE PARTY AL

December 23, 1998 SCI 1039.007

Strough Family Trust of 1983 c/o Mr. Don Strough Concord Honda/Pontiac 1300 Concord Avenue Concord, California 94520

Groundwater Monitoring
October 1998 Quarterly Event and
Monthly Free Product Removal
327 34th Street
Oakland, California

Dear Mr. Strough:

This letter records the results of the October 1998 groundwater monitoring and monthly free product removal events performed by Subsurface Consultants, Inc. (SCI) at 327 34th Street in Oakland, California. The location of the property is shown on the Vicinity Map, Plate 1. The site configuration is shown on the Site Plan, Plate 2.

BACKGROUND

On March 4 and 5, 1993, one 1,000-gallon underground storage tank (UST) containing unleaded gasoline and one 1,000-gallon UST containing waste oil were removed by KTW & Associates/Subsurface Environmental Corporation under the direction of Alameda County Health Care Services Agency (ACHCSA). Results of chemical analyses on soil samples collected beneath the ends of the gasoline UST indicated impacts by total petroleum hydrocarbons (TPH) as gasoline, and toluene, ethylbenzene, and xylenes. Soil samples from the waste oil UST excavation showed only relatively low concentrations of TPH as diesel, ethylbenzene, and xylenes.

A soil and groundwater investigation was conducted by GeoPlexus, Inc. in 1993 to assess petroleum hydrocarbon impacts to groundwater. GeoPlexus, Inc. installed three groundwater monitoring wells (MW-1 through MW-3; see Plate 2). Analytical testing of soil and groundwater samples from the wells identified impacts from gasoline-range hydrocarbons at two of the wells (MW-2 and MW-3) located downgradient of the former gasoline UST. Approximately 1/4 inch of free floating product was observed in well MW-3. The product was reportedly gasoline.

Strough Family Trust of 1983 c/o Mr. Don Strough Concord Honda/Pontiac December 23, 1998 SCI 1039.007 Page 2

SCI was retained in September 1997 to evaluate the presence of free floating and dissolved phase petroleum hydrocarbons in existing wells MW-1 through MW-3. Based on results of this study, SCI prepared a Work Plan to perform additional subsurface investigation which was conducted in June 1998. Results of the subsurface investigation were presented in the Report of Groundwater Monitoring Activities and Additional Subsurface Investigation, dated November 17, 1998.

MONITORING ACTIVITIES

Monthly Free Product Removal

In accordance with the approved Work Plan, SCI began measuring separate-phase product thickness and depth-to-water in all the site wells on a monthly basis. Field forms for the September, October, and November 1998 monthly events are attached. Future reporting of the monthly measurements will continue on a quarterly basis.

Groundwater Monitoring Event

On October 1, 1998, depth-to-water and free product thickness were measured in site wells MW-1 through MW-5. Groundwater and free product elevation data are summarized in Table 1. Subsequently, all site wells were purged by removing water with new disposable bailers. The wells were purged until measurements of pH, temperature, and conductivity had stabilized. After the wells recharged to within 80 percent of their initial level, they were sampled with new disposable bailers. Purge water was placed in labeled 55-gallon steel drums and left on-site for later disposal.

Groundwater samples collected were retained in pre-cleaned containers supplied by the analytical laboratory and were placed in ice-filled coolers and remained iced until delivery to the analytical laboratory. Chain-of-custody records accompanied the samples to the laboratory. Copies of the records are presented with the analytical test report.

CHEMICAL ANALYSES

Chemical analyses of samples were performed by Curtis & Tompkins, Ltd., a state-certified chemical testing laboratory. A summary of sample preparation and test methods is presented below.

Strough Family Trust of 1983 c/o Mr. Don Strough Concord Honda/Pontiac December 23, 1998 SCI 1039.007 Page 3

	Sample Preparation	Analysis
Analysis	Method	Method
Total Volatile Hydrocarbons (TVH)	EPA 5030	EPA 8015 Mod.
Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) and	EPA 5030	EPA 8260
Methyl Tertiary Butyl Ether (MTBE)		

Groundwater analytical test results are summarized in Table 2. Field sampling forms, analytical test reports, and chain-of-custody documents are attached.

DISCUSSION OF RESULTS

Groundwater Gradient

The gradient near wells MW-1, MW-2, MW-3, and MW-4 is relatively flat with a 0.32-foot difference in elevation between the four points. Well MW-5 located approximately 100 feet southwest of these wells has a groundwater surface elevation approximately 2 feet lower than those of wells MW-1 through MW-4. The groundwater flow direction is not definitive for this site. Topographic relief at the site and the presence of Glen Echo Creek approximately 700' east of the site suggest the groundwater flow direction should be toward the east-southeast. The current groundwater elevation data shows higher elevations in the northern portion of the site and a lower elevation in the southern portion of the site indicating a southerly gradient at odds with what is known of the areal geology.

Free Product

Historically, free product has been detected in two of the site wells (MW-2 and MW-3). Free product was measured only in well MW-2 during this quarter at thickness' decreasing from 0.42 to 0.04 feet. Free product was removed by bailing. Measurable free product was not detected in the four other site wells.

Groundwater Test Results

Elevated levels of gasoline-range petroleum hydrocarbons (or TVH), BTEX, and MTBE were detected in groundwater samples from wells MW-2, MW-3, and MW-4 during this event. Concentrations of TVH and benzene detected in well MW-4 during this event decreased by almost an order of magnitude from results obtained during the previous event. Groundwater samples collected from wells MW-1 and MW-5 did not detect the presence of TVH, BTEX nor MTBE.

Strough Family Trust of 1983 c/o Mr. Don Strough Concord Honda/Pontiac December 23, 1998 SCI 1039.007 Page 4

CONCLUSIONS

Concentrations of petroleum hydrocarbon compounds are detected in wells with extensive sand and gravel layers (wells MW-2, MW-3, and MW-4). Free product appears to be currently localized in the area of well MW-2. Based on the absence of measurable free product in monitoring well MW-3 and results of analytical testing, subsurface conditions at the site appear to be supporting biodegradation.

ONGOING ACTIVITIES

SCI will continue to remove observed free product in the wells by hand bailing and will continue to record water level measurements on a monthly basis in accordance with the approved monitoring plan. The next sampling event will be a quarterly event which will occur in December 1998.

No. CO40469

If you have any questions, please call.

My Merdez

Yours very truly,

Subsurface Consultants, Inc.

Meg Mendoza

Engineer in Training XE100785

Jeriann N. Alexander, PE, REA

Civil Engineer 40469 (expires 3/31/99)

Registered Environmental Assessor 03130 (expires 6/30/99)

MM: 1039.007\qtr1098.doc

Subsurface Consultants, Inc.

Strough Family Trust of 1983 c/o Mr. Don Strough Concord Honda/Pontiac December 23, 1998 SCI 1039.007 Page 5

Attachments: Table 1 - Groundwater and Free Product Elevation Data

Table 2 - Summary of Petroleum Hydrocarbon Concentrations in Groundwater

Plate 1 - Vicinity Map Plate 2 - Site Plan

Field Forms- September 1998 through November 1998

Analytical Test Reports

Chain-of-Custody Documents

cc: Ms. Madhulla Logan

Hazardous Materials Specialist

Alameda County Health Care Services Agency

1131 Harbor Bay Parkway

Alameda, California 94502-6577

Mr. Jonathan Redding, Esq.

Fitzgerald, Abbott & Beardsley, LLP

1221 Broadway, 12th Floor Oakland, California 94612

TABLE 1 GROUNDWATER AND FREE PRODUCT ELEVATION DATA 327 34TH STREET OAKLAND, CALIFORNIA

Monitoring <u>Well</u>	<u>Date</u>	Elevation ¹	Depth to Groundwater (feet)	Product Thickness (feet)	Groundwater Elevation (feet)	Product Elevation (feet)
MW-1	7/27/93	100.00	20.79 ²	NA	79.21	NA
	10/2/97		21.22	_	78.78	
	6/30/98		18.21	_	81.79	
	7/29/98		18.74	••	81.26	-
	8/26/98		19.28		80.72	-
	10/1/98		19.93	-	80.07	
	10/30/98		20.22	-	79.78	
	11/30/98		19.99		80.01	-
MW-2	7/27/93	101.27	22.10^2	NA	79.17	NA
	10/2/97		22 .91	0.43	78.36	78.79
	6/30/98		19.69	0.45	81.58	82.03
	7/29/98		20.11	0.29	81.16	81.45
	8/26/98		20.54	0.08	80.73	80.81
	10/1/98		21.52	0.42	79.75	80.17
	10/30/98		21.54	0.10	79.73	79.83
	11/30/98		21.21	0.04	80.06	80.10
MW-3	7/27/93	101.29	22.28 ²	0.02	79.01	79.03
	10/2/97		22.71	0.03	78.58	78.61
	6/30/98		19.47		81.82	
	7/29/98		20.01		81.28	_
	8/26/98		20.62		80.67	
	10/1/98		21.33		79.96	
	10/30/98		21.62		79.67	
	11/30/98		21.31		79.98	==
MW-4	6/30/98	98.65	16.93	_	81.72	
	7/29/98		17.48		81.17	
	8/26/98		18.65		80.00	
	10/1/98		18.74		79.91	
	10/30/98		19.02		79.63	
	11/30/98	i	18.74		79.91	
MW-5	6/30/98	100.9	20.60		80.30	
	7/29/98		21.52		79.38	
	8/26/98		22.21		78.69	
	10/1/98		22.95		77.95	
	10/30/98		23.23	••	77.67	
	11/30/98	3	23.13		77.77	

¹ Elevations are referenced to monitoring well MW-1, with an assumed datum of 100.00 feet.

² Measurements by others

⁻⁻ Product not observed

NA = Data not available

TABLE 2 SUMMARY OF PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUNDWATER 327 34TH STREET OAKLAND, CALIFORNIA

		roundwate Elevation†	TVH	тен	Benzene	Toluene		-		Oil & Grease
Location	<u>Date</u>	(feet)	(µg/l)	(ng/1)	(h ō (J)	(µg/l)	(ng/l)	(µg/l)	(hā\J)	(mg/l)
MW-1	7/27/93	79.21	<50	<50	<0.5	<0.5	<0.5	<0.5		< 5
	10/2/97	78.78	<50		<0.5	<0.5	<0.5	<0.5	<2	_
	6/30/98	81.79	84	_	<0.5	<0.5	2.1	0.55	2.1	
	10/1/98	80.07	<50		<1.0	<1.0	<1.0	<1.0	<2.0	
MW-2	7/27/93	79.17	120,000		10,000	27,000	2,900	20,000		
	10/2/97	78.36	*	_	*	*	*	*	*	*
	6/30/98	81.58	72,000		7,300	18,000	2,500	15,600	5,500	
	10/1/98	79.75	84,000		6,400	17,000	2,600	17,000	2,000	••
MW-3	7/27/93	79.01	330,000		9,100	24,000	5,300	33,000		
	10/2/97	78.58	36,000		4,200	11,000	1,800	10,600	3,500	
	6/30/98	81.82	51,000		4,800	11,000	1,200	7,100	3,900	
	10/1/98	79.96	38,000		3,900	8,500	1,200	6,000	2,300	
MW-4	6/30/98	81.72	10,000		2,200	930	850	2,100	1,800	
	10/1/98	79.91	1,100		570	46	130	36	1,300	••
MW-5	6/30/98	78.69	<50		<0.5	<0.5	<0.5	<0.5	23	
	10/1/98	77.95	<50		<1.0	<1.0	<1.0	<1.0	<2.0	

NOTES:

TVH = Total volatile hydrocarbons as gasoline

TEH = Total extractable hydrocarbons as diesel

MTBE= Methyl tertiary butyl ether

-- = Not analyzed

mg/l = milligrams per liter

μg/l = micrograms per liter

ND = Not detected at concentrations above reporting limits

†= Arbitrary datum

^{* =} This sample contained free-product and was found to resemble weathered gasoline as determined by fuel fingerprint analysis.

VICINITY MAP

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA

JOB NUMBER DATE - mm 12/22/98 1039.007

PLATE

APPROVED

SITE PLAN

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA

JOB NUMBER

1039.007

DATE

12/21/98

PLATE

APPROVED

unt

SITE PLAN

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA JOB NUMBER

DATE

1039.007 12/21/98 PLATE

APPROVED

unto

APPROXIMATE SCALE (feet)

SITE PLAN

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA JOB NUMBER

1039.007

DATE

12/21/98

PLATE

APPROVED

unt

GROUNDWATER DEPTHS

ort Name:	327 34th =	5t		.
	1039.007			
No.:				
asured by:		EVEN		
Well	Date	Time	Groundwater Depth (feet)	Comments
Ad. 1 1	10)1 98	085	19.93	no product
MW-2	1	0820	21 6/4"	no product Top of Product = 21' 1'4" Product thickness = 5" 1/4" visible in bailey " Bailed = 40ml
MW-3		0825	21.33	no product
MW-4.		0805	18.74	no fisdect
MW-5	A	0810	22-95	no product
<u>.</u>				
			-	
		 		
· ·			 	
			·	
,	-			

Project Name: <u>327</u>	34m st.		Well Numbe	,, <u> </u>		
Job No.: 1039.00			 -	Diameter:		
Sampled By: DuA				011 98		
TOC Elevation:			Weather: _	foggy	<u>-</u>	<u></u>
Depth to Casing Bottom (helow TOC)	_	32.∞			feet
Depth to Groundwater Be			19,93			feet
			12.07	<u> </u>		feet
Feet of Water in Well —			22.34			feet
Depth to Groundwater Williams Casing Volume (feet of w	hen 80% Heco	vered ———	20			galions
			/ Electronic			
Depth Measurement Met	hod	Tape & Paste	/ (Electronic	Sounder	7 0010	<u></u>
Free Product				<u></u>		
_	. 1	معانمط				
Purge Method	sposable	Danie			Cast	pediase
Purge Method			IREMENTS	P.o. = 3.6	por.	pediage
Purge Method		ELD MEASU	REMENTS	D.o. = 3.6 Co2 = 192	ppn Opn	Rediance Comments
Gallons	FII pH	Temp	IREMENTS Conductivity	D.o. = 3.6 (Co2 = 192 (Sallinity 5%	ppn opn (
Gallons Removed Time	рН 	ELD MEASU	Conductivity (micromhos/cm)	D.o. = 3.6 (Co2 = 192 (Salinity 5%	ppn opn dparfno	Comments oder
Gallons Removed Time	рН 	Temp (C) °F) 18-5	Conductivity (micromhos/cm)	D.o. = 3.6 (Co2 = 192 (Salinity 5%	ppn opn (Comments oder
Gailons Removed Time	pH 6.67 6.48	Temp Corsi 185 185	Conductivity (micromhos/cm) 760 775	D.o. = 3.6 (Co2 = 192 (Salinity 5%	ppn opn dparfno	Comments oder
Gallons Removed Time O Z 4	pH 6.67 6.48 6.46 6.49	Temp (C)°F) 18.5 18.5 18.5 18.5	Conductivity (micromhos/cm) 700 715 800	D.o. = 3.6 Co2 = 192 (Salinity 5%	ppn opn dparfno	Comments
Gallons Removed Time C Z 4	PH (6.67) (6.48) (6.46) (6.49)	Temp (C) °F) 18.5 18.5 18.5 18.5	Conductivity (micromhos/cm) 760 775 800	D.o. = 3.6 Co2 = 192 (Salinity 5%	opn Clear/no J semi-clear	Comments odiz gallons
Gallons Removed Time O Z 4 (v) Total Gallons Purged Depth to Groundwater B	pH () (Temp (C)°F) 18.5 18.5 18.5 18.5	Conductivity (micromhos/cm) 700 715 800	D.o. = 3.6 Co2 = 192 (Salinity 5%	open Clear Inv Je Seni-clear	Comments odiz gallons feet
Gallons Removed Time C Z 4 6 Total Gallons Purged Depth to Groundwater B	pH () (Temp (C)°F) 18.5 18.5 18.5 18.5	Conductivity (micromhos/cm) 700 715 800	D.o. = 3.6 Co2 = 192 (Salinity 5%	open Clear Inv Je Seni-clear	Comments odiz gallons feet
Gailons Removed Time C Z 4 Ø Total Gallons Purged	pH (() (48 (49 (49)	Temp (C)°F) 18.5 18.5 18.5 18.5	Conductivity (micromhos/cm) 700 715 800	D.o. = 3.6 Co2 = 192 (Salinity 5%	open Clear Inv Je Seni-clear	Comments odiz gallons feet
Gallons Removed Time O Z 4 6 Total Gallons Purged Depth to Groundwater B Sampling Method	pH 6.48 6.46 6.49 6.49 efore Sampling	Temp (C)°F) 18.5 18.5 18.5 18.5 18.5 (below TOC)	Conductivity (micromhos/cm) 700 715 800	D.o. = 3.6 (Co2 = 192 (Salinity 5%	open Clear Inv Je Seni-clear	Comments odiz gallons feet
Gallons Removed Time O Z U Total Gallons Purged Depth to Groundwater B Sampling Method	pH 6.48 6.49 6.49 efore Sampling disposal 40 ml	Temp (C) °F) 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5	Conductivity (micromhos/cm) 760 775 860	D.o. = 3.6 (Co2 = 192 (Salinity 5%	open dearfus the sewi-clean 1.70	Comments odiz gallons feet

	Well Number:
Project Name: 327 34 th 54. Job No.: (039,007	Well Casing Diameter: Z inches
	Date: 10/1/98
Sampled By:	Weather: Loggy
TOC Elevation:	Weather.
	33.∞ feet
Depth to Casing Bottom (below TOC)	
	(OC)
Feet of Water in Well	
Depth to Groundwater When 80% Recovered	23.82 feet
Casing Volume (feet of water x Casing DIA 2 x	(0.0408) gallons
Death Massurament Mathod Tabe &	Paste / Electronic Sounder / Other
Free Product 5" Hickness me	pasmed - 1/4" visible in bailes
Purge Method	
	I potate to the
FIELD !	MEASUREMENTS
	$\mathcal{D}_{i} \partial_{i} = 2.7 \rho \rho \kappa^{-1}$
Gallons Je	TO D. = 2.7 pp~ emp Conductivity Co2 = 230 pp~ (micromhos/cm) Salinity S% Comments
Deliloked tauc by:	emp Conductivity Co2 = 235 ppm (micromhos/cm) Satinity-S% Comments
0 6.5Z 18	comp Conductivity CC2 = 235 ppm (micromhos/cm) Satinity S% Comments 2.5 275
0 6.52 18 2 6.41 18	emp Conductivity Co2 = 235 ppm (micromhos/cm) Satinity-S% Comments
0 6.5z 2 6.41 4 6.43 18	Conductivity CC2=235 ppm (micromhos/cm) Satinity S% Comments 2.5 275 Clear strong sole 2.5 405 musky 3.5 460
0 6.5z 18 z 6.41 18 y 6.43 18	Comments
0 6.52 18 2 6.41 18 4 6.43 18 6 6.47 18	Conductivity CC2=235 ppm (micromhos/cm) Satinity S% Comments 2.5 275 Clear strong sole 2.5 405 musky 3.5 460
0	Conductivity CC2=235 ppm (micromhos/cm) Satinity S% Comments CS 275 Clean strong sole CS 460 CS
Depth to Groundwater Before Sampling (below	emp Conductivity CC2=230ppm Comments N°F) (micromhos/cm) Satinity S% Comments CS 275
0	emp Conductivity CC2=230ppm Comments N°F) (micromhos/cm) Satinity S% Comments CS 275
Total Gallons Purged Depth to Groundwater Before Sampling (below Sampling Method Containers Used	Conductivity CC2=230ppm (micromhos/cm) Satinity S% Comments 2.5 275
Depth to Groundwater Before Sampling (below Sampling Method C.5Z 18 10	Conductivity CC2=235 ppm (micromhos/cm) Satinity S% Comments 2.5 275
Depth to Groundwater Before Sampling (below Sampling Method Containers Used	Conductivity CC2=230ppm (micromhos/cm) Satinity S% Comments 2.5 275
Depth to Groundwater Before Sampling (below Sampling Method Containers Used	Conductivity Coz = 238 ppm (micromhos/cm) Satinity S% Comments S 275

Project Name: 327	34th 57.	Well Number: Mu-3	
•	9.007	Well Casing Diameter: 2	inches
Sampled By:		Date: 1011 98	
TOC Elevation:		Weather:	
	•		
Depth to Casing Bottom (I	below TOC)	34.00	i i
Depth to Groundwater Be	fore Purging (below TOC)	21-33	feet
			feet
	nen 80% Recovered	73860	feet
Casing Volume (feet of w	ater x Casing DIA 2 x 0.040	08)	gallons
Depth Measurement Met	hod Tape & Past	e / Electronic Sounder / Other	
Free Product None			
Furge Mediod	•	i μνεαί CUDEMENTS	ate Redonge
	-	Do = 2/1 PP	
Gallons Removed Time	Temp pH ©/°F)	(micromhos/cm) Salisity S%	omments
1	6.63 18.0	675 muky/51	rong odu wist
3	6.65 18.5	775	
5	6.64 19.5		
7	6.65 If.5	725	
Total Gallons Purged	7		gallons
Deoth to Groundwater Bo	efore Sampling (below TOC	s) <u>21.43</u>	feet
Sampling Method	disposable baile	Λ	
Containers Used	67		<u></u>
	40 ml	liter pint	
			PLATE
Subsurface (Concultante	DATE APP	ROVED
Sudsulface (Onsumanus	DB NUMBER	

Project Name: 321	34th 54.	Well Number:	1W-4
lob No.: 103°		Well Casing Diameter	inches
Sampled By:		Date: 10 1 98	
		Weather:	14
OC Elevation.		'	, ,
Depth to Casing Bottom (t	nelnw TOC)	3).00	feet
Peptin to Casing Bottom (c	fore Purging (below TOC)	18.74	feet
		1/-/-/-	feet
		7/19	feet
Depth to Groundwater Wh	nen 80% Recovered		gallons
Casing Volume (feet of wa	ater x Casing DIA 2 x 0.0408)		`
Depth Measurement Metr	nod Tape & Paste	/ Electronic Sounder	/ Other
Free Product	<u></u>		
Purge Method &	sposable bailer		fastaechese
Gallons	Jemp	JREMENTS Conductivity Coz = 3 (micromhos/cm) Salinity-S	4pp- 201pv
Removed Time	pH (*C)/*F)		clear (no odor
_0	6.69 19.0		musky
	<u> </u>		
		850	
<u> </u>	6.71 185		
			gallons
Total Gallons Purged		G nc	feet
	efore Sampling (below TOC)		1861
Sampling Method	disposable bailer		
Containers Used	7		
	40 ml lite	t burr	
			PLATE
1	Conquitants		APPROVED
iinsiirtace U	Consultants Jose N	UMBER DATE	AFFROVED

		W	/ELL SAMF	PLING FORM			
Project Name:					per:Mu ng Diameter:		
Sampled By: TOC Elevation:		Awa-		Date:	10/1/98 - Coggy		
Depth to Casing				- 7.	00		feet
Depth to Groun					95		feet
Feet of Water in				8	05		feet
Depth to Groun				24.9	<i>i</i> 6		feet
Coolea Valume	(feet of w	ater x Casing I	OIA 2 x 0.0408	1.3			_ gallons
Depth Measure				,	nic Sounder	/ Other	<u></u>
Eree Product	YL	one				<u> </u>	
Purge Method		hisposabl	e bale			Cel	exedians.
				UREMENTS	D.O. = 4-8 Pi	en (CC)	ę.0000 _/
Gallons Removed	Time	pН	Temp (°C)/ °F)	Conductivity (micromhos/cm	Coz = 1 56 Pl) Salinity 5%	,.~ C	omments
1		6.41	18.0	340		murky/1	wodor
	· · · · · · · · · · · · · · · · · · ·	6.54	18.0	375			
3		6.64	18.0	385_			
4		4.71	18.0	390		Ψ	
•							
Total Gallons i	Purged 9	34				-	gallons
Depth to Grou		efore Sampling					feet
Sampling Met	nod	disposal	ble baile	<u>^</u>		<u>·</u>	
		4					

		PLATE
Subsurface Consultants	JOB NUMBER DATE APPROVED	

GROUNDWATER DEPTHS

ect Name:	327 34	TVISt.		469
No.: l	039.007			
	DWA			
Well	Date	Time	Groundwater Depth (feet)	Comments
Maria	10/30/18	0855	20.77	no product = 21'5 % Product thekness = 14" Top . F Product = 21'5 % Product thekness = 14" Bailed = insigni
MWY	193978	0910	21' 67/6"	Top of Product = 21 3 116 " Bailed = inslight
MW-7	 	0905	21.62	no product (strong odo)
MW-4.	 	0835	19.02	no product
MW-5	+	0845	23.23	nopodut
110-7	<u> </u>			
				* expensely faint Ring in bailer * 10 deums on site (9 fall)
				* 10 deuns on site (9 full)
	·			
			-	
		· · · · · · · · · · · · · · · · · · ·		
•				
	-			
			_	<u> </u>

GROUNDWATER DEPTHS

roject Name:	327 .3	4th 51.		
ob No.:	1039-007			.#4 <u>-</u>
leasured by:	DWA			
			T 0	
Weil	Date	Time	Groundwater Depth (feet)	Comments
MW-1	11/30/98	0915	19.99	Top of Product = 21'2" Product thickness to rothing uiside in bailer " Bailed = none.
	1,130,172	0935	21'22"	Top of Product = 21'2 Product thickness rething visite in bailer " Bailed = none.
<u>5-UM</u>	 	0925	21.31	
MW-4.		0910	18.74	
MW-5	4	0970	23.13	
1100				
· · · · · · · · · · · · · · · · · · ·				* 9 full downs of price water & Soil cuttings as of today.
				soil cuttings as of teday.
	<u> </u>			
	-			
	<u> </u>			
		+		
· .				
		<u> </u>		
<u> </u>	<u>'</u>			
	1 .	1	1	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900, Fax (510) 486-0532

ANALYTICAL REPORT

Prepared for:

Subsurface Consultants 3736 Mt. Diablo Blvd. Suite 200 Lafayette, CA 94549

Date: 17-0CT-98

Lab Job Number: 135852

Project ID: 1039.007

Location: 327 34th St.

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

	Aromatic Vola EPA 8020 An	tile Organics alyte List	
Client: Subsurfa Project#: 1039.007 Location: 327 34th		Analysis Method: Prep Method:	EPA 8260 EPA 5030
Field ID: MW-1 Lab ID: 135852-0 Matrix: Water Batch#: 43982 Units: ug/L Diln Fac: 1	001	Sampled: Received: Extracted: Analyzed:	10/01/98 10/01/98 10/15/98 10/15/98
Analyte	Result	Repo	rting Limit
MTBE Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND ND ND ND ND ND		2.0 1.0 1.0 1.0 1.0
Surrogate	%Recovery	Reco	very Limits
1,2-Dichloroethane Toluene-d8 Bromofluorobenzene	100		85-121 92-110 84-115

Page 1 of 1 Curis & Tompkins, Lid.

Aromatic Volatile Organics EPA 8020 Analyte List

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8260

Prep Method: EPA 5030

Field ID: MW-2 Sampled: 10/01/98
Lab ID: 135852-002 Received: 10/01/98

Matrix: Water Extracted: 10/15/98
Batch#: 44013 Analyzed: 10/15/98

Units: ug/L Diln Fac: 125

D1111 100. 100		
Analyte	Result	Reporting Limit
MTBE	2000	250
Benzene	6400	130
Toluene	17000	130
Ethylbenzene	2600	130
m,p-Xylenes	12000	130
o-Xylene	5000	130
Surrogate	%Recovery	Recovery Limits
1,2-Dichloroethane-d4	92	85-121
Toluene-d8	101	92-110
Bromofluorobenzene	101	84-115

Page 1 of 1 Curlls & Tompkins, Ltd.)

G

Aromatic Volatile Organics EPA 8020 Analyte List

Client: Subsurface Consultants
Project#: 1039.007

Location: 327 34th St.

nocación. 327 34cm Sc.

Field ID: MW-3
Lab ID: 135852-003
Matrix: Water
Batch#: 44013
Units: ug/L

Diln Fac: 62.5

Analysis Method: EPA 8260

Prep Method: EPA 5030

Sampled: 10/01/98 Received: 10/01/98

Extracted: 10/15/98 Analyzed: 10/15/98

Analyte	Result	Reporting Limit
MTBE	2300	130
Benzene	3900	63
Toluene	8500	63
Ethylbenzene	1200	63
m,p-Xylenes	4200	63
o-Xylene	1800	63
Surrogate	%Recovery	Recovery Limits
1,2-Dichloroethane-d4	94	85-121
Toluene-d8	101	92-110
Bromofluorobenzene	101	84-115

Aromatic Volatile Organics EPA 8020 Analyte List

Analyzed:

Analysis Method: EPA 8260 Subsurface Consultants Client: EPA 5030 Prep Method: Project#: 1039.007

Location: 327 34th St.

10/01/98 Sampled: Field ID: MW-4 10/01/98 Received: 135852-004 Lab ID: 10/15/98 Extracted: Matrix: Water 10/15/98

Batch#: 44013 ug/L Units: Diln Fac: 7.143

Analyte	Result	Reporting Limit
MTBE	1300	14
Benzene	570	7.1
Toluene	46	7.1
Ethylbenzene	130	7.1
m,p-Xylenes	15	7.1
o-Xylene	21	7.1
Surrogate	%Recovery	Recovery Limits
1,2-Dichloroethane-d4	95	85-121
Toluene-d8	100	92-110
Bromofluorobenzene	101	84-115
== = ··· - · · · · · · · · · · · · · · ·		

Page 1 of 1

Curlis & Tormpkins, Lid.

Aromatic Volatile Organics EPA 8020 Analyte List

Client: Subsurface Consultants Analysis Method: EPA 8260
Project#: 1039.007 Prep Method: EPA 5030

Location: 327 34th St.

Field ID: MW-5 Sampled: 10/01/98
Lab ID: 135852-005 Received: 10/01/98
Matrix: Water Extracted: 10/15/98

Matrix: Water Extracted: 10/15/98
Batch#: 43982 Analyzed: 10/15/98
Units: ug/L
Diln Fac: 1

MTBE	ND	2.0
Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
m,p-Xylenes	ND	1.0
o-Xylene	ND	1.0

Surrogate %Recovery Recovery Limits

1,2-Dichloroethane-d4 88 85-121

Toluene-d8 102 92-110

Bromofluorobenzene 102 84-115

BATCH QC REPORT

Page 1 of 1 Curis & Tompkins, Ltd.)

Purgeable Aromatics by GC/MS EPA 8020 Analyte List

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8260

Prep Method:

EPA 5030

METHOD BLANK

Matrix: Water Batch#: 43982 Units: ug/L

Diln Fac: 1

Prep Date:

10/14/98

Analysis Date: 10/14/98

Analyte	Result	Reporting Limit
MTBE	ND	2.0
Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
m,p-Xylenes	ND	1.0
o-Xylene	ИD	1.0
Surrogate	%Rec	Recovery Limits
1,2-Dichloroethane-d4	87	85-121
Toluene-d8	100	92-110
Bromofluorobenzene	99	84-115

BATCH QC REPORT

Page 1 of 1

Curlls & Tompkins, Ltd.:

Purgeable Aromatics by GC/MS EPA 8020 Analyte List

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8260

Prep Method:

EPA 5030

METHOD BLANK

Matrix: Water Batch#: 43982

Units: ug/L Diln Fac: 1

Prep Date: 10/14/98 Analysis Date:

10/14/98

Analyte	Result	Reporting Limit
MTBE	ND	2.0
Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
m,p-Xylenes	ND	1.0
o-Xylene	ND	1.0
Surrogate	%Rec	Recovery Limits
1,2-Dichloroethane-d4	88	85-121
Toluene-d8	101	92-110
Bromofluorobenzene	100	84-115

BATCH QC REPORT

Purgeable Aromatics by GC/MS EPA 8020 Analyte List

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8260

Prep Method: EPA 5030

METHOD BLANK

Matrix: Water Batch#: 44013

Units: ug/L Diln Fac: 1 Prep Date: 10/15/98
Analysis Date: 10/15/98

Analyte	Result	Reporting Limit
MTBE	ND	2.0
Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
m,p-Xylenes	ND	1.0
o-Xylene	ND	1.0
Surrogate	%Rec	Recovery Limits
1,2-Dichloroethane-d4	98	85-121
Toluene-d8	100	92-110
Bromofluorobenzene	104	84-115

BATCH QC REPORT

Page 1 of 1

Purgeable Aromatics by GC/MS EPA 8020 Analyte List

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8260

Prep Method: EPA 5030

METHOD BLANK

Matrix: Water Pre

Batch#: 44013

Units: ug/L Diln Fac: 1 Prep Date: 10/15/98
Analysis Date: 10/15/98

Analyte	Result	Reporting Limit
MTBE	ND	2.0
Benzene	ND	1.0
Toluene	ND	1.0
Ethylbenzene	ND	1.0
m, p-Xylenes	ND	1.0
o-Xylene	ИD	1.0
Surrogate	%Rec	Recovery Limits
1,2-Dichloroethane-d4	95	85-121
Toluene-d8	100	92-110
Bromofluorobenzene	112	84-115

BATCH QC REPORT

Page 1 of 1
Curlis & Tompkins, Ltd.

Purgeable Aromatics by GC/MS EPA 8020 Analyte List

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8260

Prep Method: EPA 5030

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

Field ID: ZZZZZZ

Lab ID: 135883-003

Matrix: Water Batch#: 43982

Units: ug/L Diln Fac: 1 Sample Date: 09/30/98
Received Date: 10/02/98

Received Date: 10/02/98
Prep Date: 10/14/98

Analysis Date: 10/14/98

MS Lab ID: QC82198

Analyte	Spike Added	Sample	MS	%Rec #	Limits
Benzene	50	<1	45.26	91	80-116
Toluene	50	<1	50.62	101	82-114
Surrogate	%Rec	Limits			
1,2-Dichloroethane-d4	88	85-121			
Toluene-d8	100	92-110			
Bromofluorobenzene	97	84-115			·

MSD Lab ID: QC82199

Analyte	Spike Added	MSD	%Rec #	Limits	RPD #	Limit
Benzene	50	46.27	93	80-116	2	10
Toluene	50	51.31	103	82-114	1	10
Surrogate	%Rec	Limit	S			_
1,2-Dichloroethane-d4	86	85-12	1			
Toluene-d8	100	92-11	.0			
Bromofluorobenzene	96	84-11	.5			

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 2 outside limits

Spike Recovery: 0 out of 4 outside limits

BATCH QC REPORT

Curlis & Tompkins, Lid.

Page 1 of 1

Purgeable Aromatics by GC/MS EPA 8020 Analyte List

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8260

Prep Method: EPA 5030

BLANK SPIKE/BLANK SPIKE DUPLICATE

Matrix: Water Batch#: 44013 Units: ug/L Diln Fac: 1

10/15/98 Prep Date:

Analysis Date: 10/15/98

BS Lab ID: QC82308

Analyte	Spike Added	BS	%Rec #	Limits
Benzene	50	49.95	100	87-117
Toluene	50	52.94	106	88-116
Surrogate	%Rec	Limits		
1,2-Dichloroethane-d4	88	85-121		
Toluene-d8	101	92-110		
Bromofluorobenzene	100	84-115		

BSD Lab ID: QC82309

Analyte	Spike Added	BSD	%Rec #	Limits	RPD #	Limit
Benzene	50	46.69	93	87-117	7	10
Toluene	50	49.43	99	88-116	7	10
Surrogate	%Rec	Limit	s			
1,2-Dichloroethane-d4	88	85-12	1			
Toluene-d8	100	92-11	0			
Bromofluorobenzene	100	84-11	5			

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 2 outside limits

Spike Recovery: 0 out of 4 outside limits

^{*} Values outside of QC limits

BATCH QC REPORT

Page 1 of 1 Curlis & Tompkins, Ltd.

Purgeable Aromatics by GC/MS EPA 8020 Analyte List

Subsurface Consultants Client:

Project#: 1039.007 Location: 327 34th St. Analysis Method: EPA 8260

EPA 5030 Prep Method:

LABORATORY CONTROL SAMPLE

Water Matrix: 43982 Batch#: ug/L Units: Diln Fac: 1

10/14/98 Prep Date: 10/14/98 Analysis Date:

LCS Lab ID: QC82188

Analyte	Result	Spike Added	%Rec #	Limits
Benzene	45.99	50	92	87-117
Toluene	50.64	50	101	88-116
Surrogate	%Rec	Limits		
1,2-Dichloroethane-d4	87	85-121		
Toluene-d8	101	92-110		
Bromofluorobenzene	98	84-115		

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Spike Recovery: 0 out of 2 outside limits

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants

Project#: 1039.007 Location: 327 34th St. Analysis Method: EPA 8015M

Prep Method: EPA 5030

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
135852-001 MW-1	43779	10/01/98	10/04/98	10/04/98	
135852-002 MW-2	43779	10/01/98	10/04/98	10/04/98	
135852-003 MW-3	43868	10/01/98	10/08/98	10/08/98	
135852-004 MW-4	43779	10/01/98	10/04/98	10/04/98	

Matrix: Water

Analyte Diln Fac:	Units	135852-001 1	135852-002 10	135852-003 10	135852-004
Gasoline C7-C12	ug/L	<50	84000	38000	1100
Surrogate					
Trifluorotoluene Bromofluorobenzene	%REC %REC	95 106	103 129	113 139	112 115

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants

Project#: 1039.007 Location: 327 34th St. Analysis Method: EPA 8015M

Prep Method: EPA 5030

Sample # Client ID	Batch #	Sampled	Extracted	Analyzed	Moisture
135852~005 MW-5	43779	10/01/98	10/04/98	10/04/98	<u>-</u>

Matrix: Water

Analyte Diln Fac:	Units	135852-005 1	
Gasoline C7-C12	ug/L	<50	
Surrogate			
Trifluorotoluene	%REC	84	
Bromofluorobenzene	%REC	98	

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants

Project#: 1039.007

Location: 327 34th St.

Analysis Method: EPA 8015M

Prep Method: EPA 5030

METHOD BLANK

Matrix: Water Prep Date: 10/03/98
Batch#: 43779 Analysis Date: 10/03/98

Batch#: 43779 Units: ug/L Diln Fac: 1

Analyte	Result	
Gasoline C7-C12	<50	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene	78	59-162
Bromofluorobenzene	86	59-162

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants Analysis Method: EPA 8015M

Project#: 1039.007 Prep Method: EPA 5030

Location: 327 34th St.

METHOD BLANK

Matrix: Water Prep Date: 10/08/98
Batch#: 43868 Analysis Date: 10/08/98

Batch#: 43868 Analysis Date: 10/08/98
Units: ug/L

MB Lab ID: QC81790

Diln Fac: 1

Analyte	Result	
Gasoline C7-C12	<50	
Surrogate	%Rec	Recovery Limits
Trifluorotoluene	109	59-162
Bromofluorobenzene	116	59-162

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants Analysis Method: EPA 8015M

Project#: 1039.007 Prep Method: EPA 5030 Location: 327 34th St.

LABORATORY CONTROL SAMPLE

Matrix: Water Prep Date: 10/03/98

Batch#: 43779 Analysis Date: 10/03/98 Units: ug/L

LCS Lab ID: QC81459

Diln Fac: 1

Analyte	Result	Spike Added	%Rec #	Limits
Gasoline C7-C12	2047	2000	102	80-119
Surrogate	%Rec	Limits		
Trifluorotoluene	98	59-162	 -	
Bromofluorobenzene	138	59-162		

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Spike Recovery: 0 out of 1 outside limits

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants Analysis Method: EPA 8015M

Project#: 1039.007 Prep Method: EPA 5030

Location: 327 34th St.

LABORATORY CONTROL SAMPLE

Matrix: Water Prep Date: 10/08/98
Patch#: 43868 Analysis Date: 10/08/98

Batch#: 43868 Analysis Date: 10/08/98
Units: ug/L

LCS Lab ID: QC81788

Diln Fac: 1

Analyte	Result	Spike Added	%Rec #	Limits
Gasoline C7-C12	1837	2000	92	80-119
Surrogate	%Rec	Limits		
Trifluorotoluene	130	59-162		
Bromofluorobenzene	123	59-162		

[#] Column to be used to flag recovery and RPD values with an asterisk

NM: Not meaningful

^{*} Values outside of QC limits

Spike Recovery: 0 out of 1 outside limits

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants Analysis Method: EPA 8015M

Project#: 1039.007 Prep Method: EPA 5030

Location: 327 34th St.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

 Field ID: ZZZZZZ
 Sample Date: 09/22/98

 Lab ID: 135806-001
 Received Date: 09/23/98

 Matrix: Water
 Prep Date: 10/04/98

 Batch#: 43779
 Analysis Date: 10/04/98

Batch#: 43779 Units: ug/L Diln Fac: 1

MS Lab ID: QC81462

Analyte	Spike Added	Sample	MS	%Rec #	Limits
Gasoline C7-C12	2000	174.8	2224	102	71-131
Surrogate	%Rec	Limits			
Trifluorotoluene Bromofluorobenzene	107 154	59-162 59-162			

MSD Lab ID: QC81463

Analyte	Spike Added	MSD	%Rec #	Limits	RPD #	Limit
Gasoline C7-C12	2000	2205	102	71-131	1	26
Surrogate	%Rec	Lim	its			
Trifluorotoluene	98	59-				
Bromofluorobenzene	143	59-1	162			

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits RPD: 0 out of 1 outside limits

Spike Recovery: 0 out of 2 outside limits

BATCH QC REPORT

TVH-Total Volatile Hydrocarbons

Client: Subsurface Consultants Analysis Method: EPA 8015M

Project#: 1039.007 Prep Method:
Location: 327 34th St.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE

 Field ID: ZZZZZZ
 Sample Date: 09/30/98

 Lab ID: 135925-003
 Received Date: 10/03/98

 Matrix: Water
 Prep Date: 10/08/98

 Batch#: 43868
 Analysis Date: 10/08/98

Units: ug/L Diln Fac: 1

MS Lab ID: QC81791

Analyte	Spike Added	Sample	MS	%Rec #	Limits
Gasoline C7-C12	2000	<50	1917	96	71-131
Surrogate	%Rec	Limits			
Trifluorotoluene Bromofluorobenzene	134 133	59-162 59-162			

MSD Lab ID: QC81792

Analyte	Spike Added	MSD	%Rec #	Limits	RPD #	Limit
Gasoline C7-C12	2000	1940	97	71-131	1	26
Surrogate	%Rec	Limi	ts			
Trifluorotoluene Bromofluorobenzene	134 136	59-1 59-1				

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 1 outside limits

Spike Recovery: 0 out of 2 outside limits

GC04 TVH 'J' Data File Rtx1FID

Page 1 of 1 Sample #: ph<2,1:10 mple Name : d,135852-002a,43779 Date : 10/4/98 06:15 PM : G:\GC04\DATA\276J034_raw leName Time of Injection: 10/4/98 05:49 PM Method : TVHBTXE High Point : 1094.35 mV Low Point : 13.48 mV art Time : 0.00 min End Time : 26.00 min Plot Offset: 13 mV Plot Scale: 1080.9 mV le Factor: 1.0 Response [mV] \bigcirc 1.67 1.95 1.79 2.7_{2.95} 3.91 S 10 15 20 ACCOMMON BASELINE* Time Imin _7,33 TRIFLUO -11.22 12.70 _13.96 14.92 BROMOF --15.33 15.98 16.28 16.52 16.97 17.46 18.23 ___18.51 -18.92 1983 19.83 20,16 22.79 -25.08

GC05 'G' File TVH

mple Name : RR,D,135852-003,43868, : G:\GC05\DATA\281G006.raw leName

: TVHBTXE

Start Time : 0.00 min ale Factor: -1.0

Method

End Time : 26.80 min

Plot Offset: 9 mV

Sample #:

Date : 10/8/98 02:42 PM

Time of Injection: 10/8/98 02:15 PM

Low Point : 8.93 mV

High Point : 258.93 mV

Page 1 of 1

Plot Scale: 250.0 mV

GC04 TVH 'J' Data File Rtx1FID

GC05 'G' File TVH

Page 1 of 1 mple Name : CCV/LCS,QC81788,98WS6477,43868, Sample #: GAS Date: 10/8/98 12:15 PM : G:\GC05\DATA\281G002.raw Time of Injection: 10/8/98 11:48 AM Method : TVHBTXE High Point : 260.91 mV Low Point : 10.91 mV End Time : 26.80 min Start Time : 0.00 min Plot Scale: 250.0 mV ale Factor: -1.0 Plot Offset: 11 mV Gasoline Response [mV] Ģ -0-13- -+CB _0.76 _1.21 = -2.08 -2.44 -3.03 _3.65 _4.16 _4.57 _4.93 _5.57 _6.16 TRIFLUO _ _6.72 _8.51 _9.01 _9.37 **-9.84** BROMOF . 15.7 16.1 16.5 16.9 -18:5 -18:8 __19.3 __19.8 __20.1 __20.5 __21.0 21.5 22.2 -22.5 23.1 .23.6 24.0 24.5 24.9 25.8 26.2

		784									سے	Q.	ス	L												P	AG	iΕ_		۲.		OF			_
CHAIN OF CU									Ι.	3	1	C	, 5	_												Γ		^	NAI	YSK	s RE	QUE	STEC)	
PROJECT NAME: _ JOB NUMBER: PROJECT CONTAC SAMPLED BY:	327 34 1039.00 OT: Mag Mei Deunis Alea	th <	51 													Mc	To.	np len Ter	kir val	5 ea								9260							
LABORATORY I.D. NUMBER	SCI SAMPLE NUMBER	WATER		/ASTE Y		VOA		PINT	TUBE NI	RS		PF	RES	FRV	ED	NONE	MONT	н	SAI DAY	MPLI YE	NG I	DATI	TIN	Æ.		NOTES	TVH	1	20/34LW						!
-1 -3 -4 -5	MW-Z MW-Z MW-3 MW-4 MW-S	XXXXX				77777					-	XXXX) () ()	XXXX		10		0 1		8		431	31300	000	*	XXX		X X X						
	CHAI	N OF					-	· · · · · · · · · · · · · · · · · · ·	Ire)	1		1 d	ATE	- / TI	ME		COM	ИМĒ	NTS	& NC)TE	s: *	: N	Ju-	ح ماطع	ha	- 5 1/i	Prigh	odi C	et ove	ini	we l	1. trò	ns	

С	HAIN OF CUS	TODY RECORD	
RELEASED BY: (Signature) RELEASED BY: (Signature)	DATE / TIME	FIELEASED BY (Signature) FIELEASED BY: (Signature)	DATE / TIME
RELEASED BY: (Signature)	DATE / TIME	RELEASED BY: (Signature)	DATE / TIME
RELEASED BY: (Signature)	DATE / TIME	RELEASED BY: (Signature)	DATE / TIME

in sample.

Subsurface Consultants, Inc.
171 - 12th Street, Suite 202, Oakland, CA 94607
(610) 268-0461 - FAX: (610) 268-0137
3736 Mt. Diablo Blvd., Ste. 200, Lafayette, CA 94649
(925) 299-7960 - (926) 289-7970