ETYTROPHENTAL PROTECTION

February 10, 2000

00 FEB 15 AM 8: 51

Alameda County
Health Care Services Agency
ATTN: Tom Peacock
Department of Environmental Health
Environmental Protection Division
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502-6577

STID: 819

Claim #: 002192

Re: City of Paris Cleaners, 3516 Adeline Street, Oakland, Ca. 94608

Dear Tom,

Enclosed please find the our latest monitoring report, from Dugan and Assoc., along with the soil analysis Juliet Shin requested we complete so we could prepare for closure. I am now awaiting Dugan and Associates bid for sealing the industrial well found on sight. As soon as I receive this information, I will forward it on to you.

I am also aware that we have been awaiting a new case worker and if that information is available yet I would appreciate it. I am looking forward to closure of this site and am working diligently towards that goal. I look forward to hearing from you.

Champion

Thank you,

Linda Champion

9441 Laguna Lake Way

Elk Grove, California 95758

(916) 684-2993

(916) 684-9799 fax

Enclosures

License # RG 6253
Soil & Groundwater Sampling
E-Mail: H20GeoData@AOL.com

DUGAN ASSOCIATES

1180 Delmas Avenue, San Jose, CA. 95125 Telephone 408/287-2175 Fax 408/287-2176 Bill Dugan, R.G.

Ms. Linda Champion 9441 Laguna Lake Way Elk Grove, California 95758 February 5, 2000 Project: 218

Subject:

Groundwater Monitoring Report - Fourth Quarter 1999

3516 Adeline Street, Oakland, California.

Ms. Champion:

Dugan Associates presents herein the results of groundwater sampling conducted at the above-mentioned site for groundwater quality assessment purposes (See Figure 1). The following sampling tasks were performed on monitoring wells MW-1, MW-2, and MW-3 by Dugan Associates:

- 1) Measured the total depth and static water levels.
- 2) Water surfaces were further inspected for the presence of immiscibles;
- 3) Electrical conductivity, pH, and temperature readings were obtained during the removal of three well volumes of water, and at the time of sample collection.
- 4) Samples were collected using a single-use disposable bailer per well, placed in laboratory supplied containers, and transported to a State-certified analytical laboratory [D.H.S. Lab# 1644] for EPA Method 8010 analyses [Volatile Halocarbons], and EPA Method 8270 compounds [Semi-Volatile Organics by GC/MS].

Data Summary

EPA Method 8010 Compounds. Of the 30 compounds that form the scope of EPA Method 8010 analyses, only two compounds were reported above laboratory detection limits: 1,2-Dichlorobenze and 1,1-Dichloroethane. 1,2-Dichlorobenze was detected at 0.87 ug/L (parts per billion) from the sample from well MW-3 [lab sample #27668]. 1,1-Dichloroethane was detected at 0.59 ug/L from the sample from well MW-1 [lab sample #27666]; at 0.53 ug/L from the sample from well MW-2 [lab sample #27667], and at 0.57 ug/L from the sample from well MW-3 [lab sample #27668]. See Figure 1 for a site map showing the locations of wells MW-1, MW-2, and MW-3. These reported concentrations do not appear to be above levels of regulatory concern.

Data Summary (Continued)

- 2) EPA Method 8270 Compounds. Of the 68 compounds that form the scope of EPA Method 8270 analyses, only two compounds were reported above laboratory detection limits: 2-Methylnaphthalene and Naphthalene. 2-Methylnaphthalene was detected at 25 ug/L (parts per billion) from the sample from well MW-2 [lab sample #27667]. Naphthalene was detected at 49 ug/L from the sample from well MW-2 [lab sample #27668], and at 88 ug/L from the sample from well MW-3 [lab sample #27668]. These reported concentrations do not appear to be above levels of regulatory concern.
- 3) Groundwater flow was calculated towards the north on 12/15/99 as shown on Figure 2 [using wells MW-1, MW-2, and MW-3] with a slope of 0.003 ft/ft.

Limitations and Certification

I certify that the work presented in this report was performed under my supervision. To the best of my knowledge, the data contained herein are true and accurate, and the work was performed in accordance with professional standards.

William R. Dugan, R.G.

Date

Sampling Manager

Table 1. Cumulative Groundwater Monitoring Data [1 page]

Table 2. Results of Laboratory Analyses of Groundwater [Cumulative - 2 pages]

Figure 1: Generalized Site Map

Figure 2: Groundwater Elevation Data [12/15/99].

Attachment A: Chain of Custody Record and Laboratory Data Sheets

Attachment B: Field Methods and Measurements

TABLE 1
CUMULATIVE GROUNDWATER MONITORING DATA
3516 Adeline Street

Oakland, California

Well Date	Elevation of Wellhead	Depth to Water	Elevation of Groundwater	
<u>MW-1</u>	4= 44	40.00		
11/18/92	17.44	13.99	3.45	
11/04/93		16.79	0.65	
03/08/94		14.14	3.30	
08/02/94		13.18	4.26	
02/08/95		10.92	6.52	
07/08/96		11.62	5.82	
10/09/96		14.11	3.33	
03/18/97		12.37	5.07	
06/19/97		13.26	4.18	
11/14/97		11.45	5.99	
12/15/99		11.31	6.13	
MW <u>-2</u>				
$1\overline{1/18/9}2$	17.31	13.18	4.13	
11/04/93		14.84	2.47	
03/08/94		11.50	5.81	
08/02/94		13.14	4.17	
02/08/95		8.18	9.13	
07/08/96		11.06	6.25	
10/09/96		12.38	4.93	
03/18/97		10.61	6.70	
06/19/97		11.68	5.63	
11/14/97		10.61	6.70	
12/15/99		10.97	6.34	
MW-3				
11/18/92	17.44	13.93	3.51	
11/04/93	= • • • •	15.16	2.28	
03/08/94		13.43	4.01	
08/02/94		12.82	4.62	
02/08/95		7.62	9.82	
07/08/96		10.97	6.47	
10/09/96		11.84	5.60	
03/18/97		10.16	7.28	
06/19/97		11.40	6.04	
11/14/97		10.71	6.73	
12/15/99		10.71	6.48	

Well Elevation per BT Associates . BM taken as 20 ft located at cement at gate entrance

TABLE 2A RESULTS OF LABORATORY ANALYSES OF GROUNDWATER SAMPLES 3516 Adeline Street Oakland, California

MW-1	Well Date	TPHss	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MtBE	ТРНд
11/04/93 2,000 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA <50 03/28/94 150 <50 35 40 72 120 NA NA 08/02/94 2,100 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA <50 02/08/95 620 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA <50 02/08/96 37,000 <50 1.6 <0.5 <0.5 <0.5 <0.5 NA <50 02/08/96 37,000 <50 1.6 <0.5 <0.5 <0.5 <0.5 NA <50 02/08/97 2,600 NA <0.5 5.0 <0.5 <0.5 NA NA 03/18/97 2,600 NA <0.5 5.0 <0.5 <0.5 NA NA 03/18/97 2,600 NA <0.5 <0.5 <0.5 1.2 0.71 <5.0 NA 11/14/97 10,000 NA <0.5 <0.5 <0.5 110 1.2 <5.0 NA 11/14/97 10,000 NA <0.5 <0.5 <0.5 <0.5 NA NA 11/14/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA 10/09/96 4,100 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA 10/09/96 4,100 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA 11/14/97 130 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA 11/14/97 130 NA <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA 11/14/97 130 NA <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA 11/04/93 320 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA 11/04/93 320 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA 11/14/97 130 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA 11/	MW-1								
03/28/94	11/18/92	1,800	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
08/02/94 2,100	11/04/93	2,000	< 50	< 0,5	< 0.5	< 0.5	< 0.5	NA	< 50
02/08/95 620 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA <50 07/08/96 37,000 <50 1.6 <0.5 <0.5 <0.5 74. 7.9 110,000* 110/09/96 42,000 NA <0.5 5.0 <0.5 74. 7.9 110,000* NA <0.5 5.0 <0.5 8.0 NA NA 03/18/97 2,600 NA <0.5 1.5 1.5 9.6 <6.0 NA NA 04/19/97 660 NA <0.5 <0.5 1.2 0.71 <5.0 NA NA 04/19/97 10,000 NA <0.5 <0.5 1.2 0.71 <5.0 NA NA 04/19/97 10,000 NA <0.5 <0.5 110. 1.2 <0.71 <5.0 NA NA 04/19/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/95 570 <50 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/96 1,800 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA <0.60/19/96 1,800 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA <0.5 04/19/97 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/97 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/97 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/97 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 <0.50 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 11,000 NA <0.5 <0.5 <0.5 <0.5 NA <0.5 02/19/99 10,000 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA <0.5 02/19/99 10,000 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA <0.5 02/19/99 1.1 <0.5 <0.5 NA NA NA 04/19/99 1.1 <0.0 NA NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 1.1 <0.0 NA NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 1.1 <0.0 NA NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 1.1 <0.0 NA NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 1.1 <0.5 <0.5 NA NA NA 04/19/99 1.1 <0.0 NA NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 04/19/99 1.1 <0.5 <0.5 NA NA NA 04/19/	03/28/94	150	< 50	35	40	72	120.	NA	NA
02/08/95 620 <50 <0.5 <0.5 <0.5 <0.5 NA <50 <0.708/96 37,000 <50 1.6 <0.5 <0.5 <0.5 74. 7.9 110,000*** 10/09/96 42,000 NA <0.5 5.0 <0.5 1.5 1.5 9.6 <6.0 NA A A COS 1.5 1.5 1.5 9.6 <6.0 NA A COS 1.1/14/97 10,000 NA <0.5 <0.5 1.5 1.5 1.5 9.6 <6.0 NA A COS 1.1/14/97 10,000 NA <0.5 <0.5 1.2 0.71 <5.0 NA NA COS 11/14/97 10,000 NA <0.5 <0.5 1.2 0.71 <5.0 NA NA COS 11/14/97 10,000 NA <0.5 <0.5 110 1.2 <0.71 <5.0 NA NA COS 11/14/97 10,000 NA <0.5 <0.5 110 1.2 <0.71 <5.0 NA NA COS 11/14/93 3,200 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA	08/02/94	2,100	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	< 50
10/09/96	02/08/95		< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	< 50
10/09/96	07/08/96	37,000	< 50	1.6	< 0.5	< 0.5	74.	7.9	110,000*
06/19/97	10/09/96		NA	< 0.5	5.0		< 0.5	NA	NA
11/14/97 10,000 NA < 0.5 < 0.5 110. 1.2 < 5.0 NA MW-2 11/18/92 630 < 50 < 0.5 < 0.5 < 0.5 < 0.5 NA NA 11/04/93 3,200 < 50 < 0.5 < 0.5 < 0.5 < 0.5 NA < 50 03/28/94 45 < 50 1.4 2 11 19 NA NA 08/02/94 170 < 50 < 0.5 < 0.5 < 0.5 < 0.5 NA < 50 07/08/96 1,800 < 50 < 0.5 < 0.5 < 0.5 < 0.5 NA < 50 07/08/96 1,800 < 50 < 0.5 < 0.5 < 0.5 < 0.5 NA < 50 07/08/96 4,100 NA < 0.5 < 0.57 < 0.5 < 0.5 NA NA 10/09/96 4,100 NA < 0.5 < 0.57 < 0.5 < 0.5 NA NA 11/14/97 130 NA < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 </td <td>03/18/97</td> <td>2,600</td> <td>NA</td> <td>< 0.5</td> <td>1.5</td> <td>1.5</td> <td>9.6</td> <td>< 6.0</td> <td>NA</td>	03/18/97	2,600	NA	< 0.5	1.5	1.5	9.6	< 6.0	NA
MW-2	06/19/97			< 0.5	< 0.5	1.2		< 5.0	
11/18/92 630 <50	11/14/97	10,000	NA	< 0.5	< 0.5	110.	1.2	< 5.0	NA
11/04/93									
03/28/94	11/18/92	630	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA
08/02/94 170	11/04/93	3,200		< 0.5	< 0.5	< 0.5	< 0.5	NA	
02/08/95 570 <50 <0.5 <0.5 <0.5 <0.5 NA <50 07/08/96 1,800 <50 <0.5 2.6 15 24 6.3 2,800* 10/09/96 4,100 NA <0.5 0.57 <0.5 <0.5 NA NA NA 03/18/97 240 NA <0.5 0.57 <0.5 <0.5 NA NA 06/19/97 2,500 NA <0.5 <0.5 9.1 <0.5 <5.0 NA 11/14/97 130 NA <0.5 <0.5 0.9 1.2 <5.0 NA 11/04/93 320 <50 <0.5 <0.5 <0.5 <0.5 NA NA 08/02/94 <20 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 08/02/94 <20 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 08/02/94 <20 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 07/08/96 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 NA <0.0 NA 08/01/94 2,500 NA NA <0.5 01.0 NA NA <0.5 02/08/95 <20 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA <0.5 02/08/96 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA <0.5 03/01/94 2,500 NA <0.5 03/01/94 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA <0.5 04/05/96 2,500 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA <0.5 05/01/97 21,000 NA <0.5 <0.5 <0.5 <0.5 NA NA 08/01/97 1,400 NA <0.5 <0.5 <0.5 <0.5 NA NA 08/01/97 1,400 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 08/01/97 1,400 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 08/01/14/97 1,400 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 08/01/14/97 1,400 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA NA 08/01/14/97 1,400 NA <0.5 <0.5 <0.5 <0.5 28 28 28 <5.0 NA	03/28/94	45	< 50	1.4	2		19	NA	
07/08/96 1,800 < 50	08/02/94		< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	< 50
10/09/96 4,100 NA <0.5	02/08/95	570	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	
03/18/97	07/08/96	1,800	< 50	< 0.5	2.6		24	6.3	2,800*
06/19/97	10/09/96	4,100	NA	< 0.5	0.57		< 0.5		
11/14/97 130 NA <0.5 <0.5 0.9 1.2 <5.0 NA MW-3 11/18/92 11,000 <50 <0.5 <0.5 <0.5 <0.5 NA	03/18/97	240	NA	< 0.5	0.57		< 0.5		NA
MW-3 11/18/92 11,000 <50 <0.5 <0.5 <0.5 <0.5 NA NA 11/04/93 320 <50	06/19/97	2,500	NA	< 0.5	< 0.5	9.1	< 0.5	< 5.0	NA
11/18/92 11,000 < 50	11/14/97	130	NA	< 0.5	< 0.5	0.9	1.2	< 5.0	NA
11/04/93 320 <50 <0.5 <0.5 <0.5 <0.5 NA <50 03/28/94 45 <50 0.8 0.9 5 10 NA NA 08/02/94 <20 <50 <0.5 <0.5 <0.5 <0.5 NA <50 02/08/95 <20 <50 <0.5 <0.5 <0.5 <0.5 <0.5 NA <50 02/08/96 2,500 <50 1.0 <0.5 8.8 8 10 2,200* 10/09/96 2,600 NA <0.5 <0.5 <0.5 <0.5 <0.5 NA NA 03/18/97 2,500 NA <0.5 0.61 0.63 5.2 NA NA 06/19/97 21,000 NA <0.5 <0.5 11 <0.5 <5.0 NA NA 11/14/97 1,400 NA <0.5 <0.5 28 28 28 <5.0 NA	<u>MW-3</u>								
03/28/94	11/18/92	11,000	< 50		< 0.5			NA	
08/02/94	11/04/93	320	< 50	< 0.5	< 0.5	< 0.5	< 0.5	NA	
02/08/95 <20					0.9				
07/08/96 2,500 <50									
10/09/96 2,600 NA <0.5 <0.5 <0.5 <0.5 NA NA O3/18/97 2,500 NA <0.5 0.61 0.63 5.2 NA NA O6/19/97 21,000 NA <0.5 <0.5 11 <0.5 <5.0 NA NA O6/19/97 1,400 NA <0.5 <0.5 28 28 28 <5.0 NA NA O6/19/97 1,400 NA <0.5 <0.5 28 28 28 <0.5 NA									
03/18/97									
06/19/97 21,000 NA <0.5 <0.5 11 <0.5 <5.0 NA 11/14/97 1,400 NA <0.5 <0.5 28 28. <5.0 NA MCLs 680 1,750									
11/14/97 1,400 NA <0.5 <0.5 28 28. <5.0 NA MCLs 1.0 680 1,750									
MCLs 680 1,750									
" 7	11/14/97	1,400	NA	< 0.5	< 0.5	28	28.	< 5.0	NA
" 7	MCLs		1.0		680	1 750			
DWALs				100	000	1,700			

Results in micrograms/liter $(\mu g/l)$ = parts per billion (ppb).

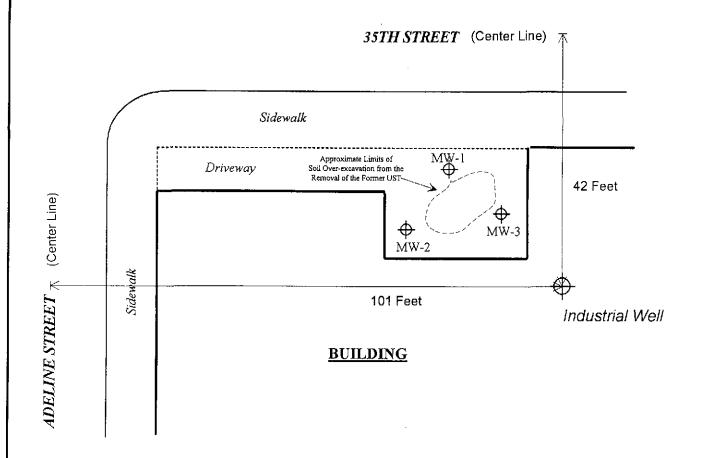
ND: Less than the detection limit for the method of analysis (See laboratory data sheets).

Maximum Contaminant Levels in Drinking Water, DHS (October 1990)

DWALs: Drinking Water Action Levels, DHS (October 1990) MtBE: Methyl-tert-Butyl-Ether
*: Components found in the gasoline range, however they are not characteristic of gasoline components.

TABLE 2B RESULTS OF LABORATORY ANALYSES OF GROUNDWATER SAMPLES 3516 Adeline Street

Oakland, California


<u>Well</u> Date	1,2-DCB	1,1-DCA	2-Methyl- Naphthalene	Naphthalene	
MW-1 12/15/99	<0.5	0.59	< 0.5	< 0.5	
<u>MW-2</u> 12/15/99	< 0.5	0.53	< 0.5	49.	
<u>MW-3</u> 12/15/99	0.87	0.57	25.	88.	

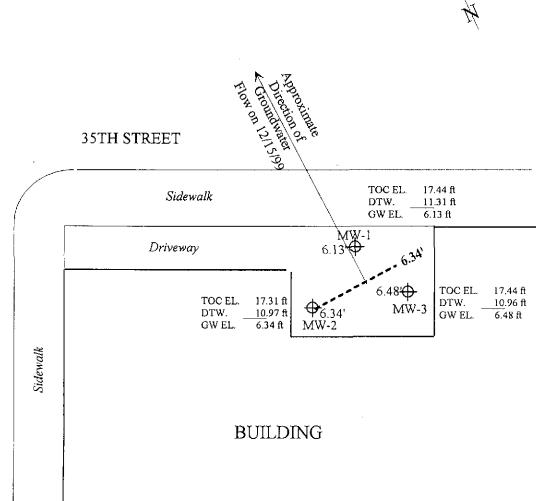
Results in micrograms/liter $(\mu g/l)$ = parts per billion (ppb).

1,2-DCB: 1,2-Dichlorobenzene by EPA Method 601 1,1-DCA: 1,1-Dichloroethane by EPA Method 601

<: Less than the detection limit for the method of analysis (See laboratory data sheets).

Legend

MW-3 = Existing Monitoring Well


Approximate Scale: 1 inch = 20 feet [Industrial well measured 12/15/99]

Base Map Source: BT Associates (1995) for approximate locations of wells

Site Location: 1998 Thomas Bros. Bay Area Map, Page & Grid 649 F1 [See Attachment B].

DUGAN ASSOCIATES	Generalized Site Map	FIGURE
1180 Delmas Ave. San Jose, California	Former City of Paris Cleaners 3516 Adeline Street	1
JOB NO. 218	Oakland, California	•

Legend

6.34 = Groundwater Elevation in feet

ADELINE STREET

--- = Line of potential equal elevation of groundwater in feet

 $\begin{array}{rcl} MW\text{--}3 &=& Existing \ Monitoring \ Well \\ & & & \end{array}$

Approximate Scale: 1 inch = 20 feet

Base Map Source: BT Associates (1995) for approximate locations of wells

DUGAN ASSOCIATES 1180 Delmas Ave.	Groundwater Gradient Map (12/15/99)	FIGURE
San Jose, California	Former City of Paris Cleaners	2
JOB NO. 218	3516 Adeline Street Oakland, California	

ATTACHMENT A

CHAIN OF CUSTODY RECORD

LABORATORY DATA SHEETS

DUGAN ASSOCIATES SAMPLING **SERVICES** Subsurface Environmental Sampling

RELINQUESTED BY (SIGNATURE)

DUGAN ASSOCIATES

RECEIVED BY (SIGNATURE):

AFFILIATION:

AFFILIATION

Chain of Custody Record

UST FUND PROJECT SITE? yes no Ø D

TIME

	16	3138	+ Z.C	æ 53	;		CERTI ANALY LABORA	TICAL	. — —		ST	CALIFORM ATE-CERT BORATOR	IFIED	р.о.н.
OJECT NAME	<u> </u>			ADDRES 5						TURN	AROUND TI	VIE		
Former City of Paris cle	aners		3516	Adeline	Street, (Dakland,	CA			C			STAN	DARD
MPLED BY (PRINT):	DATE (S):		ন্ত)	7. /	& /	/	* /	• /	\$ \	\cdot /	。 / s	, / ,
David Nitzberg	12/15/99		NE G	3	* /	<i>§</i> /		\$ / S		\$ / y				9 4 5
SAMPLE I.D.#:	SAMP	PLED	NUMBER OF CONTAINERS	P. S.	, Ref	May 1	Market Lands	# 15 F. W.	TON TO THE	200	ETO WEIGHT	San Manga	SON WEND	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
W-MW-1	12/15/99		7	Water	1 -		1			1	X	<u>/</u>	X	Υ.
W-MW-2	12/15/99		7	Water				 		 	X	—	Х	
W-MW-3	12/15/99		7	Water	 	+	-	-	 -	 	X		X	
					† ··		†- -	 	 	†				
								-					27	7666
								-					_	
Tay.			-			<u> </u>					-		- 41	667
													276	668
						ļ		<u> </u>	ļ <u>.</u>	ļ				1 1
				<u> </u>		ļ	<u> </u>		ļ			· · · · · · · · · · · · · · · · · · ·		
				ļ <u>.</u>	ļ	<u> </u>	ļ		ļ <u></u>	<u> </u>		_	<u> </u>	
				ļ <u>-</u>	 	ļ	ļ		<u></u>	ļ			 	
			ļ			 		 	 	 				
				<u> </u>			<u> </u>	<u> </u>	<u></u>		<u> </u>			L,
OMMENTS / SPECIAL INSTRUC	TIONS TO LABORAT	rory:												

AFFILIATION:

AFFILIATION:

RECEIVED BY (SIGNATURE):

RECEIVED BY (SIGNATURE):

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Dugan Associates	Client Project ID: Former City of Paris	Date Sampled: 12/15/99
1180 Delmas Avenue	Cleaners	Date Received: 12/17/99
San Jose, CA 95125	Client Contact: Bill Dugan	Date Extracted: 12/17/99
	Client P.O:	Date Analyzed: 12/17/99

12/27/99

Dear Bill:

Enclosed are:

- 1). the results of 3 samples from your Former City of Paris Cleaners project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly

Edward Hamilton, Lab Director

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Dugan Associates 1180 Delmas Avenue	Client Project ID Cleaners	: Former City of Paris	Date Sampled: 12/15/99 Date Received: 12/17/99			
San Jose, CA 95125	Client Contact: E	Bill Dugan	Date Extracted: 12/17-12/20/9 Date Analyzed: 12/17-12/20/9			
	Client P.O:					
EPA method 601 or 8010	Volati	le Halocarbons	- PASING			
Lab ID	27666	27667	27668			
Client ID	W-MW-1	W-MW-2	W-MW-1			
Matrix	W	w	W			

Lab ID	27666	27667	27668	
Client ID	W-MW-1	W-MW-2	W-MW-1	
Matrix	W	W	W	· · · · · · · · · · · · · · · · · · ·
Compound		Concen	tration	
Bromodichloromethane	ND	ND	ND	
Bromoform ^(b)	ND	ND	ND	
Bromomethane	ND	ND	ND	
Carbon Tetrachloride ^(c)	ND	ND	NĎ	
Chlorobenzene	ND	ND	ND	
Chloroethane	ND	ND	ND	
2-Chloroethyl Vinyl Ether ^(d)	ND	ND	ND	
Chloroform (e)	ОИ	ND	ND	· · · · · · · · · · · · · · · · · · ·
Chloromethane	ND	ND	ND	
Dibromochloromethane	ND	ND	ND	
1,2-Dichlorobenzene	ND	ND	0.87	
1,3-Dichlorobenzene	ND	ND	ND	
1,4-Dichlorobenzene	ND	ND	ND	
Dichlorodifluoromethane	ND	ND	ND	
1,1-Dichloroethane	0.59	0.53	0.57	·
1,2-Dichloroethane	ND	ND	ND	
1,1-Dichloroethene	ND	ND	ND	······································
cis 1,2-Dichloroethene	ND	ПО	ND	
trans 1,2-Dichloroethene	ND	ND	ND	
1,2-Dichloropropane	ND	ND	ND	
cis 1,3-Dichloropropene	ND	ND	ND	
trans 1,3-Dichloropropene	ND	ND	ND	
Methylene Chloride ^(f)	ND	ND	ND	
1,1,2,2-Tetrachloroethane	ND	ND	ND	
Tetrachloroethene	ND	ND	ND	
1,1,1-Trichloroethane	ND	ND	ND	
1,1,2-Trichloroethane	ND	ND	ND	
Trichloroethene	ND	ND	ДN	
Trichlorofluoromethane	ND	ND	ND	
Vinyl Chloride ^(g)	ND	ND	ND	
% Recovery Surrogate	108	l 10	110	
Comments				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil and sludge samples in ug/kg, wipe samples in ug/wipe Reporting limit unless otherwise stated: water/TCLP/SPLP extracts, ND<0.5ug/L; soils and sludges, ND<5ug/kg; wipes, ND<0.2ug/wipe ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis

⁽b) tribromomethane; (c) tetrachloromethane; (d) (2-chloroethoxy) ethene; (e) trichloromethane; (f) dichloromethane; (g) chloroethene; (h) a lighter than water immiscible sheen is present; (i) liquid sample that contains greater than ~5 vol. % sediment; (j) sample diluted due to high organic content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

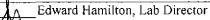
		,			<u> </u>			·	
Dugan Associates		ject I	D: For	mer City of Paris	Date Sam	pled: 12/15/9	9		
1180 Delmas Avenue	Cleaners				Date Received: 12/17/99				
San Jose, CA 95125	Client Co	Client Contact: Bill Dugan Date					99		
	O1: . D O				D-4- 4	1 10/10/00			
	Client P.C	Client P.O: Date Anal							
EPA method 625 and 3510 or 8270 an									
Lab ID				27666					
Client ID				W-MW-1					
Matrix				W				•	
		Report	ing Limit				Report	ing Limit	
Compound	Concentration*	W	S	Compound		Concentration*	W	S	
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate	·	ND	10	0.33	
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine		ND	10	0.33	
Anthracene	ND	10	0.33	Fluoranthene		ND	10	0.33	
Benzidine	ND	50	1.6	Fluorene		ND	10	0.33	
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33	
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene		ND	10	0.33	
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopenta	liene	ND	50	1.6	
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33	
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrend	;	ND	10	0.33	
Benzo(a)pyrene	ND	10	0.33	Isophorone		ND	10	0.33	
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene		ND	10	0.33	
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cre	sol)	ND	10	0.33	
Bis(2-chloroethyl) Ether	ND	10	0.33	4-Methylphenol (p-Cre		ND	10	0.33	
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	•	ND	10	0.33	
Bis(2-ethylhexyl) Phthalate	ND	20	0.66	2-Nitroaniline		ND	50	1.6	
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline		ND	50	1.6	
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline	•	ND	50	1.6	
4-Chloroanaline	ND	20	0.66	2-Nitrophenol		ND	50	1.6	
4-Chloro-3-methylphenol	ND	10	0.33	4-Nitrophenol		ND	50	1.6	
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene		ND	10	0.33	
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylami	ne	ND	10	0.33	
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylami	ne	ND	10	0.33	
Chrysene	ND	10	0.33	N-Nitrosodi-n-propyla	mine	ND	10	0.33	
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol		ND	10	0.33	
Dibenzofuran	ND	10	0.33	Phenanthrene		ND	10	0.33	
Di-n-butyl Phthalate	ND	10	0.33	Phenol		ND	10	0.33	
1,2-Dichlorobenzene	ND	10	0.33	Pyrene		ND	10	0,33	
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene	;	ND	10	0.33	
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol		ND	10	0.33	
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol	ND	10	0.33		
2,4-Dichlorophenol	ND	10	0.33						
Diethyl Phthalate	ND	10	0.33						
2,4-Dimethylphenol	ND	10	0.33	2-Fluorobiphenyl			48		
Dimethyl Phthalate	ND	10	0.33	2-Fluorophenoi			33		
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5			44		
2,4-Dinitrophenol	ND	50	1.6	Phenol-d5			57		
2.4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol			70		
2,6-Dinitrotoluene	ND	10	0.33						

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{*} surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content


110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Dugan Associates	Client Project ID: Former City of Paris	Date Sampled: 12/15/99
1180 Delmas Avenue	Cleaners	Date Received: 12/17/99
San Jose, CA 95125	Client Contact: Bill Dugan	Date Extracted: 12/17/99
	Client P.O:	Date Analyzed: 12/18/99

EDA method 625 and 2510 an 9270 as		Volat	ile Org	ganics By GC/MS				
EPA method 625 and 3510 or 8270 and Lab ID	10 3330			27667				
Client ID	 			W-MW-2				
Matrix	<u> </u>			W				
TVICTIES.		Reporting Limit Reporting Limit						
Compound	Concentration*	W	S S	Compound	Concentration*	W	S	
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate	ND	10	0.33	
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine	ND	10	0.33	
Anthracene	ND	10	0.33	Fluoranthene	ND	10	0.33	
Benzidine	ND	50	1.6	Fluorene	ND	10	0.33	
Benzoic Acid	ND	50	1.6	Hexachiorobenzene	ND	10	0.33	
Benzo(a)anthracene	ND	10	0.33	Hexachlorobutadiene	ND	10	0.33	
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopentadiene	ND	50	1.6	
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane	ND	10	0.33	
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyrene	ND	10	0.33	
Benzo(a)pyrene	ND	10	0.33	Isophorone	ND	10	0.33	
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene	ND	10	0.33	
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cresol)	ND	10	0.33	
Bis(2-chloroethyl) Ether	ND	10	0.33	4-Methylphenol (p-Cresol)	ND	10	0.33	
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	49	10	0.33	
Bis(2-ethylhexyl) Phthalate	ND	20	0.66	2-Nitroaniline	ND	50	1.6	
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline	ND	50	1.6	
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline	ND	50	1.6	
4-Chloroanaline	ND	20	0.66	2-Nitrophenol	ND	50	1.6	
4-Chloro-3-methylphenol	ND	l0	0.33	4-Nitrophenol	ND	50	1.6	
2-Chloronaphthalene	ND	10	0.33	Nitrobenzene	ND	10	0.33	
2-Chlorophenol	ND	10	0.33	N-Nitrosodimethylamine	ND	10	0.33	
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodiphenylamine	ND	10	0.33	
Chrysene	ND	10	0.33	N-Nitrosodi-n-propylamine	ND	10	0.33	
Dibenzo(a,h)anthracene	ND	10	0.33	Pentachlorophenol	ND	10	0.33	
Dibenzofuran	ND	10	0.33	Phenanthrene	ND	10	0.33	
Di-n-butyl Phthalate	ND	10	0.33	Phenol	ND	10	0.33	
1,2-Dichlorobenzene	ND	10	0.33	Pyrene	ND	10	0.33	
1,3-Dichlorobenzene	ND	10	0.33	1,2,4-Trichlorobenzene	ND	10	0.33	
1,4-Dichlorobenzene	ND	10	0.33	2,4,5-Trichlorophenol	ND	10	0.33	
3,3-Dichlorobenzidine	ND	20	0.66	2,4,6-Trichlorophenol	ND	10	0.33	
2,4-Dichlorophenol	ND	10	0.33	Comments:		<u> </u>		
Diethyl Phthalate	ND	10	0.33	Surrogate Reco	veries (%)			
2,4-Dimethylphenol	ND	10	0.33	2-Fluorobiphenyl		36	<u> </u>	
Dimethyl Phthalate	ND	10	0.33	2-Fluorophenol		33		
4,6-Dinitro-2-methylphenol	ND	50	1.6	Nitrobenzene-d5		44		
2,4-Dinitrophenol	ND	50	1.6	Phenol-d5		89		
2,4-Dinitrotoluene	ND	10	0.33	2,4,6-Tribromophenol		44		
2,6-Dinitrotoluene	ND	10	0.33	p-Terphenyl-d14		102		

^{*}water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

DHS Certification No. 1644

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[&]quot; surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than -5 vol. % sediment; j) sample diluted due to high organic content

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

Dugan Associates	Client Pro	ject II): Forn	ner City of Paris	Date Sam	pled: 12/15/99			
1180 Delmas Avenue	Cleaners			-	Date Rece	ived: 12/17/9	9		
San Jose, CA 95125	Client Cor	tact:	Bill Du	ıgan	Date Extracted: 12/17/99				
San Jose, CA 93123									
	Client P.O	:			Date Ana	lyzed: 12/18/9	9		
		⁄olati	le Org	anics By GC/MS					
EPA method 625 and 3510 or 8270 ar	id 3550			27449					
	Lab ID 27668								
Client ID	ļ			W-MW-	<u> </u>				
Matrix				W		1			
<u> </u>	Concentration*	Reporting Limit Compound				Concentration*	Reporting Lime		
Compound	Concentration	w s		Compound			W	S	
Acenaphthene	ND	10	0.33	Di-n-octyl Phthalate		ND	10	0.33	
Acenaphthylene	ND	10	0.33	1,2-Diphenylhydrazine	e	ND	10	0.33	
Anthracene	ND	10	0.33	Fluoranthene		ND	10	0.33	
Benzidine	ND	50	1.6	Fluorene		ND	10	0.33	
Benzoic Acid	ND	50	1.6	Hexachlorobenzene		ND	10	0.33	
Benzo(a)anthracene	ND	10	0,33	Hexachlorobutadiene		ND	10	0.33	
Benzo(b)fluoranthene	ND	10	0.33	Hexachlorocyclopenta	diene	ND	50	1.6	
Benzo(k)fluoranthene	ND	10	0.33	Hexachloroethane		ND	10	0.33	
Benzo(g,h,i)perylene	ND	10	0.33	Indeno(1,2,3-cd)pyren	ie	ND	10	0.33	
Benzo(a)pyrene	ND	10	0.33	Isophorone		ND	10	0.33	
Benzyl Alcohol	ND	20	0.66	2-Methylnaphthalene		25	10	0.33	
Bis(2-chloroethoxy)methane	ND	10	0.33	2-Methylphenol (o-Cr	esol)	ND	10	0.33	
Bis(2-chloroethyl) Ether	ND	10	0.33	4-Methylphenol (p-Cr		ND	10	0.33	
Bis(2-chloroisopropyl)Ether	ND	10	0.33	Naphthalene	· · · · · · · · · · · · · · · · · · ·	88	10	0.30	
Bis(2-ethylhexyl) Phthalate	ND	20	0.66	2-Nitroaniline		ND	50	1.6	
4-Bromophenyl Phenyl Ether	ND	10	0.33	3-Nitroaniline		ND	50	1.6	
Butylbenzyl Phthalate	ND	10	0.33	4-Nitroaniline		ND	50	1.6	
4-Chloroanaline	ND	20	0.66	2-Nitrophenol		ND	50	1.6	
	ND	10	0.33	4-Nitrophenol		ND	50	1.6	
4-Chloro-3-methylphenol	ND ND	10	0.33	Nitrobenzene		ND	10	0.3	
2-Chloronaphthalene	ND ND	10	0.33	N-Nitrosodimethylam	nine	ND	10	0.3	
2-Chlorophenol	ND ND	10	0.33	N-Nitrosodiphenylam		ND	10	0.3	
4-Chlorophenyl Phenyl Ether	ND	10	0.33	N-Nitrosodi-n-propyl		ND	10	0.3	
Chrysene	ND ND	10	0.33	Pentachlorophenol		ND	10	0.3	
Dibenzo(a,h)anthracene	ND	10	0.33	Phenanthrene		ND	10	0.3	
Dibenzofuran Disebut di Distributo	ND ND	10	0.33	Phenol			10	0.3	
Di-n-butyl Phthalate	ND ND	10	0.33	Pyrene		ND ND	10	0.3	
1,2-Dichlorobenzene	ND ND	10	0.33	1,2,4-Trichlorobenzer	ne	ND	10	0.3	
1,3-Dichlorobenzene	ND ND	10	0.33	2,4,5-Trichloropheno		ND	10	0.3	
1,4-Dichlorobenzene 3,3-Dichlorobenzidine	ND	20	0.55	2,4,6-Trichloropheno		ND	10	0.3	

0.33

0.33

0.33

0.33

1.6

1.6

0.33

10

10

10

10

50

50

10

10

ND

ND

ND

ND

ND

ND

ND

ND

3,3-Dichlorobenzidine

2,4-Dichlorophenol

2,4-Dimethylphenol

Dimethyl Phthalate

2,4-Dinitrophenol

2,4-Dinitrotoluene

2,6-Dinitrotoluene

4,6-Dinitro-2-methylphenol

Diethyl Phthalate

Comments:

Phenol-d5

2-Fluorobiphenyl

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14

2,4,6-Tribromophenol

Surrogate Recoveries (%)

30

31

66

83

52

97

^{0.33} *water samples are reported in ug/L, soil and sludge samples in mg/kg, wipes in ug/wipe and all TCLP / STLC / SPLP extracts in ug/L

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

^{*} surrogate diluted out of range

h) lighter than water immiscible sheen is present; i)liquid sample that contains greater than ~5 vol. % sediment; j) sample diluted due to high organic content

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

EPA 8010/8020/EDB

Date:

12/17/99

Matrix:

Water

Extraction:

N/A

	•	Concentration;		ug/L	%Recovery			
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD	
SampleID: 121799				Instr	ument: G			
Chlorobenzene	0.000	101.0	104.0	100.00	101	104	2.9	
EDB	0.000	98.0	99.0	100.00	98	99	1.0	
Trichloroethane	0.000	91.0	85.0	100.00	91	85	6.8	
1,1-DCE	0.000	117.0	105.0	100.00	117	105	10.8	

$$\% \text{ Re covery} = \frac{\left(MS - Sample\right)}{AmountSpiked} \cdot 100$$

$$RPD = \frac{\left(MS - MSD\right)}{\left(MS + MSD\right)} \cdot 2100$$

110 2nd Ave. South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC REPORT

SVOCs (EPA 8270/625/525)

Date:

12/17/99-12/18/99

Matrix:

Water

Extraction:

N/A

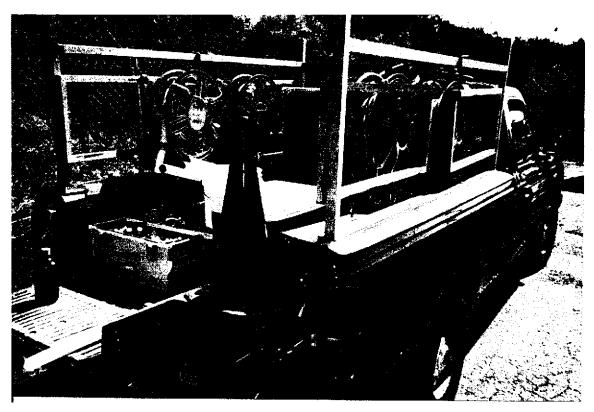
	i	Concent	tration;	ug/L	%Red	covery	:	
Compound	Sample	MS	MSD	Amount Spiked	MS	MSD	RPD	
SampleiD: 26692	Instrument: GC-8							
Pyrene	0.000	510.0	530.0	1000.00	51	53	3.8	
Pentachlorophe no l	0.000	420.0	400.0	1000.00	42	40	4.9	
2,4-Dinitrotoluene	0.000	590.0	630.0	1000.00	59	63	6,6	
Acenaphtene	0.000	440.0	460.0	1000.00	44	46	4.4	
4-Nitrophenol	0.000	460.0	460.0	1000.00	46	46	0.0	
4-Chloro-3-metylphenol	0.000	440.0	440.0	1000.00	44	44	0.0	
1,2,4-trichlorobenzene	0.000	430.0	430.0	1000.00	43	43	0.0	
N-nitroso-di-n-propyl	0.000	400.0	390.0	1000.00	40	39	2.5	
1,4-Dichlorobenzene	0.000	460.0	470.0	1000.00	46	47	2.2	
2-Chlorophenol	0.000	420.0	410.0	1000.00	42	41	2.4	
Phenol	0.000	440.0	450.0	1000.00	44	45	2.2	

% Re covery =
$$\frac{(MS-Sample)}{AmountSpiked} \cdot 100$$

$$RPD = \frac{(MS-MSD)}{(MS+MSD)} \cdot 2 \cdot 100$$

ATTACHMENT B

FIELD METHODS & MEASUREMENTS

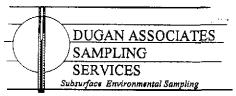


1180 DELMAS AVE. SAN JOSE, CA 95125


Tel. (408) 287-2175 Fax. (408) 287-2176

DUGAN ASSOCIATES GROUNDWATER MONITORING AND SAMPLING PROTOCOL

Sampling Methods: The static water level in each well is measured to the nearest 0.01foot using an electric water-level sounder cleaned with Alconox® and water before use in each well. Surface liquids in wells are examined for visual evidence of hydrocarbons by gently lowering approximately half the length of a clean disposable bailer past the air/water interface. The bailer is then retrieved and inspected for floating product, sheen, emulsion, color, and clarity. The thickness of floating product detected is recorded to the nearest 1/8inch. Wells which do not contain floating product are purged using a submersible pump or bailer. The pump, cables, and hoses are steam-cleaned or cleaned with Alconox® and water prior to use in each well. The wells are purged until withdrawal is of sufficient duration to result in stabilized pH, temperature, and electrical conductivity of the water, as measured using portable meters calibrated to a standard buffer and conductivity standard. If the well becomes dewatered, the water level is allowed to recover to at least 80 percent of the initial water level. A sample of the formation water is then collected from each of the wells using either a disposable bailer or cleaned stainless-steel bailer. The water samples are then gently poured into laboratory-supplied, 40-milliliter (ml) glass vials, 500 ml plastic bottles, or 1-liter glass bottles (as required per specific laboratory analysis), sealed with Teflon®-lined caps, and inspected for air bubbles to check for headspace, which would allow volatilization to occur. The samples are then labeled and promptly placed in iced storage. A field log of well evacuation procedures and parameter monitoring is maintained. Water generated by the purging of wells is stored in 55-gallon drums onsite and remains the responsibility of the client. A Chain of Custody Record is initiated by the field geologist and updated throughout handling of the samples, and accompanies the samples to a laboratory certified by the State of California for the analyses requested.

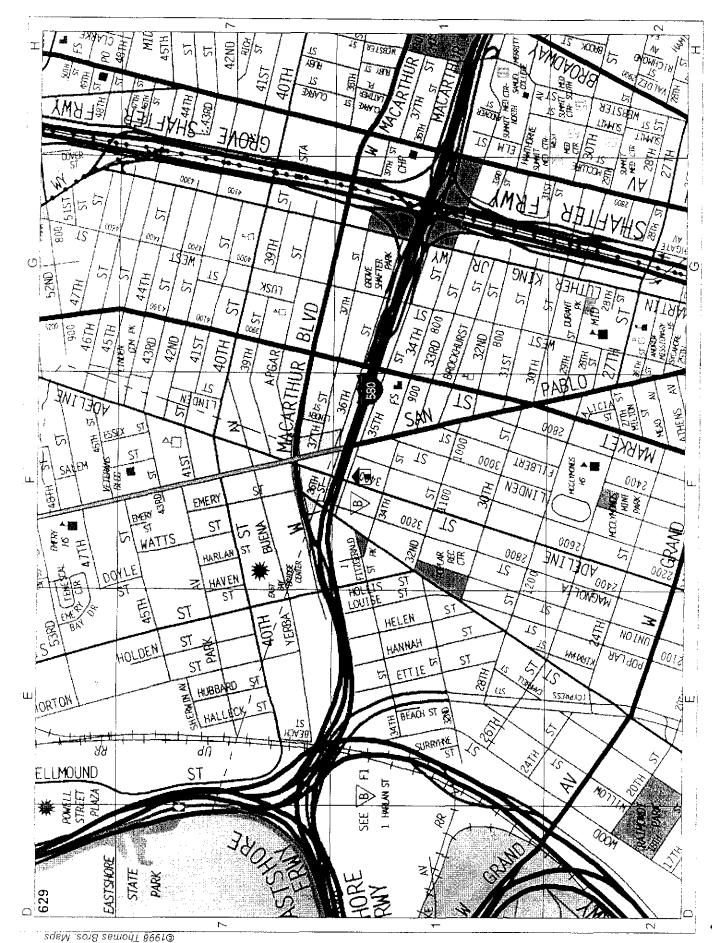


Dugan Associates specializes in the preparation of subsurface environmental sampling plans, the collection of environmental samples and hydrogeologic measurements, and the preparation of certified sampling reports in compliance with sections 6735, 7835, and 7835.1 of the Business and Professions Code.

G	roundwate	r Monitoring
&	Sampling	Record

IAN JOSE, C	AS AVE. CA 95125	Tel (408) 287-217: Fax. (408) 287-2176		Site Nam Date	12/15/	<u>-</u>	aners, Oakland, Well I.D.	MW-	· ·
				Field Crew D. Nitzberg			7,000		
	Vell locked			Task		. Gauging 🛚	Well Samplii	ng 🗆	Pump T
Purge :	Method	Disposable Bailer	☐ Grundfos		I Pump I.I	Decon Log			
_	Volume lations	Depin to water	11.3) A 13.50 A	_		Steam-cleaned? Ilconox rinse? D	_		i I
5,8	J X 4-i, in well 5-1.	nch Casing = 0.16 gal/ft nch casing = 0.667 gal/ft nch casing = 1.02 gal/ft nch casing = 1.47 gal/ft	= 2.5	gal		Steam-cleaned Alconox rinse?	?		07.457.X
2.5g	gal X	3 Number of Target Well Volumes	$= \frac{16}{Purge\ Vo}$	_ gal		Drum Log 55-gallon drun D			77.57
eld Obs	ervation	/Notes: (Just	- <u>4 /</u>		D141111.0	· ·	-		
	servation GALLON	11g/4	er Colo		(us)	TEMP. F	DTW (ft) BTOC		
TIME		light D.O. O.R.P.	er Colo t grey TURBIDITY [NTUs]	skow	eur)		DTW (ft)		
TIME	GALLON	D.O. O.R.P. S [ppm] [uS]	er Colo t grey TURBIDITY [NTUs]	or Skows PH	(us)	TEMP. F	DTW (ft)		
	GALLON	D.O. O.R.P. S [ppm] [uS]	er Colo t grey TURBIDITY [NTUs]	or Skows PH	(us)	TEMP. F	DTW (ft)		
TIME 1:32 1:37 1:42	3.75	D.O. O.R.P. S [ppm] [uS]	er Cole tyrey TURBIDITY [NTUS]	5 he 5 he 5 he 7 ne 7.94	1020 1020	TEMP. F 65.13 64.40 64.40	DTW (ft)		
TIME 1:32 1:37	3.75	D.O. O.R.P. S [ppm] [uS]	er Cole tyrey TURBIDITY [NTUS]	5 he 5 he 5 he 7.94 7.87 Sam 1 1 ≥ 40	1020 1020	TEMP. F 69.4° Sainers: $6\frac{6}{2}$	DTW (ft)		

Sample Handing:


Groundwater Monitoring & Sampling Record

180 DELMAS AVE. AN JOSE, CA 95125	Tel (408) 287-2175 Fax. (408) 287-2176		Site Name	Forme	r City of Paris C	leaners, Oakland,	CA
·	14X. (400)207-2170						
Wallboad Inspec			Date	12/15	/99	Well I.D.	MW-J
Wallboad Inches			Field Crev	w D. N	litzberg		
Wellhead Inspec	etion		Task	🛭 Wel	ll Gauging 🛭	Well Samplin	ng 🗆 Pump 🤄
□ □ Well locked? □ □ Well Cap need	i replacement?		÷			•	
Purge Method [Disposable Bailer	Grundfos)	Decon Log		7. **
		2"-Whaler		Pump I.	DN/A	_	
	Total Depth of well Depth to water	19.67			Steam-cleaned		<u>.</u>
	Teight of Water in well	872		□ □ I Bailer I.	Alconox rinse	?	·
18.72 2-inch	n Casing = 0.16 ggVft	. 7		yes no	Steam-cleane		初
	n casing = 0.667 gal/ft =		gal		Alconox rinse		7.65
	n casing = 1.02 gal/ft n casing = 1.47 gal/ft	One Well Volu	ima		Drum Log		BRAKER
S gal X	=	<u> </u>	_ gal		55-gallon dru	m	7
One Well Volume	Number of Targes Well Valumes	Purge Vo	lume	Drum I.I	D	_	
ield Observation/I	Notes: Well		/				
icid Obsci vationi	ioles. Well	IN GO	ed 2h	opi		7	
,	Water	Calm	Clea	' سا_`<	-brand	alac	
TIME CALLONG	D.O. O.R.P.	TURBIDITY	<u></u>	EH.		DTW (ft)	
TIME GALLONS	(ppm) (u\$)	[NTUs]	pH	(uS)	TEMP. F	BTOC	
1:00m 05			8.66	980	64.60		
1:03pm4.5			8.74	1000	64.3	,	
108an 9			871 0	190	64.50		
7							
			<u> </u>				
ecovery Data:	80% ru	v der	Sam	ple Con	tainers:		
	80%	الأوم و من من المناطقة الأوم و من من من المناطقة	. ⊠ 40 r	nI VOA v	zials _6		
	7014	Coverr	I-li ⊠	ter amber			
·		'.	, D 16-	oz plastic	bottle —	· -	
Sample Collection:	Disposable Baile	er C1-	Doub	125+			
·	PVC Bailer	_	Depth: _	. v . j · j			
·	☐ Stainless-Steel E	(01)04				1	

Groundwater Monitoring & Sampling Record

	SERVIC Subsurface Envi		ling					· Qualipling (,0014
1180 DELM.			3) 287-2175		Site Na	me Forme	er City of Paris C	leaners Oakland, CA	
SAN JOSE, O	CA 95125	rax. (408	287-2176		Date	12/15	5/99	Well I.D. M	<u>w-3</u>
					Field C	rew D. 1	Vitzberg		
yes no	ad Inspe Well locked? Well Cap nee	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	्रे. ent?		Task	∑ We	ll Gauging 🛚 🛚 🖺	Well Sampling	□ Pump Te
	Method	<u> </u>		Grundfos			Decon Log		
8, 2		✗ PVC Bai		2"-Whaler		Pump I.	D. N/A		
Purge	Volume	Total Depth	n wen	19.60		уез йо П	Steam-cleaned		
		Depth to wate Height of Wat		9.60 ft			Alconox rinse	?	:
	,		_	7 05	1	Bailer 1		10	
18.08		ch Casing = 0. ch casing = 0.	<u>16 gal/f</u> t 667 gal/ft =	20	gal		Steam-cleane Alconox rinse		77 77
Height of Water		ch casing = 1. ch casing = 1.		One Well Vol	umen		D I		67.07.67.
200	Zal 🐎 X	3	_ =	-8-5	gal		Drum Log 55-gallon dru	ım	
One Well Volu	me	Number o Well Volum		Purge Vo	5	Drum I	_		77
Field Ob	servation/			by fi the we	leodec H U by	/ wo	ater C f-stron	ider-chara	cal-
TIME	. GALLONS	D.O. (ppm)	O.R.P. [uS]	TURBIDITY [NTUs]	pН	EH (uS)	TEMP, F	DTW (ft) BTOC	
3141	1				8,41	900	64,4		
	,,,,,,								
3:46	4.5				5.09	gyo	64.1		
						7400 A	٥, ر,		
3:52					8,16	8000	64,6		
Recovery	Dafa:	- Sand	17 W						
recovery	Data	6-	, , , , , , , , , , , , , , , , , , ,	recove	ery St	ample Cor	itainers:		
	•	for	85%	, 600-		40 ml VOA			
						l-liter ambe 16-oz plasti			
Sample	Collection	□ PVC	osable Baile Bailer Iless-Steel E	Sample	e Depth:		5 Fr.		
Sample 1	Handing:	5/0	red	W	1	Eed	Coo	ler	

🖹 3516 Adeline St. Oakland, 94608, Page & Gnd 649 F1

1180 Delmas Avenue San Jose, CA 95125 (408) 287-2175 Phone (408) 287-2176 FAX