ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

REBECCA GEBHART, Interim Director

DEPARTMENT OF ENVIRONMENTAL HEALTH LOCAL OVERSIGHT PROGRAM (LOP) For Hazardous Materials Releases 1131 HARBOR BAY PARKWAY, SUITE 250 ALAMEDA, CA 94502 (510) 567-6700 FAX (510) 337-9335

March 3, 2017

Ms. Paulette Satterly 14601 Guadalupe Dr. Rancho Murieta, CA 95683

(Sent via E-mail to: lvsnoopy@calweb.com)

Ms. Paula Champion-Braig

280 Mountain Blvd.
Piedmont, CA 94611
(Sent via E-mail to:

uschampion@aol.com)

Frank & Linda Champion 9441 Laguna Lake Way Elk Grove, CA 95758

Ms. Debbie Buckley

City of Paris Studios 3516 Adeline Street, Oakland, CA 94608

(Sent via E-mail to:

cityofparisstudios@gmail.com)

Don Rostocil Michael Champion

2200 Browning Street PO Box 489

Berkeley, CA 94702 Moss Beach, CA 94038

Subject: Case Closure for Fuel Leak Case No. RO0000133 and GeoTracker Global ID T0600100379, City of Paris Cleaners, 3516 Adeline Street, Oakland, CA 94608

Dear Ladies and Gentlemen:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25296.10[g]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Department of Environmental Health (ACDEH) is required to use this case closure letter for all UST leak sites.

We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed. This case closure letter and the case closure summary can also be viewed on the State Water Resources Control Board's Geotracker website (http://geotracker.waterboards.ca.gov) and the ACDEH website (http://www.acgov.org/aceh/index.htm).

Due to residual contamination, the site was closed with Site Management Requirements that limit future land use to the current land use and development footprint. Site Management Requirements are further described on page two of attached Case Closure Summary.

If you have any questions, please call Mark Detterman at (510) 567-6876. Thank you.

Sincerely,

Dilan Roe, P.E.

LOP and SCP Program Manager

Enclosures:

1. Remedial Action Completion Certification

2. Case Closure Summary

Cc w/enc.:

Gopakumar Nair, City of Oakland Public Works, 250 Frank H. Ogawa Plaza, Suite 4314, Oakland,

CA 94612 (Sent via electronic mail to: gnair@oaklandnet.com)

Mark Johannes Arniola, City of Oakland Public Works, 250 Frank H. Ogawa Plaza, Suite 5301, Oakland, CA 94612 (Sent via electronic mail to: marniola@oaklandnet.com)

Responsible Parties RO0000133 March 3, 2017, Page 2

Thomas Ballard, Crawford & Associates, 1100 Corporate Drive, Suite 230, Sacramento, CA 95831; (Sent via email to: tom.ballard@crawford-inc.com)

Dilan Roe, ACDEH, (Sent via e-mail to: dilan.roe@acgov.org)

Mark Detterman, ACDEH, (Sent via electronic mail to: mark.detterman@acgov.org)

Geotracker, Electronic File

ALAMEDA COUNTY **HEALTH CARE SERVICES AGENCY**

DEPARTMENT OF ENVIRONMENTAL HEALTH OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6777 FAX (510) 337-9135

REBECCA GEBHART, Interim Director

REMEDIAL ACTION COMPLETION CERTIFICATION

March 3, 2017

Ms. Paulette Satterly 14601 Guadalupe Dr. Rancho Murieta, CA 95683 (Sent via E-mail to:

lvsnoopy@calweb.com)

Ms. Debbie Buckley City of Paris Studios 3516 Adeline Street, Oakland, CA 94608 (Sent via E-mail to:

cityofparisstudios@gmail.com)

Ms. Paula Champion-Braig 280 Mountain Blvd. Piedmont, CA 94611 (Sent via E-mail to: uschampion@aol.com)

Don Rostocil 2200 Browning Street

Berkeley, CA 94702

Frank & Linda Champion 9441 Laguna Lake Way Elk Grove, CA 95758

Michael Champion PO Box 489

Moss Beach, CA 94038

Subject: Case Closure for Fuel Leak Case No. RO0000133 and GeoTracker Global ID T0600100379, City of Paris Cleaners, 3516 Adeline Street, Oakland, CA 94608

Dear Ladies and Gentlemen:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely,

Ronald Browder Acting Director

old proude

Agency Information

Date: March 2, 2017

Alameda County Department of Environmental	Address: 1131 Harbor Bay Parkway
Health	
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6876
Case Worker: Mark Detterman	Title: Senior Hazardous Materials Specialist

Case Information

Case information		
Facility Name: City of Paris Clea	ners	
Facility Address: 3516 Adeline Str	eet, Oakland, CA 94608	
Regional Water Board LUSTIS Case No: 01-0415	Former ACDEH Case No.: 819	Current LOP Case No.: RO0000133
Unauthorized Release Form Filing Date: 5/16/1990	State Water Board GeoTracker GI	obal ID: T0600100379
Assessor Parcel Number: 5-478-23	Current Land Use: Residential and	d Commercial
Responsible Party(s):	Address:	Phone:
Ms. Paulette Satterly	14601 Guadalupe Drive Rancho Murieta, CA 95683	
Ms. Paula Champion-Braig	280 Mountain Blvd Piedmont, CA 94611	
Frank and Linda Champion	9441 Laguna Lake Way Elk Grove, CA 95758	
Michael Champion	PO Box 489 Moss Beach, CA 94038	
Don Rostocil	2200 Browning Street Berkeley, CA 94702	
Ms. Debbie Buckley City of Paris Studios	3516 Adeline Street Oakland, CA 94608	

Tank Information

Tank No.	Size (gal)	Contents	Closed in-Place / Removed	Date
	750-gallon	Stoddard Solvent	Removed	10/4/1990
tide day sold sold	1,000-gallon	Stoddard Solvent	Removed	10/4/1990
===	1,000-gallon	Stoddard Solvent	Removed	10/4/1990
	250-gallon	Stoddard Solvent	Removed	10/31/1991

Site Closure Evaluation Summary

This case has been evaluated for closure consistent with the State Water Resource Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP) for petroleum related contaminants. The site does not meet the Groundwater Media Specific criterion due to the presence of an offsite downgradient abandoned private water supply well at a distance of approximately 770 feet from the downgradient property line. Case closure is granted for the current live-work residential development footprint and commercial land use.

Refer to Attachments 1 through 5 for analysis details.

Site Management Requirements

Case closure is granted for the current live-work residential development footprint and commercial land use.

Due to residual subsurface contamination remaining at the site, if any redevelopment occurs, or if a change in land use to residential only, or other conservative land use, Alameda County Department of Environmental Health (ACDEH) must be notified as required by Government Code Section 65850.2.

Excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities.

This site is to be entered into the City of Oakland Permit Tracking System due to the residual contamination on site.

Institutional Controls

Not Applicable		
Engineering Controls		
Not Applicable		

Case Closure Public Notification Information

Agency Type	Agency Name	Contact Information
Regional Water Board	San Francisco Bay	Laurent Meillier 1515 Clay Street, Suite 1400, Oakland, CA 94612
Municipal and County Water Districts	East Bay Municipal Utility District	Chandra Johannesson P.O. Box 24055, MS 702 Oakland, CA 94623
Water Replenishment Districts	Not Applicable	
Groundwater Basin Managers	Not Applicable	
Planning Agency	City of Oakland	Dave Harlan 250 Frank H. Ogawa Plaza, Suite 2114 Oakland, CA 94612
Public Works Agency	City of Oakland	Mark Arniola Public Works Environmental Services 250 Frank H. Ogawa Plaza, Suite 4314 and 5301 Oakland, CA 94612
Owners and Occupants of Property and Adjacent Parcels	See List in Attachment 7	

Local Agency Signatures

Mark Detterman	Title: Senior Hazardous Materials Specialist
Signature:	Date: 3/3/2017
Paresh Khatri	Title: LOP Supervisor
Signature: Muthat	Date: 3/6/2017
Dilan Roe	Title: Chief
Signature: W	Date: 3 17 2017

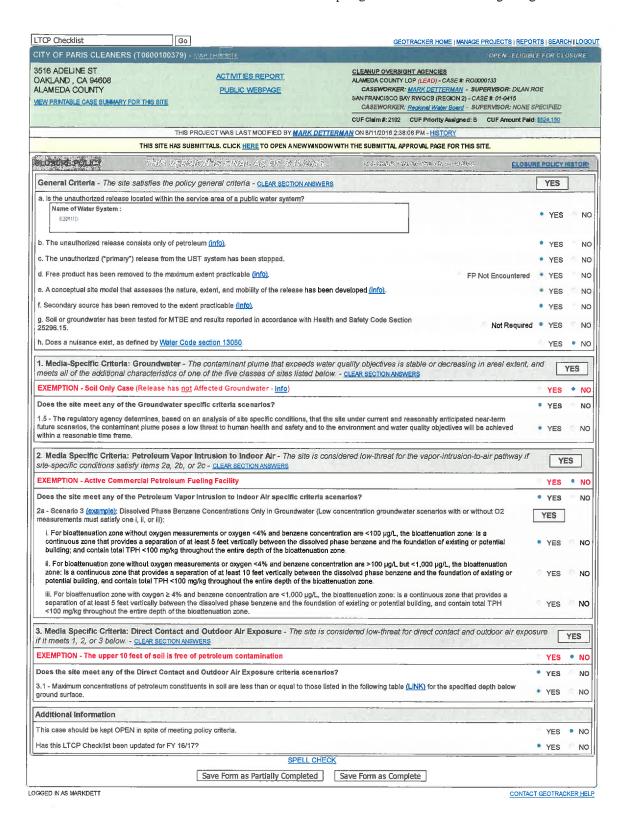
This Case Closure Summary along with the Case Closure Transmittal letter and the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. The Conceptual Site Model may not contain all available data. Additional information on the case can be viewed in the online case file. The entire case file can be viewed over the Internet on the Alameda County Department of Environmental Health (ACDEH) website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Not all historic documents for the fuel leak case may be available on GeoTracker. A more complete historic case file for this site is located on the ACDEH website.

Geotracker Conceptual Site Model (Attachment 1, 2 page)

Geotracker LTCP Checklist (Attachment 2, 1 page)

Groundwater Evaluation and Data (Attachment 3, 26 pages)

Vapor Intrusion Evaluation and Data (Attachment 4, 6 pages)


Soil Evaluation and Data (Attachment 5, 14 pages)
Responsible Party Information (Attachment 6, 22 pages)
Case Closure Public Notification Information (Attachment 7, 4 pages)

ATTACHMENT 1

GEOTRACKER	GAMA ☑ Contact ☑ Logout Quick Search
CITY OF PARIS CLEANERS (T0600100379) - MAP THIS SITE	PUBLIC PAG
3516 ADELINE ST. OAKLAND, CA 94608 ALAMEDA COUNTY UST CLEANUP SITE STATUS: OPEN - ELIGIBLE FOR CLOSURE PERTINENT.INFORMATION: CUF Claim #: 2192 GUF Priority Assigned: 8 CUF Claim #: 2192 GUF Priority Assigned: 8 CUF Claim #: 2192 CUF Pr	CLEANUP OVERSIGHT AGENCIES ALAMEDA COUNTY LOP (LEAD) - CASE #: RO0000133 - MARK DETTERMAN SAN FRANCISCO BAY RWQCB (REGION 2) - CASE #: 01-0415 - Rogional Water Board
I Activities Report	◆ Admin ☑ Funding
	DIFIED BY MARK DETTERMAN ON 3/3/2017 11:01:22 AM - <u>HISTORY</u>
CSM REPORT - VIEW PUBLIC NOTICING VERSION OF THIS REPORT	
UST CLEANUP FUND CLAIM INFORMATION (DATA PULLED FROM SCUFIIS)	FIVE YEAR REVIEW INFORMATION
NO PRIORITE CLAIMANT STEADORESS DATE	REIMB TO AGE OF IMPACTED REVIEW DEDIEMED FIND DECOMMENDATION TO OVERSIGHT TO CLAIMANT
PROJECT INFORMATION (DATA PULLED FROM GEOTRACKER) - MAP THIS SITE	
SITE NAME / ADDRESS CITY OF PARIS CLEANERS (Global ID: T0600100379) Open - Eligible for Closure 3516 ADELINE ST. OAKLAND, CA 94608	STATUS DATE RELEASE REPORT DATE AGE OF CASE 2/16/2016 11/2/1990 26 ALAMEDA COUNTY LOP (LEAD) - CASE # R00000133 CASEMORKE: MARK DETTERMAN - SUPERVISOR: DILAN ROE SAN FRANCISCO BAY RWICE (REGION 2) - CASE #: 01-0415 CASEWORKER: Regional Water Board - SUPERVISOR: NONE SPECIFIED
http://ehgls.acgov.org/dehpublic/dehpublic.jsp.	case file for this site is located on the Alameda County Department of Environmental Health website at:
http://ehgis.acgov.org/dehpublic/dehpublic.jsp.	case file for this site is located on the Alameda County Department of Environmental Health website at:
Interstate 580/980 interchange. The site occupies the southeast corner of Adeline and 35th St the site, and live-work studios on the eastern portion of the site. Accordingly this case is closed residual contamination, the site was closed with site management requirements that include nor conservative land use, or if any redevelopment or building alteration is proposed that affect	of the City of Oakland, approximately one mile east of San Francisco bay, 60 feet of Interstate 580, and ¾ mile west of Streets. At the time of this case closure, City of Paris Studios is operating a gallery and event space on the western portion of ed with the current eastern live-work residential development footprint and western commercial land-use risk scenario. Due to notifying Alameda County Department of Environmental Health (ACDEH) of a proposed change in land use to any residential tor disturb the existing subsurface conditions at the site.
redevelopment occur, ACDEH recommends evaluating the redevelopment site(s) for chemical	eline Streets, but does not appear to be extend onto properties across 35th and Adeline Streets. However, should off-site Is of concern identified on this site.
tanks (one 750-gallon and two 1,000-gallon USTs) were excavated and removed from the site i	s (USTs) used to store Stoddard Solvent (chemical used in the dry cleaning industry) were present at the site. Three of these in October 1990, Soil samples collected from underneath the former USTs Identified contamination, in August 1991, the ss, a 250-gallon UST containing Stoddard Solvent was encountered and subsequently removed. The stockpiled soil was
II .	ells were installed in October 1992. Stoddard solvent was detected in groundwater samples collected from each well. les downgradient near the excavation boundary and across the 35th Street. Groundwater contamination was detected on and
performed. An Industrial Well (W-IND) is located on site.	med to verify natural attenuation, a preferential pathway evaluation was conducted, and a sensitive receptor survey was
In August 2015, an additional soil vapor investigation was conducted to determine the in August 2015, an additional soil vapor investigation was conducted to determine the risk of values to Chemicals of Concern	
Stoddard Solvent is understood to be the source of UST contamination discovered and cleaned	ed up at the site. The main chemicals of concern (COCs) associated with the Stoddard Solvent USTs and detected at the site tene, ethylbenzene, and naphthalene. Inhalation and ingestion appear to have been the most likely potential routes of
Corrective action consisting of excavation of the USTs and contaminated soil has been comple Case Closure & Future Site Management Requirements This fuel leak case has been evaluated for closure consistent with the State Water Resource C	leted. Confirmation soil sample analytical results indicated residual petroleum hydrocarbons remain in soil and groundwater. Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP). The case does not meet the Groundwater Media
that there is low potential threat to human health and safety and to the environment and water Due to residual contamination at the site, the site is closed to its current live-work residential of use to any residential, or conservative land use, or if any redevelopment occurs, ACDEH must b	oply well at a distance of approximately 770 feet from the downgradient property line. ACDEH has made the determination r quality objectives will be achieved within a reasonable time frame. development footprint and commercial land-use with site management requirements. If there is a proposed change in land be notified as required by Government Code Section 65850.2.2. ACDEH will re-evaluate the site relative to the proposed re planning and implementation of appropriate health and safety procedures by the responsible party prior to and during
RESPONSIBLE PARTIES NAME ORGANIZATION	ADDRESS CITY EMAIL
DEBRA BUCKLEY	PO BOX 8722 EMERYVILLE debrarunvon@vahoo.com UNK 9441 LAGUNA LAKE WAY ELK GROVE PO BOX 489 MOSS BEACH 9280 MOUNTAIN AVENUE PIEDMONT 14601 GUADALUPE DRIVE RAHCHO MURIETA
CLEANUP ACTION INFO	CONTAMINANT MASS REMOVED DESCRIPTION
EXCAVATION 8/30/1991 1/27/1992 Soil	Soil bioremediated and reused in the tank pit. VIEW PATH TO CLOSURE PLAN VIEW CASE REVIEWS
CONTAMINANTS OF CONCERN CURRENT LAND USE BENEFICIAL	ALUSE DISCHARGE SOURCE DATE REPORTED STOP METHOD NEARBY / IMPACTED WELLS
FREE PRODUCT OTHER CONSTITUENTS NAME OF WATER SYSTEM LAST REGULATORY	
NO NO EBMUD 2/21/201 COPH WELLS WITHIN 1500 FEET OF THIS SITE NONE	

<u>apn</u> 005 047802300	GW BASIN NAME Santa Clara Valley - E	ast Bay Plain (2-9.0	4)		WATERSHED NAME South Bay - East Bay Cit	ies (204.20)		
county Alameda	PUBLIC WATER SYS		EET, OAKLAND, CA 946	07				
MOST RECENT CONCENTRATIONS OF	PETROLEUM CONSTITUEN	TS IN GROUNDWATER - H	IIDE				VIEW E	SI SUBMITTAL
FIELD PT NAME	DATE	TPHo	BENZENE	TOLUENE	ETHYL-BENZENE	XYLENES	MTBE	TBA
GP-1	5/2/2011	ND	ND	ND	ND	ND ND	ND ND	
GP-10 GP-11	5/13/2011 5/13/2011	1600 UG/L	ND ND	ND	ND ND	ND		
GP-12	5/19/2011	ND 360 UG/L	ND	ND ND	ND ND	ND	ND 0.5 UG/L	
GP-13	5/19/2011	ND	ND MG	ND ND	ND ND	ND ND	0.5 UG/L 0.6 UG/L	
GP-16	5/17/2011	ND	ND ND ND	9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ND ND	ND ND	ND	
GP-17	5/17/2011	ND	ND	ND	ND	ND	ND	
GP-18	5/17/2011	ND	ND ND ND	ND	ND ND ND	ND ND	ND	
GP-19	5/19/2011	ND	ND	ND	ND	ND	0.7 UG/L	
GP-2	5/2/2011	ND	ND	ND	ND	ND	ND	
GP-20	5/13/2013	ND	ND	ND	ND ND ND	ND	ND	
GP-21	5/15/2013	ND	ND	ND	ND	ND	ND	
GP-22	5/16/2013	ND	ND	ND	ND	ND	ND	
GP-23	5/15/2013	60 UG/L	ND	ND	ND	ND	1.3 UG/L	
GP-28	5/14/2013	3300 UG/L	B UG/L	<u>ND</u>	ND	ND ND	ND	
GP-3	5/6/2011	<u>ND</u>	ND	<u>ND</u>	ND	<u>ND</u>	ND	
GP-30	5/17/2013	ND	ND	ND	ND.	ND	ND	
GP-4	5/6/2011	ND	ND ND ND ND	ND	ND	ND	ND	
GP-5	5/5/2011	ND	NA	ND	ND	ND	10 UG/L	
GP-8 GP-9	5/12/2011	140 UG/L	NU	ND	ND	ND	ND	
MW-1	5/12/2011 9/24/2014	ND 3700 UG/L	ND ND	ND ND	ND	ND	ND ND	
MW-2	9/24/2014	340 UG/L	ND	ND	5.2 UG/L	2.6 UG/L	1.1 UG/L	
MW-3	9/24/2014	2100 UG/L	ND ND	3.1 UG/L	<u>ND</u> 6.6 UG/L	ND 20 UG/L	3 UG/L	
W-IND	9/24/2014	ND	ND ND	ND	ND	ND	ND	
MOST RECENT CONCENTRATIONS OF I	PETROLEUM CONSTITUENT							SI SUBMITTAL
FIELD PT NAME	DATE	TPHq	BENZENE	TOLUENE	ETHYL-BENZENE	XYLENES	MTBE	- 57(10)
GP-1	5/2/2011	ND	ND	ND	ND	ND ND	ND	TBA
GP-10	5/13/2011	3.3 MG/KG	ND	ND	ND	ND	ND	
GP-11	5/13/2011	ND	ND	ND ND	ND	ND	ND	
GP-12	5/19/2011	690 MG/KG	ND	ND	ND	ND	ND	
GP-13	5/19/2011	ND	ND	ND	ND ND	ND	ND ND ND	
GP-16	5/17/2011	20 MG/KG	ND ND	120 120 120 120 120 120 120 120 120	ND	3 UG/KG	ND	
3P-17	5/17/2011	ND	ND	ND	<u>ND</u>	ND	ND	
3P-18	5/17/2011	ND	ND	ND	ND	ND	ND	
3P-19	5/17/2011	<u>ND</u>	ND	ND	ND ND	ND ND	ND ND	
GP-2	5/2/2011	<u>ND</u>	ND ND	<u>ND</u>	<u>ND</u>	<u>ND</u>	<u>ND</u>	
GP-20	5/13/2013	16000 MG/KG	ND	<u>ND</u>	ND	<u>ND</u>	ND ND ND	
3P-23	5/13/2013	ND	ND	<u>ND</u>	ND	ND	ND	
3P-3	5/6/2011	ND	ND	<u>ND</u>	ND ND	ND ND	ND	
GP-4 GP-5	5/6/2011	1.8 MG/KG	ND	ND ND ND	ND	ND	ND	
3P-5 3P-6	5/5/2011 5/5/2011	ND ND	ND ND ND ND	ND ND	ND	ND	ND ND	
3P-7	5/6/2011	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
SP-8	5/12/2011	5.3 MG/KG	ND ND	ND	ND ND	ND ND	ND	
SP-9	5/12/2011	3.1 MG/KG	ND	ND ND ND	ND	ND	ND	
MOST RECENT GEO_WELL DATA - HIDE							VIEW E	SI SUBMITTAL
FIELD PT NAME	DATE		DEPTH TO WATER (FT)		SHEEN.	DEPTH TO FREE PRODUC		
	8/22/2012		12.73		N			
/W-1								
	8/22/2012 8/22/2012 8/22/2012		12.02 12.11		N N			

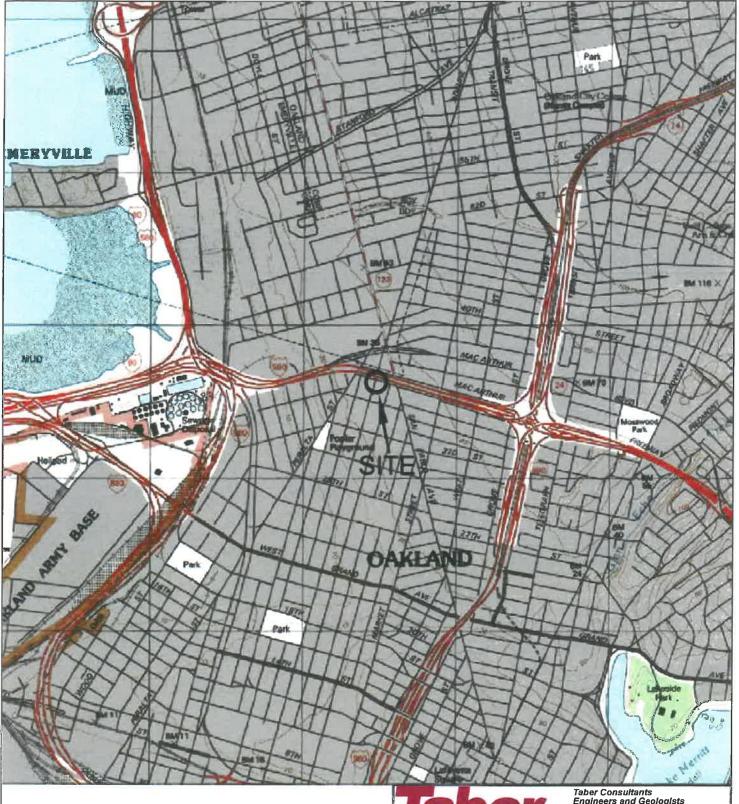
ATTACHMENT 2

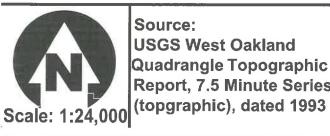
1 of 1

ATTACHMENT 3

Attachment 3 – Groundwater Evaluation and Data

LTCP GROUNDWATER SPECIFIC CRITERIA - PETROLEUM Closure Scenario Site has not affected groundwater; __ Scenario 1; __ Scenario 2; __ Scenario 3; __ X Scenario 5; __ This case should be closed in spite of not meeting the groundwater specific media criteria Evaluation Criteria: Shading indicates criteria met Site Specific Data Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 <1.000 <1.000 Plume Length < 413 feet <100 feet <250 feet feet feet Removed to No free No free No free Free Product No free product maximum product product product extent The site does not practicable meet scenarios 1 Stable or through 4; decreasing Plume Stable or Stable or Stable or Stable or however, a Stable for Decreasing decreasing decreasing decreasing determination minimum been made that of 5 years under current and Distance to Nearest < 0 feet (onsite) reasonably Water Supply Well (ACPWA) >1,000 >1,000 >1,000 >250 feet expected future (from plume >2,000 feet feet feet scenarios, the boundary) (GAMA) contaminant Downgradient: Distance to Nearest plume poses a 4,650 feet Surface Water low threat to Cross Gradient: >1,000 >1,000 >1,000 >250 feet Body human health 3.675 feet feet feet feet (from plume and safety and to Upgradient: boundry) the environment 6,320 feet and water quality Benzene Historic Max: 410 objectives will be Concentrations No criteria <3,000 <1,000 <1,000 Current Max: < 1 achieved within a $(\mu g/I)$ reasonable time **MTBE** frame. Historic Max: < 500 Concentrations No criteria <1,000 <1,000 <1,000 Current Max: < 5 (µg/l) Property Owner Not Willing to Accept a Not Not applicable Yes Not Land Use applicable applicable applicable Restriction


Notes: DWR = Department of Water Resources


ACPWA = Alameda County Public Works Agency

GAMA = Groundwater Ambient Monitoring Assessment (GeoTracker)

Attachment 3 – Groundwater Evaluation and Data

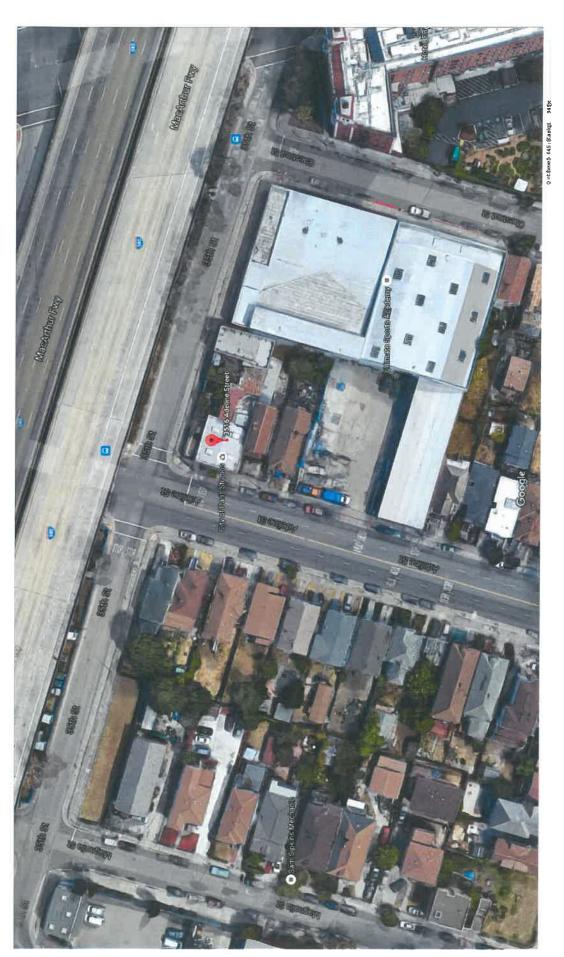
	Analysis						
Plume Length	Estimated plume length was defined by applying State Water Board's <i>Technical Justification for Groundwater Media-Specific Criteria</i> to contaminant characteristics and finding that a groundwater contaminant plume length for stoddard solvent is less than the 90 th percentile plume length for gasoline, which is stated to be 413 feet.						
Free Product	Not observed at site.						
Plume Stability	Plume is stable in aerial extent. (The contaminant mass has expanded to its maximum extent defined as the distance from the release where attenuation exceeds migration.)						
Water Supply Wells	An Alameda County Public Works Agency (ACPWA) well survey indicates no public water supply wells, irrigation wells, or cathodic protection wells within 2,000 feet of the site. The ACPWA survey found one onsite industrial supply well, and one known downgradient abandoned private water supply well at a distance of approximately 770 feet from the downgradient property line. The onsite industrial supply well was destroyed at the time of case closure. The well survey results from the GeoTracker Groundwater Ambient Monitoring Assessment (GAMA) website indicates there are no public water supply wells, irrigation wells, California Department of Public Health wells, Department of Pesticide Regulation wells located within a 2,000 foot radius of the site.						
Surface Water Bodies	San Francisco Bay is downgradient to the south at an approximate distance of 4,650 feet. Temescal Creek is approximately 3,675 feet crossgradient to the north-northwest. The Broadway Branch of Glen Echo Creek is 6,320 feet upgradient.						

Source: **USGS West Oakland** Quadrangle Topographic Map Report, 7.5 Minute Series

Taber Consultants
Engineers and Geologists
3911 West Capitol Avenue
West Sacramento, CA 95691-2116
916.371.1690 Fax 916.371.7265
www.taberconsultants.com

Former City of Paris Cleaners

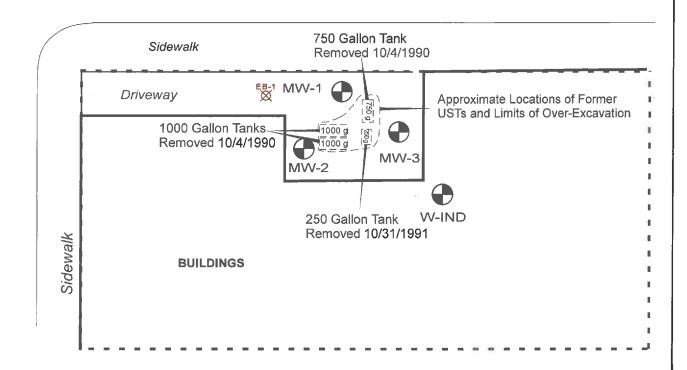
3516 Adeline Street Oakland, California

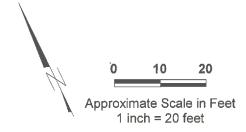

Vicinity Map

2011-0107

February 2012

Figure 1


Ksskpinetw 795: Shiprinx



8/11/2016 3:37 PM

EB-2 EB-3 EB-4 EB-5 EB-6

35TH STREET

Soil Boring (1998)

MW-2 Groundwater Monitoring Well

W-IND Industrial Well

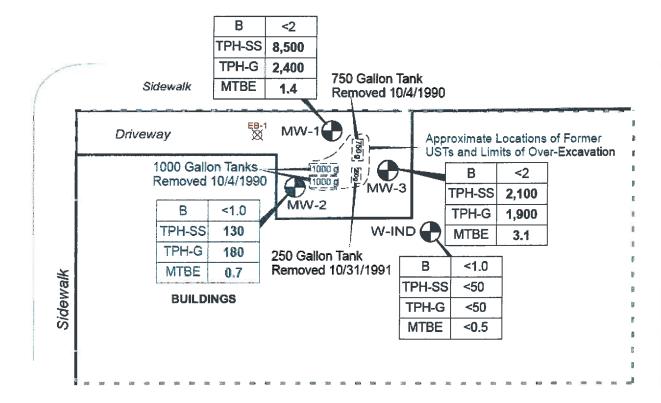
Approximate Locations Former

Underground Storage Tanks

= = Approximate Site Boundary

(Assessor's Parcel Number 5-478-23)

EB-3


E6-2

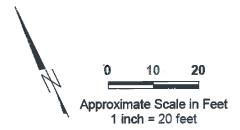
葱

EB-5

35TH STREET

EB-4

LEGEND


ADELINE STREET

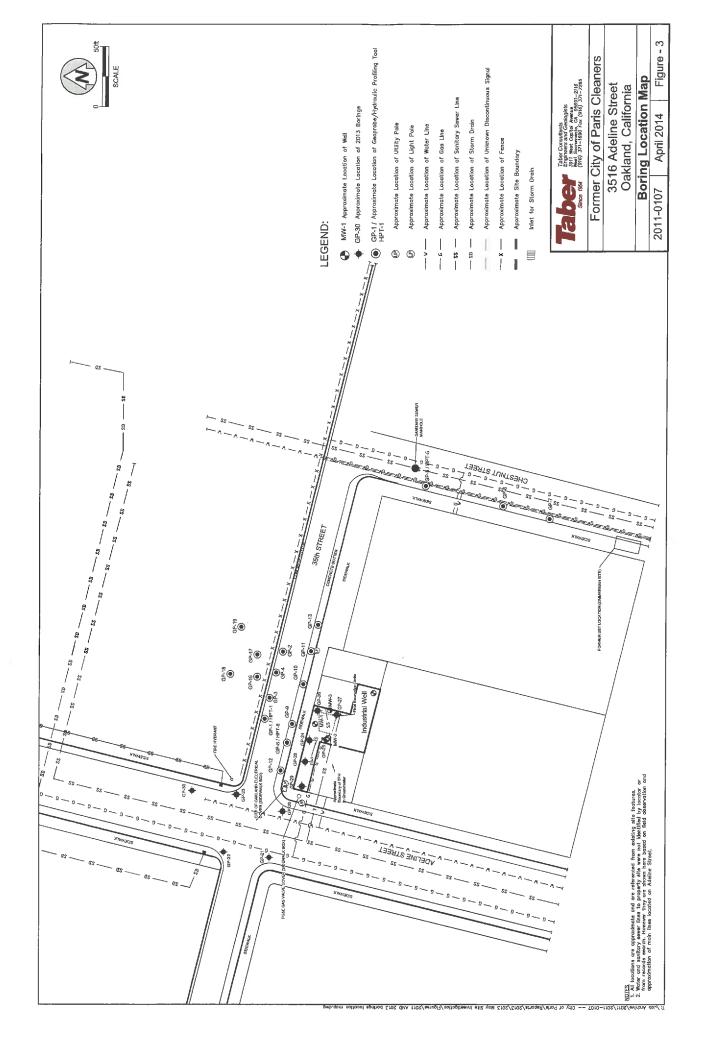
MW-2 Groundwater Monitoring Well
W-IND Industrial Well

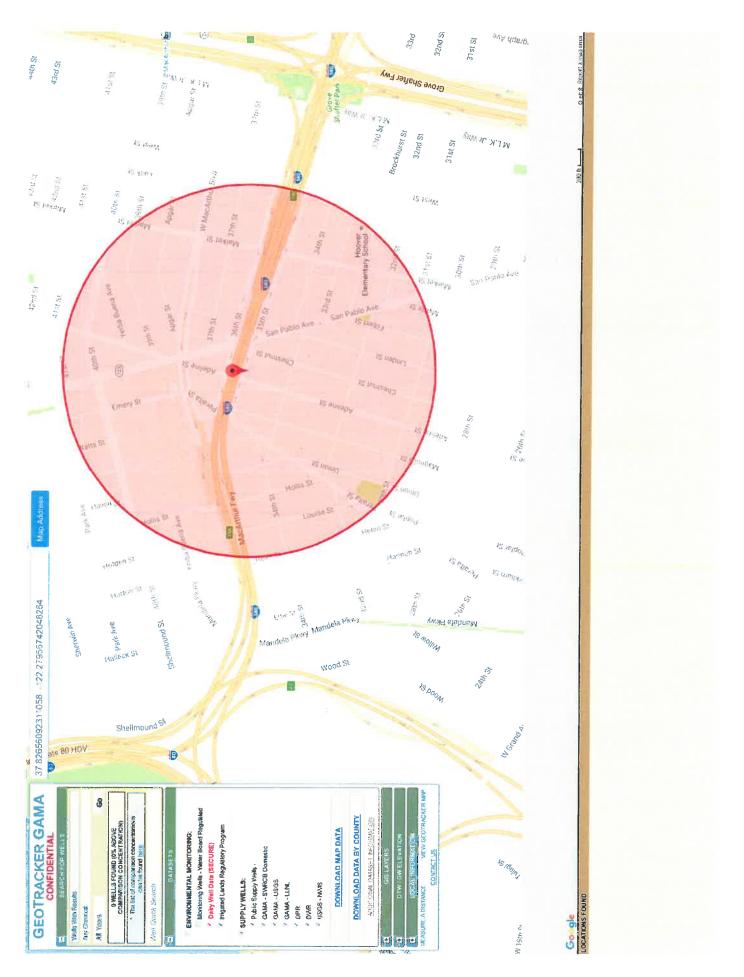
Approximate Site Boundary
(Assessor's Parcel Number 5-478-23)

В	<1.0	Benzene in micrograms per liter (µg/l)
TPH-SS	<50	Total petroleum hydrocarbon as Stoddard Solvent in µg/l
TPH-G	<50	Total petroleum hydrocarbons as gasoline in µg/l
MTBE	<0.5	

Groundwater Monitoring Data from March 18, 2015.

Taber Consultants
Engineers and Geologists
3911 West Capitol Avanue
West Sacramento, CA 95691-2116
916.371.1690 Fax 916.371.7265
www.taberconsultants.com

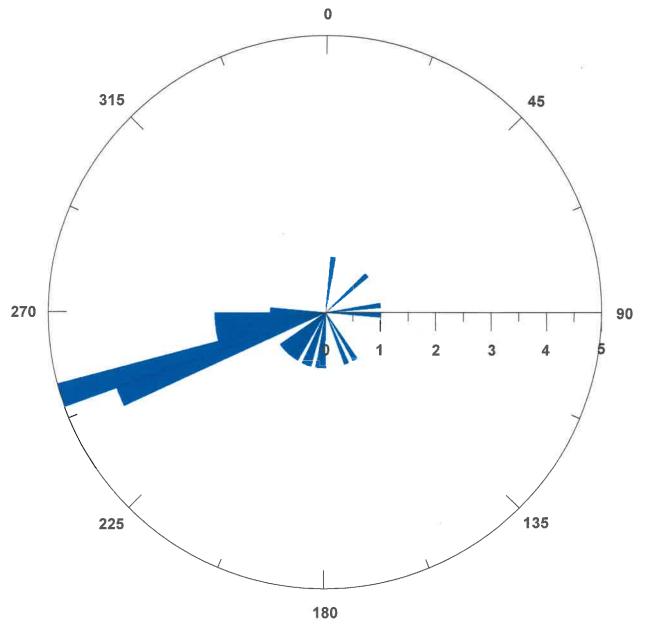

Former City of Paris Cleaners


3516 Adeline Street Oakland, California

Groundwa	ter Analytica	Summary

2011-0107 December 2015

Figure 4



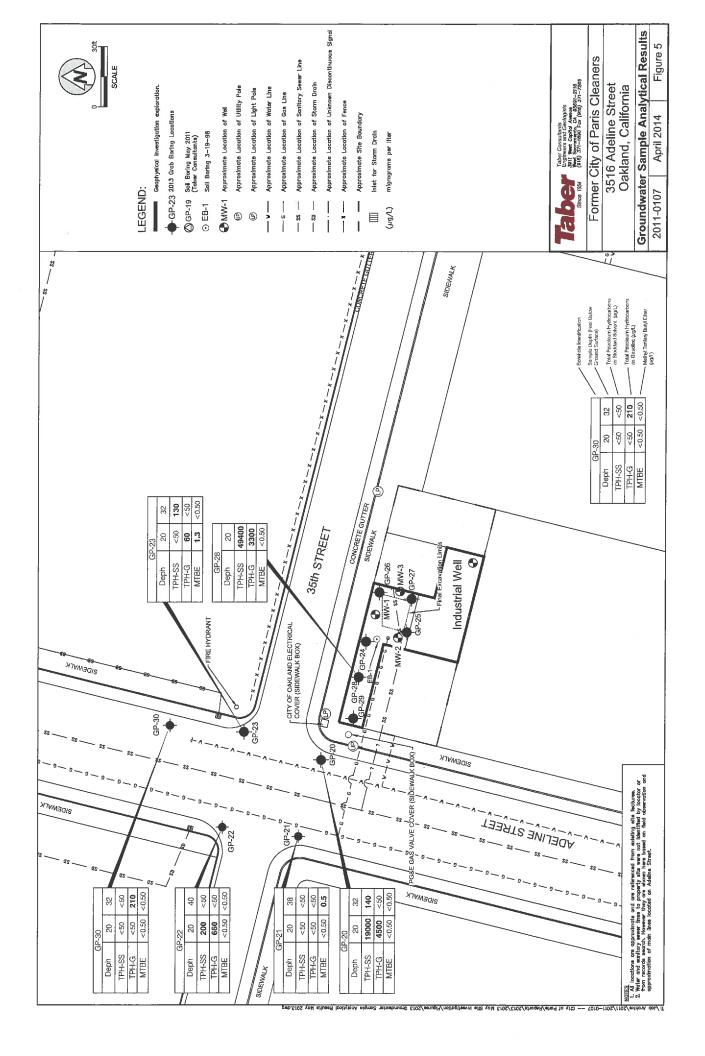
8/11/2016 11:28 AM 1 of 1

Groundwater Hydraulic Gradient Direction

November 1992 through May 2013 City of Paris Dry Cleaners

Taber Consultants Engineers and Geologists 3911 West Capitol Avenue West Sacramento, CA 95691-2116 916.371.1690 Fax 916.371.7265 www.taber.ors.villants.com

Former City of Paris Cleaners


3516 Adeline Street Oakland, California

Rose Diagram Groundwater Flow Direction

2011-0107

April 2014

Figure 6

TABLE 1 WELL CONSTRUCTION SUMMARY

City of Paris Cleaners 3516 Adeline Street, Oakland, California 94608

		Depth	Top Of Casing	manifes was should established always fine of seat for a		Diameter	Casing/Screen
Well ID	Date Installed	(feet)	Elevation (feet amsl)	Screen from	Screen To	(inches)	Туре
MW-1	10/30/1992	30	17.44	10	30	2	PVC
MW-2	10/30/1992	3D	17.31	10	30	2	PVC
MW-3	10/30/1992	30	17.44	10	30	2	PVC
W-IND*	unknown	72	32.48	Not observed	Not observed	8	Steel

Explanation:

amsl = above mean sea level

[&]quot;The top of casing is estimated based on survey; video logging of well casing/screen did not observe screen, however well appeared to have been plugged with concrete at 72 feet below ground surface.

TABLE 3 GROUNDWATER ELEVATION AND ANALYTICAL RESULTS SUMMARY

City of Paris Cleaners 3516 Adeline Street, Dakland, California 94608

And the second		6	loyation Su	mmary								Analytical	Suppose		-			1997 AV. 1	
		Top of										Analytical	Summary			1,3,5-			
MAILED	Date	Casing Elevation (feet awal)	Depth to Water (STOC)	Groundwater Elevation (feet amsi)	1PH-58	TPH-G	Benzers	Toluens	Ethyl benzone	Xylenss	MIBE	1,2-DCB (us	1,1-DCA	2-Methyl- Naphthalene	Naphthalene		Isopropyl benzene	n-Propyl benzene	
Groundwat	ter Sample	Locations								-									
EB1-18	03/19/98	18' bgs (Broundwate	r Grab Sample	270,000	_	<5.0	93	66	1,700	<100	_	_	_	_	_	_	_	_
E82-18	03/19/98	18' bgs (Sroundwate	r Grab Sample	<1.0		<0.5	≪0.5	< 0.5	<0.5	<5.0	_	62	22	_				_
E83-18	03/19/98	18' bgs (Broundwate	r Grab Sample	<1.0	_	<0.5	<0.5	<0.5	<0.5	<5.0	-	-		_		7/22		~
EB4-18	03/19/98	18' bgs (Broundwate	r Grab Sample	<1.0		<0.5	< 0.5	<0.5	< 0.5	<5.0	_	_	_	_	_			
E85-18	03/19/98	18' bgs (Browndwate	r Grab Sample	780	_	<0.5	<0.5	<0.5	2	<5.0	_	_		_	_			
E06-18	03/19/98	18' bgs (3roundwate	r Grato Sampie	<1.0	-	<0.5	<0.5	<0.5	<0.5	<5.0	-		_	=	_		_	_
MW-1	11/18/92	17,44	13.99	3.45	1,800	HA	<0.5	<0.5	< 0.5	<0.5	NA								
	11/4/1993	17.44	16.79	0.65	2.000	<50	<0.5	<0.5	<0.5	<0.5	NA		_	_		_	-	***	
MMV-1	3/8/1994	17.44	14.14	3.3	156	MA	35	40	72	120	NA	_	-	_	=	=	_	-	_
MMV-1	8/2/1994	17.44	13.18	4.26	2,100	<50	<0.5	<0.5	< 0.5	< 0.5	NA	-	-	-	22	_	_	-	
MW/-1	2/8/1995	17.44	10.92	3.52	620	<50	<0.5	<0.5	< 0.5	< 0.5	NA	-	_	-	-	_	-	_	-
	7/8/1996 10/9/1996	17.44 17.44	11. 62 14.11	5.82 3.33	37,000 42,000	110,000	1.6	<0.5	< 0.5	74	7.9		_	_	-	-	_	-	-
	3/18/1997	17,44	12.37	5.07	2,600	NA NA	<0.5 <0.5	5 1.5	<0.5 1.5	≪0.5 9.6	NA ce a	-			-		-	_	_
	6/19/1997	17.44	13.26	4.18	560	NA	<0.5	<0.5	1.2	0.71	<5.0 <5.0		_	-	_	-	-	_	
MVV-1	11/14/1997	17.44	11.45	5.99	10,000	NA	<0.5	<0.5	110	1.2	<5.0	_	-	10	••	_	099		
	12/15/1999	17.44	11,31	6.13	<20	<50	<0.5	<0.5	< 0.5	< 0.5	NA	<0.5	0.59	<0.5	≪0.5	102	-	-	-
MWV-1	03/22/02	17.44	8.97	8.47	11,006	_	-	-	_		<5.0	_	_	***	130	_			
MWV-1	04/15/03	17.44	9.23	8.21	3,900	1.77	<2.5	<2.5	<2.5	3	9	-		-	-	_			
MW-1	09/30/04	17.44 17.44	10.32 11.53	7.12 5.91	30,000	24,000 2,500	<50 <0.5	<50	<50	<50	<500		_	-	_		**	-	-
MWV-1	09/09/05	17.44	13.63	3.81	15,000	11,000	©.5	<0.5 <5	<0.5 <5	2.7 15	<50 <50	-		-	_	_	••	-	•••
MVV-1	11/30/07	17.44	13.95	3.49	-	-	_	-	_			_	-	_	1122	_	-	••	-
MWY-1	12/20/07	17.44	11.51	5.93	45,000	110,000	20	50	20	100	<5	-	-	74	- 2	122	_	122	_
NW-1	05/23/06	17.44	14.14	3.3	4,200	<500	<1	<1	<1	20	< 0.50	_	***	:	_	_	_	-	_
MVV=1 MVV-1	08/12/08 12/18/08	17.44	13.78	3.66	4,000	12,000	<1	<1	<1	<1	<0.50	-	-	_	_	_	-	-	-
MW-1	02/19/09	17.44 17.44	10.71 8.91	6.73 8.53	9,900 500	2,700 3,100	<1 <10	<1	<1	<1	<0.50	_	-	-	_	_		-	_
MVV-1	08/11/09	17.44	13.35	4.09	13,000	7,800	<10	<10 <10	<10 <10	<10 <10	<5 5.9	_	_	_	_	-	-	-	-
MW-1 NP	08/11/09	17.44	13.35	4.09	6,000	10,000	₹10	<10	<10	<10	<5	=	_	, 	_	-	150		-
MWV-1	03/17/10	17.44	9.31	8.13	4,000	12,000	<20	<20	<20	20	<10	_	_	_	_			***	_
MVV-1	08/18/10	17.44	12.65	4.79	2,900	6,900	<100	<100	<100	<100	<50		_	-	_	_	_	_	-
MW-1	03/23/11	31.30	6.75	24.55	8,600	8,100	<10	≈10	<10	<10	≪8	#3		-		544	-	_	
MW-1° MW-1	08/25/11	31.30	11.35	19.95	2,100	7,200	<1	<1	<1	<1	2.1		-	1	-	_	_	-	_
	08/22/12	31.30 31.30	11.35 12.73	19.95 18.57	5,000 5,000	4,200 4,500	<100	<100	<100	<100	<50	-	-	_	-	_	-	-	
MVV-1	01/30/13	31.30	10.93	20.37	2,000	4,400	<10 <100	<10 <100	<10 <100	<10 14	5.7 <5.0		-	100	1000	2000	••	-	-
MW-1	05/13/13	31.30	11.08	20.22	18,200	7,900	<10	<10	<10	<10	<5.0	-	=		<20	-	-	100	_
	09/24/14	31.30	13.23	18.07	2,600	3,700	≤10	410	5.2	2.6	<5.0	_	***	_	5.7	2.0	90	80	3.2
	03/18/15	31.30	11.18	20.12	8,500	2,400	<2.0	<2.0	<2.0	<2.0						46.0	_	00	€4. €
MVV-2	11/18/92	17.31	13.18	4.13	630	NA	<0.5	< 0.5	≪0.5	< 0.5	NA	-	_	2-	_	_	72		_
	11/04/93 03/08/94	17.31	14.84	2.47	3,200	<50	<0.5	<0.5	< 0.5	< 0.5	NA	-	-	-	_	-	_	-	***
MVV=2	08/02/94	17.31 17.31	11.5 13.14	5.81 4.17	45 170	NA <50	1.4	2	11	19	NA			-	con.	-	_	-	_
MW-2	02/08/95	17.31	8.18	9.13	570	<50 <50	<0.5 <0.5	≪0.5 ≪0.5	<0.5 <0.5	<0.5 <0.5	NA NA	54	(10)		_		***		-
MVV-2**	07/08/96	17.31	11.06	6.25	1,800	2,800	<0.5	2.6	16	24	6.3	_		_	_	-	_	-	
MW-2	10/09/96	17.31	12.38	4.93	4,100	NA	<0.5	0.57	<0.5	< 0.5	NA	_	-670	-	_	_	-	_	_
MW-2	03/18/97	17.31	10.61	8.7	240	<0.5	0.57	<0.5	< 0.5	5.3	NA		_	no.		_	-		_

TABLE 3 GROUNDWATER ELEVATION AND ANALYTICAL RESULTS SUMMARY

City of Paris Cleaners 3516 Adeline Street, Oakland, California 94608

A STATE OF THE PARTY OF THE PAR	200	Access to the second	vation Sun	nnary								Analytical	Summary						1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		Top of	Planeth to	Comment					Mat.							1,3,5-	Licenson in		
Well ID	Date	Casing Elevation	Depth to Water	Groundwater Elevation	TPH-SS	TPH-G	Character married	Tel. vo	Ethyl	V door	1 00 mc	4 5 15 4 4	4.4 5.65	2-Methyl-		Trimethyl			tert-Butyl
99611 113	Date				1711-30	IPH-G	Benzena	Toluene	BEUZEUE	Xylenes	MTBE		1,1-DCA	Naphthalene	Naphthalene	benzene	benzene	benzene	benzene
MW-2	06/19/97	(feet amsi)	(BLOC)	(feet arrisi)	2.000	414	Constant Constant			- Section of the Party Party Party		(car	yf)				THE REAL PROPERTY.		
		17.31	11.58	5.63	2,500	NA	40.5	-0.5	9.1	≤0.5	45.0	-		_	(=	-	400	-	_
MVV-2	11/14/97	17.31	10.61	6.7	130	NA	<0.5	< 0.5	0.8	1.2	<5.0	igner.		-	-		-	-	
MVV-2	12/15/99	17.31	10.97	6.34	<20	<50	<0.5	<0.5	<0.5	<0.5	NA	-0.5	0.53	<0.5	49	_	-	_	_
MW-2	03/22/02	17.31	8.82	8.49	170	13,000	410	1,000	210	1,100	<5.0	·	-	sed:	<10		-		
MW-2 MW-2	04/15/03	17.31	8.52	8.79	99	-	<0.5	<0.5	<0.5	0.76	10		~	-		(max	-	0.0	-
MVV-2	03/26/04 09/30/04	17.31	9.32	7.99	120	93	<0.5	<0.5	< 0.5	0.76	5.4	-	-		44		_	-	_
MW-2	09/09/05	17.31	11,62	5.69	<50	<50	<0.5	<0.5	< 0.5	<0.5	<5	_			-	-	_	-	-
MVV-2	11/30/07	17.31	12.75	4.56	120	99	<0.5	<0.5	< 0.5	< 0.5	<8	_	_	-	-	_	_	-	_
MW-2	12/20/07	17.31	11.08	6.25		_	-		_			-				-	_	_	_
MW-2	05/23/08	17.31	9.96	7.36	<50	3,000	<1	1.6	<1	2.4	2.9	***	-	-	-	-	_	-	
MW-2		17.31	12.46	4.85	300	1,100	<1	<1	<1	<1	3.5	_	_	-	_	-	-		_
	08/12/08	17.31	12.08	5.23	2,200	350	<1	<1	<1	<1	<0.50	-	-	-	-	-	-	-	
MW-2 MW-2	12/18/08	17.31	10.58	6.73	300	<50	<1	<1	<1	<1	7.3	***	_	_	0.00	_	-	100	***
MW-2	02/19/09	17.31	8.22	9.09	300	300	<1	<1	<1	<1	3.4	_	-		-		••	_	-
	08/11/09	17.31	13.00	4.31	600	610	51	<1	457	<1	3.8	-	-	-	-		_	_	_
MW-2	03/17/10	17.31	8.95	9.36	<50	<50	«1	41	≪1	-61	1.8		_	1 ==	-		_	-	_
MW-2	08/18/10	17.31	12.15	5.16	<50.0	70	<1.0	<1.0	<1.0	<1.0	2.4	-	_	_		100	_	-	was
MW-2	03/23/11	31.03	8.22	24.81	200	≈50	<1.0	41.0	<1.0	<1.0	3.6	-	-	_	-	-	_	_	-
MW-2	08/25/11	31.03	11.06	19.97	<50	<50	<1.0	<1.0	<1.0	<1.0	1.5		- T			_	-	_	
MW-2	02/22/12	31.03	10.61	20.42	400	250	<1.0	<1.0	<1.0	<1.0	<0.50	-		-	1.00	-	200		-
MW-2	08/22/12	31.03	12.02	19.01	<50	290	<1.0	<1.0	<1.0	<1.0	1.2	AND .	-	-	-	_	_	_	
MW-2	01/30/13	31.03	9.95	21.08	<50	270	<1.0	<1.0	<1.0	<1.0	1.1	-	-	_	-	_	-	_	
MW-2	05/13/13	31.03	10.77	20.26	<50	260	<1.0	<1.0	< 1.0	<1.0	1.2	-	***	_	<2.0				
MW-2	09/24/14	31.03	12.40	18.63	8,000	340	<1.0	<1.0	<1.0	<1.0	1.1	-		-	<2.0	<1.0	<1.0	<1.0	1.2
MW-2	03/18/15	31.03	10.36	20.67	130	180	<1.0	<1.0	<1.0	<1.0	0.7				<2.0				
																	_	-	_
E-WM	11/18/92	17.44	13.93	3.51	11,000	NA	<0.5	<0.5	< 0.5	<0.5	NA	-	-	1 700	-	_	_	_	_
MW-3	11/04/93	17.44	15.16	2.28	320	<50	≪0.5	<0.5	<0.5	<0.5	NA	_	_	_	_	_	2.55	_	_
MW-3	03/06/94	17.44	13.43	4.01	45	NA	8.0	0.9	5	10	NA	=	_	_	-	_	_	-	
MW-3	08/02/94	17.44	12.82	4.62	<20	<50	<0.5	40.5	<0.5	< 0.5	NA	-	***	_	-	_	_	_	•••
MW-3	02/08/95	17.44	7.62	9.82	<20	<50	<0.5	<0.5	<0.5	<0.5	NA	_		-	-	_	_	_	See
**E-WM	07/06/96	17.44	10.97	6.47	2,500	2,200	1	<0.5	8.8	8	10		400		_	-	-	-	
MW-3	10/09/96	17.44	11.84	5.6	2,600	NA	<0.5	<0.5	<0.5	<0.5	NA	-	-	-		-		_	
MW-3	03/18/97	17.44	10.16	7.28	2,500	NA	<0.5	0.61	0.63	5.2	NA	_	-	_	-	-	-	-	-
MW-3	06/19/97	17.44	11.40	6.04	21,000	NA	<0.5	<0.5	11	<0.5	<5.0	-	-	-	_		_	_	200
MW-3	11/14/97	17.44	10.71	6.73	1,400	NA	<0.5	<0.5	20	28	<5.0	-	_	_	-	-	100	***	_
MW-3	12/15/99	17.44	10.96	6.48	<20	<50	<0.5	<0.5	<0.5	<0.5	NA	0.87	0.57	25	88	-	_	_	
MW-3	03/22/02	17.44	10.97	6.47	420	<50	<0.5	<0.5	< 0.5	< 0.5	31	-	-	_	<50	_	_	_	_
MW-3	04/15/03	17.44	8.31	9.13	2,700	-	<0.5	<0.5	<0.5	<0.5	40	-	-	100	72	-	**	**	-
MW-3	03/26/04	17.44	8.61	8.63	2,700	1,900	<1.7	<1,7	<1.7	4.3	£17	-	_	122	***	-	-		
MW-3	09/30/04	17.44	11,1	6.34	3,900	2,600	≪0.5	≪0.5	<0.5	3.2	<10	-	_	-	-	_	-	-	-
MW-3	09/09/05	17.44	13.75	3.69	4,000	2,600	<0.5	<0.5	9.57	2.7	12	-	-	-	-	_	_	_	-
MW-3	11/30/07	17.44	13.9	3.54	—		_	-	-		-	-		_	-		_	_	_
MW-3	12/20/07	17.44	10.79	6.65	18,000	12,000	<1	1.6	1.1	2.4	9.2	-	_	200	_	_	_	_	_
MW-3	05/23/08	17.44	15.2	2.24	900	3,000	<1	254	<1	42	9.1	_	_	_	_	-	-		_
MW-3	08/12/08	17.44	14.14	3.3	1,900	4,300	<1	≪1	≪1	≪1	5.5	_	-	_	-		-	-	_
MW-3	12/18/08	17.44	12.53	4.91	5,000	610	<1	1	<1	<1	20	-	-	200	-	_	-	_	
MW-3	02/19/09	17.44	11.11	6.33	1,500	1,300	100	1	4	*	9	_	-	-	_	_	-	_	_
MW-3	08/11/09	17.44	15.22	2.22	1,000	2,200	<10	<10	≪10	≪10	7.3	-	_	Time.	7.00	_	_	_	_
WW-3 NP	08/11/09	17.44	15.22	2.22	3,000	6,700	<10	<10	<10	<10	<\$	-	-	**	-	-	-	_	-
E-WM	03/17/10	17.44	11.94	5.5	3,000	4,600	<10	<10	<10	<10	9.4	-	_	_	_	4	-		-
MW-3	06/18/10	17.44	12.86	4.58	1,000	3,500	<50	<50	<50	<50	<25	••	_	-	14		-	_	_
MW-3a	03/23/11	31.13	3.58	27.55	500	<50	<1.0	<1.0	<1.0	<1.0	<0.50	***	-		-	-		***	-
MVV-3	08/25/11	31.13	11.85	19.28	<50	2,300	<1.0	<1.0	<1.0	<1.0	4.5	_		100	_			-	_

TAGLE 3 GROUNDWATER ELEVATION AND ANALYTICAL RESULTS SUMMARY

City of Paris Cleaners

3516 Adeline Street, Oakland, California 94608

Maria Carana Carana		Ele	wation Sur	nmary								Analytical	Summary						
Meli ID	Dane	Top of Casing Elevation Seet amab	Depth to Water (BTOC)	Groundwater Elevation (feet arreb	TPH-\$5	TPHG	Denzens	Toluens	Etinyl benzene	Xylenes	MTBE	1,2-DCB	1,1-DGA	2-Methyl- Naphthalene	Naphthalans	1,3,5- Trimethyl benzene	leopropy! benzene	n-Propyl benzene	tert-Butyl benzene
MW-3	02/22/12	31.13	10.84	20.29	2.000	1,900	<10	<10	<10	<10	<5.0	(บรู	(וע			-			
MVV-3	06/22/12	31.13	12.11	19.02	2,000	1,400	<10	<10	<10	30	20	<u>್</u>	-	-	-	-	-	-	***
MW-3	01/30/13	31.13	10.32	20.81	1,800	1,900	<10	<10	<10	2.1	3	-	-	_	-	-	_	-	-
MW-3	05/13/13	31.13	12.75	18.38	800	3,200	<1.0	<1.0	<1.0	41.0	2.4	_	_		-0.0	_	_	-	
MVV-3	09/24/14	31.13	12.3	18.83	2,100	700	<1.0	3.1	S.S	20	3	_	_	-	<2.0	4.6	face	***	
MW-3	03/18/15	31.13	9.91	21.22	2,100	1,900	<2.0	<2.0	<2.0	<2.0	3.1		_	0.00	10	<1.0	80	50	3.4
10100-0	90119119	91.10	0.01	21-25	2,100	1,000	~2.0	~2.0	~2.0	~2.0	3.1	***	_	-	<4.0	<1.0	80	50	3.4
W-IND	03/22/02	NA.	-	_	<50	190	<0.5	<0.5	< 0.5	6.0	<5.0	_	_	**	_	-	_		
W-IND	04/15/03	NA NA		-	-	-	-	_	-			200	_	rese		-	_		_
W-IND	03/26/04	NA	-	-	500	200	<0.5	40.5	<0.8	<0.5	<5	-	_	_	-	_	_	_	_
WIND	09/30/04	NA	-	-	<50	~50	< 0.5	<0.5	< 0.5	<0.5	<5	-		_		_	_	-	
WIND	09/09/05	WA	-	-	<50	<50	<0.5	<0.5	< 0.5	< 0.5	≪5		20	_	_	1000		-	_
WIND	11/30/07	NA	12.92		_		-	-	-			_		**	_	-		_	
WIND	12/20/07	NA	11.68	-	<50	500	421	1	<1	2.2	<.50	_	_		_	_	-	_	-
WIND	05/23/08	NA	12.72	1 2	300	250	<1	3.7	<1	2.4	< 0.50	_		_	_	-	-	_	-
WIND	08/12/08	NA	13.42	-	<50	<50.0	<1	<1	<1	<1	< 0.50	_		_	_	_	-	-	-
W-IND	12/18/09	NA	12.65	_	≪50	450	<1	<1	<1	e1	0.7	_	_	_		-	-	_	
WIND	02/19/09	NA	9.74	-	<50	<50	<1	<1	«1	41	<0.5		••	_	_	-	-		_
MIND	08/11/09	NA	14.13	_	≪50	<50	41	41	<1	<1	≪0.5		ಕಿತ		_	_	**	_	-
WIND	93/17/10	NA:	9.78		≤50	<50	429	«1	<1	≪1	<0.5				_	_	=		-
W-IND	08/18/10	NA	12.84		<50	<50	<1.0	<1.0	<1.0	<1.0	< 0.50		==		-	-		**	-
WIND	03/23/11	32.48	8.32	24.16	<50	<50	<1.0	<1.0	<1.0	€1.0	<0.50				-	_	_	-	_
W-IND	08/25/11	32.48	12.34	20.14	<50	<50	<1.0	<1.0	<1.0	<4.0	< 0.50	_		_	A, 22.2		_	-	
M-IND	02/22/12	32.48	11.84	20.64	<50	<50	<1.0	<1.0	<1.0	<1.0	< 0.50	_		_	_		-	-	_
WIND	08/22/12	32.48	12.93	19.55	<50	<50	<1.0	<1.0	<1.0	<1.0	< 0.50	200		_	-	_	_	_	-
W-IND	01/30/13	32.48	11.13	21.35	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	_		1	_		4,500	-	5770
M-IND	05/13/13	32.48	12.14	20.34	100	<50	<1.0	44.0	<1.0	<1.0	⊴0.50	-	_	-	<2.0	-	-	_	_
M-IND	09/24/14	32.48	13.34	19.14	3,600	<50	<1.0	<1.0	≪1.0	<1.0	< 0.50	-	_	, market	<2.0	<1.0	<1.0	≪1.0	<1.0
WIND	03/18/15	32.48	11.61	20.87	<50	<50	≈1.0	<1.0	<1.0	<1.0	<0.50	_		744	<2.0	_	- 110	-	-1.0

Explanation:

TPH-SS = Total petroleum hydrocarbons as stoddard solvent, analyzed using EPA method 80158.

TPH-G = Total petroleum hydrocarbons as gasoline, analyzed using EPA Method 8015B.

Benzene, toluene, ethylbenzene, and total xylenes analyzed by EPA Method 8260B.

MTBE = Methyl tertlary-butyl ether, analyzed using EPA Method 8260B.

DCB = Dichlorobenzene, analyzed by EPA Method using EPA Method 8260B.

DCA = Dichoroethane, analyzed by EPA Method using EPA Method 8260B.

Naphalene, 1,3.5-Trimethylbenzene, isopropylbenzene, n-Propylbenzene, ten-bulylbenzene analyzed by EFA Method 52605.

See laboratory report for additional 6260B analyses. All further constituent concentrations were below the taboratory reporting limit.

arnsl = Above mean sea level.

BTOC = Below top of casing.

ug/I - Micrograms per liter.

< n = Not detected at or above indicated laboratory reporting limit.

NA = Detainet available

NP = HydraSiseve® no purge protocol

- = not analyzed

On March 17, 2010, Taber Consultants implemented the HydraSteeve® no purge protocol for all wells.

On March 23, 2011, Taber Consultants resurveyed top of casing elevations for all wells.

MW-3" During the 3/23/11 monitoring event, Taber Consultants replaced a damaged well cap. See First Semismoust Monitoring Report 2011 for discussion.

⁼ Components found in the gasoline range; however, they are not characteristic of gasoline components.

TABLE 2
RESULTS OF TPHss, BTEX & MTBE LABORATORY ANALYSES [WATER SAMPLES]
3516 Adeline Street
Oakland, California
[03/19/98 Sample Date]

Boring Sample I.D.	TPHss	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes
<u>EB-1</u> W-EB1-18	270,000	<100.	<5.0	93.	66.	1,700.
<u>EB-2</u> W-EB2-18	<1.0	<5.0	< 0.5	<0.5	<0.5	<0.5
<u>EB-3</u> W-EB3-18	<1.0	<5,0	<0.5	< 0.5	<0.5	<0.5
<u>EB-4</u> W-EB4-18	<1,0	<5.0	<0.5	<0.5	<0.5	<0.5
<u>EB-5</u> W-EB5-18	780-00	<5.0	<0.5	< 0.5	<0.5	<0.5
<u>EB-6</u> W-EB6-18	<1.0	<5.0	< 0.5	<0.5	< 0.5	< 0.5

Results in micrograms/liter (µg/l) = parts per billion (ppb). <: Less than the detection limit for the method of analysis.

TABLE 5
GRAB GROUNDWATER SAMPLE ANALYTICAL RESULTS
SITE INVESTIGATION 2011 AND 2013

Former City of Paris Cleaners 3516 Adeline Street, Oakland, California 94608

Boring	Sample			·			Ethyl			
Identification	Identification	Sample Date	TPH-SS	TPH-G	Benzene	Toluene	benzene	Xylenes	MTBE	Napthalene
							(ug/l)			
Upper (Shallow) (Groundwater Zon	е								
GP-3	GP-3-15	5/6/2011	<50	<50	<1.0	2.3	<1.0	<1.0	< 0.50	-
GP-4	GP-4-15 ^a	5/6/2011	150	310	<1.0	2.2	<1.0	<1.0	<0.50	
GP-8	GP-8-15 ^a	5/12/2011	80	160	<1.0	<1.0	<1.0	<1.0	< 0.50	
GP-9	GP-9-15 ^a	5/12/2011	200	470	<1.0	<1.0	<1.0	<1.0	1.5	-
GP-10	GP-10-15 ^a	5/13/2011	1000	2100	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-11	GP-11-15	5/13/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	0.6	
GP-16	GP-16-15 ^a	5/17/2011	<50	130	<1.0	<1.0	<1.0	1.1	< 0.50	
GP-17	GP-17-15	5/17/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-18	GP-18-15 ^a	5/17/2011	<50	80	<1.0	<1.0	<1.0	<1.0	< 0.50	
GP-19	GP-19-15	5/19/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	0.7	
GP-20	GP-20-20 ^{a,c}	5/13/2013	19000	4500	<1.0	<1.0	<1.0	<1.0	< 0.50	<1.0
GP-21	GP-21-20	5/15/2013	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
GP-22	GP-22-20 ^a	5/16/2013	200	660	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
GP-23	GP-23-20 ^a	5/15/2013	<50	60	<1.0	<1.0	<1.0	<1.0	1.3	<2.0
GP-28	GP-28-20 ^a	5/14/2013	49400	3300	8	<1.0	<1.0	<1.0	<0.50	<2.0
GP-30	GP-30-20	5/17/2013	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
										0

TABLE 5
GRAB GROUNDWATER SAMPLE ANALYTICAL RESULTS
SITE INVESTIGATION 2011 AND 2013

Former City of Paris Cleaners 3516 Adeline Street, Oakland, California 94608

Boring	Sample	·					Ethyl			
Identification	Identification	Sample Date	TPH-SS	TPH-G	Benzene	Toluene	benzene	Xylenes	MTBE	Napthalene
							(ug/l)			-
Lower (Deeper) G	iroundwater Zone									
GP-1	GP-1	5/2/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	< 0.50	
GP-2	GP-2	5/2/2011	<5.0	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-3	GP-3-35	5/6/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	< 0.50	
GP-4	GP-4-35	5/6/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-5	GP-5 ^b	5/5/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	10	
GP-8	GP-8-35 ^a	5/12/2011	<50	140	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-9	GP-9-35	5/12/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-10	GP-10-35 ^a	5/13/2011	900	1600	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-11	GP-11-35	5/13/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-12	GP-12-35 ^a	5/19/2011	<50	360	<1.0	<1.0	<1.0	<1.0	0.5	
GP-13	GP-13-35	5/19/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	0.6	
GP-16	GP-16-35	5/17/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-17	GP-17-35	5/17/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-18	GP-18-35	5/17/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	< 0.50	
GP-19	GP-19-35	5/17/2011	<50	<50	<1.0	<1.0	<1.0	<1.0	<0.50	
GP-20	GP-20-32	5/13/2013	140	<50	<1.0	<1.0	<1.0	<1.0	< 0.50	<1.0
GP-21	GP-21-38	5/15/2013	<50	<50	<1.0	<1.0	<1.0	<1.0	0.5	<2.0
GP-22	GP-22-40	5/16/2013	<50	<50	<1.0	<1.0	<1.0	<1.0	< 0.50	<2.0

TABLE 5 GRAB GROUNDWATER SAMPLE ANALYTICAL RESULTS SITE INVESTIGATION 2011 AND 2013

Former City of Paris Cleaners 3516 Adeline Street, Oakland, California 94608

Boring Identification	Sample Identification	Sample Date	TPH-SS	TPH-G	Benzene	Toluene	Ethyl benzene	Xylenes	MTBE	Napthalene
							(ug/l)			
GP-23	GP-23-32	5/13/2013	130	<50	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
GP-30	GP-30-32 ^a	5/16/2013	<50	210	<1.0	<1.0	<1.0	<1.0	< 0.50	<2.0

Explanation:

TPH-SS = Total petroleum hydrocarbons as stoddard solvent, analyzed by EPA Test Method 8015B

TPH-G = Total petroleum hydrocarbons as gasoline, analyzed by EPA Test Method 8015B

MTBE = Methyl tertiary-butyl ether

ug/l = micrograms per liter.

<n = Not detected at or above indicated laboratory reporting limit</p>

Benzene, toluene, ethylbenzene, total xylenes, MTBE, 1,2-DCB, 1,1-DCA, 2-Methyl-Naphthalene and Naphthalene were analyzed by EPA Test Method 8260B

^aNon-typical TPH pattern present in gas range.

bNote: GP-5 was also analyzed for TPH as kerosene and fuel oil which were not detected at or above the laboratory reporting limit of 50 ug/l.

^CNote: TPH Stoddard Solvent present in gas range

TABLE 5 GRAB GROUNDWATER SAMPLE ANALYTICAL RESULTS SITE INVESTIGATION 2011 AND 2013

Former City of Paris Cleaners 3516 Adeline Street, Oakland, California 94608

					Toluene	Ethyl benzene	Xylenes	MTBE	Napthalene	
						(u	ıg/l)		_	
GP-23	GP-23-32	5/13/2013	130	<50	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
GP-30	GP-30-32 ^a	5/16/2013	<50	210	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0

Explanation:

TPH-SS = Total petroleum hydrocarbons as stoddard solvent, analyzed by EPA Test Method 8015B

TPH-G = Total petroleum hydrocarbons as gasoline, analyzed by EPA Test Method 8015B

MTBE = Methyl tertiary-butyl ether

ug/l = micrograms per liter.

<n = Not detected at or above indicated laboratory reporting limit</pre>

Benzene, toluene, ethylbenzene, total xylenes, MTBE, 1,2-DCB, 1,1-DCA, 2-Methyl-Naphthalene and Naphthalene were analyzed by EPA Test Method 8260B

^aNon-typical TPH pattern present in gas range.

bNote: GP-5 was also analyzed for TPH as kerosene and fuel oil which were not detected at or above the laboratory reporting limit of 50 ug/l.

^CNote: TPH Stoddard Solvent present in gas range

TABLE 7
GROUNDWATER FIELD READINGS - NATURAL ATTENUATION PARAMETERS
MONITORING SUMMARY, AND 2011/2013 SITE INVESTIGATIONS

Former City of Paris Cleaners 3516 Adeline St, Oakland, CA 94608

					Oxygen Reduction		Electrical	
Sample	Sample	Sample	Dissolved	Dissolved	Potential		Conductivity	
Location	Identification	Date	Oxygen (DO)	Oxygen (DO)	(ORP)	pН	(EC)	Temperature
			(%)	(mg/l)	(mV)		(uS/cm)	(°C)
Upper (Shallo	ow) Groundwater	Zone						
GP-3	GP-3-15	5/6/2011	99.7	8.7	27.9	6.65	1195	21.06
GP-4	GP-4-15	5/6/2011	73.9	6.59	-124.6	7.08	1017	20.34
GP-8	GP-8-15	5/12/2011	3.4	0.33	-176.5	7.84	1380	21.40
GP-9	GP-9-15	5/12/2011	2.2	0.24	-144.2	7.44	1299	23.20
GP-11	GP-11-15	5/13/2011	27.5	3.18	-91.4	7.93	960	22.30
MVV-1	MW-1	5/12/2011	11.4	1.36	-202.6	7.21	1831	15.40
MW-1	MW-1	1/30/2013	16.8	1.58	-110.4	6.65	1398	17.90
MW-1	MW-1	5/13/2013	15.2	1.43	-148.8	6.89	1335	17.59
MW-2	MW-2	5/12/2011	23.4	2.83	-116.7	5.54	1857	15.90
MW-2	MW-2	1/30/2013	13.6	1.28	-99.2	6.91	1421	17.44
MW-2	MW-2	5/13/2013	10.4	0.98	-148.3	7.13	1409	17.14
MVV-3	MVV-3	5/12/2011	12.7	1.56	-202.7	7.27	667	15.70
MW-3	MW-3	1/30/2013	13	1.25	-123.0	6.78	1352	17.45
MW-3	MVV-3	5/13/2013	8.2	0.77	-133.9	6.98	1342	17.14
Lower (Deep	er) Groundwater	Zone						
GP-1	GP-1	5/2/011	60.2	6.29	75.1	6.14	1069	21.00
GP-2	GP-2	5/2/011	35.4	3.29	-165.7	6.98	774	22.07
GP-3	GP-3-35	5/6/2011	39.6	3.6	-57.0	6.19	814	20.23
GP-4	GP-4-35	5/6/2011	42.7	3.86	38.0	7.21	699	18.94
GP-5	GP-5	5/5/2011	28.3	2.38	-281.5	8.20	956	23.70
GP-8	GP-8-35	5/12/2011	8.5	0.99	-108.3	6.91	1068	20.90
GP-9	GP-9-35	5/12/2011	20.6	1.43	-91.4	6.38	938	20.90
GP-11	GP-11-35	5/13/2011	19.9	2.21	-107.1	7.56	924	23.90
W-IND	W-IND	5/12/2011	50.6	6.45	18.1	7.04	1077	15.80
W-IND	W-IND	1/30/2013	18.0	1.75	162.2	7.20	841	16.82
W-IND	W-IND	5/13/2013	7.9	0.77	41.2	7.36	838	16.75

Explanation:

Siemens (S) is a unit of the electrical conductivity. The conductivity of water is measured within a certain distance thus the input is in S/cm or uS/cm. (°C) = Celclus

^{% =} percent

mg/l = milligrams per liter.

mV = millivolts.

uS/cm = microSiemens per centimeter.

TABLE 8
NATURAL ATTENUATION GROUNDWATER PARAMETERS

City of Paris 3516 Adeline St, Oakland, CA 94608

Well ID/Sample				Alkalinity			Ferrous						
Identification	CO2	Phosphorus	TKN	as CaCO3	Sulfate	Nitrate	Iron	Ferric Iron	Manganese (II)	Ethane	Ethene	Sulfide	Methane
	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
MW-1	94	0.938	1.720	750	<1.0	<0.050	<0.025	18.0	1.12	<0.01	<0.010	<500	0.059
MW-2	64	0.115	0.265	666	81	130.0	<0.025	0.3	3.06	<0.01	<0.010	<500 <500	0.058 0.047
MVV-3	77	1.260	1.780	299	<1.0	< 0.050	<0.025	19.0	1.36	<0.01	<0.010	<500	0.047
W-IND	54	9.630	0.731	350	76	19.0	< 0.025	8.0	0.689	<0.01	<0.010	<500	0.000
GP-1	42	0.362	0.230	279	146	30.0	< 0.025	2.1	2.18	<0.01	<0.010	<500	< 0.010
GP-2	65	0.341	1.300	216	70	35.0	<0.025	0.9	4.96	<0.01	<0.010	<500	0.025
GP-3-15	83	0.315	0.870	312	185	25.0	< 0.025	1.4	6.24	<0.01	<0.010	<500	0.025
GP-3-35	54	0.105	0.300	230	86	36.0	< 0.025	5.8	4.85	<0.01	<0.010	<500	< 0.010
GP-4-15	94	0.293	1.830	379	6.82	< 0.050	<0.025	29.0	5.55	< 0.01	<0.010	<500	0.047
GP-4-35	88	0.409	0.630	173	71	38.0	<0.025	0.7	6.38	<0.01	<0.010	<500	0.064
GP-5	110	0.025	0.750	330	86	30.0	< 0.025	0.1	1.83	0.024	<0.010	<500	0.048
GP-8-15	65	0.422	0.793	517	17	< 0.050	<0.025	9.7	3.4	0.02	0.020	<500	0.068
GP-8-35	122	0.625	1.370	297	96	14.0	<0.025	9.5	5.42	0.033	0.030	<500	0.077
GP-9-15	130	0.386	1.910	400	16	<0.050	< 0.025	6.9	1.64	0.04	0.020	<500	0.081
GP-9-35	67	0.753	0.923	242	76.0	3.4	<0.025	8.6	9.63	0.02	0.010	<500	0.055
GP-11-15	89	0.103	0.793	220	126.0	36.0	<0.025	3.4	1.89	0.02	0.020	<500	0.045
GP-11-35	72	<0.010	0.458	284	79.0	39.0	<0.025	0.3	5.1	0.02	0.020	<500	0.055

Explanation:

TKN = Total Kjeldjahl Nitrogen

mg/l = Milligrams per liter

ug/l = Micrograms per liter

CO2- Carbon Dioxide analyzed using EPA Method 4500-C02 C

Phosphorus analyzed using EPA Method 365.3

TKN - Total Kjeldahl Nitrogen analyzed using EPA Method 351.2

Alkalinity as Calcium Carbonate analyzed using EPA method SM 2320B

Sulfate and nitrate analyzed using EPA method 300.0

Ferrous iron analyzed using EPA method 6101610/SM 3500

Ferric iron analyzed using EPA Method 6010A

Manganese analyzed using EPA method 6010B

Methane, ethane, and ethene analyzed using EPA Method RSK-175

Sulfide analyzed using EPA method 376.2/4500-S 2-G

TABLE 8 NATURAL ATTENUATION SOIL PARAMETERS

City of Paris 3516 Adeline St, Oakland, CA 94608

Sample ID	Date	Effective Porosity (%)	Porosity (%)	Moisture Percent (%)	Wet Unit Weight (pcf)	Dry Unit Weight (pcf)	Bulk Density (kg/l)	Organic Matter (%)	Fraction Organic Carbon (%)	SHC (in/hr)	Hydraulic Conductivity (cm/sec)
GP-1-18	5/2/2011	24.0	65.3	30.5	76.4	58.5	0.94	1.38	0.80	0.063	4.4E-05
GP-2-11	5/2/2011	17.9	56.8	17.8	85.8	72.9	1.17	0.68	0.40	0.003	2.0E-04
GP-3-14.5	5/6/2011	12.73	38.3	14.4	119.0	104.0	1.67	4.34	2.52	8.42	5.9E-03
GP-5-15	5/5/2011	28.20	50.9	13.0	93.6	82.8	1.33	5.61	3.26	4.79	3.4E-03
GP-8-14	5/12/2011	3.74	42.7	17.8	113.8	96.6	1.55	3.94	2.29	0.0048	3.4E-06
GP-9-15	5/12/2011	4.69	37.9	17.0	122.5	104.7	1.68	3.78	2.20	0.0015	1.1E-06
GP-10-16	5/13/2011	13.97	37.9	14.6	119.9	104.6	1.68	3.83	2.23	0.019	1.3E-05
GP-11-17	5/13/2011	8.34	24.8	8.7	137.8	126.7	2.03	4.10	2.38	0.0073	5.2E-06

Explanation:

SHC = saturated hydraulic conductivity pcf = pounds per cubic foot kg/l = Killograms per liter (in/hr) = inches per hour (cm/sec) = centimeters per second

Bulk density converted from dry unit weight, i.e. GP-1-18, 58.5 pcf * 0.453592 kg/l * 1/28.3168 pcf = 0.94 Fraction Organic Carbon (f_{oc})-- Method ASTM F1647 B -- Waikley-Black. Foc = Percent Organic Matter / 1.72, i.e. GP-5-15, 5.61/1.72 = 3.26 Hydraulic conductivity in cm/sec converted from SHC in in/hr (i.e. GP-1-18, 0.063 in/hr* *2.54 cm/in *1 hour/60 minutes*1 minute/60 seconds = 4.4E-05)

TABLE 11 **ESTIMATE OF RESIDUAL MASS IN GROUNDWATER**

City of Paris Cleaners 3516 Adeline Street Oakland, California

Interpolation	Grid		Stati	stics			Calculations	
2011-2012		FilledNodes	SumNodes	NodeLengthX	NodeLengthY	PlumeArea	PlumeMass	AvgPlumeConc
			[ug/L]	[ft]	[ft]	[ft^2]	[lbs]	[ug/L]
Shallow	TPH-SS	333203	236010062.2	0.10	0.10	3105.71	0.60	708.31
	TPH-G	427859	304687668.6	0.10	0.10	3987.98	0.78	712.12
Total TPH							1.38	
Deep	TPH-SS	54860	7239882.538	0.23	0.23	2929.19	0.11	131.97
	TPH-G	75353	12661685.3	0.23	0.23	4023.39	0.19	168.03
Total TPH							0.29	
Total	TPH-SS						0.71	
	TPH-G						0.97	
Total TPH							1.68	

Model info:

2011 soil boring gw grabs + Feb 2012 SAMR data

sample depths: shallow 15 ft bgs; deep 35 ft bgs

discrete input <RL set to 0.5RL prior to interpolation

kriging interpolation performed on log of concentration

interpolated output <Plume Limit set to zero

interpolated output clipped to extent of contributing data points

Shallow Aquifer Thickness

10

[ft] (10-20 ft bgs)

Deep Aquifer Thickness

10

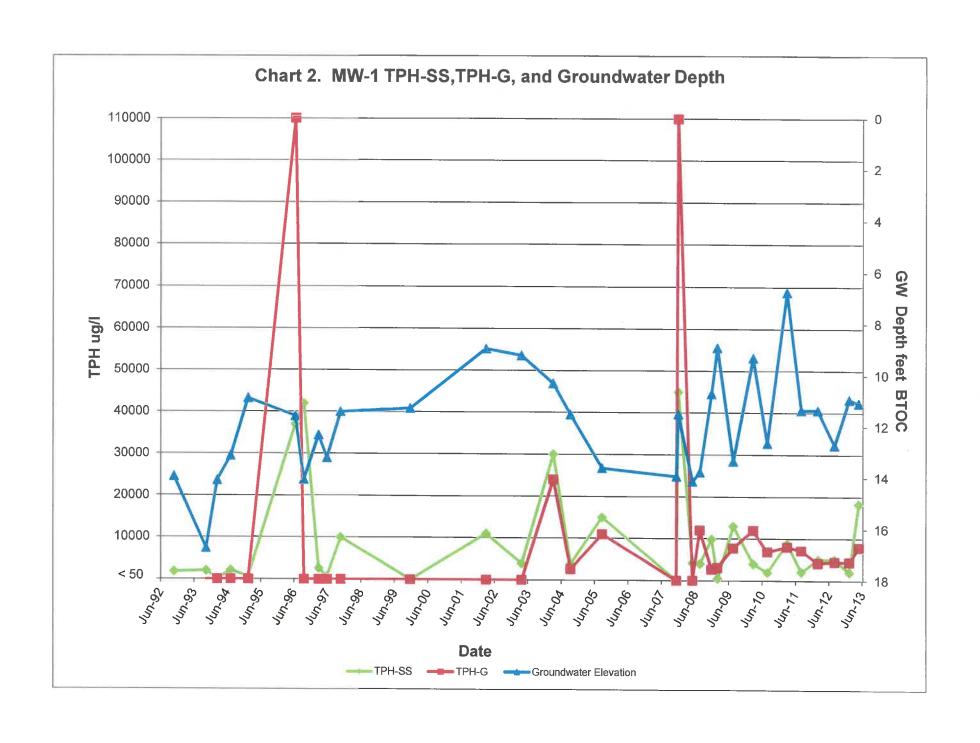
[ft] (30-40 ft bgs)

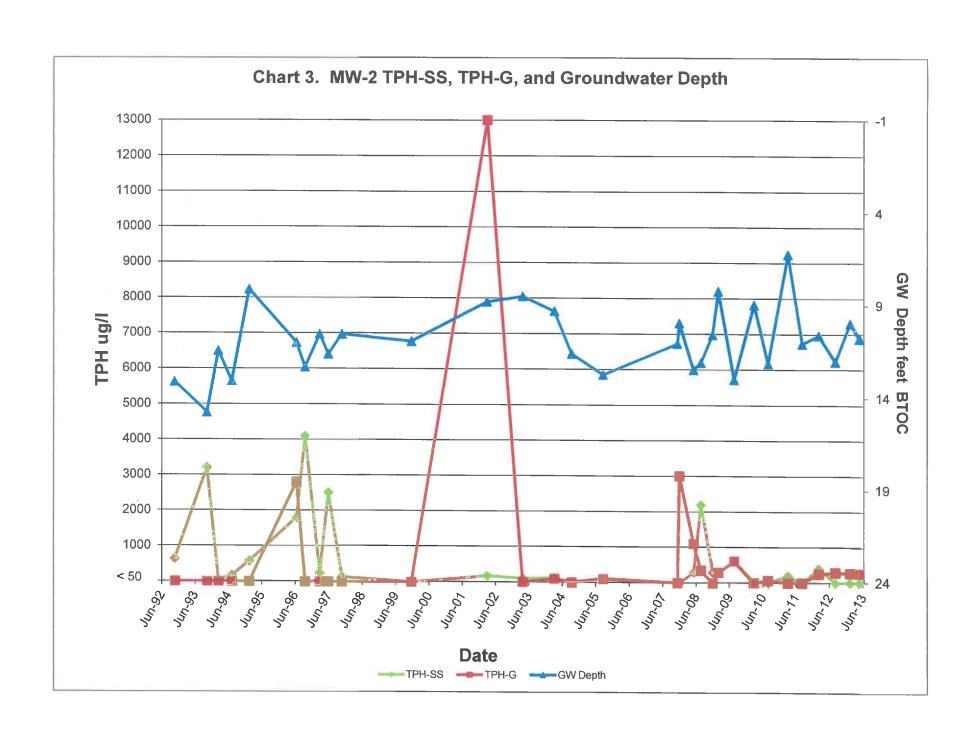
Porosity

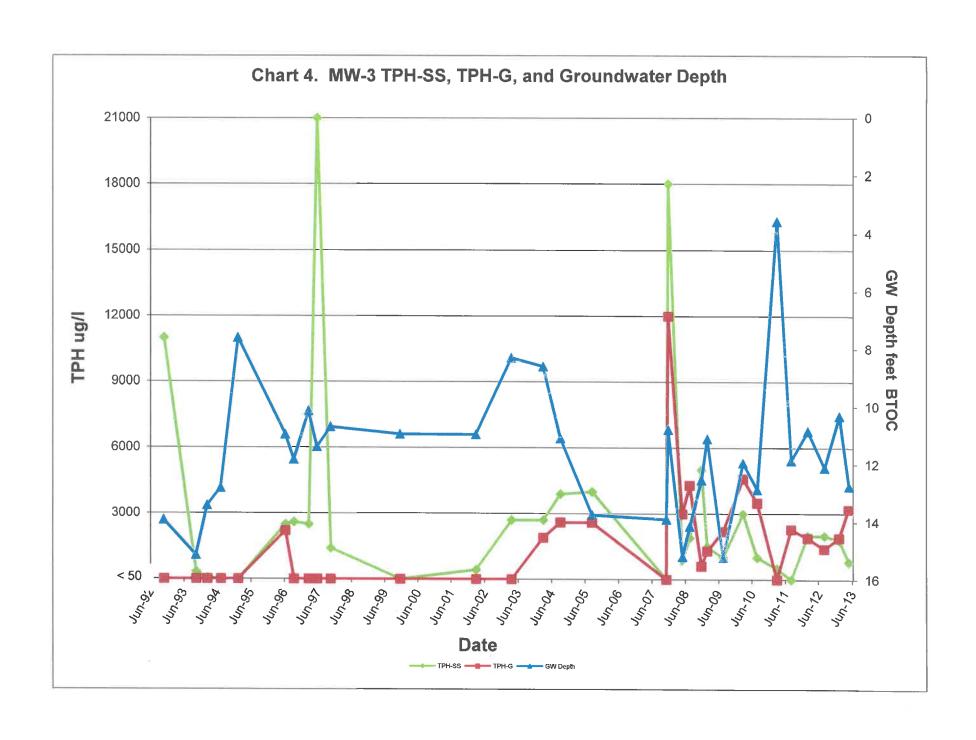
0.44

(average effective porosity from NAA soil data)

Plume Limit (= Reporting Limit)


TPH-SS


TPH-G


[ug/L]

50

50

ATTACHMENT 4

Attachment 4 - Vapor Intrusion Evaluation and Data

	L	TCP VAPO		CRITERIA -	PETROLEU	M		
			Closure	Scenario				
Exemption	n: Active fuelii	ng station ex	empt from v	apor specific	criteria; A	ctive as of	date:	
	Scenario 2; with bioattenuati Exposure co Case c	on zone; ntrolled throu closed in spit	Site specific ugh use of n e of not mee	c risk assessmanitigation mea eting the vapo	nent demons sures or insti r specific me	rates huma tutional cor dia criteria	n health is p	
		Evaluation	Criteria: S	hading indica	tes criteria m	et.		
Site Specif	fic Data	Scenario 1	Scenario 2	Scenario 3A	Scenario 3B	Scenario 3C	Scenario 4a	Scenario 4b
Unweathered LNAPL	No LNAPL	LNAPL in gw	LNAPL in soil	No LNAPL	No LNAPL	No LNAPL	No criteria	No criteria
Thickness of Bioattenuation Zone Beneath Foundation	< 5 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	≥5 feet	No criteria	≥ 5 feet
Depth to Shallowest Groundwater	10.25 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	≥ 5 feet	≥ 5 feet	≥ 5 feet
Total TPHg & TPHd in Soil in Bioattenuation Zone	<10 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	No criteria	<100 mg/kg
Maximum Current Benzene Concentration in Groundwater	< 1 µg/L	No criteria	No criteria	<100 µg/L	≥100 and <1,000 µg/L	<1,000 µg/L	No criteria	No criteria
Oxygen Data in Bioattenuation Zone	No oxygen data	No criteria	No criteria	No oxygen data or <4%	No oxygen data or <4%	≥4%	No criteria	≥4% at bottom of zone
Soil Vapor Depth Beneath Foundation	~ 3.5 feet	No criteria	No críteria	No criteria	No criteria	No criteria	5 feet	5 feet
Benzene Concentrations (µg/m³)	Historic Max: 21 Current Max: 21	No criteria	No criteria	No criteria	No criteria	No criteria	Res: < 85; Com: < 280	Res: < 85K; Com: < 280K
Ethylbenzene Concentrations (µg/m³)	Historic Max: 3.9 Current Max: 3.9	No criteria	No criteria	No criteria	No critería	No criteria	Res: < 1,100; Com: < 3,600	Res: < 1,100K; Com: < 3,600K
Naphthalene Concentrations	Historic Max:	No	No	No criteria	No	No	Res: < 93;	Res: < 93K;

25

 $(\mu g/m^3)$

Current Max:

criteria

criteria

criteria

Com:

< 310

criteria

Com:

< 310K

Attachment 4 – Vapor Intrusion Evaluation and Data

	LTCP VAPOR SPECIFIC CRITERIA – PETROLEUM (cont.)
	Vapor Intrusion to Indoor Air Analysis
Onsite	The site meets Scenario 3A of the Low Threat Closure Policy. Groundwater is considered confined. Methane vapor concentrations, generated from the biodegradation of petroleum hydrocarbons, were determined to be < $5.0~\mu g/m^3$ at a depth of five feet bgs.
Offsite	Onsite, concentrations of benzene, ethylbenzene, and naphthalene are generally non-detectable at good limits of detection. Depth to groundwater appears to be approximately 15 to 17 feet below surface grade (bgs) outside of the former underground storage tank excavation. Contamination at offsite locations has been transported by groundwater under confined conditions. Buildings with potential full basements, which are generally eight feet in height, will be protected from the risk of vapor intrusion due to an additional 7 to 11 foot separation distance between the basement floor and groundwater, and due to the lack of volatile compounds.

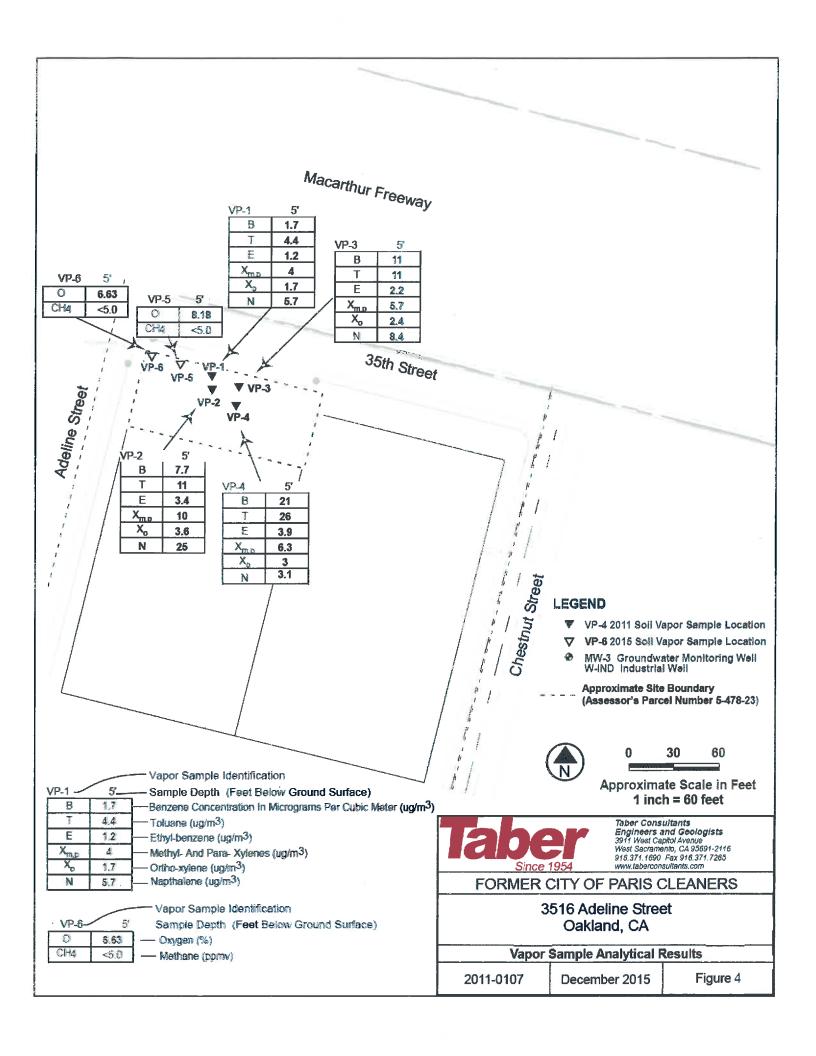


TABLE 4
VAPOR SAMPLE ANALYTICAL RESULTS

3516 Adeline Street, Oakland, California 94508

City of Paris Cleaners

				Ethyl					
	Date	Benzene	Toluene	penzene	m,p-Xylene 0-Xylene		Naphthalene 1,1	1,1-Difluoroethane	Methane
1 1 2		ug/m²	ug/m³	ug/m²			ng/m²	nd/m ₃	bprnv
							and the statement of th		t
VP-1	5/4/2011	1.7	4.4	1.2	\$	1.7	5.7	<0.052	ı
VP-2	5/4/2011	7.7	-	3.4	10	3.6	25	<32	
VP-3	5/4/2011	1	-	2.2	2.7	2.4	8.4	<47	1
VP-4	5/4/2011	21	26	3.9	6.3	3.0	3.1	C4.7	1
VP-5	8/19/2015	1	i	1	38 02	1	or o	f	<5.0
VP-6 8/19/20	8/19/2015	-	1	1	rd Fa	1	dana	THE REAL PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDR	<5.0
Account to the second s	the state of the property of the party of the state of th	William Control of the Control of th					And the second of the second o	The same of the sa	The second second second

Explanation:

ug/m³ = Microgram per cubic meter

ppmv = parts per million volume

Naphthalene analyzed using EPA Method TO15

Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method TO15.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Taber Consultants 3911 West Capitol Ave. West Sacramento CA, 95691 Project City Of Paris
Project Number: 2011-0107
Project Manager: Tom Ballard

Reported: 09/08/15 16:11

VP-5 T152046-01 (Air)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Methane by GC		_							
Methane	ND	5.0	ppm(v)	t	5090226	09/02/15	09/03/15	8015M	
Fixed Gases ASTM D1946-90		3							
Oxygen	8.18	1.00	%	ij	5082830	08/28/15	08/28/15	GC	
Helium	ND	5.00	*			5.70	4	7	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Taber Consultants

Project: City Of Paris

3911 West Capitol Ave.

West Sacramento CA, 95691

Project Number: 2011-0107 Project Manager: Tom Ballard Reported: 09/08/15 16:11

VP-6

T152046-02 (Air)

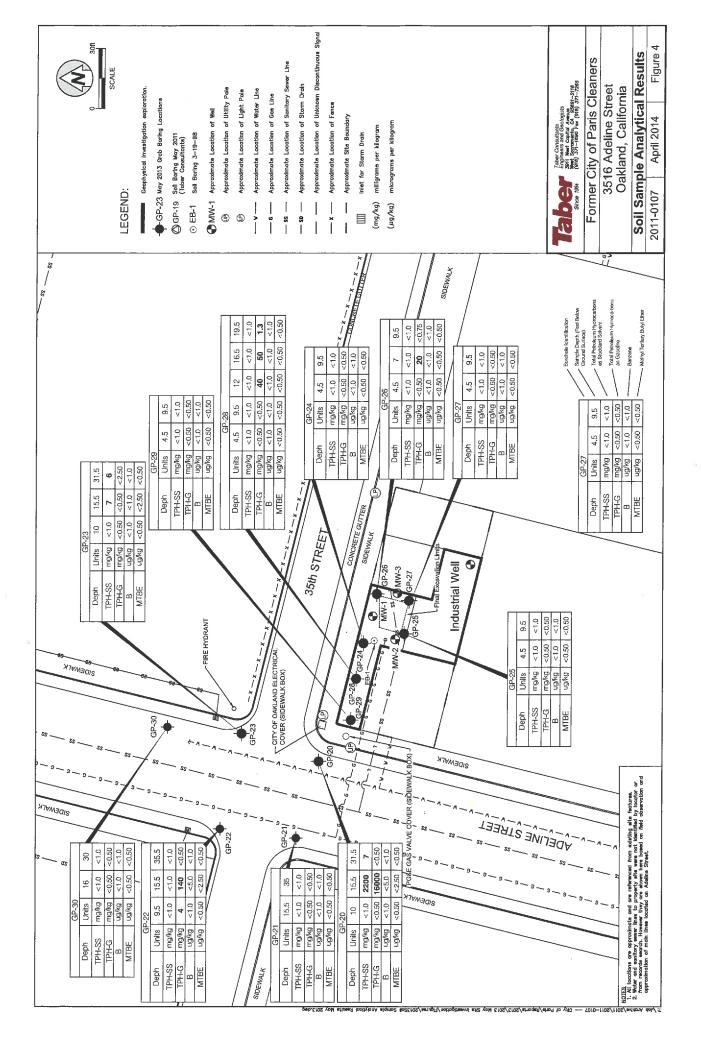
		1101	010 02 (12	,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Methane by GC									
Methane	ND	5.0	ppm(v)	1	5090226	09/02/15	09/03/15	8015M	
Fixed Gases ASTM D1946-90									
Oxygen	6.63	1.00	%	1	5082830	08/28/15	08/28/15	GC	
Helium	ND	5.00	29	19	н	.99	н		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Katherine Running Crane

ATTACHMENT 5


Attachment 5 - Direct Contact Evaluation and Data

LTCP DIRECT CONTACT AND OUTDOOR AIR EXPSURE CRITERIA

Closure Scenario

__ Exemption (no petroleum hydrocarbons in upper 10 feet), _X_ Maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1 below, __ Site-specific risk assessment, __ A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health, __ A determination has been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health as a result of controlling exposure through the use of mitigation measures or through the use of institutional controls, __ This case should be closed in spite of not meeting the direct contact and outdoor air specific media criteria.

•	utional controls,			•	9	n measures or through contact and outdoor air
		Evaluation C	riteria: Shading ir	idicates criteria	met.	
Are maximum c	oncentrations les	s than those in	Γable 1 below?	Yes		
		Resi	dential	Commerc	ial/Industrial	Utility Worker
Cons	tituent	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 10 feet bgs (mg/kg)
Site Maximum	Benzene	< 0.005	0.020	< 0.005	0.020	0.020
LTCP Criteria	Benzene	≤1.9	≤2.8	≤8.2	≤12	≤14
Site Maximum	Ethylbenzene	< 0.005	< 0.020	< 0.005	< 0.020	< 0.020
LTCP Criteria	Ethylbenzene	≤21	≤32	≤89	≤134	≤314
Site Maximum	Naphthalene	<0.002	<0.002	<0.002	<0.002	<0.002
LTCP Criteria	Naphthalene	≤9.7	≤9.7	≤45	≤45	≤219
Site Maximum	PAHs	NA	NA	NA	NA	NA
LTCP Criteria	PAHs	≤0.063	NA	≤0.68	NA	≤4.5
		Direct Co	ntact and Outdo	or Air Analysi	s	
On	site	Table 1. Due		reported wast		an or equal to those in d storage tank, PAHs
Off	site	Onsite, maxim those in Tab concentration.		,	*	e less than or equal to ted to be similar in

were acquired from the floor of the excavation due to the influx of groundwater at a depth of 12 feet.

Table 3- Results of Certified Analyses of Soil Samples
Acquired from The Pit Excavation Boundaries,
January, 1992

Sample Number and Depth	TPH-SS (ppm)	TPH-D*	В	T (pp	E b)	x
N1-9 '	14 4	15,	N.D.	N.D.	N.D.	N.D.
S1-9'	9.8	N.D.	N.D.	N.D.	N.D.	N.D.
E1-7°	140	110	N.D.	N.D.	N.D.	410
W1-9'	47¥	55	N.D.	22	N.D.	16
Method Detection Limit	1.0	10	5.0	5.0	5.0	5.0

* Stoddard Solvent range peaks predominate
TPH-SS...Total Petroleum Hydrocarbons as Applicated Solvent
TPH-D...Total Petroleum Hydrocarbons as Diesel
BTEX...Benzene, toluene, ethylbenzene, total xylenes
N.D...Not present at or above laboratory detection limits
ppm...Parts per million
ppb...Parts per billion

Although the boundary samples indicated that some residual hydrocarbon contamination remains within the soil, ACOHCSA Inspector Byrne advised that his office would require no additional excavation as the integrity of significant structures (both on site and upon contiguous properties) could be jeopardized if further excavation was attempted. Uriah concurs with Mr. Byrne's position both with regard to the potential for risk to surface structures and inconsideration of the low negative public health and/or environmental impact potentials associated with the levels of residual contamination present. Uriah will include an impact assessment statement in its final report.

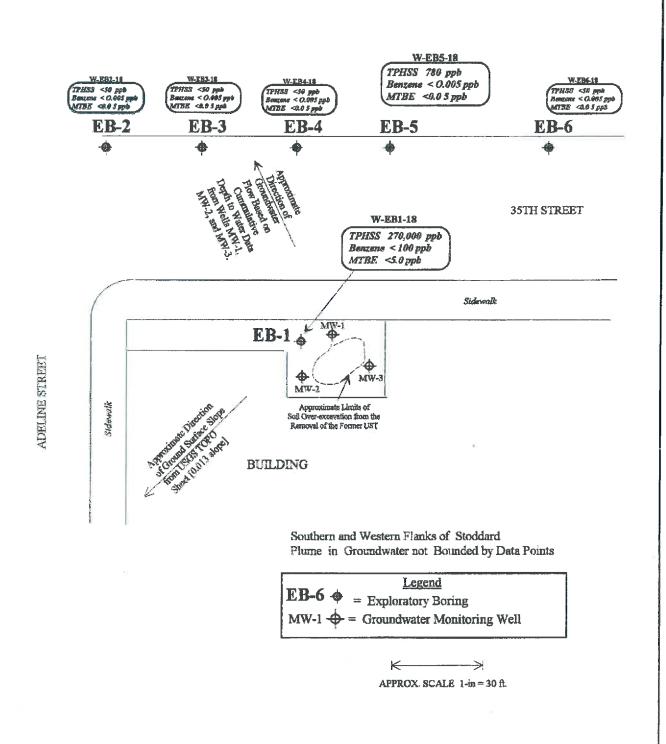
The 44 cubic yards of bioremediated soil was used to backfill the pit to within four feet of grade. The newly excavated soil was placed on polyethylene sheeting and the bioremediation process previously described repeated. On March 31, 1992, a four-point composite soil sample was taken from the soil in

Analytical results are presented in Table 1, and copies of the laboratory reports are enclosed as a portion of Appendix C.

The drilling augers and sampling equipment were steam cleaned or thoroughly scrubbed with Alconox solution followed by a distilled water rinse prior to being brought on site and between all samplings.

Table 1

Results of Certified Laboratory Analyses of Soil Samples Acquired from the Borings for Monitoring Wells MW-1, MW-2, and MW-3 on October 29 and 30, 1992


Sample I.D.	TPH-SS (ppm)	TPH-D	В	T (P	ß pb)	X	*Ch/Dich- benzenes (ppb)
MW1-5' MW1-10'	N.D. 210	N.D. N.D.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 21	N.D. 12	N.D.	N.D.
MW2-5' MW2-10'	N.D.	N.D.	N.D.	63 ⁻ 120	130 N.D.	210 360	N.D.
MW3-5' MW3-10'	N.D.	N.D.	36	120 550	47 N.D.	160 N.D.	30 0
Method Detect Limit	10	10	5	5	5	5	5

TPH-Ss...Total Petroleum Hydrocarbons as Stoddard Solvent
TPH-D...Total Petroleum Hydrocarbons as Diesel
BTEX...Benzene, toluene, ethylbenzene, total xylenes
*Ch/Dich benzenes...Chlorobenzene, 1,3 Dichlorobenzene,
1,4 Dichlorobenzene, and 1,2 Dichlorobenzene
(verbal results only)

ppm...Parts per million
ppb...Parts per billion (1 ppm = 1,000 ppb)

Following completion of the drilling, logging, and soil sampling, each boring was converted into a 2-inch inside diameter ground-water monitoring well. The wells were constructed of 2-inch inside diameter, threaded, Schedule 40 PVC risers attached to 0.020-inch slotted PVC well screen. The screened interval was extended more than five feet above the water table to account for anticipated fluctuations in the depth to water. The annular space around the well screen was filled with #3 Monterey Silica Sand. The sand was covered by a one foot thick bentonite seal

Base Map Source: BT Associates (1995) for approximate locations of wells

DUGAN ASSOCIATES
SAMPLING
SERVICES
Sathughes Early community Supplies
1180 DELMAS AVE.
SAN JORE, CA 95125
FEE. (448) 287-2176

Generalized Site Plan
Former City of Paris Cleaners
3516 Adeline Street
Oakland, California

FIGURE

2

TABLE 1
RESULTS OF TPHss, BTEX & MTBE LABORATORY ANALYSES [SOIL SAMPLES]
3516 Adeline Street
Oakland, California
[03/19/98 Sample Date]

Boring Sample I.D.	TPHss	МТВЕ	Benzene	Toluene	Ethyl- benzene	Total Xylenes
EB-1					, , ,	
S-EB1-5	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.003
S-EB1-10	310	< 0.40	0.02	0.10	< 0.02	1.8
S-EB1-15	340	< 0.2	0.01	< 0.004	< 0.01	1.6
EB-2						
S-EB2-5	< 1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB2-10	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB2-15	< 1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
EB-3						
S-EB3-5	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB3-10	< 1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.003
S-EB3-15	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
EB-4						
S-EB4-5	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB4-10	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB4-15	< 1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
EB-5						
S-EB5-5	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB5-10	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB5-15	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
EB-6						
S-BB6-5	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005
S-EB6-10	<1,0	< 0.05	< 0.005	< 0.005	< 9.005	< 0.005
S-EB6-15	<1.0	< 0.05	< 0.005	< 0.005	< 0.005	< 0.005

Results in mg/kg = parts per million (ppm).

<: Less than the detection limit for the method of analysis.

PROTECTION PROPERTY PROTECTION PROFESSION PROFESSION PROFESSION PROTECTION PROPERTY PROTECTION PROFESSION PROFESSION PROTECTION PROT

TABLE 3

BORING SUMMARY TABLE - 2011 AND 2013 SITE INVESTIGATION
Former City of Paris Cleaners
3516 Adeline Street
Oakland, California

Boring Number	Date	Total Depth (feet)	Soil Sample Depth (feet)	Shallow GW Zone Samples (feet)	Deep GW Zone Samples (feet)	NAA Soil Samples (feet)	NAA Shallow GW Zone Samples (feet)	NAA Deep GW Zone Samples (feet)	Soil Vapor Samples (feet)	CPT Log	HPT Log
CPT-1	4/15/2011	50.03								Х	
CPT-2	4/18/2011	49.87								Х	
CPT-3	4/18/2011	49.70								Х	
CPT-4	4/19/2011	50.36								Х	
CPT-5	4/19/2011	50.20								Х	
GP-1	5/2/2011	40	17, 32.5		30-40	18		30-40			
GP-2	5/2/2011	40	17, 36		30-40	11		30-40			
GP-3	5/6/2011	40	16.5	10-20	30-40	14.5	10-20	30-40			
GP-4	5/6/2011	40	14, 18, 19.5	10-20	30-40		10-20	30-40			
GP-5	5/5/2011	40	6.5, 28		30-40	15		30-40			
GP-6	5/5/2011	20	11.5								-
GP-7	5/6/2011	20	8, 16								
GP-8	5/12/2011	40	16.5, 34	10-20	30-40	14	10-20	30-40			
GP-9	5/12/2011	40	16.5, 38.5	10-20	30-40	15	10-20	30-40			
GP-10	5/13/2011	40	16.5, 33	10-20	30-40	16	10 20	00 10			
GP-11	5/13/2011	40	17, 34, 38.5	10-20	30-40	17	10-20	30-40			
GP-12	5/19/2011	40	16, 34	10 20	30-40	- ''	10 20	00 40	-		
GP-13	5/19/2011	40	16.5, 34		30-40						
GP-16	5/17/2011	40	19, 38	10-20	30-40						
GP-17	5/17/2011	40	23.5, 38	10-20	30-40						-
GP-18	5/17/2011	40	19, 38	10-20	30-40						
GP-19	5/17/2011	40	20, 38	10-20	30-40		-				
GP-20	5/13/2013	32	10, 15.5, 31.5	10-20	30-40						
GP-21	5/15/2013	38	15.5, 35	10-20	30-40						
GP-22	5/16/2013	40	9.5, 15.5, 35.5	10-20	30-40						
GP-23	5/13/2013	32	10, 15.5, 31.5	10-20	30-40						
GP-24	5/14/2013	10	4.5, 9.5	10-20	30-40						
GP-25	5/14/2013	10	4.5, 9.5								
GP-26	5/14/2013	10	4.5, 7, 9.5								
GP-27	5/14/2013	10	4.5, 7, 9.5								
GP-28	5/14/2013	20		10-20							
GP-29	5/14/2013	10	4.5, 9.5, 12, 16.5, 19.5 4.5, 9.5	10-20				-			
GP-29 GP-30	5/16/2013	30	4.5, 9.5 16, 30	10-20	30-40						
HPT-1	5/4/2011	41.80	10, 30	10-20	30-40						X
HPT-2	5/3/2011	41.75									X
HPT-3	5/4/2011	41.75									- ^
HPT-4		41.60									
HPT-5	5/3/2011 5/5/2011	41.60									X
HPT-8	5/4/2011	41.80									X
HPT-9	5/4/2011	41.60			-						X
HPT-10	5/3/2011	45.70									X
HPT-11	5/3/2011	41.90									Х
VP-1	5/4/2011	5							5		
VP-2	5/4/2011	. 5							5		
VP-3	5/4/2011	5							5		
VP-4	5/4/2011	5							5		

TABLE 2 SOIL SAMPLE ANALYTICAL RESULTS SITE INVESTIGATION 2011 AND 2013

Former City of Paris Cleaners 3516 Adeline Street, Oakland, California 94608

Boring	Boring Sample	Sample	0	SHOT	4	2		A THE			Ethyl	,		
	I Canal		(ma/ka)	(ma/ka)	(ma/ka)		(ma/ka)	(ma/ka)	(na/ka)	(ind/kn)	Denzene	Aylenes	MIBE (ind/kg)	Napthalene (יייי)
				3			0	6	(68-)	(B. B.)	(Guide)	(Sugal	(Rush)	(BurBh)
GP-1	GP-1-17	5/2/2011	0.1>	<0.50	1	1	ı	;	<1.0	×1.0	<1.0	<0.15	<0.50	1
	GP-1-32.5	5/2/2011	<1.0	<0.50	,	1	1	;	<1.0	<1.0	<1.0	<1.0	<0.50	1
GP-2	GP-2-17	5/2/2011	0.1^	<0.50	ı	-	1		<1.0	41.0	<1.0	41.0	<0.50	
	GP-2-36	5/2/2011	<u>دا</u> .0	<0.50	ï	:	1	;	<1.0	<1.0	<1.0	<1.0	<0.50	ı
GP-3	GP-3-16.5	5/6/2011	<10	<0.50	,	<10	1	;	<1.0	<1.0	<1.0	<1.0	<0.50	1
GP-4	GP-4-14	5/6/2011	<10	<0.50	1	ı	1	;	<1.0	<1.0	<1.0	<1.0	<0.50	
	GP-4-18	5/6/2011	را0 ما0	<0.50	1	1	ı	ì	<1.0	<1.0	0.1>	<1.0	<0.50	ı
	GP-4-19-5 ^a	5/6/2011	√10	1.8	ı	ł	1		<1.0	<1.0	<1.0	<1.0	<0.50	ŀ
GP-5	GP-5-6.5	5/5/2011	×10	<0.50	<1.0	<10	<10	41.0	<1.0	<1.0	<1.0	<1.0	<0.50	1
	GP-5-28	5/5/2011	<10	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	ı
GP-6	GP-6-11.5	5/5/2011	<10	<0.50	<1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	1
GP-7	GP-7-8	5/6/2011	×10	<0.50	v.1.0	<10	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<0.50	1
	GP-7-16	5/6/2011	;	<0.50	<1.0	<10	<10	<1.0	<1.0	41.0	0.15	<1.0	<0.50	ı
GP-8	GP-8-16.5	5/12/2011	30	5.3	×1.0	~ 1 0	1	1	<1.0	<1.0	<1.0	<1.0	<0.50	1
	GP-8-34	5/12/2011	<10	<0.50	<1.0	<10	;	1	<1.0	0,1,0	<1.0	<1.0	<0.50	1
GP-9	GP-9-16.5 ^a	5/12/2011	<10	3.1	<1.0	<10	ı	;	<1.0	41.0	<1.0	<1.0	<0.50	1
	GP-9-38.5	5/12/2011	<10	<0.50	<1.0	<10	;	ł	<1.0	<1.0	<1.0	<1.0	<0.50	ı
GP-10	GP-10-16.5 ^a	5/13/2011	۲9 د	3.3	1	ı	1	1	<1.0	<1.0	<1.0	4.0	<0.50	. 1
	GP-10-33	5/13/2011	√10	<0.50	1	1	1		<1.0	<1.0	<1.0	<1.0	<0.50	ı
GP-11	GP-11-17	5/13/2011	۲۰	<0.50	ı	ı		1	<1.0	o.f>	<1.0	<1.0	<0.50	1
	GP-11-34	5/13/2011	√10	<0.50	ı	ı	ı	;	<1.0	0.1≥	م. م.0	<1.0	<0.50	1
ŀ	GP-11-38.5	5/13/2011	<10	<0.50	1		;	1	<1.0	<1.0	41.0	<1.0	<0.50	1
GP-12	GP-12-16 ^a	5/19/2011	×10	069	<1.0	40	1	1	<1000	<1000	<1000	<1000	<500	1
	GP-12-34	5/19/2011	√10	<0.50	<1.0	<10	1		<1.0	<1.0	<1.0	<1.0	<0.50	1
GP-13	GP-13-16.5	5/19/2011	10	<0.50	×1.0	<10	ı	1	<1.0	<1.0	o.1.o	<1.0	<0.50	1
	GP-13-34	5/19/2011	<10	<0.50	<1.0	<10	F	!	<1.0	<1.0	<1.0	<1.0	<0.50	1

SOIL SAMPLE ANALYTICAL RESULTS
SITE INVESTIGATION 2011 AND 2013
Former City of Paris Cleaners
3516 Adeline Street, Oakland, California 94508

Boring	Sample	Sample								:	Ethyd			
Identification	Identification	Date	TPH-SS	TPH-G	TPH-D	TPH-F0	TPH-MO	TPH-K	Benzene	Toluene	benzene	Xylenes	MTBE	Napthalene
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ng/kg)	(ng/kg)	(ug/kg)	(ng/kg)	(ng/kg)	(ng/kg)
GP-16	GP-16-19 ^a	5/17/2011	<10	20	<1.0	<10			۲.0 د۲.0	<1.0 <1.0	<1.0	3.0	<0.50	1
	GP-16-38	5/17/2011	<10	<0.50	<1.0	<10	1	1	<1.0	<1.0	<1.0	×1.0	<0.50	ı
GP-17	GP-17-23.5	5/17/2011	<10	<0.50	<u>ح1.0</u>	<10	ı		<1.0	<1.0	<1.0	0.10	<0.50	
	GP-17-38	5/17/2011	<10	<0.50	<1.0	<10	,	:	<1.0	<1.0	<1.0	×1.0	<0.50	ł
GP-18	GP-18-19	5/17/2011	c10	<0.50	<1.0	<10	ı	1	<1.0	در.0 در.0	<1.0	0.10	<0.50	
	GP-18-38	5/17/2011	<10	<0.50	<1.0	<10	1	;	<1.0	<1.0	<1.0	<1.0	<0.50	ŀ
GP-19	GP-19-20	5/17/2011	<10	<0.50	۸.0	<10	ļ	1	<1.0	<1.0	<1.0	<1.0	<0.50	
	GP-19-38	5/17/2011	<10	<0.50	<1.0	<10	1	;	<1.0	<1.0	0.10	<1.0	<0.50	ı
GP-20	GP-20-10	5/13/2013	₹	<0.50	ı	ı	1	:	<1.0	<1.0	<1.0	41.0	<0.50	<2.0
	GP-20-15.5 ^{a,b}	5/13/2013	2200	16000	ı	ŀ	ı	;	<5.0	<5.0	<5.0	<5.0	<2.50	<5.0
	GP-20-31.5	5/13/2013	7	<0.50	1	ï	1	1	<1.0	<1.0	41.0	<1.0	<0.50	<1.0
GP-21	GP-21-15.5	5/15/2013	0.10	<0.50	1	;	1	,	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
	GP-21-35	5/15/2013	<1.0	<0.50	ł	;	ı	ı	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
GP-22	GP-22-9.5	5/16/2013	۲.0 د۲.0	4	ı	;	1	1	<1.0	<1.0	0.1.0	0.1>	<0.50	<2.0
	GP-22-15.5	5/16/2013	4.0	140	ı	1	ı	1	<5.0	<5.0	<5.0	<5.0	<2.5	<10.0
	GP-22-35.5	5/16/2013	<1.0	<0.50	1	:	,	1	<1.0	<1.0	0.1>	<1.0	<0.50	<2.0
GP-23	GP-23-10	5/13/2013	₹	<0.50	1	ı	ţ	;	<1.0	<1.0	<1.0	41.0	<0.50	<2.0
		5/13/2013	7	<0.50	1	:	1	ı	<1.0	<1.0	×1.0	o.f.	<0.50	<1.0
	GP-23-31.5	5/13/2013	g	<2.50	ı	:	ı	1	<1.0	<1.0	<1.0	<1.0	<0.50	<1.0
GP-24	GP-24-4.5	5/14/2013	۲٠.0 د۲.0	<0.50	;	ı	ı	1	<1.0	<1.0	0.12	4.0	<0.50	<2.0
	GP-24-9.5	5/14/2013	<1.0	40.50		:	1	1	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
GP-25	GP-25-4.5	5/14/2013	۲٠.0	<0.50	1	ı	ŀ	ŀ	<1.0	<1.0	0.1.0	<1.0	<0.50	<2.0
	GP-25-9.5	5/14/2013	<1.0	<0.50	1	1	1	:	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
GP-26	GP-26-4.5		×1.0	<0.50	ı	1	1	1	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
	GP-26-7ª		۲۰0	20	I	}	ı	1	<1.0	<u>۲۰</u> 0	0.1.0	<1.0	<0.50	<2.0
	GP-26-9.5	5/14/2013	<1.0	<0.75	1	ı	1	1	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
GP-27		5/14/2013	۲.0 د۲.0	<0.50	1	:	1	ı	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0
	GP-27-9.5	5/14/2013	<1.0	<0.50	1	1	1	;	<1.0	<1.0	<1.0	<1.0	<0.50	<2.0

TABLE 10 ESTIMATE OF RESIDUAL MASS IN SOIL

City of Paris Cleaners 3516 Adeline Street Oakland, California

Interpolation Grid			Stat	tistics	Calculations			
1998-2011		FilledNodes	SumNodes	NodeLengthX	NodeLengthY	PlumeArea	PlumeMass	AvgPlumeConc
			[mg/kg]	[ft]	[ft]	[ft^2]	[lbs]	[mg/kg]
Shallow	TPH-SS	58994	6191688	0.27	0.27	4238	793	104.95
	TPH-G	99843	916772	0.27	0.27	7138	117	9.18
							[lbs]	
Total	TPH-SS						793	
Total	TPH-G						117	
Total	TPH						910	

Model info:

1998 + 2011 soil boring grabs

sample depth ranges: shallow 5 - 23.5 ft bgs; deep 28-38 ft bgs

discrete input <RL set to 0.5RL prior to interpolation

kriging interpolation performed on log of maximum concentration value observed at each location

interpolated output <Plume Limit set to zero

interpolated output clipped to extent of contributing data points

Shallow Soil Layer Thickness

19 [ft]

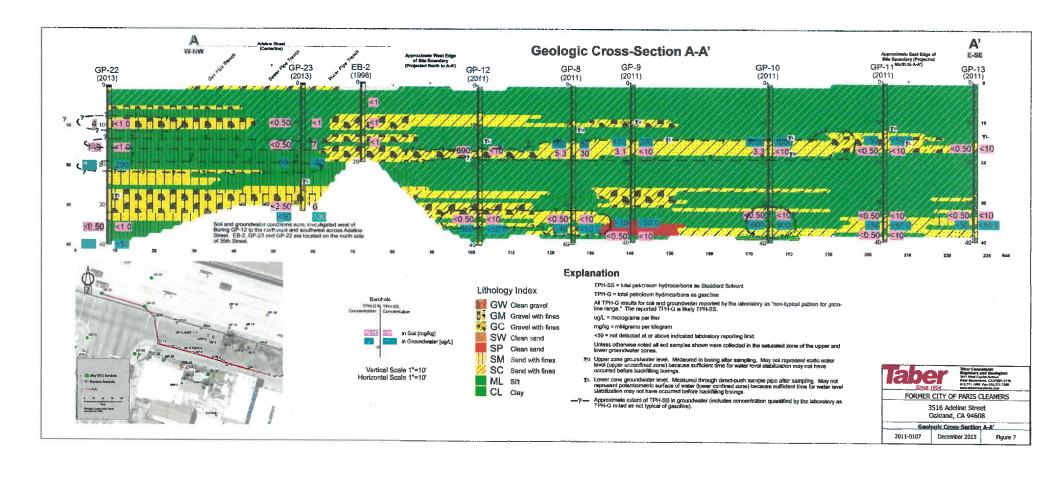
(9-28 ft bgs)

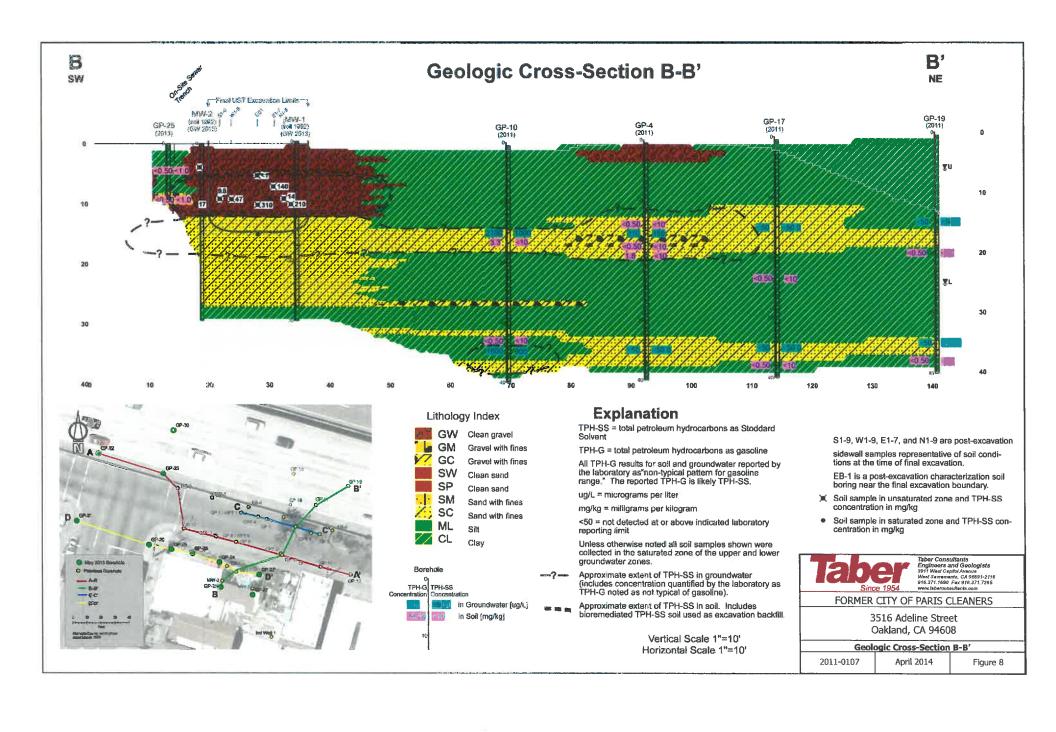
Density

93.85 [lbs/cuft]

(average dry density from NAA soil data)

Plume Limit (= Reporting Limit)

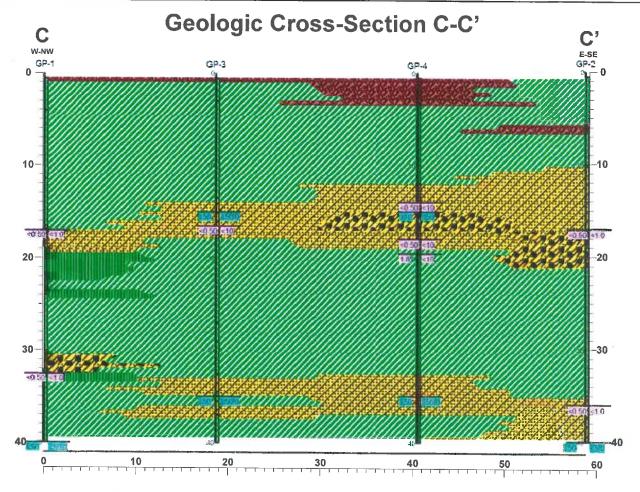

[mg/kg]


10

0.5

TPH-SS

TPH-G



Borehole TPH-G Concentration Concentration 100 TODIC IN GROUNDWATER [ug/L] 100 100 TODIC IN GROUNDWATER [ug/kg]

Explanation

Lithology Index

TPH-SS = total petroleum hydrocarbons as Stoddard Solvent

TPH-G = total petroleum hydrocarbons as gasoline

All TPH-G results for soil and groundwater reported by the laboratory as "non-typical pattern for gasoline range." The reported TPH-G is likely TPH-SS.

ug/L = micrograms per liter

mg/kg = milligrams per kilogram

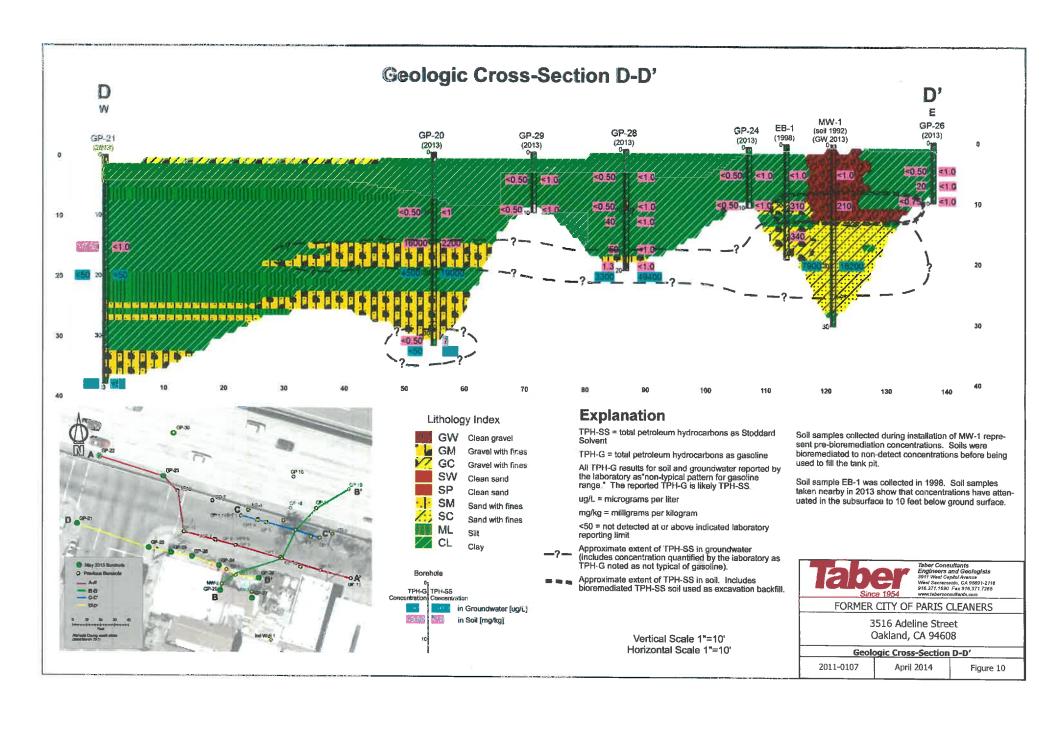
<50 = not detected at or above indicated laboratory reporting limit

Unless otherwise noted all soil samples shown were collected in the saturated zone of the upper and lower groundwater zones.

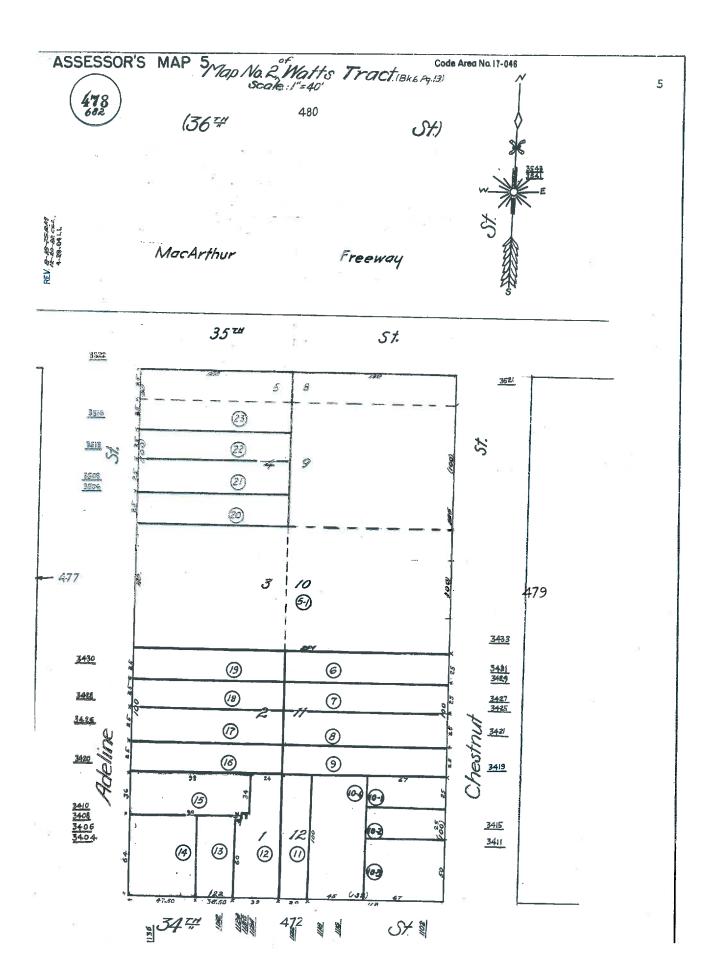
Vertical Scale 1"=10' Horizontal Scale 1"=10'

Taber Consultants
Engineers and Geologists
3911 West Capitol Avenue
West Sacramento, CA 95691-2116
916.371.1690 Fax 916.371.7265
www.taberconsultants.com

FORMER CITY OF PARIS CLEANERS


3516 Adeline Street Oakland, CA 94608

Geologic Cross-Section C-C'


2011-0107

January 2012

Figure 9

ATTACHMENT 6

Help

New Query

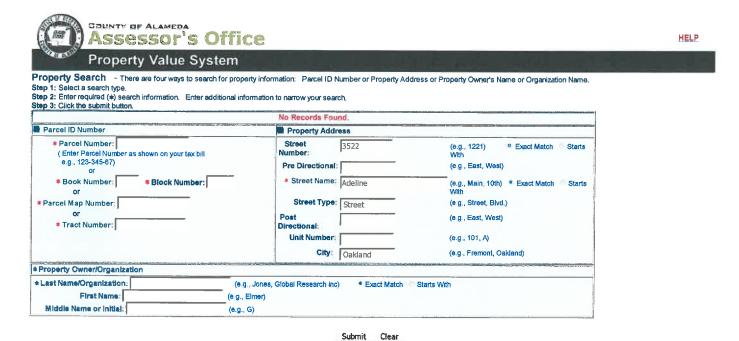
Property Value System

History Value | Transfer | Map | Glossary

Parcel Number:5-478-23 Inactive:N Lien Date:01/01/2016 Owner:BUCKLEY DEBRA A

Property Address: 3516 ADELINE ST, OAKLAND, CA 94608-4221

Current Mailing Address as of 12/31/2012 BUCKLEY DEBRA A, 3516 ADELINE ST , OAKLAND, CA 94608-4221


Mailing Name		Historical Mailing Address	Document Date	Document Number	Value From Parcel Count Use Trans Tax		
BUCKLEY DEBRA A	<u>List Owners</u>	PO BOX 8722 , EMERYVILLE, CA 94662-0722	07/10/2000	2000-203934	\$200,000	1	1300
ROSTOCIL DON	<u>List Owners</u>	2200 BROWNING ST , BERKELEY, CA 94702-1824	12/13/1994	1994-383196	\$60,000	1	1300
SATTERLEY PAULETTE & CHAMPION M & PAULA & F JR c/o M CHAMPION	<u>List Owners</u>	PO BOX 489 , MOSS BEACH, CA 94038-0489	07/11/1991	1991-179101		<u>2</u>	1300
CHAMPRION FRANK R HEIRS OF EST c/o PAULETTE SATTERLEY	<u>List Owners</u>	14601 GUADALUPE DR., RANCHO MURIETA, CA 95883-9465	01/31/1990	TRAN-4213		1	1300
CHAMPION FRANK	List Owners	3516 ADELINE ST , OAKLAND, CA 94608-4221	07/07/1966	AY-81960		1	1300

All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the Assessor's knowledge of each property. Caution is advised for use other than its intended purpose.

The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later.

Click <u>here</u> for more information regarding supported browsers.

Copyright © 2001 Alameda County

All information on this site is to be assumed accurate for property assessment purposes only, and is based upon the Assessor's knowledge of each property. Caution is advised for use other than its intended

purpose.

The Alameda County Intranet site is best viewed in Internet Explorer Version 5.5 or later.

Click <u>here</u> for more information regarding supported browsers.

Copyright © 2001 Alameda County

May 4, 2016

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Ms. Paulette Satterly 14601 Guadalupe Dr.

Rancho Murieta, CA 95683 (Sent via E-mail to:

lvsnoopy@calweb.com)

Ms. Debbié Buckley

City of Paris Studios 3516 Adeline Street, Oakland, CA 94608 (Sent via E-mail to:

cityofparisstudios@gmail.com)

Ms. Paula Champion-Braig

280 Mountain Blvd. Piedmont, CA 94611 (Sent via E-mail to:

uschampion@aol.com)

Don Rostocil

2200 Browning Street

Berkeley, CA 94702

Frank & Linda Champion 9441 Laguna Lake Way Elk Grove, CA 95758

Michael Champion PO Box 489

Moss Beach, CA 94038

Subject:

Notice of Responsibility, Fuel Leak Case R00000133 and GeoTracker Global ID T0600100379.

City of Paris Cleaners, 3516 Adeline Street, Oakland, CA 94608

Dear Ladies and Gentlemen:

In a Notice of Responsibility dated October 25, 1999, Michael Champion, Paula Champion-Braig, Frank Champion, Linda Champion, and Don Rostocil were notified that the above referenced site had been placed in the Local Oversight Program and that they had been named as a Responsible Party for the fuel leak case. Additional parties have been named as Responsible Parties for the fuel leak case in the attached updated NOR as defined under 23 C.C.R Sec. 2720. Please see Attachment A - Responsible Parties Data Sheet, which identifies all Responsible Parties and provides background on the unauthorized release and Responsible Party Identification.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Digitally signed by Mark Detter DN: cn=Mark Detterman, o=ACEH, ou=ACEH,

email:=martcdetterman@acgov.org, c=US Date: 2016.05.04 12:11:05 -07'00'

Mark E. Detterman, PG, CEG

Senior Hazardous Materials Specialist

Enclosures:

Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

Attachment A - Responsible Parties Data Sheet-Notice of Responsibility (NOR)

Ellen Pyatt, Taber Consultants, 3911 W Capitol Avenue, West Sacramento, CA 95691 (Sent via email to: CC: EPyatt@taberconsultants.com)

Dilan Roe, ACDEH, (sent via e-mail to dilan.roe@acqov.org) Mark Detterman, ACDEH, (sent via electronic mail to mark.detterman@acgov.org)

Geotracker, Electronic File

ALAMEDA COUNTY **HEALTH CARE SERVICES**

REBECCA GEBHART, Acting Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #: 7009 2820 0001 4359 9652

May 4, 2016

NOTICE OF RESPONSIBILITY

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608

Local ID:

RO0000133

Related ID: RWQCB ID: NA NA

Global ID:

T0600100379

Responsible Party:

DEBBIE BUCKLEY 3516 ADELINE STREET OAKLAND, CA 94608

Date First Reported:

11/2/1990

Substance:

12034 Diesel fuel oil & additives (Nos. 1-D,

2-D, 2-4)

Stoddard Solvent

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified **DEBBIE BUCKLEY** as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-6876 if you have questions regarding your site.

RONALD BROWDER, Acting Director **Contract Project Director**

Date: 05-06-2016

Update ADD

Reason:

Attachment A: Responsible Parties Data Sheet

cc: Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

May 4, 2016

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608 Local ID: RO0000133 Related ID: NA

RWQCB ID: NA Global ID: T06

T0600100379

All Responsible Parties
RP has been named a Primary RP – PAULETTE SATTERLY
14601 GUADALUPE DRIVE RANCHO MURIETA, CA 95683 No Phone Number Listed
RP has been named a Primary RP - PAULA CHAMPION-BRAIG
280 MOUNTAIN BLVD. PIEDMONT, CA 94611 No Phone Number Listed
RP has been named a Primary RP – FRANK AND LINDA CHAMPION
9441 LAGUNA LAKE WAY ELK GROVE, CA 95758 No Phone Number Listed
RP has been named a Primary RP – MICHAEL CHAMPION
P.O. BOX 489 MOSS BEACH, CA 94038 No Phone Number Listed
RP has been named a Primary RP – DON ROSTOCIL
2200 BROWNING STREET BERKELEY, CA 94702 No Phone Number Listed
RP has been named a Primary RP – DEBBIE BUCKLEY
3516 ADELINE STREET OAKLAND, CA 94608 Phone (916) 558-7633

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET (Continued)

May 4, 2016

Responsible Party Identification Background

Alameda County Environmental Health (ACEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- 1. "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

Existence of Unauthorized Release

On October 4, 1990 one 750-gallon and two 1,000-gallon Stoddard solvent USTs were excavated and removed. A 250-gallon UST was removed on October 31, 1991. Tank removal confirmation soil samples were collected. Concentrations up to 1,000 mg/kg Total Petroleum Hydrocarbons as gasoline (TPHg), < 0.150 mg/kg benzene, 0.40 mg/kg ethylbenzene and 19.0 mg/kg total xylenes were detected. These data indicate than an unauthorized release had occurred.

Responsible Party Identification

Frank Champion is a former property owner associated with the underground storage tank (UST). Frank Champion is a responsible party for the site because he owned USTs used for the storage of a hazardous substance (Definition 1), in the case of an UST no longer in used, he owned or operated the UST immediately before the discontinuation of its use (Definition 2), owned the property associated with an unauthorized release (Definition 3), and he had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

The Heirs of the Estate of Frank Champion c/o Paulette Satterley (Heirs of the Estate), received the property in January 1990. The Heirs of the Estate is a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Paulette Satterley, Michael Champion, and Paula Champion-Braig, and Frank and Linda Champion Jr. received the property in July 1991. They are collectively a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Don Rostocil received or purchased the property in December 1994. He is a responsible party for the site because he owned the property associated with an unauthorized release (Definition 3).

Debbie Buckley (Runyon) received or purchased the property in July 2000. She is a responsible party for the site because she owned the property associated with an unauthorized release (Definition 3).

ALAMEDA COUNTY **HEALTH CARE SERVICES**

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

AGENCY

REBECCA GEBHART, Acting Director

Certified Mail #:

May 4, 2016

NOTICE OF RESPONSIBILITY

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608

Local ID:

RO0000133

Related ID: RWOCB ID: NA NA

Global ID:

T0600100379

Responsible Party:

PAULETTE SATTERLY 14601 GUADALUPE DRIVE RANCHO MURIETA, CA 95683 Date First Reported:

11/2/1990

Substance:

12034 Diesel fuel oil & additives (Nos. 1-D,

2-D, 2-4)

Stoddard Solvent

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified PAULETTE SATTERLY as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

determination that no further action is required. If property ownership changes in the future, you must notify this local agency

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-6876 if you have questions regarding your site.

RONALD BROWDER, Acting Director **Contract Project Director**

Date: 05-06-2016

within 20 calendar days from when you are informed of the change.

Action:

Update ADD

Reason:

Attachment A: Responsible Parties Data Sheet

cc; Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

May 4, 2016

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND. CA 94608 Local ID: RO0000133 Related ID: NA

RWQCB ID: NA Global ID: T0600100379

All Responsible Parties

RP has been named a Primary RP – PAULETTE SATTERLY

14601 GUADALUPE DRIVE | RANCHO MURIETA, CA 95683 | No Phone Number Listed

RP has been named a Primary RP – PAULA CHAMPION-BRAIG

280 MOUNTAIN BLVD. | PIEDMONT, CA 94611 | No Phone Number Listed

RP has been named a Primary RP – FRANK AND LINDA CHAMPION

9441 LAGUNA LAKE WAY | ELK GROVE, CA 95758 | No Phone Number Listed

RP has been named a Primary RP – MICHAEL CHAMPION

P.O. BOX 489 | MOSS BEACH, CA 94038 | No Phone Number Listed

RP has been named a Primary RP – DON ROSTOCIL

2200 BROWNING STREET | BERKELEY, CA 94702 | No Phone Number Listed

RP has been named a Primary RP – DEBBIE BUCKLEY

3516 ADELINE STREET | OAKLAND, CA 94608 | Phone (916) 558-7633

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET (Continued)

May 4, 2016

Responsible Party Identification Background

Alameda County Environmental Health (ACEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- 1. "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

Existence of Unauthorized Release

On October 4, 1990 one 750-gallon and two 1,000-gallon Stoddard solvent USTs were excavated and removed. A 250-gallon UST was removed on October 31, 1991. Tank removal confirmation soil samples were collected. Concentrations up to 1,000 mg/kg Total Petroleum Hydrocarbons as gasoline (TPHg), < 0.150 mg/kg benzene, 0.40 mg/kg ethylbenzene and 19.0 mg/kg total xylenes were detected. These data indicate than an unauthorized release had occurred.

Responsible Party Identification

Frank Champion is a former property owner associated with the underground storage tank (UST). Frank Champion is a responsible party for the site because he owned USTs used for the storage of a hazardous substance (Definition 1), in the case of an UST no longer in used, he owned or operated the UST immediately before the discontinuation of its use (Definition 2), owned the property associated with an unauthorized release (Definition 3), and he had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

The Heirs of the Estate of Frank Champion c/o Paulette Satterley (Heirs of the Estate), received the property in January 1990. The Heirs of the Estate is a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Paulette Satterley, Michael Champion, and Paula Champion-Braig, and Frank and Linda Champion Jr. received the property in July 1991. They are collectively a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Don Rostocil received or purchased the property in December 1994. He is a responsible party for the site because he owned the property associated with an unauthorized release (Definition 3).

Debbie Buckley (Runyon) received or purchased the property in July 2000. She is a responsible party for the site because she owned the property associated with an unauthorized release (Definition 3).

AGENCY

REBECCA GEBHART, Acting Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

May 4, 2016

NOTICE OF RESPONSIBILITY

Site Name & Address:

CITY OF PARIS CLEANERS **3516 ADELINE STREET** OAKLAND, CA 94608

Local ID:

RO0000133

Related ID: RWQCB ID: NA NA

Global ID:

T0600100379

Responsible Party:

PAULA CHAMPION-BRAIG 280 MOUNTAIN BLVD PIEDMONT, CA 94611

Date First Reported:

11/2/1990

Substance:

12034 Diesel fuel oil & additives (Nos. 1-D,

2-D, 2-4)

Stoddard Solvent

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified

PAULA CHAMPION-BRAIG as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that Identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-6876 if you have questions regarding your site.

RONALD BROWDER, Acting Director **Contract Project Director**

Update Action:

ADD

Reason:

ludle Date: 05-06-2016

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

May 4, 2016

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608 Local ID: RO0000133

Related ID: NA RWQCB ID: NA

Global ID: T0600100379

All Responsible Parties

RP has been named a Primary RP — PAULETTE SATTERLY

14601 GUADALUPE DRIVE | RANCHO MURIETA, CA 95683 | No Phone Number Listed

RP has been named a Primary RP — PAULA CHAMPION-BRAIG

280 MOUNTAIN BLVD. | PIEDMONT, CA 94611 | No Phone Number Listed

RP has been named a Primary RP — FRANK AND LINDA CHAMPION

9441 LAGUNA LAKE WAY | ELK GROVE, CA 95758 | No Phone Number Listed

RP has been named a Primary RP — MICHAEL CHAMPION

P.O. BOX 489 | MOSS BEACH, CA 94038 | No Phone Number Listed

RP has been named a Primary RP — DON ROSTOCIL

2200 BROWNING STREET | BERKELEY, CA 94702 | No Phone Number Listed

RP has been named a Primary RP — DEBBIE BUCKLEY

3516 ADELINE STREET | OAKLAND, CA 94608 | Phone (916) 558-7633

May 4, 2016

Responsible Party Identification Background

Alameda County Environmental Health (ACEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

Existence of Unauthorized Release

On October 4, 1990 one 750-gallon and two 1,000-gallon Stoddard solvent USTs were excavated and removed. A 250-gallon UST was removed on October 31, 1991. Tank removal confirmation soil samples were collected. Concentrations up to 1,000 mg/kg Total Petroleum Hydrocarbons as gasoline (TPHg), < 0.150 mg/kg benzene, 0.40 mg/kg ethylbenzene and 19.0 mg/kg total xylenes were detected. These data indicate than an unauthorized release had occurred.

Responsible Party Identification

Frank Champion is a former property owner associated with the underground storage tank (UST). Frank Champion is a responsible party for the site because he owned USTs used for the storage of a hazardous substance (Definition 1), in the case of an UST no longer in used, he owned or operated the UST immediately before the discontinuation of its use (Definition 2), owned the property associated with an unauthorized release (Definition 3), and he had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

The Heirs of the Estate of Frank Champion c/o Paulette Satterley (Heirs of the Estate), received the property in January 1990. The Heirs of the Estate is a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Paulette Satterley, Michael Champion, and Paula Champion-Braig, and Frank and Linda Champion Jr. received the property in July 1991. They are collectively a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Don Rostocil received or purchased the property in December 1994. He is a responsible party for the site because he owned the property associated with an unauthorized release (Definition 3).

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

AGENCY

REBECCA GESHART, Acting Director

Certified Mail #:

May 4, 2016

NOTICE OF RESPONSIBILITY

Site Name & Address:

CITY OF PARIS CLEANERS **3516 ADELINE STREET** OAKLAND, CA 94608

Local ID:

RO0000133

Related ID: **RWQCB ID:**

NA NA

Global ID:

T0600100379

Responsible Party:

FRANK AND LINDA CHAMPION 9441 LAGUNA LAKE WAY **ELK GROVE, CA 95758**

Date First Reported:

11/2/1990

Substance:

12034 Diesel fuel oil & additives (Nos. 1-D,

2-D, 2-4)

Stoddard Solvent

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified FRANK AND LINDA CHAMPION as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required. If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-6876 if you have questions regarding your site.

RONALD BROWDER, Acting Director **Contract Project Director**

Update

ADD

Reason:

Attachment A: Responsible Parties Data Sheet

cc; Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

Alreate: 05-06-2016

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

May 4, 2016

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608 Local ID: RO0000133

Related ID: NA RWQCB ID: NA

Global ID: T0600100379

All Responsible Parties
RP has been named a Primary RP - PAULETTE SATTERLY
14601 GUADALUPE DRIVE RANCHO MURIETA, CA 95683 No Phone Number Listed
RP has been named a Primary RP – PAULA CHAMPION-BRAIG
280 MOUNTAIN BLVD. PIEDMONT, CA 94611 No Phone Number Listed
RP has been named a Primary RP – FRANK AND LINDA CHAMPION
9441 LAGUNA LAKE WAY ELK GROVE, CA 95758 No Phone Number Listed
RP has been named a Primary RP – MICHAEL CHAMPION
P.O. BOX 489 MOSS BEACH, CA 94038 No Phone Number Listed
RP has been named a Primary RP – DON ROSTOCIL
2200 BROWNING STREET BERKELEY, CA 94702 No Phone Number Listed
RP has been named a Primary RP – DEBBIE BUCKLEY
2516 ADELINE STREET LOAKLAND, CA. 94608 L Dhome (916) 558-7623

May 4, 2016

Responsible Party Identification Background

Alameda County Environmental Health (ACEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

Existence of Unauthorized Release

On October 4, 1990 one 750-gallon and two 1,000-gallon Stoddard solvent USTs were excavated and removed. A 250-gallon UST was removed on October 31, 1991. Tank removal confirmation soil samples were collected. Concentrations up to 1,000 mg/kg Total Petroleum Hydrocarbons as gasoline (TPHg), < 0.150 mg/kg benzene, 0.40 mg/kg ethylbenzene and 19.0 mg/kg total xylenes were detected. These data indicate than an unauthorized release had occurred.

Responsible Party Identification

Frank Champion is a former property owner associated with the underground storage tank (UST). Frank Champion is a responsible party for the site because he owned USTs used for the storage of a hazardous substance (Definition 1), in the case of an UST no longer in used, he owned or operated the UST immediately before the discontinuation of its use (Definition 2), owned the property associated with an unauthorized release (Definition 3), and he had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

The Heirs of the Estate of Frank Champion c/o Paulette Satterley (Heirs of the Estate), received the property in January 1990. The Heirs of the Estate is a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Paulette Satterley, Michael Champion, and Paula Champion-Braig, and Frank and Linda Champion Jr. received the property in July 1991. They are collectively a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Don Rostocil received or purchased the property in December 1994. He is a responsible party for the site because he owned the property associated with an unauthorized release (Definition 3).

REBECCA GEBHART, Acting Director

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Certified Mail #:

May 4, 2016

NOTICE OF RESPONSIBILITY

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608

Local ID:

RO0000133

Related ID:

NA

RWQCB ID:

NA

Global ID:

T0600100379

Responsible Party:

DON ROSTOCIL 2200 BROWNING STREET BERKELEY, CA 94702

Date First Reported:

11/2/1990

Substance:

12034 Diesel fuel oil & additives (Nos. 1-D,

2-D, 2-4)

Stoddard Solvent

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified **DON ROSTOCIL** as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

determination that no further action is required.

If property ownership changes in the future, you must notify this local agency

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-6876 if you have questions regarding your site.

the Date: 05-06-2016 RONALD BROWDER, Acting Director

Contract Project Director

Action: Update

ADD

Reason:

Attachment A: Responsible Parties Data Sheet

cc: Cindy Davis, SWRCB (email: cindy.davis@waterboards.ca.gov) | Dilan Roe (email: dilan.roe@acgov.org), File

within 20 calendar days from when you are informed of the change.

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

May 4, 2016

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608 Local ID: RO0000133

Related ID: NA RWQCB ID: NA

Global ID: T0600100379

All Responsible Parties
RP has been named a Primary RP – PAULETTE SATTERLY
14601 GUADALUPE DRIVE RANCHO MURIETA, CA 95683 No Phone Number Listed
RP has been named a Primary RP – PAULA CHAMPION-BRAIG
280 MOUNTAIN BLVD. PIEDMONT, CA 94611 No Phone Number Listed
RP has been named a Primary RP – FRANK AND LINDA CHAMPION 9441 LAGUNA LAKE WAY ELK GROVE, CA 95758 No Phone Number Listed
RP has been named a Primary RP - MICHAEL CHAMPION
P.O. BOX 489 MOSS BEACH, CA 94038 No Phone Number Listed
RP has been named a Primary RP – DON ROSTOCIL
2200 BROWNING STREET BERKELEY, CA 94702 No Phone Number Listed
RP has been named a Primary RP – DEBBIE BUCKLEY
3516 ADELINE STREET OAKLAND, CA 94608 Phone (916) 558-7633

May 4, 2016

Responsible Party Identification Background

Alameda County Environmental Health (ACEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- 1. "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

Existence of Unauthorized Release

On October 4, 1990 one 750-gallon and two 1,000-gallon Stoddard solvent USTs were excavated and removed. A 250-gallon UST was removed on October 31, 1991. Tank removal confirmation soil samples were collected. Concentrations up to 1,000 mg/kg Total Petroleum Hydrocarbons as gasoline (TPHg), < 0.150 mg/kg benzene, 0.40 mg/kg ethylbenzene and 19.0 mg/kg total xylenes were detected. These data indicate than an unauthorized release had occurred.

Responsible Party Identification

Frank Champion is a former property owner associated with the underground storage tank (UST). Frank Champion is a responsible party for the site because he owned USTs used for the storage of a hazardous substance (Definition 1), in the case of an UST no longer in used, he owned or operated the UST immediately before the discontinuation of its use (Definition 2), owned the property associated with an unauthorized release (Definition 3), and he had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

The Heirs of the Estate of Frank Champion c/o Paulette Satterley (Heirs of the Estate), received the property in January 1990. The Heirs of the Estate is a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Paulette Satterley, Michael Champion, and Paula Champion-Braig, and Frank and Linda Champion Ir. received the property in July 1991. They are collectively a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Don Rostocil received or purchased the property in December 1994. He is a responsible party for the site because he owned the property associated with an unauthorized release (Definition 3).

ENVIRONMENTAL HEALTH DEPARTMENT OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

AGENCY

REBECCA GEBHART, Acting Director

Certified Mail #:

May 4, 2016

NOTICE OF RESPONSIBILITY

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608

Local ID: RO0000133

Related ID:

NA

RWQCB ID:

NA

Global ID:

T0600100379

Responsible Party:

MICHAEL CHAMPION P.O. BOX 489 MOSS BEACH, CA 94038 Date First Reported:

11/2/1990

Substance:

12034 Diesel fuel oil & additives (Nos. 1-D,

2-D, 2-4)

Stoddard Solvent

Funding for Oversight: LOPS - LOP State Fund

Multiple RPs?: Yes

Pursuant to sections 25297.1 and 25297.15 of the Health and Safety Code, you are hereby notified that the above site has been placed in the Local Oversight Program and the individual(s) or entity(ies) shown above, or on the attached list, has (have) been identified as the party(ies) responsible for investigation and cleanup of the above site. Section 25297.15 further requires the primary or active Responsible Party to notify all current record owners of fee title before the local agency considers cleanup or site closure proposals or issues a closure letter. For purposes of implementing section 25297.15, this agency has identified MICHAEL CHAMPION as the primary or active Responsible Party. It is the responsibility of the primary or active Responsible Party to submit a letter to this agency, within 20 calendar days of receipt of this notice that identifies all current record owners of fee title. It is also the responsibility of the primary or active Responsible Party to certify to the local agency that the required notifications have been made at the time a cleanup or site closure proposal is made or before the local agency makes a determination that no further action is required.
If property ownership changes in the future, you must notify this local agency within 20 calendar days from when you are informed of the change.

Any action or inaction by this local agency associated with corrective action, including responsible party identification, is subject to petition to the State Water Resources Control Board. Petitions must be filed within 30 days from the date of the action/inaction. To obtain petition procedures, please FAX your request to the State Water Board at (916) 341-5808 or telephone (916) 341-5752.

Pursuant to section 25296.10(c)(6) of the Health and Safety Code, a responsible party may request the designation of an administering agency when required to conduct corrective action. Please contact this office for further information about the designation process.

Please contact your caseworker MARK DETTERMAN at this office at (510) 567-6876 if you have questions regarding your site.

RONALD BROWDER, Acting Director

Contract Project Director

Action: Update

Reason:

ADD

le Date: 05-06-2016

ALAMEDA COUNTY ENVIRONMENTAL HEALTH LUFT LOCAL OVERSIGHT PROGRAM

ATTACHMENT A - RESPONSIBLE PARTIES DATA SHEET

May 4, 2016

Site Name & Address:

CITY OF PARIS CLEANERS 3516 ADELINE STREET OAKLAND, CA 94608 Local ID: RO0000133
Related ID: NA

RWQCBID: NA

Global ID: T0600100379

All Responsible Parties
RP has been named a Primary RP – PAULETTE SATTERLY
14601 GUADALUPE DRIVE RANCHO MURIETA, CA 95683 No Phone Number Listed
RP has been named a Primary RP PAULA CHAMPION-BRAIG
280 MOUNTAIN BLVD. PIEDMONT, CA 94611 No Phone Number Listed
RP has been named a Primary RP – FRANK AND LINDA CHAMPION 9441 LAGUNA LAKE WAY ELK GROVE, CA 95758 No Phone Number Listed
RP has been named a Primary RP – MICHAEL CHAMPION
P.O. BOX 489 MOSS BEACH, CA 94038 No Phone Number Listed
RP has been named a Primary RP – DON ROSTOCIL
2200 BROWNING STREET BERKELEY, CA 94702 No Phone Number Listed
RP has been named a Primary RP – DEBBIE BUCKLEY
3516 ADELINE STREET OAKLAND, CA 94608 Phone (916) 558-7633

May 4, 2016

Responsible Party Identification Background

Alameda County Environmental Health (ACEH) names a "Responsible Party," as defined under 23 C.C.R Sec. 2720. Section 2720 defines a responsible party 4 ways. An RP can be:

- "Any person who owns or operates an underground storage tank used for the storage of any hazardous substance."
- 2. "In the case of any underground storage tank no longer in use, any person who owned or operated the underground storage tank immediately before the discontinuation of its use."
- 3. "Any owner of property where an unauthorized release of a hazardous substance from an underground storage tank has occurred."
- 4. "Any person who had or has control over an underground storage tank at the time of or following an unauthorized release of a hazardous substance."

Existence of Unauthorized Release

On October 4, 1990 one 750-gallon and two 1,000-gallon Stoddard solvent USTs were excavated and removed. A 250-gallon UST was removed on October 31, 1991. Tank removal confirmation soil samples were collected. Concentrations up to 1,000 mg/kg Total Petroleum Hydrocarbons as gasoline (TPHg), < 0.150 mg/kg benzene, 0.40 mg/kg ethylbenzene and 19.0 mg/kg total xylenes were detected. These data indicate than an unauthorized release had occurred.

Responsible Party Identification

Frank Champion is a former property owner associated with the underground storage tank (UST). Frank Champion is a responsible party for the site because he owned USTs used for the storage of a hazardous substance (Definition 1), in the case of an UST no longer in used, he owned or operated the UST immediately before the discontinuation of its use (Definition 2), owned the property associated with an unauthorized release (Definition 3), and he had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

The Heirs of the Estate of Frank Champion c/o Paulette Satterley (Heirs of the Estate), received the property in January 1990. The Heirs of the Estate is a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Paulette Satterley, Michael Champion, and Paula Champion-Braig, and Frank and Linda Champion Jr. received the property in July 1991. They are collectively a responsible party for the site because they owned USTs used for the storage of a hazardous substance (Definition 1), owned the property associated with an unauthorized release (Definition 3), and had control over a UST at the time of or following an unauthorized release of a hazardous substance (Definition 4).

Don Rostocil received or purchased the property in December 1994. He is a responsible party for the site because he owned the property associated with an unauthorized release (Definition 3).

ATTACHMENT 7

REBECCA GEBHART, Acting Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

<u>INVITATION TO COMMENT - POTENTIAL CASE CLOSURE</u>

City of Paris Cleaners
3516 Adeline Street, Oakland, CA 94608
FUEL LEAK CASE RO0000133
GEOTRACKER GLOBAL ID T0600100379

February 16, 2016

The above referenced site is a fuel leak case that is under the regulatory oversight of the Alameda County Environmental Health (ACEH) Local Oversight Program for the investigation and cleanup of a release of petroleum hydrocarbons from an underground storage tank system. Site investigation and cleanup activities have been completed and the site has been evaluated in accordance with the State Water Resources Control Board Low-Threat Closure Policy. The site appears to meet all of the criteria in the Low-Threat Closure Policy. Therefore, ACEH is considering closure of the fuel leak case. Due to the residual contamination on site, the site would be closed with site management requirements that require further evaluation if the site is to be redeveloped in the future.

The public is invited to review and comment on the potential closure of the fuel leak case. This notice is being sent to the current occupants and landowners of the site and adjacent properties and other known interested parties. The entire case file can be viewed over the Internet on the ACEH website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Please send written comments to Mark Detterman at the address below; all comments will be forwarded to the responsible parties. Comments received by April 23, 2016 will be considered and responded to prior to a final determination on the proposed case closure.

If you have comments or questions regarding this site, please contact the ACEH caseworker, Mark Detterman at 510-567-6876 or by email at mark.detterman@acgov.org. Please refer to ACEH case RO0000133 in any correspondence.

BAGOT STEVE TR & COMMUNITY FUND LLC PARCEL #: 5-477-6 1032 E 14TH ST

SAN LEANDRO CA 94577-3731

BONDI MICHAEL L PARCEL #: 5-477-23

105 C ST

SAN RAFAEL CA 94901-5016

BUCKLEY DEBRA A PARCEL #: 5-478-23 3516 ADELINE ST OAKLAND CA 94608-4221

CAVANAUGH ANGELA J PARCEL #: 5-477-25 3438 MAGNOLIA ST

OAKLAND CA 94608-4128

CITY OF OAKLAND PARCEL #: 5-477-7 250 FRANK H OGAWA PLZ #4

KIDD KAROLE TR

PARCEL #: 5-477-8

OAKLAND CA 94612-2033

PARCEL #: 5-477-27 3510 MAGNOLIA ST

OAKLAND CA 94608-4138

DUCKETT KIMBERLY A

HOLLANS DANNY & GLORIA

PARCEL #: 5-477-10 2272 ROSEHILL PL HAYWARD CA 94541-4451

3449 ADELINE ST

KIDD KAROLE TR PARCEL #: 5-477-9 3449 ADELINE ST

MADISON PEARL PARCEL #: 5-477-4 EMERYVILLE CA 94662-7050 OAKLAND CA 94608-4277

MILLER WRIGHT S & CHUNG KIT S TR

OAKLAND CA 94608-4277

1585 62ND ST #99192

EL CERRITO CA 94530-2151

OCCUPANT PARCEL #: 5-478-22 3512 ADELINE ST

OAKLAND CA 94608

OCCUPANT

PARCEL #: 5-478-5-1 3433 CHESTNUT ST OAKLAND CA 94608

OCCUPANT PARCEL #: 5-478-21 3508 ADELINE ST

PARCEL #: 5-477-28-2

5215 VICTOR AVE

OCCUPANT PARCEL #: 5-478-20

ADELINE ST

OAKLAND CA 94608

OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-4 3517 ADELINE ST

OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-5 3513 ADELINE ST OAKLAND CA 94608 OCCUPANT PARCEL #: 5-477-6 3507 ADELINE ST OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-7 3501 ADELINE ST OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-9 3443 ADELINE ST OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-10 3437 ADELINE ST OAKLAND CA 94608

OCCUPANT

PARCEL #: 5-477-28-2 3518 MAGNOLIA ST OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-27 3512 MAGNOLIA ST OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-26 3506 MAGNOLIA ST OAKLAND CA 94608

OCCUPANT

PARCEL #: 5-477-24 3434 MAGNOLIA ST OAKLAND CA 94608

OCCUPANT PARCEL #: 5-477-23 3432 MAGNOLIA ST

OAKLAND CA 94608

ROBINSON CHARLES B HEIRS OF EST PARCEL #: 5-478-21

233 SANDY BEACH RD VALLEJO CA 94590

SATTERLEY PAULETTE D TR

PARCEL #: 5-478-22 14601 GUADALUPE DR

RANCHO MURIETA CA 95683-9465

VANDERBILT ALEXANDER PARCEL #: 5-477-24

166 SANCHEZ ST #6

SAN FRANCISCO CA 94114-1192

WONG HICKMAN O & MAY H TRS

PARCEL #: 5-477-5 2 CAMELLIA PL

OAKLAND CA 94602-2506

YUE FOOK L & MARRANA L PARCEL #: 5-477-26 7105 ELVORA WAY ELK GROVE CA 95757-5903 ZIMMERMAN STEFFI R TR PARCEL #: 5-478-5-1 3289 LOMAS VERDES PL LAFAYETTE CA 94549-1805 ZIMMERMAN STEFFI R TR & ZIMMERMAN STI PARCEL #: 5-478-20 3289 LOMAS VERDES PL LAFAYETTE CA 94549-1805 East Bay Municipal Utility District Chandra Johannesson P.O. Box 24055, Oakland, CA 94623

cjohanne@ebmud.com

City Of Oakland Public Works Environmental Services Mark Johannes Arniola and Gopal Nair 150 Frank H. Ogawa Plaza, Suite 5301 Oakland CA 94612

marniola@oaklandnet.com gnair@oakland.net.com

Laurent Meillier Engineering Geologist Regional Water Quality Control Board San Francisco Bay Region 1515 Clay St, Ste 1400 Oakland, CA 94612

laurent.meillier@waterboards.co.gov