Ro 129

CAMBRIA

April 22, 2004

Mr. Don Hwang Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re:

Feasibility Test Report

Douglas Parking Company 1721 Webster Street Oakland, California 94612 ACHCSA Site # 4070

Dear Mr. Chan:

On behalf of Mr. Douglas, Cambria Environmental Technology, Inc. (Cambria) is submitting this Feasibility Test Report for the above-referenced site. This report details the soil vapor extraction and air sparge testing activities proposed in Cambria's Work Plan Addendum dated August 12, 2003.

If you have any questions regarding this report, please contact me at (510) 420-3305.

Sincerely,

Cambria Environmental Technology, Inc.

mikken Hillmann

Gretchen Hellmann

Project Engineer

Enclosure: Feasibility Test Report

cc: Mr. Lee Douglas, Douglas Parking Company, 1721 Webster Street, Oakland, California 94612

Cambria **Environmental** Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

FEASIBILITY TEST REPORT

Douglas Parking Company 1721 Webster Street The state of the s Oakland, California ACHCSA Site # 4070 Cambria Project # 580-0197

April 22, 2004

Prepared for:

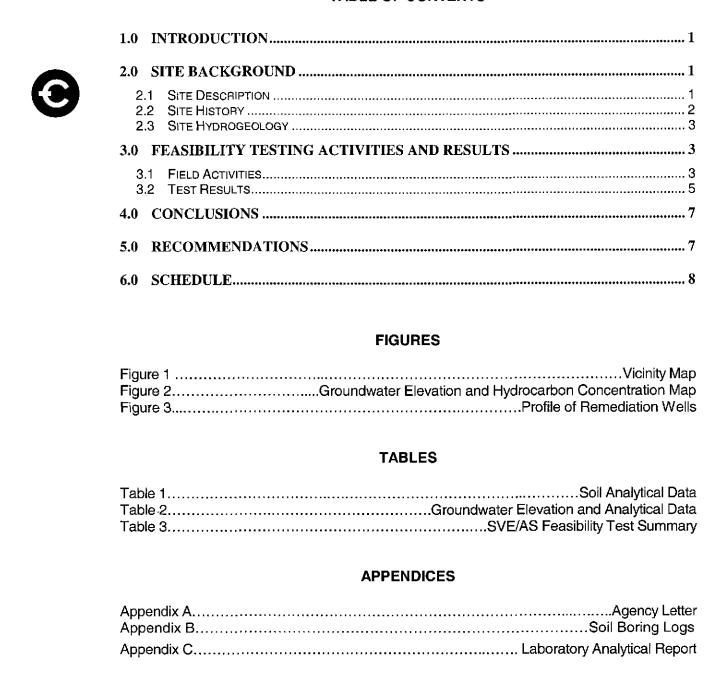
Mr. Leland Douglas **Douglas Parking Company** 1721 Webster Street Oakland, California 94612

Prepared by:

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A. Emeryville, California 94608

No. 6842

Project Engineer


Ron Scheele, R.G.

Senior Geologist

C A M B R I A SOIL VAPOR EXTRACTION / AIR SPARGE FEASIBILITY TEST REPORT

Douglas Parking Company 1721 Webster Street Oakland, California ACHCSA Site # 4070

TABLE OF CONTENTS

FEASIBILITY TEST REPORT

Douglas Parking Company 1721 Webster Street Oakland, California ACHCSA Site # 4070 Cambria Project # 580-0197

April 22, 2004

INTRODUCTION

On behalf of Douglas Parking Company, Cambria Environmental Technology, Inc. (Cambria) is submitting this *Soil Vapor Extraction / Air Sparge Test Report* for the above-referenced site. This investigation was conducted according to Cambria's *Remedial Work Plan* dated November 11, 1998 and *Work Plan Addendum* dated August 12, 2003, which were approved in a letter from the Alameda County Health Care Services Agency (ACHCSA) dated September 23, 2003 (Appendix A). The site background, feasibility testing, conclusions, and recommendations are presented below.

2.0 SITE BACKGROUND

2.1 Site Description

Site Location: The site is located on 1721 Webster Street between 17th and 19th Streets in downtown Oakland, California. The site is located approximately five miles east of the San Francisco Bay and one half-mile west of Lake Merritt (Figure 1). The site is currently being utilized as a parking garage (see Figure 2).

Potential Offsite Sources: A former gas station is located directly southeast of the site at 1700 Webster Street. A review of Sanborn maps indicates that a gas station operated there from approximately 1953 to 1964.

A property (Prentiss Properties) suspected of having USTs is located northeast of the site at 1750 Webster Street. Several investigations have been performed at the Prentiss Properties site including the drilling of eighteen soil borings and the installations of three monitoring wells. Groundwater samples collected by ATC Associates, Inc. (ATC) on February 8, 1998 detected MTBE concentrations up to 2,900 micrograms per liter (µg/L). Eleven of the twelve groundwater samples collected during ATC's investigation contained detectable MTBE concentrations.

Soil Vapor Extraction / Air Sparge Feasibility Test Report
Douglas Parking
1721 Webster Street, Oakland
April 22, 2004

CAMBRIA

A former Chevron Service station is located approximately 400 feet southwest of the site, on the corner of 17th Street and Harrison Street. The groundwater has been impacted by hydrocarbons in the vicinity of the Chevron station.

2.2 Site History

1992 Tank Removal: On August 3 and 6, 1992, Parker Environmental Services of Pittsburg, California removed one 1,000-gallon and two 500-gallon gasoline underground storage tanks (USTs). Seven soil samples (T-1 through T-7) were collected from beneath the USTs, four soil samples (SW-1 through SW-4) were collected from the UST sidewalls, and six soil samples (L-1 through L-6) were collected beneath the dispensers and associated product piping. Up to 1,500 milligrams per kilogram (mg/kg) total petroleum hydrocarbons as gasoline (TPHg) and up to 12 mg/kg benzene were detected in the soil samples collected from the UST excavation.

1994 Subsurface Investigation: On July 8 and September 8, 1994, Gen Tech/Piers Environmental, Inc. (Gen Tech) of San Jose, California drilled six exploratory borings (EB-1 through EB-6) and installed three groundwater monitoring wells (MW-1 through MW-3). TPHg and benzene concentrations of 650 mg/kg and 0.2 mg/kg, respectively, were detected in the soil samples collected at 20 feet below ground surface (bgs) near the former USTs. Maximum TPHg and benzene concentrations of 350,000 μg/L and 10,000 μg/L were detected in groundwater samples collected from well MW-2, immediately downgradient of the former USTs.

1996 Subsurface Investigation: In February and May 1996, Cambria advanced seven geoprobe soil borings (SB-A through SB-G) and installed two groundwater monitoring wells (MW-4 and MW-5). A maximum TPHg concentration of 660 mg/kg was detected at 20.5 ft bgs in a soil sample collected from boring SB-D, located downgradient from the former USTs. No benzene was detected in any of the soil samples. TPHg and benzene concentrations of 15,000 μ g/L and <5 μ g/L were detected in groundwater samples collected from well MW-4 located downgradient of the former USTs.

Oxygen Releasing Compound (ORC) Update: To enhance the natural attenuation of dissolved-phase hydrocarbons, Cambria installed ORC socks in well MW-2 on January 8, 1998. Dissolved oxygen (DO) concentrations increased in well MW-2 as compared to other site wells, however, the result was temporary.

Hydrogen Peroxide Injections: In February and March 1999, Cambria added a total of 120 gallons of 7.5% hydrogen peroxide solution into monitoring wells MW-2 and MW-3 to increase DO levels and enhance the biodegradation of dissolved-phase hydrocarbons. The hydrogen peroxide temporarily

Soil Vapor Extraction / Air Sparge Feasibility Test Report
Douglas Parking
1721 Webster Street, Oakland
April 22, 2004

CAMBRIA

increased groundwater DO levels, however hydrocarbon concentrations remained at elevated levels following the hydrogen peroxide activities.

Remedial Well Installation: On March 4, 2003, Cambria supervised the installation of a co-axial air sparging/soil vapor extraction well (SV-1/AS-1) and two angled air sparging wells (AS-2 and AS-3) to approximately 30 ft bgs in the immediate vicinity of the former USTs (Figure 3).

9

2003 Subsurface Investigation: On June 27, 2003, Cambria installed two groundwater monitoring wells (MW-6 and MW-7) to further delineate the hydrocarbon plume. A TPHg concentration of 120,000 micrograms per kilogram (ug/kg) was detected in a groundwater sample collected from well MW-6. No hydrocarbons were detected in well MW-7. The hydrocarbons detected in offsite well MW-6 were suspected to have originated from a former gas station located at 1700 Webster Street.

2.3 Site Hydrogeology

Unconfined groundwater conditions exist at the site. A shallow water-bearing zone consisting of highly permeable sand is present from approximately 14 to 30 feet bgs, and is underlain by a silty clay layer. Since 1994, the depth to groundwater beneath the site has ranged from approximately 16.8 to 22.2 feet bgs, with groundwater consistently flowing towards the northeast (Table 1). Groundwater elevations for the first quarter of 2004 are shown on Figure 2, and indicate an approximate gradient of 0.016 feet/foot to the northeast. Soil boring logs are included in Appendix B.

3.0 FEASIBILITY TESTING ACTIVITIES AND RESULTS

Following ACHCSA's approval of Cambria's Work Plan Addendum – Proposed Feasibility Testing, Cambria conducted a soil vapor extraction (SVE) / air sparge (AS) feasibility test on October 4, 2003. The objectives of the feasibility test were to:

- Determine hydrocarbon mass removal rates of extracted soil vapors;
- Determine the effective vacuum radius of influence;
- Evaluate the applicability of SVE and/or AS as a remedial alternative; and
- Determine the appropriate type and size of equipment for a full scale remediation system.

3.1 Field Activities

Cambria Personnel Present: Rowan Fennell, Technician

Gretchen Hellmann, Project Engineer

Soil Vapor Extraction / Air Sparge Feasibility Test Report
Douglas Parking
1721 Webster Street, Oakland
April 22, 2004

Equipment Provider:

Mako Industries, Inc., of Fountain Valley, California.

Notifications:

Cambria notified the Bay Area Air Quality Management District

of the test on September 29, 2003.

Feasibility Test Date:

Saturday, October 4, 2003.

9

Field Procedures: To extract soil vapor from well SV-1, Cambria used SVE equipment provided by Mako Industries, Inc. of Fountain Valley, California. The equipment consisted of a trailer mounted 25-kilowatt generator, a Roots 56 positive displacement blower, a knockout tank, and a 250 standard cubic feet per minute (scfm) thermal oxidizer. A 1.5-horsepower electric compressor with air purifying, filters was used to inject air into air sparge wells AS-1, AS-2, and AS-3. Well SV-1 was connected to the SVE system with airtight hoses and fittings. Magnehelic vacuum gauges were connected to sealed well caps on observation wells MW-2, MW-3, MW-6 to observe vacuum influence. Extraction flow rates were measured using a thermo-anemometer flow meter. To assess concentration trends during testing, the extracted soil vapors were field analyzed using a Horiba gas analyzer. Total hydrocarbons and percent oxygen were monitored and recorded (see Table 1). The feasibility test was completed in several stages during a 6-hour period. The details of the SVE step tests, SVE constant vacuum test, and the SVE / AS tests follow.

SVE Step Tests: Step tests were performed to evaluate the applied vacuum versus flow characteristics of the subsurface and to determine an optimal applied vacuum for the constant vacuum test.

A field sample was also collected in a tedlar bag and submitted to McCampbell Analytical Inc. of Pacheco, California for analysis of total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015 and benzene, toluene, ethylbenzene, xylenes (BTEX), and methyl tertiary butyl ether (MTBE) using EPA Method 8020. For the remainder of the feasibility test, a Horiba gas analyzer was used to measure hydrocarbon concentrations and evaluate concentrations trends.

Flow rates ranged between 3.9 and 9.2 scfm and hydrocarbon concentrations ranged from 40 to 14,500 parts per million volume (ppmv). See Table 3 for a summary of test data.

SVE Constant Vacuum Test: A constant vacuum test was conducted with an applied vacuum of 60 to 65 i.w. for a period of 35 minutes. Vapor flow rate, hydrocarbon concentration, and observation well vacuum readings stabilized within 25 minutes. Vapor flow rates ranged from 6.4 to 8.5 scfm and hydrocarbon concentrations ranged from 8,700 to 9,300. The calculated hydrocarbon removal rate ranged from 21 to 28 pounds per day (lbs/day). At the end of the constant vacuum test, a vacuum

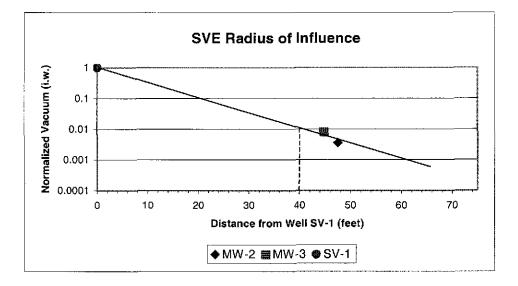
Soil Vapor Extraction / Air Sparge Feasibility Test Report
Douglas Parking
1721 Webster Street, Oakland
April 22, 2004

CAMBRIA

influence was observed in wells MW-2 and MW-3 at 0.17 and 0.30 i.w., respectively. No vacuum influence was observed in well MW-6. See Table 2 for the test data.

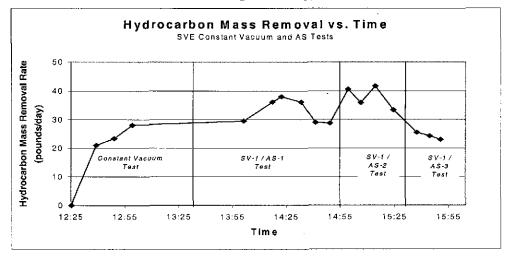
SVE / AS Tests: Following the SVE constant vacuum test, a combined SVE/AS test was performed to determine the effect that air sparging would have on vapor flow rates and hydrocarbon concentrations in comparison to SVE only. An electric air compressor was used individually to inject purified air into each of the AS wells. Air sparging was conducted at a series of increasing pressures ranging from 2.5 to 15 psi, which resulted in flow rates ranging from 2.5 to 6.0 cfm. Well vacuum flow, and hydrocarbon concentrations were monitored during each air sparge step. Air sparging into each AS well resulted in hydrocarbon concentrations ranging from approximately 16,900 to 22,500 ppmv. Even though extraction flow rates remained stable, higher hydrocarbon concentrations caused the hydrocarbon removal rate to increase substantially from a maximum of 20 lbs/day during SVE to 42 lbs/day during combined SVE/AS.

As anticipated, the vacuum radius of influence decreased in all observations wells during air sparging to the point that all observation wells were exhibiting a positive pressure. The effects of sparging into well AS-3 were less pronounced than wells AS-1 and AS-2.


3.2 Test Results

Flow Rates: During testing, vapor flow rates ranged from 3.5 to 9.2 scfm. Air sparge flow rates ranged 2.5 to 6.0 cfm.

Radius of Influence: During testing at the optimal applied vacuum of 64 i.w., a vacuum of 0.22 i.w. was observed in well MW-2, and a vacuum of 0.49 i.w. was observed in well MW-3. No vacuum influence was observed in well MW-6. Observation wells MW-2, MW-3, and MW-6 are located approximately 47, 45, and 63 feet away from extraction well SV-1, respectively. The effective radius of vacuum influence was estimated according to A Summary of Nationwide Vapor Extraction System Performance Study (T.E. Buscheck, T. R. Peargin, November 1991). This approach involves normalizing the vacuum data by dividing the vacuum observed in monitoring points by the vacuum applied to the extraction wellhead. The log of the normalized vacuum data is then plotted against the distance to the observation wells. The effective radius of influence is frequently considered to be the distance corresponding to 1% of the normalized vacuum. As shown on the graph below, the theoretical effective radius of vacuum influence was approximately 40 feet, using the maximum vacuum measurements from the observation wells.



However, using an alternative convention, the radius of influence could be considered greater than 47 feet, where a measurable vacuum response was recorded in an observation well. No vacuum influence was observed in well MW-6, due to potential short-circuiting along the utilities located in Webster Street.

Hydrocarbon Vapor Concentrations: Analytical results from the soil vapor sample collected indicates that significant hydrocarbon vapor concentrations were being extracted. The laboratory results for TPHg and benzene were 35,000 and 490 μg/L, respectively. No MTBE was detected above the laboratory detection limits of 200 μg/L. Analytical results for vapor samples are included in Appendix C. Field measurements also indicated significant hydrocarbon vapor extraction and that the hydrocarbon concentrations significantly increased due to the introduction of air sparging.

Estimated Hydrocarbon Removal: During the constant vacuum test, the estimated vapor-phase hydrocarbon removal rate from well SV-1 ranged from approximately 21 to 28 lbs/day. With the

Soil Vapor Extraction / Air Sparge Feasibility Test Report
Douglas Parking
1721 Webster Street, Oakland

April 22, 2004

introduction of air sparging to well AS-1, the removal rate increased to approximately 33 lbs/day. With the introduction of air sparging to well AS-2, the removal rate increased to approximately 38 lbs/day. See Table 2 and the graph above of hydrocarbon mass removal versus time.

4.0 CONCLUSIONS

CAMBRIA

Based on site conditions and the feasibility test results, Cambria concludes the following:

- High hydrocarbon concentrations (up to 22,500 ppmv) and removal rates (up to 42 lbs/day) indicate there is a significant mass of hydrocarbons remaining in the subsurface.
- The higher than anticipated hydrocarbon concentrations, necessitates the use of soil vapor
 extraction to capture the hydrocarbon vapors generated during air sparging. Based on current site
 conditions, a biosparge approach would be inadequate to remediate the site, but may be
 appropriate after hydrocarbon concentrations have been reduced.
- SVE and AS are effective technologies to remediate both the hydrocarbon-impacted soil and groundwater beneath the site.
- SVE and AS can be used to remediate a relatively large area as indicated by vacuum radius of
 influence measurements. Additional SVE wells would be needed to fully capture hydrocarbon
 vapors generated during air sparging.

5.0 RECOMMENDATIONS

Cambria recommends that a SVE/AS remediation system be used to remediate the remaining hydrocarbons in soil and groundwater. Our proposed remediation system would include the following:

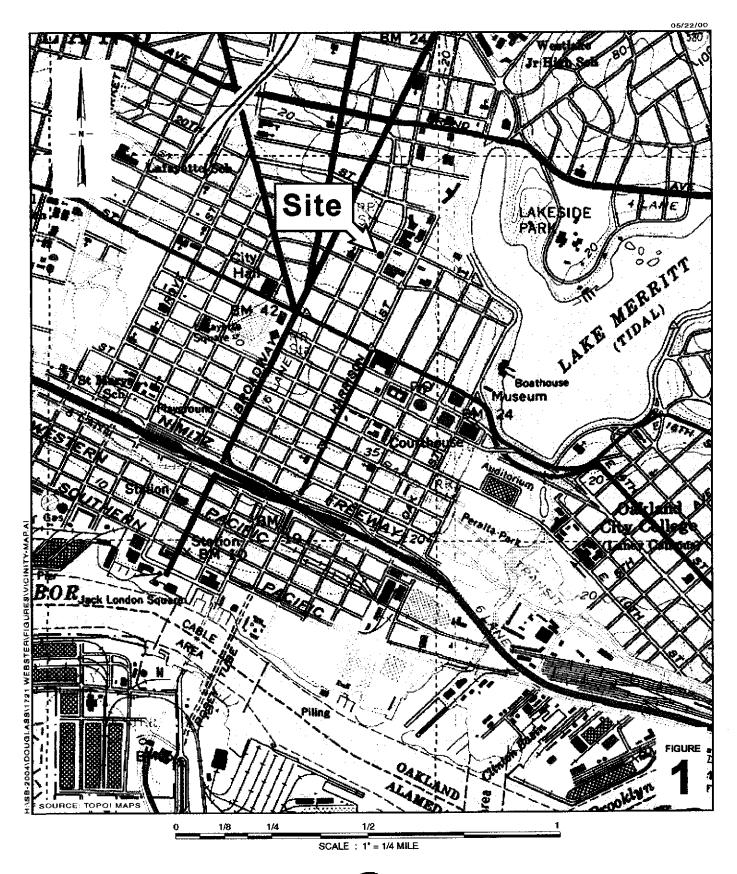
- Extracting hydrocarbon vapors from the existing wells SV-1, MW-2, and MW-3 using an applied vacuum of approximately 60 i.w. Wells MW-2 and MW-3 would need to be reconstructed with an appropriate well screen interval from 10 to 30 ft bgs.
- Injecting air into existing air sparge wells AS-1, AS-2, and AS-3 at a low flow rate of approximately 2.5 cfm.

Soil Vapor Extraction / Air Sparge Feasibility Test Report
Douglas Parking
1721 Webster Street, Oakland
April 22, 2004

- Treating extracted hydrocarbon vapors with an internal combustion engine or a catalytic oxidizer until treatment by granular activated carbon becomes more cost effective.
- Conducting SVE/AS until system influent concentrations have reached asymptotic levels, or until benzene concentrations in site groundwater decrease to below Environmental Screening Levels (ESLs).

6.0 SCHEDULE

Upon approval of this Feasibility Test Report, Cambria will complete the system design, acquire the necessary system permits, and install the system. These tasks are described in detail below.


System Design Plans: Cambria will prepare system design plans and submit them to the agency for review and approval. Following approval, Cambria will prepare a bid package that will be sent to at least three contractors.

Air Discharge Permits: Cambria will prepare an application to obtain an air discharge permit from the Bay Area Air Quality Management District.

System Installation: Following planning approval and receipt of a building permit, Cambria will select the most appropriate bidder and coordinate the following activities: system permitting, trenching and piping installation, well reconstruction, equipment procurement, and connection of remediation equipment. Cambria will also coordinate the installation of an electrical service. If the service is unavailable, Cambria will evaluate alternatives for operating the SVE/AS system.

Design Contingencies: The recommended system design is contingent upon obtaining City approval to trench within the sidewalk, obtaining the necessary electrical service, minimizing the disruption to existing businesses, and obtaining an air discharge permit that accounts for the ventilation of treated soil vapors.

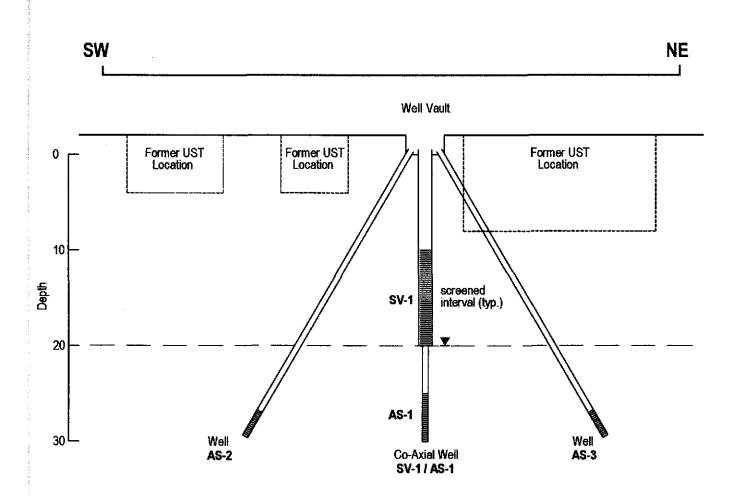
H:\Douglas Parking\1721 Webster\Feasibility Testing\Feasibility Test Report.doc

Douglas Parking Facility

3

Vicinity Map

1721 Webster Street Oakland, California


Douglas Parking Facility

1721 Webster Street Oakland, California

Groundwater Elevation and Hydrocarbon Concentration Map

January 15, 2004

0 5 1 Scale (ft)

FIGURE

3

Douglas Parking Facility

1721 Webster Street Oakland, California

Profile of Remediation Wells

Table 1. Soil Analytical Data - Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring/	Date	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes
Well ID		Depth (ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
arker Environmer	ıtal - UST and Pipi	ing Excavation					
T-1	8/3/1992	9	150	2.2	2.9	1.8	13
T-2	8/3/1992	9	120	0.62	0.56	0.87	2.2
T-3	8/6/1992	8	580	1.7	5.9	5.6	43
T-4	8/6/1992	8	1,500	11	140	48	280
Т-5	8/6/1992	8	410	6.7	22	6.2	35
T-6	8/6/1992	12	1,400	12	70	29	150
T- 7	8/6/1992	14	2.3	0.11	0.19	0.050	0.31
SW1	8/6/1992	9.5	280	2.9	5.8	3.2	15
SW2	8/6/1992	7	1,500	5.7	40	18	150
SW3	8/6/1992	8	400	2.7	5.8	4.0	21
SW4	8/6/1992	9	2.3	0.42	0.028	0.077	0.18
L-1	8/3/1992	1.5	2.6	<0.5	0.010	<0.5	0.030
L-2	8/3/1992	1.5	<50	<0.5	< 0.5	<0.5	<0.5
L-3	8/3/1992	1.5	<50	<0.5	<0.5	<0.5	< 0.5
L-4	8/3/1992	1.5	<50	<0.5	< 0.5	<0.5	<0.5
L-5	8/3/1992	2.0	8.2	0.010	0.020	0.012	0.092
L-6	8/3/1992	2.0	<50	< 0.5	0.007	<0.5	0.034
en Tech - Soil Bo EB-1	rings & Wells 7/8/1994	10	ND	_			
EB-1	7/8/1994	15	ND				
EB-1	7/8/1994	20	trace	_	_		
EB-1	7/8/1994	25	trace				
EB-1	7/8/1994	30	ND				
EB-2	7/8/1994	10	trace	-	-	••	
EB-2	7/8/1994	15	600				-
EB-2	7/8/1994	20	500	-		**	**
EB-2	7/8/1994	25	1,000	· +-			
EB-2	7/8/1994	30	ND	-	**		
EB-3	7/8/1994	2	ND				
EB-3	7/8/1994	5	trace	_			
EB-3	7/8/1994	10	100	_	==		
EB-3	7/8/1994	15	trace	_	_		
EB-3	7/8/1994	20	100				
EB-3	7/8/1994	30	ND	-			
EB-4	7/8/1994	10	ND				
EB-4	7/8/1994	15	trace	n-a			
EB-4	7/8/1994	20	trace	_	_		**
EB-4	7/8/1994	30	ND				

Table 1. Soil Analytical Data - Douglas Parking Company, 1721 Webster Street, Oakland, California

Boring/	Date	Sample	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes
Well ID		Depth (ft bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
EB-5	7/8/1994	2	100			_	_
EB-5	7/8/1994	5	1,000			_	
EB-5	7/8/1994	10	800			_	
EB-5	7/8/1994	15	1,000				
EB-5	7/8/1994	20	500				
EB-5	7/8/1994	30	ND		4-		
EB-6	7/8/1994	10	ND				
EB-6	7/8/1994	15	trace		_		
EB-6	7/8/1994	20	1,000				
EB-6	7/8/1994	30	ND				-
MW -1	9/8/1993	NA	-				
MW-2	9/8/1993	NA	-				
MW-3	9/8/1993	NA					
Cambria Environm	nental Technology	nc Borings and Well:	٠				
SB-A	2/22/1996	19.5	<1.0	< 0.005	0.007	< 0.005	< 0.005
SB-B	2/22/1996	20.5	580	<0.3	1.3	1.8	4.2
SB-C	2/22/1996	19.5	1.4	<0.005	0.013	0.027	0.12
SB-D	2/22/1996	20.5	660	<0.2	2.3	<0.2	5.2
SB-E	2/23/1996	20.5	<1.0	<0.005	0.009	<0.005	<0.005
SB-F	2/23/1996	20.0	<1.0	<0.005	0.006	<0.005	<0.005
SB-G	2/23/1996	20.0	<1.0	<0.005	0.009	<0.005	<0.005
SB-H	5/3/1996	20.5	1.2	< 0.005	0.006	0.025	0.038
(MW-4)	5/3/1996	31.0	<1.0	<0.005	< 0.005	<0.005	<0.005
SB-I	5/3/1996	15.5	<1.0	<0.005	<0.005	< 0.005	< 0.005
(MW-5)	5/3/1996	26.0	<1.0	< 0.005	< 0.005	<0.005	< 0.005
MW-6	6/27/2003	20.0	220	<0.10	0.14	<0.10	0.35
MW-7	6/27/2003	NS			-		

Notes and Abbreviations

Benzene, Toluene, Ethylbenzene, and Xylenes by EPA Method 8021B

TPHg = Total petroleum hydrocarbons as gasoline per Modified EPA Method 8015

<n = not detected above the laboratory reporting limit.</p>

^{- =} Not analyzed or not available

NA = Not Available

NS = Not Sampled

ft bgs = feet below ground surface

mg/kg = miligrams per kilograms

Table 2. Groundwater Elevation and Analytical DataDouglas Parking Company, 1721 Webster Street, Oakland, CA

Well ID	Date	Depth to	Groundwater	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
(TOC)		Water (ft)	Elevation (ft)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
MW-1	12/2/1994	19.42	9.83	ND	ND	ND	ND	ND	-
29.25	3/6/1995	20.69	9.04	ND	ND	ND	ND	ND	_
29.73	7/11/1995	20.65	9.16	ND	ND	ND	ND	ND	-
29.81	5/10/1996	20.80	9.01	ND	ND	ND	ND	ND	-
	10/2/1996	21.35	8.46	_	-	_	-	-	-
	2/28/1997	20.57	9.24	_	-	-	-	_	-
	9/16/1997	21.50	8.31	_	-	-	-	-	-
	2/5/1998	20.91	8.90	_	-		-	_	-
	8/11/1998	20.50	9.31	_	-	-	_	_	-
	2/8/1999	21.42	8.39	_	-	_		_	-
	2/24/1999	22.99	6.82	_	-	_	-	-	_
	3/3/1999	20.84	8.97	-	_	-	-	-	_
	3/10/1999	20.89	8.92	_	-	•	_	_	_
	3/17/1999	20.84	8.97	_	-	-	_	-	_
	5/4/1999	20.80	9.01	_	_	_	_	-	-
	7/20/1999	21.25	8.56	_	_	_	_	-	-
	10/5/1999	21.37	8.44	_	_	_	_	-	-
	1/7/2000	21.65	8.16	_	_	_	_	_	_
	4/6/2000	21.05	8.76	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/31/2000	21.13	8.68	~50	-		-		-
	10/3/2000	21.13	8.12	-	-	-	-	-	_
	1/12/2001	22.00	7.81	-	-	-	-	-	_
	4/11/2001	22.16	7.65	-	-	-	-	-	_
	7/6/2001	22.10	7.03	-	-	-	•	-	_
	10/25/2001	22.71		-	-	-	•	•	-
	3/4/2002	22.71	7.10	*	-	-	-	-	-
	4/18/2002		7.28	-	•	-	-	•	-
		22.81	7.00	-	-	-	-	*	-
	7/9/2002	22.95	6.86	-	-	-	-	-	-
	10/4/2002	23.13	6.68	-	-	-	-	-	-
	1/12/2003	22.05	7.76	-	-	-	-	-	-
	4/21/2003	21.17	8.64	-	-	-	-	-	-
32.75	7/21/2003	21.39	11.36	-	-	-	-	-	=
	10/2/2003	21.64	11.11	-	-	-	-	-	-
	1/15/2004	21.10	11.65	•	-	•	•	-	-
MW-2	12/2/1994	19.50	7.60	61,300	3,000	3,900	160	4,500	-
27.10	3/6/1995	18.49	8.61	98,000	8,400	16,000	2,000	2,600	-
27.40	7/11/1995	18.45	8.95	38,000	3,100	7,500	940	3,700	-
	5/10/1996	18.56	8.84	63,000	7,400	16,000	1,500	6,000	-
	10/2/1996	19.15	8.25	21,000	2,200	3,400	430	1,600	-
	2/28/1997	18.43	8.97	39,000	4,700	9,600	950	4,200	ND
	9/16/1997	19.26	8.14	29,000	3,300	5,800	690	2,900	<620
	2/5/1998	18.66	8.74	10,000	1,000	2,000	170	860	<330
	8/11/1998	18.41	8.99	12,000	1,200	2,300	260	1,400	300
	2/8/1999	19.84	7.56	5,500	740	1,200	150	780	60
	2/17/1999	18.94	8.46	-	-	-	-	-	-
	2/24/1999	20.76	6.64	-	-	-	-	-	-
	3/3/1999	18.55	8.85		-	-	-	-	
	3/10/1999	20.74	6.66	-	-	-	-	-	-
	3/17/1999	18.57	8.83		-	-	-	-	-
	5/4/1999	18.55	8.85	90,000	9,200	21,000	1,600	10,000	560
	7/20/1999	18.98	8.42	28,000	2,100	3,700	900	4,200	<860
				,	,	/·			

Table 2. Groundwater Elevation and Analytical DataDouglas Parking Company, 1721 Webster Street, Oakland, CA

Well ID	Date	Depth to	Groundwater	ТРНд	Benzene	Toluene	Ethylbenzene	Xylenes	МТВЕ
(TOC)		Water (ft)	Elevation (ft)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-2	1/7/2000	19.41	7.99	15,000	1,300	2,100	440	1,800	<14
(cont'd)	4/6/2000	18.80	8.60	17,000	1,800	3,100	500	2,200	<50
	7/31/2000	18.87	8.53	17,000	1,500	2,700	430	2,100	<200
	10/3/2000	19.45	7.95	27,000	2,500	4,000	660	2,900	<50
	1/12/2001	19.80	7.60	25,000	2,700	4,100	670	3,000	<200
	4/11/2001	20.03	7.37	97,000	9,500	21,000	2,200	7,900	<200
	7/6/2001	20.19	7.21	3,500	500	150	11	420	<5.0
	10/25/2001	20.35	7.05	3,800	620	230	70	400	<50
	3/4/2002	20.37	7.03	46,000	7,300	12,000	870	3,200	<500
	4/18/2002	20.15	7.25	68,000	5,100	8,900	1,100	4,000	<1,000
	7/9/2002	21.09	6.31	1,000	200	8.9	0.67	82	<10
	10/4/2002	21.28	6.12	270	100	3.4	0.53	10	<5.0
	1/12/2003	20.59	6.81	67,000	7,600	13,000	1,400	5,600	<500
	4/21/2003	19.98	7.42	78,000	7,700	12,000	1,900	6,900	<500
30.40	7/21/2003	20.08	10.32	1,800	360	16	<5.0	190	<50
	10/2/2003	20.41	9.99	4,000	790	110	60	350	<50
	1/15/2004	19.93	10.47	8,100	6.1	23	44	530	<50
MW-3	12/2/1994	22.15	7.35	394,000	1,200	ND	1,800	4,000	-
29.50	3/6/1995	20.09	9.16	21,000	400	150	24	62	-
29.25	7/11/1995	19.99	9.57	12,000	ND	10	16	99	-
29.56	5/10/1996	20.24	9.32	8,600	ND	7.6	16	84	-
	10/2/1996	20.90	8.66	11,000	ND	7.4	19	92	-
	2/28/1997	20.12	9.44	6,000	ND	4.4	17	88	50
	9/16/1997	20.97	8.59	6,500	<0.5	0.69	1.2	6.7	<5.0
	2/5/1998	20.39	9.17	5,400	<0.5	6.3	15	86	<63
	8/11/1998	19.95	9.61	2,700	<0.5	3.5	3.2	12	<10
	2/8/1999	20.58	8.98	6,100	<0.5	8.1	18	80	<140
	2/17/1999	20.53	9.03	-	-	-	-	-	-
	2/24/1999	22.53	7.03	-	-	-	•	-	-
	3/3/1999	20.28	9.28	•	-	-	-	-	-
	3/10/1999	22.45	7.11	-	-	-	•	-	-
	3/17/1999	20.26	9.30	-	-	-	•	-	-
	5/4/1999	20.24	9.32	11,000	<2	<2	9.8	140	<10
	7/20/1999	20.68	8.88	11,000	<0.5	3.1	13	88	<80
	10/5/1999	20.81	8.75	31,000	62	<0.5	21	170	<90
	1/7/2000	21.09	8.47	13,000	< 0.5	<2	21	140	<80
	4/6/2000	20.48	9.08	5,300	1.5	1.4	9.8	60	<30
	7/31/2000	20.62	8.94	7,100	3.5	1.0	12	66	<5.0
	10/3/2000	21.13	8.43	8,000	< 0.5	3.3	11	70	<40
	1/12/2001	21.45	8.11	11,000	4.3	6.7	11	73	<70
	4/11/2001	21.69	7.87	10,000	<0.5	<0.5	11	65	<10
	7/6/2001	21.60	7.96	13,000	5.3	1.6	11	58	<5.0
	10/25/2001	21.70	7.86	11,000	<0.5	3.0	15	70	<10
	3/4/2002	21.65	7.91	1,900	1.3	0.8	<0.5	15	<5.0
	4/18/2002	21.77	7.79	1,500	1.0	0.97	1.3	5.8	<5
	7/9/2002	22.03	7.53	13,000	6.8	5.7	13	59	<90
	10/4/2002	22.15	7.41	8,400	<10	<10	<10	42	<100
	1/12/2003	21.13	8.43	9,000	9.5	5.1	8.5	46	<90
	4/21/2003	20.63	8.93	10,000	<5.0	<5.0	8.5	32	<50
32.56	7/21/2003	20.68	11.88	9,600	<2.5	<2.5	7.4	39	48 (<1.0)
	10/2/2003	20.99	11.57	12,000	<5.0	<5.0	10	40	<90
	1/15/2004	20.74	11.82	13,000	37	41	78	930	<50

Table 2. Groundwater Elevation and Analytical DataDouglas Parking Company, 1721 Webster Street, Oakland, CA

Well ID	Date	Depth to	Groundwater	TPHg	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
(TOC)		Water (ft)	Elevation (ft)	(μg/L)	(µg/L)	(μ g /L)	(μg/L)	(µg/L)	$(\mu g/L)$
MW-4	5/10/1996	16.98	9.21	14.000	ND	1 200	720	3,100	
25.29	10/2/1996	17.65	8.31 7.64	14,000	ND ND	1,200 650	580	2,200	-
23.29	2/28/1997	16.80	7.04 8.49	12,000	ND ND	1,100	750	2,700	110
	9/17/1997	17.93	7.36	13,000	<2.5	820	750 750	2,700	<190
	2/5/1998			13,000			690		<170
	8/11/1998	16.78 16.59	8.51 8.70	13,000 15,000	<1.0 <5	690 360	520	2,900 1,900	280
	2/8/1999	17.10	8.19	9,800	< <	680	770	2,200	300
	2/0/19 99 2/24/1999					- 080	//U -	2,200	300
	3/3/1999	18.95 16.80	6.34 8.49	-	-	-	-	-	_
	3/10/1999	16.86	8.43	-	-	-	-	-	-
	3/17/1999	16.82	8.43 8.47	-			-	-	-
	5/4/1999	16.86	8.43	11,000	46	600	620	1,900	<100
	7/20/1999	17.30	7. 9 9	13,000	<0.5	470	7.0	2,000	<150
	10/5/1999	17.43	7.86	18,000	4.4	720	800	2,100	<120
	1/7/2000	17.78	7.51	18,000	<2	930	990	2,700	<30
	4/6/2000	17.73	8.12	8,000	31	390	530	1,300	<10
	7/31/2000	17.21	8.08	6,200	13	170	460	850	<10
	10/3/2000	18.00	7.29	14,000	42	820	730	2,000	<50
	1/12/2001	18.20	7.09	<50	< 0.5	<0.5	<0.5	<0.5	<5.0
	4/11/2001	18.31	6.98	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/6/2001	18.35	6.94	470	2.3	1.6	0.81	43	<5.0
	10/25/2001	18.47	6.82	110	0.70	<0.5	<0.5	3.3	<5.0
	3/4/2002	18.43	6.86	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/18/2002	18.61	6.68	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	7/9/2002	19.50	5.79	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/4/2002	19.83	5.46	310	2.0	2.9	13	16	<0.5
	1/12/2003	19.07	6.22	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	4/21/2003	18.71	6.58	<50	<0.5	<0.5	<0.5	<0.5	<5.0
28.29	7/21/2003	18.81	9.48	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/2/2003	19.02	9.27	59	0.78	<0.5	1.1	0.91	<5.0
	1/15/2004	18.68	9.61	<50	<0.5	< 0.5	<0.5	<0.5	<5.0
MANU S	5/10/1007	14.60	7.27	M	NID	MD	NID	NID	
MW-5	5/10/1996	14.60	7.37	ND	ND	ND	ND	ND ND	-
21.97	10/2/1996	15.25	6.72	ND	ND	ND	ND	ND ND	ND.
	2/28/1997	14.31	7.66	ND -0.5	ND	ND	ND	ND	ND
	9/17/1997 2/5/1998	15.18 13.64	6.79 8.33	<0.5 <50	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<5.0 <5.0
	8/11/1998	13.92	8.05	<50 <50	<0.5 <0.5	<0.5	<0.5	<0.5	<5.0
	2/8/1999	14.19					<0.5	<0.5	<5.0
	2/24/1999	16.18	7.78 5.79	<50	<0.5	<0.5	<0.5	<0.5	C 3.0
	3/3/1999	14.23	7.74	-	-	-	-	•	-
	3/10/1999	14.23	7.65	-	-		-	-	-
	3/17/1999	14.25	7.03 7.72	-	-	-	-	-	-
	5/4/1999	14.41	7.72	<50	- <0.5	<0.5	<0.5	<0.5	<5.0
	7/20/1999	14.44	7.53	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/5/1999	14.79	7.33	<50	<0.5 <0.5	<0.5	<0.5	< 0.5	<5.0
	1/7/2000*	15.23	6.74	-	-	-	-	-	-
	4/6/2000	14.74	7.23	<50	<0.5	- <0.5	<0.5	<0.5	<5.0
	7/31/2000	14.52	7.45	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/3/2000	15.37	6.60	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	1/12/2001	15.70	6.27	6,400	13	290	450	1,100	<40
	4/11/2001	15.78	6.19	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	77 1 1 2 2 2 2 2 2	10.10	U(1)	~~0	~0.0	~0.5	7010	40.0	~5.0

Table 2. Groundwater Elevation and Analytical Data

Douglas Parking Company, 1721 Webster Street, Oakland, CA

Well ID (TOC)	Date	Depth to Water (ft)	Groundwater Elevation (ft)	TPHg (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Xylenes (μg/L)	MTBE (μg/L)
MW-5	10/25/2001	16.05	5.92	<50	<0.5	<0.5	<0.5	<0.5	<5.0
(cont'd)	3/4/2002	16.21	5.76	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/18/2002	16.59	5.38	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/9/2002	16.94	5.03	170	1.0	0.65	2.1	4.0	<15
	10/4/2002	17.14	4.83	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	1/12/2003	16.58	5.39	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	4/21/2003	15.90	6.07	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
24.99	7/21/2003	16.03	8.96	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/2/2003	16.33	8.66	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	1/15/2004	16.21	8.78	<50	<0.5	<0.5	<0.5	<0.5	<5.0
MW-6	6/30/2003	19.60	11.39	68,000	950	6,000	2,400	10,000	<1,000
30.99	7/21/2003	19.67	11.32	120,000	170	1,400	1,100	10,000	<1,000
	10/2/2003	19.97	11.02	16,000	7.6	200	38	1,800	<100
	1/15/2004	19.55	11.44	14,000	48	51	94	1,100	<50
MW-7	6/30/2003	21.40	11.71	170	<0.5	2.1	2.0	8.7	<5.0
33.11	7/21/2003	21.44	11.67	<50	< 0.5	< 0.5	<0.5	< 0.5	< 5.0
	10/2/2003	21.73	11.38	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	1/15/2004	21.57	11.54	<50	<0.5	<0.5	< 0.5	<0.5	<5.0
Trip Blank	01/12/01	-	-	<50	<0.5	<0.5	<0.5	<0.5	<5.0
•	4/11/2001	-	-	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0
	7/6/2001	-	-	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	3/4/2002	-	-	<50	<0.5	< 0.5	< 0.5	< 0.5	<5.0
	10/2/2003	-	-	<50	<0.5	<0.5	<0.5	< 0.5	<5.0

Notes and Abbreviations:

* = Well inaccessible

ND = Not Detected

<nd = Below laboratory detection limit

TOC = top of casing elevations in feet above mean sea level

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

Benzene, Toluene, Ethylbenzene, and Xylenes by EPA Method 8020

MTBE = methyl tertiary butyl ether by EPA Method 8021B, and by EPA Method 8260 in parenthesis

a = Unmodified or weakly modified gasoline is significant.

b = Heavier gasoline range compounds are significant (aged gasoline?).

c = No recognizable pattern.

Data prior to 7/11/95 from Gen Tech and Piers Environmental Quarterly Groundwater Monitoring Reports dated December 2, 1994 and March 6, 1995,

μg/L = micrograms per liter

ft-msl = feet above mean sea level

DO = dissolved oxygen

Sampling no longer required in well MW-1 per September 17, 1996, ACDEH letter to Douglas Parking.

On July 31, 2003. Virgi! Chavez Land Surveying of Vallejo, California surveyed monitoring wells using a benchmark in the top of the curb near the SW return of the NW corner of 34th and Broadway

Table 3. Soil Vapor Extraction / Air Sparge Pilot Test Summary - Douglas Parking, 1721 Webster St, Oakland, California, October 4, 2003

			T	est Well					Ob	servation \	Vell
Time	Applied Vacuum	Vapor Flow Rate	Air Sparge Pressure	Air Sparge Flow Rate	HC Conc. Horiba	O ₂ Conc.	TPHg Conc.	HC Removal Rate	Vacuum MW-2	Vacuum MW-3	Vacuum MW-6
	(in. H ₂ O)	(scfm)	(psi)	(cfm)	(ppmv)	Horiba (%)	(рртv)	(lbs/day)	(i.w.)	(i.w.)	(i.w.)
SV-1 Startup	Sampling						Distance fro	m Well SV-1:	47	45	63
10:00	Startup										
10:15	79	5.6			10,050		35,000	21.4			
10:20	79								0.31	>0.50	0.0
10:40	139	9.2			40			0.1	>0.50	1.15	0.00
SV-1 Step Va	cuum Test										
10:45	21	6.7			7,850			20	0.38*	0.7*	0.00
10:54					8,800	11.15			0.19		
10:58	35	5.5	_		14,500	7.06		30	0.19	0.31	0.00
11:15	50	3.9	_		12,900	8.80		19	0.15	0.40	0.00
11:24	63	5.3	**		10,100	11.44		20	0.18	0.45	0.00
11:34	64	5.6			10,100	11.52		21	0.22	0.49	
11:53	82	5.0			6,850	14.70		13	0.28	0.50	
12:06	102	4.9			3,400	18.28		6	0.28	0.51	0.005
12:20	102	6.9	**		47	21.36		0.1	0.31	0.56	0.005
SV-1 Consta	nt Vacuum Tes	t									
12:26	65										
12:40	61	6.4			8,700	12.44		21	0.22*	0.39*	
12:50	61	6.6			9,300	11.86		23	0.17	0.31	~~
13:00	61	8.5			8,700	12.36		28	0.17	0.30	
SV-1 Consta	nt Vacuum / AS	-1 Step Air Spa	arge Test								
13:30			28	6	(air sparge bre	akout pressure)				-0.21
14:00	65		4-4								
14:02	64	4.0			19,500	12.44		30			
14:10	61		5.0	2.5	16,900						
14:18	61	5.6	5.0	2.7	17,000	13.12		36	0.37	0.14	0.00
14:23	60	5.9	2.5	2.5	17,000	13.32		38	0.23	0.15	0.00
14:29	61		13.0	5.0	17,700	14.56			0.02	0.14	0.00
14:34	61	5.2	13.0	5.0	18,300	15.66		36	0.01	0.07	0.00
14:42	60	4.2	15.0	6.0	18,000	17.00		29	-0.03	-0.11	0.00
14:50	60	4.2	15.0	6.0	18,000	18.00		29	-0.04	-0.19	0.00
SV-1 Consta	nt Vacuum / AS	-2 Step Air Spa	arge Test								
15:00	60	4.9	6.0	3.0	21,900	15.76		41	-0.02	-0.31	0.00
15:07	60	4.2	5.0	2.8	22,500	13.62		36	-0.1	-0.20	
15:15	60	4.9	15.0	6.0	22,500	11.00		42	-0.02	-0.29	0.00
15:25	60	4.3	14.0	5.8	20,500	10.75		33	0.005	-0.72	0.00
SV-1 Consta	nt Vacuum / AS	-3 Step Air Spa	arge Test					1			
15:38	60	3.5	10.0	3.0	19,000	9.92	**	26	-0.02	-0.41	0.00
15:45	60	3.7	9.0	3.0	17,300	10.38		24	-0.01	-0.12	0.00
15:51	60	3.7	15.0	6.0	16,400	10.02		23	-0.01	0.00	0.00

NOTES:

-- = Not Recorded/Not Applicable

scfm = standard cubic feet per minute

ppmv = parts per million by volume

lbs/day = pounds per day

HC = Hydrocarbon

TPHg = total petroleum hydrocarbons as gasoline

psi = pounds per quare inch

i.w. = inches of water column

Negative vacuum values indicate pressure.

HC Vapor Removal Rate (lbs/day) =

379 cfm x 1000000

^{* =} Measurements reflect residual vacuum influence from previous test.

APPENDIX A

Agency Letter

HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700

FAX (510) 337-9335

ENVIRONMENTAL HEALTH SERVICES

ENVIRONMENTAL PROTECTION

September 23, 2003

Lee Douglas **Douglas Parking** 1721 Webster Street Oakland, CA 94612-3411

Dear Mr. Douglas:

Subject:

Fuel Leak Case No. RO0000129, Douglas Parking, 1721 Webster Street,

Oakland, CA 94612-3411

Alameda County Environmental Health (ACEH) staff has reviewed the Leaking Underground Storage Tank Oversight Program file including "Work Plan Addendum - Proposed Feasibility Testing" dated August 12, 2003 by Cambria Environmental Technology. We request that you address the following technical comments and send us the technical reports requested below.

TECHNICAL COMMENTS

- 1. Site Characterization 16,000 micrograms/liter (ug/l) Total Petroleum Hydrocarbons-Gasoline (TPH-G), 20,000 ug/l TPH-G, and 16,000 ug/l TPH-G, were detected in soil borings, SB-A, SB-B, and SR-C, respectively, located east of the former underground tanks, on February 22, 1996. East of these borings, grab groundwater samples, HP-1 and HP-2, detected 18,000 ug/l and 46 ug/l benzene, respectively, on March 19, 1993. The HP-1 and HP-2 samples were noted in "Subsurface Investigation Report" dated July 16, 1996 by Cambria Environmental Technology. These samples were collected by Applied Geosciences, Inc. In the Cambria report, TPH-G grab groundwater concentrations, the depths at which the samples were collected, and boring logs were not provided. The missing information will help determine if the plume needs to be further defined east of the borings. Please provide.
- 2. Source Characterization 580 mg/kg and 680 mg/kg TPH-G were detected at soil borings, SB-B, and SB-D, located east and northeast of the former underground tanks, respectively. "Subsurface Investigation Report" dated July 16, 1996 by Cambria Environmental Technology, noted that soil samples collected near the grab groundwater samples HP-1 and HP-2 on May 18, 1993, did not detect TPH-G or benzene at a depth of 20 ft. However, the soil sample locations and boring logs were not provided. The missing information will help determine if the soil contamination needs to be further defined east of the borings. Please provide.

- 3. Preferential Pathway Survey We request that you perform a preferential pathway study that details the potential migration pathways and potential conduits (wells, utilities, pipelines, etc.) for horizontal and vertical migration that may be present in the vicinity of the site. Please submit map(s) and cross-sections showing the location and depth of all utility lines and trenches (including sewers, storm drains, pipelines, trench backfill, etc.) within and near the site and plume area(s). Evaluate the probability of the contaminant plumes encountering preferential pathways and conduits that could spread the contamination, particularly in the vertical direction to deeper water aquifers. Please submit.
- 4. Well Survey Locate wells within a quarter mile radius of the site. Show the location of the wells and the site on a map and tabulate well construction details for each well. Please submit.
- 5. Historical Hydraulic Gradients Please show using a rose diagram with magnitude and direction; include cumulative groundwater gradients in all future reports submitted for this site.
- 6. Groundwater Analyses We request that you include the other fuel oxygenates Tertiary Amyl Methyl Ether (TAME), Ethyl Tertiary Butyl Ether (ETBE), Di-Isopropyl Ether (DIPE), and Tertiary Butyl Alcohol (TBA), Ethanol by EPA Method 8260 and the lead scavengers, Ethylene Dibromide (EDB), Ethylene Dichloride (EDC) for analyses of grab and monitoring well groundwater samples, and for the lead scavengers, EDB and EDC, also perform analyses on soil samples. If any of the latter compounds are detected, and are determined to be of concern (poses a risk to human health, the environment, or water resources) it is to be incorporated into your regular monitoring plan.
- 7. Proposed Feasibility Testing A diagram of and procedures for the previously approved soil vapor extraction and air sparging tests have been provided.

TECHNICAL REPORT REQUEST

Please submit the following technical reports to Alameda County Environmental Health (Attention: Don Hwang), according to the following schedule:

October 31, 2003 - Groundwater Monitoring Report, Third Quarter 2003

November 23, 2003 - HP-1 and HP-2 grab groundwater concentrations, depths, and boring logs.

November 23, 2003 - May 18, 1993 soil sample locations and boring logs

November 23, 2003 - Preferential Pathway Survey

→November 23, 2003 - Well Survey

November 23, 2003 - Soil vapor extraction and air sparging test results

January 31, 2004 - Groundwater Monitoring Report, Fourth Quarter 2003

April 30, 2004 - Groundwater Monitoring Report, First Quarter 2004

July 31, 2004 - Groundwater Monitoring Report, Second Quarter 2004

Mr. Douglas September 23, 2003 Page 3 of 3

These reports are being requested pursuant to the Regional Water Quality Control Board's (Regional Board) authority under Section 13267 of the California Water Code. If you have any questions, please call me at (510) 567-6746.

Sincerely,

Don Hwang

Hazardous Materials Specialist

Local Oversight Program

C: Mary C. Holland-Ford, Cambria Environmental Technology, Inc., 5900 Hollis St., Suite A, Emeryville, CA 94608

Donna Drogos

File

APPENDIX B

Soil Boring Logs

Project No. 9432 Boring/Well No. EB-1

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstern Permit: Zone 7 borings

Water Levels: 1st Enc. 24' Static: 21.5'

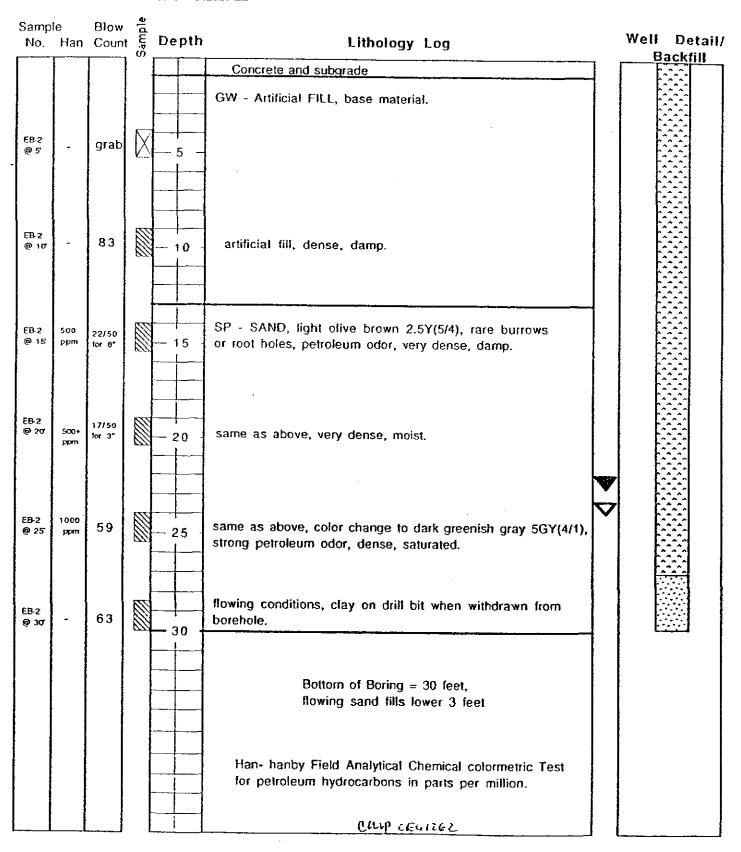
Borehole Completion Well Installed: No

Total Depth: 30.5 feet Grout Seal: 30' to surface

Sampl No.		Blow Count	Sample	Depth	Lithology Log	Well Detail/
					Concrete and subgrade	Frank I
					SM - Silty SAND, very dark grayish brown 10YR(3/2), up to 5% fine gravel to coarse sand, drills dense, damp.	
EB∙1 @-5"	-	grab	X	5 -	color change to dark yellowish brown 10YR4/6, 15% clay, 20% silt, drills dense, damp.	
					driller calls change at 8 feet.	
E5-1 @ 167	-	50 for 8*		- 10	CL - Sandy CLAY, dark yellowish brown 10YR(4/6), 15% silt 25% sand, low-med. plasticity, rare burrows, oxidation mottling, hard, damp.	
EB-1 @ 15	-	82		15	CD CAND light office became 0 5V4544	
EB-1 @ 20*	-	50 lor 6*		20	SP - SAND, light olive brown 2.5Y(5/4), very fine to med. grained, very dense, damp to moist. color change to dark greenish gray discoloration 2.5Y(5/4), slight petroleum odor, very dense, moist.	
EB-1 @ 25	•	60		- 25	driller calls water at 24 feet. same as above, sheen on water, very dense, saturated.	
EB-1 @ 30	_	24/50			same as above, flowing conditions.	
		tor 6°	823	30	CL - Silty CLAY, light olive brown 2.5Y(5/4), 15% silt, 20% fine to med grained sand, low-med. plasticity, contaminants not observed, hard, damp.	The state of the s
					Bottom of Boring = 30.5 feet, sand flows into lower 0.5 feet.	
					givip cer, 126 Z	

Project No. 9432 Boring/Well No. EB-2

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstern Permit: Zone 7 borings


Water Levels: 1st Enc. 24' Static: 22'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 27' to surface

Project No. 9432 Boring/Well No. EB-3

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstern Permit: Zone 7 borings

Water Levels: 1st Enc. 24' Static: 22'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 26' to surface

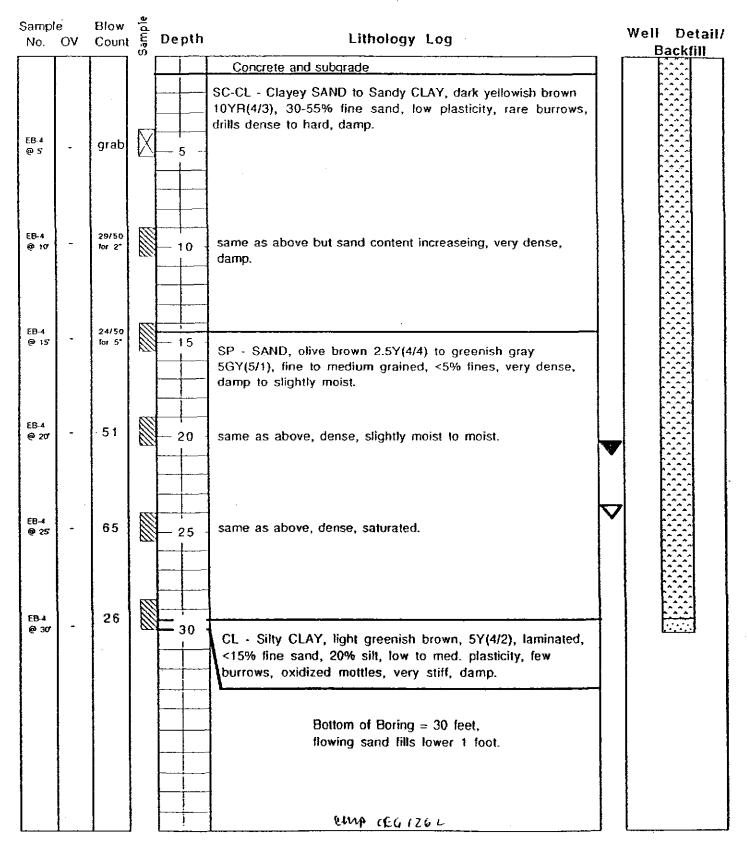
Sample Well Detail/ Depth Lithology Log Backfill Concrete and subgrade CL - Sandy CLAY, olive 5Y(4/4), low plasticity, slight petroleum odor, drills soft, damp. EB-3 grab @ 5 E8-3 46 sand interbed, 1.5' thick, slight petroleum odor, 10 @ 10 FB-3 54 15 @ 15 SP - SAND, dark yellowish brown 10YR(4/6), fine to med. grained, fines<5%, dense, moist. 100 EB-3 76 same as above, moderate petroleum odor, dense, moist. 20 @ 20 ppm E8-3 70 @ 25 25 same as above, sheen on water, very dense, saturated. EB-3 53 @ 30 30 CL - Silty CLAY, light olive brown 2.5Y(5/4), 40% silt, <5% sand, med. plasticity, laminated, some burrows, hard, damp. Bottom of Boring = 30 feet, flowing sand fills lower 4 feet Han- Hanby Field Analytical Chemical Colormetric Test fpr petroleum hydrocarbons in parts per million. Murcher, 1262

Project No. 9432 Boring/Well No. EB-4

Client: Douglas Parking Date Drilled: July 8, 1994

Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstem Permit: Zone 7 borings


Water Levels: 1st Enc. 24' Static: 20'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 29' to surface

Project No. 9432 Boring/Well No. EB-5

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstern Permit: Zone 7 borings

Water Levels: 1st Enc. 24' Static: 18'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30"

Cement Grout Seal: 29' to surface

Sampi No.	è Han	Blow Count	Sample	Depth	Lithology Log	Well Detail/ Backfill
					Concrete and subgrade	1.2.2.
EB-5 @ 5	1000 ppm	grab	\boxtimes	5	CL - Sandy CLAY, dark yellowish brown 10YR(3/6), 15% silt. 20% sand, low to med. plasticity, drills firm, damp. same as above, moderate petroleum odor, damp.	
EB-5 @ 10	800 ppm	50		_ 10	same as above, 15% coarse sand, hard, slightly moist.	
EB-5 @ 15	1000 ppm	60 tor 6		— 15	SP - SAND, olive brown 2.5Y(4/4), fine to medium grained, strong petroleum odor, very dense, moist.	
EB-5 @ 20	500 ppm	24/50 for 5*		20	same as above, dark greenish gray 5GY(4/2), clay up to 35% disseminated, very dense, moist.	
EB-5 @ 25	-	33		— 25	same as above, clay <5%, strong petroleum hydrocarbon, dense, saturated.	
EB-5 @ 30*	-	32		= 30 ;	CL - Silty CLAY, light oilve brown 5Y(6/2), 30% silt, med. to higily plastic, hard, damp.	
					Bottom of Boring = 30 feet, flowing sand fills lower 1 foot Han- Hanby Field Analytical Chemical Colormetric Test for petroleum hydrocarbons in parts per million. (LWP CEG 1261	

Project No. 9432 Boring/Well No. EB-6

Client: Douglas Parking Date Drilled: July 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstem Permit: Zone 7 borings

Water Levels: 1st Enc. 24' Static: 21.50'

Exploratory Boring Log

Borehole Completion

Well Installed: No Total Depth: 30'

Cement Grout Seal: 28' to surface

Sampl No.	le Han	Blow Count	Sample	Depth	Lithology Log	Well Detail/
					Concrete and subgrade	2222
E8∙8 @ 5°	•	grab		5 -	CL - Sandy CLAY, dark yellowish brown 10YB(4/4), 35% sand, med. plasticity, drills firm, damp.	
EB-6 @ 10	-	42/50 for 3"		— 10	same as above, color darkens to dark olive gray, slight petroleum odor, hard, damp.	
€8-8 @ 15	-	50		15	SP - SAND, olive 5Y(4/3), fine to med. grained, slight petroleum odor, dense to very dense, damp.	
EB-6 @ 20	1000 ppm	57/50 for 5*		- 20	same as above, stained dark bluish gray, strong petroleum odor, very dense, moist.	
EB-8 @ 25	-	48		- 25	same as above, strong petroleum odor, dense, saturated, flowing conditions.	7
EB-6 @ 30'	•	51		= 30	CL - Silty CLAY, pale olive, 5Y(6/3), laminated, 15% silt, highly plastic, hard, damp.	
				-	Bottom of Boring = 30 feet, flowing sand fills lower 2 feet	
					Han-Hanby Field Analytical Chemical Colometric Test for petroleum hydrocarbons in parts per million.	
		<u> </u>			Clup 164 1262	

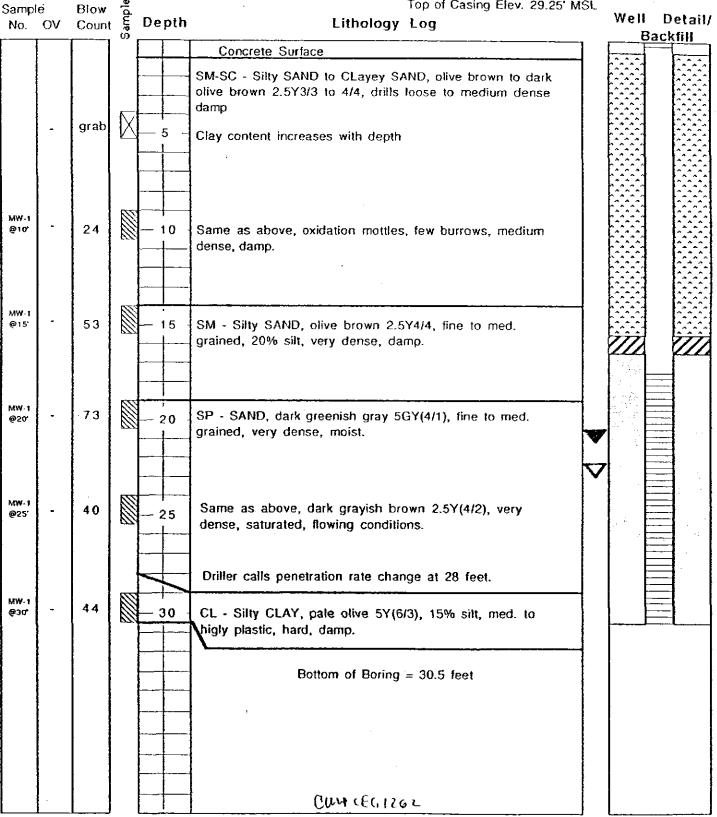
Project No. 9432 Boring/Well No. MW-1

Client: Douglas Parking Date Drilled: Sept. 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL

Drilling Method: Hollowstern Permit: Zone 7 #94501

Water Levels: 1st Enc:23' Static: 21.7

Exploratory Boring Log


Borehole Completion

Well Installed: 2"dia. Sch 40 PVC
Total Depth: 30.5' Casing Depth: 30.5'

Screen Length: 10' 0.020" Blank Length: 20.5'

Top Sand Pack: 16.5' Top Bentonite: 15.5

Grout Seal:15.5" to 0.5' vault box Top of Casing Elev. 29.25' MSL

Project No. 9432 Boring/Well No. MW-2 Client: Douglas Parking Date Drilled: Sept. 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstem Permit: Zone 7 #94501

Water Levels: 1st Enc. 24' Static: 20.1'

Exploratory Boring Log

Borehole Completion
Well Installed: 2"dia. Sch 40 PVC

Total Depth: 30.5 Casing Depth: 29.5 Screen Length: 10' 0.020" Blank Length: 19.5

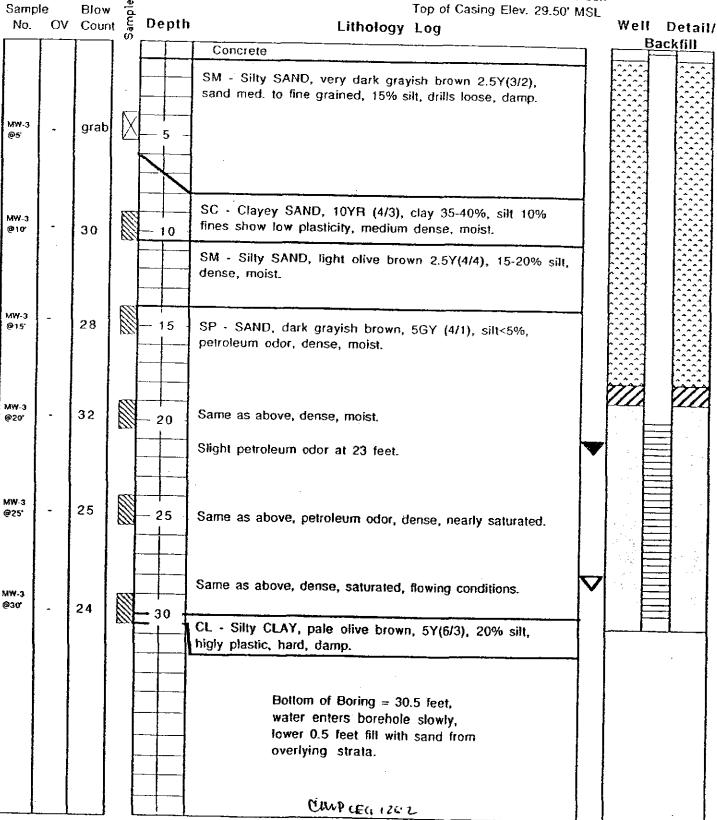
Top Sand Pack: 18.5' Top Bentonite: 17.5' Grout Seal:17.5' to 0.5' vault box

Sample Blow ອື່ No. Han Count ຮູ້ Top of Casing Elev. 27.10' MSL Sample Well Detail/ Depth Lithology Log Backfill Concrete SM - Silty SAND, very dark grayish brown 2.5Y(3/2), sand med, to fine grained, 15% silt, drills loose, damp. MW-2 grab SC - Clayey SAND, 10YR (4/3), clay 35-40%, silt 10% MW-2 fines show low plasticity, medium dense, moist. 27 @10 10 SM - Silty SAND, light olive brown 2.5Y(4/4), 15-20% silt. dense, moist. MW-2 500 @15' 31 15 SP - SAND, dark grayish brown, 5GY (4/1), silt<5%, ppm petroleum odor, dense, moist. MW-2 @20' 34 Same as above, dense, moist. 20 MW-2 **@25**' 38 25 Same as above, dense nearly saturated. Same as above, dense nearly saturated, flowing conditions. MW-2 **@30** 44 30 CL - Silty CLAY, pale olive brown, 5Y(6/3), 20% silt, higly plastic, hard, damp. Bottom of Boring = 30.5 feet Han- Hanby Field Analytical Chemical Colometric Test, in parts per million out ceares

Project No. 9432 Boring/Well No. MW-3

Client: Douglas Parking Date Drilled: Sept. 8, 1994 Location:1721 Webster St., Oakland, CA Logged by: EL Drilling Method: Hollowstem Permit: Zone 7 #94501

Water Levels: 1st Enc. 28.20' Static: 21.60'


Exploratory Boring Log

Borehole Completion

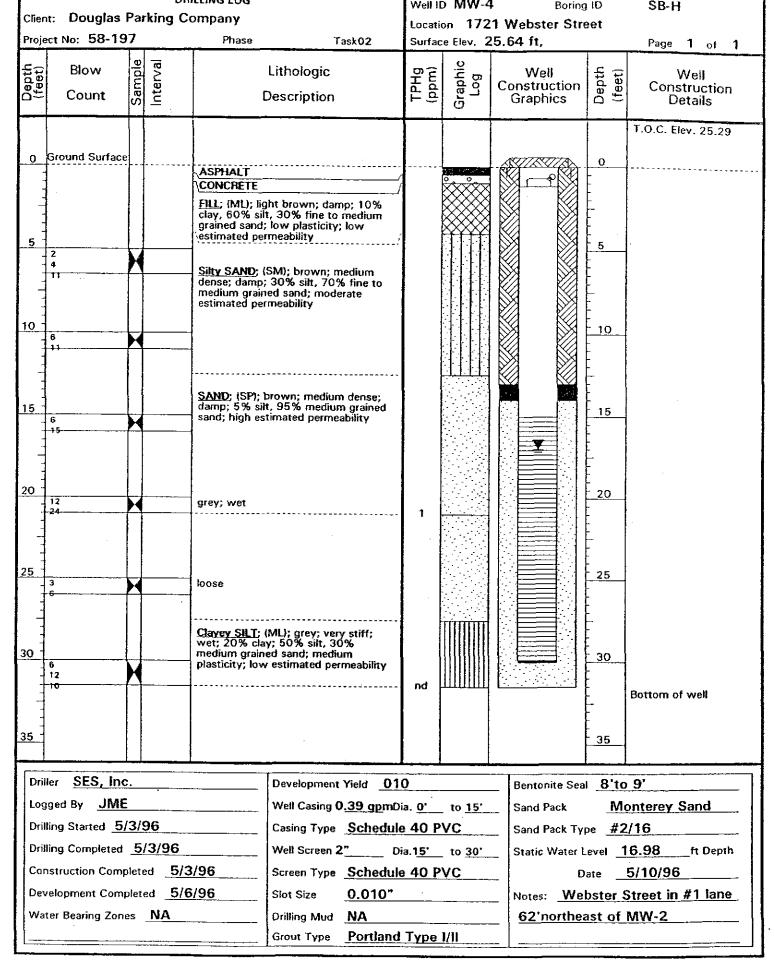
Well Installed: 2"dia. Sch 40 PVC Total Depth:30.5' Casing Depth: 30' Screen Length: 10' 0.020" Blank Length: 20'

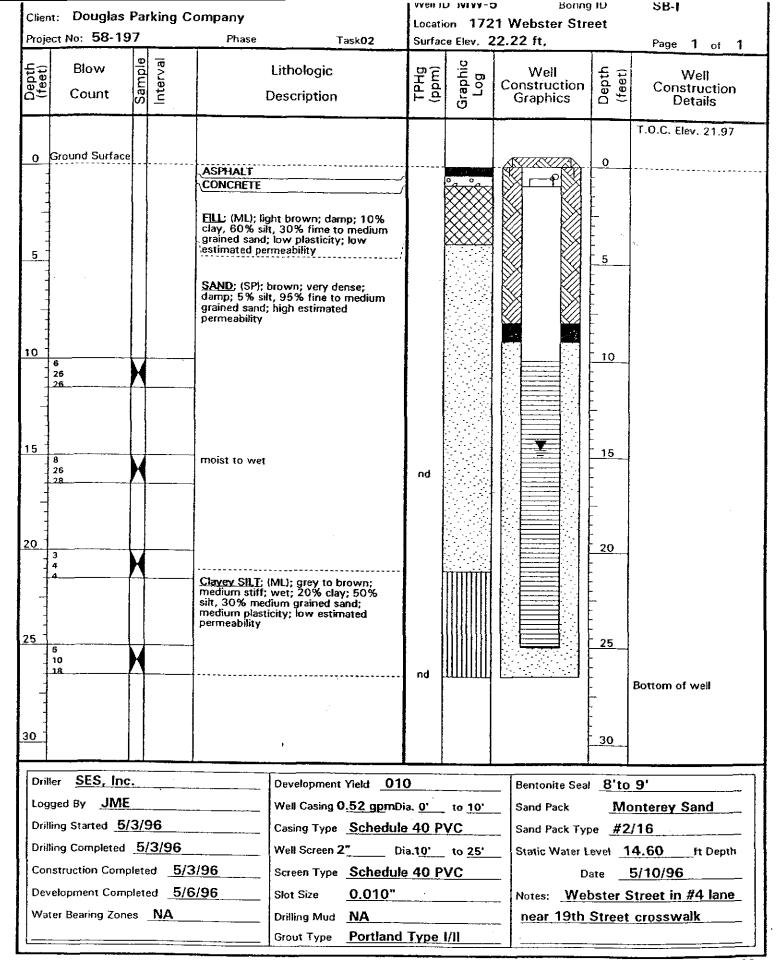
Top Sand Pack: 19' Top Bentonite: 18'

Grout Seal:18' to 0.5' vault box

Clier	nt: Douglas	Рa		оніма цод Сотралу						ng ID	SB-A
Proje	ect No: 58-19	7		Phase	Task	02		ion 177 ce Elev.	21 Webster Si NA ft,	treet	Page 1 of 1
Depth Feet	Blow Count	Sample	Interval		Lithologic Description		TPHg (ppm)		-	Depth	
0 5	Count Ground Surface				grey to brown; mois wed permeability		dd)	Grap.	Completion Graphics	10	Additional Comments Bottom of boring
30										30	
Drille	Vironex				Drilling Started 2/	22/96		·····	Notes: We	bster S	treet in #4 lane
Logge	ed By JME				Drilling Completed	2/22/	96		near site e		
Wate	Vater-Bearing Zones NA Grout Type Portland Type I/II										

Client: Douglas Parking Company							Boring ID SB-B					
Project No: 58-197 Phase Task 02						Location 1721 Webster Street Surface Elev. NA ft, Page 1 of 1						
Depth Feet	Blow Count	Sample	Interval		Lithologic Description			TPHg (ppm)			Depth	
5	Ground Surfac		<u>u</u>	moist	; (SM); brown; one to medium grate estimated	damp; 3 rained)	Gre	Graphics	0 10	Comments
20				grey; wet				80.0d <u>.</u>			25	Bottom of boring
Dritte	Vironex				Drilling Starter	d 2/2:	2/96			Notes: We	bster S	Street in #2 lane
Logge	ed By JME				Drilling Compl	eted <u>2</u>	/22/	96		near site e		į į
Water-Bearing Zones NA Grout Type Portland Type I/II												


Client: Douglas Parking Con	mpany	Boring ID SB-C Location 1721 Webster Street				
Project No: 58-197	Phase Task 02	Location 1/21 Surface Elev. N/		et	Page 1 of 1	
Conut Sample Interval	Lithologic Description	TPHg (ppm) Graphic Log	Boring Completion Graphics	Depth Feet		
0 Ground Surface Sister	ASPHALT Silty SAND: (SM); brown; moist; 30% silt, 70% fine to medium grained sand; moderate estimated permeability wet SAND: (SP); brown; moist; 10% silt, 90% medium grained sand; high estimated permeability	1.40	Graphics	10	Additional Comments Bottom of boring	
30				30		
Driller Vironex Logged By JME Drilling Started 2/22/96 Drilling Completed 2/22/96 Water-Bearing Zones NA Drilling Completed 2/22/96 Grout Type Portland Type I/II						


Client: Douglas Parking Company		Boring ID SB-D Location 1721 Webster Street				
Project No: 58-197 Phas	e Task 02		e Elev. N		,	Page 1 of 1
Sample Mong	Lithologic Description	TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth Feet	Additional Comments
Ground Surface ASPHALI Silty SAN silt, 70% sand; mod permeabil	D; (SM); brown; damp; 30% fine to medium grained derate estimated ity	1)	5	Graphics	5	Comments
20 grey; wet	P); brown; damp; 10% silt, ium grained sand; high permeability	60.00			20	Bottom of boring
Driller Vironex Logged By JME Drilling Started 2/22/96 Drilling Completed 2/22/96 Water-Bearing Zones NA Drilling Completed 2/22/96 Grout Type Portland Type I/II						

Client: Douglas Parking Company Project No: 58-197 Phase Task 02						1	Boring ID SB-E Location 1721 Webster Street Surface Elev. NA ft, Page 1 of 1				
Depth Feet	Blow Count	Sample	Interval	1	Lithologic Description		TPHg (ppm)		Boring Completion Graphics	Depth Feet	
0	Ground Surfac	æ		ASPHALT						0	
5				Silty SAND; (Silty, 70% fine sand; moderal permeability	6M); brown; damp; 30° to medium grained te estimated	%				5	
10		Trace &								10	
- - - - 15				SAND; (SP); b 90% medium estimated per	rown; damp; 10% silt, grained sand; high					15	,
20				ostimated per	пеавиту					20	
-		W. 34		grey; wet			nd			9	
25										25	Bottom of boring
30										30	
H	ller <u>Vironex</u>			······································	Drilling Started 2/23						Street in #4 lane,
	Logged By JME Drilling Completed 2/23 Water-Bearing Zones NA Grout Type Portland						-	1/11	62' north	e <u>ast of</u>	MW-2

	BORING LOG Client: Douglas Parking Company						Boring ID SB-F				
1			rking C	•			Location 1721 Webster Street				
Proje	ect No: 58-19	$\overline{}$		Phase	Task	02	Surfac	e Elev. N	IA ft,		Page 1 of 1
Depth Feet	Blow Count	Sample	Interval		Lithologic Description		TPHg (ppm)	Graphic Log	Boring Completion Graphics	Depth	Additional Comments
0 5 10 15 20 25 30	Ground Surfac			ASPHALT Silty SAND; silt, 70% fin sand; moder permeability	(SM); brown; moist e to medium grained ate estimated brown; moist; 10%		nd d	Grand Control of the	Graphics	10	Bottom of boring
<u> </u>										30	
Driff	er Vironex				D. IE. D.			<u>-</u>		<u> </u>	
					Drilling Started 2	<u>/23/9</u> (5		Notes: We	bster :	Street in #2 lane
1	ged By <u>JME</u>				Drilling Completed				near 17th	Street	crosswalk
Water-Bearing Zones NA Grout Type Portland Type						/#					

Client: Douglas Parking Comp	pany	Boring ID SB-G Location 1721 Webster Street			
Project No: 58-197		Surface Elev. NA		Page 1 of 1	
Depth Feet Anno Sample Interval	Lithologic Description	TPHg (ppm) Graphic Log	Boring Completion Graphics	Additional Comments	
O Ground Surface ASi Silt silt, san peri	Ity SAND; (SM); brown; damp; 20% t, 80% fine to medium grained nd; moderate to high estimated rmeability ND; (SP); brown; moist; 10% silt, % medium grained sand; high limated permeability	D G		5 10 80 Bottom of boring	
Driller Vironex	Drilling Started 2/23/96		Notes: Webst	er Street in #4 lane	
Logged By JME	Drilling Completed 2/23/9)6	near 19th Str	reet crosswalk	
Water-Bearing Zones NA	Grout Type Portland Ty	/pe l/li			

BORING/WELL LOG

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700

Fax: (510) 420-9170

CLIENT NAME SV-1/AS-1 (formerly RW-1) BORING/WELL NAME _ Douglas Parking Company JOB/SITE NAME DRILLING STARTED 04-Mar-00 Webster LOCATION 1721 Webster Street, Oakland, CA. DRILLING COMPLETED 04-Mar-00 WELL DEVELOPMENT DATE (YIELD) NA PROJECT NUMBER 580-0197 Not Surveyed DRILLER Gregg Drilling **GROUND SURFACE ELEVATION DRILLING METHOD** Hollow-stem auger Limited Access Rhino TOP OF CASING ELEVATION NA **BORING DIAMETER** SCREENED INTERVAL J. Riggi 20.0 ft (04-Mar-00) **LOGGED BY DEPTH TO WATER (First Encountered)** R. Clark-Riddell, PE# 49629 REVIEWED BY **DEPTH TO WATER (Static)**

REMARKS Hand Augered to 5' bgs., boring located in Webster street sidewalk in garage entrance. Well is a co-axial SVE/AS well. CONTACT DEPTH (fbg) GRAPHIC LOG BLOW COUNTS U.S.C.S. EXTENT PID (ppm) SAMPLE (fgg) LITHOLOGIC DESCRIPTION WELL DIAGRAM CONCRETE 0.5 <u>SAND</u>, (SP); brown; damp; 5% clay, 10%silt, 80% fine grained sand, 5% gravel; very high estimated permeability. SP 3" upper casing 5.0 SAND, (SP); brown; damp to wet; 5% clay, 5% silt, 90% fine to medium grained sand; very high estimated 12 RW-1@ permeability. Bentonite Seal 63 RW-1@ 10' 116 RW-1@ WELL LOG (PID) H:DOUGLAS PARKING\\172\ WEBSTERFIGURES\\580-0197\GPJ DEFAULT\\GDT 15' SP ∇ 427 RW-1@ @20'- we 20' Bentonite Seal Monterey Sand #2/12 1" Lower 103 RW-1@ casing 29.5 SM . J. J. .30.0 109 RW-1@ Silty SAND with Clay (SM); brown; wet; 15% clay, 30% Bottom of 29.5 silt, 55% medium grained sand; very high estimated Boring @ 30 ft permeability. PAGE 1 OF

CLIENT NAME

LOCATION

DRILLER

LOGGED BY

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700

1721 Webster Street, Oakland, CA.

Douglas Parking Company

Fax: (510) 420-9170

Webster

580-0197

J. Riggi

Gregg Drilling

BORING/WELL NAME AS-2 (formerly AS-1) **DRILLING STARTED** 04<u>-Mar-00</u> DRILLING COMPLETED 04-Mar-00 WELL DEVELOPMENT DATE (YIELD) NA GROUND SURFACE ELEVATION Not Surveyed Hollow-stem auger Limited Access Rhino TOP OF CASING ELEVATION NA SCREENED INTERVAL __ 31 to 34 ft bgs 20.0 ft (04-Mar-00) DEPTH TO WATER (First Encountered)

R. Clark-Riddell, PE# 49629 REVIEWED BY NA **DEPTH TO WATER (Static)**

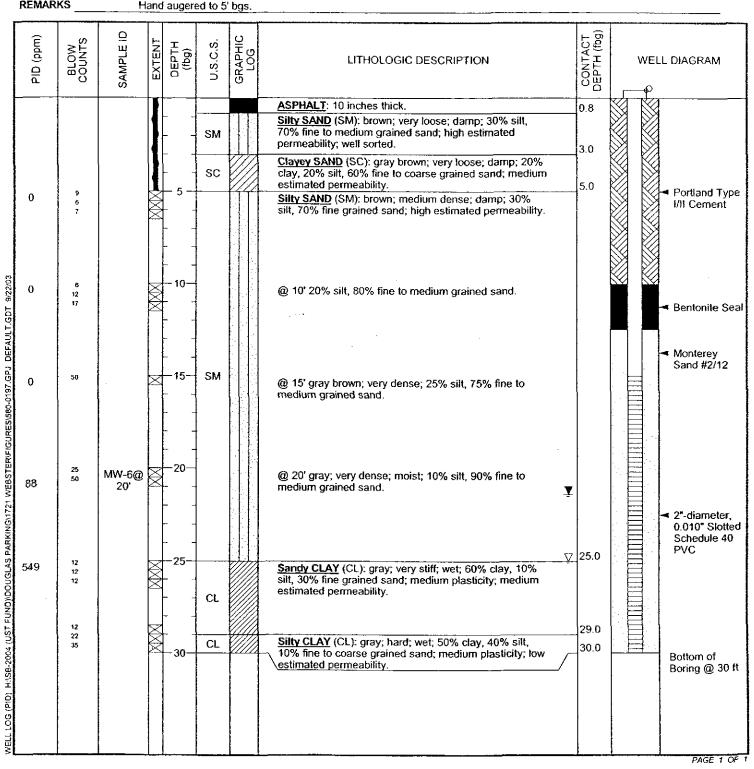
REMARKS Hand Augered to 5' bgs. Boring located in Webster street sidewalk in garage entrance. CONTACT DEPTH (fbg) GRAPHIC LOG **EXTENT** U.S.C.S. SAMPLE (fbg) LITHOLOGIC DESCRIPTION WELL DIAGRAM SAND Air Sparge wells were installed 30 degrees from vertical to a total death of 30 feet bgs. No samples were collected. Soil was logged from cuttings. L LOG (PID) H:DOUGLAS PARKING\1721 WEBSTER/FIGURES\580-0197.GPJ DEFAULT.GDT 4/21/04 2" diam., Schedule 40 PVC SP ∇ Bentonite Seal Monterey Sand #2/12 2"-diam. 0.010" Slotted Bottom of PAGE 1 OF 2 Continued Next Page

BORING/WELL LOG

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A

9	Tele	eryville, ophone: (510)	(510)	420-0	700							
CLIENT NAME Douglas Parking Company								BORING/WELL NAME AS-3 (formerly AS-2)				
							DRILLING STARTED	04-Mar-00				
LOCATION		Gregg Drilling						DRILLING COMPLETED	04-Mar-00			
PROJECT NUM	BER							WELL DEVELOPMENT D	ATE (YIELD)	NA		
DRILLER								GROUND SURFACE ELE	EVATION _	Not St	urveyed	
DRILLING MET	HOD							TOP OF CASING ELEVA	TION NA			
BORING DIAME	ETER_	8"			_			SCREENED INTERVAL				
LOGGED BY		J. Riggi			_			DEPTH TO WATER (Firs	t Encountere			
REVIEWED BY	_	R. Clari	k-Ridde	ell, PE#	# 4962	29		DEPTH TO WATER (Stat	ic)	NA	.	
REMARKS		Hand A	ugered	d to 5' b	ogs. B	oring located	in Webste	er street sidewalk in garage e	entrance.		, , , , , , , , , , , , , , , , , , , ,	
PID (ppm) BLOW COUNTS	SAMPLEID	EXTENT	(fgg)	U.S.C.S.	GRAPHIC LOG		LITH	OLOGIC DESCRIPTION		CONTACT DEPTH (fbg)	WELL DIAGRAM	
ON NAS (3)					a total der	th of 30 fe	ere installed 30 degrees from eet bgs. No samples were co n cuttings.	vertical to ollected.				

WELL LOG (PID) HADOUGLAS PARKINGA721 WEBSTERFIGURESIS80-0197,GPJ DEFAULT,GDT 4/21/04 2" diam., Schedule 40 PVC SP ∇ ■ Bentonite Seal Monterey Sand #2/12 2"-diam., 0.010" Slotted Bottom of PAGE 1 OF 2 Continued Next Page

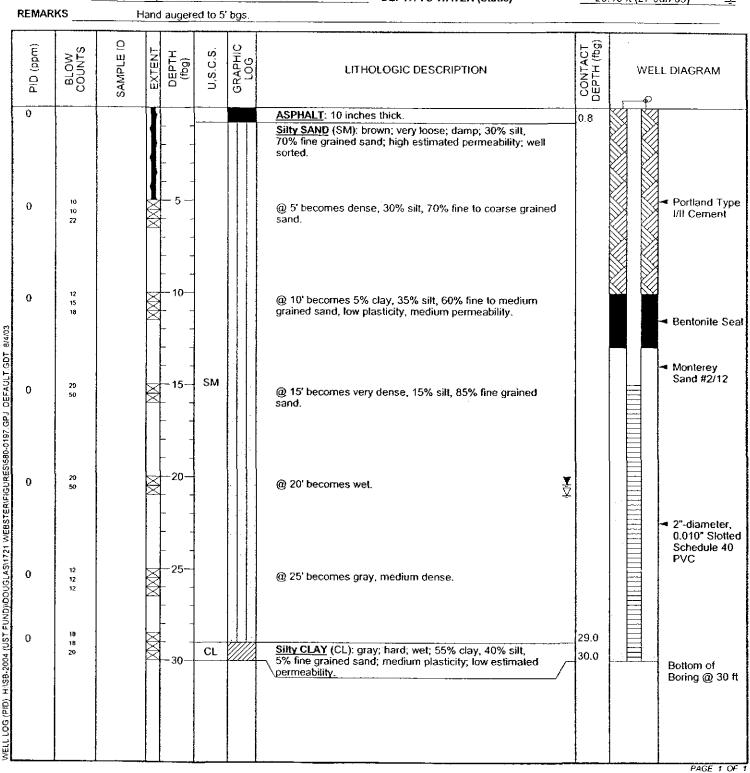


Cambria Environmental Technology, Inc.

BORING/WELL LOG

5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Douglas Parking Company	BORING/WELL NAME MW-6	
JOB/SITE NAME	Webster	DRILLING STARTED 27-Jun-03	
LOCATION _	1721 Webster Street, Oakland, CA.	DRILLING COMPLETED 27-Jun-03	
PROJECT NUMBER _	580-0197	WELL DEVELOPMENT DATE (YIELD) 30-Jun-03 (6 gallons)	
DRILLER _	Woodward Drilling	GROUND SURFACE ELEVATION 31 ft above ms!	
DRILLING METHOD _	Hollow-stem auger	TOP OF CASING ELEVATION 30.99 ft above mst	
BORING DIAMETER _	8*	SCREENED INTERVAL 15 to 30 ft bgs	
LOGGED BY	R. Fennell	DEPTH TO WATER (First Encountered) 25.0 ft (27-Jun-03)	$\overline{\Sigma}$
REVIEWED BY	Mary C. Holland-Ford R.G. #7551	DEPTH TO WATER (Static) 21.40 ft (30-Jun-03)	Ţ
DEMARKO	an a same	•	



Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, CA 94608 Telephone: (510) 420-0700

BORING/WELL LOG

Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Douglas Parking Company	BORING/WELL NAME MW-7
JOB/SITE NAME	Webster	DRILLING STARTED 27-Jun-03
LOCATION	1721 Webster Street, Oakland, CA.	DRILLING COMPLETED 27-Jun-03
PROJECT NUMBER _	580-0197	WELL DEVELOPMENT DATE (YIELD) 30-Jun-03 (10 gallons)
DRILLER _	Woodward Drilling	GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD _	Hollow-stem auger	TOP OF CASING ELEVATION NA
BORING DIAMETER _	8"	SCREENED INTERVAL 15 to 30 ft bgs
LOGGED BY	R. Fennell	DEPTH TO WATER (First Encountered) 21.0 ft (27-Jun-03)
REVIEWED BY	Mary C. Holland-Ford R.G. #7551	DEPTH TO WATER (Static) 20.40 ft (27-Jun-03)
DESAI DIZO		

CAMBRIA

APPENDIX C

Laboratory Analytical Report

The second secon	
MaCamphall Analysical Tur	110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
McCampbell Analytical Inc.	Telephone: 925-798-1620 Fax: 925-798-1622
	http://www.mccampbell.com/E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #580-0197-45; Douglas	Date Sampled: 10/04/03
5900 Hollis St, Suite A	Parking	Date Received: 10/06/03
Emeryville, CA 94608	Client Contact: Gretchen Hellmann	Date Reported: 10/10/03
Emeryvine, CA 94000	Client P.O.:	Date Completed: 10/10/03

WorkOrder: 0310080

October 10, 2003

Dear Gretchen:

Enclosed are:

- 1). the results of 1 analyzed sample from your #580-0197-45; Douglas Parking project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	, ,	Date Sampled: 10/04/03
5900 Hollis St, Suite A	Parking	Date Received: 10/06/03
Emeryville, CA 94608	Client Contact: Gretchen Hellmann	Date Extracted: 10/06/03
Linelyvine, CA 54000	Client P.O.:	Date Analyzed: 10/06/03

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Cm Work Order: 0310080

Lab ID	Client ID	Matrix	Benzene	Ethylbenzene	MTBE	Toluene	TPH(g)	Xylenes	DF	% SS
001A	SVE-1-5"	A	490	110	ND<200	260	35,000,a	530	20	109
										
					·					
					**					
		1					 			
		<u> </u>								
									 	
		İ							-	
	····									-
									ļ	-
		-							<u> </u>	
										
Reporting	Limit for DF =1;	A	0.25	0.25	2.5	0.25	25	0.25	1	μg/L
ND means not detected at or above the reporting limit		S	NA	NA	NA	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; h) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: A

WorkOrder: 0310080

EPA Method:	SW8021B/8015Cm	Extraction:	SW5030B		BatchID:	8819	Spiked Sample ID: N/A										
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)							
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High							
TPH(btex) [£]	N/A	60	N/A	N/A	N/A	104	103	1.56	70	130							
MTBE	N/A	10	N/A	N/A	N/A	98.9	103	3.67	70	130							
Benzene	N/A	10	N/A	N/A	N/A	103	104	1.17	70	130							
Toluene	N/A	10	N/A	N/A	N/A	104	105	0.734	70	130							
Ethylbenzene	N/A	10	N/A	N/A	N/A	106	106	0	70	130							
Xylenes	N/A	30	N/A	N/A	N/A	110	107	3.08	70	130							
%SS:	N/A	100	N/A	N/A	N/A	102	104	1.58	70	130							

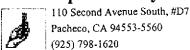
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / (MS + MSD) * 2.

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.


[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0310080

Client:

Cambria Env. Technology 5900 Hollis St, Suite A Emeryville, CA 94608 TEL:

(510) 420-0700

FAX:

(510) 420-3394

ProjectNo:

#580-0197-45; Douglas Parking

PO:

Date Received:

10/6/03

Date Printed:

10/6/03

				•		Requested Tests	
Sample ID	ClientSampID	Matrix	Collection Date	Hold	V8021B/8015C		
0310080-001	SVE-1-5"	Air	10/4/03 10:15:00 AM		A		

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCAMPBELL ANALYTICAL INC. 110 2 [™] AVENUE SOUTH, #D7 PACHECO. CA 94553-5560 Telephone: (925) 798-1620 Fax: (925) 798-1622										ים	CHAIN OF CUSTODY RECORD TURN AROUND TIME: RUSH 24 HOUR 48 HOUR EDF Required? Yes No												XC SAY								
Telephon	e: (925) 79 8-	1620			Fa	ix: (9	25)	798-	162	2			Ľ.											Comm	ante						
Report To: Gretchen Hellmann Bill To: SAME														1			A	naty	SIS	tequ	est							Jiner		Comm	CHIZ
Company: CAMBRIA ENVIRONMENTAL TECHNOLOGY, INC.															(E)		Į	-	ļ			ļ				İ	İ				
5900 H	OLLIS STRE	ET – SU	ITE A		·			. (ä		F/B/				İ			0	İ					į			
EMER	YVILLE, CA	94608	E-mail:	المسدا	(max	<u>~ ⊕</u>	. i.	M, 20.	(LOC.	∓ ĈV	· V »	~(¶/^	F E		E&I	\Box	į			1		23						Ì			
Tele: 510 420-1	<u> </u>		Fax. 510	3 14	<u>10-</u>	y R						5.1	5		520	118.	i					70/	•		1	1					
Project #: 580	0197-	45	Project N	ame:	De	<u>~</u>	اب	12	=	1 12 m	4.8	<u> </u>	28 +		e (5:	ns (4	Š	(a)	>			/82						ļ	1		
Project Location:	1721	ひをあら	TER	(<u> </u>	<u>ة را ي</u>	~	317		1			070		reas	oque	3	D8 /	1			625			38	- 1					
Sampler Signature:	(Mu			بمبا				·		. /*		SD.	02/8		9 S	1.0CE	1 5	602) \$. \$	99		PA	1		9.2%						
	* *	SAMP	LING		<u>ي</u>	Ŋ	ΛAT	RIX	- 1	MI PRE	ETH(SER	VED VED	Gas (602/8020 +	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	9	BTEX ONLY (EPA 602 / 8020) FPA 608 / 8080	EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260		PAH's / PNA's by EPA 625 / 8270 / 8310		į	Lead (7240/7421/239.2/6010)						
				SIS	ine									(S)	<u> </u>	uma	010	7 080 80 ×	080	240	270	S. A.	etals	lais	742						
SAMPLE ID	LOCATION			Containers	l e				[- [1] H	Dies	ř	trok	EPA 601 / 8010		8/8	4/8	EPA 625 / 8270	<u>Z</u>	CAM-17 Metals	Me	240/						
(Field Point Name)		Date	Time	omt	ပို	<u>5</u>	_	50	ਫ਼		_ c	5 a	\× ×	as.	카	Pe	09		3	1 62	١ 62	1.8 /	<u> </u>	LUFT 5 Metals	d (7.						
				Ŭ #	Type Containers	Water	Soil	Sludge	Other	lce		Other	BTEX & TPH as	TPH	Tota	Tor	EPA	BTEX ONLY (EI	EPA	ЕРА	EP.4	PAI	\ \ \ 		-1 -23	RCI					
d		2011 -	• 100									+-	┞	-					<u> </u>								\vdash	+	+-		
5VE-1-5"		10/4/03	10:15	1_	302")	-		1					X	+-			-	-	+	 							\vdash	+	+	 	
					<u> </u>		-	4					<u> </u>	-			_		 	-									-		· · · · · · · · · · · · · · · · · · ·
	_												_]					<u> </u>									-	<u></u>	
	•														·																
								<u> </u>			\neg		Γ	Ī]]					
	·	 		 	 		-				·	\top	T	1			+	+	T	†											
<u> </u>			}				+		 	\vdash			+	 	·		+	_		+	-				-	1		\dashv	+	 	
			 			 	+	+	-				+	-	-	\vdash	-		+	1	+					<u> </u>		+		 	
		ļ	<u> </u>	<u> </u>	<u> </u>		-	-	\vdash		_	<u> </u>	+	-	ļ			_	 -	+	-				-		-			+	
									ļ				\perp		<u> </u>					 	 	 			<u> </u>	1			 	 	
		}																	-		<u> </u>	<u> </u>			ļ		ļļ.			<u> </u>	
											T								j		L										
		1			1		+						1	\top														Ī			
		 	 	 	\dagger		\dashv	+	\dagger	H		+-	1	+			- 1		\top	1	1	T	1		<u> </u>					1	
-	 	 	 	 	 	1	_	-+-	 	-	<u> </u>	+	+	+	-				+	+	+		 	-	+-	-			+	t	
/ /	<u>ļ, , /</u>		<u></u>		1				: 				╀		<u> </u>					٠	ــــــــــــــــــــــــــــــــــــــ	1	L		1	<u> </u>	1		1		
Relinquished By: Date: Time: Received By:							18	Rema	rks:			-		1		1		T _		NOL	[AVX]	KEZE	વ								
Relinquisted By: Date: Time: Received By: Old 1125 Steve Dang Time: Received By: Old 1125 Steve Dang Old 1125						4					EV1.	MIO.	IET/	الالالالا الالالالا	10	40	5V V	NT C	ATEI	OKIN	ECHT	DI									
Relinquished By:	,	Date:	Time:	Rec	erved E	y: e	A	21	01	fre	74 i	239	-			_		A)	400	INIV	LNO	J			NAS	av:	COND	EVD	H		
1/1V/ 4)	196	1122	ڪيا	YC	<u> </u>	0	vie		nn	i		-					/"	#I/	ire (C	HLI	₹		\wedge	P4	المبلدة في الم	A	E/t			
Refinduished DV	\$ 2000	Oater 10/5	Time:	1 1	CIVCU L	٠ د د	•	1	1/1	16.							. 1	,					/	/			Ø				
1 234 16 1612 Millson / hllm								Щ.																							